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ABSTRACT

Mathematical optimisation provides tools for creating designs that provably performs well.
When such tools are combined with a knowledge based engineering (KBE) application for
mechanism design, the process of optimising the designs of mechanisms can be fully auto-
mated. A prototype system, that assembles existing optimisation tools, a KBE system, and
a tool for analysing mechanisms, has been created as part of this research. This prototype
is evaluated by performing case studies. The results demonstrate that optimisation can be
conducted, and indicates that the prototype can be used in many design problems. From the
results, a technique utilising surrogate models is suggested as the preferred optimisation
technique. This technique is suggested as it can accommodate an interactive and iterative
process for formulating optimisation problems. The results also exemplify the need for a
bug-free KBE system, when such a system is used in optimisation. In the aggregate, the
prototype demonstrates that mechanism design problems can be formulated as optimisa-
tion problems and that the resulting optimisation problems can be reliably solved.
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SAMMENDRAG

Matematisk optimalisering gir verktøy for å lage design som beviselig har god ytelse.
Når slike verktøy kombineres med en KBE-applikasjon for mekanismedesign, kan pros-
essen med å optimere mekanismens konstruksjon automatiseres. Et prototypesystem, som
samler eksisterende optimaliseringsverktøy, et KBE-system og et verktøy for å analysere
mekanismer, er laget som en del av denne oppgaven. Denne prototypen er evaluert ved
å utføre casestudier. Resultatene viser at optimalisering kan utføres, og indikerer at pro-
totypen kan brukes i mange designproblemer. Fra resultatene foreslås en teknikk som
benytter surrogate models som den foretrukne optimaliseringsteknikken. Denne teknikken
foreslås, da den kan imøtekomme en interaktiv og iterativ prosess for å formulere op-
timaliseringsproblemer. Resultatene viser også behovet for et KBE-system uten kritiske
feil, når et slikt system brukes i optimering. Samlet sett demonstrerer prototypen at
mekanismedesignproblemer kan formuleres som optimaliseringsproblemer, og at de re-
sulterende optimeringsproblemene kan løses pålitelig.

iii



iv



PREFACE

This is a master’s thesis combining the fields of mathematical optimisation, knowledge
based engineering, mechanical simulation, and software development.

The thesis is submitted to the Department of Mechanical and Industrial Engineering at the
Norwegian University of Science and Technology in Trondheim. It is a continuation of
my final year project. Also, it leverages the works of former students, including Eivind
Kristoffersen, Anders Kristiansen, and Rasmus Korvald Skaare.

I would like to thank Bjørn Haugen who accepted the formal responsibility of supervising
my thesis, despite being on sabbatical. Further, I would like to extend my sincere gratitude
to Ole Ivar Sivertsen and Ivar Marthinusen. Your insights, feedback and ideas has been
greatly appreciated. I am also grateful for the help I have received from Runar Heggelien
Refsnæs of Fedem AS and Trapper Schuler of Technosoft Inc.

Trondheim, June 2017
Arnt Underhaug Lima

v



vi



TABLE OF CONTENTS

Abstract i

Sammendrag iii

Preface v

Table of Contents ix

List of Figures xi

Acronyms xiii

1 Introduction 1

2 Theory 5
2.1 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Optimisation Fundamentals . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Karush–Kuhn–Tucker Conditions . . . . . . . . . . . . . . . . . 8
2.1.3 Sequential Quadratic Programming . . . . . . . . . . . . . . . . 9
2.1.4 Interior Point Optimisation . . . . . . . . . . . . . . . . . . . . . 10

2.2 Design of Experiments and Surrogate Models . . . . . . . . . . . . . . . 11

3 Method 13
3.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 System Overview 17
4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Third Party Components . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Scientific Tools for Python . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Optimisation Related Tools . . . . . . . . . . . . . . . . . . . . . 18

vii



4.2.3 Tools for Connecting Components . . . . . . . . . . . . . . . . . 19
4.3 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 Components as Abstractions . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Aml Connection . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 Fedem Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.4 Object Hierarchy Factory . . . . . . . . . . . . . . . . . . . . . . 20
4.3.5 Aml Input Writer . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.6 Fedem File Editor . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Case Configuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.1 Defining the Design Space . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Defining the Analysis . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Execution Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Challenges and Their Consequences . . . . . . . . . . . . . . . . . . . . 23

4.6.1 Aml Error Messages . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6.2 Multivariable Surrogate Models . . . . . . . . . . . . . . . . . . 24
4.6.3 PyOptSparse Compilation . . . . . . . . . . . . . . . . . . . . . 24
4.6.4 IPOPT and Python3 . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Runtime Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 User Interface Considerations . . . . . . . . . . . . . . . . . . . . . . . . 26
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Cases 29
5.1 Case 1: Capabilities Demonstration . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Case Executions . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.4 Discussion of Case Results . . . . . . . . . . . . . . . . . . . . . 33

5.2 Case 2: Comparison of Optimisation Algorithms . . . . . . . . . . . . . 40
5.2.1 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.2 Case Executions . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.4 Discussion of Case Results . . . . . . . . . . . . . . . . . . . . . 41

5.3 Case 3: Concerns Relating to Complexity . . . . . . . . . . . . . . . . . 46
5.3.1 The Original Case . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Results Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.3 Initial Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.4 Changing the Parameterisation . . . . . . . . . . . . . . . . . . . 51
5.3.5 Removing Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Discussion 59
6.1 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion 65

viii



Bibliography 67

Appendices 71

A Case 1 Files 73
A.1 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B Case 3 Files 79
B.1 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



x



LIST OF FIGURES

1.1 The Optimisation Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The Parameters of a Cantilever . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Runtime Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Control System in Fedem . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Visual Computation Example . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Straight Line Generator Geometry . . . . . . . . . . . . . . . . . . . . . 32
5.2 Designs Evaluated when Optimising without Constraint . . . . . . . . . . 35
5.3 Value of cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Effect of Constaraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Samples in the Design of Experiments . . . . . . . . . . . . . . . . . . . 38
5.6 Surrogate Model Deviation . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Samples in the Design of Experiments . . . . . . . . . . . . . . . . . . . 42
5.8 Designs Evaluated by 3 Algorithms . . . . . . . . . . . . . . . . . . . . 43
5.9 Objective Value for 3 Algorithms . . . . . . . . . . . . . . . . . . . . . . 44
5.10 Constraint Value for 3 Algorithms . . . . . . . . . . . . . . . . . . . . . 45
5.11 Stephenson 3 Mechanism in Deposit Point . . . . . . . . . . . . . . . . . 48
5.12 Case 3 State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.13 Stephenson 3 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.14 Stephenson 3 Designs Evaluated . . . . . . . . . . . . . . . . . . . . . . 55
5.15 Geometrical Considerations of Rocker-Rocker Behaviour . . . . . . . . . 56
5.16 Stephenson 3 Designs Evaluated, with New Parameters . . . . . . . . . . 57
5.17 Stephenson 3 Designs Evaluated, with Bugs Removed . . . . . . . . . . . 58

xi



xii



ACRONYMS

AML Adaptive Modelling Language. 3, 19–23, 26, 33, 60, 62, 65

API application programming interface. 19–22, 25–27

DoE design of experiments. 11, 23, 33, 38, 40, 42, 46, 52, 61, 65

FEDEM Finite Element Dynamics in Elastic Mechanisms. 2, 19–23, 26, 27, 33, 34, 46,
47, 51–54, 60, 61, 63

I/O input/output. 19

IPOPT Interior Point OPTimizer. 18, 24, 25, 40, 41

IP interior point. 10, 11, 18, 41

KBE knowledge based engineering. i, iii, v, 2, 3, 11, 15, 17, 29, 32, 33, 46, 52, 59, 60, 65,
79

KKT conditions Karush-Kuhn-Tucker conditions. 8, 34

MDAO multidisciplinary design analysis and optimisation. 18, 21, 23, 24, 33, 34, 61, 63

NFEM nonlinear finite element method. 11

REPL read eval print loop. 19, 20

SLSQP Sequential Least Squares Quadratic Programming. 18, 31, 40, 41

SM surrogate model. i, iii, 11, 22–24, 31, 33, 39–41, 51–54, 61–63, 65

SNOPT Sparse Nonlinear OPTimizer. 18, 40, 41

SQP sequential quadratic programming. 9, 10, 18, 34, 41

xiii



xiv



CHAPTER

ONE

INTRODUCTION

In a world with ever-increasing demands on productivity and cost effectiveness, the pos-
sibility of using optimisation in product design is an appealing prospect. Using optimi-
sation provides a way of mathematically proving that a given design is the best possible.
However there are, as is common when applying mathematics to the real world, some
challenges.

When employing mathematical optimisation to engineering problems, there is a strong
requirement on the accuracy of the model used in the optimisation. This requirement
is because it is the model itself that is optimised, and any behavioural difference in the
model and the real world can cause the optimisation process to diverge from reality. Even
with an accurate model, there is a requirement for the process to capture the actual de-
sign goals; otherwise there is the possibility of maximising the wrong performance in the
design.

Still, with a perfect model to optimise, there is some challenges left. These include the
time to evaluate the model, which can be tremendous for engineering simulations. The
optimisation systems themselves can also prove hard to select and configure.

Despite these challenges, there is a significant amount of tools available for using optimi-
sation in engineering problems. While a wide selection of optimisation tools is a benefit,
it does mean that there is a need to select the appropriate tool, before optimisation can
be used in a new engineering domain [17, 30]. The process of setting up an optimisation
system is also reasonably complicated.

It is these two tasks, both evaluating optimisation techniques, and connecting the engineer-
ing models to an optimisation system, which form the basis of this thesis. 1 The particular

1A note on some terminology used throughout this work: Optimisation algorithm refers to the numerical
algorithm in charge of changing parameters to reduce an objective function. Optimisation system denotes the
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Chapter 1. Introduction

domain is the field of mechanism design.

The effort in this thesis is supported by the use of a KBE environment for mechanism de-
sign. KBE can be thought of as a system for automating the engineering process. This is a
requirement, as the model that used in the optimisation process should be able to run with-
out human interaction. In other words, the design tool has to be fully automated.

KBE can also be thought of as a way of making the engineering process more human-
friendly, as the menial tasks of engineering design is automated, the user is freed to do
more creative and fulfilling tasks[29]. A similar humanisation of optimisation tools would
allow design engineers to focus on the design, as opposed to the configuring of the opti-
misation process itself. Thus automating the configuration of optimisation jobs is also of
interest.

The tasks outlined in the task description are in direct correspondence with the issues out-
lined here. In the abstract, the thesis looks at the optimisation of elastic linkages, specif-
ically the effectiveness of various optimisation techniques and model formulations are
investigated. In the concrete, the thesis looks at the development effort required to connect
a specific KBE system to both a specific simulation tool and a selection of optimisation
tools.

Even more concretely, the thesis looks at the specific challenges of using the KBE system,
as developed by Kristiansen and Kristoffersen [15]. The model is generated by this system
and evaluated by the use of the simulation tool FEDEM [4]. To a large extent both the
KBE system and the simulation tool are treated as black boxes, and the details on the
internals are available elsewhere [15, 4, 6, 5, 32]. That is not to say the connections to the
optimisation system is not treated.

The connections to the optimisation system are core to the goals of this work, and they are
thoroughly described. Closing the loop that connects the geometric model, the simulation
software, and the optimisation algorithms that modifies the geometry, as seen in Figure 1.1,
is the main goal of this work. Also there is a focus on investigating if such a connection
allows for a generic system that is applicable to many design problems. 2

whole computer system that optimises an engineering model. Optimisation technique refers to the algorithmic
approach used in an optimisation system, but includes more than only the optimisation algorithm, such as the
method used for obtaining the sensitivity of the design.

2This is in contrast to the use of FEDEM supported optimisation, in Kristiansen and Kristoffersen[15], which
is done in a more limited fashion

2



The task list, from the task description, is restated below. Chapter 3 outlines the method
used to answer these tasks, and also include the rationale for the reminding chapters.

Task List

1. Evaluate the possibility of optimising models defined in AML, by using state-of-the-
art optimisation technologies available in Python

2. Evaluate the suitability of some optimisation techniques for use in mechanism opti-
misation. The techniques may include:

(a) sensitivities from finite difference estimation

(b) surrogate models

(c) various optimisation algorithms

3. Specify the interaction between the optimisation tools and the user interface of the
KBE tool, including:

(a) selection of design variables

(b) specification of constraints and objective function

4. As time allows, perform case studies

3



Chapter 1. Introduction

Figure 1.1: The stages of an iterative design optimisation system, with the software responsible on
some of the stages represented by logos.
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CHAPTER

TWO

THEORY

This chapter contains the theoretical underpinnings for the optimisation techniques that
form the foundation of the system developed in this work. The vast field of mathemati-
cal optimisation is complex, and since the reader might be unfamiliar with the field, this
chapter seeks to provide a basic understanding of the terms and mathematics that form the
foundation of mathematical optimisation.

In addition to providing the basic theoretical background, this chapter also has a more in-
depth treatment of some topics. The reason for this is that these topics support the analysis
and evaluation of the optimisation techniques used later in the thesis.

2.1 Optimisation

2.1.1 Optimisation Fundamentals

Primarily this section defines the terms used to describe optimisation problems. These
definitions are explained with the help of an example, in an effort to make the terms
more tangible. The work here is based on introduction to optimisation in Sobieszczanski-
Sobieski, Morris, and Tooren[33, p. 10-44] , and the remaining text of Section 2.1.1 is
used verbatim from the author’s project report [16] (spelling and formatting have changed
slightly).

Consider a simple cantilever beam with a quadratic thin-walled cross section and a load
applied at the free end. Such a system might be described in terms of a few parameters:
t – the wall thickness, h – the height of the cross section, L – the length of the beam,

5



Chapter 2. Theory

and F – the magnitude of the applied load. Figure 2.1 depicts the beam and the relevant
parameters.

Figure 2.1: The Cantilever Beam and its Parameters

From this, it is possible to calculate various properties of the system such as σmax – the
maximum stress in the configuration, and V – the volume of the material used. Quantities
such as these are termed state variables in the context of optimisation. 1 All the state
variables are customarily combined in a vector denoted by y.

Due to material cost considerations, it can be beneficial to minimise the material used in
the construction. For this example, that means minimising V = 4thL. The function
being minimised is called the objective function, and the symbol f is generally used in the
mathematics 2.

A straight forward minimisation of the volume is of course not attractive. Firstly the stress
would not be tolerable. In engineering problems such as these, it is common to check for
the required condition σmax ≤ σallow, i.e. the structure’s maximum stress is less than some
allowed stress, typically the yield stress scaled by some safety factor. Secondly, there
might be geometrical limitations, such as limitations on the cross-section parameters, i.e.
tl ≤ t ≤ tu.

Both of the two previous limitations are called constraints. The former is an inequality
constraint, and would normally be written σmax − σallow ≤ 0. It is possible to have any
number of such constraints. In mathematical notation, the j-th inequality constraint is
written gj ≤ 0. The latter limitation mentioned before is called a move limit. A move limit
is a more direct constraint when compared with an inequality constraint. It provides direct
lower and upper bounds on variables in the design. For a variable x the upper bound is
customarily denoted xu, the expression xl denotes the lower bound.

Thus far it has not been specified what the parameters of the functions f , y and gj are.

1 The terms behaviour variables and dependent variables are also used.
2 Any minimisation problem can be trivially recast as a maximisation problem, by multiplying the objective

function with −1.
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2.1 Optimisation

The variables that can be changed to modify a design is called design variables. All the
design variables can be collected in a vector x, and it is these variables that are changed to
minimise the objective function. In the example, the vector x = [t, h]ᵀ is an appealing set
of design variables. Similarly to the objective function, the constraint satisfaction is evalu-
ated as a function of the design variables. Therefore f(x) and gj(x) are both functions of
x. 3 Further the move limits for all design variables can be expressed as the double vector
inequality xl ≤ x ≤ xu.

Each design variable described as being either discrete or continuous. If all mathematical
functions in an optimisation problem are differentiable, with respect to a design variable,
the variable is defined to be a continuous design variable. Otherwise, it is defined to be
discrete. In the running example, the variable h is continuous. If the beam is constructed
out of sheet metal that only comes in a selection of gauges, the variable t is a discrete
variable. However, if the selection of gauges is dense, t might be treated as continuous
in the optimisation problem and, once the optimisation is done, the nearest gauge value
selected. If this method is used, t is said to be a quasidiscrete.

The set of all the values of x that satisfies all the constraints are called the problem’s
feasible region or domain. In the domain, there is a value of x that minimises the objective
function. In the example this is the value of x = [t, h]ᵀ which yield the least volume V (x),
while satisfying g1(x) = σmax(x) − σallow ≤ 0 and the move limits. This value for x is
called the optimal solution, and is denoted xopt. If only part of the domain is considered
in the previous definition, the optimum is said to be a local optimum. The term global
optimum is sometimes used to clarify if an optimal solution is not only a local optimum.
As local optima are often all that can be found for engineering problems, the distinction is
not necessarily useful.

Engineering problems typically have multiple design variables and constraints. Thus a
common numbering system is useful. It can be defined as follows. There are n design
variables xi, i = 1 . . . n and m inequality constraints gj , j = 1 . . .m. Obviously there are
also n move limits xli ≤ xi ≤ xui . In addition there can be defined p equality constraints
on the form hj(x) = 0, j = 1 . . . p.

The General Problem Summarised

Optimisation problems are instances of a general problem, which is summarised in Equa-
tion 2.1, for later reference. The notation is the same as used in the text of Section
2.1.1

3 Although both f and gj both are described as functions of x here, computational considerations will prove
it useful to think of them as f(y(x)) and gj(y(x)). If y(x) is the identity function, the two viewpoints are
exactly the same, and in any case the mathematics can describe exactly the same problems.

7



Chapter 2. Theory

min
xl≤x≤xu

f(x)

subject to gj(x) ≤ 0, j = 1 . . .m

hj(x) = 0, j = 1 . . . p.

to obtain xopt

(2.1)

2.1.2 Karush–Kuhn–Tucker Conditions

In this section the Karush-Kuhn-Tucker conditions (KKT conditions), alternatively called
the Kuhn–Tucker conditions are described. The description is based on Nocedal and
Wright[20, p. 304-329]. Further, it should be noted that the entirety of the remaining
text in Section 2.1.2 has been lifted verbatim from Lima [16], only some minor formatting
related alterations has been performed.

The Kuhn–Tucker Conditions are a set of first order necessary conditions for when a point
x is an optimising point. 4 These conditions, for the general problem given by Equation
(2.1), are given in Equation (2.2). They transform the general problem in Equation (2.1)
to a set of equations and therefore represent some form of simplification of the problem.
They also provide a way of detecting an optimum and can thus provide a halting criterion
for optimisation algorithms.

∇f(x) +
m∑
i=1

λi∇gi(x) +
p∑

j=1

µj∇hj(x) = 0 (2.2a)

λjgj(x) = 0 for all j = 1 . . .m (2.2b)
λj ≥ 0 for all j = 1 . . .m (2.2c)

gj(x) ≤ 0 for all j = 1 . . .m (2.2d)

A thorough treatment of the Kuhn–Tucker Conditions are considered out of scope for this
text. That said a few brief, superficial observations on Equation (2.2) should provide the
reader with an understanding of the nature of constrained optimisation. 5 First note that
the conditions from Equation (2.2d) are inherited from the general problem. This part of
Equation (2.2) is called the primal feasibility. The parts Equation (2.2b) and Equation
(2.2c) are called complementary slackness and dual feasibility respectively.

Equation (2.2b) can be interpreted as a condition which states that either gj(x) or λj is
0. Further it can be noted that if gj(x) < 0 ⇐⇒ λj = 0 then the constraint gj has no
effect in Equation (2.2a). Inequality constraints with a value less than 0, for a specified x,

4 A local optimising point is characterised by the fact that any movement of x will either increase the value
of f or violate a constraint.

5 Much of the mathematical rigour is sacrificed in this section, the reader is again referred to Nocedal and
Wright[20, p. 304-329] for a formal proof, and Sobieszczanski-Sobieski, Morris, and Tooren [33, p. 27-46] for
a more thorough informal explanation.
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2.1 Optimisation

are called passive constraints. If the value is 0, the constraint limits the directions x can
be moved, and the constraint is called active. The set of all active constraints is called the
active set.

The passive constraints does not affect Equation (2.2a). The active constraints are equal to
0 and behave similarly to equality constraints. Because of this, it is interesting to ignore
the passive constraints and treat the active set in Equation (2.2a) as part of the equality
constraints. That is to take m = 0. The optimality conditions are in this case called the
Lagrange conditions and Equation (2.2a) can be rewritten as:

∇f(x) = −
p∑

j=1

µj∇hj(x) (2.3)

Moving along the vector ∇hj(x) will violate the constraint, as it changes the value. Thus
the linear combination on the RHS of Equation (2.3) can be considered the space of all
moves that will violate a constraint x. The LHS of Equation (2.3) denotes the direction of
largest increase in f . Taken together this means that if Equation (2.3) can not be solved
for the variables µj , there must exist a legal move, which will improve f . In other words,
the reason for not following∇f , the best possible move, can not fully be explained by the
fact that it would be an illegal move.

2.1.3 Sequential Quadratic Programming

Sequential quadratic programming (SQP) is a class of optimisation algorithms that can be
used to solve non linear optimisation problems. A thorough introduction to SQP can be
found in Nocedal and Wright[20, p. 529-561]. This section contains a summary of the
aforementioned work, with a perspective aimed at supporting the discussions and compar-
isons undertaken later in the thesis.

SQP starts off by transforming the general problem in equation (2.1). Conceptually this
transformation can be thought of as a quadratic approximation of the objective, with a
linearisation of the constraints. Equation (2.4) defines this transforamtion.

min
p

fk +∇fᵀk p+
1

2
pᵀ∇ᵀ

xxLkp

subject to ∇ci(xk)ᵀp+ ci(xk) = 0 i ∈ E
∇ci(xk)ᵀp+ ci(xk) ≥ 0 i ∈ I

(2.4)

In this equation c denotes a vector of both equality and inequality constraints, with the
indexes for the equality constrains in the set E and the the indexes for the inequality
constraints in the set I. Lk indicates the Lagrangian of the problem, and is defined by
L(x, λ) = f(x)− λᵀc(x), which is equation (2.2a) in a different notation.

Equation (2.4) approximates the original problem, centred around the k-th iterate, as indi-
cated by the various subscripts. This means that, for each iteration, the algorithm creates
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a quadratic approximation of the problem, solves the approximation, and does the update
xk+1 := xk + p. It can be proven that such iterations will solve the original problem, and
that the simplified problem can be reliably solved [20, p. 530-535].

Nocedal and Wright notes that the algorithms used for solving the approximation take
advantage of the fact that the inequality constraints can be active or passive, as discussed
in Section 2.1.2. With this notion, the inequality disappears from equation (2.4), and the
simplification is generally successfully solved. Further the convergence properties are
considered surprisingly good [20, p. 533].

Readers familiar with iterative numerical methods, for instance from finite element meth-
ods, might notice that the iterations on the approximation of the objective are closely re-
lated to Newton’s method. In fact Nocedal notes that SQP “will act like a Newton method
for equality constrained optimisation” ([20, p. 533]). The term ∇ᵀ

xxLk corresponds to the
Hessian used in Newton methods, and Quasi Newton methods, e.g. the BFGS approxima-
tion, can be employed in SQP methods [20, p. 536-540]. This means no evaluation of the
problems Hessian is required, which is beneficial as even an evaluation of the gradient can
be expensive, especially if a finite difference approximation is used.

2.1.4 Interior Point Optimisation

Interior point (IP) methods for optimisation is the main alternative to SQP, for nonlinear
optimisation [20, p. 563] . This section contains a description of the interior point methods,
and as with Section 2.1.3, the perspective is aimed at supporting the upcoming discussions
and evaluations. The section is built on the description of the interior point method in
Nocedal and Wright [20, p. 563-593], and the reader is referred to this chapter for a more
in-depth description.

Interior point methods starts by introducing an additional parameter, µ, in the problem
defined by equation (2.1). Additionally, the inequality constraints are rewritten as equality
constraints, by introducing the additional parameters si 6.

min
x,s

f(x) + µ

m∑
i=0

log si

subject to gi(x)− si = 0, i = 1 . . .m

hi(x) = 0, i = 1 . . . p

(2.5)

Equation (2.5) defines this transformation of the problem mathematically. In this trans-
formation on can think of the parameter si as the distance to the border the inequality
constraints enforce on the problem. The signs of the si parameters are enforced by the
term log si, which blows up as x approaches the infeasible region.

During the iterations of an interior point method, the parameter µ goes from a compara-
tively large value towards 0, as equation (2.5) is solved multiple times. This means that, at

6These parameters are called slack variables
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the start, the term µ
∑m

i=0 log si forces the point to be far from any inequality constraint.
As µ decreases, the minimisation starts to trade reduction in the objective for closeness to
the infeasible region, while the logarithmic term continues to act as a barrier, should the
solution come to near the border 7.

The path traced out by the values of x as the value of µ decreases, will always be feasible,
as long as the previous value of x was feasible, i.e. they remain interior to the feasible
region [20, p. 566]. For engineering problems, this means that is if the initial design is
feasible, all successive iterates of the design, will also be feasible. This can be beneficial,
as discussed in Chapter 5 and Chapter 6. Moreover, the interior point methods can be
constructed such that they converge even if the initial design is infeasible.

Readers familiar with nonlinear finite element method (NFEM) might also note that the
introduction of the parameter µ bears some similarity to the introduction of pseudo-time,
and the control parameter λ, in nonlinear statics. The pseudo-time is used because it
is hard to define how the system responds to a complex load case. Instead, the load is
added incrementally, as a small addition in the loads is comparatively easy to handle [7].
Informally one might think of the issues with the complex load case to be caused by the
fact that the algorithm has too much freedom, i.e. there are too many solutions. Similarly
to how the effect of the loads is incrementally introduced to ease the job of the NFEM
solver, the incremental introduction of the freedom associated with the constraints ease
the job of an interior point optimisation algorithm.

2.2 Design of Experiments and Surrogate Models

This section presents an interesting optimisation technique, which can be selected inde-
pendently of the optimisation algorithm that is used to solve a problem. The technique can
be separated into two stages, the first one being design of experiments (DoE) followed by
the generation of surrogate model (SM). Both of these stages are briefly described, with
the goal of enabling the reader to understand the use of these techniques.

Design of experiments refer to the process of selecting the values of the variables in an
experiment, with the goal of obtaining as much information as possible. In the context of
the model used in an optimisation system, this would be the process of selecting points in
the design space that give as much information as possible about the model. A procedure
that is demonstrated to provide a set of samples that has multiple favourable properties is
the Orthogonal-Maximin Latin Hypercube Designs [13]. DoE techniques have also been
shown to be useful in optimisation systems utilising KBE [1].

After a set of function evaluations has been obtained, curve fitting methods can be used
to get so-called surrogate models 8 [33, p. 298-300]. The curve fitting method can be as
simple as an approximation of a (multi-dimensional) Taylor series. In general, the surface

7 For this reason, interior point methods are also called barrier methods [20, p. 565-566].
8The terms response surface and meta model are also used as synonyms by some authors; other authors haves

subtle differences in the definition of these terms.
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is obtained by manipulating the constants of an analytic expression. For an optimisa-
tion problem the obvious functions to approximate are the objective and the constraints.
This has several benefits. Amongst them is the fact that the approximations can be many
orders of magnitude faster to evaluate. Further, analytic sensitivities are typically also
available. The consequence of this is that when an optimisation algorithm is used on the
approximations of the objective and constraints, as opposed to being used directly on the
model, the algorithm can use function values and sensitivities without doing costly com-
putations.
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CHAPTER

THREE

METHOD

3.1 Rationale

In the introduction the challenges of using optimisation in a new engineering discipline
were discussed. The challenges described included the issue of selecting optimisation al-
gorithms, and strategies; and the challenge of actually employing them on a design prob-
lem. Both the investigation into the severity of the challenges, and knowledge about solu-
tions that can be applied are investigated. In this chapter, the strategy for this investigation
is outlined.

The view that primarily informs the method selected is that empirical results, and practi-
cal know-how, are better ways to investigate the problem at hand, as opposed to using a
mathematical description to a priori determining the best optimisation strategy. With such
a prototyping approach, it is possible to validate the system as a whole [34, p. 111], and
thus prove that an actual working system can be implemented. The mathematics defining
optimisation can describe parts of a potential optimisation system, but a running prototype
demonstrates that the system can be implemented, that all the computational requirements
can be met.

That is not to say, that the mathematical description is not useful. A mathematical view-
point will be used to analyse and inform the selection of optimisation tools. However,
there exist several arguments against using the mathematical descriptions, without an ac-
tual working implementation.

Firstly, there is the challenge of verifying the mathematical behaviour of the function being
optimised, i.e. the behaviour of the mechanism model. This behaviour is fundamental to
the mathematical analysis of the optimisation algorithms. The actual behaviour is some-
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what obscured by the layers of engineering software that is used in the model, and thus it
is hard to know what assumptions can be tolerated directly.

Secondly, there is the challenge of translating a mathematical description into a running
piece of software. Even though the mathematical description of all the tools use linear
algebra, and are meant to be implemented as software, there are potential numerical chal-
lenges, e.g. the scaling of functions are known to be problematic [20, p. 26-27].

Taken together the method used in this work is to identify challenges, and prove feasibility,
by implementing actual working solutions. The approach is twofold, starting with case
studies, in which results from optimising simple designs are collected. Meanwhile, a
system for running the cases is developed.

The case studies inform which optimisation strategies work on the mechanism model. In-
formation about convergence, execution time, design improvement, and more can be used
both to demonstrate the feasibility of optimising mechanisms and to determine which opti-
misation strategies have the best performance. Should a given strategy fail, the aforemen-
tioned quantitative results can be used, together with the theory, to offer an explanation as
to why the failure occurred. Similarly, the quantitative results, together with the practical
experience of working with the system, can be used to give a holistic evaluation of which
optimisation strategy is best suited to optimise the model of the mechanism.

Development of a system that can be used to optimise mechanisms is necessary to perform
the mentioned case studies, as the various components have to be connected somehow.
In addition to providing the connections between various components, the optimisation
system can aid the evaluation of cases, since a well-structured system allows code reuse
between the different cases. Further, the amount of customisation, that is required for the
system to handle a new case, is an indication of how much configuration would be needed
in a future version of the system, that is meant to be used by design engineer. 1

1 Only a prototype system is developed, the state of the code reflects this purpose, meaning the code currently
is in need of refactoring. Also, the code has only a limited separation of results, system, and cases; this again
reflects the prototyping approach. For these reasons, as well as the extent of the code base, the code defining the
system is largely excluded from this document.
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3.2 Summary

By developing a prototype optimisation system and performing case studies with the help
of this prototype, the possibility of optimising mechanisms modelled in a KBE application
is evaluated. The cases demonstrate the possibility of solving the particular problem that
constitutes the case, but they are also selected with the intent of showing specific aspects of
the system, e.g. the importance of selecting the right optimisation algorithm. Furthermore,
the cases collectively, together with the experiences associated with the development of
the optimisation system, inform the discussion of the applicability of using optimisation
to solve new design problems.
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CHAPTER

FOUR

SYSTEM OVERVIEW

4.1 Purpose

This chapter describes some of the details of the optimisation system, which form the
infrastructure required to prototype the use of optimisation in mechanism design. Primar-
ily it serves as a description of the system that is used to execute the cases in Chapter
5, by outlining the components (Section 4.3), and their interactions (Section 4.5). These
outlines, together with the preparations required to define a case (Section 4.4), form the
foundations of the system used to evaluate the cases. Thus this chapter characterises the
context in which the cases are executed.

In addition to support the understanding of the cases, this chapter also describes the experi-
ences gained by developing the system. As outlined in the methodology, these experiences
serve as the basis for discussing the prospect of using optimisation, together with KBE sys-
tems, in more general terms. While the whole chapter supports this general discussion,
the sections on challenges (Section 4.6), architecture (Section 4.7), and usability (Section
4.8) are included specifically to support the discussion of how optimisation can be used to
solve new design problems.

4.2 Third Party Components

In this section, the variety of tools that are used to build the system is described. There is
little context as to what the specific tools are used for in this section; the primary purpose
is to provide the reader with an understanding of what a tool can do. All the tools are
directly utilised by the system, and the specific usage of each tool are given later.
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4.2.1 Scientific Tools for Python

These tools include NumPy [21] and SciPy [12, 22] which provide linear algebra tools and
science related methods, respectively. 1 In addition there is Matplotlib [18, 10], Seaborn
[37, 38] and Bokeh [39] which provide plotting capabilities. Bokeh in particularly useful,
as it provides convenient tools for creating interactive plots which can be embedded in
Jupyter notebooks. Jupyter notebooks are interactive documents which allow the user to
mix code, notes, LATEX-style mathematical expressions and plots [27, 25].

The final component that is classified as a scientific tool for Python is the Pandas package.
This package is also built atop NumPy and introduces a convenient way of working with
tabular data. The benefits include e.g. the possibility of defining a table that contains a
time series of x and y coordinates. In this table, it is possible to specify the index to be
points in time, as opposed to integer indexes, which are the normal indexes for arrays and
matrices. With such an index it is possible to query the table for all points in a given time
range, or to sum two tables together, without the risk of summing values that did not occur
at the same time.

4.2.2 Optimisation Related Tools

Development of the optimisation system is leverages a framework called OpenMDAO [23,
11]. This framework has model decomposition capabilities, interfaces to a variety of
optimisation algorithms, includes multiple surrogate model algorithms and incorporate
multiple design of experiment strategies. The benefits of using this framework include a
modular approach both for the optimisation strategy and modelling of the problem, e.g.
changing the optimisation algorithm is a simple one-line change. The model decompo-
sition also makes it possible to define the flow of parameters across model components,
without having to specify the execution order.

One of the main ways OpenMDAO interfaces with optimisation algorithms is through the
PyOptSparse [14] package (which is a reimplementation of PyOpt [26]). Through this
package OpenMDAO can use the optimisation algorithms SLSQP, SNOPT [9], IPOPT [36].
The former two of these are SQP algorithms (see Section 2.1.3) the latter is an IP algorithm
(see Section 2.1.4). SNOPT is a commercially available algorithm, whereas the other two
are released under open-source licences.

The reason for selecting these algorithms are more thoroughly described in Lima [16], but
the main reasons are as follows. IPOPT and SNOPT has been claimed to be the state-of-
the-art algorithms for optimising nonlinear problems [20, p. 592]. The same algorithms
have been shown to have superior performance for engineering problems, especially over
genetic algorithms[30, 17], for this reason, any use of genetic algorithms has not been
considered in this work. Finally they provide, as mentioned, samples of both SQP and IP
methods, which means the two algorithms are somewhat different. SLSQP was included as
the SciPy package includes this algorithm; thus it is easy to obtain a working and tested
copy of the algorithm.

1Stricktly speaking SciPy is built atop NumPy
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4.2.3 Tools for Connecting Components

For communication the system utilises a COM-API that FEDEM exposes to the operating
system. This communication is made possible by the PyWin32 package [28]. The package
Rpyc [31] is used for calling Python functions across machines, with the aid of a network
connection between them.

The Docker toolchain [2] allows developers to define a Linux environment with the help
of a text file, in which the commands for e.g. installing software and setting environment
variables are defined. Further Docker includes tools for starting a virtual machine running
Linux and loading configuration files. 2

4.3 System Components

4.3.1 Components as Abstractions

When software systems are developed, the process of breaking the system up into layers
or components form one of the primary tools in software engineering [34, p. 157-158].
The components described in this section constitutes such a foundational layer for the
optimisation system. Thus any understanding of the system as a whole starts off by un-
derstanding what the foundational components bring to the uppermost layer, which is the
purpose of the following sections.

4.3.2 Aml Connection

Currently AML does not support batch-mode execution. This is a requirement for using
applications written in AML as part of a larger optimisation system. Since AML comes with
a REPL, it is possible to make a connection to a running AML program with the help of I/O
redirecting, as is commonly done on Unix platforms. A proof-of-concept implementation
of this was developed as part of the author’s final year project [16], and the implementation
was further developed as part of the work associated with this thesis.

Loosely speaking the I/O redirection works by having a Python program type into the AML
development terminal, and then reading the output, as pure text. Among the main com-
plications, with the implementation, was the fact that the AML REPL returns immediately
after a command has been entered. This is in contrast to waiting until the entered com-
mand has finished execution. The consequence of this is that it is impossible for Python to
know when the execution of a command is finished. This problem was solved by always
printing a specific string after each command, and then waiting for this string to appear in
the output.

2Docker technically defines Linux containers, but this has no consequence for the optimisation system.
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In addition to providinga simple connection between programs written in AML and Python,
the AML connection offers an abstraction layer which means it is possible to call AML func-
tions in a fashion that looks native to Python. E.g. the AML create-model command
is executed from Python as aml.run(CreateModel(
class_name=’main-mechanism-class’)).

It is also possible to execute native AML code in a more direct fashion. As demonstrated
by the following example:

aml . run ( BlockingCommand (
’ ’ ’ ( l oop f o r l i n k i n ! f i n a l −l i n k−r e f− l i s t do

( change−v a l u e ( t h e a n a l y s i s e x p o r t−s u r f a c e ?
( : from l i n k ) ) n i l )

)
( w r i t e−n a s t r a n−bdf− f i l e s ( t h e ) ) ’ ’ ’ ) )

4.3.3 Fedem Wrapper

As previously mentioned the optimisation system leverages the FEDEM COM-API. This
API is rather closely related to the FEDEM user interface; and can be used for specifying
a simulation, starting it, and extracting the results. To have an API that is better suited for
use in the optimisation system, a wrapper is created.

A more convenient API makes the evaluation of cases easier. E.g. the simulation results are
returned, from the API wrapper, as Pandas data-frames, leveraging the capability of time-
based indexes. Further, the wrapped API can reduce the number of arguments required for
the various calls to FEDEM.

The wrapper does not only provide a more convenient API, it also adds functionality. When
a simulation is started with the COM-API, the function immediately returns (this is similar
to the issue with the AML REPL immediately returning). To detect when a simulation is
complete, the wrapper monitors the timestamp of the last completed time step. When the
last result is available, the wrapper returns the results to the optimisation system.

This added capability is further extended by checking for convergence issues, which is
not reported in the COM-API. The detection of these issues is again done by monitoring
the time stamp of the last available time step. If this timestamp is not increasing, the
simulation is assumed to have failed, and the wrapper throws an exception.

4.3.4 Object Hierarchy Factory

As described in 4.4.1, the optimisation system takes Yaml descriptions of the design space
as input. The purpose of the object hierarchy factory is to create set of objects that repre-
sent the model of the mechanism. This is done with the model decomposition capabilities
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in OpenMDAO, and the decomposition itself is relatively close to the object hierarchy used
in the AML application. 3

The benefits of doing this decomposition are mainly for simplifying later work with the
model. This includes good support for scaling parameters and outputs. Furthermore, the
decomposition capabilities also enable simple ways of changing which variables are design
variables.

Another benefit of doing the decomposition step is the possibility of visualising the model.
This visualisation is useful for debugging. In addition, it serves as a description of the
design and shows how the various parts of the design influence one another.

4.3.5 Aml Input Writer

The AML program takes input as a set of text files. These files are generated by a compo-
nent of the optimisation system. For the generation, a template is filled out, and the files
are written to the file system. The input files are then loaded by calling the appropriate
functions with the AML connection component.

4.3.6 Fedem File Editor

Some functionality of the FEDEM COM-API is either not implemented or inordinately com-
plicated to use. For these situations, there is a component that reads in a FEDEM input file,
and inserts lines at the appropriate locations.

4.4 Case Configuring

In this section the various tasks required as preparations for running a case are summarised.
Only preparatory tasks are described, the main execution flow is found in Section 4.5.
Most of the implications of the preparations, as relating to the end user, are discussed in
Section 4.8 and Section 6.3.

4.4.1 Defining the Design Space

The design space is defined in Yaml [3], a simple serialisation format. In this file the
topology, cross sections, joint positions, etc. are defined. Thus this Yaml file is analogous
to the set of text files that constitutes the input files for the AML program.

However, there is a difference in the level of abstractions in the two input types. The Yaml
file defines the design space, as opposed to a single point in the design space. Concretely

3This technique is closely related to the factory method pattern [8, p. 107-116]
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this means the Yaml file has built in support for expressing ranges, and default values, for
the numerical values that describe a mechanism.

4.4.2 Defining the Analysis

The analysis part of the case preparation involves defining a method on a class. This
method is responsible for taking the results from FEDEM and coming up with a scalar
value for the optimisation objective. Any constraints must also be calculated.

Since the wrapped FEDEM API returns Pandas data frames, and these objects are de-
signed to do calculations on time series, the API for performing this analysis, is quite
helpful.

4.5 Execution Flow

With all the components of the system, as described in Section 4.3 and the preparations as
described in Section 4.4, the execution of a case is quite straight forward. For a case that
does direct optimisation, without the use of surrogate models, the flow might be described
by the following steps:

1. Load the design space description and construct the object hierarchy

2. Create an instance of the class responsible for analysing the results and connect it to
the object hierarchy

3. Connect the optimisation algorithm to the object hierarchy, including automatic con-
nection of design variables and specification of the move limits

4. Specify the name of the objective and constraints in the object responsible for the
analysis

5. Optionally specify a recorder, which is responsible for storing the results and pa-
rameters from each iteration of the optimisation algorithm

6. Run the optimisation algorithm, for each iteration the following happens:

(a) Construct AML input by evaluating the object hierarchy

(b) Open the AML input, using the AML connection

(c) Cause the FEDEM input to be generated, using the AML connection

(d) Perform changes to the FEDEM input, if required

(e) Open FEDEM input

(f) Using the FEDEM API, further specify the simulation to be performed, e.g.
specify the simulation duration, using the wrapped FEDEM API

(g) Start the simulation, using the wrapped FEDEM API

22



4.6 Challenges and Their Consequences

(h) Analyse the results from FEDEM, to obtain values for the objective, and any
constraints

If a design of experiments algorithm and surrogate models are used instead of the direct
optimisation, as described above, the flow for the design-of-experiments phase is very
similar, due to the flexibility of OpenMDAO. A design of experiments method is specified
instead of an optimisation algorithm, but otherwise, the flow is exactly the same. In each
iteration, normally performed by the optimisation algorithm, corresponds to the executing
of an experiment. The results are still stored by the recorder and can be used later, to
construct surrogate models.

4.6 Challenges and Their Consequences

As alluded to in the introduction of this chapter, this project has seen a set of challenges,
that to a degree has limited the progress. These challenges are described in this section
and are all related software provided by various third parties. Thus including descriptions
of the challenges does not only offer explanations for the limitations on the progress of the
project, but they are also important observations on assembling the specific tools into an
optimisation system. Moreover, these experiences are also of general interest, as any new
optimisation system can encounter similar issues during development.

4.6.1 Aml Error Messages

As previously mentioned AML does not have support for batch mode execution, and this
capability has been added as part of the work associated with this thesis. Since AML
assumes there is a user present, there is at times message boxes that pop up, and requires
user interaction before the execution continues.

The most obvious example of such a message box is a box with licensing information that
appears when AML is started. This issue is resolved by starting AML once, and using the
same process for all iterations of the optimisation algorithm. Reusing the process is far
from ideal, and it would be advantageous to start AML anew for each iteration, since this
guarantees that no state is preserved between iterations. The current solution does, for
example, require manual deletion of the geometry, to avoid a situation where the computer
to runs out of memory.

Another message box that appears is if the meshing fails. This means that, for the majority
of the project, constant monitoring of the computer is required as a case is executing. The
reason for this is that the message box requires a mouse click before the execution can
continue. At a late stage in the project it was discovered that the mesh failure was due to
a bug relating to the blending of edges, in the AML application, and when this feature was
turned off, pretty much all mesh failures disappeared.
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4.6.2 Multivariable Surrogate Models

The surrogate models was created by leveraging the capabilities of OpenMDAO. When a
surrogate model is defined in OpenMDAO using multiple scalars as parameters, or when
the model is defined using a single vector as a parameter, the surrogate model seems to be
working as expected.

However, when multiple vectors are used as parameters, the surrogate models does not
appear to approximate the sample data used for training the model. Inspections of the
OpenMDAO source code, during execution, with the help of a debugger, suggests that only
the first vector is used as a parameter. Further, the internal state of OpenMDAO seems to
indicate that there is a bug in the code that calculates the dimensionality of the inputs.
This issue was circumvented by simply concatenating the vectors into a single large vector
parameter. While multiple vectors are a suitable way to model e.g. a set of points, this
issue, once known, is not that serious.

4.6.3 PyOptSparse Compilation

PyOptSparse is a library that allows for many optimisation algorithms to be used from
Python. The installation process includes compiling these algorithms and also compiling
the appropriate Python bindings. Since the optimisation algorithms are written in For-
tran and C++, and Python is written in C, a wide selection of compilers are required.
The installation instructions emphasise that it is important that there is a correspondence
between the compiler used to create Python, and the compilers used when installing Py-
OptSparse. The installation instructions also mention that installation on 64-bit Windows
is untested.

After several attempts at installing this package on the 64-bit Windows operating system
that has the other software installed, the decision to do the installation on a virtual machine,
running Linux, was made. The installation instructions were found to be sufficiently de-
tailed so that the installation was easily completed.

Since the project utilises Windows only software, and PyOptSparse was only successfully
installed on Linux, a communication channel is required between the two operating sys-
tems. This was achieved with the help of the Rpyc, which was used to execute the analysis
of the model on Windows while running the main optimisation algorithm on the Linux
virtual machine.

4.6.4 IPOPT and Python3

While the installation of PyOptSparse compiled the IPOPT algorithm, any attempt at using
this algorithm caused PyOptSparse to throw a error. The only information in this exception
was that something was wrong with IPOPT.

By editing the Python code of the PyOptSparse project, it was possible to check that IPOPT
itself had not experienced any errors. Further editing, this time of the C code in the Py-
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OptSparse project, involved ensuring that every error message was printed, as opposed to
catching it and displaying a more helpful error message.

The issue turned out to be the Python bindings for IPOPT, which used some functions in
the Python/C API. These functions were only available in Python2, and by changing the C
code, the issue went away. The changes needed were conveniently available as part of the
pyIPOPT project [40].

4.7 Runtime Overview

Due to the workarounds introduced for the reasons described in Section 4.6, especially
with the workaround associated with Section 4.6.3, an overview of the logical structuring
of the system is included here. In Figure 4.1 all the actual running parts are depicted. The
figure emphasise the system’s contact with the 3rd party components, this is in contrast to
the internal architecture, which is described in sections 4.3 and 4.5.

Figure 4.1: Here the various components of the system can be seen. Notes describe the commu-
nication type for the more unusual communication types. The parts that are vitalised using Docker
are also shown. If a programming language or framework were actively used in a component, the
relevant language or framework is shown in parenthesis.
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4.8 User Interface Considerations

As discussed in the introduction and method, the user interface of the optimisation system
is not the prime concern of this thesis. It is considered more important to have actual
evidence of the feasibility and effectiveness of optimising models of mechanisms in the
AML program. Still, as mentioned in the introduction, the usability of the optimisation
system is essential if the system is to see actual usage. Thus the purpose of this section is
to have a look at how a user interface can be included in the optimisation system, at a later
stage.

Section 4.4 outlined the preparations that are currently needed before a case can be started.
These preparations are the definition of the design space and preparation of the analysis.
To make the system usable, without writing code, these two activities have to be wrapped
in use interfaces.

Currently, the system uses a Yaml file to define the design space. Thus a user interface
capable of defining such files is all that is required, for this activity to become user-friendly.
Given that the structure of the Yaml file is closely related to the way a mechanism is defined
in the AML program, the creation of such a graphical user interface is not expected to be
insurmountable. Exporting a Yaml file from the user interface is also perceived to be a
simple task, as this serialisation format is commonly used in a variety of programming
languages.

During the author’s final year project [16], the beginnings of a user-friendly way of defin-
ing the analysis step were developed. This concept starts with making the observation that
the responses that are obtained from FEDEM are functions of time. A possible represen-
tation of these functions is a time series of numerical values as provided, by the wrapped
FEDEM API, in the form of a Pandas data frame. When the analysis is defined as a set of
operations on the data frames, the code can be thought of as composing functions. FE-
DEM already includes a tool for composing functions, namely the control system editor
in FEDEM. Thus it was postulated that graphically composing functions is a familiar way
of working, for the intended end user of the optimisation system. See Figure 4.2 for an
example of how the control system editor is used.

Figure 4.2: Combining and transforming signals in FEDEM’s control system editor (Figure reprinted
from [6, p. 183])
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Example

To make the suggestion more concrete, consider a situation where the design requirement
is for a node to be in given position at a given time. In the graphical syntax, this might
look like Figure 4.3. The code, using the wrapped FEDEM API and Pandas, is shown below.
Note that there is a substantial correspondence between each box in the figure and each
line in the code.

In addition to the similarity of the code and Figure 4.3, there is also a strong connections
with the example in Figure 4.3 and Figure 4.2. The syntax in Figure 4.3 is more verbose,
as it displays all the options. Such options are a part of the control system in Figure 4.2,
e.g. for the PID node must have some scaling factors. In Figure 4.3, these options are not
hidden, mainly to provide clarity to the computation it describes.

Example Code

r e s u l t = fedem . g e t _ r e s _ o n _ b i d ( t r i a d 0 1 _ b i d ,
’ P o s i t i o n m a t r i x : TMAT34 : P o s i t i o n X’ ,
’ x ’ )

r e s u l t . columns = [ ’ x ’ ]
n o t _ o f _ i n t e r e s t = r e s u l t . l o c [ lambda df : d f . x < 0 , : ]
s e t t l e _ t i m e = n o t _ o f _ i n t e r e s t . i n d e x [ 0 ]
o b j = abs ( s e t t l e _ t i m e −2.0)
unknowns [ ’ r e s ’ ] = o b j

4.9 Summary

In this chapter, the internals of the prototype optimisation system was described. Back-
ground information on the wide variety of third-party tools that is used by the system was
provided. These tools are assembled into the foundational layer of the system’s architec-
ture. The foundational tools come together and enable an understanding of how a case is
defined and how the execution of a case progresses. However no demonstration of the sys-
tem was given, and all descriptions are abstract, with no concrete designs. Providing more
concrete information is the purpose of Chapter 5, which, by evaluating cases, demonstrate
the capabilities and effectiveness of the optimisation system. With more concrete cases
the system can be characterised in a less abstract way, by actually showing the usage.
The more concrete cases also enable a discussion of the overall architecture, including the
complexities associated with the bugs described in this chapter.
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CHAPTER

FIVE

CASES

This chapter presents the cases that have been evaluated as part of the effort to assess
the effectiveness of the system described in Chapter 4. Furthermore, the cases provide
more insight into how various descriptions of mechanisms behave during optimisation pro-
cesses. Thus the cases offer observations on the effectiveness of optimisation techniques,
for optimisation of mechanisms, and observations on the feasibility of adding optimisation
capabilities to a KBE system.

Three cases are presented in this chapter, but due to the iterative and exploratory nature
of the work, the separation into three cases is somewhat arbitrary. Roughly speaking
the cases can be understood as a demonstration of the system capabilities (Section 5.1),
a comparison of optimisation algorithms (Section 5.2), and an exploration of the issues
associated with a more complex case (Section 5.3).

5.1 Case 1: Capabilities Demonstration

In this case, a relatively simple mechanism, with relatively simple analysis and parameter-
isation, is optimised. Specifically, the location of a joint is varied, with the desired path of
a point as the objective. The main goal, with this case, is to prove that the system func-
tions as a whole, with all of the components, and all of the complexity these components
bring.
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5.1.1 Model Definition

Since this case uses the same design space, and post processing, multiple times, the defini-
tion of these are described in a separate section, and constitute the first part of the method
used in the execution of this case. Because the text is meant to describe high-level con-
cerns, the reader is also referred to Appendix A, which contains the source code level of
details necessary for a complete understanding of the design space definition and design
analysis.

Design Space Definition

The geometry used in this case is a four bar mechanism, which has the property that the
tip of the coupler (Point 4 in Figure 5.1) travels in a nearly straight line, for an interval
of the path it traces, as the input crank performs a revolution. This is a well-known con-
figuration (see e.g. [32, p. 159-173]), subsequently the design position of the mechanism
is the position that is known to give the straight line behaviour. The reference design is
then modified by parametrising the position where the rocker is connected to ground, i.e.
parametrising the position of Point 2 in Figure 5.1.

Design Point Analysis

For each point in the design space, a procedure for analysing the performance of the design
is required, see Section 4.4.2. The objective is to find the mechanism that has the straight
line behaviour. As the path traced by the tip of the coupler is the chief concern, the path
of this point constitutes the primary input of the analysis. In addition to the path, the
analysis requires two points that define a line segment which forms the reference path the
mechanism should follow.

The first step, in the analysis, is to find the start and end time. These values define the time
interval that should be used when comparing the mechanism path to the reference path.
Since the inertia and stiffness of the mechanism are different for differing design points,
the start and end time can not be hard-coded; they need to be detected. Hence the analysis
detects when the mechanism is closest to the first point and selects this time as the start
time. Similarly, the end time is defined by when the mechanism is closest to the second
point.

The path of the coupler is defined with time as a parameter, whereas the reference path,
and the goal of creating a straight line, are both time invariant. Consequently the coupler
path should be made time invariant by using a new parameterisation, similarly to how the
substitution ds = v(t)dt is used to solve line integrals in calculus. For convenience the
path is defined to be r(t(τ)) with the properties t(τ = 0) = tstart, t(τ = 1) = tend and
dr/dτ = Const.

By creating a path for the reference line, also parameterised with τ , the distance between
the paths is easily calculated as D = r(τ) − rref(τ). This distance may be described as
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5.1 Case 1: Capabilities Demonstration

a function D(τ) : R → R3, and by integrating the L2 norm of this function, a mea-
sure of how much the coupler follows the reference path is obtained. For the actual
implementation of this, all operations are written as vectorised expressions, and the in-
tegral

∫ 1

0
|D(τ)|2 dτ is solved numerically with the trapeze method. Further the property

dr/dτ = Const. ensures that the formulation is not affected if e.g. the mechanism has a
large distance to the reference path, for a short time at significant speed.

For the potential use as a constraint, a measure of how much of the path of the coupler
is above the reference path is needed. In other words, the constraint is violated if the y
component of D(τ) is positive, and a measure of the degree of violation is required (the
y direction is directed up in Figure 5.1 ). The measure of the constraint is obtained with
an integral similar to the previous integral, only a slight alteration of the function D(τ)
is required. The aforementioned alteration is obtained by taking the value of the new
function to be 0 if the y component of D(τ) is negative, elsewise the original value of
D(τ) is used.

5.1.2 Case Executions

During the work associated with this case, various sub-cases has been executed. These
include the following:

1. Optimisation using the model and finite difference sensitivities, with the constraint
ignored

2. Optimisation using the model and finite difference sensitivities, with the constraint

3. Optimisation on a surrogate model, with the constraint

The SLSQP algorithm was used for all the executions mentioned above.

5.1.3 Results

Optimisation Without Constraint

The first execution, with no constraint, converged to a point a few millimetres from the
known solution, with a slightly better performance. As the difference in both the design
space point, and performance, were very small; the point that the algorithm converged to
can be thought of as the same point as the known, working solution. Nevertheless, an
actual improvement to the analytic design was found.

Figure 5.2 shows the designs that were evaluated by the optimisation algorithm, for the
execution without a constraint. A circle indicates that the two values corresponding to this
point were used to generate a design, in an iteration of the optimisation algorithm. Since
the two design parameters happened to be the planar coordinates of a physical point, each
circle has a physical interpretation as the location of the Point 2 in Figure 5.1, and the two
figures uses the same coordinate system.
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Scatter plots are used throughout this chapter. They are used to visualise the points evalu-
ated by the optimisation system. Hence some observations on how these plots are used are
in place. From the optimisation algorithm’s perspective, every point in the design space
is a dimensionless vector of real numbers. This vector might correspond to spatial coor-
dinates, and thus it might have a physical interpretation, but this is not a necessity. The
scatter plots are used to illustrate the behaviour of algorithms; consequently, the physical
interpretation is of less importance e.g. the clustering in Figure 5.2 is more interesting
than the coordinates of the convergence point. Since any proper naming of the axes would
be rooted in the spatial interpretation, and the spatial interpretation is of lesser interest, all
naming is omitted.

Figure 5.1: The geometry of the straight line generator, as generated by the KBE system, in the form
that solves the original case

From Figure 5.2 it is possible to see that the algorithm fairly quickly goes from the lower
left corner, where it started, to a location near the convergence point. In some later iteration
the algorithm jumps to the upper left corner, and again quickly moves to the convergence
point. This last step repeats, multiple times, and the quick movement appears to be hap-
pening along a line.
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5.1 Case 1: Capabilities Demonstration

Optimisation With Constraint

When the constraint was introduced the problem converged to a markedly different point,
most notably the design variable of corresponding to the y value became negative, and
the value of the objective increased slightly. In order to confirm that the problem formu-
lation was correct, both the known reference design, and the new solution were analysed
directly in FEDEM, without relying on the optimisation system. The output of this anal-
ysis is available in Figure 5.4, and per the constraint, the path never obtains a negative y
value.

The behaviour of the optimisation algorithm is shown in Figure 5.3. In this figure, one can
note that the algorithm rapidly decreases the objective function, but then is blocked by the
constraint. Soon the algorithm does a jump and again rapidly decrease the objective, this
behaviour similar to the behaviour for the unconstrained case.

Optimisation on Surrogate Model

For the DoE 40 cases were evaluated. The results of these experiments are visualised in
Figure 5.5, which has the same logic and interpretation for the placement of the circles cor-
responding to Figure 5.2. From these observations two surrogate models were constructed
using OpenMDAO. One SM for modelling the objective function, and one for modelling
the constraint function. When the optimisation algorithm was used on these functions, the
algorithm converged to a design practically equal to the design found when the algorithm
worked on the KBE model directly.

In order to confirm the accuracy of the approximations, the surrogate model was used
to create approximations for the value of the objective function in specific points. Such
approximations were set up for every point evaluated when the constrained case was solved
by direct optimisation. Figure 5.6 visualises the deviation between the approximation and
the real value of the points mentioned above, and indicate that the deviation is spread fairly
evenly thought out the design space.

5.1.4 Discussion of Case Results

Given the complexity, as described in Section 4, especially the complexity associated with
the connection to AML (Section 4.3.2), the fact that the system can reliably complete iter-
ations, as described in Section 4.5, can be considered to be promising evidence of the fea-
sibility of connecting AML to Python based optimisation tools. Further, the effectiveness
of the somewhat abstract formulations of the objective, and the constraint, also support an
optimistic view of what optimisation can achieve in the design of mechanisms. Specif-
ically, the results show that when optimisation is used, designs that already are known
can be rediscovered. When compared with traditional synthesis methods, the rediscovery
process might even involve less work, if the optimisation system already has been created,
since only a declaration of the objective is required.
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Chapter 5. Cases

The solution to the constrained problem is obtained with a simple extension of the formula-
tion for the unconstrained case. The ease of extending the unconstrained case offers some
insight into the generality and abstractness that naturally comes when specifying design
problems as optimisation problems. Thus it shows that, in a workflow using optimisation,
the requirements can be iteratively refined.

In addition to simplifying the workflow, the formulation of design problems as optimisa-
tion problems may provide better designs, when compared with traditional analytic meth-
ods. The unconstrained case demonstrated this phenomenon. The performance, as mea-
sured, was worse for the reference design than for the design found by the optimisation
algorithm. This can be explained by the fact that the optimisation process incorporates
more physical phenomenon, such as inertia and flexibility. Thus one may consider the un-
constrained optimisation problem to be a better description of the design problem, as the
analytic specification is not able to provide a design that has the same performance.

Increases in the objective function, as seen in both the constrained and unconstrained case,
can be attributed to the line search procedure used in SQP algorithms [20, p. 545]. How-
ever a thorough treatment of this topic is not included, as this not deemed necessary. In
comparison the practical considerations associated with the line search is important. Pri-
marily the issue is that, since the objective is not strictly decreasing, the last iteration is not
always going to be anywhere near the optimum. It has been claimed that it is important
that the latest iteration has the best performance [35, p. 53]. However, with the logging ca-
pabilities included in OpenMDAO it is trivial to find the best design over all the iterations.
Still, if the optimisation algorithm exits with a message, that indicates normal convergence
was not achieved, this step should not be omitted.

Since finite difference was used on both the constrained and unconstrained case, the issue
of setting the step size had to be met. Since the design parameters are real parameters,
with a physical meaning, any engineer with an intuition for the amount of change required
to obtain a meaningful, but small, change in the design, can come up with a sensible step
size. Using this method the step size was set to 10.0mm, which was used when both cases
converged.

In the results, it was noted that the final value of the objective function was smaller for
the unconstrained case when compared with the corresponding value for the constrained
case. This is in full agreement with the KKT conditions, described in Section 2.1.2. From
the FEDEM analysis, it is possible to confirm that the constraint would be violated in the
unconstrained optimum. Further one can then see, from Equation (2.2), that when the
constraint is nonzero, the gradient of the objective is nonzero. Thus the constrained op-
timum does not coincide with the unconstrained optimum, and since the unconstrained
optimum is the minimum of the objective function, the constrained optimum must have a
larger value. From a designer’s perspective, the increase in the objective function can be
intuitively understood, by thinking of the constraint as an additional restraint to the design
process, hence it is impossible to create the best possible design.
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5.1 Case 1: Capabilities Demonstration

Figure 5.2: Designs evaluated when optimising without constraint (colour indicates value of cost
function, with yellow for high, and dark purple for low cost; size of circle indicates iteration, with
diameter decreasing for each iteration)
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Figure 5.3: Value of cost function, for each iteration
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Chapter 5. Cases

Figure 5.5: Samples in the design of experiments (colour indicates value of cost function, with
yellow for high, and dark purple for low cost)
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5.1 Case 1: Capabilities Demonstration

Figure 5.6: Deviation in value of the objective, between the predictions of the surrogate model and
evaluations in the corresponding direct optimisation (larger circle indicates larger deviation)
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5.2 Case 2: Comparison of Optimisation Algorithms

This case solves a mechanism design problem multiple times, using different optimisation
algorithms. The goal is to obtain information on the effectiveness of the various optimisa-
tion algorithms. Aspects of interest include execution time and any additional considera-
tions that affect the algorithm’s suitability as part of an optimisation system.

5.2.1 Model Definition

For this case, the exact model and design space, as used in Section 5.1, were reused, with
the constraint active.

5.2.2 Case Executions

The three optimisation algorithms described in Section 4.2.2, namely SLSQP, SNOPT and
IPOPT were used. Hence three separate executions were performed as part of this case. As
described in Section 4.6.3 and Section 4.6.4, there were some issues related to the compi-
lation required for this algorithms, and the virtual Linux machine was used to circumvent
these issues.

To reduce the execution time, and thus make experimentation easier, a design of experi-
ments and surrogate model were used. The points used to construct the surrogate model
are shown in Figure 5.7. Since a large number of points, specifically 128, were used, it is
assumed that the generated approximations are sufficiently accurate for evaluating the per-
formance of the algorithms. Such a high number of observations are probably excessive if
the goal was to solve a single optimisation problem, however since the goal is to evaluate
the algorithms, no effort was made to try a smaller sample set.

5.2.3 Results

All three algorithms converged to the same point, as illustrated by Figure 5.8. Also evident
from that figure is the fact that the SNOPT algorithm takes a more indirect path, whereas
the other two algorithms take a more direct path (all paths starts in the upper right cor-
ner). Figure 5.9 also supports the view that SNOPT is less direct, this algorithm uses a
significantly higher number of iterations to reduce the objective to the value for which the
algorithms converge.

All function evaluations performed outside the feasible region are marked in Figure 5.9,
but only SNOPT had this behaviour. This observation can also be made from the visuali-
sation of the constraints in Figure 5.10, which illustrates how IPOPT and SLSQP steadily
approaches the value of 0, but never reaches it. SNOPT, on the other hand, actually violates
the constraint at multiple iterations.
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5.2 Case 2: Comparison of Optimisation Algorithms

5.2.4 Discussion of Case Results

In the aggregate, one might say that the behaviour of IPOPT and SLSQP are very similar,
and SNOPT contrasts their behaviour by having worse convergence rate, and evaluating the
design outside the feasible region. This is to some extent surprising, since the SLSQP and
SNOPT are both SQP algorithms, but IPOPT is interior point based. SNOPT has also been
demonstrated to be faster than the two alternatives used in this work, when optimising a
mechanism [30].

The speed difference can probably be attributed to the low number of design variables
and constraint used in this case, as SNOPT is meant to work with problems of higher
dimensionality. Still, the difference in convergence rate is still disappointing, especially
since SNOPT not only reduce the objective the slowest, but also approaches the constraint
the slowest, and then proceeds to violate it. Further, the lacking performance of SNOPT
is hampered by the monetary cost of obtaining a license, as the other two algorithms are
open source projects, and thus freely available.

IPOPT does not evaluate the model in the infeasible region, this can be a benefit in engi-
neering problems, since the models, being physics based, might not be sensible outside the
feasible region. Thus it is not necessary to formulate models that are valid in points of the
design space which are infeasible. Although, if the initial design is infeasible, the model
must allow the algorithm to move to a feasible point. Also, due to the numerical nature,
the design might be evaluated slightly outside, but still near, the border of the feasible
region

Finally one should observe that the performance of the optimisation algorithm is less im-
portant if a surrogate model is used. The construction of these models means that the
evaluation of both the values and sensitivities are fast. Therefore the execution time of
the optimisation algorithm is orders of magnitude smaller than the gathering of sample
data.
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Figure 5.7: Samples in the design of experiments (colour indicates value of cost function, with
yellow for high, and dark purple for low cost)
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5.2 Case 2: Comparison of Optimisation Algorithms

Figure 5.8: Designs evaluated when optimising (size of symbol indicates iteration, with magnitude
increasing for each iteration)
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Figure 5.9: Value of objective, for each iteration
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Figure 5.10: Value of the constraint, for each iteration
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5.3 Case 3: Concerns Relating to Complexity

In the final case, a more complex optimisation problem is explored. When the additional
complexity is introduced, the case becomes more informative, and can better express the
suitability of optimisation in the mechanism design process. The effectiveness of the cur-
rent system can also be more deeply investigated. Due to the more exploratory nature of
this case, this section uses a narrative to illustrate the appropriate ideas, as opposed to Sec-
tion 5.1 and Section 5.2, which has a more rigid outline. Since the text is meant to describe
high-level concerns, the reader is also referred to Appendix B, which contains the source
code level of details necessary for a complete understanding of the design space definition
and design analysis.

5.3.1 The Original Case

In Myklebust [19, p. 82-91] there is a description of a case, and the same design problem
has been repurposed for this case. The design is of a mechanism that has the purpose of
taking parcels of a conveyor belt and placing them on a rotating turret. A Stephenson 3
mechanism is used to solve the problem. Figure 5.12 shows the parameters Myklebust
used to define the problem, many of the parameters can be considered state variables when
the problem is reformulated as an optimisation problem. Some of the variables, such as
the positions, will be driven by the optimisation algorithm since they are required to in-
stantiate the KBE model; thus they form the basis for the design variables. Variables such
as the velocities can only be obtained from FEDEM, and thus they should be considered
state variables. They must, therefore, be used when formulating the objective and con-
straints.

Figure 5.11 shows the path of the coupler, in in the mechanism Myklebust found to solve
the design problem. This path is available in FEDEM when a design has been evaluated.
Myklebust uses numerical values only for the pickup and deposit points, as the system
used requires the specifications to be given for specific positions of the mechanism. Since
the complete path is available in FEDEM, a more complex case could be developed, where
e.g. the maximum acceleration for the whole path is a constraint. Such adaptations of
the case have not been attempted, and the specifications of the original case are used
directly.

5.3.2 Results Extraction

The original case solves the design problem exactly, as a consequence of the design tooling
used. When the same case is to be reformulated as an optimisation problem, it is not
necessarily known what the most appropriate formulations of the objective and constraints
are. For this reason, it was decided to do a design of experiments and storing the state
variables that were used in the original case as the results of each experiment. With such a
setup, many formulations of the objective can be created after all the expensive simulations
have been completed.
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As stated, most of the design parameters, in the original case, are associated with either
the pickup point or the deposit point. These responses are easily obtained as a time series
from FEDEM. However, the design problem requires the responses for specific positions
of the coupler point. Consequently, the times for the pickup and deposit action has to be
calculated, and this is done by taking the two time steps for which the coupler is closest to
the pickup point and deposit point respectively.
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Figure 5.11: The geometry of the Stephenson 3 mechanism, as given in the original case, with the
couple path given. The geometry is in the deposit position with the coupler at the turret. (Figure
reprinted from Myklebust [19, p. 85])
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Figure 5.12: The input parameters used in the original case, including the graphical interpretation
of the mathematical values. (Figure reprinted from Myklebust [19, p. 84])
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Figure 5.13: The geometry of the Stephenson 3 mechanism, generated by the KBE system, in the
form that solves the original case
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5.3.3 Initial Attempt

For the initial attempt, four design variables were used, these variables correspond to vary-
ing the points 3 and 4 in Figure 5.13. All the evaluated designs are visualised in Figure
5.14, and from this figure, it is evident that many designs failed. By observing the designs
in FEDEM, it is possible to see that the main reason for a design failing is that the mech-
anism jams; the mechanism is not able to do a full rotation, it becomes a rocker-rocker
configuration.

Even with the high number of failures, an attempt at constructing a surrogate model was
made, by ignoring the failed points. In the beginning, there was a weak correspondence
between the surrogate model and the values in the observation. The reason for this turned
out to be the issue relating to surrogate models that use multiple vectors, i.e. the two
points, as parameters. This was discussed in Section 4.6.2, and resolved by combining the
points into a single vector.

With a sensible surrogate model constructed, an attempt at solving the design problem was
made, by minimising the distance between the vector of responses and the vector of desired
responses. This problem converged, but when the design suggested by the algorithm was
opened in FEDEM, it became evident that the design was not able to make a complete
revolution. Since the surrogate model had no observations of the jamming behaviour, the
fact that the algorithm was unable to bypass this issue can not be considered a fault.

5.3.4 Changing the Parameterisation

By making further observations on the jamming behaviour mentioned above, the reason
for this behaviour can be recognised. Taking all point numbers from Figure 5.13, one
might note that, by only considering the link segments (3, 4) and (4, 5), and considering
the joint in Point 3 to be fixed, all possible locations of Point 5 is easily defined. This
location forms a disc, represented by the white area in Figure 5.15 , and the area has to
contain the circle defining the path of the crank (i.e. segment (0, 5)). The di values can be
thought of as some sort of clearance size values. They have to be positive for the path of
the Point 5 on the crank to be in the area Point 5 can reach as part of the segments (3, 4)
and (4, 5).

It is possible to obtain additional insight from Figure 5.15, by noting that the relation below
must necessarily hold.

L0 + L1 = (L0 − L1) + d1 + 2L2 + d0 (5.1)

L1 =
d1 + d0

2
+ L2 (5.2)

By solving for L1, it can be shown that this variable is a function of d0, d1 and L2. Thus
the L1 can be removed as a parameter of the mechanism; it can be derived from other
values. Further, as the values di does not affect the geometry directly, the sum can be
rewritten as d0 + d1 = D, with the move limit D > 0.
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L1 =
D

2
+ L2 (5.3)

By using the relation in (5.3) the mechanism can be parameterised such that the jamming
behaviour can be eliminated. First, the mechanism is defined with a set of lengths and
the angles of the joints (in the design position). Then Equation (5.3) is susbtituted for L1.
From such a description, the points that serve as input to the KBE system can be calculated
in a fashion similar to the transformation from polar to Cartesian coordinates.

With this change of parameters, a DoE was executed, the results are shown in Figure 5.16.
All errors relating to the jamming behaviour was removed. Still, as illustrated, a large
number of failed experiments are present. These were due to the meshing procedure fail-
ing.

5.3.5 Removing Bugs

In an attempt to remove the meshing related failures, the creation of blends was removed.
After the automatic creation of blends was turned off, all errors vanished when the exper-
iments in Figure 5.16 where executed a second time. With a robust model, a new DoE
was computed, in an attempt to reduce any inaccuracies, a large sample size of 256 was
selected. All of these samples are visualised in Figure 5.17. The nature of the few errors
that still occur are unknown, but because of the low number and distribution, the missing
values are assumed to be insignificant.

These new samples were first used to create various surrogate models. The performance
of the surrogate models were compared by extracting the predicted responses for the refer-
ence design. Only the nearest neighbour surrogate model type was found to give sensible
results. Table 5.1 has some of the predicted values listed, together with the requirements
and actual results from FEDEM.
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Table 5.1: Case 3 Results

Optimisation on

Reference design Model of responses Model of objective Target

From SM From FEDEM From SM From FEDEM From SM From FEDEM

ax 2.367 2.424 2.466 2.545 − 2.692 2.708

ay −2.260 −2.627 −2.465 −2.163 − −2.805 −2.708

vx −0.852 −0.873 −0.854 −0.854 − −0.855 −0.862
vy −0.881 −0.860 −0.880 −0.879 − −0.881 −0.862

tp 3.522 3.530 3.492 3.493 − 3.503 3.500

53



Chapter 5. Cases

In addition to evaluating SM types, two attempts at discovering a design that meets the re-
quirements, with the help of optimisation, were made. The first attempt used models of the
responses, and the objective was calculated for each iteration, as the Cartesian distance to
the requirements. The second attempt calculated the value of the objective, using the same
Cartesian distance. Then a model of was constructed, using the values of the objective as
the samples. Both of the attempts converged, and the values for the responses are given in
Table 5.1. Only the velocities and acceleration at the pickup point, and the time at which
the mechanism was in the pickup position, were used in the optimisation, mainly as an
initial simplification.

From Table 5.1 two key observations can be made. Firstly note that when the problem
is solved by optimising on the model of the objective, the results are closer to the target
requirements, when compared with the reference design. This can be interpreted in two
ways. If results from FEDEM are taken as the real behaviour of the mechanism, the op-
timisation algorithm can obtain results that are better than the analytic method used for
the reference design. Since FEDEM incorporates more physics, this view has some appeal.
If on the other hand, the analytic results are taken to be the true results, the optimisation
algorithm can get as close to the target requirements as can be expected, since the FEDEM
based model is not able to give an accurate value of the true results. For both of the inter-
pretations, the results can be said to be reasonably close, especially since the values of the
responses has quite an extensive range over the design space.

The second thing to note is that when the optimisation algorithm uses a surrogate model
of the objective, the predicted value is negative at the optimum. This has no physical
meaning; it should be impossible to get a negative value. However, the degenerate model
seems to give better results when compared with the optimisation on the model of the re-
sponses. Optimisation does not necessarily need accurate absolute predictions from the
model, the relative differences of two designs are sufficient to compare them. Thus, the
results seem to suggest that when the model, using is using an approximation of the objec-
tive, can capture the relative differences, in such a way that the final solution has a better
performance.
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Figure 5.14: Designs evaluated for the Stephenson 3 mechanism (two points are plotted for each
design evaluated, with the position of each point corresponding to the point’s position in the global
reference system; circle without colour indicated failed simulation)
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Figure 5.15: Illustration of the area point 5 can not reach, with the relevant lengths shown
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Figure 5.16: Designs evaluated for the Stephenson 3 mechanism, with new parameterisation (two
points are plotted for each design evaluated, with the position of each point corresponding to the
point’s position in the global reference system)
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Figure 5.17: Designs evaluated for the Stephenson 3 mechanism, with new parameterisation, and
no blends (two points are plotted for each design evaluated, with the position of each point corre-
sponding to the point’s position in the global reference system)
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DISCUSSION

This chapter contains the overarching concerns relating to the performance and architec-
ture of the optimisation system that is described in the previous chapters. In the subse-
quent sections, the concerns discussed take three main perspectives; these relate to the use
of optimisation with a KBE system, the use of optimisation in mechanism design, and the
process of extending the specific KBE system used in this work. While three such per-
spectives are used, they are interconnected and treating them individually would cause the
text to be extraneously hard to read. Instead, the discussion is structured by grouping the
concerns into three categories: feasibility, applicability and usability.

Such a structuring provides a narrative that is compelling, mainly because it follows the
steps that would be required, should a real system be developed, as opposed to the pro-
totype system that has been developed. The feasibility section looks at the possibility of
developing a real optimisation system, and it mainly takes a software development view-
point. In the applicability section, the focus is on the use of the optimisation system in the
design process; it has the design process as the primary viewpoint. Finally, the usability
section addresses concerns relating to the end user of a real system, and thus it has the end
user as the basis for the viewpoint.

6.1 Feasibility

For the feasibility of the system the results from the cases, which demonstrates work-
ing optimisation, is the primary outcome. Actual optimisation has been accomplished,
even with all the moving parts, including the use of third-party optimisation tools, KBE
generated geometry, and a finite element tool for analysis. With such results, it can be
claimed that the feasibility of developing the required optimisation system is proven. On
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the other hand, the extent to which the complexity of design problems solved by the system
can be increased, especially in its current state, can not be said to be sufficiently proven.
However, this concern relates more to the applicability and usability of the system. The
feasibility of the software is proven by the fact that all the systems have been successfully
connected.

Furthermore, the breadth, of the design problems solved in the results, suggest that both
the tools selected in the implementation of the system and the system itself are somewhat
general. Essentially the fact that the system can solve multiple problems indicate that it
is feasible to create a general system for optimisation. This is especially interesting as on
the software side of things, as AML does not currently have any support for batch mode
operation. With the success of the batch mode connection used in the optimisation system,
the results demonstrate that the power of Python based optimisation tools can be used with
existing KBE applications.

Section 4.6 described some of the more challenging aspects of the development of the
system. The solutions should mainly be considered workarounds, and thus they are not
desired as the system is transitioned from the prototype implementation. Prototyping is it-
self the reason such workarounds were used, for instance running a virtual machine should
be unnecessary, but for prototyping purposes, the benefit of being able to evaluate the per-
formance of various algorithms efficiently is perceived to more advantageous than a clean
runtime environment.

All the issues in Section 4.6 can be resolved without using workarounds, in fact, every
issue, except the AML error messages, is related to open source projects, and the specific
code relating to the issue has been pinpointed. Consequently, these issues are not insur-
mountable. Similarly, the issue relating to the AML error messages is expected to be easily
solvable, and the reason for lacking a feature for turning off the messages can be traced to
the fact that batch mode operation is not officially supported.

6.2 Applicability

With the limited number of cases that has been evaluated, it is hard to use these as an
argument for how the system generalises to new design problems. Still, given the reliance
on proven KBE and simulation tools, it can be expected that some of the generality is in-
herited. Since it is not commonly done, the primary new concept, which poses a challenge
to the generality of the optimisation system, is the process of describing a design problem
as an optimisation problem. The power and generality of optimisation suggest that this is
possible, and indeed it was for the cases explored in this work, but the finesse and level of
abstraction required to formulate such problems may prove to be a demanding task.

Evaluation of the results from FEDEM may be the hardest part of defining an optimisation
problem for a given design problem. The evaluation of the results is required to work on
all points in the design space, and in addition, the evaluation has a temporal component.
Hence the level of abstraction required is higher than the normal design process, and thus
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the formulation of the evaluation procedure is more demanding than traditional analysis of
numerical results.

Many, or even most, of the significant responses from FEDEM can be plotted. By thinking
of these values as signals, and processing them in a fashion similar to the way control
systems are defined, as described in Section 4.8, some of the complexity may be circum-
vented, as this way of thinking is already used in the design process. For all of the cases
in Chapter 5, the evaluation procedures were defined with code, but the code still used
the processing of time series as the primitives for expressing the procedure. Even though
a textual representation of the evaluation procedure was used, a graphical representation
of the evaluation procedure can be thought of as a different syntax for the same seman-
tics. Thus the flexibility demonstrated by the use of this technique indicates that it may be
applicable to new design problems.

The change of design parameters used in Section 5.3 can also be considered part of the
redefinition of the design problem as an optimisation problem. When the change was
introduced in Section 5.3, the initial purpose was to understand the reason for the jamming
behaviour, with the intent of describing it as a constraint. Instead, it turned out that, once
the behaviour was understood, the change of parameters with the resulting removal of
the issue, was simple to implement. This change in design variables illustrates that the
variables used to define a model are not necessary the best-suited design space. Further,
the simplicity with which the change can be introduced, exemplify the benefits of using
OpenMDAO for decomposing the problem.

Moreover the change of the driving parameters of the model bears some resemblance to
how models are defined in parametric CAD systems, which means this way of thinking
is used in the traditional design process. As a result, the introduction of a new set of
design variables is a known technique, and the decoupling of the parameters used to define
the model, and the parameters used to define the design space, can potentially be used to
simplify the definition of optimisation problems. Admittedly the change of parameters in
Section 5.3 is not very simple, due to the fact that the geometrical considerations have to
hold for both all the points in the design space, and for all joint positions.

Section 5.2 compared some optimisation algorithms, but it should be noted that, through
experience with all the cases, the results of the comparison of the algorithms does not fully
form the basis for selecting the wider optimisation technique. Most of the optimisation
examples in this work leverages the use of design of experiments and surrogate models.
The rationale behind this is that all the time-consuming simulations can be done once, and
after that, multiple formulations of the objective and constraints can be evaluated. Overall
this approach allows for a more experimental and exploratory approach to formulating
the optimisation problem, and as noted, it is this redefinition of the design problem that
constitutes the main new task that needs to be accomplished to use optimisation in the
design process.

In addition to enable a more iterative approach to formulating the optimisation problem,
the use of surrogate models removes the need to specify suitable scaling factors, suitable
numerical tolerances and suitable step size for the finite difference method. Such suit-
able values were found for the case in Section 5.1, but the amount of experimentation
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required, with the associated waiting time, indicates that it probably is difficult to apply
this approach to new problems. With surrogate models, the selection of suitable values
is bypassed, as the slower convergence rate associated with using high tolerances, and no
scaling, does not cause excessive wall time costs. Sensitivities are also available, elimi-
nating the need for finite difference approximations and the associated step size specifica-
tion.

Other than the challenge related to defining the optimisation problem, the need for batch
execution of the model strongly affects the applicability of the optimisation system. To
explore the design space, either with an optimisation algorithm or through sampling, the
system must be able to reliably execute and analyse the model. Through the use of excep-
tions in Python, the software can be made to handle crashes, and with the removal of the
AML error messages, the software would be able to execute the model without requiring
any manual intervention. Even without the software crashing, special care should be taken
to ensure that the model does not fail unnecessarily, e.g. as seen in Section 5.3 before
the blends were removed. When the model fails due to bugs, the view the optimisation
algorithm has of the model is influenced by some effect that does not have any physical
interpretation, and the results can not be expected to be acceptable. This issue also occurs
if the formulation of the result evaluation procedure causes an exception for parts of the
design space that should be valid. Thus the challenge of defining the optimisation problem
is once again critical to the applicability of the optimisation system.

6.3 Usability

Ease of use concerns, for design engineers that would use the optimisation system, dictates
that as much as possible of the optimisation problem definition process be wrapped in a
graphical user interface. An important part of this interface is a tool similar to the con-
trol system editor, as described in Section 4.8. As discussed above, the treatment of the
responses as signals has been verified by implementing the evaluation process using these
primitives. Also mentioned was the fact that the current implementation uses textual code
for the syntax, and it remains to be shown that the graphical syntax is usable. Specifically,
the graphical view might prove to be too complex to have any decent usability. Similarly,
it has not been shown that the graphical syntax can be used by design engineers, without
requiring significant amounts of training.

One way these usability concerns could be reduced, is by the use of templates for use
in the definition of the simulation evaluation procedures. However, this requires that the
applicability of the templates be demonstrated, as there is a risk of conceiving templates
that are specific to a very limited set of design problems. In the same way, templates for
some parameter changes might increase the usability of the system. This would include
e.g. the parameterisation that ensures the crank-rocker configuration, as in Section 5.3.
Such templates would also be subject to applicability concerns.

The definition of the design space and any changes to the parameterisation of the model is
perceived to be comparatively simple, mainly because such input is received through user
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interfaces in many existing engineering applications. Besides, the design space definition
files are structured Yaml files; thus they can be easily generated from input in a user inter-
face, and their generality is demonstrated by the fact that they have been used for all the
cases in Chapter 5.

When the analysis procedures, for the cases previously presented, was developed, the first
step was always to simulate the mechanism in some specific position. With the result from
FEDEM loaded into data frames, the analysis procedure was created by iteratively compos-
ing the data frames in the interactive programming environment Jupyter. In Jupyter, which
was introduced in Section 4.2.1, it is easy to visualise each partial result 1 by plotting the
values. To some extent this simplifies the process of defining the analysis procedure, both
since it makes the definition less abstract, as there is actual data to work with, and since it
opens up the internals of the procedure, including the possibility of introspecting it. The
use of actual visualisable data would, for these reasons, be useful in the user interface that
is used for specifying the analysis procedure.

An alternative to simplifying the definition of the analysis procedure is to bypass it en-
tirely. By building surrogate models for the all the responses of interest, and visualising
them in a user interface, no formulation of the objective and constraints is necessary. The
engineer could investigate the behaviour of the mechanism both by evaluating the SMs at
specific points in the design space, and by looking at larger correlations, e.g. by plotting
a design variable against a response. This would, when the SMs have been created, allow
the engineer to test a new design in seconds, rather than minutes and hours. In some sense,
this approach keeps the design evaluation procedure and optimisation algorithms in the
engineer’s mind, and the optimisation algorithm is connected to the model with the help
of a user interface.

Second to the lack of a user interface, the usability of the system, in its current state, is
limited by the time required to perform the simulations. Each of the samples in Figure
5.17 uses about 1.5 minutes, for all samples that constitute a total of about 6.5 hours,
which makes time requirements of the system excessive. Since the sampling of the design
space is embarrassingly parallelisable [24, p. 48], it is expected that the run time could
be reduced by a factor equal to the number of parallel executions, even across multiple
machines. Since the parallelisation is simple, this work has focused on reducing the un-
certainty relating to other concerns, the only steps that are necessary to parallelise the ex-
ecution is to ensure that the files, which are used to communicate with the external tools,
are written to different locations on the file system. OpenMDAO even has some built-in
support for this.

1A partial result would be e.g. a variable in the textual code in Section 4.8, or the output of a block in the
graphical code.
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CONCLUSION

The prototype system developed in this project successfully integrates the AML based KBE
system with Python based optimisation tools. This system has reliably performed thou-
sands of mechanism design evaluations, and the evaluations have been used to improve
designs.

Such improvements are obtained by using a selection of optimisation techniques. While
both finite difference and a selection of optimisation algorithms were successfully applied,
the use of surrogate models and design of experiments were found to be the preferred way
of working. The use of SMs and DoE was not used to reduce the execution time, but se-
lected since it alleviates the need for specifying numerical constants, and since it allows
the specification of the optimisation problem to be iterative and interactive. Reductions in
execution time are nevertheless expected to be easily obtainable, as the problem is embar-
rassingly parallelisable.

Reductions in the execution time would make the system more user-friendly. Likewise,
the addition of a graphical user interface would increase the usability of the system. To
this end, the prototype uses a serialisation format to define the design space. Since this
format was used in all the cases, it is seen as general to many mechanisms. Furthermore,
the structure makes it easy to generate from a graphical user interface.

For the specification of objectives and constraints a technique that treats the simulation
responses as signals were successfully used for all cases. The signals were composed
using a textual syntax, and a corresponding graphical syntax was shown to be similar to
the syntax used to define control systems.
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APPENDIX

A

CASE 1 FILES

The listings in this appendix contains both the Yaml used to defied the design space for
the mechanism used in Section 5.1 and Section 5.2 and the corresponding analysis proce-
dure.

A.1 Design Space

p o i n t s :
- &p0

name: "Crank-bearing"
pos : [ 0 . 0 , 0 . 0 , 0 . 0 ]

- &p1
name: "Crank-top"
pos : [ 0 . 0 , 0 . 0 7 5 , 0 . 0 ]

- &p2
name: "Rocker-bearing"
pos :

d e f a u l t : [ 0 . 1 5 , 0 . 0 , 0 . 0 ]
min: [ 0 . 0 5 , −0.10 , _ ]
max: [ 0 . 2 5 , 0 . 1 0 , _ ]

- &p3
name: "Rocker-top"
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pos :
[ 0 . 1 5 , 0 . 1 8 7 5 , 0 . 0 ]

- &p4
name: "Coupler-end"
pos : [ 0 . 3 , 0 . 3 , 0 . 0 ]

l i n k s :
- &l 0

members:
- name: Crank

cross−s e c t i o n : r e c t a n g u l a r
dimensions : [ 0 . 0 3 , 0 . 0 3 ]

- &l 1
members:

- name: Coup le r lower
cross−s e c t i o n : r e c t a n g u l a r
dimensions : [ 0 . 0 1 , 0 . 0 1 ]

- name: Coup le r i n v i s
cross−s e c t i o n : A b s t r a c t
dimensions : [ 0 . 0 1 , 0 . 0 1 ]

- name: Coup le r uppe r
cross−s e c t i o n : r e c t a n g u l a r
dimensions : [ 0 . 0 1 3 , 0 .013 ]

- &l 2
members:

- name: Rocker
cross−s e c t i o n : r e c t a n g u l a r
dimensions : [ 0 . 0 1 , 0 . 0 1 ]

c o n s t r a i n t s :
- type : r e v o l u t e

p o i n t : ∗p0
l i n k s : [ nul l , ∗ l 0 ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : r e v o l u t e
p o i n t : ∗p1
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l i n k s : [ ∗ l1 , ∗ l 0 ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : r e v o l u t e
p o i n t : ∗p2
l i n k s : [ nul l , ∗ l 2 ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : r e v o l u t e
p o i n t : ∗p3
l i n k s : [ ∗ l1 , ∗ l 2 ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : f r e e
p o i n t : ∗p4
l i n k s : [ nul l , ∗ l 1 ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]
f i x e d−dof s : [ ]

l o a d s :
- type : Torque

p o i n t : ∗p0
d i r e c t i o n : [ 0 . 0 , 0 . 0 , −1.0 ]
magnitude : −5
loaded−l i n k : ∗ l 0

node−c o up l i ng :
- type : damper

p o i n t s : [ ∗p1 , ∗p2 ]
c o n s t a n t : 1500 .0
l i n k s : [ ∗ l1 , ∗ l 2 ]

A.2 Analysis

y _ r e s u l t = fedem . g e t _ r e s _ o n _ b i d ( 9 , ’ P o s i t i o n m a t r i x : TMAT34 :
↪→ P o s i t i o n Y’ , ’ y ’ )

x _ r e s u l t = fedem . g e t _ r e s _ o n _ b i d ( 9 , ’ P o s i t i o n m a t r i x : TMAT34 :
↪→ P o s i t i o n X’ , ’ x ’ )

r e s u l t = pd . c o n c a t ( [ x _ r e s u l t , y _ r e s u l t ] , a x i s =1)
r e s u l t . columns = [ ’ x ’ , ’ y ’ ]
r e s u l t = r e s u l t . l o c [ : 5 . 0 ]

s t a r t = np . a r r a y ( [ 0 . 3 , 0 . 3 ] )
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end = np . a r r a y ( [ 0 . 0 , 0 . 3 ] )

t i m e _ a t _ p o i n t = lambda pa th , p o i n t : p a t h . apply ( lambda df :
↪→ np . l i n a l g . norm ( p o i n t − df ) , a x i s =1) . idxmin ( )

t _ s t a r t = t i m e _ a t _ p o i n t ( r e s u l t , s t a r t )
t _ e n d = t i m e _ a t _ p o i n t ( r e s u l t , end )
p a t h _ o f _ i n t e r e s t = r e s u l t . l o c [ t _ s t a r t : t _ e n d ]

# r e p a r a m e t r i z e t h e pa th i n t a u = 0 . . . 1
s t e p _ e n d s = p a t h _ o f _ i n t e r e s t . i l o c [ 1 : ]
s t e p _ s t a r t s = p a t h _ o f _ i n t e r e s t . i l o c [ :−1]
s t e p _ s t a r t s . i n d e x = s t e p _ e n d s . i n d e x
s t e p _ l e n g t h s _ c o m p s = s t e p _ e n d s − s t e p _ s t a r t s

s t e p _ l e n g t h s = s t e p _ l e n g t h s _ c o m p s . apply ( lambda df : np .
↪→ l i n a l g . norm ( d f ) , a x i s =1)

p a t h _ l e n g t h = s t e p _ l e n g t h s . sum ( )
r e l a t i v e _ l e n g t h = ( s t e p _ l e n g t h s . cumsum ( ) / p a t h _ l e n g t h ) .

↪→ t o _ f r a m e ( )

r e l a t i v e _ l e n g t h = pd . DataFrame ( [ 0 . 0 ] , i n d e x = [ 0 . 0 ] ) . append (
↪→ r e l a t i v e _ l e n g t h )

r e l a t i v e _ l e n g t h . columns = [ ’ t a u ’ ]
r e l a t i v e _ l e n g t h . r e s e t _ i n d e x ( i n p l a c e =True )
r e l a t i v e _ l e n g t h . s e t _ i n d e x ( ’ t a u ’ , i n p l a c e =True )
r e l a t i v e _ l e n g t h . columns = [ ’ t ime ’ ]

p s u d o _ t i m e _ s t e p _ s i z e s = r e l a t i v e _ l e n g t h

r e f e r e n c e _ p a t h = lambda t a u : s t a r t + ( end − s t a r t ) ∗ t a u

d e v i a t i o n = pd . merge ( p s u d o _ t i m e _ s t e p _ s i z e s . r e s e t _ i n d e x ( ) ,
↪→ r e s u l t . r e s e t _ i n d e x ( ) , on= ’ t ime ’ )

d e v i a t i o n [ ’ r e f _ p a t h _ x ’ ] = d e v i a t i o n . apply ( lambda df :
↪→ r e f e r e n c e _ p a t h ( d f [ ’ t a u ’ ] ) [ 0 ] , a x i s =1)

d e v i a t i o n [ ’ r e f _ p a t h _ y ’ ] = d e v i a t i o n . apply ( lambda df :
↪→ r e f e r e n c e _ p a t h ( d f [ ’ t a u ’ ] ) [ 1 ] , a x i s =1)

d e v i a t i o n [ ’ d i s t a n c e ’ ] = d e v i a t i o n . apply ( lambda df : np .
↪→ l i n a l g . norm ( d f [ [ ’ x ’ , ’ y ’ ] ] − r e f e r e n c e _ p a t h ( d f [ ’ t a u ’
↪→ ] ) ) ,

a x i s =1)

d e v i a t i o n . s e t _ i n d e x ( ’ t ime ’ , i n p l a c e =True )
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d e v i a t i o n [ ’ v i o l a t i o n ’ ] = d e v i a t i o n . apply ( lambda df : min ( 0 ,
↪→ df [ ’ y ’ ] − r e f e r e n c e _ p a t h ( d f [ ’ t a u ’ ] ) [ 1 ] ) , a x i s =1)

v i o l a t i o n _ c o n s t r a i n t = np . t r a p z ( d e v i a t i o n [ ’ v i o l a t i o n ’ ] , x=
↪→ d e v i a t i o n [ ’ t a u ’ ] )

o b j = np . t r a p z ( d e v i a t i o n [ ’ d i s t a n c e ’ ] , x= d e v i a t i o n [ ’ t a u ’ ] )

unknowns [ ’ r e s ’ ] = o b j
unknowns [ ’ v i o l a t i o n ’ ] = v i o l a t i o n _ c o n s t r a i n t
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APPENDIX

B

CASE 3 FILES

The listings in this appendix contains both the Yaml used to define the design space for the
mechanism used in Section 5.3.3, and the code for the analysis. The Yaml file forms the
base model which was used after the new parameters were calculated in the latter parts of
Section 5.3.

B.1 Design Space

Note that this Yaml does not contain any load, or other means to drive the mechanism,
as the KBE system used does not currently support the technique used to drive the mech-
anism. Instead the tools described in Section 4.3.6 are used. Specifically torsion spring
is connected to the crank, and this spring drives the mechanism, by means of a enforced
angular speed.

p o i n t s :
- &p0

name: "P0"
pos : [ 0 . 2 5 7 8 , 0 . 0 1 , 0 . 0 ]

- &p1
name: "P1"
pos : [ 0 . 2 6 6 1 , 0 . 6 3 3 7 , −0.06 ]

- &p2
name: "P2"
pos : [ 0 . 1 1 , 0 . 6 8 6 4 , 0 . 0 ]
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- &p3
name: "P3"
pos : [ 0 . 1 0 8 5 , 0 . 4 9 3 5 , −0.06 ]

- &p4
name: "P4"
pos :

min: [ 0 . 4 , 0 . 0 5 , _ ]
d e f a u l t : [ 0 . 4 8 4 9 , 0 . 1 2 0 4 , −0.06 ]
max: [ 0 . 6 , 0 . 2 , _ ]

- &p5
name: "P5"

pos : [ 0 . 3 9 5 9 , −0.1262 , 0 . 0 ]

- &p6
name: "P6"

pos : [ 0 . 7 9 2 5 , 0 . 2 7 4 3 , 0 . 0 ]

d e f a u l t s :
- circ_member: &m e m b e r _ d e f a u l t s

cross−s e c t i o n : r e c t a n g u l a r
dimensions : [ 0 . 0 4 , 0 . 0 4 ]

l i n k s :
#FORURBAR members:
- &l_crank

members:
- name: Crank

<<: ∗m e m b e r _ d e f a u l t s
- &l _ c o u p l e r

members:
- name: Coup le r lower

<<: ∗m e m b e r _ d e f a u l t s

- name: Coup le r i n v i s
<<: ∗m e m b e r _ d e f a u l t s
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- name: Coup le r uppe r
<<: ∗m e m b e r _ d e f a u l t s
cross−s e c t i o n : A b s t r a c t

- &l _ r o c k e r
members:

- name: Rocker
<<: ∗m e m b e r _ d e f a u l t s

#ADDITIONAL members
- &l _ d i a d 0

members:
- name: m1

<<: ∗m e m b e r _ d e f a u l t s

- &l _ d i a d 1
members:

- name: m2
<<: ∗m e m b e r _ d e f a u l t s

c o n s t r a i n t s :
- type : r e v o l u t e

p o i n t : ∗p0
l i n k s : [ nul l , ∗ l _ c r a n c k ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : r e v o l u t e
p o i n t : ∗p1
l i n k s : [ nul l , ∗ l _ d i a d 0 ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : r e v o l u t e
p o i n t : ∗p2
l i n k s : [ ∗ l _ d i a d 0 , ∗ l _ d i a d 1 ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : r e v o l u t e
p o i n t : ∗p3
l i n k s : [ ∗ l _ r o c k e r , n u l l ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : r e v o l u t e
p o i n t : ∗p4
l i n k s : [ ∗ l _ r o c k e r , ∗ l _ c o u p l e r ]
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j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : r e v o l u t e
p o i n t : ∗p5
l i n k s : [ ∗ l _ c o u p l e r , ∗ l _ c r a n c k ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

- type : r e v o l u t e
p o i n t : ∗p6
l i n k s : [ ∗ l _ c o u p l e r , ∗ l _ d i a d 1 ]
j o i n t−d i r e c t i o n : [ 0 . 0 , 0 . 0 , 1 . 0 ]

l o a d s : [ ]

node−c o up l i ng : [ ]

B.2 Analysis

s i m _ o f f s e t , s i m _ l e n g t h = 3 . 1 , 1 . 2
x_end , y_end = 0 . 7 9 2 5 , 0 .274
x _ s t a r t , y _ s t a r t = 0 . 4 5 7 , −0.305
p h i _ o f f s e t = np . p i / 4
c o u p l e r _ p a t h = pd . c o n c a t ( [ fedem . g e t _ r e s _ o n _ b i d ( 9 , ’ P o s i t i o n

↪→ m a t r i x : TMAT34 : P o s i t i o n X’ , ’ c o u p l e r ’ ) ,
fedem . g e t _ r e s _ o n _ b i d ( 9 , ’ P o s i t i o n

↪→ m a t r i x : TMAT34 : P o s i t i o n Y’ ,
↪→ ’ c o u p l e r ’ ) ] ,

a x i s =1)
c o u p l e r _ p a t h = c o u p l e r _ p a t h . l o c [ s i m _ o f f s e t : s i m _ o f f s e t +

↪→ s i m _ l e n g t h ]
c o u p l e r _ p a t h . columns = [ ’ x ’ , ’ y ’ ]
t i m e _ a t _ p o i n t = lambda pa th , p o i n t : p a t h . apply ( lambda df :

↪→ np . l i n a l g . norm ( p o i n t − df ) , a x i s =1) . idxmin ( )
t _ s t a r t = t i m e _ a t _ p o i n t ( c o u p l e r _ p a t h [ [ ’ x ’ , ’ y ’ ] ] , np . a r r a y

↪→ ( [ x _ s t a r t , y _ s t a r t ] ) )
t _ e n d = t i m e _ a t _ p o i n t ( c o u p l e r _ p a t h [ [ ’ x ’ , ’ y ’ ] ] , np . a r r a y ( [

↪→ x_end , y_end ] ) )

c o u p l e r _ p a t h _ h i g h _ o r d e r = [
fedem . g e t _ r e s _ o n _ b i d ( 9 , ’ V e l o c i t y : VEC3 :X’ , ’ c o u p l e r ’ ) ,
fedem . g e t _ r e s _ o n _ b i d ( 9 , ’ V e l o c i t y : VEC3 :Y’ , ’ c o u p l e r ’ ) ,
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fedem . g e t _ r e s _ o n _ b i d ( 9 , ’ A c c e l e r a t i o n : VEC3 :X’ , ’ c o u p l e r
↪→ ’ ) ,

fedem . g e t _ r e s _ o n _ b i d ( 9 , ’ A c c e l e r a t i o n : VEC3 :Y’ , ’ c o u p l e r
↪→ ’ ) ,

fedem . g e t _ r e s _ o n _ b i d ( 9 , ’ P o s i t i o n m a t r i x : TMAT34 : E u l e r
↪→ Angle ZYX Z ’ , ’ c o u p l e r ’ ) ,

fedem . g e t _ r e s _ o n _ b i d ( 1 8 , ’ Angula r v e l o c i t y : ROT3 : Z ’ , ’
↪→ c o u p l e r ’ )

]
p a t h _ d e r i v s = pd . c o n c a t ( c o u p l e r _ p a t h _ h i g h _ o r d e r , a x i s =1)
p a t h _ d e r i v s . columns = [ ’ v_x ’ , ’ v_y ’ , ’ a_x ’ , ’ a_y ’ , ’ p h i ’ , ’

↪→ p h i _ d o t ’ ]

re turn { ’ t _ p ’ : t _ s t a r t ,
’ x_p ’ : c o u p l e r _ p a t h . l o c [ [ t _ s t a r t ] ] [ ’ x ’ ] ,
’ y_p ’ : c o u p l e r _ p a t h . l o c [ [ t _ s t a r t ] ] [ ’ y ’ ] ,
’ v_x_p ’ : p a t h _ d e r i v s . l o c [ [ t _ s t a r t ] ] [ ’ v_x ’ ] ,
’ v_y_p ’ : p a t h _ d e r i v s . l o c [ [ t _ s t a r t ] ] [ ’ v_y ’ ] ,
’ t _ d ’ : t_end ,
’ x_d ’ : c o u p l e r _ p a t h . l o c [ [ t _ e n d ] ] [ ’ x ’ ] ,
’ y_d ’ : c o u p l e r _ p a t h . l o c [ [ t _ e n d ] ] [ ’ y ’ ] ,
’ v_x_d ’ : p a t h _ d e r i v s . l o c [ [ t _ e n d ] ] [ ’ v_x ’ ] ,
’ v_y_d ’ : p a t h _ d e r i v s . l o c [ [ t _ e n d ] ] [ ’ v_y ’ ] ,
’ a_x_d ’ : p a t h _ d e r i v s . l o c [ [ t _ e n d ] ] [ ’ a_x ’ ] ,
’ a_y_d ’ : p a t h _ d e r i v s . l o c [ [ t _ e n d ] ] [ ’ a_y ’ ] ,
’ ph i_p ’ : p a t h _ d e r i v s . l o c [ [ t _ s t a r t ] ] [ ’ p h i ’ ] ,
’ ph i_d ’ : p a t h _ d e r i v s . l o c [ [ t _ s t a r t ] ] [ ’ p h i ’ ] ,
’ p h i _ d o t _ p ’ : p a t h _ d e r i v s . l o c [ [ t _ s t a r t ] ] [ ’ p h i _ d o t ’ ] ,
’ p h i _ d o t _ d ’ : p a t h _ d e r i v s . l o c [ [ t _ e n d ] ] [ ’ p h i _ d o t ’ ]
}
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