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Abstract

Performing reliability assessments always relies on utilizing data. Most often, this data is pro-
vided in the form of historic failure dates. To understand this data, models are used to derive
reliability characteristics from it.

These models can be parametric, trying to describe the system by means of mathematical equa-
tions. They can also be empirical, letting the raw data describe the system without assuming a
certain outcome.

Handling parametric models is convenient, as they are described by often just one value. Empir-
ical probability distributions are built on all available data and hence requires them to be fully
defined. Handling this amount of data is cumbersome.

Part of this thesis is proposing different methods to represent the empirical reliability estimator.
These representations try to combine convenient usage while keeping accuracy.

Representing the empirical reliability graph by a reduced amount of linear segments is proposed
and discussed. This is an efficient way to compress huge datasets to a low number of descriptive
points to interpolate in.

Furthermore, the feasibility to use polynomial regression on the empirical probability distribution
is evaluated.

The computational efficiency of all methods is compared. For all practical purposes, the time to
retrieve a reliability estimate is negligible.

Parametric and empirical approaches are applied to various datasets and the results discussed.
The empirical methods outperform the exponential estimator in all cases.

The given experiment hypothesis is validated on each of the four experiments: The empirical
probability distributions do match sufficiently well the reference reliability and the computational
efficiency is negligible for all practical purposes.
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Chapter 1

Introduction

1.1 Background

Since the early usage of machinery, stakeholders want to know how long their equipment will
last. Systems eventually break down or their performance do no longer meet the requirements.

The process of failure estimation is always a balancing act between being too conservative and
too risky. This can lead to either wasting potentially good equipment and money, or endangering
people and the environment in case of a hazard.

The emerging field of statistics led to the widespread use of failure distribution models for this
task. Parameter based models like the exponential one are commonly known and used. As
soon as their parameters are found (given, assumed or estimated), the simple subsequent use is
appealing to most engineers.

The selection of those parameters however is the critical step in the process. Its validity is defining
the accuracy of all following calculations (Risk assessment, Definition of safety barriers, SIL
allocation, etc.). The extent of consequences is often underestimated — a manufacturer stating a
value for A in their data sheet does not necessarily know what the customer is using this value
for.

When compressing all known information into a limited amount of parameters — mostly only one
or two — information gets lost. There are however other methodologies to estimate the failure
behavior of equipment. This loss can be avoided by using empirical methods. The information
gained by applying this method is however not easy to represent.

With the emerging trend of "Big Data", Industry 4.0 and continuous condition monitoring, better
failure prediction is highly sought after. This trend however is also making the matter of effi-
cient data handling more important. The vast amount of generated and available data has to be
processed in an intelligent way, often by means of truncation and compression.
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1.2 Objectives

This thesis is highlighting the differences between parametric and empirical reliability estimation.
It further proposes a method to represent the empirical distribution in efficient ways and applies
them to numerous examples. Examining the required amount of failure data to give sufficient
estimators is an additional objective. An efficiency and accuracy assessment is carried out to
compare all approaches.

1.3 Limitations

Limitations are given by the lack of real raw data. Plenty of failure rates are available, but access
to detailed listings of failure dates and fleet composition are rare. In order to increase the number
of experiment cases, some data is self-generated based on mathematical expressions.

This thesis is not focusing on the statistical methodologies to evaluate the fit of various curves
in a mathematical way. It uses simple, comprehensible tools to obtain a first evaluation of the
proposed methods.

1.4 Approach

Different example data sets are presented with various origins and size. The two methods,
parametric and empirical, are applied to each dataset and the results compared and discussed.

In order to implement the proposals and carry out the necessary calculations a Python-program
is written as part of this thesis.

1.5 Structure of the Report

The thesis is opened with highlighting the current literature work around the topic of empirical
reliability evaluation in

The following gives a motivating example including some background information on
data sources and a case study illustrating the problem.

The conceptual developments are introduced in The proposed data representations
are explained within this chapter as well a method to allow prediction beyond observed mission
times. It also contains a section about the efficiency measures and results of the methods under
evaluation.

The main chapter for the experiments carried out can be seen in Four datasets of
varying origin are assessed for their reliability behavior.

A concluding statement and a proposal of future works can be seen at last in[chapter 6]
The Python program developed is shown in the Appendix.
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Related Works

Parameter-based models and their benefits and disadvantages compared to empirical distribution
models are widely discussed in various fields of sciences.

As soon as the unknown parameters are estimated, the parametric models are easy to use. If
however the assumptions are false, then the resulting model can be misleading. Non-parametric
methods perform better than poorly specified parametric models in almost all cases [21]]. Perretti
furthermore states "it is best to let the data tell us how the system works without imposing
preconceived ideas on the outcome". This is also called the "true model myth" as stated in [8]].

As reported by Bobrowski [3]], empirical methods are recommended if there is no information
available for a possible underlying distribution.

Similar conclusions are also drawn by Mokhtarian [16], stating that when both non-parametric
and parametric methods are applicable to a problem, the parametric method is usually preferred
because of its efficiency and simple use. However when the assumptions for those parameters
are questionable, non-parametric methods are more suitable.

The oil- & gas industry, traditionally sensitive to safety and reliability matters, is following a
dedicated standard for the acquisition of reliability data: ISO 14224 — "Petroleum, petrochemical
and natural gas industries — Collection and exchange of reliability and maintenance data for
equipment". [[7] This standard however does not include methods for analysis and applying of
reliability and maintenance data. It gives however principles on the calculation of basic reliability
parameters in the appendix.



Chapter 3

Motivating Example

3.1 Why exponential distribution?

Many aspects of understanding the world we live in can be broken down to an essential question:
When do events occur?

When will the remaining radiation be decreased to 50%?
When will next earthquake happen?
When will there be another fire in the forest?

And lastly the question for all RAMS related tasks:
When will the next failure happen?

Describing — and predicting — the failure occurrence behavior of certain events is a major task
of statisticians working in probability theory. Probability models are commonly used to achieve
those two tasks.

Numerous probability distributions exist. In the RAMS aspect the most commonly [24]] used
ones are:

e Exponential distribution

e Weibull distribution

o Gamma distribution

e Homogeneous Poisson Processes

Of all available and suitable probability distributions, the exponential distribution is the prevalent
one. Various reasons can be found for that:
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1. Ease of use
The exponential distribution is described by a single scalar parameter ("Hazard rate", "Fail-
ure rate", commonly used symbol: A, commonly used unit: [%])
Having only one variable makes handling of data plain and simple. It can be entered by
hand, looked up in tables and books and takes up almost no memory when stored digitally.

2. Ease of comparison
When comparing different systems and components, the failure behavior is an important
factor in the decision process. Comparing different failure rates yields instant results: A
higher value represents a higher likelihood of a failure in a given time frame and hence a
less preferable option.

-+ [Upper Margin]

Additionally a confidence interval can be given in a generic [Value]_[L ower Margin]

style.

3. Suitability
A major criterion for using the exponential distribution is that many systems can be de-
scribed good enough with it. It gives sufficient accuracy within a given confidence interval,
as many setups seem to "follow" the exponential law.

4. Constant failure rate
The nature of the exponential law is its constant failure rate. The probability of having a
failure in a time interval of a given length is the same regardless of its position along the
time axis. It has no memory. A full explanation of exponential distribution’s properties
can be found in [24]. This characteristic is required for many reliability tools, algorithms
and classifications. This includes methods like Markov Chains, PFD calculations and SIL
definition.

3.2 Current situation

When designing safety relevant systems, the RAMS engineer is relying on given information.
This information is accessible in data sheets directly from the manufacturer, or gathered by
collected and processed lifetime data. Latter is provided by their own company, if enough
historic data is available, or by agencies specializing in aggregating relevant data.

3.2.1 Data sheets

The quality of information found in data sheets is depending on the kind of equipment.

Components for generic industrial or domestic usage often lack information about the failure
behavior. Getting this knowledge is a costly and lengthy procedure. This is often not considered
required information by the customer, either due to the low cost of the equipment or the short
estimated usage time.

More advanced products often give information in the form of MTTF (Mean Time To Failure)
values. While this value can be useful to compare competitors, it gives no information about
the underlying failure probability distribution — a MTTF value can be calculated for any given



6 Chapter 3. Motivating Example

distribution [14]. It is merely the integral of the reliability distribution — see

MTTF = / TR() (3.1)
0

Equipment intended for safety relevant applications give the most insightful information. De-
pending on the industry sector, some applicable standard might require the indication of certain
information. This includes MTTF, failure rate values and naming the standard according to
which this data is gathered.

3.2.2 Databases / Books

Various databases for failure data exist. Due to the sensitive nature of this data, the access to
them is restricted. Access is usually granted by paying a subscription fee. The scope of this
thesis is on data collections of the oil and gas industry.

3.2.2.1 OREDA

The OREDA project is sponsored by eight oil and gas companies [[17]. The fundamental task of
this organization is to aggregate, process and exchange reliability related information. The full
set of data is accessible to their partners in an online database and the reduced information level
can be found in their printed OREDA handbooks ([18]], [19]).

The OREDA organization is also involved in issuing the standard ISO 14224: "Petroleum,
petrochemical and natural gas industries — Collection and exchange of reliability and maintenance
data for equipment" [7].

The introduction chapter of the handbook describes the origin and processing of the data pre-
sented.

An important basic assumption is given early in this chapter:

"All the failure rate estimates presented in this handbook are therefore based on the assumption
that the failure rate function is constant and independent of time, in which case z(t) =\, i.e. the
failure rates are assumed to be exponentially distributed with parameter \."

The method to calculate the maximum likelihood estimator A based on the collected information

is given in This is also the method described in [24]].

- Number of failures n

— — = (3.2)
Aggregated time in service T

The handbook further introduces the "OREDA estimator”, a modified averaging estimator that
considers data origins from different installations and samples [26].
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3.2.2.2 ExproSoft Wellmaster

ExproSoft is a company founded in 2001 as an out-spring from the Sintef research society in
Trondheim [6]. The original aim of the company was to improve the performance of Down-Hole
Safety-Valves by use of statistical analysis of history reliability data. It expanded the scope
towards complete installations. The company provides the tool "Wellmaster", an interactive page
to access, analyze and display the available reliability data.

According to direct information requested by the company, they are using the same method to
calculate an estimator for a constant failure rate A as seen before in|[Equation 3.2

3.2.2.3 PDS Data Handbook

The PDS forum [20] is a collaboration of circa 25 participants. Those are representatives of
operators, manufacturers and research societies with an interest in safety instrumented systems
(SIS).

They regularly meet and release two matters: The "PDS Method Handbook" and the "PDS Data
Handbook" [25].

The PDS Method Handbook gives an approach to implement and verify SIL requirements ac-
cording to IEC 61508 / 61511 standards. The PDS Data Handbook is based on experience with
operating SIS. The given data dossiers are based on multiple data sources. They range from
using OREDA, direct vendor data, expert judgment and operational reviews.
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3.3 Small case study

3.3.1 Purpose description

The reliability performance of a component or system is evaluated assuming an underlying
exponential distribution. Doing so can give results, which are not as holistic compared to using
empirical methods. This case study will demonstrate the differences on a small example system.

3.3.2 System description

Following scenario is used throughout the remaining section:

A reliability engineer wants to perform a reliability assessment of a system. The system is built
up of six elements made out of three different types. A reliability block diagram illustrating the

system can be seen in|Figure 3.1

Al

Cl

A2 C3

C2

C3

Figure 3.1: Reliability block diagram illustrating the motivational case study
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3.3.3 Input Data

All three components in this scenario (A, B, C) were used in previous similar installations. The
maintenance department kept track of all the times a unit was taken out of service — either due
to failure, or due to end of mission. This results in a right censored dataset for each component
containing the event time and the information weather it was a failure or censoring.

The full set of used input data can be seen in in the appendix.

3.3.4 Output

When assessing the reliability of a system, the probability of having the Top-Event is a critical
indicator. There are several methods to calculate this value — some are exact, some are just
approximations.

The methodology being used within this case study is described in
In addition to that, the individual component’s reliability is calculated and shown.
3.3.5 Parametric approach

The input data (failure times) are processed to give a constant failure rate for each component

type (A, B, C). The results can be seen in and the calculation in

Component Type Failure rate [%]

A 4.11x 1074
B 3.70x 10~
C 1.35x 1074

Table 3.1: Resulting failure rates based on exponential distribution

An illustration of the three corresponding reliability diagrams can be seen in They
cover the time range up to one year (8760 hours).
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Figure 3.2: Reliability diagrams for one year (8760 hours) for all three components (A, B, C)

based on exponential distribution
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Figure 3.3: Probability of having the Top-Event with using exponential distribution

3.3.6 Empirical approach

The traditional Kaplan-Meier estimator is used to gain information about the reliability charac-
teristics of each component.

The Kaplan-Meier estimator for censored data used within this thesis is based on the original
research paper [9]].

If Tqy < Tepy < ... are the times with at least one failure, and n; ,d; are, respectively, the number
at risk and the number of failures at T(i), then [Equation 3.3|can be formulated.

Roy= T] *= d" (3.3)

iTp<r M

The results of those calculations are graphical depictions of failure probability over time, as seen
in

It is worth mentioning that the Kaplan-Meier value is only available up to the highest observed
event time. No information beyond that time is known, hence the abrupt ending of the graph. No
assumptions are made for this time span. Furthermore, the maximum observed time is different
for each component.
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Data from failure_dates/A-Data.txt
Number of Events: 30 (20 Failures, 10 Censored)
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Figure 3.4: Reliability diagrams for all three components (A, B, C) based on empirical estimation
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Similar to the Top-Event probability of the system is calculated using the
empirical reliability information.

1.0
0.8 1
=
2061
:‘g Probability of having the Top-Event
° T (Based on Kaplan-Meier)
=%
g 0.4
£
0.2 1
0.0

T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
Time t [h]

Figure 3.5: Probability of having the Top-Event with using Kaplan-Meier

3.3.7 Comparison

A visual comparison of the three individual reliability diagrams can be seen in[Figure 3.6 Further-

more [Figure 3.7]shows the probability of the Top-Event both based on empirical and exponential
modelling.



Chapter 3. Motivating Example
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Figure 3.6: Comparison of reliability diagrams (exponential and empirical)
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Figure 3.7: Probability comparison of having the Top-Event (exponential and empirical)

3.3.8 Case study conclusion

The scope of this case study is to show the generic difference between using parametric and
empirical reliability data in a simple reliability model consisting of only six elements.

Depending on the input data, a parametric approach can give approximations of varying quality.
Just by visual comparison of the empirical Kaplan-Meier and the exponential distribution, it is
apparent that the goodness of fit is prone to be insufficient for some applications.

Evaluating the probability comparison of having the Top-Event for exponential and empirical
methods however reveals an issue with the latter: After a certain time, the empirical method does
not return any estimator of the reliability. This can be critical in a system involving numerous
components.

Not all components have sufficient data available to give empirical reliability estimates for the
complete anticipated mission time. Even if just one of the components used is lacking the data,
the overall system-reliability estimator is at stake.



16

Chapter 4

Conceptual Developments

4.1

Introduction to the problem

The case study as seen in illustrated the potential for using empirical distributions
instead of exponential assumed distributions. The input data for the case-study is of reasonably
small size, as can be seen in[Figure A.T] For each of the three different components, the number
of recorded events are between 30 and 35.

The amount of data for real systems can however be larger. Advancements like "Big Data",
"Industry 4.0" and "Internet of Things" are creating vast amounts of data.

4.2

Characteristics, Assumptions and Limitations

The reliability of a component is commonly represented as a 2-dimensional function R(t). The
resulting reliability distribution curve has certain inherent properties. They are caused by a few
basic assumptions and limitations:

At time t = 0, the beginning of the mission time, the equipment is assumed to be fully
functioning. So R(0) = 1.

Equipment is not repaired, the item can only degrade. This results in a graph which is
monotonously decreasing.

The data considered is right-censored. As soon one specimen is taken out of the ob-
servation, the reliability will never decrease down to zero, as there is always a lack of
information when that component actually failed.

If failure times data is self-generated, the dataset only contains failure times and no cen-
soring times.

The empirical probability distribution only gives data up to the maximum observed event
time. After that time, there is no information. If one wants to predict beyond that, assump-

tions have to be made (see[section 4.3)).
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4.3 Intoduction of modified Kaplan-Meier

The original Kaplan-Meier estimator results in a stepwise curve as seen in[Figure 3.4] Degrada-
tion however is a continuous process. The chance of survival at 7 + At is slightly lower than at 7.

Discrete steps are not representing this behavior appropriately.

Additionally, when comparing a step-curve to a continuous curve — as it is the case when for
example comparing the Kaplan-Meier curve to the exponential curve — the resulting difference

becomes unsteady. This is illustrated in[Figure 4.1] The green curve shows the relative difference
from the exponential value using the Kaplan-Meier value as the reference.

Data from failure_dates/C-Data.txt
Number of Events: 30 (13 Failures, 17 Censored)

—— Value difference (Exponential to Kaplan-Meier) | 20

F 10
S 0
. NN B
- 0.6 1 - X
2 )
S 0.4+ fa
0.2 1
—— Kaplan-Meier Estimator
=== Exponential Failure Probability (A = 1.35E-04)
0.0 T T T T T
0 2000 4000 6000 8000 10000 12000
Time t [h]

Figure 4.1: Illustration of unsteady differences between Kaplan-Meier curve and exponential

curve
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Different ways to make a smoother appearance are proposed and used by various authors ([30],
(21, [10D.

These require varying mathematical implementation effort. The scope of this thesis is not to
evaluate different smoothing algorithms, hence a simple, comprehensive method is proposed.

The method used within this thesis is carried out as follows:

1. The original Kaplan-Meier method is used to create a two-dimensional matrix containing
the time, censoring indicator and reliability estimator. This can be seen in

Time Censoring Kaplan-Meier estimator

0 1 1

16 1 0.965
35 0 0.965
63 1

0.824

Table 4.1: Example of Kaplan-Meier array

2. The first value is always a 100% reliability at mission start, so:
Rsmooth(0) = 1

3. The last value is always the Kaplan-Meier value at the last known event time (Maximum
Event Time, MET), so:
Rsmooth(Maximum Event Time) = Rgaplan-Meier(Maximum Event Time)

4. All censored values are taken out of the original Kaplan-Meier array. They do not con-
tribute information to the definition of the curve.

5. Atevery step — the vertical path downwards — a new reliability estimator is generated for
that time. The mean of the two Kaplan-Meier reliability values used for the step is the new
value for this time.

6. The resulting points are connected by piecewise linear segments.

The resulting curve is demonstrated in[Figure 4.2] It also shows the new coordinates used for the
plot.

This smooth version of the Kaplan-Meier estimator is used instead of the original Kaplan-Meier
values for all further comparisons.

When comparing the differences between the smooth Kaplan-Meier and the exponential curve,
similar to the resulting graph shows no unsteady changes. There are still segments,
but they are connected continuously and hence the differences are also continuous. The graphical
representation of the differences over time can be seen in
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Data from failure_dates/C-Data.txt
Number of Events: 30 (13 Failures, 17 Censored)

1.0
—— Kaplan-Meier Estimator
—— Kaplan-Meier Estimator (Smooth)
0.8
0.6
et
b
;’_‘a
8
£ 041
0.2 4
0.0 T T T T T
0 2000 4000 6000 8000 10000 12000

Time t [h]

Figure 4.2: Modified Kaplan-Meier estimator for smoother curve

Data from failure_dates/C-Data.txt
Number of Events: 30 (13 Failures, 17 Censored)

1.0
2
K —— Value difference (Exponential to smooth Kaplan-Meier) 0
10
0.8
0
220.6 =
o~ o,
IS F—=10 g
s :
= &
S 0.4 L 20 A
F—30
0.2
Kaplan-Meier Estimator (Smooth) L —40
=== Exponential Failure Probability (A = 1.35E-04)
0.0 T T T T T
0 2000 4000 6000 8000 10000 12000

Time t [h]

Figure 4.3: Differences between smooth Kaplan-Meier curve and exponential curve
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4.4 Different representations

4.4.1 Reduced Kaplan-Meier

4.4.1.1 Description
Piecewise linear functions are extensively used to approximate functions [4]. The modified
Kaplan-Meier, as introduced in is already a piecewise linear model.

The number of linear segments in the the smoothed Kaplan-Meier Estimator is equal to the num-
ber of failures in the input dataset. This gives the most accurate level of results, but also requires
the most data points and hence increases the data handling effort and reduces the efficiency of
calculation.

The generic scope for this representation is to find the smallest number of segments which still
succeed in approximating the smoothed Kaplan-Meier curve within a given threshold level.

4.4.1.2 Mathematical background

Following algorithm is implemented to get the resulting reduced array

1. Create an array with two endpoints of a segment

o The first value is always a 100% reliability at mission start, so:
RReduced(0) = 1

e The last value is always the Kaplan-Meier value at the last known event time, so:
RReduced(Maximum Event Time) = Riaplan-Meier(Maximum Event Time)

2. Separate this segment S; in 10 equidistant times t;_jq

3. Ateach of those times: Evaluate the reliability value based on the smoothend Kaplan-Meier
(Rxm(t1..10)) and also the linear interpolated values from that first segment (Rreduced(t1..10))

4. Calculate the differences between each of the 10 pairs, calculate the square of said value,
summarize those squared values, built the mean (see|Equation 4.1))

5. Compare the mean with a given threshold. If the value is below that value, the segment is
considered to be sufficiently accurate. If not, the segment number will be saved in a list

6. Retrieve the list of all non-sufficient segments

7. For each of those segments, divide their time duration by two. Add another point to the
array with this new time and a reliability estimate based on the smoothed Kaplan-Meier.

8. Repeat Step 2 to 5 until there are no more segments in need of treatment.

9. Unnecessary entries are removed afterwards. This is done by removing the second index
(first one is Rreduced(0) = 1) and then checked if all remaining segments are still considered
to be good. If yes, then this entry is deleted from the resulted array. If not, it is kept.
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Manual adjustments to the threshold parameter are necessary for each application.

An illustration of the development of the algorithm is seen in

Ztlgl (RKM (ti) - RReduced ([i))z

0 4.1)

0 1
MET Rxm(MET)

4.4.1.3 Data representation

Each segment of the smoothed Kaplan-Meier is defined by a data entry. They are essentially
Cartesian coordinates for a two-dimensional curve.

An example can be seen in

1501.
3002.
6004.
12008.

[ 0.
[ 93.
[ 187.
[ 375.
[ 562
[ 750
[
[
[
[

S

SO OO O OO O —

]

91170175]
.90544117]
.89292002]
.88046547]
78191551]
73017971]
.63500227]
.50253083]
3523202 1]

Listing 4.1: Data representation for piecewise linear approximation used in reduced Kaplan-

Meier

4.4.1.4 Data access

The data as seen in|[Listing 4.T|can be saved as a CSV file and later loaded back into the program.

The Python package NumPy provides a dedicated routine to linearly interpolate values within a
given array, named numpy . interp [27].

Running this methods requires 3 parameters:
The array giving the X-Coordinates (Time), the array giving the Y-Coordinates (Reliability) and
the X-Coordinate (Time) to look up.

A discussion about the efficiency of this implementation is given in
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1.0 1.0
0.8 0.8
=06
0.4
0.2 0.2
0.0 0.0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time t [h] Time t [h]

(a) First step, the initial single segment (b) Second step, 2 segments
1.0 1.0
0.8 0.8
=06
0.4
0.2 0.2
0.0 0.0

1000 2000 3000 4000 0 1000 2000 3000 4000
Time t [h] Time t [h]

(c) Third step, 4 segments (d) Fourth step, 5 segments
1.0 1.0
0.8 0.8

0.2 0.2
0.0 0.0
1000 2000 3000 1000 0 1000 2000 3000 4000
Time t [h] Time t [h]
(e) Fifth step, 7 segments (f) Sixth step, 9 segments
1.0
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0.8
0.8

0.0
0.0 0 1000 2000 3000 4000

0 1000 2000 3000 1000 Time t [h]
Time t [h]

(h) Eights step, 7 segments after removal of un-

(g) Seventh step, 10 segments necessary segments

Figure 4.4: Tllustration of steps for the reduction algorithm
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4.4.2 Polynomial regression

4.4.2.1 Description

Polynomial regression is a widespread method to fit data to a mathematical equation.

This is done to by finding parameters of

y=ag+aix+ax*+---+ax" 4.2)

The amount of degrees n is adjusted manually for every application.

The number of degrees and their corresponding values may inflict problems like overfitting or
oscillation.

The polynomial regression does not incorporate known characteristics of the reliability curve
like the monotonously decreasing shape and the starting condition at R(0) = 1.

4.4.2.2 Mathematical background

numpy .polyfit uses a least square polynomial fit, mathematical details can be found in [29].

The principle scope is to minimize the squared error, as seen in [Equation 4.3| with p(x;) being
the polynomial value and y; the value to be fitted.

E=Y [p(x) =yl (4.3)

4.4.2.3 Data representation
Data is represented by the polynomial coefficients. The amount of coefficients is depending on
the polynomial degree chosen.
These can be represented in a simple text file with one line per parameter, as seen in|Listing 4.2]

1.234234234¢l

> 4.123123123e2

3 5.2123123e-1

Listing 4.2: Data representation for a 3-degree polynomial equation

4.4.2.4 Data access

To access the data, the coefficients have to be loaded into the program. A simple routine to read
in the lines of the textfile (see|Listing 4.2)) is used.

Python/Numpy provides a special class for polynomial data: poly1d [28]]. Itis "a one-dimensional
polynomial class" and values can be conveniently retrieved by a corresponding function.
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4.5 Implementation of prediction

When using a parametric distribution, like the exponential distribution, the whole system is fully
described by a mathematical equation and it gives results for times from ¢ = 0 to co.

The empirical Kaplan-Meier estimator — as well as the smoothed version of it — is only defined
for times up to the last observed event (which can be either a failure or censoring).

While polynomial equations also give results for all every point of time, they are only fitted for
the known times. For any times beyond that, polynomial graphs tend to drop rapidly. Hence they
cannot be used for prediction.

A major reason to use models is not only to understand the observed characteristics of a system,
but also to predict the performance beyond the time of available data.

In order to implement this requirement, an addition to empirical models is given: For all times
beyond the largest observed time, use data resulting from using a constant failure rate.

This results in an unsteady jump of reliability values at the highest observed event time. It can
be in either direction and thus create a scenario in which the reliability is not monotonously
decreasing over time. Hence a proposal is made:

At the maximum observed event time calculate both reliability values — based on constant failure
rate and by empirical estimation.

If the exponential value is lower than the empirical, it is kept being used for prediction. An
unsteady step to a lower value is conservative and thus accepted. An example of this behavior

can be seen in [Figure 4.

If the value is higher than the last known empirical value, a new constant failure rate is calculated.
See |[Equation 4.4] to see the formula used. It’s the inverse of the reliability at the maximum
known time.

In Rgmooth (Maximum Event Time)

kPrediction = - (44)

Maximum Event Time

This new adapted Apregiction 1S then used for predictions. It will give a continuously decreasing
reliability. This is illustrated in[Figure 4.6]

When utilizing this method for a reliability assessment, the user should be notified if, and for
which times, the estimated reliability is based on an assumed constant failure rate.
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Data from failure_dates/C-Data.txt
Number of Events: 30 (13 Failures, 17 Censored)
I

1.0
— Kaplan-Meier Estimator (Smooth)
=== Exponential Failure Probability (A =1.35E-04)
0.8
0.6 1
~
b
2
2 044
0.2 A
0.0 T T T T T T T
0 5000 10000 15000 20000 25000 30000 35000

Time t [h]

Figure 4.5: Example of prediction based on unaltered constant failure rate

Data from failure_dates/A-Data.txt
Number of Events: 30 (20 Failures, 10 Censored)
| 4

1.0
—— Kaplan-Meier Estimator (Smooth)
=== Adapted Exponential Failure Probability (Aprediction = 4.43E-04) A
=== QOriginal Exponential Failure Probability (A = 4.11E-04)
0.8 1
0.6
a1
ey
c
= 0.4+
0.2 4
0.0 T T T
0 2000 4000 6000

Time t [h]

Figure 4.6: Example of prediction based on adapted constant failure rate
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4.6 Accuracy of empirical probability distributions

The concept of reliability assessment itself builds on uncertainty and assumptions. There is no
definite and known law behind the failure behavior of systems.

Evaluating the accuracy of any reliability model can be difficult. A "true" reference value is
required to assess whether or not a result of a model is accurate or not.

If the data is self-generated by using a known generator with a defined mathematical model, this
reference value is known and given. The estimated result from a model can be compared to the
mathematically derived exact solution.

Real data however is not generated by an algorithm, but by a complex chain of events and
consequences. There are no equations describing real failures. In this case, the smoothed Kaplan-
Meier plot is used as a reference, as this estimator has no assumptions about any underlying
failure distribution.

The essential task of evaluating the accuracy of the proposed empirical probability distribution
is to compare two reliability plots with each other.

The Kolmogorov-Smirnov test is a non-parametric test to evaluate if two samples are drawn from
the same distribution [22f]. This test is used to give a numerical measure if the two curves under
consideration are alike.

Following list describes how the Kolmogorov-Smirnov test value is implemented:

1. 30 uniformly random distributed times between 0 and the highest observed event time are
selected

2. Reliability values of both models for each of those times (as illustrated with 10 time

samples in [Figure 4.7) are estimated

3. The values within each model for each discrete time step are accumulated
4. The value differences between those accumulation curves are calculated

5. The maximum difference found is the Kolmogorov-Smirnov test value (as indicated by

red color in[Figure 4.8))

6. Step 1. - 5. is repeated for 100 times and the mean of the resulting value calculated

This value is compared to the critical value for the two-sample Kolmogorov-Smirnov test for 30
compared samples. When using a significance value o = 0.05 the value to compare against is
0.351 [5.

The simple example value (Figure 4.8) is 0.749. As this value is larger than the critical value for
10 samples (0.70), the two graphs shown are not based on the same distribution.
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Reliability R [-]

Cumulative Values [-]

Data from failure_dates/A-Data.txt
Number of Events: 30 (20 Failures, 10 Censored)

1.0
—— Kaplan-Meier Estimator (Smooth)
=== Exponential Failure Probability (A = 4.11E-04)
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Figure 4.7: llustration of the Kolmogorov-Smirnov test: First step
Data from failure_dates/A-Data.txt
Number of Events: 30 (20 Failures, 10 Censored)
10
8 -
6 -
4 -
2 -
—— Cumulative Values for smoothened Kaplan-Meier
—— Cumulative Values for exponential distribution
—— Kolmogorov-Smirnov test value (0.749)
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Figure 4.8: Illustration of the Kolmogorov-Smirnov test: Second step
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4.7 Efficiency measures

Using a constant failure rate gives the benefit of calculating the estimated reliability at any given

time by solving a simple equation (|[Equation 4.5| [24]]). Only one value (A) has to be known
beforehand to fully describe the model.

R(t) =e M (4.5)

Retrieving reliability values from the proposed empirical estimators needs more steps. These are
briefly mentioned insubsubsection 4.4.1.4|and [subsubsection 4.4.2.4]

The calculation of the Kaplan-Meier estimator and the subsequent routine to reduce the data
is applied as preparation. Fitting the polynomial equation to the failure data is the required
preparation for the polynomial estimator. The computational efficiency of those required steps is
out of scope for the reliability estimation as described within this work. Its efficiency is relevant
when failure data is continuously monitored and processed online.

Four different functions are evaluated in terms of their computational efficiency:

e Parametric method: Calculate R(t) based on

e Empirical method:

1. Load data array into memory
2. Interpolate values within this array to retrieve an estimator for R(t)

3. Solve polynomial equation to get an estimator for R(t)

All steps are executed 1000000 times and the mean value is calculated. Python’s provided
timeit function is utilized [23].

4.7.1 Efficiency of parametric estimation

In order to assess the time needed to calculate a reliability value based on it is
implemented in a simple Python function as seen in [Listing 4.3]

def GetExponentialValue (Time, EstimatedLambda) :
return math.e xx (—(EstimatedLambdaxTime))

Listing 4.3: GetExponential Value function used for efficience measurement
A uniformly random distributed number between 0 and 10000 is used for each iteration as a time

of interest, a uniformly distributed number between 0.001 and 0.00001 is chosen as the failure
rate. The resulting time computational time per instance is 3,73 x 107 seconds.

4.7.2 Efficiency of empirical estimation

Loading data array into memory

Loading the data into memory is a necessary first step for further processing. The data is stored
in a CSV text file and loaded into the program with the NumPy loadtxt function. The function
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implementing this routine used for measurement is seen in

This step is necessary for both the reduced Kaplan-Meier and the polynomial estimator. The
polynomial estimator however has very little amount of data, as the number of reasonably used
degrees is rather low.

def LoadArray():
KM_Array = np.loadtxt("failure_dates/E_1000000_Efficiency_Array.txt")

Listing 4.4: LoadArray function used for efficiency measurement

Interpolating values

To evaluate the computational efficiency of the interpolation routine, a function as seen in
is used.

def GetKaplanMeierValue (Time) :
return np.interp (Time, KM_Array[:,0], KM_Array[:,—1])

Listing 4.5: GetKaplanMeier Value function used for efficiency measurement

Polynomial values

Retrieving reliability values from the polynomial estimation is done by utilizing the polynomial
functions from Numpy. The testing function used to evaluate the efficiency can be seen in
A polynomial array with 6 degrees is used for assessment. Each parameter is a
uniformly distributed random number between -1 and 1.

def GetPolyValue (Time, Polyobject):
return Polyobject(Time)

Listing 4.6: GetPolyValue function used for efficiency measurement

Results

Unlike the parametric estimator, the empirical estimation steps require a dataset. The size of it
has influence on the necessary time to run execute of both functions.

Four different datasets are used, with 6, 50, 1000 and 1000000 entries.
The results can be seen in[Table 4.2

Size of Array
6 50 1000 1000000

Time to load array into memory [s] 6,62x107% 6,76 x107* 1,17x107%2 12,1
Time to estimate reliability value [s] 4,89 x 107® 4,73x107% 6,58 x107° 6,24 x 1073
Time to retrieve polynomial value [s] 1,61 x 107 - - -

Table 4.2: Empirical efficiency measurement results
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4.7.3 Discussion and background information

The time needed to calculate a reliability value based on the exponential law is negligible.

For the empirical approach, the first step (loading of the data) has the biggest influence on overall
execution time. This sub-step is also influenced the most by the size of the input data.

For this assessment, the data is saved and loaded to/from plaintext CSV files. NumPy offers a
binary format optimized for storing and reading numerical data. Using an universal plaintext
format has the benefit of being readable by any application and humans.

After applying the reduction algorithm for the Kaplan-Meier estimator, the amount of data is
unlikely to exceed values above 50. In that range, the combined time of loading the array and
estimating the reliability is in a magnitude of 10~ seconds.

Even for the extreme case of 1 million entries, the loading time of the array is in the order of
several seconds, and as soon as the array is loaded, the actual estimation time is still less than 0,1
seconds.

All calculations are performed on a machine with following brief specifications:

e Windows 7 Enterprise

e Intel Core i7-3770, 3.40 GHz
e 16 GB Memory

e Python 3.6.0

NumPy 1.11.3
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Chapter 5

Experiments

5.1 Experiment hypothesis

The hypothesis to be tested within this chapter is described as follows:

With enough data points provided, empirical probability distributions match sufficiently well the
true probability distributions.

Additionally: It is possible to calculate reliability values, based on an empirical model, with
sufficiently good computational efficiency.

Consequently, these empirical models can be used as a generic input of RAMS tools.

5.2 Experiment description

In the first step the data used is described. Its origin, any pre-existing knowledge and basic
information like size and amount of failures.

If feasible (depending of the size) the whole data set is given, otherwise an excerpt of the data
structure with a reference to the full data.

As a next step the data is processed. This is done in a parametric way and in both described
empirical ways.

The parametric way is an estimation of a constant failure rate A. The empirical methods as
described in are applied to the data.

The accuracy of all results are compared. The reasoning and method behind the comparison
is given in Both a qualitative, visual comparison and a quantitative evaluation are
given.
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5.3 First Data Set: Wellmaster

5.3.1 Data origin

The data for the first data set is extracted from the Wellmaster database by ExproSoft (See
[subsubsection 3.2.2.2)). For the purpose of this thesis only limited access to the database is given
— only the component "TRSCSSV" ("Tubing retrievable, surface controlled, subsurface safety
valve", commonly known as "Downhole safety valve") is populated with failure data.

5.3.2 Data characteristics

The Wellmaster interface is showing basic characteristics about the failure data of the selected
component. shows the information as they are presented. This includes the failure
rate, confidence intervals and also service time and number of failures.

Additionally a graphical illustration of the survival probability can be accessed directly within
Wellmaster — see It also shows the plot based on the constant failure rate as per
Figure 5.1]

The Wellmaster software provides access to a CSV file with the recorded service times.
shows the content of it. Column ServiceTimeInDays gives the service time in days and column
Failures is an indicator whether or not it is a failure or censoring (1 corresponds to a failure,
0 to censoring). Only those two columns where considered for further processing. Column
LengthKm had the value 0 for all entries, column ServiceTimeLength is completely empty and
the FailureId is not taken into account.

In total the data consists of 6072 events — 1427 failures and 4645 censorings.
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GG ERET TN G Mean time to failure Weibull parameters

Average failure rate

TRSCSSV Peryear Per10%h LCL UCL Operating intervals Service time (y) Failures in operation

Filter 1 0.041 4.698 4.498 491 6,072 34654 1.427

Figure 5.1: Average failure rate according to Wellmaster
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Figure 5.2: Survival probability plot according to Wellmaster



Chapter 5. Experiments

LengthKm ServiceTimeInDays ServiceTimeLength Failures Failureld
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Table 5.1: Raw service times data provided by Wellmaster
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5.3.3 Data processing
5.3.3.1 Parametric
The estimation of a constant failure rate is carried out according to
= Number 9f fa.ilures _ 1427 470 x 10761 5.1)
Aggregated time in service 303565392 h
This value corresponds with the estimator given by Wellmaster as seen in[Figure 5.1} The small

deviation is most likely

due to rounding differences for the service time. A figure showing

the survival probability over time in comparison with the smoothed Kaplan-Meier is seen in

Figure 55|
Data from failure_dates/Wellmaster.txt
Number of Events: 6072 (1427 Failures, 4645 Censored)
1.0
\*\ —— Kaplan-Meier Estimator (Smooth)
~
S === Exponential Failure Probability (A = 4.70E-06)
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Figure 5.3: Survival probability plot for the first dataset based on exponential failure distribution
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5.3.3.2 Empirical (Reduced Kaplan-Meier)

When applying the smoothed Kaplan-Meier, as introduced in a reliability plot is
generated. The shape is similar to the survival probability plot given by Wellmaster (Figure 5.2).

The algorithm to reduce the amount of segments, as introduced in[subsection 4.4.1] is applied to
this dataset. The threshold parameter is set to 0.0003. An illustration of the resulting segments
together with the smoothed Kaplan-Meier plot can be seen in

Data from failure_dates/Wellmaster.txt
Number of Events: 6072 (1427 Failures, 4645 Censored)

1.0
—— Kaplan-Meier Estimator (Smooth)
Reduced Data Set (8 Sections, 0.0003 Threshold)
0.8
0.6 1
~
2
2
]
~ 041
0.2 1
0~0 T T T T
0 50000 100000 150000 200000

Time t [h]

Figure 5.4: Survival probability plot for the first dataset based on reduced Kaplan-Meier
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5.3.3.3 Empirical (Polynomial)
Applying the polynomial fit to the given data set gives[Equation 5.2] The resulting graph is seen
in in comparison with the smoothed Kaplan-Meier.

R(1) =0.9679 —6.792 x 10 +7.937 x 10~ 142 —4.933 x 1071%* +9.964 x 10721* (5.2)

Data from failure_dates/Wellmaster.txt

Number of Events: 6072 (1427 Failures, 4645 Censored)
1.0

—— Kaplan-Meier Estimator (Smooth)

\ Polynomial fit (4 degrees)

0.8 1 \

Reliability R [-]
S o
=~ >

0.2 4

0.0

0 50000 100000 150000 200000
Time t [h]

Figure 5.5: First Dataset: Comparison of smoothed Kaplan-Meier and polynomial fit
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5.3.4 Accuracy comparison

As this dataset is not generated by mathematical equations, the smoothed Kaplan-Meier is used
as the reference to compare accuracy.

A visual comparison of all estimators can be seen in[Figure 5.6] Based on the shape of the curves
it can be seen that the exponential model is too optimistic in the first 50.000 hours of operation.
In times beyond that, the estimation is too pessimistic and potentially sufficient equipment might
not be utilized completely.

A quantitative accuracy comparison is given in Based on those Kolmogorov-Smirnov
test results, the exponential distribution is not matching the reference reliability values (as 0,932
> 0,351). The accuracy of the reduced Kaplan-Meier is sufficient (as 0,071 < 0,351). Using a
polynomial regression is giving comparable good results (with 0,098 < 0,351).

Value

Reduced Kaplan-Meier vs. Smoothed Kaplan-Meier 0,071
Polynomial regression vs. Smoothed Kaplan-Meier 0,098
Exponential distribution vs. Smoothed Kaplan-Meier 0,932
Critical Kolmogorov-Smirnov test value 0,351

Table 5.2: Comparison of Kolmogorov-Smirnov test results for the first data set

Data from failure_dates/Wellmaster.txt

Number of Events: 6072 (1427 Failures, 4645 Censored)
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Figure 5.6: First Dataset: Comparison of smoothed Kaplan-Meier, reduced Kaplan-Meier, poly-
nomial regression and exponential distribution
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5.4 Second Data Set: Hard drives

5.4.1 Data origin

The company "Backblaze", based in California / USA, is operating a data hosting center for
cloud based storage solutions. Within their server farm they operate more than 60.000 hard
drives. Since 2013 the company is releasing raw statistical data on all their hard drives in use [1].

This data is freely available for everyone interested.

5.4.2 Data characteristics

The data is presented in CSV files. For each day of operation, one file is provided. An excerpt
of one file can be seen in There are 90 additional columns provided which give
information retrieved by the on-board diagnostics. Those are omitted.

date serial_number model capacity_bytes  failure
2016-10-01 MIJ0351YNG9Z0XA Hitachi HDSSC3030ALA630 3000592982016 0
2016-10-01 MIJO0351YNGOWISA  Hitachi HDS5C3030ALA630 3000592982016 0
2016-10-01 PL1321LAG34XWH  Hitachi HDS5C4040ALE630 4000787030016 0
2016-10-01 MIJO0351YNGABYAA  Hitachi HDS5C3030ALA630 3000592982016 0
2016-10-01  Z305B2QN ST4000DMO00 4000787030016 0
2016-10-01 PL2331LAGN2YTJ HGST HMS5C4040BLE640 4000787030016 0
2016-10-01 WD-WMC4N2899475 WDC WD30EFRX 3000592982016 0O
2016-10-01 Z302A0YH ST4000DMO000 4000787030016 0
2016-10-01  Z305BTOW ST4000DMO000 4000787030016 0
2016-10-01 MIJ0351YNG9Z7LA Hitachi HDS5C3030ALA630 3000592982016 0
2016-10-01  Z302A0YE ST4000DMO000 4000787030016 0
2016-10-01  Z302PGHS ST4000DMO000 4000787030016 0
2016-10-01 Z3023VGH ST4000DMO000 4000787030016 0
2016-10-01 PL1311LAG2205A Hitachi HDS5C4040ALE630 4000787030016 0

Table 5.3: Raw data as provided by Backblaze

This data representation is complete, but inconvenient in its usage for the used tool. Ross Lazarus
([12], [113]]) has written a script to process this data into a different format. It keeps track of the
appearance and disappearance of each individual drive (based on the unique serial_number
field). The output is a summary file with one line per drive stating its observation time and reason
of removal (failure or censoring). This approach neglects the operating hours of the drives before
the first available daily report.

Data from the 2013 - 2016 period is used.
In total, the data consists of 92328 events — 5762 failures and 86566 censorings.
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5.4.3 Data processing

5.4.3.1 Parametric

The estimator for a constant failure rate for the data can be seen in A plot showing

the reliability based on this value is given in[Figure 5.7} The scaling of the reliability ordinate is
changed to show the range from 0,8 to 1,0 for better visibility.

_ Number of failures _ 5762
e Aggregated time in service 1486091064

1
=3.88 x 10*6H (5.3)

Data from failure_dates/harddisk_2013-2016.csv
Number of Events: 92328 (5762 Failures, 86566 Censored)
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Figure 5.7: Second Dataset: Exponentially assumed failure distribution
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5.4.3.2 Empirical (Reduced Kaplan-Meier)

Applying the reduced Kaplan-Meier algorithm to the data with a chosen threshold value of
0.00001 gives a representation with 5 segments. This can be seen in in comparison with the

smoothed Kaplan-Meier in

Data from failure_dates/harddisk_2013-2016.csv

Number of Events: 92328 (5762 Failures, 86566 Censored)
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0.825 1 —— Kaplan-Meier Estimator (Smooth)
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Time t [h]

Figure 5.8: Second Dataset: Reduced Kaplan-Meier
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5.4.3.3 Empirical (Polynomial)
Applying the polynomial fit to the second data set gives The resulting graph is
seen in[Figure 5.9]in comparison with the smoothed Kaplan-Meier.

R(1) =0.9957+3.825x 1077t —5.5x 107192 4224 x 10714 — 2762 x 10~ ¢*  (5.4)

Data from failure_dates/harddisk_2013-2016.csv

Number of Events: 92328 (5762 Failures, 86566 Censored)
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T —— Kaplan-Meier Estimator (Smooth)

Ry,

0.975 1 \ Polynomial fit (4 degrees)
0.950 \

0.900 7

=]
o
[\
ot
1

Reliability R []

0.875

0.850

0.825 A

0.800

0 5000 10000 15000 20000 25000 30000
Time t [h]

Figure 5.9: Second Dataset: Comparison of smoothed Kaplan-Meier and polynomial fit
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5.4.4 Accuracy comparison

This data set is based on real failure data.

A visual comparison of all estimators can be seen in[Figure 5.10}

All estimators are visually matching the trend of the data well, especially considering the adjusted
scaling of the ordinate.

A quantitative comparison of accuracy is given in[Table 5.4] Both the parametric and empirical

distributions are meeting the given requirement and represent the reference sufficiently.

Therefore this dataset is used to compare the data requirements in[section 5.7

Table 5.4: Comparison of Kolmogorov-Smirnov test results for the second data set

1.000

0.975 A
0.950 -

~+ 0.925 A

v R

Reliabilit;

0.850

0.825

0.800

©0.900

0.875 -

Value

Reduced Kaplan-Meier vs. Smoothed Kaplan-Meier

Polynomial regression vs. Smoothed Kaplan-Meier

Exponential distribution vs. Smoothed Kaplan-Meier

Critical Kolmogorov-Smirnov test value

0,027
0,011
0,051
0,351

Data from failure_dates/harddisk_2013-2016.csv

Number of Events: 92328 (5762 Failures, 86566 Censored)

—— Kaplan-Meier Estimator (Smooth)

=== Exponential Failure Probability (A = 3.88E-06)

Polynomial fit (4 degrees)
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5000 10000 15000
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Figure 5.10: Second Dataset: Comparison of smoothed Kaplan-Meier, reduced Kaplan-Meier,
polynomial regression and exponential distribution
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5.5 Third Data Set: Modified Bathtub

5.5.1 Data origin

The traditional bath-tub curve, as illustrated in[Figure 5.11] is described in almost every standard
reliability textbook [[L1]. This curve is used as the basis to introduce a new distribution.

1
7

Failure Rate [

Time [h]

Figure 5.11: Traditional bathtub curve

The modification is based on an artificial idea that even during the "useful period" (flat part after
infant mortality) a constant failure rate is unlikely. Fluctuations of the failure rate are still possible
within this period. Sections of increased or decreased failure rate could occur. A visualization of

this behavior can be seen in figure
The implementation of this idea used in this experiment is using a discreet interpretation of this
curve. shows the failure rate for a set of parameters. The defining parameters can be

seen in[Table 5.5 This distribution is also used in the motivational case study (see [section 3.3).
All failure times for this experiment were self-generated based on this introduced distribution.
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Failure Rate [

Time [h]

Figure 5.12: Modified bathtub curve

Point No. Time[h] Rate [h™']
#1 0 0.002

#2 100 0.00009
#3 600 0.00009
#4 620 0.0008
#5 850 0.0008
#6 900 0.0002
#7 6000 0.0002
#3 6050 0.000035
#9 7500 0.00035
#10 7550 0.0002
#11 9000 0.0002
#12 10000 0.003

Table 5.5: Used parameters in selfmade function
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Figure 5.13: Selfmade distribution failure rate

5.5.2 Data characteristics

One thousand failure times are drawn based on this proposed distribution. All of them are listed
as failures, no censoring. As the data is self-generated, the output is adjusted according to the
required input of the processing tools. This is a CSV text-file with one line per event. The first
column represents the event time and the second column the type (failure or censoring).

An excerpt of the file can be seen in[Table 5.6

Event Time

9.150000000000000000e+02
9.370000000000000000e+02
9.510000000000000000e+02
9.580000000000000000e+02
9.660000000000000000e+02
9.810000000000000000e+02
1.002000000000000000e+03
1.003000000000000000e+03

=
3
(¢

SV VHIG I G Uy

Table 5.6: Excerpt of structure of the input data used for experiment 3
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5.5.3 Data processing
5.5.3.1 Parametric

The estimator for a constant failure rate for the data can be seen in A plot showing

the reliability based on this value in comparison with the true reliability is given in
= Number (‘)f fa.ilures L 1000 77w 10741 5.5)
Aggregated time in service 3612389 h

Data from failure_dates/S_1000_1.txt
Number of Events: 1000 (1000 Failures, 0 Censored)

1.0
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Figure 5.14: Third Dataset: Exponentially assumed failure distribution in comparison to the true
reliability
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5.5.3.2 Empirical (Reduced Kaplan-Meier)

Applying the reduced Kaplan-Meier algorithm to the data with a chosen threshold value of 0.0005
gives a representation with 11 segments. The resulting model can be seen in[Figure 5.13}

Reliability R [-]

Data from failure_dates/S_1000_1.txt
Number of Events: 1000 (1000 Failures, 0 Censored)

1.0
Reduced Data Set (11 Sections, 0.0005 Threshold)
== True Selfmade distribution reliability
0.8 1
A
0.6 \
N\
\\
\,\
0.4 1 .
N
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[ T
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0.2 1 = .
Q.
\0
\.
N
0~0 T T T T
0 2000 4000 6000 8000 10000
Time t [h]

Figure 5.15: Third Dataset: Reduced Kaplan-Meier in comparison to the true reliability
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5.5.3.3 Empirical (Polynomial)

Applying the polynomial regression to this data set gives The resulting plot is seen
in in comparison with the true reliability distribution.

R(1) =0.9556 —2.703 x 1071 +3.714 x 10782 — 1.669 x 102> —3.016 x 10~ 7#* (5.6)

Data from failure_dates/S-1000_1.txt
Number of Events: 1000 (1000 Failures, 0 Censored)

1.0
r-\ Polynomial fit (4 degrees)
~N === True Selfmade distribution reliability
\
0.8 1 \
\
\0
=06 Ny
~ \'\
> .
= .
3 .
= N,
= 047 N
'~
~.,
~
N4
N - —
0.2 1 =i
. \.\'
\0
\.
N
0.0 T T T T
0 2000 4000 6000 8000 10000
Time t [h]

Figure 5.16: Third Dataset: Polynomial regression in comparison to the true reliability
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5.5.4 Accuracy comparison

An illustration of all estimator shapes compared to the true reliability is found in It
is visible that the exponential distribution is not able to match the unique characteristics of the

underlying failure distribution.

Data from failure_dates/S_1000_1.txt
Number of Events: 1000 (1000 Failures, 0 Censored)

1.0
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Figure 5.17: Third Dataset: Comparison of exponential, reduced Kaplan-Meier, polynomial
regression and the true reliability diagram

A quantitative comparison of accuracy is given in The shape of the true reliability
characteristics of the underlying distribution cannot be matched with a constant failure rate
(1,106 > 0,351). The reduced Kaplan-Meier however is sufficient for doing so (as 0,164 < 0,351).
Utilizing a polynomial regression gives an estimator which is less accurate, but still sufficient
(0,288 < 0,351).

Value
Reduced Kaplan-Meier vs. True reliability 0,164
Polynomial regression vs. True reliability 0,288
Exponential distribution vs. True reliability 1,106
Critical Kolmogorov-Smirnov test value 0,351

Table 5.7: Comparison of Kolmogorov-Smirnov test results for the third data set
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5.6 Fourth data set: Dynamic reliability analysis

5.6.1 Data origin

Based on the work of Manno et. al. [15], a failure distribution according to a dynamic reliability
analysis is proposed. In their example a cooling unit is more likely to fail when used. It still has
a small probability of failure due to aging even when not used. During the year, the change of
weather is also changing the demand to use this cooling unit.

A simplified adaption of this behavior is implemented in a new distribution model. Piecewise
linear decreasing reliability is defined for sections of usage and non-usage. Different rates are
used for each.

The reliability distribution of three years of operation can be seen in

During the first half of a year (4380 hours), the reliability drops by 0.3 (Time in which the unit
is used). In the following second half of the year, the reliability further drops by 0.033 (Time in
which the unit is not used). At the end of a three-year cycle, the reliability reaches O.

1.0

=== Dynamic reliability model

0.8 1

0.6

Reliability R [-]

0.2 4

0.0

0 5000 10000 15000 20000 25000
Time t [h]

Figure 5.18: Dynamic reliability model
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5.6.2 Data characteristics

As this dataset is self-generated, the data characteristic is similar to the 3™ experiment (see

[subsection 5.5.2)). Only 100 failure dates are drawn from the distribution.

5.6.3 Data processing

5.6.3.1 Parametric

The estimator for a constant failure rate for the data can be seen in A plot showing
the reliability based on this value is given in[Figure 5.19]

b Aggregated time in service T 1126397

Number of failures 100

1
= 8.88 x 10—5H (5.7)

Data from failure_dates/dynamic_times.txt
Number of Events: 100 (100 Failures, 0 Censored)

1.0
(N === Exponential Failure Probability (A = 8.88E-05)
V\} == True dynamic reliability model
N\,
0.8 - AXN
\\\’
\\\ —
\\\ — \’
=206 N \,
~ N \
o > 5
= ‘\ \‘
.TF}E \\\ \'\
S 041 S
~ —
~ C———
\\ ) §o
~~~ \
~~s .\
NNN -
0.2 \.}\
0.0 . ; ; . ==
0 5000 10000 15000 20000 25000
Time t [h]

Figure 5.19: Fourth Dataset: Exponentially assumed failure distribution in comparison to the

true reliability
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5.6.3.2 Empirical (Reduced Kaplan-Meier)

Applying the reduced Kaplan-Meier algorithm to the data with a chosen threshold value of 0.0005

gives a representation with 7 segments. The resulting model can also be seen in[Figure 5.20]

Figure 5.20: Fourth Dataset: Reduced Kaplan-Meier in comparison to the true reliability

Data from failure_dates/dynamic_times.txt
Number of Events: 100 (100 Failures, 0 Censored)
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5.6.3.3 Empirical (Polynomial)

Applying the polynomial regression to this data set returns[Equation 5.8 The resulting reliability
estimator is seen in in comparison with the true reliability distribution.

Having such a high number of resulting polynomial terms reveals problems. This estimator does
not start at R(0) = 1 and at the very end a slight increase of the values can be seen, thus conflicting
with the continuously decreasing nature of reliability.

R(r) =1.129 —4.142 x 104 +3.127 x 10~ 7*
—1.363 x 107193 +3.306 x 107 4* —4.725 x 107187
+4.136 x 1072215 —2.242 x 107267 +7.331 x 1073'#3
—1.325 x 1075/ +1.017 x 1074010 (5.8)

Data from failure_dates/dynamic_times.txt
Number of Events: 100 (100 Failures, 0 Censored)
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Figure 5.21: Fourth Dataset: Polynomial regression
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5.6.4 Accuracy comparison

A visual comparison of the true dynamic reliability model, the reduced Kaplan-Meier, the poly-
nomial estimator and the exponential estimator can be seen in

The constant failure rate is not able to reveal the changes throughout the observed three year
period.

Data from failure_dates/dynamic_times.txt
Number of Events: 100 (100 Failures, 0 Censored)
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Figure 5.22: Fourth Dataset: Comparison of exponential estimator, reduced Kaplan-Meier, poly-
nomial regression empirical and the true reliability diagram

A quantitative comparison of accuracy is given in The shape of the true reliability
characteristics of the underlying distribution cannot be matched with a constant failure rate (1,451
> 0,351). The reduced Kaplan-Meier however is sufficient for doing so (as 0,125 < 0,351). Less
accurate but still sufficient is the estimator based on polynomial regression (0,239 < 0,351).

Value
Reduced Kaplan-Meier vs. True reliability 0,125
Polynomial regression vs. True reliability 0,239
Exponential distribution vs. True reliability 1,451
Critical Kolmogorov-Smirnov test value 0,351

Table 5.8: Comparison of Kolmogorov-Smirnov test results for the fourth data set
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5.7 Data requirements

The second dataset, as discussed in is the only experiment which yielded sufficient
accurate reliability results for the parametric exponential estimation and both proposed empirical
estimators.

The accuracy of both parametric and empirical reliability models is depending on the amount
of input data. In case of a self-generated dataset, the number of failure dates is unlimited. Real
reliability assessments however require the availability of real data. In order to evaluate the
required amount of failure dates, a simulation is carried out.

A number N of failure dates is evaluated. In case of the harddisk dataset, those N failure dates
are randomly drawn from the full dataset.

Based on those failure dates, the reliability estimators are calculated. Those may be the smoothend
Kaplan-Meier, the polynomial fit and the constant failure rate. The reduced Kaplan-Meier is
not considered, as its computational implementation made it not feasible to be included in the
Monte-Carlo simulation.

The resulting reliability is then compared to the reference as described in

The result of the Kolmogorov-Smirnov test is stored together with the number of failure dates
(N).

This procedure is repeated for N + 1 failure dates. The maximum amount N,,,, of used failure
dates is set to 6000 Each set of simulations from N to N,,,, is carried out 100 times. Afterwards
the mean Kolmogorov-Smirnov test value is calculated for each N.

This gives an information how many samples in average have to be considered to give sufficient
results.

In average minimum 380 failure dates are required to produce a smoothed Kaplan-Meier estima-
tor, which is sufficiently accurate. To retrieve an accurate estimator based on a constant failure
rate, in average minimum 333 failure dates have to be assessed. Using the polynomial regression,
355 failure dates have to be processed to give a satisfying result.

A graphical illustration of the Monte-Carlo simulation forcan be seen in It shows
the how the Kolmogorov-Smirnov test value is decreasing with the increasing number of N. The
green horizontal line indicates the critical value of the Kolmogorov-Smirnov test (0,351).
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Figure 5.23: Comparison of data requirements for all three estimators
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Conclusion & Future Works

Based on the results for each of the four experiments, several conclusions can be drawn. With a
given number failure dates, empirical distributions reveal more precise insights into the failure
behavior. This is valid for all of the four presented experiments.

The exponential distribution is only sufficient enough for one of those (2™ experiment, see
fection 5.4).

All of the calculated empirical estimators are superior in their accuracy, both from a qualitative
visual evaluation and supported by a quantitative comparison.

According to the computational efficiency evaluation (see [section 4.7)), the processing time to
retrieve reliability values for those estimators is negligible short.

Both parts of the experiment hypothesis could be validated on each of the four experiments: The
empirical probability distributions do match sufficiently well the reference reliability and the
computational efficiency is sufficiently good.

Implementing the proposed estimators as generic input of RAMS tools is possible and would be
beneficial for reliability assessments.

Assessing the amount of required data to achieve the demonstrated accuracy levels revealed that,
for the given dataset, each method requires a similar amount of data to be sufficiently accurate.

During the work on this thesis, several challenges and unsolved issues got revealed. These are to
be addressed in future works.

o Access to OREDA/ExproSoft database
Both OREDA and ExproSoft provide online databases for reliability data. All collected
reliability data is available in those with rich detail level. Their policy however does not
allow academic institutes to gain access to the full data. The underlying raw data is a useful
resource to test and optimize empirical algorithms and compare them with the provided A
estimates.
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Extend to more applications

The comparison of empirical and parametric methods is a generic issue. The work in
this thesis is focusing on simple reliability estimation. In the given RAMS context, this
discussion can also be extended to maintenance models or risk quantification.

Improve the algorithm for data reduction

The implementation for data-reduction done for this thesis is rather simple. It is not
efficient and does give the best possible results. Setting the threshold value is cumbersome
and the removal of unnecessary points is frequently omitting redundant points. Developing
an approximation algorithm is not scope of this work. Implementing a well defined and
tested model will be beneficial.

Improve polynomial fit

The polynomial regression as used throughout this thesis is a very basic mathematical
implementation. It does not respect the limitations and assumptions of a reliability dis-
tribution. Implementing these (Always start at R(0) = 1, monotonous decreasing) would
greatly improve the applicability.

Implementation into RAMS tools

RAMS engineers do not rely on academic examples and hand-calculations. Numerous
software tools for RAMS related assessments are available. Further review is necessary
to get an overview over the different tools and their current functionality in terms of
empirical probability distributions. An implementation of the proposed method would
allow to conduct comparing experiments.

Implementation of uncertainty

Having an understanding of uncertainty and confidence intervals is a critical criteria in
assessing and comparing reliability information. There are measures to identify the con-
fidence interval for the Kaplan-Meier estimator. These should be tested and expanded
for the reduced Kaplan-Meier estimator and similar for the polynomial estimator. Some
mathematical metrics exist to evaluate the quality of a polynomial regression, and these
should be adapted to the field of reliability
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A.1 Additional information for the case study

A.1.1 Failure rate and times
Example calculation for A4:

Number of failures for component A

1
= =4.11x 1074 Al
4 Aggregated time in service for component A % [h] (A1)

The failure data for component "A" is drawn from a Weibull distribution with shape-parameter
o = 1.3 and scale-paramter A = 0.0005 based on equation The censoring is done
by a uniform randomization.

R(t) = e M) (A.2)
The failure data for component "B" is drawn from an exponential distribution with failure rate
A = 0.0005 based on equation The censoring is done by a uniform randomization.
R(t)=e M) (A3)

The failure data for component "C" is drawn from a self created distribution based on a modified
bathtub-shaped failure rate. More information on this distribution is given in The
censoring is done by a uniform randomization.

A table of all drawn values can be found in



A-2
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[[ 139. 1.] [l 92. 1.] [l 16. 1.]
[ 255. 1.] [ 147. 1.] [ 33. 0.]
[ 339. 0.] [ 165. 0.] [ 35. 1.]
[ 445. 1.] [ 166. 1.] [ 62. 0.]
[ 464. 0.] [ 313. 1.] [ 64. 0.]
[ 464. 1.] [ 371. 1.] [ 66. 1.]
[ 621. 1.] [ 507. 0.] [ 623. 0.]
[ 621. 0.] [ 575. 1.] [ 638. 1.]
[ 701. 0.] [ 576. 1.] [ 640. 1.]
[ 701. 1.] [ 612. 1.] [ 651. 0.]
[ 776. 1.] [ 660. 1.] [ 662. 0.]
[ 875. 0.] [ 689. 0.] [ 716 1.]
[ 1094. 1.] [ 908. 1.] [ 747. 0.]
[ 1260. 1.] [ 965. 1.] [ 821. 0.]
[ 1321. 1.] [ 1045. 1.] [ 830. 1.]
[ 1430. 0.] [ 1110. 1.] [ 2099 0.]
[ 1486. 0.] [ 1177. 0.] [ 2117 0.]
[ 1645. 1.] [ 1341. 1.] [ 2607 1.]
[ 1989. 1.] [ 1607. 1.] [ 2625 0.]
[ 2172. 1.] [ 1665. 0.] [ 2838 1.]
[ 2283. 0.] [ 1717. 1.] [ 5111 1.]
[ 2309. 1.] [ 1955. 1.] [ 5135. 0.]
[ 2504. 1.] [ 2330. 1.] [ 5543. 0.]
[ 2566. 1.] [ 2391. 1.] [ 5769. 1.]
[ 2709. 0.] [ 2391. 0.] [ 6004 0.]
[ 3136. 1.] [ 2458. 0.] [ 6796 0.]
[ 3186. 1.] [ 2556. 1.1 [ 9376. 1.]
[ 3259. 1.] [ 2769. 1.] [ 10256 0.]
[ 3291. 0.] [ 3595. 1.] [ 11649 0.]
[ 4639. 1.1] [ 4151. 0.] [ 12008 1.1]

[ 5302. 1.]
[ 5307. 1.]
[ 5315. 1.]
[ 6248. 0.]
[ 7030. 1.]]
(a) Component A (b) Component B (c) Component C

Figure A.1: Used failure dates for all three component types in the case study

A.1.2 Calculation of Top-Event probability

The TOP Event probability is calculated using standard textbook [24] methodology, not using
the approximation. shows the Python code used to calculate the probability.

A_System_Probability = A_Probability * A_Probability

s B_System_Probability = B_Probability

s C_SubSystem_Probability = C_Probability * C_Probability

7 C_System_Probability = 1 — ((1 — C_SubSystem_Probability) * (1 —
C_SubSystem_Probability) % (1 — C_SubSystem_Probability))

8

o TOP_Probability =
* (1 — C_System_Probability))

1 — ((1 — A_System_Probability) % (1 — B_System_Probability)

Listing A.1: Calculation of probability of TOP event
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A.2 Python program source code

I # Import numerical python module with short handle np
2 import numpy as np
3 import sys
4 # Import math module
5 import math
6 import random
# Import Plotting
8 import matplotlib.pyplot as plt
9 from matplotlib import rc
10 from matplotlib.offsetbox import AnchoredText
Il from matplotlib.pyplot import cm
import matplotlib.patches as patches
import matplotlib.lines as lines
# Import OS related module
import os
import glob
import generator
from scipy import optimize
from scipy import stats
from decimal import Decimal
from statistics import mean
import dynamic_reliability

np.set_printoptions (suppress=True,linewidth=1000)

SelfmadeData = generator.Florian (100.0, # tl
27 600.0, # 12
28 620.0, # 13
29 850.0, # t4
30.900.0, # 15
31 6000.0, # 16
32.6050.0, # 17
33 7500.0, # 18
34 7550.0, # 19
35 9000.0, # t10
36 10000.0, # tl1
37 0.002, # zl
38 0.00009, # 22
39°0.0008, # 23
400.0002, # 24
41°0.000035, # 25
12..0.0002, # 26
43.0.003) # 27
44
45 DynamicParameterArray = np.array ([ [0.0],
46 [4380,0.300],
47 [8760,0.333],
48 [13140,0.633],
49 [17520,0.666],
50 [21900,0.966],
51 [26280,1.0]
52 D
53

54 TrueDynamic = dynamic_reliability .Dynamic(DynamicParameterArray)

class Dataset:

def __init__(self ,filename , failure_indicator ,censor_indicator ,timebase , NumberOfReducedSections , ExpansionFactor ,
ReductionThreshold , PolyFitDegrees ,IsNumpyArray , ArrayName) :
59 # Filename of the dataset
60 self . filename = filename
61 self.IsNumpyArray = bool (IsNumpyArray)
62 self. ArrayName = ArrayName
63 # What are the Censor and Failure indicators?
64 self.censor_indicator = censor_indicator
65 self . failure_indicator = failure_indicator
66
67 # What is the timebase?
68 # May be days or yea
69 # Standard is "hours"
70 self.timebase = timebase
71
72 # Prepare the variable for the maximum/highest event time based on first column of KaplanMeierArray
73 self .MaximumEventTime = 0
74
75 # Number Of Sections for the reduced section method
76 self . NumberOfReducedSections = NumberOfReducedSections
77
78 # Degrees for PlotPolyFit
79 self.PolyFitDegrees = PolyFitDegrees
80
81 # Factor for prediction time line Expansion
82 self.ExpansionFactor = ExpansionFactor
83
84 # Threshold for section reduction
85 self .ReductionThreshold = ReductionThreshold
86 self . AmountOfAutomaticallyFoundSegments = 0
87
88 # Load "filename" into numpy array of name RawDataArray
89



91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123
124

126
127
128
129
130

131

132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
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self . IsNumpyArray == False:
try:
self.RawDataArray =
except:
sys.stderr.write(’Unable to open file "%s"\n’ % filename)
sys.stderr. flush ()
exit()
return
if self.IsNumpyArray == True:
self .RawDataArray = self.ArrayName

np.loadtxt(str(self.filename), delimiter

# If timebase is hours, do nothing
if self.timebase == "days":
self .RawDataArray [:,0] *= 24
if self.timebase == "years":
self .RawDataArray [:,0] *= 24%365.25

# Highest observed event time

self .MaximumEventTime = np.max(self.RawDataArray[:,0])
# Execute KaplanMeier() and place resulting array in GlobalKaplanMeierArray
self.GlobalKaplanMeierArray = self.KaplanMeier ()

self .GlobalKaplanMeierArrayWithoutCensored =
self.GlobalReducedArray = self.ReducedDatalntelligent(verbose=0)

self.EstimatedLambda = self.EstimateLambda ()

variable

for future common use

self.KaplanMeierArrayWithoutCensored ()

def GetNumberOfFailures(self):
# Read RawDataArray, only select the parts of the array where the second column (censoring value) is equal to Zero
# This equals a Failure. Then give out the shape of the array and from that information take the first value. This is
the amount of rows.
NumberOfFailures = self.RawDataArray[self.RawDataArray[:, 1] == self.failure_indicator ].shape[0]
return NumberOfFailures
def GetNumberOfCensored(self):
# Read RawDataArray, only select the parts of the array where the second column (censoring value) is equal to One
# This equals a Censoring. Then give out the shape of the array and from that information take the first value. This is
the amount of rows.
NumberOfCensored = self.RawDataArray[self.RawDataArray[:, 1] == self.censor_indicator].shape[0]
return NumberOfCensored
def GetNumberOfEvents(self):
# Read RawDataArray. Then give out the shape of the array and from that information take the first value. This is the

amount of rows.
NumberOfFailures = self.RawDataArray.shape[0]

return NumberOfFailures
def AccumulatedServiceTime (self):

# Sum up all the event times.
AccumulatedServiceTime = np.sum(self.RawDataArray ,

return AccumulatedServiceTime

axis=0)[0]

def EstimateLambda(self):
# Estimate Lambda based on the approach ’Number of Failures’ /
NumberOfFailures = self.GetNumberOfFailures ()
AccumulatedServiceTime = self.AccumulatedServiceTime ()
EstimatedLambda = NumberOfFailures / AccumulatedServiceTime
return EstimatedLambda

def GetUnworthySegments (self ,ReducedArray ., verbose=0):

self .ReducedArray =
self.verbose = 0

ReducedArray

CheckerNumber = 10

UnworthySegments = []

NumberOfSegments = int(ReducedArray.shape[0]—1)

== 1:

GetUnworthySegments™)

in Reduced Array: " + str(NumberOfSegments))
start with:")

if self.verbose
print ("Running
print ("Number of Segments
print("This is the ReducedArray to
print(self.ReducedArray)
print("")
for i in range (1,NumberOfSegments+1):
StartingTime = self.ReducedArray[i—1,0]
EndTime = self.ReducedArray[i,0]
TimeDifference = EndTime — StartingTime

# Create CheckerArray .

# n (CheckerNumber) values evenly distributed between starting

and ending

"Accumulated Service Time’

time of each Segments
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DifferenceSquareList = []
CheckerArray = np.linspace (StartingTime ,EndTime,CheckerNumber)

if self.verbose 1:
print ("Checking Segment number " + str(i))
print ("\tStartingTime: " + str(StartingTime))
print("\tEndTime: " + str(EndTime))
print("\tTimeDifference: " + str(TimeDifference))
print("\tCheckerArray: " + str(CheckerArray))

for ¢ in np.nditer (CheckerArray):
KM_SmoothValue = self.GetKaplanMeierValueSmooth(c)
KM_ReducedValue = np.interp(c, self.ReducedArray[:,0], self.ReducedArray[:,—1])
DifferenceSquare = (KM_SmoothValue — KM_ReducedValue)#*2
DifferenceSquareList.append(DifferenceSquare)
if self.verbose == 1:
print("\t\tChecking time: " + str(c))
print ("\t\tKM_SmoothValue: " + str(KM_SmoothValue))
print ("\t\tKM_ReducedValue: " + str (KM_ReducedValue))
print("\t\tDifferenceSquare: " + str(DifferenceSquare))
print("\n")

MeanOfSquares = mean(DifferenceSquareList)

if self.verbose == 1I:
print("Mean of Squares for this segment:")
print (MeanOfSquares)

if MeanOfSquares > self.ReductionThreshold:
UnworthySegments . append (i)
if self.verbose == 1:
print("\t——> Not Worthy! (Larger than " + str(self.ReductionThreshold) + ")")
print("\tAdding " + str(i) + " to UnworthySegments List")

else:
if self.verbose == 1:
print("\t—> Worthy! (Smaller than " + str(self.ReductionThreshold) + ")")
pass

if self.verbose == 1:
print (")
print("List of unworthy segments: " + str(UnworthySegments))
print("")

return UnworthySegments

def TreatSegments(self ,ReducedArray,verbose=1):
self.ReducedArray = ReducedArray
self.verbose = 0

if verbose == 1:
print ("Run TreatSegments")

TreatedArray = self.ReducedArray
ListOfSegmentsToBeTreated = []
ListOfSegmentsToBeTreated = self.GetUnworthySegments(self.ReducedArray , verbose=0)

1:
ListOfSegmentsToBeTreated: " + str(ListOfSegmentsToBeTreated))

if verbose
print(

for i in ListOfSegmentsToBeTreated:
NewTime = int (((self.ReducedArray[i,0] — self.ReducedArray[i—1.,0]) / 2) + self.ReducedArray[i—1,0])
NewValue = self.GetKaplanMeierValueSmooth (NewTime)

TreatedArray = np.vstack ([ TreatedArray , np.array ([NewTime, NewValue])])

1:

if verbose :
egment to work on (i): " + str(i))

print ("

print("NewTime: " + str(NewTime))
print("NewValue: " + str(NewValue))
print ("Added to TreatedArray")

print (")
TreatedArray = TreatedArray [ TreatedArray [:.,0]. argsort()]

if verbose == 1:
print("This is the TreatedArray
print(TreatedArray)
print("")

return TreatedArray
def RemoveUnnecessaryPoints(self ,ReducedArray , verbose=1):
self .ReducedArray = ReducedArray

if verbose == 1:
print ("Run RemoveUnnecessaryPoints ...")

print("Starting Array:")
print(self.ReducedArray)

AmountOfPoints = int(self.ReducedArray.shape[0])

if verbose 1:
print ("Amount of Points: " + str (AmountOfPoints))
print("\n")

ListOfIndicesToBeRemoved = []
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336
337
338
339
340

a
o

371
372
373
374

for i in range(0,AmountOfPoints —1):
if verbose
print("Iteration Number

+ostr(i) + ")

if i >0& i != AmountOfPoints —1:
# Removing that Index
self.ReducedArray = ReducedArray
ArrayWithIndexRemoved = np.delete (self.ReducedArray, i, axis=0)

ListOfUnworthySegmentsAfterRemoval = self.GetUnworthySegments (ArrayWithIndexRemoved )

if len(ListOfUnworthySegmentsAfterRemoval) != 0:
# print ("ListOfUnworthySegmentsAfterRemoval is not empty, so we keep that index")
pass

else:
# print ("ListOfUnworthySegmentsAfterRemoval is empty, so this index is not important. Will be added to the

ListOfIndicesToBeRemoved")
ListOfIndicesToBeRemoved . append (i)
# print("")
else:

if verbose 1:

print("Iteration Number is 0, do nothing")

print("")
pass
if verbose == 1:
print ("ListOfIndicesToBeRemoved: " + str(ListOfIndicesToBeRemoved))

self .ReducedArray = np.delete (ReducedArray , (ListOfIndicesToBeRemoved), axis=0)

if verbose == I:
print(self.ReducedArray)

return self.ReducedArray

def ReducedDatalntelligent(self ,verbose=0):

base ., ext = os.path.splitext(str(self.filename))
ThresholdName = str(self.ReductionThreshold).replace(".", "=")

FileNameForlIntelligentlyReducedArray = str(base) + "_Intelligent_" + str(ThresholdName) + "_Array.txt"

try:

IntelligentlyReducedArray = np.loadtxt(FileNameForIntelligentlyReducedArray)

# print("Loaded IntelligentlyReducedArray from existing text file " + str(FileNameForIntelligentlyReducedArray))
except:

# print ("Running ReducedDatalntelligent()...")

# Initial KM Array, smoothened version
KaplanMeierArray = self.KaplanMeierArrayWithoutCensoredSmooth ()

# Create initial Reduced Array.

Time: 0 First Value: 1
a Time: MaximumEventTime Last Value: Last known Value
IntelligentlyReducedArray = np.array ([0, 1])
LastTime = self.MaximumEventTime

LastValue = KaplanMeierArray[—1,-1]

IntelligentlyReducedArray = np.vstack ([ IntelligentlyReducedArray ., np.array ([LastTime, LastValue])])

if self.verbose == 1:
print("Start creating reduced Array:")
print (IntelligentlyReducedArray)
print("")

AmountOfUnworhtySegments = len(self.GetUnworthySegments(IntelligentlyReducedArray ,verbose=0))

if self.verbose == 1I:
print ("AmountOfUnworhtySegments in the beginning (should be 1): " + str(AmountOfUnworhtySegments))
print("")

while AmountOfUnworhtySegments > 0:
IntelligentlyReducedArray = self.TreatSegments(IntelligentlyReducedArray ,verbose=0)
AmountOfUnworhtySegments = len(self.GetUnworthySegments(IntelligentlyReducedArray))
IntelligentlyReducedArray = self.RemoveUnnecessaryPoints(IntelligentlyReducedArray ,verbose=0)
np.savetxt(FileNameForIntelligentlyReducedArray , IntelligentlyReducedArray)
self . AmountOfAutomaticallyFoundSegments = int(IntelligentlyReducedArray.shape[0]) — 1
return IntelligentlyReducedArray

ReturnValueArray (self , TimeArray , Method) :

self.TimeArray = TimeArray.reshape(—1,1)
self . method = Method

# Method: KM, EXP, REDUCED, DYNAMIC

ValueArray = np.zeros ([ TimeArray.shape[0].1])
ValueArray = np.hstack ([ self.TimeArray, ValueArray])
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def

if self.
for

if self.
for

if self.
for

if self.
for

method "KM" :
i in range (0,int(TimeArray.shape[0])):
ValueArray[i,l] = self.GetKaplanMeierValueSmooth(int(ValueArray[i,0]))

method == "EXP":
i in range (0,int(TimeArray.shape[0])):
ValueArray[i,1] = self.GetExponentialValue (int(ValueArray[i,0]))

method == "REDUCED" :
i in range (0,int(TimeArray.shape[0])):
ValueArray[i,1] = self.GetReducedValue(self.GlobalReducedArray ,int(ValueArray[i,0]))

method == "DYNAMIC" :
i in range (0,int(TimeArray.shape[0])):
ValueArray[i,1] = TrueDynamic.GetR (int(ValueArray[i,0]))

return ValueArray

Kolmogorov (self , methodl , method2):

# KM, REDUCED, EXP, SELFMADE
self.methodl = methodl
self.method2 = method2

NumberOfKolmogorovCheckPoints = 30
print("\nRun Kolmogorov()...")
print("methodl: " + str(self.methodl))

print("method2: " + str(self.method2))

print ("NumberOfKolmogorovCheckPoints: " +str (NumberOfKolmogorovCheckPoints))

if Numb

erOfKolmogorovCheckPoints > 12:

CriticialValue = 1.36 * math.sqrt((NumberOfKolmogorovCheckPoints+NumberOfKolmogorovCheckPoints) / (
NumberOfKolmogorovCheckPoints * NumberOfKolmogorovCheckPoints) )
elif NumberOfKolmogorovCheckPoints == 10:
CriticialValue = 0.7

ListOfKolmogorovValues = []

for ¢ in

range (0,100):

print("Iteration Nr. " 4 str(c) + " / 100")

CheckPointArray = np.sort(np.random.randint(0,self.MaximumEventTime, size=NumberOfKolmogorovCheckPoints)).reshape

(—=1,1)

NumberOfRows = CheckPointArray .shape[0]
ZeroArray = np.zeros ([ NumberOfRows,5])
KolmogorovArray = np.hstack ((CheckPointArray ,ZeroArray))

## Fill KM and exponential values

for

for

i in range (0,NumberOfRows):

TimeForPrediction = KolmogorovArray[i,0]

if self.methodl == "KM":

KolmogorovArray[i,1] = self.GetKaplanMeierValueSmooth(TimeForPrediction)
elif self.methodl == "EXP

KolmogorovArray[i,1] = self.GetExponentialValue (TimeForPrediction)
elif self.methodl == "REDUCED":

KolmogorovArray[i,1] = self.GetReducedValue(self.GlobalReducedArray , TimeForPrediction)
elif self.methodl == "SELFMADE":
KolmogorovArray[i,l] = 1 — SelfmadeData.getF(int(TimeForPrediction))

elif self.methodl == "POLY":
KolmogorovArray[i,1] = self.GetPolyValue(TimeForPrediction)
elif self.methodl == "DYNAMIC":
KolmogorovArray[i,1] = Dynamic.GetR(TimeForPrediction)
if self.method2 == "KM":
KolmogorovArray[i,2] = self.GetKaplanMeierValueSmooth(TimeForPrediction)
elif self.method2 == "EXP
KolmogorovArray[i,2] = self.GetExponentialValue(TimeForPrediction)
elif self.method2 == "REDUCED":

KolmogorovArray[i,2] = self.GetReducedValue(self.GlobalReducedArray , TimeForPrediction)
elif self.method2 == "

KolmogorovArray[i,2] = 1 — SelfmadeData.getF(int(TimeForPrediction))
elif self.method2 ==

KolmogorovArray [i,2] = self.GetPolyValue(TimeForPrediction)
elif self.method2 == "DYNAMIC":

KolmogorovArray[i,2] = TrueDynamic.GetR(TimeForPrediction)

i in range (0,NumberOfRows) :

if i == 0:
KolmogorovArray[i,3] = KolmogorovArray[i, 1]
KolmogorovArray[i,4] = KolmogorovArray[i,2]

else:
KolmogorovArray [i,3] = KolmogorovArray[i—1,3] + KolmogorovArray[i,1]
KolmogorovArray [i,4] = KolmogorovArray[i—1,4] + KolmogorovArray[i,2]

i in range (0,NumberOfRows) :
KolmogorovArray[i,5] = abs(KolmogorovArray[i,3] — KolmogorovArray[i,4])

KolmogorovValue = np.max(KolmogorovArray[:,5])
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469 Kolmogorovindex = np.argmax (KolmogorovArray[:,5])

470 ListOfKolmogorovValues.append (KolmogorovValue)

471

472 MeanKolmogorovValue = mean(ListOfKolmogorovValues)

473

474 if MeanKolmogorovValue <= CriticialValue:

475 print(str(MeanKolmogorovValue) + " < " + str(CriticialValue) + ": Samples based on same distribution!")
476

477 if MeanKolmogorovValue > CriticialValue:

478 print(str(MeanKolmogorovValue) + " > " + str(CriticialValue) + ": Samples NOT based on same distribution!")
479

480 return KolmogorovArray , KolmogorovValue, Kolmogorovindex, MeanKolmogorovValue
481

482 def FindNearestIndex (self ,array ,value):

483 idx = (np.abs(array—value)).argmin ()

484 return idx

485

486 def FindIndexLowerThanValue(self ,array ,value):

487 DifferenceArray = (array—value)

488

489 if value == 0:

490 idx =0

491 else:

492 idx = (np.argwhere(DifferenceArray <0)).argmax ()

493

494 return idx

495

496 def FitPolyToKaplanMeier(self):

497 KaplanMeierArray = self.KaplanMeier ()

498 X = KaplanMeierArray [:,0]

499 Y KaplanMeierArray [:,5]

500 z np.polyfit(X, Y, self.PolyFitDegrees)

501 p = np.polyld(Z)

502 return p

503

504 def GetPolyValue(self ,time):

505 self . time = time

506 Poly = self.FitPolyToKaplanMeier ()

507 return Poly(self.time)

508

509 def KaplanMeier(self):

510

511 base, ext = os.path.splitext(str(self.filename))

512

513 FileNameForKaplanMeierArray = str(base) + " _KM_Array. txt"
514

515 # if self.IsNumpyArray == False:

516 try:

517 KaplanMeierArray = np.loadtxt(FileNameForKaplanMeierArray)

# print("Loaded KaplanMeierArray from existing text file " + str(FileNameForKaplanMeierArray))

except:

pt:
# Create an array with the Kaplan—Meier data inside

# print("Running KaplanMeier()...")
# Number of events in RawDataArray. Used for counting

NumberOfEvents = int(self.GetNumberOfEvents ())

# Sort the RawDataArray according to the event times failure times and censoring times
# Save it in SortedArray

SortedArray = self.RawDataArray[self.RawDataArray[:,0]. argsort()]

# Create RankArray from 1 to NumberOfEvents
# Make it vertically afterwards

RankArray = np.arange (1 ,NumberOfEvents+1)
RankArray = np.vstack (RankArray)

# Create a reversed version of the RankArray
ReverseRankArray = RankArray[ : :—1]

# Create array of ones
OnesArray = np.ones ([ NumberOfEvents ,2])

# Stack all arrays horizontally
KaplanMeierArray = np.hstack ([ SortedArray , RankArray , ReverseRankArray , OnesArray ])

# Calculate p in 4th column
KaplanMeierArray [:,4] = (KaplanMeierArray[:.3] —1)/(KaplanMeierArray[:,3])

# Ugly routine to set p to I for all censored sets
for i in range (0, NumberOfEvents):
if KaplanMeierArray[i,l] == self.censor_indicator:
KaplanMeierArray [i,4] = 1

559 # Build Product for Kaplan—Meier Estimator in last column

560

561 for i in range (0, NumberOfEvents):

562 KaplanMeierArray[i.5] = np.product ([ KaplanMeierArray [0:i.4]])
563
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def

def

if self.IsNumpyArray == False:
np.savetxt(FileNameForKaplanMeierArray , KaplanMeierArray)

return KaplanMeierArray

KaplanMeierArrayWithoutCensored (self):
base, ext = os.path.splitext(str(self.filename))

FileNameForKaplanMeierArrayWithoutCensored = str(base) + "_KM_Array WO_Censored. txt"

try:

KaplanMeierArrayWithoutCensored = np.loadtxt(FileNameForKaplanMeierArrayWithoutCensored)

# print ("Loaded KaplanMeierArrayWithoutCensored from existing text file " + str(
FileNameForKaplanMeierArrayWithoutCensored))

except:
# print ("Running KaplanMeierArrayWithoutCensored () ...")
KaplanMeierArray = self.GlobalKaplanMeierArray

KaplanMeierArrayWithoutCensored = KaplanMeierArray [ KaplanMeierArray[:,1] == 1]
if KaplanMeierArray[—1,1] ==

KaplanMeierArrayWithoutCensored = np.vstack ([ KaplanMeierArrayWithoutCensored , KaplanMeierArray [ —1:,]])

np.savetxt(FileNameForKaplanMeierArrayWithoutCensored , KaplanMeierArrayWithoutCensored)

return KaplanMeierArrayWithoutCensored

GetKaplanMeierValue (self , TimeForPrediction):

self . TimeForPrediction = TimeForPrediction

KaplanMeierArray = self.KaplanMeier ()

ResultArray = np.array ([0])

for x in np.nditer(TimeForPrediction):
Rowlndex = self.FindIndexLowerThanValue(KaplanMeierArray[:,0],x)
ResultArray = np.hstack ((ResultArray , KaplanMeierArray [RowIndex+1,—1]))

ResultArray = np.delete (ResultArray , (0), axis=0)

return ResultArray

GetKaplanMeierValueSmooth (self , TimeForPrediction):

self . TimeForPrediction = TimeForPrediction

KaplanMeierArray = self.GlobalKaplanMeierArrayWithoutCensored

ResultArray = np.array ([0])
for x in np.nditer (TimeForPrediction):

Result = np.interp (self.TimeForPrediction, KaplanMeierArray[:,0], KaplanMeierArray[:,—1])

ResultArray = np.hstack (( ResultArray , Result))
return Result
GetReducedValue (self ,ReducedArray , TimeForPrediction):

self.ReducedArray = ReducedArray
self . TimeForPrediction = TimeForPrediction

X self.ReducedArray [:,0]
Y = self.ReducedArray[:,1]
Estimation = np.interp (self.TimeForPrediction, X, Y)

return Estimation

GetExponentialValue (self , TimeForPrediction):

self . TimeForPrediction = TimeForPrediction

return math.e =x (—(self.EstimatedLambdaxself.TimeForPrediction))

CompareValues (self , TimeForPrediction , Method) :

self . TimeForPrediction = TimeForPrediction
self .Method = Method

KaplanMeierValue self.GetKaplanMeierValue (self. TimeForPrediction)
ExponentialValue = self.GetExponentialValue(self.TimeForPrediction)
KaplanMeierValueSmooth = self.GetKaplanMeierValueSmooth(self. TimeForPrediction)

if self.Method == "Exponential":
ResultValue = ((ExponentialValue — KaplanMeierValue) / KaplanMeierValue) * 100

if self.Method
ResultValue

"Reduced":
ReducedValue — KaplanMeierValue

if self.Method == "Smooth":

ResultValue = ((ExponentialValue — KaplanMeierValueSmooth) / KaplanMeierValueSmooth)

return ResultValue

GetUpperConfidencelnterval (self , EstimatedFailureProbability , NumberOfFailures):
self.EstimatedFailureProbability = EstimatedFailureProbability
self.NumberOfFailures = NumberOfFailures

UpperConfidencelnterval = self.EstimatedFailureProbability + 1.96 x ( self.EstimatedFailureProbability = (

EstimatedFailureProbability)/self.NumberOfFailures) %%0.5

return UpperConfidencelnterval

self .
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def GetLowerConfidencelnterval(self , EstimatedFailureProbability ,NumberOfFailures):
EstimatedFailureProbability

self . EstimatedFailureProbability =
self . NumberOfFailures =

LowerConfidencelnterval =

self.EstimatedFailureProbability — 1.96 * (

NumberOfFailures

EstimatedFailureProbability)/self . NumberOfFailures) 0.5

return LowerConfidencelnterval

def KaplanMeierWithConfidencelnterval (self):

o
o

def

KaplanMeierArray =
NumberOfEvents =

ConfidenceArray =
for i in range (0,NumberOfEvents):

ConfidenceArray[i,0] =
ConfidenceArray[i, 1] =

KaplanMeierWithConfidencelntervalArray =

return

self.KaplanMeier ()
self.GetNumberOfEvents ()

np.zeros (| NumberOfEvents ,2])

KaplanMeierWithConfidencelntervalArray

KaplanMeierArrayWithoutCensoredSmooth (self , verbose=0):

KaplanMeierArrayWithoutCensored =

KaplanMeierArrayWithoutCensored_X
KaplanMeierArrayWithoutCensored_Y

self.KaplanMeierArrayWithoutCensored ()

KaplanMeierArrayWithoutCensored [:,0]
KaplanMeierArrayWithoutCensored[:.—1]

NumberOfRows = KaplanMeierArrayWithoutCensored_X.shape[0]

KaplanMeierArrayWithoutCensoredSmooth_Y =

for i in range (0,NumberOfRows—1):
First_Value =
Second_Value =
Difference =
New_Value =

if verbose 1:

print ("Working on Line number
" + str(KaplanMeierArrayWithoutCensored_X[i]))
print ("\tR—Value of Line number
print ("\tR—Value of Line number
str(Difference))
str (New_Value))

print("\tTime:

Ea.
-

print ("\tDifference:
print ("\tNew Value:
print("\n")

KaplanMeierArrayWithoutCensoredSmooth =

KaplanMeierArrayWithoutCensored_Y [i]
KaplanMeierArrayWithoutCensored_Y [i+1]
First_Value — Second_Value
Second_Value + (Difference / 2.0)
KaplanMeierArrayWithoutCensoredSmooth_Y[i] =

New_Value

"4 ostr(i))

+ ostr(i) +
+ str(i+l) +

+ str(First_Value))
": " + str(Second_Value))

KaplanMeierArrayWithoutCensoredSmooth_Y ])

FirstLine = np.array ([0,1])

KaplanMeierArrayWithoutCensoredSmooth =
KaplanMeierArrayWithoutCensoredSmooth

return

self . EstimatedFailureProbability * ( 1 —

np. hstack ([ KaplanMeierArray , ConfidenceArray ])

np.copy(KaplanMeierArrayWithoutCensored_Y )

self .

self .GetLowerConfidencelnterval (KaplanMeierArray[i.5],NumberOfEvents)
self . GetUpperConfidencelnterval (KaplanMeierArray[i.5],NumberOfEvents)

np.column_stack ([ KaplanMeierArrayWithoutCensored_X ,

np.vstack ([ FirstLine , KaplanMeierArrayWithoutCensoredSmooth])

Plot(self ,PlotKaplanMeier , PlotKaplanMeierSmooth , PlotKaplanMeierConfidencelnterval ,PlotEstimatedExponential , PlotPolyFit ,
PlotReduced , PlotDifferences , ShowPrediction , PlotKolmogorov , PlotSelfmade , PlotDynamic , ShowPlot , SavePlot , PlotFile):

self.PlotKaplanMeier =

self . PlotKaplanMeierConfidencelnterval =
bool (PlotKaplanMeierSmooth)
bool(PlotEstimatedExponential)

self.PlotKaplanMeierSmooth =
self.PlotEstimatedExponential =
self.PlotPolyFit = bool(PlotPolyFi
self .PlotReduced = bool(PlotReduce
self .PlotDifferences =
self.ShowPrediction =
self.PlotKolmogorov =
self.PlotSelfmade =
self .PlotDynamic = bool(PlotDynami
self.ShowPlot = bool(ShowPlot)

self.SavePlot = bool(SavePlot)

self.PlotFile = str(PlotFile)

t)
d)

c)

to

# Plots various graphs, according
# KaplanMeier — Plot KM if set to 1
# Show Show the plot

# Save Save the plot

# PlotFile Filename for the

# Set generic plot options

# Set LaTeX font (Computer Modern)

re (" font’, Tserif T,

re(text’,

sx{ " family "
usetex=True)

# Set—up
fig, axl =

figure and axes
plt.subplots () #,
# Define Labels for x and y axis
plt.xlabel ("Time t [h]")
plt.ylabel("Reliability R [—]")

# AXxis range
ymin = 0

Tserif’:

bool(PlotKaplanMeier)

bool(PlotKaplanMeierConfidencelnterval)

bool(PlotDifferences)
bool(ShowPrediction)
bool (PlotKolmogorov)
bool(PlotSelfmade)

parameters .

saved plot

[ Computer Modern’ ]})#, “size’

sharex=True)



Appendix A. Appendix

xmax_value = int(self.MaximumEventTime)
plt.xlim(xmin=0, xmax=xmax_value)
plt.ylim(ymin=ymin, ymax=1.0)

# Set title. All "_" have to be replaced by "\_" for LaTeX escaping
TitleName = str(self.filename).replace (" ", "\_")
Subtitle = "Number of Events: " + str(self.GetNumberOfEvents()) + " (" + str(self.GetNumberOfFailures()) + " Failures .

" + str(self.GetNumberOfCensored()) + "
axl.set_title ("Data from " +

Censored)"

if PlotKaplanMeier == True:
# Run the KaplanMeier() function
KaplanMeierArray = self.GlobalKaplanMeierArray

# Define x and y for the plot
x KM = KaplanMeierArray [:,[0]]
y_KM = KaplanMeierArray[:,[ —1]]
ax1.step (x_ KM,y KM, color="red",
axl.legend(loc=3)

linewidth=1, a

if PlotKaplanMeierSmooth == True:
KaplanMeierArrayWithoutCensoredSmooth =
x_KM_Smooth =

y_KM_Smooth =
axl.plot(x_KM_Smooth,y_KM_Smooth,

KaplanMeierArrayWithoutCensoredSm
KaplanMeierArrayWithoutCensoredSm
color = "#8¢c0

if PlotKaplanMeierConfidencelnterval == True:
KaplanMeierWithConfidencelntervalArray =
X = KaplanMeierWithConfidencelntervalArray [:,0]
Y_Lower =
Y_Upper =

ax1.step (X, Y_Upper,
axl . step (X, Y_Lower,

color="red", alpha=0.8, lin
color="red", alpha=0.8, lin

if PlotEstimatedExponential == True:

# Set X—Axis to range
upper_limit = xmax_value
x_Lambda = np.arange (0,upper_limit)

EstimatedLambda = self.EstimateLambda ()
EstimatedLambdaSci =
axl.plot(x_Lambda, math.e % (—(EstimatedLambda
label="Exponential
axl.legend(loc=3)

if PlotPolyFit == True:

X = self.KaplanMeier() [:,[0]]

Poly = self.FitPolyToKaplanMeier ()

print (Poly)

axl.plot(X, Poly(X),
degrees)")

color="orange", linewidth=

if PlotReduced == True:

ReducedArray = self.ReducedDatalntelligent ()
X = ReducedArray [:,0]
Y = ReducedArray[:,1]

axl.scatter (X, Y, color="#5492f7",
axl.plot(X, Y, color="#5492f7",
AmountOfAutomaticallyFoundSegments) + "

Sections ,
if PlotDifferences == True:
ax2 = axl.twinx ()
Timerange =
if PlotReduced == True:

DifferenceArrayReduced = self.CompareValues
ax2.plot(Timerange, DifferenceArrayReduced,

Failure Probability ($\lambda$ = "

linewidth=1.5,
linewidth=2, alpha=0.8,
" + str(self.ReductionThreshold) + "

str(TitleName) + "\n" + Subtitle)

Ipha=1, label="Kaplan—Meier Estimator")

self.KaplanMeierArrayWithoutCensoredSmooth ()

ooth [:,0]
ooth[:,—1]
Off”, linewidth=1, alpha=1,

self . KaplanMeierWithConfidenceInterval ()

KaplanMeierWithConfidencelntervalArray [:,6]
KaplanMeierWithConfidencelntervalArray [:,7]

estyle="—.", label="Upper KM Confidence
estyle="—.", label="Lower KM Confidence

"%.2E" % Decimal (EstimatedLambda)

#x_Lambda)), color="blue",
+ str(EstimatedLambdaSci) + ")")

2, alpha=1, label="Polynomial fit ("

alpha=1)
label="Reduced Data Set (" +

np.arange (0, self.MaximumEventTime ,100)

(Timerange , "Reduced")

color="cyan", alpha=0.7, linewidth=0.8,

Reduced to KM)")
if PlotKaplanMeierSmooth == True:

DifferenceArraySmooth self.CompareValues (Timerange ,"Smooth")

ax2.plot(Timerange , DifferenceArraySmooth, color="green", alpha=0.7, linewidth=0.8,
Exponential to smooth Kaplan—Meier)")

ax2.set_ylabel ("Difference [\%]")

ax2.tick_params(’y’, color="green")

ax2.axhline (y=0, color="green", alpha=0.7, linewidth=0.5, linestyle="

ax2.legend (loc=0)

if ShowPrediction == True:

# Expand the X axis. Use self.ExpansionFactor a
plt.xlim(xmin=0, xmax=int(self.MaximumEventTime
that

# Plot exponential for

x_Lambda =

area

s a factor
)#self . ExpansionFactor)

label="Kaplan—Meier

Estimator

(Smooth) ")

Interval")
Interval")

linestyle="—",

str(self.
Threshold)")

linewidth=2, alpha=1,

+ str(self.PolyFitDegrees) + '

label="Value difference (

label="

np.arange (int(self.MaximumEventTime) ,int(self.MaximumEventTime)#*self.ExpansionFactor)

Value difference (
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EstimatedLambda = self.EstimateLambda ()
EstimatedLambdaSci = "%.2E’ % Decimal (EstimatedLambda)

KaplanMeierArray = self.KaplanMeier ()
Offset = KaplanMeierArray[—1,~1] — math.e ## (—(EstimatedLambdaxself.MaximumEventTime))
OffsetSci = round (Offset , 2)

SmoothKaplanMeierValueAtMaximumEventTime = self.GetKaplanMeierValueSmooth (self . MaximumEventTime)
PredictLambda = —1 % (math.log(SmoothKaplanMeierValueAtMaximumEventTime) / self.MaximumEventTime)
PredictLambdaSci = "%.2E° % Decimal (PredictLambda)

if PlotEstimatedExponential == True:
if Offset >= 0:
axl.plot(x_Lambda, math.e % (—(EstimatedLambdaxx_Lambda)) , color="blue", linestyle="—", linewidth=2,
alpha=1)
else:
axl.plot(x_Lambda, math.e % (—(EstimatedLambdasx_Lambda)) , color="blue", linestyle="—", linewidth=2,
alpha=0.5)
859 else:
860 if Offset >= 0:
861 axl.plot(x_Lambda, math.e %% (—(EstimatedLambdaxx_Lambda)) , color="blue", linestyle="— linewidth=2,
alpha=1, label="Original Exponential Failure Probability ($\lambda$ = " + str(EstimatedLambdaSci) +
862 else:
863 axl.plot(x_Lambda, math.e x# (—(PredictLambda*x_Lambda)) , color="green", linestyle="—", linewidth=2,
alpha=1, label="Adapted Exponential Failure Probability ($\lambda_{Prediction}$ = " + str(PredictLambdaSci)+ "
864 axl.plot(x_Lambda, math.e #% (—(EstimatedLambdaxx_Lambda)) , color="blue", linestyle=" , linewidth=2,
alpha=1, label="Original Exponential Failure Probability ($\lambda$ = " + str(EstimatedLambdaSci) + ")")
865
866 if PlotPolyFit True:
867 X = np.arange (int(self.MaximumEventTime) ,int (self.MaximumEventTime)+self.ExpansionFactor)
868 Poly = self.FitPolyToKaplanMeier ()
869
870
871 axl.plot(X, Poly(X), color="green", linestyle="—", linewidth=2, alpha=1)
872
873 # Add hatching for predicted time frame
874
875 patterns = ["=", '+7, 'x’, Jo’, 'O7, .7, Cx7, 707, /7]
876 ax1.add_patch (
877 patches . Rectangle (
878 (self.MaximumEventTime, —0.2), # (x.,y)
879 self .MaximumEventTimexself . ExpansionFactor , # width
880 1.3, # height
881 # hatch="/",
882 hatch = patterns [8],
883 edgecolor="red",
884 # alpha=0.5,
885 fill=False
886 )
887 )
888
889
890 if PlotKolmogorov == True:
891 KolmogorovArray , KolmogorovValue, Kolmogorovindex, MeanKolmogorovValue, SameDistribution = self.Kolmogorov (1)
892 KolmogorovTimes = KolmogorovArray[:,0]
893 KolmogorovKMValues = KolmogorovArray [:,1]
894 KolmogorovExpValues = KolmogorovArray [:,2]
895 KolmogorovKM_Cum_Values = KolmogorovArray [:,3]
896 KolmogorovExp_Cum_Values = KolmogorovArray [:,4]
897
898 plt.ylim(ymin=ymin, ymax=5)
899
900 axl.plot(KolmogorovTimes, KolmogorovKM_Cum_Values, color="#8c00ff ", alpha=1, linewidth=1, label="Cumulative Values
for smoothened Kaplan—Meier")
901 ax1.plot(KolmogorovTimes, KolmogorovExp_Cum_Values, color="blue’, alpha=1, linewidth=1, label="Cumulative Values
for exponential distribution")
902 axl.set_ylabel ("Cumulative Values [—]")
903
904
905 for i in range(0,len(KolmogorovTimes)):
906 x = [KolmogorovTimes[i], KolmogorovTimes[i]]
907 y = [KolmogorovKM_Cum_Values[i], KolmogorovExp_Cum_Values[i]]
908
909 axl.plot(x, y, marker = 7, color = "green")
910
911 # Maximum Kolmogorov line
912 x_max = [KolmogorovTimes[Kolmogorovindex], KolmogorovTimes[Kolmogorovindex]]
913 y_max = [KolmogorovKM_Cum_Values[Kolmogorovindex], KolmogorovExp_Cum_Values[Kolmogorovindex]]
914 axl.plot(x_max, y_max, marker = ', color = "red", label="Kolmogorov—Smirnov test value (" + str(round(
KolmogorovValue ,3)) + ")")
915
916
917 if PlotSelfmade == True:
918
919 upper_limit = xmax_value
920 x_Selfmade = np.arange(0,10100,100)
921 y_Selfmade = np.arange(0,10100,100)
922
923 y_list = []
924 for i in range(0,len(y_Selfmade)):
925 Time = int(y_Selfmade[i])
926 R_Value = 1 — SelfmadeData. getF (Time)
927
928 y_list.append(R_Value)
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axl.plot(x_Selfmade, y_list, color="green", linestyle="—.", linewidth=2, alpha=1, label="True Selfmade distribution

reliability ")
if PlotDynamic == True:

x_Dynamic = np.arange (0,26280,100)

axl.plot(x_Dynamic, TrueDynamic.GetR(x_Dynamic), color="green", linestyle="—.", linewidth=2, alpha=1, label="True

dynamic reliability model")

if ShowPlot == True:

plt.legend(loc="upper right")
plt.show ()

if SavePlot == True:
plt.legend(loc="upper right")
plt.savefig (PlotFile)

def KolmogorovArrayCheck (Arrayl , Array2):
Arrayl = Arrayl.reshape(—1,1)
Array2 = Array2.reshape(—1,1)
if Arrayl.shape[0] != Array2.shape[0]:
print("The two input arrays do not have the same size! ABORT!")
NumberOfKolmogorovCheckPoints = Arrayl.shape[0]
if NumberOfKolmogorovCheckPoints <= 12:
Critical_Values = [0,0,0,0,1,1,0.83,0.857,0.75,0.667,0.7,0.636,0.667]

CriticialValue = Critical_Values[NumberOfKolmogorovCheckPoints ]

else:

CriticialValue = 1.36 * math.sqrt ((NumberOfKolmogorovCheckPoints+NumberOfKolmogorovCheckPoints) / (

NumberOfKolmogorovCheckPoints * NumberOfKolmogorovCheckPoints))
ListOfKolmogorovValues = []

for ¢ in range(0,100):
NumberOfRows = NumberOfKolmogorovCheckPoints
ZeroArray = np.zeros ([ NumberOfRows,3])
ZeroArray2 = np.zeros ([ NumberOfRows,1])
KolmogorovArray = np.hstack ((ZeroArray2 , Arrayl , Array2 ,ZeroArray))

for i in range (0,NumberOfRows):
if i == 0:

KolmogorovArray[i,3] = KolmogorovArray[i, 1]

KolmogorovArray[i.,4] = KolmogorovArray[i,2]

else:

KolmogorovArray[i,3] = KolmogorovArray[i—1,3] + KolmogorovArray[i, 1]
KolmogorovArray[i.4] = KolmogorovArray[i—1,4] + KolmogorovArray[i,2]

for i in range(0,NumberOfRows):
KolmogorovArray [i,5] = abs(KolmogorovArray[i,3] — KolmogorovArray[i,4])

KolmogorovValue = np.max(KolmogorovArray[:,5])
Kolmogorovindex = np.argmax (KolmogorovArray[:.,5])
ListOfKolmogorovValues.append (KolmogorovValue)

MeanKolmogorovValue = mean(ListOfKolmogorovValues)
if MeanKolmogorovValue <= CriticialValue:

print (str(MeanKolmogorovValue) + "\t<\t " + str(CriticialValue) +
SameDistribution = 1

if MeanKolmogorovValue > CriticialValue:

:\tSamples based on same distribution!")

print (str(MeanKolmogorovValue) + "\t>\t" + str(CriticialValue) + ":\tSamples NOT based on same distribution!")

SameDistribution = 0
return KolmogorovArray , KolmogorovValue, Kolmogorovindex, MeanKolmogorovValue,
def ReturnRandomSample (InputArray ,Number) :
NumberOfEvents = int(InputArray.shape[0])
ListOfIndices = random.sample(range (0, NumberOfEvents), Number)

RandomSampleArray = np.sort(InputArray.take(ListOfIndices , axis=0), axis=0)

return RandomSampleArray

def CensorArray (Array):
Length = Array.shape[0]
Ones = np.ones([Length,1])
CensoredArray = np.hstack ((Array ,Ones))

return CensoredArray

SameDistribution
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# TestingArray = np.sort (FullDataArray . take (ListOfIndicesToBeConsidered , axis=0), axis=0)

TestingArray = np.array ([])

for i in range(0,c):
TestingArray np.append(TestingArray , SelfmadeData. GetSingleFailureTime () )
TestingArray = TestingArray.reshape(—1,1)

TestingArray = CensorArray (TestingArray)

023 def HowManyPoints(Montecarlo_Counter):

024

025 DataSetToBeChecked = Selfmade

026

027 # This is the Raw Data Array to use as source. Used for Exprosoft and Backblaze
028 FullDataArray = DataSetToBeChecked.RawDataArray

029 filename_prefix = "how_many_points_temp_data_selfmade/Selfmade”

030 NumberOfKolmogorovCheckPoints = 30

031

032 # This is the number of entries in that Raw Data Array

033 NumberOfMaximumEntries = FullDataArray.shape[0]

034

035 DictionaryOfSuccess = {}

036 ListOfSuccess = []

037 ListOfSamplesize = []

038

039 ResultArray = np.array ([0,999])

040

041 for ¢ in range(5,15,2):

042 print("Monte Carlo Number " + str(Montecarlo_Counter) + ", Iteration with " + str (c¢) + " samples...")
043

044 NumberOfSamples = ¢

045

046

047 # What indices of the Raw Data Array are to be considered? For Wellmaster and Backblaze
048 # ListOfIndicesToBeConsidered = random.sample(range (0, NumberOfMaximumEntries), NumberOfSamples)
0

0;

0.

0.

0.

0.

0;

0;

0;

# print ("Our TestingArray:")

FileNameForTempArray = filename_prefix + "_Raw_Data_Iteration_" + str(c).zfill(4) + "_Samples.txt
np.savetxt(FileNameForTempArray , TestingArray ,delimiter=":")

# print ("\tArray " + str(FileNameForTempArray) + " saved...")

TempDataset = Dataset( FileNameForTempArray ,
timebase="hours",

failure_indicator = I,
68 censor_indicator = 0,
69 NumberOfReducedSections = 5,
70 PolyFitDegrees = 4,
71 ExpansionFactor = 3,
72 ReductionThreshold = 0.0005,
73 IsNumpyArray = False ,
74 ArrayName = "blank")
75
76 # Create a random time array with NumberOfKolmogorovCheckPoints number of times between 0 and the maximum time in the
current iteration
1077 CheckPointArray = np.sort(np.random.randint (0, TempDataset. MaximumEventTime , size=NumberOfKolmogorovCheckPoints)).reshape
(=1.1)
1078
1079 # Create array with KM-smooth values of this sample array
1080 KM_Sample_Array = np.zeros ([ NumberOfKolmogorovCheckPoints ,1])
1081 for i in range(0,NumberOfKolmogorovCheckPoints):
1082 KM_Sample_Array[i] = TempDataset.GetKaplanMeierValueSmooth(CheckPointArray[i])
1083
1084 # Create array with Reliability values of true array
1085 KM_Full_Array = np.zeros ([ NumberOfKolmogorovCheckPoints ,1])
1086 for i in range(0,NumberOfKolmogorovCheckPoints) :
1087 # KM_Full_Array[i] = DataSetToBeChecked.GetReducedValue (DataSetToBeChecked.GlobalReducedArray , CheckPointArray[i])
1088 KM_Full_Array[i] = 1 — SelfmadeData.getF(int(CheckPointArray[i]))
1089
1090 KolmogorovArray , KolmogorovValue, Kolmogorovindex , MeanKolmogorovValue, SameDistribution = KolmogorovArrayCheck (
KM_Sample_Array , KM_Full_Array)
1091
1092 # Setting first column in ResultArray
1093 ResultArrayLine = np.array ([c,KolmogorovValue])
1094 ResultArray = np.vstack ([ ResultArray , ResultArrayLine])
1095 print("")
1096
1097 np.savetxt("how_many_points_temp_data_selfmade_results/Selfmade_HowManyPoints_Result_" + str(Montecarlo_Counter).zfill (4) +
"_Samples. txt", ResultArray)
1098
1099 return ResultArray
1100
1101 def MonteCarlo(runs):
1102
1103 for i in range(0,runs):
1104 print("Iteration " + str(i))
1105 Resultarray = HowManyPoints (i)
1106
1107 if i 0:
108 # print("First run!")
109 MonteCarloArray = Resultarray
0

1 if i > 0:

2 # print("Not first run")

3 MonteCarloArray = np.hstack ([ MonteCarloArray , Resultarray[:, —1].reshape(—1.,1)])
4
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# print (" Array so far: ")
# print(MonteCarloArray)

np.savetxt("how_many_points_temp_data_selfmade_results/Selfmade_MonteCarlo_Result_" + str(i).zfill(4) + "th_Run.txt

MonteCarloArray )
files_to_be_deleted = glob.glob( how_many_points_temp_data_selfmade\+ )
for f in files_to_be_deleted:

os.remove (f)

print("Finished")

np.savetxt("how_many_points_temp_data_selfmade_results/Selfmade_MonteCarlo_FinalArray.txt", MonteCarloArray)

A = Dataset( "failure_dates/A-Data.txt",
timebas hours",
failure_indicator = 1,
censor_indicator = 0,
NumberOfReducedSections = 5,
PolyFitDegrees = 4,
ExpansionFactor =
ReductionThreshold = 0.0004,
IsNumpyArray = False ,
ArrayName = "blank")

A.Plot( PlotKaplanMeier=0,
PlotKaplanMeierSmooth=0,
PlotKaplanMeierConfidencelnterval=0,
PlotEstimatedExponential=1,
PlotPolyFit=1,

PlotReduced=1,

PlotDifferences=0,

ShowPrediction=0,

PlotKolmogorov=0,

PlotSelfmade=0,

PlotDynamic
ShowPlot=
SavePlot
PlotFile=

C_KM_Exponential_Comparison.pdf")

Listing A.2: statistic_tools.py Python source code

import numpy as np
import math

import sys

import os

class Dynamic:
def __init__(self ,ParameterArray):
self.ParameterArray = ParameterArray

def GetF(self ,TimeForPrediction):

self . TimeForPrediction = TimeForPrediction

Result = np.interp (self.TimeForPrediction, self.ParameterArray[:,0], self.ParameterArray[:,—1])

return Result

o
o

f GetR(self , TimeForPrediction):

self . TimeForPrediction = TimeForPrediction
Result = 1 — self.GetF(self.TimeForPrediction)
return Result

def GetTime(self ,FailureProbability):
self . FailureProbability = FailureProbability

ResultTime = np.interp(self.FailureProbability , self.ParameterArray[:,—1], self.ParameterArray([:,0])

return int(ResultTime)

de

CreateFailureTimes (Filename , Modelname , Number) :

try:
output = open(Filename , "w")
except:
sys.stderr.write( Unable to open file "%s"\n’ % Filename)
sys.stderr. flush ()
exit

for i in range(0,Number):
output. write (str (Modelname. GetTime (np.random. uniform (0,1.0))) + ":1\n")

output.close ()

Listing A.3: dynamic_reliability.py Python source code
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# Import numerical python module with short handle np
import numpy as np

W =

# Import math module
import math

IS

import os

SN

# Generate a Treatment class

10 class Selfmade:
11 def __init__(self ,tl,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,21,22,23,24,25,26,27):

12 self.tl = tl
13 self . t2 = (2
14 self . t3 = 3
15 self.t4 = t4
16 self.t5 = t5

self.t6 = t6
self . t7 = (7
self.t8 = (8
self.t9 = 9
self . t10 = t10
self . tll1= tll
self.zl = zl
self.z2 = z2
self.z3 = z3
self.z4 = z4
self.z5 = z5
self.z6 = z6
self.z7 = 27

def getz(self ,t):

self .t =t
if self.t < 0:
t =0
print("Negative time entered — t set to zero")

elif self.t > 0 and self.t <= self.tl:
z = ((self.z2 — self.zl)/self.t1)xself.t+self.zl
return z

elif self.t > self.tl and self.t <= self.t2:
z = self.z2
return z

elif self.t > self.t2 and self.t <= self.t3:
z = ((self.z3 — self.z2)/(self.t3 — self.t2))*(self.t—self.t2)+self.z2
return z

celif self.t > self.t3 and self.t <= self.t4:
z = self.z3
return z

elif self.t > self.t4 and self.t <= self.t5
z = ((self.z4 — self.z3)/(self.t5 — self.td))*(self.t—self.td)+self.z3
return z

elif self.t > self.t5 and self.t <= self.t6:
z = self.z4

59 return z

60

61 elif self.t > self.t6 and self.t <= self.t7:

62 z = ((self.z5 — self.z4)/(self . t7 — self.t6))*(self.t—self.t6)+self.z4
63 return z

64

65 elif self.t > self.t7 and self.t <= self.t8:

66 z = self.z5

67 return z

68

69 elif self.t > self.t8 and self.t <= self.t9:

70 2 = ((self.z6 — self.z5)/(self.t9 — self.t8))*(self.t—self.t8)+self.z5
71 return z

72

73 elif self.t > self.t9 and self.t <= self.tl0:

74 z = self.z6

75 return z

76

77 elif self.t > self.tl0 and self.t <= self.tll:

78 z = ((self.z7 — self.z6)/(self.tll — self.tl10))*(self.t—self.tl0)+self.z6
79 return z

80

81 def getInt(self  t):

82 self.t =t

83 integral = 0

84 if self.t < 0:

85 t =0

86 print("Negative time entered — t set to zero")

87

88 elif self.t >= 0 and self.t <= self.tl:

89 integral_temp = np.trapz ([self.zl,self.z2], x=[0,self.t])

90 integral = integral_temp

91 return integral

92

93 elif self.t > self.tl and self.t <= self.t2

9% integral_temp = np.trapz ([ self.z2,self.z2], x=[self.tl,self.t])
95 integral = integral_temp + self.getInt(self.tl)

96 return integral
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97

98 elif self.t > self.t2 and self.t <= self.t3:

99 integral_temp = np.trapz ([self.z2,self.z3], x=[self.t2,self.t])

100 integral = integral_temp + self.getlnt(self.t2)

101 return integral

102

103 elif self.t > self.t3 and self.t <= self.t4:

104 integral_temp = np.trapz([self.z3, self.z3], x=[self.t3,self.t])

105 integral = integral_temp + self.getInt(self.t3)

106 return integral

107

108 elif self.t > self.t4 and self.t <= self.t5:

109 integral_temp = np.trapz ([self.z3,self.z4], x=[self.t4, self.t])

110 integral = integral_temp + self.getInt(self.t4)

111 return integral

112

113 elif self.t > self.t5 and self.t <= self.t6:

114 integral_temp = np.trapz([self.z4, self.z4], x=[self.t5,self.t])

115 integral = integral_temp + self.getInt(self.t5)

116 return integral

117

118 elif self.t > self.t6 and self.t <= self.t7:

119 integral_temp = np.trapz ([self.z4,self.z5], x=[self.t6,self.t])

120 integral = integral_temp + self.getInt(self.t6)

121 return integral

122

123 elif self.t > self.t7 and self.t <= self.t8:

124 integral_temp = np.trapz([self.z5,self.z5], x=[self.t7,self.t])

125 integral = integral_temp + self.getInt(self.t7)

126 return integral

127

128 elif self.t > self.t8 and self.t <= self.t9:

129 integral_temp = np.trapz ([self.z5,self.z6], x=[self.t8,self.t])

130 integral = integral_temp + self.getInt(self.t8)

131 return integral

132

133 elif self.t > self.t9 and self.t <= self.tl0:

134 integral_temp = np.trapz([self.z6,self.z6], x=[self.t9, self.t])

135 integral = integral_temp + self.getInt(self.t9)

136 return integral

137

138 elif self.t > self.t10 and self.t <= self.tll:

139 integral_temp = np.trapz([self.z6,self.z7], x=[self.t10, self.t])

140 integral = integral_temp + self.getInt(self.tl10)

141 return integral

142

143

144 def getE(self ,t):

145 self.t =t

146 return 1 — math.e *% (=1 % self.getInt(t))

147

148 def getpdf(self ,t):

149 self.t =t

150 z = self.getz(t)

151 pdf = math.e #x (—1 % self.getInt(t)) * z

152 return pdf

153

154 def array (self,t):

155 self.t =t

156 data = []

157

158 for i in range (1,int(self.t) 1):

159 temp = np.array ([i, self.getz(i), self.getF(i), self.getpdf(i)])

160 data.append (temp)

161

162 return np.array (data)

163

164 def save_parameters(self):

165 np.savetxt("S_10000_Parameters.txt", try2.array(t), delimiter=":")

166

167

168

169 def GetSingleFailureTime (self):

170 dataset = np.loadtxt("S_10000_Parameters.txt", delimiter=":"

171 times = dataset[:, [0]]

172

173 # Third column are the F values

174 failure = np.around(dataset[:, [2]], decimals=3)

175 max_F = np.amax(failure)

176

177 value = np.random.uniform (low=0.0001, high=max_F)

178 random_index = np.searchsorted (np.ravel(failure), value, side="left")

179

180 if random_index > 0 and (random_index == len(failure) or math.fabs(value — failure[random_index —1]) < math. fabs(value —
failure [random_index])):

181 T = times[random_index —1]

182 else:

183 T = times[random_index ]

184

185 return T

186

187

188

189

190
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failure_times (self, count, repeat, random):

self.count = count

self .repeat = repeat

self .random = random

mu = |

sigma = 0.2

t = 10000

# Load the generated parameters from the S function

dataset = np.loadtxt("S_10000_Parameters.txt", delimiter=":")

# First column are the times
times = dataset[:, [0]]

# Third column are the F values
failure = np.around(dataset[:, [2]], decimals=3)
max_F = np.amax(failure)

for r in range (1, self.repeat+l):
failure_times = np.array ([])

for i in range (0,self.count):
value = np.random.uniform(low=0.0001, high=max_F)
random_index = np.searchsorted (np.ravel(failure), value, side="left")

if random == True:
if random_index > 0 and (random_index == len(failure) or math.fabs(value — failure[random_index —1]) < math.
fabs(value — failure[random_index])):

T = int(times[random_index —1] * np.absolute (np.random.normal (mu, sigma)))
failure_times = np.append(failure_times , T)

else:
T = int(times[random_index] * np.absolute (np.random.normal (mu, sigma)))
failure_times = np.append(failure_times , T)
else:
if random_index > 0 and (random_index == len(failure) or math.fabs(value — failure[random_index —1]) < math.
fabs (value — failure [random_index])):

T = times[random_index —1]

failure_times = np.append(failure_times , T)
else:

T = times[random_index ]

failure_times = np.append(failure_times , T)

if random == True:
np.savetxt("failure_times/SN_" + str(self.count) + "_" + str(r) + ".txt", np.sort(failure_times), delimiter=";"
)
else:
np.savetxt("failure_times/S_" + str(self.count) + "_" + str(r) + ".txt", np.sort(failure_times), delimiter=";")

Listing A.4: generator.py Python source code
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