
File Based Input and Results Database
for «Focus Konstruksjon» Structural
Analysis Software

Kristoffer Markus
Kopperud

Master of Science in Engineering and ICT

Supervisor: Bjørn Haugen, MTP
Co-supervisor: Erik Aasmundrud, Focus Software

Department of Mechanical and Industrial Engineering

Submission date: June 2017

Norwegian University of Science and Technology

File based input and result

database for Focus Konstruksjon

structural analysis software

Kristoffer Markus Kopperud

June 2017

MASTER THESIS

Department of Mechanical and Industrial Engineering

Master’s Degree Programme in Engineering and ICT

Norwegian University of Science and Technology

Supervisor 1: Professor Bjørn Haugen

Supervisor 2: Project owner Erik Aasmundrud

i

Preface

This masters thesis was carried out in the spring of 2017 at the Department of Me-

chanical and Industrial Engineering (MTP) through the master’s degree programme in

Engineering and ICT. This thesis has been written partly at Focus Software’s office at

Billingstad outside of Oslo, and at NTNU. Implementing a file based system for Focus

Software’s product, Focus Konstruksjon, is the aim of this thesis.

Before beginning this thesis, a pre-thesis project was written in the autumn of 2016.

The deliverable of this project was a research of file formats that could suit Focus Kon-

struksjon. The results from this project is embedded into this thesis.

The file based system introduces a new way of transferring data through the software,

by using files. This implementation is a backend solution, where the changes are done

in the core of the software. This makes illustrating the implemented changes challeng-

ing. However, the thesis is written to give the reader the insight needed to understand

the file based system.

Trondheim, 2017-06-11

Kristoffer Markus Kopperud

ii

Acknowledgment

First and foremost I would like to thank my two supervisors, Bjørn Haugen and Erik Aas-

mundrud for their invaluable help and advice during the work on this thesis. I learned

a lot through my work, which will be important for me in the future.

I would also like to thank Focus Software for letting me write and develop the thesis

at their office at Billingstad. All employees have been friendly, helpfully and fun to be

around. Thank you for giving me this opportunity.

Thanks to all inhabitants of my office, 230, and the atmosphere that has both been of

great help and great distraction for my thesis. A special thanks to Are Fetveit for our

motivational ice hockey games.

I’d also like to thank my family for their support this spring.

Last, but definitely not least, I would like to thank my beloved fiancée Camilla Lucia

Ramse for all her invaluable help, encouragements and patience with me during the

writing of my thesis. Thank you very much!

Kristoffer Markus Kopperud

iii

Summary and Conclusions

To assure that Focus Software continues to be competitive in the construction market

with their software Focus Konstruksjon, the software had to undergo changes related to

data processing. The users are today modelling and simulating complex constructions

without the ability to store their results. This thesis identifies the implementation of a

file based system as the solution to this challenge.

The master thesis began with researching the field for both pre-processing and post-

processing file formats, respectively the input and the output format for the file based

system. The evaluation of these findings resulted in the development of a system which

utilizes the Usfos and the VTK format. The system development process included code

base familiarizing, prototyping, a test driven development approach, testing of the sys-

tem, and an implementation of the file based system into Focus Konstruksjon.

The file based system now allows users to store their results, enabling visualization of

their result databases without having to re-run the structural analysis. This general-

ization of data processing is beneficial for Focus Konstruksjon in future development,

testing and maintenance, because of looser couplings and a more readable data struc-

ture. The system is implemented for linear structural analysis, and will in the future be

integrated into other structural analyses provided by Focus Konstruksjon.

The deliverables of this thesis is the written thesis and its research, the code of the file

based system, tests, documentation and recommendations for future work of Focus

Konstruksjon.

iv

Sammendrag og Konklusjon

For å sikre at Focus Software forblir konkurransedyktig i byggbransjen, må deres pro-

gramvare Focus Konstruksjon gjennomgå endringer relatert til databehandling. Bruk-

erne modulerer og simulerer komplekse konstruksjoner uten å kunne lagre simuler-

ingsresultatene i dagens programvare. Denne oppgaven identifiserer implementering

av et filbasert system som løsning på denne utfordringen.

Masteroppgaven begynte med en studie av feltet for pre-prosesserings- og post-prosesserings-

filformater, henholdsvis inputfilen og outputfilen for det filbaserte systemet. Evaluerin-

gen av filformatene som ble funnet i den prosessen, resulterte i en beslutning om å

benytte Usfos-formatet og VTK-formatet i det nye systemet. Utviklingsprosessen omhan-

dlet det å gjøre seg kjent med kodebasen, utvikle prototyper, benytte testdreven utvikling,

testing av systemet og implementering av det filbaserte systemet i Focus Konstruksjon.

Det filbaserte systemet muliggjør nå lagring av brukernes resultater, som gir til mu-

ligheten til å visualisere deres resultat database uten å måtte gjennomføre analysene på

nytt. Denne generaliseringen av programvaren er en fordel for Focus Konstruksjon med

tanke på videre utvikling, testing og vedlikehold. Systemet er implementert for lineære

analyser og vil i videre arbeid bli implementert for de resterende analysene i Focus Kon-

struksjon.

Denne masteroppgavens leveranser er studiet av filformater og funn som er skrevet i

oppgaven, koden til det filbaserte systemet, tester, dokumentasjonen og anbefalinger

til videre arbeid av Focus Konstruksjon.

Contents

Preface . i

Acknowledgment . ii

Summary and Conclusions . iii

Summary and Conclusions Norwegian . iv

1 Introduction 2

1.1 Background . 2

1.2 Approach . 6

1.3 Structure of the thesis . 6

2 General Review and Overview 8

2.1 Requirements . 9

2.1.1 Functional Requirements . 9

2.1.2 Non-Functional Requirements . 10

2.2 File Format Findings . 11

2.2.1 File Formats in General . 11

2.2.2 Pre-Processing . 13

2.2.3 Post-Processing . 15

2.3 Technical Overview . 16

2.3.1 Programming Languages . 16

2.3.2 Development Environment . 17

2.4 Summary of the review . 18

3 Evaluating The File Formats 19

v

vi CONTENTS

3.1 Pre-processing – Input file . 19

3.1.1 List of File Formats Found . 20

3.1.2 Self-defined Format . 26

3.2 Post-processing – Output file . 28

3.2.1 List of File Formats Found . 29

3.3 Matrix for Pre-and Post-Processing . 31

3.4 Final evaluation . 34

4 Prototyping and Choosing File Formats 36

4.1 Get to know Focus Konstruksjon and OOCfem 36

4.2 USFOS - prototyping . 38

4.3 JSON based self-defined format - prototyping 39

4.4 Discussion and Choosing file formats . 41

5 Test Driven Development 46

5.1 Format of the process . 46

5.2 Benefits of TDD . 48

5.3 Limitations when using TDD . 49

5.4 Integration tests, system tests, and acceptance tests 50

6 Software Development 53

6.1 Planning . 53

6.1.1 Architecture . 54

6.2 Development . 57

6.3 Implementation . 59

6.4 What has been driving the process? . 64

6.5 Documentation . 65

6.6 Code Complexity . 66

7 Discussion 68

8 Conclusion and Further Work 71

8.1 Conclusion . 71

8.2 Future work . 72

CONTENTS vii

Bibliography 74

A Acronyms 78

B File Formats - USFOS and VTK 79

B.1 USFOS . 79

B.2 VTK . 79

C Further work of Focus Konstruksjon - Technical List 89

D File formats appendix 93

E Doxygen documentation 98

List of Tables

3.1 Pre-processing Table . 32

3.2 Post-processing Table . 33

viii

List of Figures

1.1 Illustrating today’s data transfer system . 3

1.2 Illustrating the preferred future data transfer system 5

3.1 USFOS . 22

3.2 gmesh . 23

3.3 VTK - Visualization ToolKit . 24

3.4 Salome . 25

3.5 HDF5 Group . 29

3.6 VTK - Visualization ToolKit . 30

4.1 Illustrating a selection of a Usfos file . 39

4.2 Illustrating a selection of a self-defined file 40

4.3 Illustrating the abstraction levels using API or the file based system 43

5.1 Overview of the test structure . 51

6.1 Overview of the basic steps of a pipe and filter pattern 55

6.2 Illustration of how the architecture is following the pipe and filter principles 56

6.3 Class overview of the AddElementMulti method in the CfemWrapper . . . 57

6.4 Class overview of the DoLinear when parsing the results from the output

file . 57

B.1 Usfos format top . 81

B.2 Usfos format bottom . 82

ix

LIST OF FIGURES 1

B.3 Usfos format genbeam - whole . 83

B.4 Usfos documentation ANALYSIS_LINEAR . 83

B.5 Usfos documentation - GENBEAM . 83

B.6 Usfos documentation - NODELOAD . 84

B.7 Usfos documentation - NODEMASS . 84

B.8 Usfos documentation - SHELLMASS . 84

B.9 Usfos documentation - RIGID_COUPL . 85

B.10 VTK format top . 85

B.11 VTK format middle . 86

B.12 VTK format bottom . 87

B.13 VTK binary . 88

Chapter 1

Introduction

1.1 Background

Focus Konstruksjon is a software program for structural analysis, made by Focus Soft-

ware. The software is built for creating all from small to big complex constructions.

Since Focus Konstruksjon primarily are targeting customers in Norway, they can pro-

vide a good customer support system and specialize the standards and requirements

needed for a Norwegian environment. As a software developing company, it is impor-

tant for Focus Software to follow the market trends, and they are always looking to be

competitive. This thesis is focusing on improving Focus Konstruksjon, which is one of

their products.

Problem Formulation

Focus Software wants to be competitive. Therefore, they are looking for a solution to

make their product easier to work and collaborate with. One of the main challenges

is that the product does not support storing the result database of a FEM-structural

analysis. This implies that when a user has viewed the results, and closed or moved

on to other parts of the program, it is not possible to review the results since the result

database is erased from the computer memory. The constrains, conditions, loads and

2

1.1. BACKGROUND 3

materials on a construction are still available. However, the analysis must be run again

to view the results of the simulation. Solving this problem requires the result database

being stored to a file, instead of the data being temporarily stored in the memory of the

computer.

Focus Konstruksjon uses a simulation software called OOCfem. This simulation soft-

ware is an integrated part of Focus Konstruksjon, and during the transfer of data be-

tween the two software programs no data is stored. This means that the data sent

from Focus Konstruksjon software, which implies 3D models with geometric data, con-

strains, conditions, materials and loads, are temporarily stored in the memory. OOCfem,

the simulation software, gathers the necessary data from the memory as an input to the

simulation program, by using an OOCfem Application Programming Interface (API). In

simpler term,s the Focus Konstruksjon’s internal data structure of a model is converted

to OOCfem’s internal data structure, without any data stored to a disk or a file. Simi-

larly, after the simulation is done, OOCfem stores the output database temporarily in

the memory. Focus Konstruksjon gathers the data from the memory of the computer,

then the result database is shown in the visualization part of the Focus Konstruksjon.

See Figure 1.1 for an illustration. This dataflow makes the process very quick, but at the

same time there is no data stored outside of the process.

As a competitive software on the construction market, the challenge above might at

Figure 1.1: Illustrating today’s data transfer system

first seem as a problem that should have been solved at an earlier stage. The reason the

challenge is still present today is because of Focus Konstruksjons history. From the be-

ginning, the software solved small simulation problems like singe beam constructions.

This required little resources and time. When the software developed to handle build-

4 CHAPTER 1. INTRODUCTION

ings and other constructions, users were more interested in new features than having

the software run faster. However, when the user now spends over twelve hours to sim-

ulate a building and every time the user closes Focus Konstruksjon, a simulation has to

be re-run to visualize the results again. It has now become a problem for the users, and

Focus Software wants to handle this challenge and solve the problem.

To solve the problem, a file based system must be introduced. When model and simu-

lation data is transferred from Focus Konstruksjon, the data should be stored in a data

file, which is seen as external storing. Similarly, the result database should be stored in

a data file. To be able to store data in a file, it is important that the file has a structure

which organizes the data. The structure lays the foundation for how complex the new

file based system will be, making the format an essential part for the new system. The

research done in this thesis shows that there are many ways to store data to a file and

many different standards are used to store 3D data today.

This thesis will first look at what file formats that might be candidates for Focus Kon-

struksjon. It will look at file formats for the pre-processing phase as the input file and

the post-processing phase as the output file. Further, the thesis will look at different

aspects of the structures in each file format. Why are they suitable for a Finite Element

Model (FEM-model) and why are they suitable for Focus Konstruksjon? The input data

and the output database will hold different information and be structured differently.

That is the reason that this thesis evaluates two separate files for the two phases of trans-

ferring data in the new file based system, from Focus Konstruksjon to OOCfem and back

again. See the process illustrated in figure 1.2.

To successfully integrate a file based system for both Focus Konstruksjon and OOCfem,

developing requirements to separate formats in the pre-processing phase and the post-

processing phase is important. These requirements should focus on file formats qual-

ities to be able to distinguish formats for complete a proper evaluation. An evaluation

of the formats found during research will be presented, and a new self-defined file for-

mats will be introduced. Further, the prioritized file formats will be implemented on

top-level (prototyping), to identify the strengths and the weaknesses, before choosing

1.1. BACKGROUND 5

Figure 1.2: Illustrating the preferred future data transfer system

the preferred format. Examples of strengths and weaknesses of the formats, can be

challenges met during implementation. Such as, how costly the approach of imple-

mentation seems or what assisting tools are available and what work have been done

with these formats earlier.

This thesis project only allowed a short term engagement in Focus Konstruksjon, which

required a plan on how the acquisition should be handled. The typical documentation

from a software project was planned, such as code quality, documentation and tight

communication thoughtout the project, making the acquisition even better. Seamlessly

tests for the code was decided be developed to help understand and control the func-

tionality of the file based system. Especially when the Focus Konstruksjon team are to

further develop and maintain the system in the future, the tests will be helpful. There-

fore, this thesis will focus on the benefits of tests and how tests are written, together

with a chapter in this thesis describing test driven development.

The development of the file based system began after choosing the file format for both

the pre- and post-processing phase. This thesis is thus divided into the code develop-

ment part and the part describing the implementation process. The deliverables of this

thesis is therefore the research leading up to implementing two file formats and then

briefly describing the key elements in the implementation process. Other deliverables

that are not presented in this thesis, but is delivered to the developer teams of both

Focus Konstruksjon and OOCfem, are the code, tests, file format documentation and

knowledge shared during the process. A discussion of the findings and future work fi-

6 CHAPTER 1. INTRODUCTION

nalizes this thesis.

In summary, the objectives for this thesis are:

1. Developing requirements for the file-structures and for parsers and writers.

2. Researching what types of file-structures Focus Konstruksjon can utilize.

3. A comparison of existing and self-defined formats.

4. Prototyping prioritized formats to identify strengths and weaknesses.

5. Choosing file formats after familiarizing with Focus Konstruksjon and OOCfem

code bases.

6. Present test driven development and how it have been used during the thesis.

7. Key elements in the implementation process.

1.2 Approach

This thesis differs from other science theses, because it is not done to support hypothe-

sis with theories in a university research standard approach. This thesis seeks to get an

overview of the existing technologies, file-structures and the current approach of stor-

ing pre- and post-processing data. The next goal is to further develop the new chosen

file based system as a software development project. Followed by an implementation

of the system in Focus Konstruksjon, to help improving a competitive solution of Focus

Konstruksjon, for Focus Software.

1.3 Structure of the thesis

The structure of this thesis is based on the natural development of a software project.

Where the actual code development is documented in the code, which leads to that

1.3. STRUCTURE OF THE THESIS 7

not all deliverables are presented in this thesis text. However, deliverables could be

found in the code it self. Especially since this is a backend solution, there are not many

sufficient ways to illustrate the work. Therefore, the reader is presented key elements of

the development and the implementation process. The reader of this thesis is expected

to have basic knowledge of software development, FEM and CEA modeling.

Chapter 2

General Review and Overview

To gain an overview of the existing research, technologies, and development of relevant

file formats, a study of the existing literature and documentation was conducted. The

purpose of this chapter is to frame the extent of the current research and documen-

tation on different file formats for the pre-processing and post-processing phase. In

general, the pre-processing phase is the process where a CAD model is converted to a

FEM model, and all the required data to run an analysis are added to the model. The

pre-process data is the described FEM model data, which is referred to as the input file

in this thesis. The post-processing phase is the phase where result data from a simula-

tion is sent to be visualized as results of a simulation, and is referred to as the output file.

A satisfactory file based system needs to reflect the requirements from all stakehold-

ers, Focus Konstruksjon and OOCfem. Since OOCfem is developed by another actor,

the requirements need to be considered on the same level as for the developers of Fo-

cus Konstruksjon. From the information found in the requirements, a general overview

of file formats, for the pre-processing and post-processing file formats, and the struc-

tures will be created. This chapter will also give an insight into what technologies are

relevant for this thesis and what type of tools are used.

8

2.1. REQUIREMENTS 9

2.1 Requirements

After a meeting on the 19th of September at Focus Software’s office at Billingstad in Oslo,

the basis of this thesis was decided. The main focus of the update of Focus Konstruksjon

was to make the software able to store the results after running an analysis of a model.

However, there were other requirements discussed in this meeting and in later meet-

ings. The requirements are covered in the functional and non-functional requirement

sub-chapters below:

2.1.1 Functional Requirements

• First priority functional requirements:

– FR1: Focus Konstruksjon should write and store data from the pre-processing

phase to an input file.

– FR2: OOCfem should read input data from the pre-processing phase from

an input file.

– FR3: OOCfem should write and store data from the post-processing phase

to an output file.

– FR4: Focus Konstruksjon should read output data from the post-processing

phase from an output file.

– FR5: Both the input file and output file should be stored in such a way that

it can easily be used by Focus Konstruksjon and OOCfem.

– FR6: The input file implementation should have correspondent tests, to ver-

ify that correct data is written and read.

– FR7: The output file implementation should have correspondent tests, to

verify that correct data is written and read.

• Second priority functional requirements:

– FR8: An input file format should have a file structure which can be read by a

developer or user.

10 CHAPTER 2. GENERAL REVIEW AND OVERVIEW

– FR9: Input file data should have the ability to be changed directly in the file

by a text editor.

– FR10: An input file format should be an ASCII file.

– FR11: Output file should be possible to read, not necessarily directly.

• Third priority functional requirements:

– FR12: A post-processing output file format should have a file structure which

can be read by a third-party 3D-visualization program, specialized on dis-

playing results from a finite element analysis.

2.1.2 Non-Functional Requirements

• First priority non-functional requirements:

– Performance

* NFR1: The file format system of Focus Konstruksjon should have as

short response time as possible.

* NFR2: The file format system of Focus Konstruksjon should use as little

memory as possible.

– Documentation

* NFR3: The file format system of Focus Konstruksjon should be well-

documented.

* NFR4: Both file formats should be well-documented.

– Open Sourced

* NFR5: The file format system of Focus Konstruksjon should be open

sourced. This implies that Focus Software do not want expenses on li-

censes and software.

• Sound priority non-functional requirements:

– Maintainability

2.2. FILE FORMAT FINDINGS 11

* NFR6: The file format system use of external interfaces must be with-

out any restrictions and risk for interfaces no longer being provided or

developed.

2.2 File Format Findings

The findings are divided into three categories; File Formats in General, Pre-processing

and Post-processing.

2.2.1 File Formats in General

Today, there are some software for CAD- and CAE-modeling holding a large part of the

market share [1]. These software programs’ developed systems to store pre-processing

and post-processing data files, and some of these programs have file formats that again

can be read by several other software programs. Open sourced formats however, which

is a requirement for this thesis, are often more difficult to research. Researching dif-

ferent formats showed that they often do not meet the complexity required for a pre-

processing format from Focus Konstruksjon, and documentation is often difficult to

find. The maintainability, continuous development and usage, are not that common

for open sourced formats.

Well-defined and well-documented are two definitions that will be used during the the-

sis. First, a file format could be well-defined and well-documented in terms of how

the data structure is presented and how simple it is to get an understanding of the file

structure with the available documentation. Second, parsers and writers as software

interfaces must be well-defined and well-documented in order to be integrated into a

software efficiently. The definitions is used for both the formats and for the software

handling the formats. A parser is an element within programming which reads input

data and creates a data structure [2]. Therefore, the thesis will use about both parsers

and writers as what is required of code development when analyzing file formats for

reading and writing data.

12 CHAPTER 2. GENERAL REVIEW AND OVERVIEW

The research of this thesis discovered that many pre-processing file formats are devel-

oped to fit the simulation software used in the pre-process phase. Implementing a file

format specialized for another simulation program would be difficult to use directly.

Since Focus Konstruksjon uses OOCfem, implementing a pre-processing file format will

be difficult without making a specified parser and writer, and without doing changes to

the format.

Requirements say that the pre-processing file should be ASCII. ASCII, also known as

American Standard Code for Information Interchange, represents text in computers.

Today most text represented on devices is based on ASCII and not binary files [3]. The

reason for using ASCII files is to give the opportunity to examine and change details in

the file. This is an advantage for testing, controlling and future development of both Fo-

cus Konstruksjon and OOCfem. The potential positive side of choosing a binary format

is that it is more likely to meet the performance requirement better than an ASCII file

[4]. The research done revealed that the pre-processing files are often ASCII text files,

and binary solutions are more often used in post-processing file formats.

Open sourced is a non-functional requirement from Focus Software. Research found

that there are different ways to classify open source software GPL, LGPL and BSD [5]

are the ones found relevant when evaluating file formats for this thesis. These abbrevi-

ations stands for, GNU General Public License, GNU Lesser General Public License and

Berkeley Software Distribution.

Any LGPL licensed open source software that is used by another software or application

will allow the program or application to be sold without having to release the source

code of the program or application.

On the other hand, if a GPL licensed open source software is used, it requires the pro-

gram or application to be licensed under the GLP. This requires all software using the

GPL licensed software to be open sourced as well. Focus Konstruksjon could then not

be an actor on the commercial market, since Focus Software must have had released

some of the software as open sourced. These are both GNU licenses which have li-

2.2. FILE FORMAT FINDINGS 13

censed that the software is open sourced, and are developed in a community. The users

of the software are required (GPL) to contribute with their own software, or it is recom-

mended (LGPL) that they share their own software.

The BSD license has a license which is based on a user receiving the library once, and

if there are any problems there is no developer community offering help, it is now the

problem of the developer.

2.2.2 Pre-Processing

The pre-processing phase is described by modelled Computer Aided Design(CAD)-data.

CAD files are a representation of a 3D model design, which further is used by other soft-

ware. A mesh generator then creates mesh data, and together with boundary condi-

tions, constrains and loads. After meshing, the model (normally called the FEM-model)

represents the finite element data which is sent to a simulation tool for analysis. In

this thesis the FEM-model will be generated by Focus Konstruksjon and then sent to

OOCfem for analysis.

Through research of the pre-processing input files, it became apparent that CAD-files

could often be read by a number of CAD software programs. In addition, there are

also converters available, which enables several possibilities for reading CAD-files [6].

However, there were many different solutions to the structure of the data, e.g. meshes,

boundary conditions and load data. This makes the FEM-file different and not that uni-

form. The consequence of this is that the CAD software easily could exchange models.

On the other hand, there are few standard ways to build up a FEM-file while following

software specific steps of the pre-processing phase. Even if there are some certain rules

when it comes to writing FEM elements to a file. Some FEM files intended on structural

analysis have focus on structuring nodes and elements, and loads connected to those.

Where on the other hand, FEM files intended on fluids or micro mechanism, focuses

on FEM-mesh representation such as triad mesh elements.

What kind of operations conducted during the pre-processing phase and the simula-

tion process was found to be individual for different programs. Some programs stored

14 CHAPTER 2. GENERAL REVIEW AND OVERVIEW

the loads for each element and node, and some stored the loads for the models and the

loads were later computed in the simulation part. Different simulation programs have

different requirements for a file or the data structure. The modelling software and the

simulation software is often tightly developed together over the years with the intention

to make a seamless product. This results in a data structure highly qualified for exactly

one pre-process and tightly coupled software, which makes it less qualified for other

FEM programs.

Some converters were discovered through researching ways to store FEM files. Jotne

IT have converters from two formats; NASTRAN and Abaqus [7]. This is a complete so-

lution where the users are required to pay for the product. There are also some open

sourced efforts. The general findings are: “Although it took us a lot of efforts to roll this

out, many features are still missing” [8]. There are some conversion programs devel-

oped by professors for special cases, and sometimes narrow-focused software. These

are not general enough to deliver a trustworthy and accurate result when converting

FEM-data. This supports the findings of pre-processing data often being specific, and

that a standard format to use directly will be difficult to find.

If Focus Konstruksjon has its own structure of data, how could it then be possible to

use an existing file format? The answer is found in the documentation and developing

of parsers and writers. Focus Konstruksjon follows the data structure of a 3D model

build up, and after creating a FEM-model the structure contains nodes, elements, load

groups, constrains etc. Parsers and writers must therefore be developed to utilize the

structure of a FEM format. However, since the model software and the simulation soft-

ware are seamlessly developed together, special model cases are already integrated. As

mentioned, research found that an input file cannot be implemented directly. Still, the

structure of nodes, elements and load groups are already in place. A file format that is

close to how Focus Konstruksjon and OOCfem communicates, is a good opportunity to

cut development costs in terms of less development of parsers and writers. Further, a

specialized parser and writer must be developed to match the already seamless integra-

tion between Focus Konstruksjon and OOCfem. This implies that it is important to find

a file format which suites Focus Konstruksjon well, which also have low development

2.2. FILE FORMAT FINDINGS 15

costs.

The challenge is to find a file format that is well documented, both as a format and

for parsers and writers, creating a balance between using the existing format and the

developing cost. The research will demonstrate if it is possible to find that balance. A

self-defined file will also be evaluated as an input file, and is especially important to

research if the balance mentioned is difficult to find. Developing a self-defined format

could lead to high development costs in the beginning, although this will lead to high

quality seamless integration.

2.2.3 Post-Processing

The post-processing phase is described by the result database from the simulation be-

ing imported by a software that does visualizations of result data. Usually, the visualiza-

tion software is the same software that exported the FEM-model in the pre-processing

phase. The purpose of the process is to display the results of the analysis. This implies

that together with the usual 3D data, the post-processing result database contains dis-

placement, stresses, momentums, and other result data for structural analysis.

Research showed that there are different file formats that Focus Konstruksjon could

use. Compared to the pre-processing phase, the results from the simulation analysis

are in general not as specialized for one single software as for the pre-processing phase.

The open source license challenge faced in the pre-processing phase is also present in

post-processing. Findings also showed that compared to pre-processing formats, there

are not as many file formats needing to be evaluated. The file formats found relevant

for Focus Konstruksjon, serve the same purpose and the formats are similar, more than

what is seen in the pre-processing formats.

A requirement influencing file formats for the post-processing phase, is that the file

format should be compatible with a third-party visualization software. Even if it is a

third priority requirement, the benefit of visualizing the result database in other soft-

ware is that a developer has more than one way to look at the results from simula-

16 CHAPTER 2. GENERAL REVIEW AND OVERVIEW

tions. Results visualized in other engineering software might support different views

and features that could have favourable influence on how Focus Konstruksjon could

be developed in the future. Research of different visualization programs showed that

VisIt, Paraview or Techplot are tools that could meet the requirement of third-part 3D-

visualization program. See chapter 3 for research where Paraview was found as the

recommended program.

2.3 Technical Overview

2.3.1 Programming Languages

From the introduction in chapter 1 it is known that to improve the pre-and post-processing

phase for Focus Konstruksjon, both software programs, Focus Konstruksjon and OOCfem,

need to be analysed and developed. Since the challenge was to improve the software

and not build it from the beginning, the two software already have considerable code

bases. Focus Konstruksjon is written in c#. OOCfem is written in C++, with managed

C++ code. These languages are well used and well-documented, and are one of the top

five used programming languages in the world [9].

C++ is developed as an object orientated language, based on a program language called

C. The C language is seen as a fast running language. This is because it takes a short

time compiling the code, which is close to machine code. C++ is broadly used today

[10], especially in system development, as a result of height performance and flexibility.

Since OOCfem is a software developed for structural analysis, C++ was a natural choice

because of height performance and good documentation.

Microsoft developed a .NET framework at the end of 1990, which offers a big class li-

brary; Framework Class Library (FCL)[11]. This framework was developed for users to

combine their source code with the framework library, for increasing productivity. By

including the class library, the .NET framework, it becomes possible to combine dif-

ferent high-level programming languages such as C++, C, Python and c#. The .NET

2.3. TECHNICAL OVERVIEW 17

framework runs on a virtual machine where it is easy to combine the different lan-

guages, it is called the Common Language Interface Runtime. When code is depending

on the Common Language Interface Runtime machine to run, it is referred to as man-

aged code. During the process of developing the FCL library a language, later called c#,

was created. This means that c# is the language that is closest to the virtual machine of

the .NET framework library and is the main managed language in the .NET framework

Runtime machine.

Unmanaged code is code which can be compiled directly to machine code, and man-

aged code is code that needs the Common Language Interface Runtime machine as

an intermediary part to compile and run code. Usually C++ code is compiled directly

to machine code. However, managed C++ code is code used to connect the c# lan-

guage and C++. In Focus Konstruksjon’s case, the managed C++ code is the code that

binds the software and OOCfem together. The purpose of using managed code in Focus

Konstruksjon is also to prevent an unstable application [12]. Be aware that Microsoft

launched their definition on managed C++ code, and it is slightly different from man-

aged and unmanaged code generally used in software development.

Focus Software wanted to see how F# programming language could be used in devel-

oping file formats in Focus Konstruksjon. F# is a programming language which encircle

programming techniques such as imperative, object-oriented and functional program-

ming, with a focus on the functional part. A functional language presents an oppor-

tunity to read and write files easily, compared to fully object-oriented languages [13].

During research it will be evaluated if F# should be used or not.

2.3.2 Development Environment

Microsoft Visual Studio is an integrated development environment (IDE) developed for

developers on the .NET platform. In Visual Studio, the user has the opportunity to pro-

duce, run and debug both managed and native code. There are many versions of Visual

Studio, all have support for debugging, syntax help, code auto complete functions and

GUI-applications. Visual Studio also supports third-party plugins, such as plugins for

18 CHAPTER 2. GENERAL REVIEW AND OVERVIEW

GitHub, and installation of different packages (NuGet). Developing a file based system

in Focus Konstruksjon and OOCfem which uses respectively c#, managed C++ and C++,

using Visual Studio as the preferred IDE is an evident conclusion.

2.4 Summary of the review

From the general review conducted in this chapter it is believed that an introductory

overview has been achieved. The requirements listed in the chapter give a satisfactory

overview of what should be the main focus area in developing the file based system.

By summarizing the two processing phases it is clearer what factors should be evalu-

ated when selecting file formats. The chapter have revealed that there might not be as

many file format options relevant for this thesis as first expected, especially regarding

the output format. Therefore, the formats chosen must be properly evaluated. When

evaluating it is important to be certain of what requirements could eventually be a “deal

breaker” for the suggested file format.

Chapter 3

Evaluating File Formats

This chapter will evaluate different file formats found during research. Some file for-

mats will not meet the requirements presented in chapter 2. They are however still

evaluated. In that way, the reader is given an insight on what file formats that could be

relevant for Focus Konstruksjon in the future, or not worth considering when further

developing the software.

Focus Software should also know what file formats are well-supported by other soft-

ware programs, especially third-party programs. Focus Konstruksjon’s users could have

a seamless experience if other software supported their Focus Konstruksjon generated

formats. The chapter also provides a summary of the results in the form of tables, and

a final evaluation of the formats.

3.1 Pre-processing – Input file

As mentioned in chapter 2.2.2 the pre-processing phase has a variety of formats that are

well-defined and well-documented and formats that are developed for special cases.

For a well-defined and well-documented file format, changing and develop Focus Kon-

struksjon and OOCfem is necessary to adapt to this sort of file formats. For a file format

with low complexity and little documentation, development of the format to today’s

19

20 CHAPTER 3. EVALUATING THE FILE FORMATS

version of Focus Konstruksjon and OOCfem is necessary. This illustrates two different

consequences when choosing a format.

To get an understanding of what data structures are preferred in the new file based

system, an investigation of the current data structures where preformed. The findings

where that Focus Konstruksjon and OOCfem operated with FEM structural elements,

such as beams. This differs from other specific FEM data structures who are focusing

on the geometrical representations of mesh, such as triads.

The technical structural requirements of the file format, such as FEM elements, are

researched to be similar for most of the available pre-process phase formats. All for-

mats evaluated in this chapter have a structure which meets the data structure require-

ments of OOCfem. At least to the extent of possibly being developed as an input file for

OOCfem. After conferring with the supervisors, it was decided that the formats should

be evaluated after requirements closer to a business case approach. Where open source,

documentation and performance are important issues. The input files will not contain

as much data as an output file, therefore the performance requirement is somewhat re-

duced in the input file evaluations.

The formats evaluated are chosen because of their representation of the different pre-

process phase file formats categories found during research. As well as they are re-

searched to fit into a file based system in their category. Some formats are built by

companies, some are built by research groups and some formats are chosen to present

what formats that might be interesting for Focus Software in the future.

Some of the file formats researched and evaluated will be presented in the appendix

chapter D. Although, these formats are still presented in the table seen in chapter 3.3.

3.1.1 List of File Formats Found

NASTRAN – Bulk files

The file format can be used as both a pre-and post-processing file. It meets the re-

3.1. PRE-PROCESSING – INPUT FILE 21

quirements set in chapter 2, with being well-documented and an ASCII file. Even if the

format is readable as a text file, some will argue that the format is not easy to read and

change. Where in other file formats white spaces are used to divide data, the bulk file

does not have white spaces. It separates the data with counting digits [14]. This makes

it difficult to read and change the format manually, and at the same time increases the

risk for errors while users are changing data. The format has numerous FEM format

file elements, called NASTRAN cards, which provides a complex format that can handle

many different FEM elements. The Nastran bulk data files are more detailed evaluated

in the post-processing chapter 3.2.

Compared to other file formats NASTRAN bulk data file is well-defined and well-documented.

The difficulty with the format is that there are few open sourced parsers or writers. How-

ever, the theoretical documentation is available and open. Therefore, it is a combined

open and not open sourced situation that has to be considered. Where the data struc-

ture of the format is documented, and associated software is not documented.

USFOS – UFO

Usfos is a structural analysis program for structures originally in the offshore sector. It is

a simulation tool specialized on accidental load analysis. It has the opportunity to rep-

resent both pre- and post-processing. Since Focus Konstruksjon is based on structures,

the two software’s have similarities. Usfos are using a file format called UFO Structural

File Format. It stands for a User-friendly structural file Format, which they claim they

have special designed the file format for [15].The format is further developed and in-

spired from the Norwegian Veritas format; Sesam System Interface file [16]. This is a file

format that is used for structural analysis in the Northern sea.

One of the reasons the UFO format is especially relevant for this thesis is that OOCfem

already have used this file format in test phases earlier. With modification to the for-

mat to specify the structure to the data structure of OOCfem. The software has its own

implemented classes to parse and write data in its owen format. This again lead to

a specified file format for OOCfem called AME-fem input file format. It is created by

22 CHAPTER 3. EVALUATING THE FILE FORMATS

OOfem’s developer and is well-documented [17]. A OOCfem specific implementation

of the UFO format gives it an advantage compared to other formats, and should be con-

sidered as an important factor when choosing the preferred file format.

The developer of OOCfem says that the Usfos format was chosen was because together

with co-developer, Tore Holmås. Since they have a well working relationship, further

development of the format is in both interests, which is an advantage for OOCfem. Us-

fos also provides a lot of code and model examples for reading and writing the format.

This was an essential part when choosing the format, OOCfem’s developer mentioned.

However, there are no official interfaces.

Figure 3.1: USFOS

There are no complications with meeting the first priority

requirements with this file format. The UFO format is an

ASCII file format. This makes the file readable in text ed-

itors, which makes it possible for developers and users to

read and do changes to the data directly in the file.

The UFO format is well documented and developed over many years together with the

USFOS software [18]. Together with the AME-file supplementation for OOCfem, it is

well documented for Focus Konstruksjon’s needs. The format data structure is open

sourced, with no official open sourced software interfaces for parsing and writing the

format. The format is a representation for FEM data, and does not have any representa-

tions for analysis types. If the format should be used as a pre-processing phase format,

that has to be implemented. The thesis will from now mention the format as the Usfos

format.

Gmsh – Mesh generator

During research, different mesh generators were researched. For a pre-processing point

of view, a data file from a mesh generator would give the required geometric data of a

file format for a FEM file. This format would have to be developed further with addi-

tional conditions, so that Focus Konstruksjon could utilize such format. With a good

3.1. PRE-PROCESSING – INPUT FILE 23

data structure documentation and well-defined parsers and writers, the disadvantage

of the format only representing geometric data could be decreased.

The reason this mesh generator was relevant was the connections to other known file

formats, such as VTK and NASTRAN [19]. A format that is compatible with a post-

processing format, could be an advantage and reduce development and maintenance

cost.

Gmsh have open sourced programs available. However, the open source restrictions

are GPL and not LGPL. Focus Software Konstruksjon is a commercial product that will

gain revenue on this library. Using the library is not possible without Focus Konstruk-

sjon being open sourced GPL as well.

Figure 3.2: gmesh

The research found this pre-processing mesh generator to be

best suited to meet the requirements of a file based system,

even with the open sourced restrictions on the associated soft-

ware. Other mesh generators with near to equal solutions to

Gmsh are not evaluated in the thesis. However, it is important

for the reader to know that Gmsh and other mesh generators are suitable input formats,

with developing the format to adapt to today’s data structures. The license must never-

theless meet the open source requirements.

STEP – AP209

The user’s models and analysis data are desired to be exchanged between different soft-

ware and platforms. Together with a tendency, which this thesis has mentioned earlier,

of pre-processing data being customized to the isolated process of one simulation soft-

ware. Some calls for a halt in this tendency. A new ISO standard extension of the STEP

ISO standard where proposed, AP209, are tapping into this marked need [20].

Research found that there have been efforts to solve the same business need described

above, by for example the format evaluated in appendix chapter D; femML. The prob-

24 CHAPTER 3. EVALUATING THE FILE FORMATS

lem with these earlier solutions is that there have not been supported from the large

commercial companies and stakeholders. These companies want to keep their cus-

tomers exclusively connected to their own software. Research showed that STEP is a

broadly supported file format in CAD modeling. With a new standard FEM data rep-

resentation, which originate from STEP, companies might be excepted to integrate this

in the future. The AP209 also have the ability to not only handle FEM data, but also

have the opportunity to handle post-processing data [21]. For Focus Software this could

be an interesting file format for the future. It will be rapidly developed. Other users

that might want to use Focus Konstruksjon’s simulation software could do so through a

AP209, if implemented.

The AP209 format meets the requirements of being able to change and read in a text

editor. It is an ACSII file that for a user will be more difficult to read than other formats

such as Usfos format, because of its structure. The format is well-defined and well-

documented, with an open sourced documentation. Research showed that parsers and

writers are to not too easy found nor accessed. A PHD-student at NTNU are writing his

PHD on developing AP209. This could be a contact for later to learn more about the

development of the format and marked influence for Focus Software.

VTK - Visualization ToolKit

A more thorough examination of the Visualization Toolkit (VTK) will be done in the

post-processing output file chapter 3.2. The reason for this is that VTK is in general a

software that can handle 3D computer graphics, image processing and visualizations.

In 3D computer graphics, it is primarily focused on visualization of result databases for

simulations. However, comments from VTK users shows that it is possible to use the

unstructured grids in the VTK legacy format for a pre-processing phase data file.

Figure 3.3: VTK

- Visualization

ToolKit

There are no complications with meeting the first priority require-

ments with using the suggested technique. The VTK format could

be written as a ASCII file, and is LGPL open sourced. This means it

is a possible solution, however on the other hand feedback on this

3.1. PRE-PROCESSING – INPUT FILE 25

VTK pre-processing technique is not unilaterally positive. “Rather

than trying to shoehorn FEM data structures into VTK (which is not

pretty), you can build adaptors from VTK to native FEM codes and

data structures” [22]. The benefit of using VTK as the preferred output file format, is

that an implementation in both the pre-processing and post-processing phase, would

lead to reduced development and maintenance cost.

MED file format

The MED file format is a format specialized from a HDF5 standard [23].

Figure 3.4: Salome

It is used by a FEA solver called Salome. HDF5 is a relevant file

format for the file based system, since the same format could

be used for a post-processing file format. There are no compli-

cations with meeting the first priority requirements with this

file format. However, the MED format is not an ASCII file format. But there are HDF5

frameworks that allows transformation of ASCII files to HDF5 files, and the other way

around. Salome has a GNU LGPL licensed software, and HDF has no licenses attached

to it. The format is well-documented.

Exodus II

This is a FEM data file format developed to represent mesh generated data, analysis

data and visualization data, originally built on the NETCDF format. This is a set of for-

mat libraries that supports array-oriented arrays [24]. The Exodus II format has APIs

for Fortran, C and C++. It also have available converters to other common FEM for-

mats such as Abaqus .osb, NASTRAN and Universal File format (UF). It has a BSD open

sourced license, which suites Focus Konstruksjon’s requirements well. Compared to

other FEM formats it is more similar to the Gmsh file format than the Usfos format.

Because the data structure are geometric representations, rather than structural FEM

elements.

Exodus II meets the requirements set in the functional requirements. It has the pos-

sibility to convert from binary to ASCII format, which makes the format more flexible.

26 CHAPTER 3. EVALUATING THE FILE FORMATS

The format is, with the basis of the NETCDF format, linked to the post-processing for-

mat HDF5. That could possible lead to the same benefits as described for VTK.

3.1.2 Self-defined Format

After evaluating the existing file formats that could be relevant for Focus Konstruksjon,

a weighting of benefits must be conducted. Either implementing an existing file for-

mat or a self-defined format that can use newer and faster developed parser technology

found for formats such as json, yaml and XML. In this sub-chapter the thesis will look

at the advantages and disadvantages with implementing a self-defined format.

First it is necessary to have an understanding of the different abstraction levels within

Focus Konstruksjon. In focus Konstruksjon there is a wrapper that wraps the OOCfem

API which is written in managed C++ code. This API is an interface on an API-class in

OOCfem which is written as native C++ code. This API-class wraps the OOCfem oper-

ational class called cfem.cpp. The existing formats have a data structure where parsing

the data and convert it to the internal data structure in OOCfem can be done on the

lowest abstraction level. This means, implementing a format specific parser and im-

plement it in the core of OOCfem, the operational class cfem.cpp. To benefit from im-

plementing a self-defined format, the advantage must be found in different areas than

the data structure in the format. Because if not, it would have been better to use al-

ready existing and documented formats, which also might have developed their own

parser and writers. Therefore, the self-defined format should use areas other than the

data structure of the formats to be beneficial. The abstraction level review shows that

OOCfem already provides an API solution for Focus Konstruksjon. That could be where

a self-defined format get an advantage. Since an existing format would be integrated

and developed together with the operational cfem.cpp class. A seamless integration

must be conducted, which again increase development costs, instead of using already

existing code.

Therefore, the concept of a self-defined format is to use the already existing code and

interfaces between Focus Konstruksjon and OOCfem. Since there are already an exist-

3.1. PRE-PROCESSING – INPUT FILE 27

ing API which has methods calls containing the FEM model data. The methods call data

(known as parameters) could instead of being written to the memory being stored as it

is in a file. Without being stored in an external data structure, which the existing file

formats provides. This implies that a data file will contain the same data as methods

does in Focus Konstruksjon and are needed in OOCfem. The existing code in OOCfem

that expects data from methods, which now is stored in the self-defined format, will

not have to be developed to integrate the new format, by simply utilize the API. This

will minimize the work on implementing a file format, since it is possible to reuse most

of the seamless code that is already developed.

The disadvantage of a self-defined format is that it will contain more data than an ex-

isting file. Considering for example index lists, which is data used of the methods in

the API for several cases must be written several times. This will not be necessary using

existing formats. One node in existing FEM formats, that is represented as one line in

the file format, holds information of coordinates, the index, translations etc. In the self-

defined format nodes, it will represent one line per element in the lists of coordinates,

indexes, translation etc. Potentially it could be expected Ω(xn), where n is the number

of lines in an existing file format structure, and x is the number of arguments in the API

method.

Although these challanges can decrease the chances of meeting the performance re-

quirements. An effective data structure can solve it. If the data is structured as a dic-

tionary where the method name is read first, the expected performance could then be

Ω(m), where m is the number of methods called in one simulation from Focus Kon-

struksjon. Since the worst case is to read through the whole file, and each line repre-

sents a method call. That is an acceptable performance comparing with the already

existing formats and the differences in development cost. In chapter 4, under proto-

type implementation, a more thorough description will be presented.

To maintain the potential benefits of a self-defined format, the format must have parsers

and writers that are well-defined, broadly used, easy to implement and well-documented.

In the always developing technical world, the research found an increasingly use of file

28 CHAPTER 3. EVALUATING THE FILE FORMATS

formats for web applications. Research also found that the most common formats in

that category are XML, Json and Yaml.

The XML format has been introduced in the femML evaluation earlier in appendix

chapter D. The format is well-documented, although some will say that it is not an

easy read format. Json is a JavaScript Object Notation, which is broadly used with well-

defined interfaces, first developed as a replacement for XML in Ajax web applications

[25]. Research showed that there are examples of how Json is used for storing data out-

side a web context, for example saving objects in C# to a Json file [26]. Json is a subset

of Ymal. Yaml normally does not use brackets and indents like Json, but are built up by

line and white spaces. For a FEM data structure, it might be more unclear what the dif-

ferent elements in the file are referring to in a method data representation. Compared

to a Json file which is built up by brackets and namespaces.

When researching what interfaces, wrappers and other software and examples where

available, Json came out as the format which had the most documentation on many

levels. This was an important discovery, since more documentation and examples can

reduce development cost. With its readability discussed earlier, Json was found the

most desirable format to meet the requirements for a file based system.

3.2 Post-processing – Output file

The review reviled that there were fewer file formats to evaluate for the output result

database. On the other hand, these formats have other properties that needs to be eval-

uated, than seen in the input file evaluation. It is desired to find an output format that

have a C# interface. This would make it easier for Focus Konstruksjon to read the result

database, without having to run any instances of the C++ written OOCfem. Another

benefit of implementing a C# wrapper is that the threshold for maintaining and further

develop an output file parser for Focus Software would be smaller.

As it is for the input format, the technical data structure parts are similar. The advan-

3.2. POST-PROCESSING – OUTPUT FILE 29

tages and disadvantages of the formats will be investigated from a business case point

of view, with the functional and the non-functional requirements seen in chapter 2. In

this chapter a self-defined format will not be suggested. The reason is that the require-

ments of a third-party visualization program and that the post-process phase files are

more complex than the pre-process phase files. The performance requirement would

probably lead to that some parts being binary for the output file.

The sub-chapter will look at four different formats. These are chosen from a general

research, for being investigated further as output files. Research shows that these are

broadly used formats, and represents formats that are open sourced with well docu-

mentation, and formats that are developed by large commercial software companies.

Some of the file formats researched and evaluated will be presented in the appendix

chapter D. Although, these formats are still presented in the table seen in chapter 3.3.

3.2.1 List of File Formats Found

HDF5 – Hierarchical Data Format

Hierarchical Data Format 5 (HDF5) is a file format designed to organize and store large

amount of data [27]. The software library that is developed with the format is well-

defined and well-documented. It has high-level API’s for C, C++, Fortran 90 and Java.

With a well-defined library. Research shows that HDF5 have been broadly used and

have third-party connections, such as JSON.

Figure 3.5: HDF5

Group

HDF5 is supported by a third-party visualization software, such as

Paraview. However, it is not possible to open a HDF5 directly in

Paraview. HDF5 which is easily converted to other formats, uses

a conversion to a VTK file format, which makes it possible to read

HDF5 files in Paraview.

30 CHAPTER 3. EVALUATING THE FILE FORMATS

There are no high-level interfaces from the HDF5 group that supports C#, that are up

to date. However, there was an effort supported by Agilent and Boeing to make a .NET

wrapper called HDF5DotNet. The wrapper is a C++ subset of the API for native C++

code, that integrates C++ managed code for making a .Net framework assembly [28]. It

became unsupported and unmaintained in 2012 and now the HDF Group encourage

people to use P/Invoke instead. This a wrapper based on the same concepts as for the

HDF5DotNet wrapper, and they do often pinpoint that it is not meant to be a high-level

interface for the .NET framework. Even if the HDF Group claims that they support and

maintain the P/Invoke wrapper, comments on their Github readme page does not sub-

stantiate that statement: “we blame all the bugs on Microsoft or The HDF Group” it says

[29].

VTK

Visualization Toolkit (VTK) is an open-sources software created to handle 3D computer

graphics, image processing and visualizations. VTK uses a wide variety of visualization

algorithms to present scalar, vector, tensor, and texture data [30]. The format has high-

level API’s for C++ and Python. VTK is tightly connected to a third-party visualization

program called Paraview, which can present post-simulation data from structural anal-

ysis. VTK also have GUI toolkits to visualize its own formats, however Paraview is one

of the preferred software for result database visualization after simulations.

Figure 3.6: VTK

- Visualization

ToolKit

VTK offers a format that is primary based on grids, and do

also offer image data and poly data as examples. The vtk-

StructuredGrid and vtkUnstructuredGrid are the two data types

that are interesting in this research, especially the unstruc-

tured grid since it often represents finite element data struc-

tures.

From research, it is found that VTK has an extensive user mass that gladly share

experiences in a forum exclusively for VTK. Together with a well-defined and well-

documented format,this gives a benefit in using and implement the VTK format.

3.3. MATRIX FOR PRE-AND POST-PROCESSING 31

There is a .Net wrapper library for VTK called Activiz, which should contain .Net wrap-

pers for all VTK objects, including Unstructured Grid [31]. The wrapper uses the same

open source license as VTK, seen in chapter 3.1.1. It is well-defined and has code ex-

amples for different VTK formats and routines. In a file based system in Focus Kon-

struksjon a VTK file wrapper like this, would make it possible with an C# written parser

to read transfer data from an external data structure. Other wrappers have been made

earlier, but this wrapper is the one recommended from VTK.

There are two versions of the VTK format, the older Legacy and the newer XML for-

mat. The Legacy format uses an ASCII header with the possibility to store rest of the

data as either ASCII or Binary. The newer XML format, encloses the different data sec-

tions in XML tags, where the data also here can be stored as ASCII or binary. There are

also different extensions to these two VTK formats, when storing for example polygonal

data (.vtp) or unstructured grids (.vtu)[32].

3.3 Matrix for Pre-and Post-Processing

The columns of the matrixes are the essence of the requirements the file formats have

been evaluated up against. As mentioned earlier in the chapter, some of the formats

evaluated in this thesis can be found in appendix chaper D.The colors in the table rep-

resents how well the formats cover the requirements in the four columns. From that

that well (red), and then different shadings, through yellow, up to very well (which is

green).

32 CHAPTER 3. EVALUATING THE FILE FORMATS

Table 3.1: Pre-processing Table

3.3. MATRIX FOR PRE-AND POST-PROCESSING 33

Table 3.2: Post-processing Table

34 CHAPTER 3. EVALUATING THE FILE FORMATS

3.4 Final evaluation

The aim of this thesis is to end up with one input file format and one output format. For

the input file the result of the evaluation showed that two formats, Usfos and Exodus

II were the two existing file formats that was best suited. The thesis therefore shows

that both the developer of OOCfem and the thesis research agrees that the Usfos for-

mat is a satisfactory way to represent the pre-processing structural data for OOCfem.

Of these two it is known that OOCfem already have a parser and a writer developed

specialized for Usfos. This also implies that the developer of OOCfem has knowledge

about the format. All these factors make the Usfos format more benedictional than the

Exodus II format. For Focus Konstruksjon, which are going to write the data through a

pre-processing writer, both formats would be sufficient. Since a writer in C# will have

to be developed, because there are no format specific software for these formats.

The self-defined format should not be evaluated up against the Usfos format on the

same basis as other existing file formats. Since the benefits of these two formats are cov-

ering different elements of the requirements. Especially in the implementation phase.

The self-defined format is expected to have a shorter implementation time. The format

is however not as readable and does not build on a model structure as Usfos. As wekk

as OOCfem will still be dependent on the API, which wont make the tightly coupled

software any looser. It represents the data structures of the method calls to OOCfem’s

API. Usfos again is expected to take longer time to implement, even with the parser and

writer developed, because of the different abstraction levels. The parser and writer are

not finished and fully operational if new data elements are added to the simulation by

Focus Konstruksjon, such as shell elements. It is not known how much new elements

will affect the implementation of an Usfos format. Knowledge is gained by evaluating

the formats even further when implementing prototypes of the two formats in chapter

4.

VTK and HDF5 resulted in the best suitable formats for the result database output file.

The differences between the two formats are few, but there are some. It is desired that

the output format is read by Focus Konstruksjon, without having to run any instances

3.4. FINAL EVALUATION 35

OOCfem. Therefore, c# .NET interfaces or wrappers that support an output format

will be beneficial. The evaluation shows that the VTK c# wrapper is superior to the

HDF5’s wrapper in terms of further development, documentation and a user mass that

contribute to improve the wrapper. Again, some formats have already some imple-

mentations in OOCfem. There is a VTK writer, for the old legacy format, developed in

OOCfem. From a business point of view, all these factors lead to less resources used

when implementing VTK later, than HDF5. A requirement is that the output file should

be read by a third-party visualization software. VTK has a tight connection to Paraview

[33], whereas HDF5 does not. Over all VTK meets the requirements better than HDF5

do.

Chapter 4

Prototyping and Choosing File

Formats

To have a better understanding of the issues and the complexity of implementing a file

based system in Focus Konstruksjon, efforts were made in familiarizing with the code

base of both software programs, in parallel with researching formats. This parallel work

made it easier to see how findings from the file format research in chapter 3, applied to

the internal data structures of Focus Konstruksjon and OOCfem.

After recommending what file formats Focus Software should investigate further, pro-

totyping of the formats were conducted. After investigating the prototypes and their

advantages and disadvantages, a decision is made for one input file and one output file

for Focus Software.

4.1 Get to know Focus Konstruksjon and OOCfem

Familiarizing with a structural analysis software, demands effort and time. The abstrac-

tion levels described earlier made it easier to separate the code that would be influ-

enced by a new file based solution, from the rest of the program. Despite the reduction,

36

4.1. GET TO KNOW FOCUS KONSTRUKSJON AND OOCFEM 37

it resulted in a code base with a five-digit number of code lines. Another challenge

was that the general initial competence of the thesis writer was in the object-oriented

programming language Java. Focus Konstruksjon is written in the object-oriented lan-

guage C#, which was found not that complicated to read. Compared to C++ language

used in OOCfem, which has syntax rules that differs from C# and Java.

In this thesis the majority of the time was spent on code familiarizing and research-

ing the call stack of different methods. First, how Focus Konstruksjon called the API of

OOCfem was researched. The different elements in a FEM model and how the data

transfer was between Focus Konstruksjon and OOCfem. Then going into OOCfem,

analysing the process of reading FEM element data into internal data structures and

then looking at the representation of the results database. Finally, how the simula-

tion result database is transferred from the internal data structures in OOCfem to Fo-

cus Konstruksjon’s internal data structures. The goal of these examinations of the data

flows, was to get an essential understanding of what challenges would occur in a new

file based system.

These code examinations were done in the earlier mentioned development environ-

ment, Visual Studio. Because the environment provides important tools such as call

hierarchical searches, where it is possible to see how methods are called and how data

flows. Peak of definitions to observe the internal data structure, was also an important

tool. Together with a debug function that can recreate the call stack, of for example

what is happening during a linear analysis. These convenient functions are a result of

a complex environment which is strenuous to learn. This lead to a time consuming

self-learning period. However, the knowledge acquired in this learning period will be

beneficial later in the development process, later described in chapter 6. Visual Stu-

dio has also a lot of preferences that can be set. Therefore, in the beginning time was

used to compile, build and set preferences in the different projects. As an example, it

took two persons almost a day to resolve a simple build error issue due to some wrong

checked preferences.

That is often what have happened when implementing prototypes as well. The actual

38 CHAPTER 4. PROTOTYPING AND CHOOSING FILE FORMATS

time coding is minor compared to the time checking if different preferences are set cor-

rectly to build the code. Often accompanied with reading different forums to resolve

the problem.

4.2 USFOS - prototyping

This Usfos implementation sub-chapters, will not focus too much on the actual imple-

mentation, rather the knowledge acquired and the results.

One of the reasons to evaluate USFOS further is that OOCfem already have an imple-

mentation of a parser and a writer for this format. A large part of the process of imple-

menting a prototype was therefore to understand the Usfos parser and writer (from now

called the Usfos-class). Looking at the abstraction levels, it was chosen that the input

file routines should be written in C++, utilizing the benefit of the already implemented

Usfos-class. The Usfos format is as known, well-documented. Therefore, the Usfos-

class handles the conversion of the internal data structure to the file format well, and

the other way around for a simple beam model. The Usfos-class is defined for the basic

construction FEM-models, except composites and other more special constructions.

What is not defined in the format is for example an analysis specific header, which could

instruct what analysis should be run in OOCfem. To solve this issue, a corresponding

header file should be stored together with the Usfos file, to not over complicate the for-

mat. This leads to that one header file and one Usfos file should be written for each

analysis.

The prototype shows that it is possible to run a linear analysis of a relatively simple

beam construction from Focus Konstruksjon, and store it as a Usfos file. With all FEM

elements represented correctly according to the Usfos file format documentation.

Further, the same Usfos file was read during a Focus Konstruksjon linear analysis. The

data was correctly read into the internal OOCfem structure. However, it was discov-

ered that the data structure used for Focus Konstruksjon simulations in OOCfem and

4.3. JSON BASED SELF-DEFINED FORMAT - PROTOTYPING 39

the data structure created by the Usfos-class were different. Where for example the

distinction of node loads were described as CFNodeLoadData for Focus Konstruksjon

and NodeLoadData for OOCfem. This shows the impotance of developing and writing

software that represents the right structure and abstraction level. Nevertheless, the Us-

fos prototyping showed that it is possible to both write and parse Focus Konstruksjon’s

model data, with OOCfem’s Usfos-class.

Figure 4.1: Illustrating a selection of a Usfos file

4.3 JSON based self-defined format - prototyping

The self-defined format approach was, as described in chapter 3, an attempt to find

the easiest and less time consuming way to transfer data from Focus Konstruksjon to

OOCfem. Since OOCfem already have an API towards Focus Konstruksjon the pur-

pose was to find a format that was well-known, well-defined and well-documented that

could utilize that benefit. Json was chosen as the preferred format.

Focus Konstruksjon is developed in C# and the json format have different developed

parsers and writers for the format that supports C#. The interface that was used the

most on the .NET framework was Newtonsoft’s .NET json plugin. In Visual Studio the

integrated package downloader NuGet was used to add the interfaces in the right direc-

tories. However, as experienced many times before with Visual Studio, some configura-

tions were wrong. That meant the time used programming was minimalistic compared

to the time used on configurated Visual Studio.

For a faster and easier implementation, a dynamic Expando-Object was used. That

is an object that expands when adding new declarations to it. The purpose of the self-

defined file was to store the same data that the method called the OOCfem API with.

40 CHAPTER 4. PROTOTYPING AND CHOOSING FILE FORMATS

Therefore, the Expando-Object where given declarations of the same data structure as

the API-method was called with. The prototype was developed to store the method,

adding nodes, in Focus Konstruksjon. The node-object includes a list of indexes, a list

of coordinates, a list of boundary conditions and a list for translations. Further a dic-

tionary, defined by a string and an object, was used to make a data structure where

the method name(string) was mapped to the corresponding method data (object). This

was then serialized and stored to a json file.

The json file is then needed to be read by the C++ written OOCfem. Json is not as much

used for C++ compared to C#. Still, there are interfaces available for parsing and writing

json in C++. An API-class in OOCfem parses the json data and reads the string content.

The string name in the dictionary has the same name as the method calls in OOCfem’s

API. Therefore, a search through method names in the API, will then find the right API

method to call with the data stored in the object.

The benefit of implementing this type of a file system is that, compared to the Usfos

implementation, it will reduce development cost. Choosing a self-defined format also

makes it easier for maintenance and further development later on. This is because the

self-defined file system is less complex than Usfos, and have more available software

associated resources.

Figure 4.2: Illustrating a selection of a self-defined file

4.4. DISCUSSION AND CHOOSING FILE FORMATS 41

4.4 Discussion and Choosing file formats

The evaluation of the file formats for an input file showed that most file formats cov-

ered the needs of representation of Focus Konstruksjons data. This lead to an evalu-

ation focusing on the functional and non-functional requirements as a business case

evaluation. The technical evaluation was done in the prototype implementation after

selecting two relevant file formats.

As mentioned in the introduction, this thesis is not built up as a typical science paper.

Where a hypothesis is presented and either backed up or disproven by theory. While

looking at the file formats available for a new file based system, the typical approach

with theories are not followed. That is because of fast-developing technologies within

computer science and formats in general. The results of this is that an impression of

how the market, technologies and file format functions often created over time by re-

searching the field of relevant information and sources for a file based system. This

causes difficulties pointing out an exact article or paper that backs up this impression.

Gathering all this information to create that impression is the research of this thesis. It

is believed that the thesis answers the problems described in chapter 1 with this ap-

proach. A good example of impressions created during research, is when reading and

gathering information about a system or software in forums. Where different user share

their knowledge and experience. The information from that kind of research is highly

valuable for business case dependencies, such as easy implementations and perfor-

mance. However, this information is difficult to back up with references, which results

in this thesis own research on that related field.

When evaluating the formats from a business case perspective, the thesis had to find

a careful balance. Of choosing requirements that separated the formats regarding qual-

ity and usefulness, and at the same time not having requirements excluding important

formats. It is believed that this balance is found in the thesis, and the results of the file

format evaluation showed that the requirements created a clear and informative sepa-

ration of the formats.

42 CHAPTER 4. PROTOTYPING AND CHOOSING FILE FORMATS

Selecting input formats were challenging in terms of evaluating how much resources

had to be put into implementing it. One format could have a data structure that matched

the internal structure of OOCfem better than other formats. Even if the documenta-

tion on how to implement parsers and writers were under-documented and would lead

to a time-consuming development process. It is believed that the thesis emphasis the

value of the previously implementation of the Usfos-class in OOCfem the right way. By

analysing the development costs differences. All file formats demand a certain learning

period for a developer, to get familiar with the structures and the technical challenges.

The thesis believes that this learning period, for a file format that already has some im-

plementations in OOCfem, will be much shorter compared to others. As well as there is

a valuable knowledge of the formats acquired by the developer of OOCfem. This could

be very helpful for a full implementation of the Usfos format, in addition to lower de-

velopment cost.

As expected Usfos was successfully implemented as an input prototype, with the al-

ready existing parser. However, the model used when prototyping was a simple beam

construction model. The Usfos-class supports the most common FEM file element

types. In the future, more complex geometric models will be written from Focus Kon-

struksjon, e.g. composites. The Usfos format supports the composit elements, however

how the cross sections of the element should be written is not well described in the doc-

umentation. Prototyping showed that changes have to be done to both the format and

the parser.

The self-defined format prototype implementation showed that it is different approach

than for the existing formats. Instead of having a model data structure it is a method

data structure. The format was found slightly unstructured and not as readable as the

Usfos format. It will also be difficult to change the format, because some of the same

data might be several places stored in the file. Changing the data one place in the file,

might have dependencies in other places in the file, which could result in errors while

parsing the file. An improvement of the file could be that lists that represents the same

data, should only be stored once. With that change the file will be smaller and easier

to modify. That being said, the benefit of the low implementing cost of the self-defined

4.4. DISCUSSION AND CHOOSING FILE FORMATS 43

format might then disappear. The discussion on what format that should be chosen,

should be focused on the balance between a format that is a representation of a model

which requires a thorough implementation. Resulting in easy read and easy changed

format. Or a format that is a representation of the method data already existing in the

today’s API solution, that does not require a complex implementation, but have lower

readability.

The thesis experienced that considering abstraction levels when implementing the in-

put format as important. Usfos provides a much deeper implementation of transferring

data from a format into the data structures of OOCfem. The self defined format gave a

solution using the same data as today’s system, which would still use the API. Since

the API only is created to serve Focus Konstruksjon, implementing the Usfos format

on a deeper abstraction level would make OOCfem having more control of the input

data and providing a more general interface. In the decision of choosing the input file

format, the knowledge of OOCfem’s developer should be seen as an important factor.

Since, further development and maintenance are believed as important for Focus Soft-

ware not only the next year, but over a horizon of decades to come.

Figure 4.3: Illustrating the abstraction levels using API or the file based system

In figure 4.3 we see that the API based system, the top one, first needs an API class re-

ceiving the data. Second, it has a general Cfem class that converts the data that again

generates the CFElement class for the elements in the geometric model. This is an an

example for adding elements in OOCfem. Even the Element class is written exclusively

for Focus Konstruksjon. Implementing the Usfos format will result in the lower system

44 CHAPTER 4. PROTOTYPING AND CHOOSING FILE FORMATS

shown in the figure. Where the format is written directly into the structure and written

to ElementData which is the original Element class in OOCfem. This is the same dif-

ference described with node loads earlier. As mentioned this gives better control of the

data, with fewer classes and fewer conversions. Together with creating a more genereal

solution for input data. Filling the requirements for this project and facilitate a more

general OOCfem, the choice became to implement the Usfos format. Espcially after

taking needs of both developers of Focus Konstruksjon and OOCfem into account.

An output format has not undergone a prototype implementation as the chosen in-

put formats have. It was more important to evaluate the implementations of an input

file than an output file, because of the number of different options faced regarding the

input file. The VTK format was chosen as the output file, because it was the most suit-

able format found. It had the best parsing and writing software available, for the .NET

framework, and already had a basic c++ writer for the VTK legacy format implemented

in OOCfem. It could be discussed that not enough file formats were evaluated for the

output format. However, when researching the field, some formats stood out, that is

why only four formats were evaluated. Performance is a requirement seen in chapter

2. During research it was not found any especial differences regarding performance of

the evaluated formats. Therefore, not given much room in this thesis. When taking

all requirements into account, it is not believed that the thesis could find any post-

processing phase file formats that have the same advantages for Focus Konstruksjon as

VTK.

Considering that OOCfem already had implementations for parsing and writing the Us-

fos format and writer for the VTK format, the result of choosing those formats might be

expected. However, the thesis shows that it could not be certain that these formats are

the preferred once for Focus Konstruksjon. The Usfos format would not have been the

clear chosen existing input format, if it was not for the already implemented parser and

writer. Where Exodus II could have been the option. The thesis showed anyway that

the Usfos format was the better choice. The disadvantage of choosing software that is

already implemented is that the developer, of the file based system, will not develop the

system from the beginning. This might result in much time understanding the imple-

4.4. DISCUSSION AND CHOOSING FILE FORMATS 45

mented parser and writers. In addition, not writing the whole project using the same

coding convention. However, it is believed that the disadvantage described is minor to

the advantage of having OOCfem specialized software available.

F# was recommended from Focus Software to be researched as a possible programming

language for implementing a parser in Focus Konstruksjon. From the results presented

in the thesis, it is known that the output format has a C# wrapper available. The thesis

project will therefore prioritized C# as the language to use on Focus Konstruksjon side

of the project.

Chapter 5

Test Driven Development

Choosing the file formats for the file base system, 4.4, enables the development and

implementation of the system. Before fully focusing on development and implementa-

tion, which is presented in chapter 6, this chapter will describe one approach to drive

the development process, Test Driven Development.

5.1 Format of the process

This thesis used the Test Driven Development (TDD) process [34] to drive some of the

development. The process uses a short development cycle:

1. Write an initially failing unit test. The test should represent a desired improve-

ment or functionality. For example, a not written sum-method, could have a test

which checks if one plus one returns two. Because the sum-method does not

have any functionality yet, the test will fail.

2. Then produce minimum code that is necessary to pass the test. In our sum-

method example, the minimum code to pass the test would be for the method

to only return the integer two, without doing any calculations.

3. Refactor the produced code, to the acceptable code conventions used. Which in

46

5.1. FORMAT OF THE PROCESS 47

the sum-method case, is not necessary.

After completing the cycle the developer has created a unit test. To further follow the

TDD process the developer starts at the beginning of the cycle (step 1). Referring to the

sum-method example, the next step could be to write a unit test checking that one plus

two should equal three, which at the moment fails (step 1). Next step in the cycle would

be to produce the minimum code to pass the test, which would be to allow the method

to take two parameters, and return the sum of these two, in order to avoid failing the

first test (step 2). Make sure all tests will pass after refactoring (step 3)

Arrange, Act and Assert

The TDD process is based on unit tests, with the three step cycle to drive the process.

The same number steps are used for creating a unit test. It is known as the Arrange, Act,

Assert-pattern, or shortened to the AAA-pattern [35]. The intention of these steps is to

ease the understanding and readability of the test, which again leads to better main-

taining. The pattern is divided into these functional sections[36]:

1. Arrange all necessary preconditions and inputs

• For the sum-method example used earlier, this e.g. implies to initialize the

sum-method class.

2. Act on the object or method under a test

• Further, during the act section the sum-method from the sum-class is called

to act the sum of two numbers.

3. Assert that the expected result has occurred

• Finally, the result of an act is asserted, where the expected result should be

equal to the actual result. If the sum is expected to be three, the result is

checked if it equals to three or not.

48 CHAPTER 5. TEST DRIVEN DEVELOPMENT

5.2 Benefits of TDD

The main goal of writing unit tests in TDD is to force the focus of the developers from

initially focusing on the actual code, over to first focusing on the requirements and

specifications of the software. Requirements and specifications are necessary for the

developer to understand, to be able to know what a unit test actually should test. Even

if there is expected an extended time developing utilizing the TDD process, professional

programmers achieved a 40-50% improvement in code quality [37]. The improvement

is gained by focusing on the requirements and the specifications first. For complex

projects with a longer project time horizon, the time used to develop, maintain, and

support a software would decrease using Test Driven Development because of the time

saved having good code quality and fewer errors [38]. Therefore, by originally concen-

trating on what a unit test should test, development cost could beneficially end up be-

ing reduced.

Code error-security is also one of the main benefits of TDD. The tests will provide the

security that if code is changed, it will warn the developer that functionality of the code

is damaged. If a developer is extending the sum-method example developed by using

TDD, he or she could change the method having the security of not breaking function-

ality. Because all specifications and requirements has been taken into account when

the unit tests were written. This benefit of TDD becomes especially important if the

sum-method is part of a complex software program, and other parts of the software

may break due to the changes in the small simple sum-method. This advantage helps

developers sleep at night and confirm that what they have developed actually work.

Another important benefit is efficient debugging. If any changes made causes an er-

ror, the tests will provide information about where and what the error is. This becomes

highly important for maintainability and for code projects where several developers are

contributing to the same project.

The TDD process is a rather simple method to follow, which is one of the reasons it is

a powerful tool. From the beginning of a project, TDD encourages developers to divide

5.3. LIMITATIONS WHEN USING TDD 49

the challenges and tasks into smaller parts, where the developer must fully understand

the purpose and the goal of each task. This can be tightly connected to a brake-down

structure which is an essential part of agile development. Each unit of the project, can

be built and tested one by one, and will improve the development, testing and mainte-

nance. The more complex a project is, and the longer a project’s time horizon is, there

will be developers that come and go, someone might get sick, fired, or finds new jobs.

To make sure that the knowledge of the developers is represented in the code, TDD de-

veloped tests will show what challenges, requirements, and specifications is thought

and taken care of by every developer in the project.

5.3 Limitations when using TDD

The most apparent disadvantage of using the TDD process is the time used develop-

ing tests which drives the development. This could for example imply that for a class

needed in the project with 20 code lines, could end up having a test class of for exam-

ple 100-150 code lines. To test all necessary features. Extended time use leads to cost

increase. Therefore, the interesting question is; when is it break-even and when is it

favourable to use TDD?

The thesis did not find many companies using Test Driven Development in professional

development. The research shows the opposite. This is probably because it is dead-

lines that run companies and not the benefits of satisfying code quality. With deadline-

driven projects, projects becomes short termed. There are few arguments found ar-

guing that TDD would benefit a short termed project process [39]. However, there are

many arguments for long-termed project. The disadvantage of TDD is therefore that

projects often has too short deadlines to fully benefit TDD. This is especially difficult to

see from a manager point of view. The break-even is therefore difficult to find. How-

ever, the research shows that TDD should be more beneficial than companies seems to

understand.

As mentioned above, using unit tests will lead to more coding. All code must be main-

50 CHAPTER 5. TEST DRIVEN DEVELOPMENT

tained, as well as the test code. Therefore, maintenance cost will increase with a unit

test code base. The size of the test code base will also affect the cost of changing re-

quirements or the architecture of a software. Which could be a risk for a project owner

if it is expected to be changes to the requirements in the future.

It is not often that projects starts with writing code from scratch, and projects often have

developers organized in teams, which results in complex code bases. If the code base

is not testable, the code depending on the previous code might be difficult to develop

further as TDD, because of dependencies in the complex code base. Encounter a com-

plex non-testable code base is therefore a limitation to begin TDD development. To be

able to write testable code, focusing on the code quality is important, which again will

decrease the limitations of using TDD. The clean code principle and the SOLID princi-

ple is know as a good way to describe testable code. This is further described in chapter

6.6

From the code delivered for this thesis we see that for both the Usfos writer and the

VTK parser there are unit and integration tests. The code is testable, because of loose

couplings and it is following the single responsibility principle in clean code. However,

since the writer and parser was written as prototypes in the beginning, with a code

driven development approach (see chapter 6.4). There a mostly integration tests devel-

oped during this thesis project, to test the already implemented functionalists. Whereas

for the OOCfem specific classes in Focus Konstruksjon, there is only integration tests

because the code is less testable.

5.4 Integration tests, system tests, and acceptance tests

There are more ways to test a software then writing unit tests. In the beginning the

we see that the developer follows the AAA-pattern to develop units or components of

a software, through unit tests. From the figure 5.1 we see that the next step of building

tests for the code base is to develop integration tests. These tests are developed to ver-

ify how different software modules works together. Integration tests seeks to find out

5.4. INTEGRATION TESTS, SYSTEM TESTS, AND ACCEPTANCE TESTS 51

how these methods are integrated into the software. The main purpose of integration

tests is to search for defects in interfaces and interactions between modules or software

components.

Figure 5.1: Overview

of the test structure

An example from this thesis is when reading an input

and output file, an integration test will be testing files

where the input and output is known. It is for exam-

ple known that node one from the file should have cer-

tain coordinates. Since the different modules of the soft-

ware should produce such results for the coordinates, an

integration test can be written for this exact coordinate-

case. If a developer changes the code later and breaks

the interface and interaction between the modules, the

integration tests will then reveal what part of the code

broke.

System testing is focused on how the product/program meets the requirements. The

tests are based on a complete integrated system. The requirements focused on in sys-

tem tests are the functional requirements. Whereas for this thesis, a system test could

check if the file structure is readable or that it can be read by an external visualization

program.

Acceptance testing is tests that verify that a product/program is working as expected

within the environment is it running on. It is seen as the non-functional requirements

testing. Where performance, stability and reliability are some important factors. If Fo-

cus Software are introducing a file based system to their customers they need to trust

the product, before they completely change the data transferring system in their soft-

ware.

Providing tests to all of the four stages shown in figure 5.1 will provide confidence to

the stakeholders that the product can be trusted. The same trust will not be achieved

52 CHAPTER 5. TEST DRIVEN DEVELOPMENT

with only running acceptance testing. Because the tests are dependent of each other.

The challenge in a deadline-driven marked is to not jump directly to system and accep-

tance testing. This can result in testing at the end of a sprint or a long project, which

often becomes more time consuming then expected.

Chapter 6

Software Development

This chapter will describe the different stages of software development for the file based

system. The stages described in this chapter is important for gaining the necessary

overview of the project development and what decisions that have been made during

the implementation. As this thesis is focusing on delivering a new software system for

Focus Konstruksjon, it requires the reader to obtain most of the information about this

thesis software project through the code. As mentioned earlier this is a backend project

which makes it difficult to illustrate the development of the project. Therefore, this

chapter is substantial for understanding the parts of the development and implemen-

tation process that is difficult to identify in the code.

6.1 Planning

It was early decided to develop both Focus Konstruksjon and OOCfem with a looser

coupling and a generalization of the data transfer, which resulted in implementing the

Usfos and VTK format. Making both software programs more general in terms of data

transfer, via the chosen file formats, required changes and development not only on

the top-level. In OOCfem the API should not be used as the data transfer point, the data

should be read and written in a different abstraction level. This gives the opportunity

53

54 CHAPTER 6. SOFTWARE DEVELOPMENT

for OOCfem to be developed and maintained more independently, instead of directly

being shaped after the needs of Focus Konstruksjon. The OOCfem wrapper in Focus

Konstruksjon was already developed as a data transfer point towards OOCfem. There-

fore, compared to adjustments of OOCfem’s abstraction levels, there was not necessary

to focus on the core of the software in the same way.

Looked at from the outside, Focus Konstruksjon is a software that works seamlessly to-

gether with an API, which is provided by OOCfem. When further investigating the code

and implementing prototypes, chapter 4, it was clear that the API was created with the

goal of serving Focus Konstruksjon, and not as a general API for other software. The de-

cisions on how data should be transferred and the structure of it, were taken care of by

the API, which resulted in an API evolving after the needs of Focus Konstruksjon. With

the new file based system, these previous decisions had to be implemented again to

get the same desired results as with the API. This sometimes lead to a situation where

planning were time consuming. Since questions about how the data structure should

be formed had to be answered, and changes to the structure that differed from todays

solution had to be discussed.

However, with tight communication in weekly meetings and e-mail correspondences

it was possible to develop with some of the agile principles, which provided a conti-

nuity of the thesis project. Where both OOCfem and Focus Konstruksjons developers

were stakeholders in the project, and decisions on how to develop and implement the

file based system was continuously discussed and changed. With these meetings and

discussions it was easy to form a break down structure, which again lead to simplifying

the tasks to be solve during development. Problems occurring and challenges met was

then successfully to implement into the task list, after discussing it with the stakehold-

ers.

6.1.1 Architecture

An overall Architecture pattern used for Focus Konstruksjon is the Model-View-Controller

(MVC) [40]. Since the model is the geometric model, controllers are the only way it is

6.1. PLANNING 55

possible to interact and request results from the model, such as building the model or

choosing how to analyse it. The view is how to present and visualize the model and the

results. The file based system is oriented in the model part of the architecture pattern,

where the new system only interacts with the data in the model. There are no views in-

volved in the system, and it is not possible for a user to interact and control the system.

Further, an architecture pattern can contain other sub-architecture patterns. The pipe

and filter architecture pattern is representing the structure of the file based system. The

pattern is also known as the pipeline pattern [41]. How data flows through a system

(pipes), while between the pipes the structure of the data is transformed to fit the re-

quired structures in the software (filters), is the basis of the pattern. See figure 6.1

Figure 6.1: Overview of the basic steps of a pipe and filter pattern

From the figure we see how data is gives as input to the filter, then filtered and sent by

using a pipe, to another filter. For example, this could be looked at on how the data is

transformed in the file based system from a XML VTK file to double arrays in C#. It rep-

resents the same data, for example nodes with displacements, but is filtered in different

ways to fit the software data structure. Figure 6.2 illustrates how the architecture of the

new file based system is structured. Where the files represents the end of a data flow,

before being used as input of another part of the system. The modules representing the

"data structure" of the software are only simplifications of the core functionalists of the

software, which is not relevant for the file based system.

All of the classes illustrated in the figure generates new classes and have a number

of methods, which are not visible due to simplifications of the system. These classes

and methods represents the most important basis of the file based system, and helps

to get an overview of the core functionalities of the system. The first row of figure 6.2

56 CHAPTER 6. SOFTWARE DEVELOPMENT

Figure 6.2: Illustration of how the architecture is following the pipe and filter principles

is illustration how the pre-processing phase is generating a output file. The Cfemwrap-

per wrappes the Focus Konstruksjons data structure and transforms the model data to

a OOCfem required data structure. The figure is using FEM elements as the example

data which is written to the Usfos file. The wrapper has a AddElementMulti method

which transforms the Focus Konstruksjons data structure, to data that can be written

to the Usfos output file. These Usfos file methods are all represented by the names-

pace WriteUsfosFormat. See figure 6.3 for a class overview. Which also illustrates the

complexity of the system, and how figure 6.2 is simplified to only illustrate the top ab-

straction level.

Another example is the third row of the figure 6.2, where data from the VTK file is read

by Focus Konstruksjon. The CfemWrapper uses the namespace ParseVTKFormat, when

reading forces, stresses and displacement from the VTK file. This is a filter method

transforming data from the file, which later is used by other parts of the software. An ex-

ample of the class overview is seen in figure 6.4, which represents the DoLinear method

seen in row three in figure 6.2

6.2. DEVELOPMENT 57

Figure 6.3: Class overview of the AddElementMulti method in the CfemWrapper

Figure 6.4: Class overview of the DoLinear when parsing the results from the output file

6.2 Development

This sub-chapter will look at three difficulties encountered during the code develop-

ment. For the reader this sub-chapter should describe what parts of the development

process were time consuming and important, that did not result in actual coding.

Finding reasons to incorrect result data

When successfully writing a VTK file from OOCfem, the post-processing result database,

a time consuming challenge could be to find reasons for errors occurring in the re-

58 CHAPTER 6. SOFTWARE DEVELOPMENT

sults. During the development, both API result data and file result data was read and

the evaluated, for e.g. displacement, IDs and forces. It was then easier to compare if

data were corresponding between the old system and the new file based system. When

data did not correspond, the challenge was to examine what input data was not given

to OOCfem through the USFOS format that was read by OOCfem through the API, or

the other way around. Because OOCfem simulated the input data from both the Usfos

file and the API with the same algorithms, and the old API-system was tested by Focus

Software that it provided the correct data. It was certain that all result data from the API

were correct, and the error had to be found the way data was written. Either the lack of

data written from Focus Konstruksjon or data written incorrectly to VTK from OOCfem.

This often lead to a time-consuming debugging period, where function calls and func-

tion hierarchies had to be evaluated. After debugging, a meeting with the product own-

ers of both Focus Konstruksjon and OOCfem to discuss the findings, often lead to a

strategy of discovering what could cause the irregularity. As an example, the element

direction of beam elements got set as a default in OOCfem, if the USFOS file did not

specify it. The simulation completed with no errors, but did not give the expected re-

sults. This lead to a time consuming period of debugging and discussions, which re-

vealed that OOCfem and Focus Konstruksjon runs with two different definitions of the

directions of elements.

Simplifying data objects

When a method got to many input parameters, the method did not correspond to the

clean code concept, seen in chapter 6.6. To make the method parameters more read-

able and understandable, a bean class was implemented. Inspired from the JavaBeans

class [42]. This class only holds data, with no additional functionalists such as event-

handling methods. Similar to an Object, other than that this class holds different types

of objects. With this type of class the developer does not need to take into account that

the data might have different data types, such as string and int. This simplifies and gen-

eralises the development process, and makes it easier to add data types to a method

without having to change the method parameters. This have for example been used

when writing Usfos elements in Focus Konstruksjon, called UsfosElement.cs.

6.3. IMPLEMENTATION 59

Where to store files - Application Data (AppData)

During the development of the file based system the question of where to store input

and output files became an issue. Earlier, VTK Legacy files had been written to the local

AppData folder from OOCfem. However, Focus Konstruksjon had generated a applica-

tion folder in local directory My Documents for the user. The question then was what

type of abstraction level for directories was preferred for the file base system. Microsoft

creates the AppData folder for every application, and the folder lives until it is deleted

together with the application [43]. In that way the local AppData folder is suitable for

the file based system. For the .NET platform this also provide a general solution for

file paths that is not bounded by user restrictions and checks from Windows to allow

writing files to the local storage. It was decided that the files should not be written at

an abstraction level for the users to easily access the input and output files. The files

should be written to the Application folder, AppData.

When a user opens the program, all application files are originated on the application

folder (AppData) of Focus Konstuksjon 2017. In that folder, where OOCfem’s API DLL’s

were stored earlier, the .exe file of OOCfem is now placed. The .exe application file is the

file that takes in the input file and execute the analysis, and returns the result database

in the file based system. The file based system is generating directories for input and

output files, while these created directory paths are used by the .exe file. Therefore, the

only thing the user needs to run the file based system is the application folder of Focus

Konstruksjon 2017.

6.3 Implementation

The first implementation of the file based system was to implement code for conduct-

ing a linear analysis of one single beam element with just structural weight as loads.

This is seen as a simple case where not much additional data is needed. However, the

case provides important data structures for both the input and the output file, which

has to be used in every case in a FEM simulation for more complex analysis later. Such

60 CHAPTER 6. SOFTWARE DEVELOPMENT

as nodes, elements, forces, boundary conditions, cross sections and materials for the

input file, and in the output result file; translation, rotation, stresses and moments.

Beginning with a simple beam analysis and getting correct results, was the first mile-

stone during the implementation. Further, the focus of the thesis was then to fully

complete all functionalities of a linear analysis with different input models (input files).

Resulting in implementing the file based system for different load combinations (e.g.

live load, wind and snow loads), shell elements with homogeneous properties, com-

posite shells. and special cases of masses and couplings.

After fully completing the linear analysis, implementing the other structural analysis

provided by Focus Konstruksjon would be much less time consuming. Because of the

implementation of the linear analysis was generalized to easily fit the other analysis,

which have to be developed to finalized the file based system.

Status on file formats – experience compared to expectations

In chapter 4.4 it was implement to develop the Usfos format as the pre-processing file

format and for the post-processing phase, it was decided to implement the VTK format.

During the development of the file based system the experiences of implementing and

using the formats were compared to the expectations built up during research.

Usfos

The first necessary task for enabling usage of the Usfos format was to develop a writer

for the format in C#, to be used on the Focus Konstruksjon side. Then further improve

the parser implemented on the OOCfem side, to fit the rest of the data structures that

had not been integrated into the parser yet. Implementing a Usfos format writer in C#

was time consuming, although not very difficult because of a satisfactory documenta-

tion of the format. Together with the fact that the format is readable, which lead to a

basic and understandable format to implement. The struggle with implementing the

Usfos format was when the documentation did not describe how certain elements of

6.3. IMPLEMENTATION 61

the format were to be written. These situations were often time consuming because of

the need of external help. Valuable information was also often difficult to achieve while

debugging OOCfem, as a result of the size and complexity of the code base.

Parsing the Usfos file was not difficult for a simple beam construction, since function-

ality was already implemented in OOCfem for those kinds of constructions. Therefore,

for these simulations the experience was that implementing the Usfos file did not face

great challanges. However, when the documentation had to written to fit Focus Kon-

struksjons data structure, the process became time consuming. The extensions of the

Usfos format, in terms of new components or additional fields in already existing com-

ponents, can be seen in the appendix sub-chapter B.1. For an simple beam construc-

tion, a Usfos file can be found in appendix chapter B.

An analysis file for OOCfem, was to be developed together with the geometric model

in the Usfos format. During the beginning of the implementation, an analysis file were

developed. However, it was decided to integrate the analysis data into the Usfos format,

to save development time. The fields of the analysis file were simple data types, often

a word and a single numerical value. Writing the documentation for the analysis data

was therefore not difficult. What was more struggling was to parse the file and assign

the analysis values in OOCfem. For further development of the system it is important

to know that there is functionality for writing and parsing an additional analysis file

developed, but currently not in use.

VTK - .vtu

The thesis started the development process with developing a small prototype writ-

ing the VTK format, to see if the framework for VTK worked properly. It was experi-

enced that working with the VTK framework in C++ was not straight forward, especially

when using cMake to unpack the library. However, the framework for writing a VTK

file and the well documented .NET wrapper, showed that using VTK for the C# side of

the project, was the right choice. It was decided to use unstructured grid as the data

structure for the VTK format. This again lead to the possibility of choosing the new

62 CHAPTER 6. SOFTWARE DEVELOPMENT

XML format for unstructured grids, which has a .VTU extension. This format could

both be written in ASCII and binary, which was necessary for meeting the requirements

of this thesis. The format has data organized under headings such as “BeamStressRes”

and “NodeIDs”. With the XML format, especially with the ASCII version, this makes the

file readable without any other additional explanation and documentation. The binary

version of the format makes the file unreadable, but provides a more compact solution.

Examples of the formats can be seen in the appendix chapter B.

The unstructured grid format provided a structure where the results could be referred to

as data related to points (nodes in the FEM model) or cells (elements in the FEM model),

which makes it possible to build a geometric model of the post-processing data. How-

ever, not all data could be written in that form for the result database. Elements could

have nodes that overlap with other elements (one node representing more than one el-

ement), where one node could end up holding different values for different elements.

Therefore, an array type called field array, which holds data unrelated to points or cells,

was used to ensure that data was not overlapped or written incorrectly. Providing a

functional VTK file with a geometric model and additional result data, which is impor-

tant if the file should be read by Paraview.

Examples provided by the Activiz documentation, of how to use the VTK format was

not as available as expected. However, the .NET wrapper, which was available with

NuGet (NuGet is a free and open-source package manager designed for the Microsoft

development platform (formerly known as NuPack) [44]), provided explanations of re-

turning values and input parameters in Visual Studio while writing the code. With these

explanations it was possible to understand the framework and what it was doing, while

developing and debugging. The community using VTK and forums were expected to be

of more help, but with the documentation available it did not lead to much additional

time spent on understanding the format and its corresponding software.

In the beginning the Activiz framework gave the expected result. During the code driven

prototyping the data that was parsed from the VTK file and the data from the OOCfem’s

API seemed to correspond. However, when implementing integration tests, the tests

6.3. IMPLEMENTATION 63

reviled that the result data was not as correct as first believed from prototyping. Parsing

data from the VTK arrays written in 32-bits from the C++ side and then using a wrapper

that read the data in 64-bits, it seemed that precision decimals were added to the data

during parsing of the file. This also was a adequate example of how tests makes control-

ling the code and the results much easier and secure. Researching documentation and

examples did not provide any solution to this problem. Therefore, an e-mail requesting

an explanation was sent to Kitware, who is developing Activiz. The response from Ac-

tiviz was the following:

“ Data arrays of vtk mesh are stored in Float32 bits. So, I think that if you try to read

it in 64bits, then some decimals can be added for more precision. I can suggest two

solutions:

- Truncate your values after x decimals

- Try a 32 bits Activiz which shouldn’t add extra decimals”

Since Focus Konstruksjon runs on a 64-bits system, the solution to this problem was

to truncate the decimals that was added for precision while parsing the values. Since

Focus Konstruksjon has a policy that numbers smaller than E-08 is to be evaluated as

zero, and the decimals added during parsing was added after the 8th decimal, it turned

out that the problem could be ignored. Because Focus Konstruksjon got the required

precision.

Other than that, the Activiz framework worked well with the file based system. Since

the pipe and filter architecture pattern made the solution focusing on a general solu-

tion for parsing values. The post-processing parsing filters makes it simple to convert

data arrays into a VTK file and read the data. That implies that OOCfem now have a

general way to write values from the C++ software into a VTK file, and receive the same

values in a .NET C# solution. This provides a more general data transferring opportu-

nity to the .NET platform, that OOCfem have not had before.

64 CHAPTER 6. SOFTWARE DEVELOPMENT

6.4 What has been driving the process?

Prototypes were developed for both the pre-processing and the post-processing for-

mat. The main goal of these prototypes were to ensure that the file formats chosen was

working as expected and to see if the respective resources (such as wrappers) worked

as described in the documentation. When developing the prototypes, the goal was to

understand the wrappers and code base. Code was written to solve different tasks, for

example writing nodes to the format from the node array. If it seemed to work, a next

task was encountered. This is described as a code driven process. Where if the code

gives the expected result, it means that the task is solved.

Later, when further developing small parts of the file based system. Such as e.g. small

search methods, the TDD-process was used. It was believed that TDD should have been

used more, which is elaborated in chapter 7. Therefore, during the prototyping first

code was driving the process, and later tests were driving it. Which from a planning

point of view preferable should be the other way around. Because TDD focuses much

more on the requirements and the challenges of the code. Instead of just staring to

write, as code driven development is known for.

During the implementation, it could be discussed, in a more humorous terms, that Je-

sus Driven Development has been used [45]. This is because sometimes during the

development it was not sure how a problem should be solved. A solution was to just

try without knowing if anything would crash. Further, after implementing the solution

it was not possible to test properly that the change did not break any other code. The

expression comes from hoping that everything will be working without checking it, also

called Faith-driven development [46].

Another ting driving the development process was debugging. Using Visual Studios

debugger to find out what was giving errors in the code. Even if the process could be

time consuming and it could take days to resolve one single error. Knowledge acquired

during the debugging process contributed to drive the development.

6.5. DOCUMENTATION 65

6.5 Documentation

Through this master thesis the goal has been to implement the file based system with a

code quality that ensured minimum need of written documentation. The documenta-

tion is given in the form of understandable and readable code. Comments in the code

are given where a more thorough explanation is needed. Variable, method and class

names were chosen to give an understanding of the code and what the different parts

of the code is handling, without having to comment and write documentation. Another

way a developer can provide an understanding of the code is through writing tests. As

mentioned in chapter 5, tests are often satisfying documentation of what challenges

and requirements a developer has handled while developing a system. Over 100 tests

are written, to ensure that the file based system is functioning according to the require-

ments after undergoing maintaining, further developing or changing of the code. This

gives not only an security for future development, but also gives a satisfactory docu-

mentation of what the code does or is expected to do.

To easier understand the architecture and what dependencies are present in the new

system, Doxygen is used. This is an automatic code documentation generator. The

documentation can be seen in appendix chapter E.

Another form for documentation is the development of documentation for the Usfos

input format. Were the OOCfem parser was improved to read new Usfos data elements,

the documentation document was also expanded. These improved documentations

can be found in appendix chapter B.1. In terms of the VTK XML format, the format is

readable, and does not need any additional documentation then the VTU_writer class

in OOCfem. If a more general understanding of the format is preferred, the format is

well documented by VTK Kitware Inc [30]. Examples of both formats can be found in

appendix chapter B

Documentation of the work progress could be found in the Commitment History in

Team Service Visual studio (Focus Konstruksjon) and GitHub (OOCfem). Through the

commitments it is possible to get a overall understanding of what have been changed

66 CHAPTER 6. SOFTWARE DEVELOPMENT

and at what time.

6.6 Code Complexity

As mentioned in Chapter 5, writing testable code leads to an understandable, reusable,

and robust code. The file based system was written with the TDD principle, where it

was possible. In addition, the thought-set from the TDD process provided a require-

ment first attitude, which insured the code qualities mentioned were focused on during

the development.

Focus Konstruksjon is written using the Object-Orientated paradigm, which should “re-

flect the real world” [47]. By that it is meant that code objects simulates objects from

the real world and how they interact with each other. Coding in a real world reflection

gives a solution with many classes that have different responsibilities, and not one big

class that solves many challenges. This again encourage coding that reflects the Clean

Code principle [48]. Where it says that a class is optimal if it only has one responsibility.

Further, classes should be as small as possible and have methods that only solves one

task. Preferable should the class contain maximum 30 methods. This is also described

in the Single responsibility principle in SOLID, which is the "first five principles" for ob-

ject oriented design [49]

The disadvantage of not having code written by the Clean Code principles was expe-

rienced during familiarizing with the code base of Focus Konstruksjon and OOCfem.

With older classes containing more than 4000 code lines, with methods solving more

than one task. These were difficult to understand and debug. This made the familiar-

izing process time consuming, especially when methods were coupled with a number

of classes and properties. The couplings seemed to become tighter every time a new

method, solving a challenge that the class initially was not made for, were added to the

class, instead of creating a new class.

Another important factor in code quality is naming of classes, methods and variables.

6.6. CODE COMPLEXITY 67

The main goal is to prevent a developer using time reading documentation and de-

bugging code to understand the simple elements of the code. Experience from the

thesis showed that Focus Konstruksjons C# code have better clean code naming than

OOCfems C++ code. It could be many reasons for that. One is that C++ lies closer to an

older Fortran culture, where variable names should be shortened to prevent using more

memory then necessary. Clean code stresses that the names could be long if they need

to describe the functionality precisely, and that understandable longer names triumphs

shorter names even if it saves data usage.

The file based system has followed the clean code principle during the development, as

good as possible. However, research thorough forums showed that developing parsers

and writers does not create the best foundation for developing clean code. Where a

lot of data is read and written after certain rules, which creates a developing environ-

ment which are not always readable. Some places the code would seem redundant,

because of the rules of the format in a file. On the other hand, the ground principles in

clean code are followed to the best ability of the developer. For example, having devel-

oped many classes with a single responsibility, in addition to understandable variable,

method and class names, makes the code more readable.

Chapter 7

Discussion

Before this thesis, OOCfem developer Bjørn Haugen has written code readjust to how

Focus Konstruksjon defines models, geometry, loads, etc., by developing the API and

functionalists to their needs. With the file based system, Focus Konstruksjon and OOCfem

are more loosely coupled, providing a more generalized solution. This is an advantage

for both software programs, in future development of Focus Konstruksjon. Another

benefit is that OOCfem only gets one access point. This will generalize how OOCfem

receives data, which again gives the owner more time to develop the software while not

adapting to changes in other solutions.

It was beneficial for both software programs that the file based system was implemented

now. As described in the introduction, the users are in need of the file based system.

When the system is fully implemented, the users will save time and resources using Fo-

cus Konstruksjon, which will increase the value of the program. Focus Konstruksjon

will also benefit from the file based system in terms of easier maintenance and debug-

ging of their analysis part of the program. Considering that the API had grown to a size

where it is complex and have functionality for many small and rarely used functions.

Further developing the API would have lead to an even more tightly coupled system,

which in the future would have made it difficult to develop and maintain the software.

With the file based system, all managed code can now be removed, which reduces the

68

69

disadvantages of running C++ on a .Net platform and gives the advantage of having less

code to maintain. The input file and the output file also makes it easier to maintain and

debug OOCfem. All in all, both software programs benefit from the new system.

As mentioned in chapter 6.4, the driving force behind the development process differed

greatly. The TDD process is a time consuming process. However, it creates value to the

code, especially after leaving a project and another developer takes over. During the

development of this thesis, the TDD should have been utilized earlier. The prototyp-

ing of the parsing and writing parts were the once best suited for a test driven process,

however the knowledge of the process was not acquired in time. However, the mind-set

from TDD was important in later development, where developing code stone by stone

was part of the main focus. Developing the simple requirements first, and not jumping

straight to the difficult parts of a class or method.

The benefit of using Paraview has been described earlier in this thesis. During the de-

velopment, Paraview was used a few times to check results and to see if a VTK file was

generated correctly. Expectations indicated that it should have been used more often.

That being said, Paraview is probably a tool that works best for further development of

new features and checking the results for both Focus Konstruksjon and OOCfem, rather

than during the actual implementation of the file based system.

Activiz provided a .NET wrapper for VTK. It came a little short on parsing values, when

adding precision decimals to the results. Nevertheless, it was not found a better solu-

tion for the post-processing phase. Together with Paraview, VTK examples and a live

community using VTK and Activiz, it is believed that it was the right choice.

This thesis has been focusing on developing a file based system which could fulfill the

requirements in chapter 2.1. Reviewing all functional requirements (FR), it is believed

that this thesis has met all these requests to the file based system. Even the require-

ment of the result database being read by another third-party visualization program

(FR11) has been met, which seemed difficult to fulfill in the begining. This thesis has

not been able to evaluate the performance requirement in the non-functional require-

70 CHAPTER 7. DISCUSSION

ments. However, it is believed to be fulfillled together with the other non-functional re-

quirements, which has already been achieved, namely; Documentation, Open Sourced

and maintainability.

For a more thorough discussion and evaluation of the file formats, it is recommended

to see chapter 4.4.

Chapter 8

Conclusion and Further Work

8.1 Conclusion

The file based system with an input file and a result database output file is the main

deliverable of this thesis. The file based system is not 100% completed and would not

be possible to roll out in the next release for Focus Konstruksjon. However, the basis

for the file based system is implemented. With an input file representing geometric and

analysis data, which is the data of a pre-process phase, together with an output data

file representing stresses and displacements, which is the post-processing phase data.

Both formats were successfully implemented for a linear analysis simulation.

Writing tests, documentation, and a list of technical descriptions of future work are also

deliverables of this thesis. These deliverables are found in the code base of the new sys-

tem and in appendix chapters.

Feedback from Focus Software’s and OOCfem’s stakeholders demonstrates that the re-

sults are satisfactory. There are signs of relief from both parts regarding the fact that the

file based system is in place, especially considering debugging, maintaining and future

developing of Focus Konstruksjon. The software will be even more competitive in the

71

72 CHAPTER 8. CONCLUSION AND FURTHER WORK

construction market, and provide a better solution for the users. This implies that this

thesis has delivered a solution to the problem described in chapter 1.

It would have been difficult to achive this outcome without the help from developers

from both Focus Konstruksjon and OOCfem. Such help included eg. a provision of

code for writing OOCfem elements to a VTK file, and already written tests for different

cases in Focus Konstruksjon. Their ambitions of having a file based system, made it

easier to drive the process to meet the requirements and the expectations of this thesis.

Stakeholders of both Focus Konstruksjon and OOCfem are already exploring the op-

portunities for what could be implemented next, after the file based system is fully im-

plemented.

8.2 Future work

For the linear analysis, the file based system is fully implemented. The next step in

integrating the system, is to implement it into other simulation analyeis such as a non-

linear analysis and a buckling analysis. Focus Software has six additional analysis algo-

rithms, where the file based system is going to be implemented. The file based system is

correctly working on feature branches for both OOCfem and Focus Konstruksjon. These

branches have to be carefully merged with the actual solution, to integrate all necessary

functionalities, before being able to further develop the system.

The file based system now saves input and output files to the local application folder.

To benefit from the ability of not having to run a simulation of a construction twice, Fo-

cus Konstruksjon has to implement a check of the results in the output file. If the model

in Focus Konstruksjon has undertaken the exact same simulation before, the expensive

process of running OOCfem again can be prevented, by showing the results from the

result output file. To check this, the system has to be developed to control which ana-

lyeis that have been run or not. Today, directories are being stored with wrapper-ID

names, which gives an ID for every simulation conducted. These IDs have to be stored

8.2. FUTURE WORK 73

and controlled in Focus Konstruksjon to fully benefit the new file based system.

For a more technical description of future work, see appendix chapter C.

Bibliography

[1] Solution provider profiles - cimdata. http://www.cimdata.com/en/newsletter/2013/28/02/28.

02.01.html. (Accessed on 28-02-2017).

[2] Parsing - wikipedia. https://en.wikipedia.org/wiki/Parsing. (Accessed on 28-02-2017).

[3] Ascii - wikipedia. https://en.wikipedia.org/wiki/ASCII. (Accessed on 28-02-2017).

[4] Binary gives significant performance advantage (mesh & solve) – cfd on-

line discussion forums. https://www.cfd-online.com/Forums/openfoam/

136983-binary-gives-significant-performance-advantage-mesh-solve.html. (Accessed

on 28-02-2017).

[5] Bruce Perens et al. The open source definition. Open sources: voices from the open source revolution,

1:171–188, 1999.

[6] J Michopoulos, P Mast, T Chwastyk, L Gause, and R Badaliance. Femml for data exchange between fea

codes. In ANSYS Users’ Group Conference, 2001.

[7] Simulation analysis. http://www.jotneit.no/solutions/simulation-analysis. (Accessed on

28-02-2017).

[8] An online fem model converter - nastran - eng-tips. http://www.eng-tips.com/viewthread.cfm?

qid=401488. (Accessed on 28-02-2017).

[9] Dette er verdens 10 mest populære programmeringsspråk - tu.no. https://www.tu.no/artikler/

dette-er-verdens-10-mest-populaere-programmeringssprak/231139. (Accessed on 28-02-

2017).

[10] C++ - wikipedia. https://en.wikipedia.org/wiki/C%2B%2B. (Accessed on 28-02-2017).

[11] .net framework - wikipedia. https://en.wikipedia.org/wiki/.NET_Framework. (Accessed on 28-

02-2017).

[12] What is managed code? https://msdn.microsoft.com/en-us/library/windows/desktop/

bb318664(v=vs.85).aspx. (Accessed on 28-02-2017).

74

http://www.cimdata.com/en/newsletter/2013/28/02/28.02.01.html
http://www.cimdata.com/en/newsletter/2013/28/02/28.02.01.html
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/ASCII
https://www.cfd-online.com/Forums/openfoam/136983-binary-gives-significant-performance-advantage-mesh-solve.html
https://www.cfd-online.com/Forums/openfoam/136983-binary-gives-significant-performance-advantage-mesh-solve.html
http://www.jotneit.no/solutions/simulation-analysis
http://www.eng-tips.com/viewthread.cfm?qid=401488
http://www.eng-tips.com/viewthread.cfm?qid=401488
https://www.tu.no/artikler/dette-er-verdens-10-mest-populaere-programmeringssprak/231139
https://www.tu.no/artikler/dette-er-verdens-10-mest-populaere-programmeringssprak/231139
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/.NET_Framework
https://msdn.microsoft.com/en-us/library/windows/desktop/bb318664(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb318664(v=vs.85).aspx

BIBLIOGRAPHY 75

[13] F sharp (programming language) - wikipedia. https://en.wikipedia.org/wiki/F_Sharp_

(programming_language). (Accessed on 28-02-2017).

[14] Nx nastran user’s guide. https://docs.plm.automation.siemens.com/data_services/

resources/nxnastran/10/help/en_US/tdocExt/pdf/%20User.pdf. (Accessed on 28-02-2017).

[15] Usfos_um_06.pdf. http://usfos.no/manuals/usfos/users/documents/Usfos_UM_06.pdf. (Ac-

cessed on 28-02-2017).

[16] Sesam-interface-file.pdf. https://projects.dnvgl.com/sesam/manuals/

SESAM-Interface-File-Description/SESAM-Interface-File.pdf. (Accessed on 28-02-2017).

[17] Bjørn Haugen. Cfem input file format. Cfem input file format, 1st ed 2017.

[18] Usfos - reality engineering. http://www.usfos.no/. (Accessed on 28-02-2017).

[19] C Geuzaine and JF Remacle. Gmsh: A three-dimensional finite element mesh generator with built-in

pre-and post-processing facilities, version 2.2. 4, 2008.

[20] Why ap209? - eplm interoperability. http://www.ap209.org/why-ap209. (Accessed on 28-02-2017).

[21] Introduction/scope - eplm interoperability. http://www.ap209.org/introduction. (Accessed on

28-02-2017).

[22] Vtk - dev - how to handle fem data in vtk? http://vtk.1045678.n5.nabble.com/

how-to-handle-FEM-data-in-VTK-td1253575.html. (Accessed on 28-02-2017).

[23] Medcoupling users’ guide: Notes on the med file format. http://docs.salome-platform.org/

latest/dev/MEDCoupling/med-file.html. (Accessed on 28-02-2017).

[24] Unidata | netcdf. http://www.unidata.ucar.edu/software/netcdf/. (Accessed on 28-02-2017).

[25] Json - wikipedia. https://en.wikipedia.org/wiki/JSON. (Accessed on 28-02-2017).

[26] Jef claes: Using json serialization outside a web context. http://www.jefclaes.be/2011/02/

using-json-serialization-outside-web.html. (Accessed on 28-02-2017).

[27] Hdf group - hdf5. https://support.hdfgroup.org/HDF5/. (Accessed on 28-02-2017).

[28] Hdf and .net project. https://support.hdfgroup.org/projects/hdf.net/. (Accessed on 28-02-

2017).

[29] Hdfgroup/hdf.pinvoke: Raw hdf5 power for .net. https://github.com/HDFGroup/HDF.PInvoke.

(Accessed on 28-02-2017).

[30] Vtk - the visualization toolkit. http://www.vtk.org/. (Accessed on 28-02-2017).

[31] Vtk/csharp/activiz.net - kitwarepublic. http://www.vtk.org/Wiki/VTK/CSharp/ActiViz.NET.

(Accessed on 28-02-2017).

https://en.wikipedia.org/wiki/F_Sharp_(programming_language)
https://en.wikipedia.org/wiki/F_Sharp_(programming_language)
https://docs.plm.automation.siemens.com/data_services/resources/nxnastran/10/help/en_US/tdocExt/pdf/%20User.pdf
https://docs.plm.automation.siemens.com/data_services/resources/nxnastran/10/help/en_US/tdocExt/pdf/%20User.pdf
http://usfos.no/manuals/usfos/users/documents/Usfos_UM_06.pdf
https://projects.dnvgl.com/sesam/manuals/SESAM-Interface-File-Description/SESAM-Interface-File.pdf
https://projects.dnvgl.com/sesam/manuals/SESAM-Interface-File-Description/SESAM-Interface-File.pdf
http://www.usfos.no/
http://www.ap209.org/why-ap209
http://www.ap209.org/introduction
http://vtk.1045678.n5.nabble.com/how-to-handle-FEM-data-in-VTK-td1253575.html
http://vtk.1045678.n5.nabble.com/how-to-handle-FEM-data-in-VTK-td1253575.html
http://docs.salome-platform.org/latest/dev/MEDCoupling/med-file.html
http://docs.salome-platform.org/latest/dev/MEDCoupling/med-file.html
http://www.unidata.ucar.edu/software/netcdf/
https://en.wikipedia.org/wiki/JSON
http://www.jefclaes.be/2011/02/using-json-serialization-outside-web.html
http://www.jefclaes.be/2011/02/using-json-serialization-outside-web.html
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/projects/hdf.net/
https://github.com/HDFGroup/HDF.PInvoke
http://www.vtk.org/
http://www.vtk.org/Wiki/VTK/CSharp/ActiViz.NET

76 BIBLIOGRAPHY

[32] Vtk file formats — earth models. http://www.earthmodels.org/software/vtk-and-paraview/

vtk-file-formats. (Accessed on 28-02-2017).

[33] Paraview. http://www.paraview.org/. (Accessed on 28-02-2017).

[34] Test-driven development - wikipedia. https://en.wikipedia.org/wiki/Test-driven_

development. (Accessed on 07-03-2017).

[35] Unit test basics. https://msdn.microsoft.com/en-us/library/hh694602.aspx. (Accessed on

07-03-2017).

[36] Arrange Act Assert. [online]. http://wiki.c2.com/?ArrangeActAssert, 2016. (Accessed on 07-03-2017).

[37] E Michael Maximilien and Laurie Williams. Assessing test-driven development at ibm. In Software

Engineering, 2003. Proceedings. 25th International Conference on, pages 564–569. IEEE, 2003.

[38] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. On the effectiveness of the test-first ap-

proach to programming. IEEE Transactions on software Engineering, 31(3):226–237, 2005.

[39] If and when you should use test-driven development | zeroturnaround.com. https://

zeroturnaround.com/rebellabs/if-and-when-you-should-use-test-driven-development/.

(Accessed on 08-03-2017).

[40] John Deacon. Model-view-controller (mvc) architecture. Online][Citado em: 10 de março de 2006.]

http://www. jdl. co. uk/briefings/MVC. pdf, 2009.

[41] Robert T Monroe, Andrew Kompanek, Ralph Melton, and David Garlan. Architectural styles, design

patterns, and objects. IEEE software, 14(1):43–52, 1997.

[42] Javabeans - wikipedia. https://en.wikipedia.org/wiki/JavaBeans. (Accessed on 02-06-2017).

[43] App data storage - windows app development. https://msdn.microsoft.com/en-us/library/

windows/apps/hh464917.aspx. (Accessed on 24-05-2017).

[44] Nuget - wikipedia. https://en.wikipedia.org/wiki/NuGet. (Accessed on 24-05-2017).

[45] Jesus-driven development. http://no-kill-switch.ghost.io/jesus-driven-development/.

(Accessed on 02-06-2017).

[46] Dumpster engagement, faith-driven development, go native, hired scapegoat, ’jesus’, non-solicitation

agreement | jargon from the world of technology consulting | informit. http://www.informit.com/

articles/article.aspx?p=1381169&seqNum=2. (Accessed on 02-06-2017).

[47] Object-oriented programming - wikipedia. https://en.wikipedia.org/wiki/Object-oriented_

programming. (Accessed on 21-04-2017).

[48] Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson Education, 2009.

http://www.earthmodels.org/software/vtk-and-paraview/vtk-file-formats
http://www.earthmodels.org/software/vtk-and-paraview/vtk-file-formats
http://www.paraview.org/
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://msdn.microsoft.com/en-us/library/hh694602.aspx
https://zeroturnaround.com/rebellabs/if-and-when-you-should-use-test-driven-development/
https://zeroturnaround.com/rebellabs/if-and-when-you-should-use-test-driven-development/
https://en.wikipedia.org/wiki/JavaBeans
https://msdn.microsoft.com/en-us/library/windows/apps/hh464917.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh464917.aspx
https://en.wikipedia.org/wiki/NuGet
http://no-kill-switch.ghost.io/jesus-driven-development/
http://www.informit.com/articles/article.aspx?p=1381169&seqNum=2
http://www.informit.com/articles/article.aspx?p=1381169&seqNum=2
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming

BIBLIOGRAPHY 77

[49] Solid (object-oriented design) - wikipedia. https://en.wikipedia.org/wiki/SOLID_

(object-oriented_design). (Accessed on 24-05-2017).

[50] Xml - wikipedia. https://en.wikipedia.org/wiki/XML. (Accessed on 28-02-2017).

[51] Femtools interface and driver programs. http://www.femtools.com/products/ftinterfaces.

htm. (Accessed on 28-02-2017).

[52] Universal file format - wikipedia. https://en.wikipedia.org/wiki/Universal_File_Format.

(Accessed on 28-02-2017).

[53] Free mechanical engineering: Finite element analysis. http://www.freebyte.com/cad/fea.htm.

(Accessed on 28-02-2017).

[54] Aladdin matrix and finite element environment. http://www.isr.umd.edu/~austin/aladdin.

html#sec6. (Accessed on 28-02-2017).

[55] Abaqus 2016 documentation. http://50.16.225.63/v2016/. (Accessed on 28-02-2017).

[56] Abaqus scripting reference guide (2016). http://50.16.225.63/v2016/books/ker/default.htm.

(Accessed on 28-02-2017).

[57] pynastran_trunk.pdf. https://media.readthedocs.org/pdf/pynastran_trunk/latest/

pynastran_trunk.pdf. (Accessed on 28-02-2017).

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/XML
http://www.femtools.com/products/ftinterfaces.htm
http://www.femtools.com/products/ftinterfaces.htm
https://en.wikipedia.org/wiki/Universal_File_Format
http://www.freebyte.com/cad/fea.htm
http://www.isr.umd.edu/~austin/aladdin.html#sec6
http://www.isr.umd.edu/~austin/aladdin.html#sec6
http://50.16.225.63/v2016/
http://50.16.225.63/v2016/books/ker/default.htm
https://media.readthedocs.org/pdf/pynastran_trunk/latest/pynastran_trunk.pdf
https://media.readthedocs.org/pdf/pynastran_trunk/latest/pynastran_trunk.pdf

Appendix A

Acronyms

FE Finite Element

FEA Finite element analysis

FEM Finite Element Method

API Application Programming Interface

DLL Dynamic-Link Library

CAD Computer Aided Design

CAE Computer Aided Engineering

MVC Model View Controller

XML Extensible Markup Language

78

Appendix B

File Formats - USFOS and VTK

B.1 USFOS

Usfos format devided in three to get the best representation of the file in the paper for-

mat of this thesis. The file represents a eight meter long beam, fixed in both ends with

only its structural weight as forces.

Excerpt from USFOS documentation

The extensions of the Usfos format, in terms of new components or additional fields in

already existing components.

B.2 VTK

VTK format devided in three to get the best representation of the file in the paper format

of this thesis.

79

80 APPENDIX B. FILE FORMATS - USFOS AND VTK

VTK binary

Illustrates the VTK generated as a binary file.

B.2. VTK 81

Figure B.1: Usfos format top

82 APPENDIX B. FILE FORMATS - USFOS AND VTK

Figure B.2: Usfos format bottom

B.2. VTK 83

Figure B.3: Usfos format genbeam - whole

Figure B.4: Usfos documentation ANALYSIS_LINEAR

Figure B.5: Usfos documentation - GENBEAM

84 APPENDIX B. FILE FORMATS - USFOS AND VTK

Figure B.6: Usfos documentation - NODELOAD

Figure B.7: Usfos documentation - NODEMASS

Figure B.8: Usfos documentation - SHELLMASS

B.2. VTK 85

Figure B.9: Usfos documentation - RIGID_COUPL

Figure B.10: VTK format top

86 APPENDIX B. FILE FORMATS - USFOS AND VTK

Figure B.11: VTK format middle

B.2. VTK 87

Figure B.12: VTK format bottom

88 APPENDIX B. FILE FORMATS - USFOS AND VTK

Figure B.13: VTK binary

Appendix C

Further work of Focus

Konstruksjon - Technical List

The experience acquired during the development of the file based system has value for

Focus Software. The overall general thoughts for further development has been shared

in chapter 8. This chapter shows what technical code-specific work that has to be done

to complete the implementation of the files based system.

List of further work

• Future work on Focus Konstruksjon side:

– Structure of directories and files. Now all files are stored in a directory with

the ID from the current wrapper as directory name. This ID has to be saved

in a dictionary/hash table together with the fkon model file to be able to

search for results later on. In CfemPlugin.cs it is suggested to find the name

of the fkon file and replace the variable konstruksjonFileName. The best

solution for the variable is to write the path "//Focus Software//Focus Kon-

struksjon" + the fkon file name. This will make sure that the files are written

89

90 APPENDIX C. FURTHER WORK OF FOCUS KONSTRUKSJON - TECHNICAL LIST

to the correct appData folder.

– Writing cross sections for shell, the addProperty() method in the cfemWrap-

per, only writes one unique cross section per wrapper. But for beam cross

sections the check for if the cross section has been added/written before

fails, and the same GENBEAM cross section is written to Usfos for ever beam,

instead of one unique.

– nodeLoadWriter does not write timeFunctionNodeIDs or isMassList to Us-

fos. Because the format does not support it. And results shows that it is not

needed to send to OOcfem. However, these data should probably be written

to Usfos at some point.

– Add Eccentricity to elements such as beams and shell when/if it should be

implemented in the usfosinput class in OOCfem. If these eccentricities are

controlled by the couplings, ignore this point.

– Today the CfemWrapper.cs are doing calculations with both the Cfem API

and by using the file based system. The reason is that it should be easy to

see what is the changes to the wrapper, and when the time is come to fully

go over to the file based system, and not use the API, it should be easy to

find what to remove from the code. For example when calling the API for

AddNodeLoad in the wrapper, the next call, in that method, is how the same

data is added to the Usfos structure. In that way, it is easy to remove the API

call and remain with the functionality of the file based system.

– In the CfemWrapper.cs there are comments at the places where the new sys-

tem is used such as "//VTU" or "//—–...—Write beam elements to Usfos".

This is just to clarify where in the wrapper the data is transferred to or from

the files from the Focus Konstruksjon’s data structure. Since the wrapper

class could be difficult to navigate in. Make also sure that all parameters that

is subtracted with -1 because of the ++ call, such as the m_PropertySetIdxCounter,

should not longer be substracted.

– It has to be decided if an analysis file should be written together with the

Usfos file. The functionality is written in CfemPlugin.cs, controlled with the

91

boolean variable writeAnalysisFileAsSeperateFile.

– In UsfosNodeWriter.cs the method isTranslationIdentityMatrix() must be de-

veloped to use the reference UMatrix3x3. If the reference is used, the unc-

ommended code can be used instead of today’s code.

– It has been discussed that the following components has to be developed

when further developing the file based system: Spring elements (has to be

decided what to do with curves), Truss elements (add components to the

Usfos documentation before developing a truss writer) and adding strains.Together

with the functionality of the add prescribed displacement method.

– in the method AddNodeMultiple data is written to the Usfos file. However,

the method AddNode does not have it. This is because the code seems a bit

redundant, and it is suggested to see if these two methods could be merged

before implementing UsfosNodes for both methods.

• Future work on OOcfem side:

– Important: To merge the changes from the projectKristoffer branch, do not

use the automatic "git merge". The time spent changing properties from lo-

cal paths (because of the VTK library) will take longer time then only merg-

ing the code in the changed c++ files.

– Create new analysis entries for the Usfos documentation, UFO. For the six

remaining analysis

– Analysis parsers in input_usfos.cpp is being overwritten in other parts of the

software. Now Cfem_main.cpp only does linear analysis as default.

– Parsing NODELOAD has now functionallity of defining eccentricity. How-

ever, the methods has a comment that says: "// No eccentrisity can be de-

fined through this input". This is commented out since it is now possible

to set eccentricity through the updates to the format. This has to be looked

into.

– Functionality of writing eccentricity vectors are available in Focus Konstruk-

sjon. Therefore, writing Eccentricity vectors for elements like beam and

92 APPENDIX C. FURTHER WORK OF FOCUS KONSTRUKSJON - TECHNICAL LIST

shells could be possible. However, these are often controlled by couplings.

This must be planned with the Focus Konstruksjons developing team.

– cfemmain.cpp: ANALYSIS_LINEAR has now not any dummy masses for nodes

and elements, these are read in the usfos_input class. The same dummy

mass elements should be removed from the other analysis, when ready.

– cfemmain.cpp: Has functionality of taking a third input argument, which is

the analysis file. This can be uncommended, when ready. Is controlled by

the boolean variable analysisFileExists.

– Develop a result smoother method for linear_alg_old. When this is com-

pleted, Focus Konstruksjon can test results up against the new smoothed

results and remove the request of the un-smoothed results in CfemWrap-

per.cs at line 1455.

– TimeFunctionIDxs for Loads and masses are not added to the Usfos format.

It is not clear if this variable should be utilized the same way it is used in the

CfemAPI class.

• Test development:

– Develop tests for checking if multiple wrapper directories have been created

when Focus Konstruksjon is initializing more than one wrapper. Tests today

checks if more than one result file have been created when running more

than one load combination.

– Test that truncating values are done correctly. Some tests are written for that

purpose today, but for more complex constructions, this is important.

– Obs: Tests does not complete if files that are being tested are opened in other

programs, such as notepad.

– Test if shell loads, shell masses and node masses are written corretly. Esce-

cially when having dynamic analysis.

– Writing tests for composit elements - is now manually tested to give correct

results (with un-smoothed results).

Appendix D

File formats appendix

Pre-processing – Input files

femML – FEM markup language

The file format femML is developed from the same inspiration as STEP AP209. It is

addressing the problems of interoperability in data structures in 3D modelling, and is

created to contribute to a vertical integration within the finite element domain [6]. This

way the format can facilitate the data transfer, exchange, interchange and integration

between finite element applications. Compared to AP209 this format is only focusing

on pre-processing data.

Figure D.1: femML

XML is a markup language. Originally the language was con-

structed to represent documents in a document-centric cate-

gory, now it also used in a data-centric way with representa-

tion of data structures, often in web services [50]. The femML

is based on a XML format and have a document type definition that represents the cate-

gories, called FEM file elements in the report. Such as nodes, elements, material models

and load cases.

93

94 APPENDIX D. FILE FORMATS APPENDIX

Research shows that the format is no longer a priority due to little new information

in the documentation the last 10 years. The format is not well-documented nor well-

defined, femML is open sourced. However, it is not meeting the requirement of inter-

operability and implementing it could cause a risk since the format could not exist in

the future.

Unfortunate these efforts of making a cross FEM application file format are often shot

down after a period of time, research discovered. It is a marked need and a business is-

sue these efforts tries to solve. However, the enthusiasm around these types of formats

are by now not found in the large commercial software companies. These companies

have politics that makes these formats no longer profitable, and stopping the develop-

ment.

FEMtools – FE data interfaces

After evaluating two formats wanting to generalize FEM data, the report now investi-

gates FEM software which have data structures and software similar to Focus Konstruk-

sjon. Researching these software solutions, it was early revealed that the licenses were

a paid solution. However, they are worth evaluating since they provide some solutions

that could be interesting for Focus Software.

Figure D.2: FEMtools

FEMtools is a software that provides GUI for 3D modelling.

When users want to do simulations of these model, FEMtools

provides a variety of interfaces to exchange data with other FE

software for analysis. Such as ABAQUS, ANSYS and NASTRAN

[51]. FEMtools uses a Universal File(UF) format interface. The UF is a format developed

by Structural Dynamics Research Corporation (SDRC) to make a standard data transfer

between CAD models and analysis [52]. From this interface, FEMtools have made it

possible to communicate with other large commercial software companies. Instead

of isolating the software from other competitors, they have made their solution more

general, and integrated other common solutions. An API were made which makes it

possible to script how the software should utilize different file formats interfaces, like

95

the formats mentioned before. This is a marked strategy the report wants to highlight,

since Focus Software does not have this approach today. With having this approach

FEMtools enables the possibility for users to utilize third-party visualization programs

and third-party solvers.

Aladdin and other free FEA software

Formats evaluated in this chapter represents well-defined and well-documented for-

mats. On the other side, there are formats that could be useful for Focus Konstruksjon,

although they are all specialized on one specific area. Such as high velocity and de-

formation, fluids, magnetic fields and biological representations [53]. To use these file

formats, they would have to be developed to fit Focus Konstruksjon and OOcfem. There

are also formats that are based on simple cases such as 2D or 3D linear analysis. These

formats would need an extension to cover the needs of a file based system for Focus

Software. They are often developed by two or three professors from different universi-

ties, that solved a special case. The format mentioned are often under-documented.

Aladdin is an example of a software with a format that is described above [54]. The

analysis tool is providing more specialized analysis then generally found, and has the

same FEM element data structure stored in a file, normally seen in other formats. How-

ever, the formats do not meet the well-defined and well-documented requirements set

for the file based system.

Post-processing – Output result files

Abaqus ODB

The ODB files represents the output database structure from ABAQUS analysis. These

simulation data is stored in a binary filed with the extension .odb. To read the data

from the output database, it needs the special documentation from Abaqus. Research

in Abaqus’s documentation shows that it is difficult to find an open sourced documen-

tation that would match the needs of a file based Focus Konstruksjon system [55].

96 APPENDIX D. FILE FORMATS APPENDIX

Figure D.3: Abaqus -

Simulia

There are API’s for Python and C++ related to the OBD format.

However, these are interfaces intended on parsing the output

database. Which provide no solution for writing to the format,

and writing to a binary format without proper documentation

could be difficult. This makes the ODB format not suitable for

the file based system [56]. There are a solutions for requesting a .fil format from the

STEP routines in Abaqus, which is an ASCII file, which is again only focused on output

result database. Even if the ODB is a well-used format and from that perspective need

a thorough evaluation. The format needs to use instances of Abaqus when generating

result data. This does not meet the requirements of Focus Software.

Nastran – bulk data file

Nastran stands for NASA Structural Analysis and has been used to solve finite elements

problems since the 1960’s. After 2001 Nastran releases the source code and from then

NASTRAN have been developed by other independently by for example NX Nastran.

The bulk data file format is well-defined and well-documented, and research showed

that several different software uses it. NASTRAN also have other file formats such as

OP2. However, the bulk format is used in majority. This would normally lead to nu-

merous of different parsers and writers for this format. Research found that the claim

is true, anyhow these interfaces are developed in to different licensed software, and not

open sourced. The format has documentation on how the FEM file format elements,

called NASTRAN cards, are built up. However, there are few open sourced interfaces or

wrappers involving NASTRAN bulk files.

One relevant API made for NASTRAN bulk data files is called pyNastran [57]. This is

a Python high-level interface that supports 200 of the most used NASTRAN cards. Even

if Python is not a program language used by Focus Konstruksjon, this could be an inspi-

ration for future work. There are other interfaces that focuses on other NASTRAN files

such as OP2, which often provide C++ frameworks. Which are not as well-documented

as the bulk data file. Therefore, it might not be recommended to implement the OP2

97

file format.

Since the file format is used by many software programs, implementing the bulk data

file will ensure that data from Focus Konstruksjon can be read by other visualization

programs. Especially, programs that are not open sourced, and programs that Focus

Software’s customers already might use.

Appendix E

Doxygen documentation

This is an automatic generated documentation for the file based system. To prevent an

excessively documentation, some parts of the documentation is left out from this chap-

ter. The entire documentation can be found in the digital attachments for this thesis, as

a web page solution. In the documentation folder, open the file named "index.html" to

access the documentation.

98

Focus Konstruksjon - File Based System

Generated by Doxygen 1.8.13

Contents

1 Namespace Index 1

1.1 Packages . 1

2 Class Index 3

2.1 Class List . 3

3 Namespace Documentation 5

3.1 ParseVTKFormat Namespace Reference . 5

3.2 WriteUsfosFormat Namespace Reference . 5

3.2.1 Enumeration Type Documentation . 6

3.2.1.1 elementDiscription . 6

4 Class Documentation 7

4.1 CfemPlugin.CfemResultsFileSystem Class Reference 7

4.1.1 Constructor & Destructor Documentation 8

4.1.1.1 CfemResultsFileSystem() 8

4.1.2 Member Function Documentation . 8

4.1.2.1 createResultRootDirectory() 8

4.1.2.2 createWrapperDirectory() 8

4.1.3 Property Documentation . 8

4.1.3.1 resultRootDirectory . 8

4.1.3.2 wrapperDirDictonary . 8

4.2 CfemPlugin.CfemRunAnalysis Class Reference 9

4.2.1 Constructor & Destructor Documentation 9

4.2.1.1 CfemRunAnalysis() . 9

4.2.2 Member Function Documentation . 9

4.2.2.1 runAnalysis() . 9

4.3 WriteUsfosFormat.UsfosAnalysisInput Class Reference 10

ii CONTENTS

4.3.1 Member Function Documentation . 10

4.3.1.1 writeOutputAnalysisLinear() 10

4.4 WriteUsfosFormat.UsfosBeamCrossSection Class Reference 11

4.4.1 Property Documentation . 11

4.4.1.1 AreaCenterY . 12

4.4.1.2 AreaCenterZ . 12

4.4.1.3 AreaX . 12

4.4.1.4 CrossSectionId . 12

4.4.1.5 Ix . 12

4.4.1.6 Iy . 12

4.4.1.7 Iz . 12

4.4.1.8 ShearAreaY . 12

4.4.1.9 ShearAreaZ . 12

4.4.1.10 ShearCenterY . 13

4.4.1.11 ShearCenterZ . 13

4.4.1.12 TanAlpha . 13

4.5 WriteUsfosFormat.UsfosCouplingWriter Class Reference 13

4.5.1 Member Function Documentation . 13

4.5.1.1 linearCouplingWriter() . 14

4.5.1.2 rigidCouplingWriter() . 14

4.6 WriteUsfosFormat.UsfosCrossSectionWriter Class Reference 14

4.6.1 Member Function Documentation . 14

4.6.1.1 writeCrossSectionBeam() 15

4.6.1.2 writeCrossSectionShellComposit() 15

4.6.1.3 writeCrossSectionShellHomo() 15

4.7 WriteUsfosFormat.UsfosEccentricityVector Class Reference 15

4.7.1 Constructor & Destructor Documentation 16

4.7.1.1 UsfosEccentricityVector() 16

4.7.2 Member Function Documentation . 16

4.7.2.1 writeEccentricityVecs() . 16

4.7.3 Property Documentation . 16

4.7.3.1 coorEccList . 16

4.8 WriteUsfosFormat.UsfosElement Class Reference 17

4.8.1 Property Documentation . 17

4.8.1.1 coorVec . 17

4.8.1.2 ElementType . 17

Generated by Doxygen

CONTENTS iii

4.8.1.3 IndexElement . 18

4.8.1.4 MaterialNumberElement 18

4.8.1.5 NodeNumbersElements 18

4.8.1.6 PropertyNumberElement 18

4.9 WriteUsfosFormat.UsfosElementLoads Class Reference 18

4.9.1 Constructor & Destructor Documentation 19

4.9.1.1 UsfosElementLoads() . 19

4.9.2 Member Function Documentation . 19

4.9.2.1 addUsfoselementLoads() 19

4.9.3 Property Documentation . 19

4.9.3.1 ElementalIDs . 19

4.9.3.2 ElementLoadGroup . 19

4.9.3.3 ElementLoadIndexes . 20

4.9.3.4 ForceList . 20

4.10 WriteUsfosFormat.UsfosElementMasses Class Reference 20

4.10.1 Constructor & Destructor Documentation 21

4.10.1.1 UsfosElementMasses() . 21

4.10.2 Member Function Documentation . 21

4.10.2.1 addUsfosElementMass() 21

4.10.3 Property Documentation . 21

4.10.3.1 ElementIDs . 21

4.10.3.2 Masses . 21

4.10.3.3 massIDs . 21

4.11 WriteUsfosFormat.UsfosElementWriter Class Reference 22

4.11.1 Member Function Documentation . 22

4.11.1.1 writeElements() . 22

4.12 WriteUsfosFormat.UsfosFileWriter Class Reference 23

4.12.1 Constructor & Destructor Documentation 23

4.12.1.1 UsfosFileWriter() . 23

4.12.2 Member Function Documentation . 23

4.12.2.1 writeFile() . 23

4.12.3 Property Documentation . 24

4.12.3.1 m_Lines . 24

4.13 WriteUsfosFormat.UsfosLinearCouplings Class Reference 24

4.13.1 Constructor & Destructor Documentation 25

4.13.1.1 UsfosLinearCouplings() . 25

Generated by Doxygen

iv CONTENTS

4.13.2 Member Function Documentation . 25

4.13.2.1 addUsfosLinearCoupling() 25

4.13.3 Property Documentation . 25

4.13.3.1 ConstantLinCoupls . 25

4.13.3.2 MasterDOFs . 25

4.13.3.3 MasterDOFValues . 26

4.13.3.4 MasterNodes . 26

4.13.3.5 SlaveDOFs . 26

4.13.3.6 SlaveNodeIDs . 26

4.14 WriteUsfosFormat.UsfosLoadWriter Class Reference 26

4.14.1 Member Function Documentation . 27

4.14.1.1 areAllElemetsZero() . 27

4.14.1.2 elementLoadWriter() . 27

4.14.1.3 nodeLoadWriter() . 27

4.15 WriteUsfosFormat.UsfosMassWriter Class Reference 28

4.15.1 Member Function Documentation . 28

4.15.1.1 elementMassWriter() . 29

4.15.1.2 nodeMassWriter() . 29

4.16 WriteUsfosFormat.UsfosMaterialWriter Class Reference 29

4.16.1 Member Function Documentation . 29

4.16.1.1 materialWriter() . 30

4.16.1.2 materialWriterOrtho2D() 30

4.17 WriteUsfosFormat.UsfosNodeLoads Class Reference 30

4.17.1 Constructor & Destructor Documentation 31

4.17.1.1 UsfosNodeLoads() . 31

4.17.2 Member Function Documentation . 31

4.17.2.1 addUsfosNodeLoad() . 31

4.17.3 Property Documentation . 31

4.17.3.1 EccentricityList . 31

4.17.3.2 ForceList . 32

4.17.3.3 LoadGroup . 32

4.17.3.4 MomentList . 32

4.17.3.5 NodelIDs . 32

4.17.3.6 NodeLoadIndexes . 32

4.18 WriteUsfosFormat.UsfosNodeMasses Class Reference 32

4.18.1 Constructor & Destructor Documentation 33

Generated by Doxygen

CONTENTS v

4.18.1.1 UsfosNodeMasses() . 33

4.18.2 Member Function Documentation . 33

4.18.2.1 addUsfosNodeMass() . 33

4.18.3 Property Documentation . 33

4.18.3.1 Interiaes . 33

4.18.3.2 Masses . 33

4.18.3.3 massIDs . 34

4.18.3.4 NodelIDs . 34

4.19 WriteUsfosFormat.UsfosNodeWriter Class Reference 34

4.19.1 Member Function Documentation . 34

4.19.1.1 areAllElemetsZero() . 35

4.19.1.2 generateNodeTransString() 35

4.19.1.3 isTranslationIdentityMatrix() 35

4.19.1.4 writeNodes() . 36

4.20 WriteUsfosFormat.UsfosRigitCouplings Class Reference 37

4.20.1 Constructor & Destructor Documentation 37

4.20.1.1 UsfosRigitCouplings() . 37

4.20.2 Member Function Documentation . 37

4.20.2.1 addUsfosRigidCoupling() 38

4.20.3 Property Documentation . 38

4.20.3.1 MasterNodeIDs . 38

4.20.3.2 SlaveNodeIDs . 38

4.21 WriteUsfosFormat.UsfosUnitVectors Class Reference 38

4.21.1 Constructor & Destructor Documentation 39

4.21.1.1 UsfosUnitVectors() . 39

4.21.2 Member Function Documentation . 39

4.21.2.1 Contains() . 39

4.21.2.2 writeUnitVecs() . 39

4.21.3 Property Documentation . 39

4.21.3.1 coorVecList . 39

4.22 ParseVTKFormat.VTKCorrectIDMapping Class Reference 40

4.22.1 Constructor & Destructor Documentation 40

4.22.1.1 VTKCorrectIDMapping() 40

4.22.2 Member Function Documentation . 40

4.22.2.1 hasCorrectIDMapping() . 41

4.22.3 Property Documentation . 41

Generated by Doxygen

vi CONTENTS

4.22.3.1 BeamIDsNonContiniusAcending 41

4.22.3.2 NodeIDsNonContiniusAcending 41

4.22.3.3 ShellIDsNonContiniusAcending 41

4.23 ParseVTKFormat.VTKErrorObserver Class Reference 42

4.23.1 Constructor & Destructor Documentation 42

4.23.1.1 VTKErrorObserver() . 42

4.24 ParseVTKFormat.VTKFieldDataReader Class Reference 43

4.24.1 Constructor & Destructor Documentation 43

4.24.1.1 VTKFieldDataReader() . 43

4.24.2 Member Function Documentation . 44

4.24.2.1 readAllForcesBeam() . 44

4.24.2.2 readAllForcesShell() . 44

4.24.2.3 readAllReactionForcesShell() 44

4.24.3 Property Documentation . 44

4.24.3.1 CalculateMaxForcesBeam 44

4.24.3.2 CalculateMaxForcesShell 45

4.24.3.3 CalculateMinForcesBeam 45

4.24.3.4 CalculateMinForcesShell 45

4.25 ParseVTKFormat.VTKgetNameSpecificVTKDataArray Class Reference 45

4.25.1 Member Function Documentation . 46

4.25.1.1 getNameSpecificDataArrayCellData() 46

4.25.1.2 getNameSpecificDataArrayFieldData() 46

4.25.1.3 getNameSpecificDataArrayPointData() 46

4.26 ParseVTKFormat.VTKPointDataReader Class Reference 47

4.26.1 Constructor & Destructor Documentation 48

4.26.1.1 VTKPointDataReader() . 48

4.26.2 Member Function Documentation . 48

4.26.2.1 readRotationVectors() . 48

4.26.2.2 readTranslation() . 48

4.26.3 Property Documentation . 48

4.26.3.1 ExtremeDisplacement . 49

4.27 ParseVTKFormat.VTKreader Class Reference 49

4.27.1 Constructor & Destructor Documentation 49

4.27.1.1 VTKreader() . 49

4.27.2 Member Function Documentation . 49

4.27.2.1 readFile() . 49

Index 51

Generated by Doxygen

Chapter 1

Namespace Index

1.1 Packages

Here are the packages with brief descriptions (if available):

CfemPlugin . ??

ParseVTKFormat . 5

WriteUsfosFormat . 5

2 Namespace Index

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CfemPlugin.CfemResultsFileSystem . 7

CfemPlugin.CfemRunAnalysis . 9

WriteUsfosFormat.UsfosAnalysisInput . 10

WriteUsfosFormat.UsfosBeamCrossSection . 11

WriteUsfosFormat.UsfosCouplingWriter . 13

WriteUsfosFormat.UsfosCrossSectionWriter . 14

WriteUsfosFormat.UsfosEccentricityVector . 15

WriteUsfosFormat.UsfosElement . 17

WriteUsfosFormat.UsfosElementLoads . 18

WriteUsfosFormat.UsfosElementMasses . 20

WriteUsfosFormat.UsfosElementWriter . 22

WriteUsfosFormat.UsfosFileWriter . 23

WriteUsfosFormat.UsfosLinearCouplings . 24

WriteUsfosFormat.UsfosLoadWriter . 26

WriteUsfosFormat.UsfosMassWriter . 28

WriteUsfosFormat.UsfosMaterialWriter . 29

WriteUsfosFormat.UsfosNodeLoads . 30

WriteUsfosFormat.UsfosNodeMasses . 32

WriteUsfosFormat.UsfosNodeWriter . 34

WriteUsfosFormat.UsfosRigitCouplings . 37

WriteUsfosFormat.UsfosUnitVectors . 38

ParseVTKFormat.VTKCorrectIDMapping . 40

ParseVTKFormat.VTKErrorObserver . 42

ParseVTKFormat.VTKFieldDataReader . 43

ParseVTKFormat.VTKgetNameSpecificVTKDataArray 45

ParseVTKFormat.VTKPointDataReader . 47

ParseVTKFormat.VTKreader . 49

4 Class Index

Generated by Doxygen

Chapter 3

Namespace Documentation

3.1 ParseVTKFormat Namespace Reference

Classes

• class VTKCorrectIDMapping

• class VTKErrorObserver

• class VTKFieldDataReader

• class VTKgetNameSpecificVTKDataArray

• class VTKPointDataReader

• class VTKreader

3.2 WriteUsfosFormat Namespace Reference

Classes

• class UsfosAnalysisInput

• class UsfosBeamCrossSection

• class UsfosCouplingWriter

• class UsfosCrossSectionWriter

• class UsfosEccentricityVector

• class UsfosElement

• class UsfosElementLoads

• class UsfosElementMasses

• class UsfosElementWriter

• class UsfosFileWriter

• class UsfosLinearCouplings

• class UsfosLoadWriter

• class UsfosMassWriter

6 Namespace Documentation

• class UsfosMaterialWriter

• class UsfosNodeLoads

• class UsfosNodeMasses

• class UsfosNodeWriter

• class UsfosRigitCouplings

• class UsfosUnitVectors

Enumerations

• enum elementDiscription { elementDiscription.BEAM = 28, elementDiscription.TRISHELL = 30

}

3.2.1 Enumeration Type Documentation

3.2.1.1 elementDiscription

enum WriteUsfosFormat.elementDiscription [strong]

Enumerator

BEAM

TRISHELL

Generated by Doxygen

Chapter 4

Class Documentation

4.1 CfemPlugin.CfemResultsFileSystem Class Reference

Collaboration diagram for CfemPlugin.CfemResultsFileSystem:

CfemPlugin.CfemResultsFile
System

+ resultRootDirectory
+ wrapperDirDictonary

+ CfemResultsFileSystem()
+ createResultRootDirectory()
+ createWrapperDirectory()

Public Member Functions

• CfemResultsFileSystem (string applicationDirectory, string resultDirectory)

• void createResultRootDirectory ()

• void createWrapperDirectory (UID wrapperID)

Properties

• string resultRootDirectory [get, set]

• Dictionary< UID, string > wrapperDirDictonary [get, set]

8 Class Documentation

4.1.1 Constructor & Destructor Documentation

4.1.1.1 CfemResultsFileSystem()

CfemPlugin.CfemResultsFileSystem.CfemResultsFileSystem (

string applicationDirectory,

string resultDirectory)

4.1.2 Member Function Documentation

4.1.2.1 createResultRootDirectory()

void CfemPlugin.CfemResultsFileSystem.createResultRootDirectory ()

4.1.2.2 createWrapperDirectory()

void CfemPlugin.CfemResultsFileSystem.createWrapperDirectory (

UID wrapperID)

4.1.3 Property Documentation

4.1.3.1 resultRootDirectory

string CfemPlugin.CfemResultsFileSystem.resultRootDirectory [get], [set]

4.1.3.2 wrapperDirDictonary

Dictionary<UID, string> CfemPlugin.CfemResultsFileSystem.wrapperDirDictonary

[get], [set]

The documentation for this class was generated from the following file:

• CfemResultsFileSystem.cs

Generated by Doxygen

4.2 CfemPlugin.CfemRunAnalysis Class Reference 9

4.2 CfemPlugin.CfemRunAnalysis Class Reference

Collaboration diagram for CfemPlugin.CfemRunAnalysis:

CfemPlugin.CfemRunAnalysis

+ CfemRunAnalysis()
+ runAnalysis()

Public Member Functions

• CfemRunAnalysis (string workingDirectory, string inputFilePath, string resultWritingDirectory)

• void runAnalysis ()

4.2.1 Constructor & Destructor Documentation

4.2.1.1 CfemRunAnalysis()

CfemPlugin.CfemRunAnalysis.CfemRunAnalysis (

string workingDirectory,

string inputFilePath,

string resultWritingDirectory)

4.2.2 Member Function Documentation

4.2.2.1 runAnalysis()

void CfemPlugin.CfemRunAnalysis.runAnalysis ()

The documentation for this class was generated from the following file:

• CfemRunAnalysis.cs

Generated by Doxygen

10 Class Documentation

4.3 WriteUsfosFormat.UsfosAnalysisInput Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosAnalysisInput:

WriteUsfosFormat.UsfosAnalysis
Input

+ writeOutputAnalysisLinear()

Public Member Functions

• List< string>writeOutputAnalysisLinear (CfemInputLinear inputLinear, int outOfPlaneDirection2D)

4.3.1 Member Function Documentation

4.3.1.1 writeOutputAnalysisLinear()

List<string> WriteUsfosFormat.UsfosAnalysisInput.writeOutputAnalysisLinear

(

CfemInputLinear inputLinear,

int outOfPlaneDirection2D)

The documentation for this class was generated from the following file:

• UsfosAnalysisInput.cs

Generated by Doxygen

4.4 WriteUsfosFormat.UsfosBeamCrossSection Class Reference 11

4.4 WriteUsfosFormat.UsfosBeamCrossSection Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosBeamCrossSection:

WriteUsfosFormat.UsfosBeam
CrossSection

+ CrossSectionId
+ AreaX
+ Ix
+ Iy
+ Iz
+ ShearAreaY
+ ShearAreaZ
+ TanAlpha
+ AreaCenterY
+ AreaCenterZ
+ ShearCenterY
+ ShearCenterZ

Properties

• int CrossSectionId [get, set]

• double AreaX [get, set]

• double Ix [get, set]

• double Iy [get, set]

• double Iz [get, set]

• double ShearAreaY [get, set]

• double ShearAreaZ [get, set]

• double TanAlpha [get, set]

• double AreaCenterY [get, set]

• double AreaCenterZ [get, set]

• double ShearCenterY [get, set]

• double ShearCenterZ [get, set]

4.4.1 Property Documentation

Generated by Doxygen

12 Class Documentation

4.4.1.1 AreaCenterY

double WriteUsfosFormat.UsfosBeamCrossSection.AreaCenterY [get], [set]

4.4.1.2 AreaCenterZ

double WriteUsfosFormat.UsfosBeamCrossSection.AreaCenterZ [get], [set]

4.4.1.3 AreaX

double WriteUsfosFormat.UsfosBeamCrossSection.AreaX [get], [set]

4.4.1.4 CrossSectionId

int WriteUsfosFormat.UsfosBeamCrossSection.CrossSectionId [get], [set]

4.4.1.5 Ix

double WriteUsfosFormat.UsfosBeamCrossSection.Ix [get], [set]

4.4.1.6 Iy

double WriteUsfosFormat.UsfosBeamCrossSection.Iy [get], [set]

4.4.1.7 Iz

double WriteUsfosFormat.UsfosBeamCrossSection.Iz [get], [set]

4.4.1.8 ShearAreaY

double WriteUsfosFormat.UsfosBeamCrossSection.ShearAreaY [get], [set]

4.4.1.9 ShearAreaZ

double WriteUsfosFormat.UsfosBeamCrossSection.ShearAreaZ [get], [set]

Generated by Doxygen

4.5 WriteUsfosFormat.UsfosCouplingWriter Class Reference 13

4.4.1.10 ShearCenterY

double WriteUsfosFormat.UsfosBeamCrossSection.ShearCenterY [get], [set]

4.4.1.11 ShearCenterZ

double WriteUsfosFormat.UsfosBeamCrossSection.ShearCenterZ [get], [set]

4.4.1.12 TanAlpha

double WriteUsfosFormat.UsfosBeamCrossSection.TanAlpha [get], [set]

The documentation for this class was generated from the following file:

• UsfosBeamCrossSection.cs

4.5 WriteUsfosFormat.UsfosCouplingWriter Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosCouplingWriter:

WriteUsfosFormat.UsfosCoupling
Writer

+ linearCouplingWriter()
+ rigidCouplingWriter()

Public Member Functions

• List< string > linearCouplingWriter (UsfosLinearCouplings linCouplings)

• List< string > rigidCouplingWriter (UsfosRigitCouplings rigidCouplings)

4.5.1 Member Function Documentation

Generated by Doxygen

14 Class Documentation

4.5.1.1 linearCouplingWriter()

List<string> WriteUsfosFormat.UsfosCouplingWriter.linearCouplingWriter (

UsfosLinearCouplings linCouplings)

4.5.1.2 rigidCouplingWriter()

List<string> WriteUsfosFormat.UsfosCouplingWriter.rigidCouplingWriter (

UsfosRigitCouplings rigidCouplings)

The documentation for this class was generated from the following file:

• UsfosCouplingWriter.cs

4.6 WriteUsfosFormat.UsfosCrossSectionWriter Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosCrossSectionWriter:

WriteUsfosFormat.UsfosCross
SectionWriter

+ writeCrossSectionBeam()
+ writeCrossSectionShellHomo()
+ writeCrossSectionShellComposit()

Public Member Functions

• List< string > writeCrossSectionBeam (UsfosBeamCrossSection bProp)

• List< string > writeCrossSectionShellHomo (int CrossSectionId, double thickness)

• string writeCrossSectionShellComposit (int CompositSectionId, double z0, int[] materialIDs,

double[] thicknessList, double[] thetalOrientationList)

4.6.1 Member Function Documentation

Generated by Doxygen

4.7 WriteUsfosFormat.UsfosEccentricityVector Class Reference 15

4.6.1.1 writeCrossSectionBeam()

List<string> WriteUsfosFormat.UsfosCrossSectionWriter.writeCrossSectionBeam

(

UsfosBeamCrossSection bProp)

4.6.1.2 writeCrossSectionShellComposit()

string WriteUsfosFormat.UsfosCrossSectionWriter.writeCrossSectionShellComposit

(

int CompositSectionId,

double z0,

int [] materialIDs,

double [] thicknessList,

double [] thetalOrientationList)

4.6.1.3 writeCrossSectionShellHomo()

List<string> WriteUsfosFormat.UsfosCrossSectionWriter.writeCrossSectionShell←֓

Homo (

int CrossSectionId,

double thickness)

The documentation for this class was generated from the following file:

• UsfosCrossSectionWriter.cs

4.7 WriteUsfosFormat.UsfosEccentricityVector Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosEccentricityVector:

WriteUsfosFormat.UsfosEccentricity
Vector

+ coorEccList

+ UsfosEccentricityVector()
+ writeEccentricityVecs()

Generated by Doxygen

16 Class Documentation

Public Member Functions

• UsfosEccentricityVector ()

• List< string > writeEccentricityVecs ()

Properties

• List< double[]> coorEccList [get, set]

4.7.1 Constructor & Destructor Documentation

4.7.1.1 UsfosEccentricityVector()

WriteUsfosFormat.UsfosEccentricityVector.UsfosEccentricityVector ()

4.7.2 Member Function Documentation

4.7.2.1 writeEccentricityVecs()

List<string> WriteUsfosFormat.UsfosEccentricityVector.writeEccentricityVecs

()

4.7.3 Property Documentation

4.7.3.1 coorEccList

List<double[]> WriteUsfosFormat.UsfosEccentricityVector.coorEccList [get],

[set]

The documentation for this class was generated from the following file:

• UsfosEccentricityVector.cs

Generated by Doxygen

4.8 WriteUsfosFormat.UsfosElement Class Reference 17

4.8 WriteUsfosFormat.UsfosElement Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosElement:

WriteUsfosFormat.UsfosElement

+ IndexElement
+ ElementType
+ PropertyNumberElement
+ MaterialNumberElement
+ NodeNumbersElements
+ coorVec

Properties

• int [] IndexElement [get, set]

• int [] ElementType [get, set]

• int [] PropertyNumberElement [get, set]

• int [] MaterialNumberElement [get, set]

• int [,] NodeNumbersElements [get, set]

• double [][] coorVec [get, set]

4.8.1 Property Documentation

4.8.1.1 coorVec

double [][] WriteUsfosFormat.UsfosElement.coorVec [get], [set]

4.8.1.2 ElementType

int [] WriteUsfosFormat.UsfosElement.ElementType [get], [set]

Generated by Doxygen

18 Class Documentation

4.8.1.3 IndexElement

int [] WriteUsfosFormat.UsfosElement.IndexElement [get], [set]

4.8.1.4 MaterialNumberElement

int [] WriteUsfosFormat.UsfosElement.MaterialNumberElement [get], [set]

4.8.1.5 NodeNumbersElements

int [,] WriteUsfosFormat.UsfosElement.NodeNumbersElements [get], [set]

4.8.1.6 PropertyNumberElement

int [] WriteUsfosFormat.UsfosElement.PropertyNumberElement [get], [set]

The documentation for this class was generated from the following file:

• UsfosElement.cs

4.9 WriteUsfosFormat.UsfosElementLoads Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosElementLoads:

WriteUsfosFormat.UsfosElement
Loads

+ ElementLoadIndexes
+ ElementLoadGroup
+ ElementalIDs
+ ForceList

+ UsfosElementLoads()
+ addUsfoselementLoads()

Generated by Doxygen

4.9 WriteUsfosFormat.UsfosElementLoads Class Reference 19

Public Member Functions

• UsfosElementLoads ()

• void addUsfoselementLoads (int loadIndex, int loadGroup, int[] elementalIDs, double[] forces)

Properties

• List< int > ElementLoadIndexes [get, set]

• List< int > ElementLoadGroup [get, set]

• List< int[]> ElementalIDs [get, set]

• List< double[]> ForceList [get, set]

4.9.1 Constructor & Destructor Documentation

4.9.1.1 UsfosElementLoads()

WriteUsfosFormat.UsfosElementLoads.UsfosElementLoads ()

4.9.2 Member Function Documentation

4.9.2.1 addUsfoselementLoads()

void WriteUsfosFormat.UsfosElementLoads.addUsfoselementLoads (

int loadIndex,

int loadGroup,

int [] elementalIDs,

double [] forces)

4.9.3 Property Documentation

4.9.3.1 ElementalIDs

List<int[]> WriteUsfosFormat.UsfosElementLoads.ElementalIDs [get], [set]

4.9.3.2 ElementLoadGroup

List<int> WriteUsfosFormat.UsfosElementLoads.ElementLoadGroup [get], [set]

Generated by Doxygen

20 Class Documentation

4.9.3.3 ElementLoadIndexes

List<int> WriteUsfosFormat.UsfosElementLoads.ElementLoadIndexes [get], [set]

4.9.3.4 ForceList

List<double[]> WriteUsfosFormat.UsfosElementLoads.ForceList [get], [set]

The documentation for this class was generated from the following file:

• UsfosElementLoads.cs

4.10 WriteUsfosFormat.UsfosElementMasses Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosElementMasses:

WriteUsfosFormat.UsfosElement
Masses

+ massIDs
+ ElementIDs
+ Masses

+ UsfosElementMasses()
+ addUsfosElementMass()

Public Member Functions

• UsfosElementMasses ()

• void addUsfosElementMass (int massID, int[] elementIDs, double mass)

Properties

• List< int > massIDs [get, set]

• List< int[]> ElementIDs [get, set]

• List< double > Masses [get, set]

Generated by Doxygen

4.10 WriteUsfosFormat.UsfosElementMasses Class Reference 21

4.10.1 Constructor & Destructor Documentation

4.10.1.1 UsfosElementMasses()

WriteUsfosFormat.UsfosElementMasses.UsfosElementMasses ()

4.10.2 Member Function Documentation

4.10.2.1 addUsfosElementMass()

void WriteUsfosFormat.UsfosElementMasses.addUsfosElementMass (

int massID,

int [] elementIDs,

double mass)

4.10.3 Property Documentation

4.10.3.1 ElementIDs

List<int[]> WriteUsfosFormat.UsfosElementMasses.ElementIDs [get], [set]

4.10.3.2 Masses

List<double> WriteUsfosFormat.UsfosElementMasses.Masses [get], [set]

4.10.3.3 massIDs

List<int> WriteUsfosFormat.UsfosElementMasses.massIDs [get], [set]

The documentation for this class was generated from the following file:

• UsfosElementMasses.cs

Generated by Doxygen

22 Class Documentation

4.11 WriteUsfosFormat.UsfosElementWriter Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosElementWriter:

WriteUsfosFormat.UsfosElement
Writer

+ writeElements()

Public Member Functions

• List< string > writeElements (UsfosElement usfosElement, UsfosUnitVectors unitVecs)

4.11.1 Member Function Documentation

4.11.1.1 writeElements()

List<string> WriteUsfosFormat.UsfosElementWriter.writeElements (

UsfosElement usfosElement,

UsfosUnitVectors unitVecs)

The documentation for this class was generated from the following file:

• UsfosElementWriter.cs

Generated by Doxygen

4.12 WriteUsfosFormat.UsfosFileWriter Class Reference 23

4.12 WriteUsfosFormat.UsfosFileWriter Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosFileWriter:

WriteUsfosFormat.UsfosFile
Writer

+ m_Lines

+ UsfosFileWriter()
+ writeFile()

Public Member Functions

• UsfosFileWriter (string filePath)

• void writeFile ()

Properties

• List< string > m_Lines [get, set]

4.12.1 Constructor & Destructor Documentation

4.12.1.1 UsfosFileWriter()

WriteUsfosFormat.UsfosFileWriter.UsfosFileWriter (

string filePath)

4.12.2 Member Function Documentation

4.12.2.1 writeFile()

void WriteUsfosFormat.UsfosFileWriter.writeFile ()

Generated by Doxygen

24 Class Documentation

4.12.3 Property Documentation

4.12.3.1 m_Lines

List<string> WriteUsfosFormat.UsfosFileWriter.m_Lines [get], [set]

The documentation for this class was generated from the following file:

• UsforsFileWriter.cs

4.13 WriteUsfosFormat.UsfosLinearCouplings Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosLinearCouplings:

WriteUsfosFormat.UsfosLinear
Couplings

+ SlaveNodeIDs
+ SlaveDOFs
+ ConstantLinCoupls
+ MasterDOFValues
+ MasterNodes
+ MasterDOFs

+ UsfosLinearCouplings()
+ addUsfosLinearCoupling()

Public Member Functions

• UsfosLinearCouplings ()

• void addUsfosLinearCoupling (int slaveNodeID, int slaveDOF, double constLinCoupl, double[]

masterDOFvalue, int[] masterNodes, int[] masterDOF)

Generated by Doxygen

4.13 WriteUsfosFormat.UsfosLinearCouplings Class Reference 25

Properties

• List< int > SlaveNodeIDs [get, set]

• List< int > SlaveDOFs [get, set]

• List< double > ConstantLinCoupls [get, set]

• List< double[]> MasterDOFValues [get, set]

• List< int[]> MasterNodes [get, set]

• List< int[]> MasterDOFs [get, set]

4.13.1 Constructor & Destructor Documentation

4.13.1.1 UsfosLinearCouplings()

WriteUsfosFormat.UsfosLinearCouplings.UsfosLinearCouplings ()

4.13.2 Member Function Documentation

4.13.2.1 addUsfosLinearCoupling()

void WriteUsfosFormat.UsfosLinearCouplings.addUsfosLinearCoupling (

int slaveNodeID,

int slaveDOF,

double constLinCoupl,

double [] masterDOFvalue,

int [] masterNodes,

int [] masterDOF)

4.13.3 Property Documentation

4.13.3.1 ConstantLinCoupls

List<double> WriteUsfosFormat.UsfosLinearCouplings.ConstantLinCoupls [get],

[set]

4.13.3.2 MasterDOFs

List<int[]> WriteUsfosFormat.UsfosLinearCouplings.MasterDOFs [get], [set]

Generated by Doxygen

26 Class Documentation

4.13.3.3 MasterDOFValues

List<double[]> WriteUsfosFormat.UsfosLinearCouplings.MasterDOFValues [get],

[set]

4.13.3.4 MasterNodes

List<int[]> WriteUsfosFormat.UsfosLinearCouplings.MasterNodes [get], [set]

4.13.3.5 SlaveDOFs

List<int> WriteUsfosFormat.UsfosLinearCouplings.SlaveDOFs [get], [set]

4.13.3.6 SlaveNodeIDs

List<int> WriteUsfosFormat.UsfosLinearCouplings.SlaveNodeIDs [get], [set]

The documentation for this class was generated from the following file:

• UsfosLinearCouplings.cs

4.14 WriteUsfosFormat.UsfosLoadWriter Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosLoadWriter:

WriteUsfosFormat.UsfosLoad
Writer

+ nodeLoadWriter()
+ elementLoadWriter()
+ areAllElemetsZero()

Generated by Doxygen

4.14 WriteUsfosFormat.UsfosLoadWriter Class Reference 27

Public Member Functions

• List< string > nodeLoadWriter (UsfosNodeLoads loads, UsfosEccentricityVector eccVector)

• List< string > elementLoadWriter (UsfosElementLoads elementLoads)

• bool areAllElemetsZero (double[] array)

4.14.1 Member Function Documentation

4.14.1.1 areAllElemetsZero()

bool WriteUsfosFormat.UsfosLoadWriter.areAllElemetsZero (

double [] array)

Here is the caller graph for this function:

WriteUsfosFormat.UsfosLoad
Writer.areAllElemetsZero

WriteUsfosFormat.UsfosLoad
Writer.nodeLoadWriter

4.14.1.2 elementLoadWriter()

List<string> WriteUsfosFormat.UsfosLoadWriter.elementLoadWriter (

UsfosElementLoads elementLoads)

4.14.1.3 nodeLoadWriter()

List<string> WriteUsfosFormat.UsfosLoadWriter.nodeLoadWriter (

UsfosNodeLoads loads,

UsfosEccentricityVector eccVector)

Generated by Doxygen

28 Class Documentation

Here is the call graph for this function:

WriteUsfosFormat.UsfosLoad
Writer.nodeLoadWriter

WriteUsfosFormat.UsfosLoad
Writer.areAllElemetsZero

The documentation for this class was generated from the following file:

• UsfosLoadWriter.cs

4.15 WriteUsfosFormat.UsfosMassWriter Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosMassWriter:

WriteUsfosFormat.UsfosMass
Writer

+ nodeMassWriter()
+ elementMassWriter()

Public Member Functions

• List< string > nodeMassWriter (UsfosNodeMasses nodeMass)

• List< string > elementMassWriter (UsfosElementMasses elementMasses)

4.15.1 Member Function Documentation

Generated by Doxygen

4.16 WriteUsfosFormat.UsfosMaterialWriter Class Reference 29

4.15.1.1 elementMassWriter()

List<string> WriteUsfosFormat.UsfosMassWriter.elementMassWriter (

UsfosElementMasses elementMasses)

4.15.1.2 nodeMassWriter()

List<string> WriteUsfosFormat.UsfosMassWriter.nodeMassWriter (

UsfosNodeMasses nodeMass)

The documentation for this class was generated from the following file:

• UsfosMassWriter.cs

4.16 WriteUsfosFormat.UsfosMaterialWriter Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosMaterialWriter:

WriteUsfosFormat.UsfosMaterial
Writer

+ materialWriter()
+ materialWriterOrtho2D()

Public Member Functions

• string materialWriter (int materialId, double materialEmod, double materialPoissNu, double Material←֓

DensityRho)

• string materialWriterOrtho2D (int materialId, double Ex1, double Ey2, double materialPoissNu,

double G12, double MaterialDensityRho)

4.16.1 Member Function Documentation

Generated by Doxygen

30 Class Documentation

4.16.1.1 materialWriter()

string WriteUsfosFormat.UsfosMaterialWriter.materialWriter (

int materialId,

double materialEmod,

double materialPoissNu,

double MaterialDensityRho)

4.16.1.2 materialWriterOrtho2D()

string WriteUsfosFormat.UsfosMaterialWriter.materialWriterOrtho2D (

int materialId,

double Ex1,

double Ey2,

double materialPoissNu,

double G12,

double MaterialDensityRho)

The documentation for this class was generated from the following file:

• UsfosMaterialWriter.cs

4.17 WriteUsfosFormat.UsfosNodeLoads Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosNodeLoads:

WriteUsfosFormat.UsfosNode
Loads

+ NodeLoadIndexes
+ NodelIDs
+ ForceList
+ MomentList
+ LoadGroup
+ EccentricityList

+ UsfosNodeLoads()
+ addUsfosNodeLoad()

Generated by Doxygen

4.17 WriteUsfosFormat.UsfosNodeLoads Class Reference 31

Public Member Functions

• UsfosNodeLoads ()

• void addUsfosNodeLoad (int nodeLoadIndexes, int nodelID, double[] forceList, double[] moment←֓

List, int loadGroup, double[] eccVector)

Properties

• List< int > NodeLoadIndexes [get, set]

• List< int > NodelIDs [get, set]

• List< double[]> ForceList [get, set]

• List< double[]> MomentList [get, set]

• List< int > LoadGroup [get, set]

• List< double[]> EccentricityList [get, set]

4.17.1 Constructor & Destructor Documentation

4.17.1.1 UsfosNodeLoads()

WriteUsfosFormat.UsfosNodeLoads.UsfosNodeLoads ()

4.17.2 Member Function Documentation

4.17.2.1 addUsfosNodeLoad()

void WriteUsfosFormat.UsfosNodeLoads.addUsfosNodeLoad (

int nodeLoadIndexes,

int nodelID,

double [] forceList,

double [] momentList,

int loadGroup,

double [] eccVector)

4.17.3 Property Documentation

4.17.3.1 EccentricityList

List<double[]> WriteUsfosFormat.UsfosNodeLoads.EccentricityList [get], [set]

Generated by Doxygen

32 Class Documentation

4.17.3.2 ForceList

List<double[]> WriteUsfosFormat.UsfosNodeLoads.ForceList [get], [set]

4.17.3.3 LoadGroup

List<int> WriteUsfosFormat.UsfosNodeLoads.LoadGroup [get], [set]

4.17.3.4 MomentList

List<double[]> WriteUsfosFormat.UsfosNodeLoads.MomentList [get], [set]

4.17.3.5 NodelIDs

List<int> WriteUsfosFormat.UsfosNodeLoads.NodelIDs [get], [set]

4.17.3.6 NodeLoadIndexes

List<int> WriteUsfosFormat.UsfosNodeLoads.NodeLoadIndexes [get], [set]

The documentation for this class was generated from the following file:

• UsfosNodeLoads.cs

4.18 WriteUsfosFormat.UsfosNodeMasses Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosNodeMasses:

WriteUsfosFormat.UsfosNode
Masses

+ massIDs
+ NodelIDs
+ Masses
+ Interiaes

+ UsfosNodeMasses()
+ addUsfosNodeMass()

Generated by Doxygen

4.18 WriteUsfosFormat.UsfosNodeMasses Class Reference 33

Public Member Functions

• UsfosNodeMasses ()

• void addUsfosNodeMass (int massID, int nodelID, double mass, double interia)

Properties

• List< int > massIDs [get, set]

• List< int > NodelIDs [get, set]

• List< double > Masses [get, set]

• List< double > Interiaes [get, set]

4.18.1 Constructor & Destructor Documentation

4.18.1.1 UsfosNodeMasses()

WriteUsfosFormat.UsfosNodeMasses.UsfosNodeMasses ()

4.18.2 Member Function Documentation

4.18.2.1 addUsfosNodeMass()

void WriteUsfosFormat.UsfosNodeMasses.addUsfosNodeMass (

int massID,

int nodelID,

double mass,

double interia)

4.18.3 Property Documentation

4.18.3.1 Interiaes

List<double> WriteUsfosFormat.UsfosNodeMasses.Interiaes [get], [set]

4.18.3.2 Masses

List<double> WriteUsfosFormat.UsfosNodeMasses.Masses [get], [set]

Generated by Doxygen

34 Class Documentation

4.18.3.3 massIDs

List<int> WriteUsfosFormat.UsfosNodeMasses.massIDs [get], [set]

4.18.3.4 NodelIDs

List<int> WriteUsfosFormat.UsfosNodeMasses.NodelIDs [get], [set]

The documentation for this class was generated from the following file:

• UsfosNodeMasses.cs

4.19 WriteUsfosFormat.UsfosNodeWriter Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosNodeWriter:

WriteUsfosFormat.UsfosNode
Writer

+ writeNodes()
+ generateNodeTransString()
+ areAllElemetsZero()
+ isTranslationIdentityMatrix()

Public Member Functions

• List< string > writeNodes (int[] nodeIdexes, double[][] nodeXYZ, int[][] bCode, double[][,]

trans)

• string generateNodeTransString (int numberOfNodeTrans, double[,] trans)

• bool areAllElemetsZero (int[] array)

• bool isTranslationIdentityMatrix (double[,] transMatrix)

4.19.1 Member Function Documentation

Generated by Doxygen

4.19 WriteUsfosFormat.UsfosNodeWriter Class Reference 35

4.19.1.1 areAllElemetsZero()

bool WriteUsfosFormat.UsfosNodeWriter.areAllElemetsZero (

int [] array)

Here is the caller graph for this function:

WriteUsfosFormat.UsfosNode
Writer.areAllElemetsZero

WriteUsfosFormat.UsfosNode
Writer.writeNodes

4.19.1.2 generateNodeTransString()

string WriteUsfosFormat.UsfosNodeWriter.generateNodeTransString (

int numberOfNodeTrans,

double trans[,])

Here is the caller graph for this function:

WriteUsfosFormat.UsfosNode
Writer.generateNodeTransString

WriteUsfosFormat.UsfosNode
Writer.writeNodes

4.19.1.3 isTranslationIdentityMatrix()

bool WriteUsfosFormat.UsfosNodeWriter.isTranslationIdentityMatrix (

double transMatrix[,])

Generated by Doxygen

36 Class Documentation

Here is the caller graph for this function:

WriteUsfosFormat.UsfosNode
Writer.isTranslationIdentityMatrix

WriteUsfosFormat.UsfosNode
Writer.writeNodes

4.19.1.4 writeNodes()

List<string> WriteUsfosFormat.UsfosNodeWriter.writeNodes (

int [] nodeIdexes,

double nodeXYZ[][],

int bCode[][],

double trans[][,])

Here is the call graph for this function:

WriteUsfosFormat.UsfosNode
Writer.writeNodes

WriteUsfosFormat.UsfosNode
Writer.isTranslationIdentityMatrix

WriteUsfosFormat.UsfosNode
Writer.areAllElemetsZero

WriteUsfosFormat.UsfosNode
Writer.generateNodeTransString

The documentation for this class was generated from the following file:

• UsfosNodeWriter.cs

Generated by Doxygen

4.20 WriteUsfosFormat.UsfosRigitCouplings Class Reference 37

4.20 WriteUsfosFormat.UsfosRigitCouplings Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosRigitCouplings:

WriteUsfosFormat.UsfosRigit
Couplings

+ SlaveNodeIDs
+ MasterNodeIDs

+ UsfosRigitCouplings()
+ addUsfosRigidCoupling()

Public Member Functions

• UsfosRigitCouplings ()

• void addUsfosRigidCoupling (int slaveNodeID, int masterNodeID)

Properties

• List< int > SlaveNodeIDs [get, set]

• List< int > MasterNodeIDs [get, set]

4.20.1 Constructor & Destructor Documentation

4.20.1.1 UsfosRigitCouplings()

WriteUsfosFormat.UsfosRigitCouplings.UsfosRigitCouplings ()

4.20.2 Member Function Documentation

Generated by Doxygen

38 Class Documentation

4.20.2.1 addUsfosRigidCoupling()

void WriteUsfosFormat.UsfosRigitCouplings.addUsfosRigidCoupling (

int slaveNodeID,

int masterNodeID)

4.20.3 Property Documentation

4.20.3.1 MasterNodeIDs

List<int> WriteUsfosFormat.UsfosRigitCouplings.MasterNodeIDs [get], [set]

4.20.3.2 SlaveNodeIDs

List<int> WriteUsfosFormat.UsfosRigitCouplings.SlaveNodeIDs [get], [set]

The documentation for this class was generated from the following file:

• UsfosRigitCouplings.cs

4.21 WriteUsfosFormat.UsfosUnitVectors Class Reference

Collaboration diagram for WriteUsfosFormat.UsfosUnitVectors:

WriteUsfosFormat.UsfosUnit
Vectors

+ coorVecList

+ UsfosUnitVectors()
+ writeUnitVecs()
+ Contains()

Generated by Doxygen

4.21 WriteUsfosFormat.UsfosUnitVectors Class Reference 39

Public Member Functions

• UsfosUnitVectors ()

• List< string > writeUnitVecs ()

• int Contains (double[] toBeChecked)

Properties

• List< double[]> coorVecList [get, set]

4.21.1 Constructor & Destructor Documentation

4.21.1.1 UsfosUnitVectors()

WriteUsfosFormat.UsfosUnitVectors.UsfosUnitVectors ()

4.21.2 Member Function Documentation

4.21.2.1 Contains()

int WriteUsfosFormat.UsfosUnitVectors.Contains (

double [] toBeChecked)

4.21.2.2 writeUnitVecs()

List<string> WriteUsfosFormat.UsfosUnitVectors.writeUnitVecs ()

4.21.3 Property Documentation

4.21.3.1 coorVecList

List<double[]> WriteUsfosFormat.UsfosUnitVectors.coorVecList [get], [set]

The documentation for this class was generated from the following file:

• UsfosUnitVectors.cs

Generated by Doxygen

40 Class Documentation

4.22 ParseVTKFormat.VTKCorrectIDMapping Class Reference

Collaboration diagram for ParseVTKFormat.VTKCorrectIDMapping:

ParseVTKFormat.VTKCorrect
IDMapping

+ BeamIDsNonContiniusAcending
+ ShellIDsNonContiniusAcending
+ NodeIDsNonContiniusAcending

+ VTKCorrectIDMapping()
+ hasCorrectIDMapping()

Public Member Functions

• VTKCorrectIDMapping (vtkUnstructuredGrid unstructuredGrid)

• bool hasCorrectIDMapping (string idType, int[] idList)

Properties

• int [] BeamIDsNonContiniusAcending [get]

• int [] ShellIDsNonContiniusAcending [get]

• int [] NodeIDsNonContiniusAcending [get]

4.22.1 Constructor & Destructor Documentation

4.22.1.1 VTKCorrectIDMapping()

ParseVTKFormat.VTKCorrectIDMapping.VTKCorrectIDMapping (

vtkUnstructuredGrid unstructuredGrid)

4.22.2 Member Function Documentation

Generated by Doxygen

4.22 ParseVTKFormat.VTKCorrectIDMapping Class Reference 41

4.22.2.1 hasCorrectIDMapping()

bool ParseVTKFormat.VTKCorrectIDMapping.hasCorrectIDMapping (

string idType,

int [] idList)

Here is the call graph for this function:

ParseVTKFormat.VTKCorrect
IDMapping.hasCorrectIDMapping

ParseVTKFormat.VTKgetName
SpecificVTKDataArray.getNameSpecific

DataArrayFieldData

ParseVTKFormat.VTKgetName
SpecificVTKDataArray.getNameSpecific

DataArrayPointData

4.22.3 Property Documentation

4.22.3.1 BeamIDsNonContiniusAcending

int [] ParseVTKFormat.VTKCorrectIDMapping.BeamIDsNonContiniusAcending [get]

4.22.3.2 NodeIDsNonContiniusAcending

int [] ParseVTKFormat.VTKCorrectIDMapping.NodeIDsNonContiniusAcending [get]

4.22.3.3 ShellIDsNonContiniusAcending

int [] ParseVTKFormat.VTKCorrectIDMapping.ShellIDsNonContiniusAcending [get]

The documentation for this class was generated from the following file:

• VTKCorrectIDMapping.cs

Generated by Doxygen

42 Class Documentation

4.23 ParseVTKFormat.VTKErrorObserver Class Reference

Collaboration diagram for ParseVTKFormat.VTKErrorObserver:

ParseVTKFormat.VTKErrorObserver

+ VTKErrorObserver()

Public Member Functions

• VTKErrorObserver ()

4.23.1 Constructor & Destructor Documentation

4.23.1.1 VTKErrorObserver()

ParseVTKFormat.VTKErrorObserver.VTKErrorObserver ()

The documentation for this class was generated from the following file:

• VTKErrorObserver.cs

Generated by Doxygen

4.24 ParseVTKFormat.VTKFieldDataReader Class Reference 43

4.24 ParseVTKFormat.VTKFieldDataReader Class Reference

Collaboration diagram for ParseVTKFormat.VTKFieldDataReader:

ParseVTKFormat.VTKFieldData
Reader

+ CalculateMaxForcesBeam
+ CalculateMinForcesBeam
+ CalculateMaxForcesShell
+ CalculateMinForcesShell

+ VTKFieldDataReader()
+ readAllForcesBeam()
+ readAllReactionForcesShell()
+ readAllForcesShell()

Public Member Functions

• VTKFieldDataReader (vtkUnstructuredGrid unstructuredGrid)

• double [,] readAllForcesBeam (bool hasCorrectIDMapping, int[] correctedElID)

• double [,] readAllReactionForcesShell (bool hasCorrectIDMapping, int[] correctedElID)

• double [][] readAllForcesShell (bool hasCorrectIDMapping, int[] correctedElID)

Properties

• double [] CalculateMaxForcesBeam [get]

• double [] CalculateMinForcesBeam [get]

• double [] CalculateMaxForcesShell [get]

• double [] CalculateMinForcesShell [get]

4.24.1 Constructor & Destructor Documentation

4.24.1.1 VTKFieldDataReader()

ParseVTKFormat.VTKFieldDataReader.VTKFieldDataReader (

vtkUnstructuredGrid unstructuredGrid)

Generated by Doxygen

44 Class Documentation

4.24.2 Member Function Documentation

4.24.2.1 readAllForcesBeam()

double [,] ParseVTKFormat.VTKFieldDataReader.readAllForcesBeam (

bool hasCorrectIDMapping,

int [] correctedElID)

4.24.2.2 readAllForcesShell()

double [][] ParseVTKFormat.VTKFieldDataReader.readAllForcesShell (

bool hasCorrectIDMapping,

int [] correctedElID)

Here is the call graph for this function:

ParseVTKFormat.VTKFieldData
Reader.readAllForcesShell

ParseVTKFormat.VTKgetName
SpecificVTKDataArray.getNameSpecific

DataArrayFieldData

4.24.2.3 readAllReactionForcesShell()

double [,] ParseVTKFormat.VTKFieldDataReader.readAllReactionForcesShell (

bool hasCorrectIDMapping,

int [] correctedElID)

4.24.3 Property Documentation

4.24.3.1 CalculateMaxForcesBeam

double [] ParseVTKFormat.VTKFieldDataReader.CalculateMaxForcesBeam [get]

Generated by Doxygen

4.25 ParseVTKFormat.VTKgetNameSpecificVTKDataArray Class Reference 45

4.24.3.2 CalculateMaxForcesShell

double [] ParseVTKFormat.VTKFieldDataReader.CalculateMaxForcesShell [get]

4.24.3.3 CalculateMinForcesBeam

double [] ParseVTKFormat.VTKFieldDataReader.CalculateMinForcesBeam [get]

4.24.3.4 CalculateMinForcesShell

double [] ParseVTKFormat.VTKFieldDataReader.CalculateMinForcesShell [get]

The documentation for this class was generated from the following file:

• VTKFieldDataReader.cs

4.25 ParseVTKFormat.VTKgetNameSpecificVTKDataArray Class Reference

Collaboration diagram for ParseVTKFormat.VTKgetNameSpecificVTKDataArray:

ParseVTKFormat.VTKgetName
SpecificVTKDataArray

+ getNameSpecificDataArray
CellData()
+ getNameSpecificDataArray
FieldData()
+ getNameSpecificDataArray
PointData()

Public Member Functions

• vtkDataArray getNameSpecificDataArrayCellData (vtkUnstructuredGrid unstructuredGrid, string

arrayName)

• vtkDataArray getNameSpecificDataArrayFieldData (vtkUnstructuredGrid unstructuredGrid, string

arrayName)

• vtkDataArray getNameSpecificDataArrayPointData (vtkUnstructuredGrid unstructuredGrid, string

arrayName)

Generated by Doxygen

46 Class Documentation

4.25.1 Member Function Documentation

4.25.1.1 getNameSpecificDataArrayCellData()

vtkDataArray ParseVTKFormat.VTKgetNameSpecificVTKDataArray.getNameSpecific←֓

DataArrayCellData (

vtkUnstructuredGrid unstructuredGrid,

string arrayName)

4.25.1.2 getNameSpecificDataArrayFieldData()

vtkDataArray ParseVTKFormat.VTKgetNameSpecificVTKDataArray.getNameSpecific←֓

DataArrayFieldData (

vtkUnstructuredGrid unstructuredGrid,

string arrayName)

Here is the caller graph for this function:

ParseVTKFormat.VTKgetName
SpecificVTKDataArray.getNameSpecific

DataArrayFieldData

ParseVTKFormat.VTKCorrect
IDMapping.hasCorrectIDMapping

ParseVTKFormat.VTKFieldData
Reader.readAllForcesShell

4.25.1.3 getNameSpecificDataArrayPointData()

vtkDataArray ParseVTKFormat.VTKgetNameSpecificVTKDataArray.getNameSpecific←֓

DataArrayPointData (

vtkUnstructuredGrid unstructuredGrid,

string arrayName)

Generated by Doxygen

4.26 ParseVTKFormat.VTKPointDataReader Class Reference 47

Here is the caller graph for this function:

ParseVTKFormat.VTKgetName
SpecificVTKDataArray.getNameSpecific

DataArrayPointData

ParseVTKFormat.VTKCorrect
IDMapping.hasCorrectIDMapping

ParseVTKFormat.VTKPointData
Reader.readRotationVectors

The documentation for this class was generated from the following file:

• VTKgetNameSpecificVTKDataArray.cs

4.26 ParseVTKFormat.VTKPointDataReader Class Reference

Collaboration diagram for ParseVTKFormat.VTKPointDataReader:

ParseVTKFormat.VTKPointData
Reader

+ ExtremeDisplacement

+ VTKPointDataReader()
+ readTranslation()
+ readRotationVectors()

Public Member Functions

• VTKPointDataReader (vtkUnstructuredGrid unstructuredGrid)

• double [,] readTranslation (bool hasCorrectIDMapping, int[] correctedNodeID)

• double [,] readRotationVectors (bool hasCorrectIDMapping, int[] correctedNodeID)

Generated by Doxygen

48 Class Documentation

Properties

• double [] ExtremeDisplacement [get]

4.26.1 Constructor & Destructor Documentation

4.26.1.1 VTKPointDataReader()

ParseVTKFormat.VTKPointDataReader.VTKPointDataReader (

vtkUnstructuredGrid unstructuredGrid)

4.26.2 Member Function Documentation

4.26.2.1 readRotationVectors()

double [,] ParseVTKFormat.VTKPointDataReader.readRotationVectors (

bool hasCorrectIDMapping,

int [] correctedNodeID)

Here is the call graph for this function:

ParseVTKFormat.VTKPointData
Reader.readRotationVectors

ParseVTKFormat.VTKgetName
SpecificVTKDataArray.getNameSpecific

DataArrayPointData

4.26.2.2 readTranslation()

double [,] ParseVTKFormat.VTKPointDataReader.readTranslation (

bool hasCorrectIDMapping,

int [] correctedNodeID)

4.26.3 Property Documentation

Generated by Doxygen

4.27 ParseVTKFormat.VTKreader Class Reference 49

4.26.3.1 ExtremeDisplacement

double [] ParseVTKFormat.VTKPointDataReader.ExtremeDisplacement [get]

The documentation for this class was generated from the following file:

• VTKPointDataReader.cs

4.27 ParseVTKFormat.VTKreader Class Reference

Collaboration diagram for ParseVTKFormat.VTKreader:

ParseVTKFormat.VTKreader

+ VTKreader()
+ readFile()

Public Member Functions

• VTKreader (string filePath)

• vtkUnstructuredGrid readFile ()

4.27.1 Constructor & Destructor Documentation

4.27.1.1 VTKreader()

ParseVTKFormat.VTKreader.VTKreader (

string filePath)

4.27.2 Member Function Documentation

4.27.2.1 readFile()

vtkUnstructuredGrid ParseVTKFormat.VTKreader.readFile ()

The documentation for this class was generated from the following file:

• VTKreader.cs

Generated by Doxygen

50 Class Documentation

Generated by Doxygen

Index

addUsfosElementMass

WriteUsfosFormat::UsfosElementMasses, 21

addUsfosLinearCoupling

WriteUsfosFormat::UsfosLinearCouplings, 25

addUsfosNodeLoad

WriteUsfosFormat::UsfosNodeLoads, 31

addUsfosNodeMass

WriteUsfosFormat::UsfosNodeMasses, 33

addUsfosRigidCoupling

WriteUsfosFormat::UsfosRigitCouplings, 37

addUsfoselementLoads

WriteUsfosFormat::UsfosElementLoads, 19

areAllElemetsZero

WriteUsfosFormat::UsfosLoadWriter, 27

WriteUsfosFormat::UsfosNodeWriter, 34

AreaCenterY

WriteUsfosFormat::UsfosBeamCrossSection,

11

AreaCenterZ

WriteUsfosFormat::UsfosBeamCrossSection,

12

AreaX

WriteUsfosFormat::UsfosBeamCrossSection,

12

BeamIDsNonContiniusAcending

ParseVTKFormat::VTKCorrectIDMapping, 41

CalculateMaxForcesBeam

ParseVTKFormat::VTKFieldDataReader, 44

CalculateMaxForcesShell

ParseVTKFormat::VTKFieldDataReader, 44

CalculateMinForcesBeam

ParseVTKFormat::VTKFieldDataReader, 45

CalculateMinForcesShell

ParseVTKFormat::VTKFieldDataReader, 45

CfemPlugin.CfemResultsFileSystem, 7

CfemPlugin.CfemRunAnalysis, 9

CfemPlugin::CfemResultsFileSystem

CfemResultsFileSystem, 8

createResultRootDirectory, 8

createWrapperDirectory, 8

resultRootDirectory, 8

wrapperDirDictonary, 8

CfemPlugin::CfemRunAnalysis

CfemRunAnalysis, 9

runAnalysis, 9

CfemResultsFileSystem

CfemPlugin::CfemResultsFileSystem, 8

CfemRunAnalysis

CfemPlugin::CfemRunAnalysis, 9

ConstantLinCoupls

WriteUsfosFormat::UsfosLinearCouplings, 25

Contains

WriteUsfosFormat::UsfosUnitVectors, 39

coorEccList

WriteUsfosFormat::UsfosEccentricityVector,

16

coorVec

WriteUsfosFormat::UsfosElement, 17

coorVecList

WriteUsfosFormat::UsfosUnitVectors, 39

createResultRootDirectory

CfemPlugin::CfemResultsFileSystem, 8

createWrapperDirectory

CfemPlugin::CfemResultsFileSystem, 8

CrossSectionId

WriteUsfosFormat::UsfosBeamCrossSection,

12

EccentricityList

WriteUsfosFormat::UsfosNodeLoads, 31

elementDiscription

WriteUsfosFormat, 6

ElementIDs

WriteUsfosFormat::UsfosElementMasses, 21

ElementLoadGroup

WriteUsfosFormat::UsfosElementLoads, 19

52 INDEX

ElementLoadIndexes

WriteUsfosFormat::UsfosElementLoads, 19

elementLoadWriter

WriteUsfosFormat::UsfosLoadWriter, 27

elementMassWriter

WriteUsfosFormat::UsfosMassWriter, 28

ElementType

WriteUsfosFormat::UsfosElement, 17

ElementalIDs

WriteUsfosFormat::UsfosElementLoads, 19

ExtremeDisplacement

ParseVTKFormat::VTKPointDataReader, 48

ForceList

WriteUsfosFormat::UsfosElementLoads, 20

WriteUsfosFormat::UsfosNodeLoads, 31

generateNodeTransString

WriteUsfosFormat::UsfosNodeWriter, 35

getNameSpecificDataArrayCellData

ParseVTKFormat::VTKgetNameSpecificV←֓

TKDataArray, 46

getNameSpecificDataArrayFieldData

ParseVTKFormat::VTKgetNameSpecificV←֓

TKDataArray, 46

getNameSpecificDataArrayPointData

ParseVTKFormat::VTKgetNameSpecificV←֓

TKDataArray, 46

hasCorrectIDMapping

ParseVTKFormat::VTKCorrectIDMapping, 40

IndexElement

WriteUsfosFormat::UsfosElement, 17

Interiaes

WriteUsfosFormat::UsfosNodeMasses, 33

isTranslationIdentityMatrix

WriteUsfosFormat::UsfosNodeWriter, 35

Ix

WriteUsfosFormat::UsfosBeamCrossSection,

12

Iy

WriteUsfosFormat::UsfosBeamCrossSection,

12

Iz

WriteUsfosFormat::UsfosBeamCrossSection,

12

linearCouplingWriter

WriteUsfosFormat::UsfosCouplingWriter, 13

LoadGroup

WriteUsfosFormat::UsfosNodeLoads, 32

m_Lines

WriteUsfosFormat::UsfosFileWriter, 24

massIDs

WriteUsfosFormat::UsfosElementMasses, 21

WriteUsfosFormat::UsfosNodeMasses, 33

Masses

WriteUsfosFormat::UsfosElementMasses, 21

WriteUsfosFormat::UsfosNodeMasses, 33

MasterDOFValues

WriteUsfosFormat::UsfosLinearCouplings, 25

MasterDOFs

WriteUsfosFormat::UsfosLinearCouplings, 25

MasterNodeIDs

WriteUsfosFormat::UsfosRigitCouplings, 38

MasterNodes

WriteUsfosFormat::UsfosLinearCouplings, 26

MaterialNumberElement

WriteUsfosFormat::UsfosElement, 18

materialWriter

WriteUsfosFormat::UsfosMaterialWriter, 29

materialWriterOrtho2D

WriteUsfosFormat::UsfosMaterialWriter, 30

MomentList

WriteUsfosFormat::UsfosNodeLoads, 32

NodeIDsNonContiniusAcending

ParseVTKFormat::VTKCorrectIDMapping, 41

NodeLoadIndexes

WriteUsfosFormat::UsfosNodeLoads, 32

nodeLoadWriter

WriteUsfosFormat::UsfosLoadWriter, 27

nodeMassWriter

WriteUsfosFormat::UsfosMassWriter, 29

NodeNumbersElements

WriteUsfosFormat::UsfosElement, 18

NodelIDs

WriteUsfosFormat::UsfosNodeLoads, 32

WriteUsfosFormat::UsfosNodeMasses, 34

ParseVTKFormat, 5

ParseVTKFormat.VTKCorrectIDMapping, 40

ParseVTKFormat.VTKErrorObserver, 42

ParseVTKFormat.VTKFieldDataReader, 43

ParseVTKFormat.VTKPointDataReader, 47

Generated by Doxygen

INDEX 53

ParseVTKFormat.VTKgetNameSpecificVTKData←֓

Array, 45

ParseVTKFormat.VTKreader, 49

ParseVTKFormat::VTKCorrectIDMapping

BeamIDsNonContiniusAcending, 41

hasCorrectIDMapping, 40

NodeIDsNonContiniusAcending, 41

ShellIDsNonContiniusAcending, 41

VTKCorrectIDMapping, 40

ParseVTKFormat::VTKErrorObserver

VTKErrorObserver, 42

ParseVTKFormat::VTKFieldDataReader

CalculateMaxForcesBeam, 44

CalculateMaxForcesShell, 44

CalculateMinForcesBeam, 45

CalculateMinForcesShell, 45

readAllForcesBeam, 44

readAllForcesShell, 44

readAllReactionForcesShell, 44

VTKFieldDataReader, 43

ParseVTKFormat::VTKPointDataReader

ExtremeDisplacement, 48

readRotationVectors, 48

readTranslation, 48

VTKPointDataReader, 48

ParseVTKFormat::VTKgetNameSpecificVTKData←֓

Array

getNameSpecificDataArrayCellData, 46

getNameSpecificDataArrayFieldData, 46

getNameSpecificDataArrayPointData, 46

ParseVTKFormat::VTKreader

readFile, 49

VTKreader, 49

PropertyNumberElement

WriteUsfosFormat::UsfosElement, 18

readAllForcesBeam

ParseVTKFormat::VTKFieldDataReader, 44

readAllForcesShell

ParseVTKFormat::VTKFieldDataReader, 44

readAllReactionForcesShell

ParseVTKFormat::VTKFieldDataReader, 44

readFile

ParseVTKFormat::VTKreader, 49

readRotationVectors

ParseVTKFormat::VTKPointDataReader, 48

readTranslation

ParseVTKFormat::VTKPointDataReader, 48

resultRootDirectory

CfemPlugin::CfemResultsFileSystem, 8

rigidCouplingWriter

WriteUsfosFormat::UsfosCouplingWriter, 14

runAnalysis

CfemPlugin::CfemRunAnalysis, 9

ShearAreaY

WriteUsfosFormat::UsfosBeamCrossSection,

12

ShearAreaZ

WriteUsfosFormat::UsfosBeamCrossSection,

12

ShearCenterY

WriteUsfosFormat::UsfosBeamCrossSection,

12

ShearCenterZ

WriteUsfosFormat::UsfosBeamCrossSection,

13

ShellIDsNonContiniusAcending

ParseVTKFormat::VTKCorrectIDMapping, 41

SlaveDOFs

WriteUsfosFormat::UsfosLinearCouplings, 26

SlaveNodeIDs

WriteUsfosFormat::UsfosLinearCouplings, 26

WriteUsfosFormat::UsfosRigitCouplings, 38

TanAlpha

WriteUsfosFormat::UsfosBeamCrossSection,

13

UsfosEccentricityVector

WriteUsfosFormat::UsfosEccentricityVector,

16

UsfosElementLoads

WriteUsfosFormat::UsfosElementLoads, 19

UsfosElementMasses

WriteUsfosFormat::UsfosElementMasses, 21

UsfosFileWriter

WriteUsfosFormat::UsfosFileWriter, 23

UsfosLinearCouplings

WriteUsfosFormat::UsfosLinearCouplings, 25

UsfosNodeLoads

WriteUsfosFormat::UsfosNodeLoads, 31

UsfosNodeMasses

WriteUsfosFormat::UsfosNodeMasses, 33

UsfosRigitCouplings

Generated by Doxygen

54 INDEX

WriteUsfosFormat::UsfosRigitCouplings, 37

UsfosUnitVectors

WriteUsfosFormat::UsfosUnitVectors, 39

VTKCorrectIDMapping

ParseVTKFormat::VTKCorrectIDMapping, 40

VTKErrorObserver

ParseVTKFormat::VTKErrorObserver, 42

VTKFieldDataReader

ParseVTKFormat::VTKFieldDataReader, 43

VTKPointDataReader

ParseVTKFormat::VTKPointDataReader, 48

VTKreader

ParseVTKFormat::VTKreader, 49

wrapperDirDictonary

CfemPlugin::CfemResultsFileSystem, 8

writeCrossSectionBeam

WriteUsfosFormat::UsfosCrossSectionWriter,

14

writeCrossSectionShellComposit

WriteUsfosFormat::UsfosCrossSectionWriter,

15

writeCrossSectionShellHomo

WriteUsfosFormat::UsfosCrossSectionWriter,

15

writeEccentricityVecs

WriteUsfosFormat::UsfosEccentricityVector,

16

writeElements

WriteUsfosFormat::UsfosElementWriter, 22

writeFile

WriteUsfosFormat::UsfosFileWriter, 23

writeNodes

WriteUsfosFormat::UsfosNodeWriter, 36

writeOutputAnalysisLinear

WriteUsfosFormat::UsfosAnalysisInput, 10

writeUnitVecs

WriteUsfosFormat::UsfosUnitVectors, 39

WriteUsfosFormat, 5

elementDiscription, 6

WriteUsfosFormat.UsfosAnalysisInput, 10

WriteUsfosFormat.UsfosBeamCrossSection, 11

WriteUsfosFormat.UsfosCouplingWriter, 13

WriteUsfosFormat.UsfosCrossSectionWriter, 14

WriteUsfosFormat.UsfosEccentricityVector, 15

WriteUsfosFormat.UsfosElement, 17

WriteUsfosFormat.UsfosElementLoads, 18

WriteUsfosFormat.UsfosElementMasses, 20

WriteUsfosFormat.UsfosElementWriter, 22

WriteUsfosFormat.UsfosFileWriter, 23

WriteUsfosFormat.UsfosLinearCouplings, 24

WriteUsfosFormat.UsfosLoadWriter, 26

WriteUsfosFormat.UsfosMassWriter, 28

WriteUsfosFormat.UsfosMaterialWriter, 29

WriteUsfosFormat.UsfosNodeLoads, 30

WriteUsfosFormat.UsfosNodeMasses, 32

WriteUsfosFormat.UsfosNodeWriter, 34

WriteUsfosFormat.UsfosRigitCouplings, 37

WriteUsfosFormat.UsfosUnitVectors, 38

WriteUsfosFormat::UsfosAnalysisInput

writeOutputAnalysisLinear, 10

WriteUsfosFormat::UsfosBeamCrossSection

AreaCenterY, 11

AreaCenterZ, 12

AreaX, 12

CrossSectionId, 12

Ix, 12

Iy, 12

Iz, 12

ShearAreaY, 12

ShearAreaZ, 12

ShearCenterY, 12

ShearCenterZ, 13

TanAlpha, 13

WriteUsfosFormat::UsfosCouplingWriter

linearCouplingWriter, 13

rigidCouplingWriter, 14

WriteUsfosFormat::UsfosCrossSectionWriter

writeCrossSectionBeam, 14

writeCrossSectionShellComposit, 15

writeCrossSectionShellHomo, 15

WriteUsfosFormat::UsfosEccentricityVector

coorEccList, 16

UsfosEccentricityVector, 16

writeEccentricityVecs, 16

WriteUsfosFormat::UsfosElement

coorVec, 17

ElementType, 17

IndexElement, 17

MaterialNumberElement, 18

NodeNumbersElements, 18

PropertyNumberElement, 18

WriteUsfosFormat::UsfosElementLoads

addUsfoselementLoads, 19

Generated by Doxygen

INDEX 55

ElementLoadGroup, 19

ElementLoadIndexes, 19

ElementalIDs, 19

ForceList, 20

UsfosElementLoads, 19

WriteUsfosFormat::UsfosElementMasses

addUsfosElementMass, 21

ElementIDs, 21

massIDs, 21

Masses, 21

UsfosElementMasses, 21

WriteUsfosFormat::UsfosElementWriter

writeElements, 22

WriteUsfosFormat::UsfosFileWriter

m_Lines, 24

UsfosFileWriter, 23

writeFile, 23

WriteUsfosFormat::UsfosLinearCouplings

addUsfosLinearCoupling, 25

ConstantLinCoupls, 25

MasterDOFValues, 25

MasterDOFs, 25

MasterNodes, 26

SlaveDOFs, 26

SlaveNodeIDs, 26

UsfosLinearCouplings, 25

WriteUsfosFormat::UsfosLoadWriter

areAllElemetsZero, 27

elementLoadWriter, 27

nodeLoadWriter, 27

WriteUsfosFormat::UsfosMassWriter

elementMassWriter, 28

nodeMassWriter, 29

WriteUsfosFormat::UsfosMaterialWriter

materialWriter, 29

materialWriterOrtho2D, 30

WriteUsfosFormat::UsfosNodeLoads

addUsfosNodeLoad, 31

EccentricityList, 31

ForceList, 31

LoadGroup, 32

MomentList, 32

NodeLoadIndexes, 32

NodelIDs, 32

UsfosNodeLoads, 31

WriteUsfosFormat::UsfosNodeMasses

addUsfosNodeMass, 33

Interiaes, 33

massIDs, 33

Masses, 33

NodelIDs, 34

UsfosNodeMasses, 33

WriteUsfosFormat::UsfosNodeWriter

areAllElemetsZero, 34

generateNodeTransString, 35

isTranslationIdentityMatrix, 35

writeNodes, 36

WriteUsfosFormat::UsfosRigitCouplings

addUsfosRigidCoupling, 37

MasterNodeIDs, 38

SlaveNodeIDs, 38

UsfosRigitCouplings, 37

WriteUsfosFormat::UsfosUnitVectors

Contains, 39

coorVecList, 39

UsfosUnitVectors, 39

writeUnitVecs, 39

Generated by Doxygen

	Preface
	Acknowledgment
	Summary and Conclusions
	Summary and Conclusions Norwegian
	Introduction
	Background
	Approach
	Structure of the thesis

	General Review and Overview
	Requirements
	Functional Requirements
	Non-Functional Requirements

	File Format Findings
	File Formats in General
	Pre-Processing
	Post-Processing

	Technical Overview
	Programming Languages
	Development Environment

	Summary of the review

	Evaluating The File Formats
	Pre-processing – Input file
	List of File Formats Found
	Self-defined Format

	Post-processing – Output file
	List of File Formats Found

	Matrix for Pre-and Post-Processing
	Final evaluation

	Prototyping and Choosing File Formats
	Get to know Focus Konstruksjon and OOCfem
	USFOS - prototyping
	JSON based self-defined format - prototyping
	Discussion and Choosing file formats

	Test Driven Development
	Format of the process
	Benefits of TDD
	Limitations when using TDD
	Integration tests, system tests, and acceptance tests

	Software Development
	Planning
	Architecture

	Development
	Implementation
	What has been driving the process?
	Documentation
	Code Complexity

	Discussion
	Conclusion and Further Work
	Conclusion
	Future work

	Bibliography
	Acronyms
	File Formats - USFOS and VTK
	USFOS
	VTK

	Further work of Focus Konstruksjon - Technical List
	File formats appendix
	Doxygen documentation
	1 Namespace Index
	1.1 Packages

	2 Class Index
	2.1 Class List

	3 Namespace Documentation
	3.1 ParseVTKFormat Namespace Reference
	3.2 WriteUsfosFormat Namespace Reference
	3.2.1 Enumeration Type Documentation
	3.2.1.1 elementDiscription

	4 Class Documentation
	4.1 CfemPlugin.CfemResultsFileSystem Class Reference
	4.1.1 Constructor & Destructor Documentation
	4.1.1.1 CfemResultsFileSystem()

	4.1.2 Member Function Documentation
	4.1.2.1 createResultRootDirectory()
	4.1.2.2 createWrapperDirectory()

	4.1.3 Property Documentation
	4.1.3.1 resultRootDirectory
	4.1.3.2 wrapperDirDictonary

	4.2 CfemPlugin.CfemRunAnalysis Class Reference
	4.2.1 Constructor & Destructor Documentation
	4.2.1.1 CfemRunAnalysis()

	4.2.2 Member Function Documentation
	4.2.2.1 runAnalysis()

	4.3 WriteUsfosFormat.UsfosAnalysisInput Class Reference
	4.3.1 Member Function Documentation
	4.3.1.1 writeOutputAnalysisLinear()

	4.4 WriteUsfosFormat.UsfosBeamCrossSection Class Reference
	4.4.1 Property Documentation
	4.4.1.1 AreaCenterY
	4.4.1.2 AreaCenterZ
	4.4.1.3 AreaX
	4.4.1.4 CrossSectionId
	4.4.1.5 Ix
	4.4.1.6 Iy
	4.4.1.7 Iz
	4.4.1.8 ShearAreaY
	4.4.1.9 ShearAreaZ
	4.4.1.10 ShearCenterY
	4.4.1.11 ShearCenterZ
	4.4.1.12 TanAlpha

	4.5 WriteUsfosFormat.UsfosCouplingWriter Class Reference
	4.5.1 Member Function Documentation
	4.5.1.1 linearCouplingWriter()
	4.5.1.2 rigidCouplingWriter()

	4.6 WriteUsfosFormat.UsfosCrossSectionWriter Class Reference
	4.6.1 Member Function Documentation
	4.6.1.1 writeCrossSectionBeam()
	4.6.1.2 writeCrossSectionShellComposit()
	4.6.1.3 writeCrossSectionShellHomo()

	4.7 WriteUsfosFormat.UsfosEccentricityVector Class Reference
	4.7.1 Constructor & Destructor Documentation
	4.7.1.1 UsfosEccentricityVector()

	4.7.2 Member Function Documentation
	4.7.2.1 writeEccentricityVecs()

	4.7.3 Property Documentation
	4.7.3.1 coorEccList

	4.8 WriteUsfosFormat.UsfosElement Class Reference
	4.8.1 Property Documentation
	4.8.1.1 coorVec
	4.8.1.2 ElementType
	4.8.1.3 IndexElement
	4.8.1.4 MaterialNumberElement
	4.8.1.5 NodeNumbersElements
	4.8.1.6 PropertyNumberElement

	4.9 WriteUsfosFormat.UsfosElementLoads Class Reference
	4.9.1 Constructor & Destructor Documentation
	4.9.1.1 UsfosElementLoads()

	4.9.2 Member Function Documentation
	4.9.2.1 addUsfoselementLoads()

	4.9.3 Property Documentation
	4.9.3.1 ElementalIDs
	4.9.3.2 ElementLoadGroup
	4.9.3.3 ElementLoadIndexes
	4.9.3.4 ForceList

	4.10 WriteUsfosFormat.UsfosElementMasses Class Reference
	4.10.1 Constructor & Destructor Documentation
	4.10.1.1 UsfosElementMasses()

	4.10.2 Member Function Documentation
	4.10.2.1 addUsfosElementMass()

	4.10.3 Property Documentation
	4.10.3.1 ElementIDs
	4.10.3.2 Masses
	4.10.3.3 massIDs

	4.11 WriteUsfosFormat.UsfosElementWriter Class Reference
	4.11.1 Member Function Documentation
	4.11.1.1 writeElements()

	4.12 WriteUsfosFormat.UsfosFileWriter Class Reference
	4.12.1 Constructor & Destructor Documentation
	4.12.1.1 UsfosFileWriter()

	4.12.2 Member Function Documentation
	4.12.2.1 writeFile()

	4.12.3 Property Documentation
	4.12.3.1 m_Lines

	4.13 WriteUsfosFormat.UsfosLinearCouplings Class Reference
	4.13.1 Constructor & Destructor Documentation
	4.13.1.1 UsfosLinearCouplings()

	4.13.2 Member Function Documentation
	4.13.2.1 addUsfosLinearCoupling()

	4.13.3 Property Documentation
	4.13.3.1 ConstantLinCoupls
	4.13.3.2 MasterDOFs
	4.13.3.3 MasterDOFValues
	4.13.3.4 MasterNodes
	4.13.3.5 SlaveDOFs
	4.13.3.6 SlaveNodeIDs

	4.14 WriteUsfosFormat.UsfosLoadWriter Class Reference
	4.14.1 Member Function Documentation
	4.14.1.1 areAllElemetsZero()
	4.14.1.2 elementLoadWriter()
	4.14.1.3 nodeLoadWriter()

	4.15 WriteUsfosFormat.UsfosMassWriter Class Reference
	4.15.1 Member Function Documentation
	4.15.1.1 elementMassWriter()
	4.15.1.2 nodeMassWriter()

	4.16 WriteUsfosFormat.UsfosMaterialWriter Class Reference
	4.16.1 Member Function Documentation
	4.16.1.1 materialWriter()
	4.16.1.2 materialWriterOrtho2D()

	4.17 WriteUsfosFormat.UsfosNodeLoads Class Reference
	4.17.1 Constructor & Destructor Documentation
	4.17.1.1 UsfosNodeLoads()

	4.17.2 Member Function Documentation
	4.17.2.1 addUsfosNodeLoad()

	4.17.3 Property Documentation
	4.17.3.1 EccentricityList
	4.17.3.2 ForceList
	4.17.3.3 LoadGroup
	4.17.3.4 MomentList
	4.17.3.5 NodelIDs
	4.17.3.6 NodeLoadIndexes

	4.18 WriteUsfosFormat.UsfosNodeMasses Class Reference
	4.18.1 Constructor & Destructor Documentation
	4.18.1.1 UsfosNodeMasses()

	4.18.2 Member Function Documentation
	4.18.2.1 addUsfosNodeMass()

	4.18.3 Property Documentation
	4.18.3.1 Interiaes
	4.18.3.2 Masses
	4.18.3.3 massIDs
	4.18.3.4 NodelIDs

	4.19 WriteUsfosFormat.UsfosNodeWriter Class Reference
	4.19.1 Member Function Documentation
	4.19.1.1 areAllElemetsZero()
	4.19.1.2 generateNodeTransString()
	4.19.1.3 isTranslationIdentityMatrix()
	4.19.1.4 writeNodes()

	4.20 WriteUsfosFormat.UsfosRigitCouplings Class Reference
	4.20.1 Constructor & Destructor Documentation
	4.20.1.1 UsfosRigitCouplings()

	4.20.2 Member Function Documentation
	4.20.2.1 addUsfosRigidCoupling()

	4.20.3 Property Documentation
	4.20.3.1 MasterNodeIDs
	4.20.3.2 SlaveNodeIDs

	4.21 WriteUsfosFormat.UsfosUnitVectors Class Reference
	4.21.1 Constructor & Destructor Documentation
	4.21.1.1 UsfosUnitVectors()

	4.21.2 Member Function Documentation
	4.21.2.1 Contains()
	4.21.2.2 writeUnitVecs()

	4.21.3 Property Documentation
	4.21.3.1 coorVecList

	4.22 ParseVTKFormat.VTKCorrectIDMapping Class Reference
	4.22.1 Constructor & Destructor Documentation
	4.22.1.1 VTKCorrectIDMapping()

	4.22.2 Member Function Documentation
	4.22.2.1 hasCorrectIDMapping()

	4.22.3 Property Documentation
	4.22.3.1 BeamIDsNonContiniusAcending
	4.22.3.2 NodeIDsNonContiniusAcending
	4.22.3.3 ShellIDsNonContiniusAcending

	4.23 ParseVTKFormat.VTKErrorObserver Class Reference
	4.23.1 Constructor & Destructor Documentation
	4.23.1.1 VTKErrorObserver()

	4.24 ParseVTKFormat.VTKFieldDataReader Class Reference
	4.24.1 Constructor & Destructor Documentation
	4.24.1.1 VTKFieldDataReader()

	4.24.2 Member Function Documentation
	4.24.2.1 readAllForcesBeam()
	4.24.2.2 readAllForcesShell()
	4.24.2.3 readAllReactionForcesShell()

	4.24.3 Property Documentation
	4.24.3.1 CalculateMaxForcesBeam
	4.24.3.2 CalculateMaxForcesShell
	4.24.3.3 CalculateMinForcesBeam
	4.24.3.4 CalculateMinForcesShell

	4.25 ParseVTKFormat.VTKgetNameSpecificVTKDataArray Class Reference
	4.25.1 Member Function Documentation
	4.25.1.1 getNameSpecificDataArrayCellData()
	4.25.1.2 getNameSpecificDataArrayFieldData()
	4.25.1.3 getNameSpecificDataArrayPointData()

	4.26 ParseVTKFormat.VTKPointDataReader Class Reference
	4.26.1 Constructor & Destructor Documentation
	4.26.1.1 VTKPointDataReader()

	4.26.2 Member Function Documentation
	4.26.2.1 readRotationVectors()
	4.26.2.2 readTranslation()

	4.26.3 Property Documentation
	4.26.3.1 ExtremeDisplacement

	4.27 ParseVTKFormat.VTKreader Class Reference
	4.27.1 Constructor & Destructor Documentation
	4.27.1.1 VTKreader()

	4.27.2 Member Function Documentation
	4.27.2.1 readFile()

	Index

