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Preface

This is a master thesis as part of the Cybernetics and Robotics study program at NTNU during

the spring of 2017. This project has been carried out in cooperation with Kelda Drilling Controls.

I have had the pleasure of working for Kelda the past summers and last semester I wrote a

preparation project on "dynamic modeling for pump flow estimations in MPD operations" in

cooperation with Kelda. It was decided with Jon Åge Stakvik from Kelda to change the intended

master in order him to able to use the results from my master thesis in his PhD study. Kelda

has an ambition to be a leading company in the drilling industry and to achieve this they focus

greatly on research. It is intended that the results from this thesis will help both Kelda and Jon

Åge Stakvik in their research.

This is a thesis about the development of controllers used in Managed Pressure Drilling op-

erations in the field of oil drilling. It is expected that the reader is familiar with this field and has a

basic knowledge of Managed Pressure Drilling operations, but a short introduction of Managed

Pressure Drilling is given in the introduction.
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(Your signature)

Martin Bergene Johansen



ii

Acknowledgment

I would like to thank Professor Tor Arne Johansen for being my main supervisor in this project.

Thanks to Professor Kristin y. Pettersen, NTNU, and senior researcher Antonio Loria, CNRS,

for their guidance in stabilization of systems using cascade theory, and to Professor Ole Morten

Aamo, NTNU, for his help on adaptive backstepping.

I would also like to thank Glenn-Ole Kaasa, CEO at Kelda Drilling Controls, for making this

project possible and for for the cooperation the past 3 years.

Last, but not least, I would like to thank Jon Åge Stakvik, research engineer at Kelda Drilling

Controls, for his excellent guidance during this project. His availability when I had problems

that needed discussion, his expertise in Managed Pressure Drilling and control theory, and his

positive attitude has proven more than helpful in this project.

M.B.J.



NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

Master of Science Thesis Assignment

Name of the candidate: Martin Bergene Johansen 
Subject: Engineering Cybernetics
Title: Control  design  for  backstepping  and  adaptive  backstepping

controllers in MPD

Background
Managed  Pressure  Drilling  (MPD) is  an  automatic  control  technique used  to  control  the
pressure in an oil well. Current state-of-the art solutions in the industry are, in general, built
on  PI  control  design  of  a  linearized  model  that  requires  accurate  tuning  and  might  be
restricted to operate in a neighborhood of the linearized parameters. In all MPD setups, the
well pressure is controlled by one or more choke valves. The actuators driving the choke
valve have an internal speed controller that requires the MPD system to provide an actuator
speed reference to control the choke valve position. This creates a model with a recursive
structure that has potential to be stabilized and controlled with a backstepping control design
approach. In this work, the candidate will investigate a backstepping design for MPD control
with initial focus on choke pressure control and possible extension to bottom hole pressure
control. 

Assignment:
1. Perform  a  literature  review  on  backstepping  control  design,  with  focus  on

adaptive backstepping and tracking control.
2. Develop a design model suited for backstepping design in MPD. The control

input to be considered is the actuator speed. Verify the design model on field
and simulator data provided by Kelda Drilling Controls. Perform an analysis of
uncertain parameters and error terms in the design model.

3. Design a  backstepping controller  for  MPD where  the  actuator  speed is  the
control input. 

4. Design an adaptive backstepping controller for MPD that estimates commonly
unknown parameters. The actuator speed is the control input. 

5. Simulate  and  analyze  the  performance  of  the  backstepping  and  adaptive
backstepping controller in relevant MPD scenarios performed on a high fidelity
simulator. Verify performance in case of model mismatch between the design
model and simulator.

To be handed in by: 7/7-2017
Co-supervisors: Dr. Glenn-Ole Kaasa, PhD-student Jon Åge Stakvik

Trondheim, 06.01.2017
 
           _____________________

Tor Arne Johansen
Professor, supervisor



iv

Summary and Conclusions

In the field of oil drilling there is a concept known as Managed Pressure Drilling. In Managed

Pressure Drilling one relies on pumps in combination with chokes (valves) in order to main-

tain a certain pressure at the bottom of the well. It is crucial to maintain this pressure since too

low pressure may cause the well to collapse and too high pressure may cause the well to frac-

ture, making it more susceptible for a collapse. The pressure at the bottom of the well is mainly

controlled by a choke.

In this thesis controllers based on backstepping theory will be developed in order to control

the choke pressure. The controllers will be designed such that the choke pressure will track a ref-

erence value and the controllers will achieve this by adjusting the choke’s angular velocity. It is

also common that certain parameters in the well are unknown due to changes that occur in the

fluid running through the choke. Because of this, adaptive integrator backstepping controllers

will also be developed. The goal for this project is to obtain an understanding of how well con-

trollers based on integrator backstepping and adaptive integrator backstepping can solve this

task.

Integrator backstepping controllers are useful when designing controllers for systems on

cascade form of order 2 or higher, however, the complexity of these controllers increases sig-

nificantly as the order of the system increases. Because of this, two different design models have

been used in this thesis in order to develop controllers based on integrator backstepping. One is

of 2nd order and the other is of 3rd order. The 2nd order design model describes how the pres-

sure changes according to the flow in and out of the choke. The flow out of the choke depends on

the choke opening and the choke opening changes based on the angular velocity of the choke.

The 3rd order design model is an extension of the 2nd order design model. The 3rd order model

also describes the actuator dynamics in the choke which will provide a better representation on

how the angular velocity affects the choke position.

A controller was first developed for the 2nd order system. If the controller behaved well, a

new controller would be developed for the 3rd order system. In order to verify the performance

of the controllers, they were simulated in common scenarios that occur during drilling. Con-

trollers that performed well during these simulations went through further testing by perform-
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ing simulations with Straume®, a high-end multiphase well simulator. Straume® provides a bet-

ter representation of a real life drilling scenario and serves as a benchmark for the controllers

validation. In addition to the common scenarios, the simulations in Straume® also cover how

wrong parameterization of the often unknown parameters affects the controllers performance.

A regular integrator backstepping controller was developed for the 2nd order system. This

controller performed well during the simulation and thus a controller for the 3rd order system

was developed. The 3rd order controller also performed well during simulations. The adaptive

controller developed for the 2nd order system performed badly during simulations and a 3rd

order adaptive controller was not developed.

The regular integrator backstepping controllers went through further testing by simulating

them with Straume®. Both controllers performed well, but both experienced a constant offset

between the reference value and the choke pressure. The controllers also experienced a drop in

performance when the parametrization of the bulk modulus did not match the bulk modulus in

Straume®. These controllers performed well enough for them to be used further as long as one

is aware of their shortcomings.
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Chapter 1

Introduction

This chapter covers the background for this thesis and the problem that need to be solved. This

chapter also covers theory on both regular and adaptive integrator backstepping controllers and

how to prove stability of systems on cascade form using cascade theory. There is a brief explana-

tion on Straume®, a high-end multiphase well simulator provided by Kelda Drilling Controls for

this thesis. The objectives that need to be solved and the approach to do so is outlined towards

the end of this chapter with a brief explanation of necessary limitations. The final section in this

chapter covers the structure of the rest of the report.

1.1 Background

In the field of oil drilling there is a concept known as Managed Pressure Drilling (MPD). In MPD

one relies on mud pumps in combination with one or more chokes (valves) in order to maintain

a certain pressure at the bottom of the well.

Figure 1.1 illustrates a simplified process flow diagram of the oil drilling process. Mud is

pumped into the system though the mud pump, and the mud then flows down the drillstring

and through the drill bit at the end. The mud then travels back up the annulus while carrying

cuttings (stones etc. from the drilling) away from the drill bit, before it finally exits the system

through the chokes. The mud also lubricates the drill bit as well as providing pressure to the

surroundings at the bottom of the well.

It is crucial to maintain the correct pressure at the bottom of the well, with too high pressure

2
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the well may fracture, with too low pressure the well may collapse. A collapse refers to the walls

in the annulus collapsing around the drillstring due to lack of pressure at the bottom of the

well. This may cause a lot of damage to the drilling equipment, trap the drillstring so that it

can not be retrieved, and may ruin the drilling operation in the given well. A well fracturing

is a consequence of too high pressure in the well. This causes the walls of the well to fracture

and drilling mud will escape the system through the fractures, after such a fracture, the well will

become significantly more susceptible to a collapse.

The mud pump is capable of delivering a constant flow of mud into the system. This is used

in combination with the chokes to adjust the pressure from the mud at the bottom of the well.

The actuators driving the choke has an internal speed controller the require a speed reference

in order to control the valve. This creates a model with recursive structure that has the potential

to be controlled with a backstepping control design. In this thesis a controller based on back-

stepping will be developed and evaluated in order obtain an understanding of the possibilities

of utilizing the backstepping method when controlling the choke pressure.

Figure 1.1: Simplified process flow diagram illustrating the flow of drilling mud through the

drillstring and annulus during oil drilling



CHAPTER 1. INTRODUCTION 4

Problem Formulation

In this thesis backstepping controllers and adaptive backstepping controllers will be developed

in order to control the choke pressure. The choke pressure should track a reference value and

the controllers needs to achieve this by adjusting the angular velocity of the choke opening.

A design model describing the changes in choke pressure needs to be designed in order to

develop controllers based on backstepping. The design model needs to contain the actuator

dynamics of the choke in order relate the angular velocity of the choke to the choke pressure.

Developed controllers will go through simulations with the design model where the con-

trollers performance is validated in common MPD scenarios. If a controller performs well in

these tests, it will go through further testing in simulations with Straume®, a high-end multi-

phase well simulator. Straume® provides a good representation of real life drilling operations

and serves as a benchmark for the controllers.

A verdict of the controllers performance will be based on the results from the simulations

with Straume®.

Literature Survey

1.1.1 Integrator Backstepping

In 1989, Kokotovic and Sussmann started investigating what is now known as backstepping from

passivity in Kokotovic and Sussmann (1989) and continued their work in Saberi et al. (1990).

Their investigation led to results that made it possible to achieve global stabilization with full

state feedback of systems on cascade form and lead to the development of integrator back-

stepping control design. The integrator backstepping design method is well described in Khalil

(1996) and the writing in this chapter covering integrator backstepping is heavily influenced by

the writing of Khalil.

In order to explain the backstepping method, first consider the following cascade form sys-

tem
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η̇= f (η)+ g (η)ξ (1.1a)

ξ̇= u (1.1b)

Here [η>,ξ] ∈ Rn+1 is the state of the system and u ∈ R is the control input. The functions f :

D →Rn and g : D →Rn are smooth in a domain D ⊂Rn and it is assumed that f (η) and g (η) are

known. Equation (1.1a) can be stabilized by a smooth state feedback law ξ=α(η) with α(0) = 0.

This leads to

η̇= f (η)+ g (η)α(η) (1.2)

being asymptotically stable. It is assumed that a Lyapunov function V (η) is known that satisfies

the inequality

∂V

∂η
[ f (η)+ g (η)α(η)] ≤−W (η) (1.3)

where W (η) is positive definite. Since α(η) is not the exact value of ξ but rather a control input,

it is assumed that there is an error between the two given by

z = ξ−α(η) (1.4)

substituting the error into the system equation yields

η̇= [ f (η)+ g (η)α(η)]+ g (η)z (1.5)

ż = u − α̇ (1.6)

Since f (η), g (η) and α(η) is known, α̇(η) can by computed as
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α̇= ∂α

∂η
η̇ (1.7)

α̇= ∂α

∂η
[ f (η)+ g (η)ξ] (1.8)

Taking v = u − α̇ reduces the system to the cascade connection

ẋ = [ f (η)+ g (η)α(η)]+ g (η)z (1.9)

ż = v (1.10)

which is on the same form as the original system, except now the first component has asymp-

totically stable origin. This will be exploited in the design of v to stabilize the overall system.

Taking the Lyapunov function

Vc (η,ξ) =V (η)+ 1

2
z2 (1.11)

the following is obtained

V̇c = ∂V

∂η
[ f (η)+ g (η)α(η)]+ ∂V

∂η
g (η)z + zv (1.12)

≤−W (η)+ ∂V

∂η
g (η)z + zv (1.13)

Choosing

v =−∂V

∂η
g (η)−kz (1.14)

with k > 0 yields

V̇c ≤−W (η)−kz2 (1.15)

which shows the the origin of both η and z is asymptotically stable. Since α(0) = 0 it is also
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concluded that the origin of η and ξ is asymptotically stable. Substituting for v , z and α(η)

givens the control input for u

u = ∂α

∂x
[ f (η)+ g (η)ξ]− ∂V

∂η
g (η)−k[ξ−α(η)] (1.16)

If all assumptions hold globally and V (η) is radially unbounded, the origin is globally asymptot-

ically stable.

2nd order system example

The system

ẋ1 = x2
1 −x3

1 +x2 (1.17)

ẋ2 = u (1.18)

takes the form of Equation 1.1 with x1 = η and x2 = ξ where x2 is viewed as the input to ẋ1. The

input x2 = α(x) will need to be designed as a feedback control in order to stabilize x1 to the

origin (x1 = 0). With

x2 =α(x) =−x2
1 −x1 (1.19)

the x2
1 term in ẋ1 is canceled and ẋ1 becomes

ẋ1 =−x1 −x3
1 (1.20)

By choosing the Lyapunov function V (x1) = 1
2 x2

1 , its derivative becomes

V̇ =−x2
1 −x4

1 ≤−x2
1 =−W (x1), ∀x1 ∈R (1.21)

Hence, the origin of ẋ1 =−x1 − x3
1 is globally exponentially stable. In order to perform the back-

step, a change of variables are introduced and gives
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e2 = x2 −α(x1) = x2 +x1 +x2
1 (1.22)

substituting this change into the original system yields

ẋ1 = x2
1 −x3

1 +e2 +α(x) (1.23)

ė2 = u − α̇(x) (1.24)

Where the derivative of α(x) is given by

α̇(x) = ∂α

∂x
ẋ = (−1−2x1)(−x1 −x3

1 +e2) (1.25)

The final system after the backstepping procedure becomes

ẋ1 =−x1 −x3
1 +e2 (1.26)

ė2 = u − (−1−2x1)(−x1 −x3
1 +e2) (1.27)

In order to find the control input u, the following Lyapunov function is chosen

Vc (x) =V (x)+ 1

2
e2

2 (1.28)

Vc (x) = 1

2
x2

1 +
1

2
e2

2 (1.29)

and its derivative becomes

V̇c (x) = x1(−x1 −x3
1 +e2)+e2[u + (1+2x1)(−x1 −x3

1 +e2)] (1.30)

=−x2
1 −x4

1 +e2[x1 + (1+2x1)(−x1 −x3
1 +e2)+u] (1.31)

Taking the feedback control law
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u =−x1 − (1+2x1)(−x1 −x3
1 +e2)−e2 (1.32)

yields

V̇c (x) =−x2
1 −x4

1 −e2
2 (1.33)

Hence, the system with the chosen feedback control law u is globally asymptotically stable.

3rd order system example

The following third-order system

ẋ1 = x2
1 −x3

1 +x2 (1.34)

ẋ2 = x3 (1.35)

ẋ3 = u (1.36)

is an extension from the previous example with an additional integrator. From the earlier exam-

ple, the second-order system

ẋ1 = x2
1 −x3

1 +x2 (1.37)

ẋ2 = x3 (1.38)

had the feedback control input

u =−x1 − (1+2x1)(−x1 −x3
1 +e2)− (x2 +x1 +x2

1),α(x1, x2) (1.39)

and the Lyapunov function

V (x1, x2) = 1

2
x2

1 +
1

2
(x2 +x1 +x2

1)2 (1.40)
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To backstep further in this example, the change of variables happens to x3.

e3 = x3 −α(x1, x2) (1.41)

Substituting the change of variables into the original system yields

ẋ1 = x2
1 −x3

1 +x2 (1.42)

ẋ2 =α(x1, x2)+e3 (1.43)

ẋ3 = u − ∂α

∂x1
(x2

1 −x3
1 +x2)− ∂α

∂x2
(α+e3) (1.44)

Using the composite Lyapunov function Vc =V + 1
2 e2 gives

V̇c = ∂V

∂x1
(x2

1 −x3
1 +x2)+ ∂V

∂x2
(e3 +α) (1.45)

+e3[u − ∂α

∂x1
(x2

1 −x3
1 +x2)− ∂α

∂x2
(α+e3)] (1.46)

=−x2
1 −x4

1 − (x2 +x1 +x2
1)2 (1.47)

+e3[u − ∂α

∂x1
(x2

1 −x3
1 +x2)− ∂α

∂x2
(α+e3)+ ∂V

∂x2
] (1.48)

Taking the feedback control u

u = ∂α

∂x1
(x2

1 −x3
1 +x2)+ ∂α

∂x2
(α+e3)− ∂V

∂x2
−e3 (1.49)

yields

V̇c =−x2
1 −x4

1 − (x2 +x1x2
1)2 −e2

3 (1.50)

and the origin of the system is globally asymptotically stable with the chosen control input u.

Note that the controller for the 3rd order system is significantly larger and more complex than

the controller of the 2nd order system.
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1.1.2 Adaptive Integrator Backstepping

A procedure for the development of an adaptive backstepping controller with tracking is covered

by Zhou and Wen (2008). The method relies on parameter estimations of the unknown param-

eters in combination with a control law. This is necessary since any control laws developed for

the controller can not rely on unknown parameters, and therefore the control laws make use of

the estimated parameters instead. This method does not guarantee that the estimated param-

eter converges to the correct values, but it ensures boundedness of the closed loop states and

asymptotically tracking of the reference signal. The idea is best illustrated by an example, and

the second order system in Equation 1.51 will be used for the development of an adaptive back-

stepping controller. The development of the adaptive backstepping controller is based on the

steps presented in Zhou and Wen (2008) and the results in this section are fairly similar to the

results in this book.

ẋ1 = x2 +φT
1 (x1)θ (1.51a)

ẋ2 = u +φT
2 (x1, x2)θ (1.51b)

Here θ ∈ R is a vector containing the unknown constant parameters in the system. φT
1 (x1),

φT
2 (x1, x2) ∈ R are known nonlinear functions. In order to develop a controller that ensures

asymptotic tracking of xr by x1, it is required that the first and second derivative of xr is available

and are piecewise continuous and bounded.

In order to to perform the backstepping procedure, the following virtual states and their

derivatives are introduced where φT
1 =φT

1 (x1) and φT
2 =φT

2 (x1, x2).

e1 = x1 −xr e2 = x2 −α1 − ẋr (1.52a)

ė1 = e2 +α1 + ẋr +φT
1 θ− ẋr ė2 = u +φT

2 θ− α̇1 − ẍr (1.52b)

ė1 = e2 +α1 +φT
1 θ ė2 = u +φT

2 θ−
∂α1

∂x1

(
x2 +φT

1 θ
)− ∂α1

∂xr
ẋr − ẍr (1.52c)

Taking the Lyapunov function V1 = 1
2 e2

1 yields
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V̇1 = e1
(
e2 +α1 +φT

1 θ
)

(1.53)

If θ was known the control law α could be chosen as

α1 =−k1e1 −φT
1 θ (1.54)

Since θ is an unknown parameter, the control lawα1 cannot be chosen as in Equation 1.54 since

the control law only can consist of known parameter. By replacing the unknown parameter θ

with its estimated value θ̂ yields

α1 =−k1e1 −φT
1 θ̂1 (1.55)

Inserting the control law from Equation 1.55 into Equation 1.53 yields

V̇1 =−k1e2
1 +e1e2 +e1φ

T
1

(
θ− θ̂1

)
(1.56)

=−k1e2
1 +e1e2 +e1φ

T
1 θ̃1 (1.57)

where θ̃1 = θ− θ̂1 is the error between the real and estimated parameters. In order to deal with

the estimation error θ̃ the Lyapunov function V2 = V1 + 1
2 θ̃

T
1 Γ

−1θ̃1 is chosen and its derivative

yields

V̇2 =−k1e2
1 +e1e2 +e1φ

T
1 θ̃1 + θ̃T

1 Γ
−1 ˙̃θ1 (1.58)

=−k1e2
1 +e1e2 + θ̃T

1

(
φ1e1 +Γ−1 ˙̃θ1

)
(1.59)

Here ˙̃θ1 is the update law for the parameter estimation. Choosing the update law as

˙̃θ1 =−Γφe1 (1.60)
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yields

V̇2 =−k1e2
1 +e1e2 (1.61)

In order to perform the backstepping procedure, the Lyapunov function V3 =V2 + 1
2 e2

2 is chosen

and its derivative yields

V̇3 =−k1e2
1 +e2

(
e1 +u +φT

2 θ−
∂α1

∂x1

(
x2 +φT

1 θ
)− ∂α1

∂θ̂

˙̂θ1 − ∂α1

∂xr
ẋr − ẍr

)
(1.62)

=−k1e2
1 +e2

(
e1 +u − ∂α1

∂x1
x2 +

(
φ2 − ∂α1

∂x1
φ1

)T

θ+ ∂α1

∂θ̂
Γφ1e1 − ∂α1

∂xr
ẋr − ẍr

)
(1.63)

Taking the controller u as

u =−e1 −k2e2 + ∂α1

∂x1
x2 −

(
φ2 − ∂α1

∂x1
φ1

)T

θ̂2 − ∂α1

∂θ̂
Γφ1e1 + ∂α1

∂xr
ẋr + ẍr (1.64)

yields

V̇3 =−k1e2
1 −k2e2

2 −e2

(
φ2 − ∂α1

∂x1
φ1

)T

(θ− θ̂2) (1.65)

=−k1e2
1 −k2e2

2 −e2

(
φ2 − ∂α1

∂x1
φ1

)T

θ̃2 (1.66)

To deal with the estimation error θ̃2 the Lyapunov function V4 =V3+ 1
2 θ̃

T
2 Γ

−1θ̃2 is chosen and its

derivative yields

V̇4 =−k1e2
1 −k2e2

2 −e2

(
φ2 − ∂α1

∂x1
φ1

)T

θ̃2 + θ̃T
2 Γ

−1 ˙̃θ2 (1.67)

=−k1e2
1 −k2e2

2 + θ̃T
2 (−

(
φ2 − ∂α1

∂x1
φ1

)
e2 +Γ−1 ˙̃θ2) (1.68)

(1.69)

The update law ˙̃θ2 can be taken as

˙̃θ2 = Γ
(
φ2 − ∂α1

∂x1
φ1

)
e2 (1.70)



CHAPTER 1. INTRODUCTION 14

which yields

V̇4 =−k1e2
1 −k2e2

2 (1.71)

Note that the estimation errors θ̃1 and θ̃2 are removed from the Lyapunov function when the

update laws are introduced, meaning that there is no guarantee that the estimation errors be-

comes 0 as t →∞. However, e1,e2 → 0 as t →∞ and asymptotic tracking is achieved. Note that

the system is over-parametrized since there are two estimations for the same parameter. This

issue can be solved with the use of tuning functions which is presented further in Zhou and Wen

(2008). Tuning functions are not necessary if the developed controller is not over parametrized,

and tuning functions will therefore not be covered in this thesis.

1.1.3 Cascade Theory

From Lamnabhi-Lagarrigue et al. (2005), a system on cascade form as in Equation (1.72) can be

proved stable if it satisfies the Lemma 1

Σ1 : ẋ1 = f1(t , x1)+ g (t , x1, x2)x2 (1.72a)

Σ2 : ẋ2 = f2(t , x2) (1.72b)

Lemma 1 (UGAS+UGAS+UGB ⇒ UGAS) The cascade in Equation (1.72) is UGAS if and only if

Equation (1.72b) and Σ1◦ : ẋ1 = f1(t , x1) are UGAS and the solutions of Equation (1.72) are UGB.

Theorem 1 defines stability criteria for time-varying cascade systems

Theorem 1 Let Assumption 1 hold and suppose that the trajectory of Equation (1.72b) is UGB.

If moreover, Assumptions 1 - 3 are satisfied, then the solutions x(t ; t◦, x◦) of the system in Equa-

tion (1.72) are UGB. If furthermore, the origin of Equation (1.72b) is UGAS, then so is the origin of

the cascade in Equation (1.72).

Assumption 1 The system Σ1◦ : ẋ1 = f1(t , x1) is UGAS

Assumption 2 There exist constants c1,c2,η > 0 and a Lyapunov function V (t , x1) for Σ1◦ : ẋ1 =
f1(t , x1) such that V :R≥0 ×Rn →R≥0 is positive definite, radially unbounded, V̇ (t , x1) ≤ 0, and
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∣∣∣∣ ∂V

∂x1

∣∣∣∣|x1| ≤ c1V (t , x1) ∀|x1| ≥ η (1.73)∣∣∣∣ ∂V

∂x1

∣∣∣∣≤ c2 ∀|x1| ≤ η (1.74)

Assumption 3 There exists two continuous functions θ1,θ2 :R≥0 →R≥0, such that g (t , x1, x2) sat-

isfies

|g (t , x1, x2)| ≤ θ1(|x2|)+θ2(|x2|)|x1| (1.75)

Assumption 4 There exists a class K function α(·) such that, for all t◦ ≥ 0, the trajectories of the

system in Equation (1.72b) satisfy

∫ ∞

t0

|x2(t ; t0, x2(t0))|d t ≤α(|x2(t0)|) (1.76)

Definition 1 A continuous function α : R≥0 → R≥0 is said to belong to class K if it is strictly

increasing and α(0) = 0. It is said to be of class K∞ if moreover α(s) →∞ as s →∞

What Remains to be Done?

There are currently no research articles related to the development of backstepping controllers

to be used for any kind of choke control in MPD. On the other hand, the research on integrator

backstepping and adaptive integrator backstepping control design has been thorough for the

past decades and today there are well defined step by step methods in order to develop these

controllers. In this thesis the well defined methods for integrator backstepping control develop-

ment will be applied to a new system, namely choke pressure control.

1.2 Straume®

Straume® is a high-end multiphase well simulator with full pressure and flow dynamics devel-

oped by Kelda Drilling Controls. The simulator is capable of simulating highly accurate pressure

and flow dynamics during drilling due to its distributed dynamics. Straume® separates the drill-

string and annulus into several smaller volumes and utilizes this by simulating each volume with
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its own states. Straume® is therefore capable of simulating how changes in the system travels

as waves through drillstring and annulus, rather than assuming that changes impact the whole

drillstring and annulus the same way at the same time.

Kelda uses Straume® in their research and development of products as a simulator of well

behavior and in this project, Straume® will serve as the baseline for the backstepping controllers

when evaluating their performance.

The Straume® version provided by Kelda for this project allows for adjustment of the follow-

ing input variables:

• qp , the flow provided by the mud pump

• zc , two parallel chokes

• psbp , Set choke pressure (if choke is disabled)

• Echoke, enable choke

and the following output variables:

• qc , Choke flow

• pd , pressure drillstring

• pa , pressure in annulus

• qa , flow in annulus

• qbi t , bit flow

• pc , choke flow

1.3 Objectives

The main objectives of this Master’s thesis are
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1. To develop design models fitting for the development of integrator backstepping con-

trollers. The design model needs to consist of the angular velocity of the choke and needs

to be on cascade form.

2. Develop a reference filter that provides the backstepping controllers with the necessary

derivatives of the reference value

3. Develop integrator backstepping controllers and adaptive integrator backstepping con-

trollers based on design models for choke pressure

4. Validate the developed controllers through simulations of real life scenarios using the de-

sign models

5. Validate the developed controllers through simulations of real life scenarios using Straume®

1.4 Limitations

The Straume® version provided for this thesis take the choke position as input rather than the

angular velocity. The dynamic models used for the development of the integrator backstepping

controllers will therefore be used in order to provide Straume® with a position based on the

controllers angular velocity output.

1.5 Approach

Due to the complexity of backstepping controllers, two design models will be developed. The

design models will be of 2nd and 3rd order. The 3rd order model will give a better representation

of how the angular velocity affects the choke pressure. The 2nd order model will be a simplified

version of the 3rd order system and will not include the actuator dynamics of the choke.

A reference filter will be developed in order to provide the controllers with the necessary

derivatives of the reference value.

An integrator backstepping controller and an adaptive integrator backstepping controller

will be developed for the 2nd order system. If the controllers perform well during the simulation

tests, new controllers will be developed for the 3rd order design model.
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All developed controllers will first be validated in simulations with the design models. These

simulations will run through common MPD scenarios. If the controller’s performance is good

enough, the controllers will go through further testing with Straume®. In Straume® the con-

trollers will go through the same common MPD scenarios. In addition there will be simulations

where certain parameters in the system will be different in Straume® and the controller. These

simulations will determine the robustness of the controllers in terms of wrong parametrization.

Two different scenarios will be used for the validation. The first scenario consists of a series

of step changes in the reference signal. The reference signal will increase by 10, 20, 30 and 40 bar

and then decrease by 40, 30, 20 and 10 bar. This validates whether the controller can track step

changes that vary in magnitude, for both increasing and decreasing step changes. The second

scenario is a connection. This scenario is a common operation in oil drilling that is performed

in order to lengthen the drillstring. In this scenario the flow qi n will be ramped down from 2000

lmin−1 to 0 lmin−1 and then ramp back up to 2000 lmin−1 after a certain time. This validates

whether the controller can handle changes in flow. In this scenario the controller is expected to

maintain the choke pressure at the same value as the reference value during the flow changes.

The flow into the choke and the pressure reference value will be the only variables that directly

affects the choke pressure and these scenarios will therefore serve as good validation tests for

the controllers.

There are two parameters in the system that often are unknown, these are the bulk mod-

ulus and the density of the fluid. The bulk modulus will change if gas leaks into the system,

causing the bulk modulus to decrease. The fluid density will vary based on the actual fluid run-

ning through the system and may increase or decrease depending of the mixture of the fluid.

Simulations of the two previously mentioned scenarios will therefore be performed where the

bulk modulus is lower in Straume® than in the controller’s parameter. The same scenarios will

be simulated where the density of the fluid in Straume® is both higher and lower than in the

controller’s parameter.
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1.6 Structure of the Report

The rest of the report is organized as follows. Chapter 2 covers the necessary preparations in

order to develop integrator backstepping controllers. The development of design models that

will be used in the development of the backstepping controllers is in this chapter and includes

both a 2nd and 3rd order model. In addition the development of a reference filter that will

provide the integrator backstepping controllers with the necessary derivatives of a reference

value occurs in this chapter.

Chapter 3 covers the development of integrator backstepping controllers for the 2nd and 3rd

order design model. The validation testing of the controllers when simulated with the design

models in common MPD operations is also performed in this chapter and includes a discus-

sion of the results and a decision whether the performance of the controller is good enough for

further testing.

Chapter 4 covers the development of an adaptive integrator backstepping controller and are

structured the same way as Chapter 3 in regards to validation testing.

In Chapter 5 the controller that passed the initial testing from Chapter 3 and Chapter 4 goes

through simulations with Straume®, providing a more life like situation for the controllers. The

controllers will go through the same common MPD scenarios as in the earlier testing, but in ad-

dition simulations with bad parametrization will be simulated in order to determine the robust-

ness of the controllers. Straume® will serve as a benchmark for the controllers final validation.

Chapter 6 covers the summary and conclusions for this thesis, as well as a discussion re-

garding the results for the developed controllers. This chapter ends with recommendations for

further work regarding the development of integrator backstepping controllers for choke pres-

sure.



Chapter 2

Design Models and Reference Filter

2.1 Preparing the Design Models

A dynamic model of the behavior of pressure pc is needed in order to develop backstepping

controllers. In this thesis the backstepping controllers will use the choke angular velocity in

order track a reference signal with the choke pressure pc .

The choke pressure dynamics is given by

ṗc = β

V
(qi n −qc ) (2.1)

Where pc is the pressure over the choke, β is the bulk modulus of the fluid, V is the volume of

the annulus, qi n is the flow into the the choke and qc is the flow out of the choke. qc is given by

qc = Kc

√
2

ρ

(
pc −pco

)
g (z) (2.2)

Here Kc is choke gain, ρ is the density of the fluid running through the choke, pc is the pres-

sure in front of the choke while pco is the pressure after the choke. g (z) is a mapping function

taking the choke position z and maps it to the area opening in the choke given in %. Inserting

20
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Equation (2.2) into Equation (2.1) yields

ṗc = β

V

(
qi n −Kc

√
2

ρ

(
pc −pco

)
g (z)

)
(2.3)

= β

V
qi n − β

V
Kc

√
2

ρ

(
pc −pco

)
g (z) (2.4)

The pressure dynamics over the choke pc are now given as a differential equation with the choke

position z as an input.

In order to use angular velocity as the controller input, the choke actuator dynamics need to

be added to the dynamic equation for the system.

ṗc = β

V
qi n − β

V
Kc

√
2

ρ

(
pc −pco

)
g (z) (2.5a)

ż =ω (2.5b)

ω̇= 1

τω
(−ω+ sat(ωu)) (2.5c)

Hereω is the angular velocity of the choke position,ωu is the angular velocity input (i.e. the con-

troller output in which to control the system) and τω is a time constant. The actuator dynamics

are represented as a first order linear filter in order to model the delay from the angular velocity

input to the actual choke position.

The backstepping development method tends to create large complicated controllers that

increase significantly in size and complexity as the order of the system increases. Because of

this, a 2nd order order system will also be used in this thesis in order to have a simpler system

in which to develop a controller for. The simplified system can be written as

ṗc = β

V
qi n − β

V
Kc

√
2

ρ

(
pc −pco

)
g (z) (2.6a)

ż = sat(ωu) (2.6b)

Here the dynamics in the choke are excluded from the system dynamics and angular velocity ω
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is set to be the angular velocity output from the controller. While this simplification provides a

mathematically correct relation between the angular velocity and choke position, excluding the

dynamics within the choke might lead to a lesser performing controller when it is developed on

the 2nd order system rather than the 3rd order.

All variables and constants in the 2nd and 3rd order dynamic equations are listed in Ta-

ble 2.1. pc is the choke pressure and depends on the flow through the choke. By adjusting this

pressure it is possible to control the pressure at the bottom of the well and thus providing the

right pressure for drilling. pr is a reference signal for the wanted choke pressure, this variable

is not a part of the original dynamic equations, but will be added as a part of the development

of a backstepping controller in order for the system to be capable of tracking this signal. pco

is the pressure on the output side of the choke, which is typically at 1bar. qi n is the flow into

the choke, this flow is controlled by the mud pumps which provides a steady flow through the

drillstring, annulus and through the choke. β is the bulk modulus of the fluid. The bulk mod-

ulus of the drill mud is usually known, however, by the time the fluid has reached the choke it

consists of a combination of drilling mud, cuttings from the drilling and in some cases even gas

from the surroundings. This makes it harder to correctly define an accurate value for the bulk

modulus β. ρ is the density of the fluid in the system. As with the bulk modulus β, accurately

defining ρ might be challenging due to the mixture in the fluid by the time it reaches the choke.

Kc is the choke gain. z is the choke position and operates between the range 0−1 (representing

0−100%) and is also physically limited to stay within this range. g (z) is a mapping function for

the choke opening, taking the choke position z as input and maps the value of z to a correspond-

ing percentage area opening inside the choke, also given in the range 0−1 (again representing

0− 100%). ω is the choke angular velocity and represents the velocity of which z is changing,

due to the physical limitations of the choke, ω is physically limited between to ±50%s−1. ωu is

the input angular velocity from the controller that will be developed in this thesis. Due to the

physical limitations in the choke, ωu is saturated in the dynamic equations in order to ensure

that the physical constraints are maintained. τω is the time constant for the choke’s actuator

dynamics.

The development of backstepping controllers quickly increases in size during the design

procedure. In order for easier notation the models can be rewritten to make it easier to keep
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pc Choke pressure Pa
pr Choke pressure reference Pa

pco Choke output pressure Pa

qi n Choke in-flow m3

s
β bulk modulus Pa
V Volume of annulus m3

ρ Density of fluid kg
m3

Kc Choke gain constant −
z Choke position %

g (z) Mapping function %
ω Choke angular velocity %

s
ωu Choke angular velocity input %

s
τω actuator time constant −

Table 2.1: Variable and constant table for the 2nd and 3rd order dynamic models

track of the essential parts of the controllers development. The 2nd order model from Equa-

tion (2.6) can be rewritten on the form of Equation (2.7)

ṗc = f1 + g1g (z) (2.7a)

ż = sat(ωu) (2.7b)

where

f1 = β

V
qi n (2.8a)

g1 =−β
V

Kc

√
2

ρ

(
pc −pco

)
(2.8b)

The 3rd order design model which is given by Equation (2.5) can be rewritten on the form

given by Equation (2.9)
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ṗc = f1 + g1g (z) (2.9a)

ż =ω (2.9b)

ω̇= f2 + g2sat(ωu) (2.9c)

Here f1 and g1 is given by Equation (2.8). f2 and g2 is given by

f2 =− ω

τω
(2.10a)

g2 = 1

τω
(2.10b)

At this point there is a problem with the current design models. This is due to z not being

linearly multiplied into a term in ṗc , but rather defined as an input in the mapping function g (z).

Figure 2.1 illustrates the functionality of g (z). Here z is the position of the choke actuator and

g (z) is the opened area within the choke. The reason for this behavior is due to the mechanical

design of the choke. The choke will be completely closed until the actuator position reaches a

certain value. In addition, the area opening inside the choke is not designed in such a way that

it is linear, thus causing the behavior as seen in Figure 2.1.
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Figure 2.1: Plot describing how the mapping function g (z) maps the actuator position to the

actual area choke opening.

This causes problems when designing a integrator backstepping controller which becomes
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apparent in the following calculations. In order to perform the beckstepping procedure, there

is a need to create virtual states. For the 2nd order design model (the same problem occurs the

same way in both design models) there are two obvious choices for the virtual states, the first of

which is

e1 = pc −pr e2 = g (z)−α (2.11a)

ė1 = f1 + g1(e2 +α)− ṗr ė2 = ∂g (z)

∂t
− α̇ (2.11b)

In this case the problem comes down to the term ∂g (z)
∂t . It is not possible to symbolically

differentiate the mapping function g (z), making this a bad choice for the virtual state e2. It

could be tempting to just differentiate the term z within the mapping function, i.e. ∂g (z)
∂t = g (ż) =

g (ωu). However, doing this only results in mapping the signal ωu , which is the angular velocity

of the choke, to the choke position. This will clearly not provide the correct behavior for the

virtual state.

The second obvious choice would be

e1 = pc −pr e2 = z −α (2.12a)

ė1 = f1 + g1g (e2 +α)− ṗr ė2 =ωu − α̇ (2.12b)

In this case the virtual states is defined such that it is possible to provide the controller with all

the necessary signals. Taking the following Lyapunov function and its derivative yields

V1 = 1

2
e2

1 (2.13)

V̇1 = e1( f1 + g1g (e2 +α)− ṗr ) (2.14)

In this case the control law α becomes
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α=−e2h

(− f1 −k1e1 + ṗr

g1

)
(2.15)

Where h(z) is a mapping function such that δ(h(z)) = z. Assuming the mapping function h(z)

exists, this control law needs to eliminate the term e2. This is not possible at the current step of

the process, thus making the control law invalid.

In order to avoid adding e2 to the control law, the derivative of the virtual state e2 could be

redefined as

ė2 = f1 + g1(g (e2)+ g (α))− ṗr (2.16)

which would provide the control law

α= h

(− f1 −k1e1 + ṗr

g1

)
(2.17)

In this case the control law could be obtainable, however, it assumes that

g (e2 +α) = g (e2)+ g (α) (2.18)

This is not the case, and this is illustrated in Figure 2.2. In this scenario e2 and α both ramps up

at 50%s−1 and it is clear that the behavior of g (e2)+g (α) is not the same as g (e2+α). This makes

sense considering that the mapping function is not linear and thus Equation 2.18 cannot hold.
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Figure 2.2: Plot illustrating how g (e2 +α) 6= g (e2)+ g (α) in the mapping function g (z)

This proves that there is not an "easy" way to develop a backstepping controller with the
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term g (z). However, it does not necessarily mean that it is impossible to do so. Nevertheless,

g (z) needs to be dealt with, and an alternative solution is to avoid using g (z) in the controller

all together. This can be achieved by introducing the mapping function h(z), which is defined

such that g (h(z)) = z, into the design model, i.e.

ṗc = f1 + g1g (h(z)) = f1 + g1z (2.19)

ż =ωu (2.20)

This simplifies the task drastically as the system now has z linearly multiplied into a term in

ṗc . This solution has two important points that needs to be addressed. The first one is that it

needs to be possible to add the mapping function h(z) to the system, this also goes for a system

in the real world. The second one is that in order for the mapping function h(z) to work well,

detailed knowledge of the mapping function g (z) is needed. Figure 2.3 illustrates how adding

the mapping function h(z) can alter the output such that g (h(z)) = z.
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Figure 2.3: Plot illustrating how the mapping function h(z) cancels out the mapping function

g (z) when implemented as g (h(z))

The new design model for the 2nd order system becomes

ṗc = f1 + g1z (2.21a)

ż = sat(ωu) (2.21b)
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while the new design model for the 3rd order system becomes

ṗc = f1 + g1z (2.22a)

ż =ω (2.22b)

ω̇= f2 + g2sat(ωu) (2.22c)

For the rest of this thesis, the 2nd and 3rd order system will be referred to and worked with on

the form presented in Equation (2.21) and Equation (2.22) respectively. In addition f1, g1, f2,

and g2 will always be defined according to Equation (2.8) and Equation (2.10).

2.2 Tracking and Reference Filter

Tracking a reference value can be achieved by introducing an error term as in Equation 2.23, here

xr is the reference value and x1 is the state that should track the reference value. By ensuring

that the new state e1 → 0 as t →∞ tracking is achieved.

e1 = x1 −xr (2.23)

Consider the system in Equation 2.24. The system is on cascade form and suitable for inte-

grator backstepping development.

ẋ1 = x2 (2.24a)

ẋ2 = u (2.24b)

In order to perform the backstepping procedure the following virtual states and their derivatives

could be used

e1 = x1 e2 = x2 −α (2.25a)

ė1 = e2 +α e2 = u − α̇ (2.25b)
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Performing backstepping with these virtual states would cause the state x1 → 0 as t →∞. If the

virtual states instead are defined as

e1 = x1 −xr e2 = x2 −α (2.26a)

ė1 = e2 +α− ẋr e2 = u − α̇ (2.26b)

the system will track the reference value since e1 → 0 as t →∞.

In order to perform the backstepping procedure the Lyapunov function V1 = 1
2 e2

1 is intro-

duced and its derivative becomes

V̇1 = e1(e2 +α− ẋr ) (2.27)

taking the control law α=−k1e1 + ẋr yields

V̇1 =−k1e2
1 +e1e2 (2.28)

In order to perform the backstepping procedure the Lyapunov function V2 =V1 + 1
2 e2

2 is chosen

and its derivative yields

V̇2 =−k1e2
1 +e2(e1 +u − α̇) (2.29)

taking the controller u as in Equation 2.31

u =−e1 −k2e2 + α̇ (2.30)

=−e1 −k2e2 −k1(x2 − ẋr )+ ẍr (2.31)

yields

V̇2 =−k1e2
1 −k2e2

2 (2.32)

which proves that the system in Equation 2.24 is asymptotically stable and u will provide the

system with a controller that tracks the reference value xr

From this development it becomes apparent that the n first derivatives of the reference value
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are needed, where n is the order of the system. Since the larges design model in this thesis is of

3rd order the 3 first derivatives of the reference value pr is needed in addition to the reference

value itself, i.e. pr , ṗr , p̈r , and
...
p r . In addition, the system is not capable of tracking instan-

taneous step changes in the reference signal, which makes it desirable to filter the reference

signal into a smooth signal the system can track. A simple reference filter can be defined as in

Equation 2.33.

y(s)(λs +1)4 = u(s), λ> 0,λ ∈R (2.33)

Here u(s) is the input value, y(s) is the filtered output value that will be used by the controller,

and (λs+1)4 is a 4th order filter. In this reference filter all the poles will be placed in the same po-

sition and along the negative real axis (not in the imaginary axis), providing a critically damped

reference value. A critically damped reference value is preferred over an overdamped reference

value since an overshoot in pressure after a reference change could cause a fracture or collapse

in the well.

Expanding Equation 2.33 and transforming it into the time domain yields

y(s)(λ4s4 +4λ3s3 +6λ2s2 +4λs +1) = u(s) (2.34)

y(s)s4 =− 4

λ
y(s)s3 − 6

λ2
y(s)s2 − 4

λ3
y(s)s − 1

λ4
y(s)+ 1

λ4
u(s) (2.35)

....
y =− 4

λ

...
y − 6

λ2
ÿ − 4

λ3
ẏ − 1

λ4
y + 1

λ4
u (2.36)

Equation 2.36 can be rewritten into state space form by reassigning the following variables

x1 = y (2.37)

x2 = ẋ1 = ẏ (2.38)

x3 = ẋ2 = ÿ (2.39)

x4 = ẋ3 = ...
y (2.40)

(2.41)
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and the reference filter in state space form becomes

ẋ1 = x2 (2.42a)

ẋ2 = x3 (2.42b)

ẋ3 = x4 (2.42c)

ẋ4 =− 4

λ
x4 − 6

λ2
x3 − 4

λ3
x2 − 1

λ4
x1 + 1

λ4
u (2.42d)

Reassigning the variables from the reference filter in order to obtain the variables needed for the

system yields

pr = x1 (2.43a)

ṗr = x2 (2.43b)

p̈r = x3 (2.43c)

...
p r = x4 (2.43d)

r = u (2.43e)

Here pr and its derivatives are the filtered reference singal needed for the backstepping con-

troller and r is the reference signal controlled by the operator.

In Figure 2.4 the reference values pr , ṗr , p̈r , and
...
p r as a result of a step in r are plotted.

The upper plot illustrates the behavior of pr and its derivatives during a step change. The lower

plot integrates the different derivatives of pr during the same step change and validates whether

the derivatives are correct. All the integrated derivatives of pr have the same value as pr itself,

confirming that the derivatives are indeed correct. In both plots λ= 1.
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Figure 2.4: The upper plot illustrates how pr and its derivatives responds to a step change. The

lower plot verifies that the derivatives behaves correctly by integrating them in order to obtain

pr



Chapter 3

Integrator Backstepping Controller with

Tracking

3.1 Integrator Backstepping with 2nd Order Design Model

Consider the the 2nd order system and note that ωu is not saturated in this case.

ṗc = f1 + g1z (3.1a)

ż =ωu (3.1b)

In this backstepping case it is assumed that the pressure pc can be controlled through z that

contains the control input ωu . In addition, pc is supposed to follow a reference signal pr rather

than going to 0. To achieve this, the following virtual variables are introduced.

e1 = pc −pr e2 = z −α (3.2a)

ė1 = f1 + g1(e1 +α)− ṗr ė2 =ωu − α̇ (3.2b)

Here e1 is the difference between the pressure pc and the reference signal pr . By developing

a controller that ensures that the error e1 goes to 0, the pressure in the system will track the

33



CHAPTER 3. INTEGRATOR BACKSTEPPING CONTROLLER WITH TRACKING 34

reference signal. e2 is the difference between the control lawα and the state z, ensuring that the

differences between the developed control law α and the actual state z becomes 0 as e2 goes to

0.

The first step in order to develop a backstepping controller is to ensure stability of the first

state, in this case e1. In order to create a control law for e1, the following Lyapunov function is

introduced

V1 = 1

2
e2

1 (3.3)

and its derivative becomes

V̇1 = e1( f1 + g1(e2 +α)− ṗr ) (3.4)

The control law α can be chosen as

α= − f1 + ṗr −k1e1

g1
(3.5)

and V̇1 then becomes

V̇1 =−k1e2
1 + g1e1e2 (3.6)

α is not capable of handling terms that contain e2 at this point, but e2 will be taken care of when

establishing stability for e2. In order to control e2 to 0 and obtain a control input, the following

Lyapunov function is chosen

V2 =V1 + 1

2
e2

2 (3.7)

and its derivative becomes

V̇2 =−k1e1 +e2(g1e1 +ωu − α̇) (3.8)

Taking the control input
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ωu =−k2e2 − g1e1 + α̇ (3.9)

where α̇ is given as

α̇= − ḟ1 + p̈r −k1ė1

g1
+ (− f1 + ṗr −k1e1)ġ1

g 2
1

(3.10)

Gives V̇2 the following form

V̇2 =−k1e2
1 −k2e2

2 (3.11)

which ensures that the origin of the error system is globally asymptotically stable, and should

ensure that pc tracks the reference signal pr . The final system with the control lawα and control

input becomes

ṗc =−k1e1 + g1e2 + ṗr (3.12a)

ż =−k2e2 − g1e1 + α̇ (3.12b)

Simulating the system with the developed controller yields the results from Figure 3.1. Dur-

ing this simulation the reference signal changes from 40 bar to 20 bar. While the controller is

capable of tracking this reference, it is quite clear the the controller output ωu is not behaving

well.
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Figure 3.1: Plot illustrating how the controller behaves badly during a step change due to oscil-

lations in ωu

Figure 3.2 illustrates the behavior of each term in the controller ωu =−k2e2 − g1e1 + α̇ when
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performing the same simulation as in Figure 3.1
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Figure 3.2: Plot comparing the controller output ωu and each term in the controller output

It is clear that ωu is ill conditioned due to the g1e1 term. This term is a cancellation term in

order to satisfy the stability conditions from the Lyapunov candidate, and is therefore not nec-

essarily crucial in order to obtain a working controller. Removing this term from the controller

yields.

ωu =−ke2 + α̇ (3.13)

Simulating the system with the new modified controller provides the results seen in Fig-

ure 3.3. It is clear that the behavior with the new controller is better than the previous controller.
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Figure 3.3: Plot illustrating the behavior of the system when the term g1e1 is removed from the

controller

With the term g1e1 removed from the controller, V̇2 becomes
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V̇2 =−k1e2
1 −k1e2

2 + g1e1e2 (3.14)

and the proof of stability from the Lyapunov candidate no longer holds since V̇2 is no longer

negative semi definite due to the term g1e1e2

By introducing the control law and controller to the virtual state equation yields

ė1 =−k1e1 + g1e2 (3.15a)

ė2 =−k2e2 (3.15b)

and these equations are written on the cascade form which makes it possible to validate the

controllers stability with cascade theory. In order for the cascade system to be stable, the system

needs to satisfy the assumptions from Section 1.1.3.

For Assumption 1, f (t , x1) =−k1e1 needs to be UGAS. Solving ė1 =−k1e1 yields

∂e1

∂t
=−k1e1 (3.16)∫

1

e1
∂e2 =

∫
−k1∂t (3.17)

ln|e1| = −k1t +C (3.18)

e1 =C e−k1t (3.19)

e1(t ; t0,e1(t0)) = e1(t0)e−k1(t−t0) (3.20)

The solution satisfies the following inequality

∣∣∣e1(t0)e−k1(t−t0)
∣∣∣≤ γ1|e1(t0)|e−γ2(t−t0) ∀t ≥ t0 (3.21)

With γ1 = 1 and γ2 = k1, ė1 is UGES and thus also UGAS and Assumption 1 is satisfied.

For Assumption 2, the Lyapunov candidate can be chosen as VA2 = 1
2 e2

1 for the system ė1 =
−k1e1. VA2 is positive definite and its derivative becomes
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V̇A2 =−k1e2
1 ≤ 0 (3.22)

and VA2 satisfy the requirements for being a candidate for Assumption 2. For Assumption 2 the

following equations need to be satisfied.

∣∣∣∣∂VA2

∂e1

∣∣∣∣|e1| ≤ c1VA2(t , x1) ∀|e1| ≥ η (3.23a)∣∣∣∣∂VA2

∂e1

∣∣∣∣≤ c2 ∀|e1| ≤ η (3.23b)

In this case it yields the following results

|e1|2 ≤ c1
1

2
e2

1 ∀|e1| ≥ η (3.24a)

|e1| ≤ c2 ∀|e1| ≤ η (3.24b)

It is clear that (3.24a) holds for c1 ≥ 2 and (3.24b) holds for c2 ≥ η and η> 0, and Assumption 2 is

satisfied.

For Assumption 3 the following inequality needs to hold

|g (t , pc , z)| ≤ θ1(|z|)+θ2(|z|)|pc | (3.25)∣∣∣∣− β

V
Kc

√
2

ρ
(pc −pco)

∣∣∣∣≤ θ1(|z|)+θ2(|z|)|pc | (3.26)
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and it is known that

pc ∈ [0,∞) (3.27a)

pco ∈ [0,∞) (3.27b)

z ∈ [0,1] (3.27c)

pc ≥ pco (3.27d)

For simplification the system can be rewritten to

c3
√

c4(pc −pco) ≤ θ1(z)+θ1(z)pc (3.28)

where c3 = β
V Kc > 0 and c4 = 2

ρ
> 0. Note that the absolute value of g (t , pc , z) is omitted since it

in Equation (3.28) always is positive. θ1 and θ2 is chosen as

θ1(z) = z (3.29a)

θ2(z) = z + c5 (3.29b)

It is clear that that θ1(0) ≤ θ1(z) and θ2(0) ≤ θ2(z) which gives

c3
√

c4(pc −pco) ≤ c5pc (3.30)

p
pc −pco ≤ c5

c3
p

c4
pc (3.31)

p
pc −pco ≤ pc

c5

c3
p

c4
= 1 (3.32)

It is clear that the inequality is satisfied if pc ≥ 1, which is suitable since normally pco ≥ 1e5 Pa

Assumption 4 requires that the following is satisfied

∫ ∞

t0

|e2(t ; t0,e2(t0))|d t ≤αA4(|e2(t0)|) (3.33)
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e2(t ; t0,e2(t0)) is obtained by solving ė2 =−k2e2

∂e2

∂t
=−k2e2 (3.34)∫

1

e2
∂e2 =

∫
−k2∂t (3.35)

ln|e2| = −k2t +C (3.36)

e2 =C e−k2t (3.37)

e2(t ; t0,e2(t0)) = e2(t0)e−k2(t−t0) (3.38)

the origin of Equation 3.15b is then UGES and thus also UGAS. Integrating e2(t ; t0,e2(t0)) yields

∫ ∞

t0

∣∣∣e2(t0)e−k2(t−t0)
∣∣∣d t =

[
− e2(t0)

k2
e−k2(t−t0)

]∞
t0

= e2(t0)

k2
(3.39)

Validating the inequality requirement for Assumption 4

e2(t0)

k2
≤ |e2(t0)|

k2
=αA4(|e2(t0)|) (3.40)

where α(x)A4 = x
k2

and is of class K , and assumtion 4 is then satisfied.

All assumptions are satisfied and by Theorem 1 the system is UGAS. The control input

ωu =−k2e2 + α̇ (3.41)

will ensure that pc tracks pr and the final system with the control law α and control input ωu

becomes

ṗc =−k1e1 + g e2 + ṗr (3.42a)

ż =−k2e2 + α̇ (3.42b)
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3.1.1 Controller Validation 2nd Order Backstepping Controller

Figure 3.4 shows a simulation of the 2nd order integrator backstepping controller with the 2nd

order dynamic model in the pr step changes scenario. For each step change the controller man-

ages to track the reference pressure pr with the choke pressure pc . By taking a look at e1, it

becomes clear that the tracking is not perfect, but the error is so small, with the biggest error

being less than 4×10−13 Pa, that this error is not significant. The small error in e2 indicates that

the control law α does a good job in replicating the state z in order to control the pressure pc ,

meaning that the developed control law α performs well in this scenario.
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Figure 3.4: Plot results from a simulation of the 2nd order integrator backstepping controller

with the 2nd order design model in the pr step changes scenario

A simulation of the connection scenario is performed with the 2nd order integrator back-
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stepping controller with the 2nd order dynamic model in Figure 3.5. During the whole scenario,

the tracking remains perfect which can be confirmed by e1 being 0 Pa throughout the whole

simulation. The value of e2 remains small throughout this scenario as well, confirming the good

performance of the control law α.
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Figure 3.5: Plot results from a simulation of the 2nd order integrator backstepping controller

with the 2nd order design model in the connection scenario
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3.2 Integrator Backstepping with 3rd Order Design Model

Consider the 3rd order system

ṗc = f1 + g1z (3.43a)

ż =ω (3.43b)

ω̇u = f2 + g2sat(ωu) (3.43c)

In order to perform the backstepping procedure, the following virtual states are introduced

e1 = pc −pr e2 = z −α1 e3 =ω−α2 (3.44a)

ė1 = f + g1(e2 +α1)− ṗr ė2 = e3 +α2 − α̇1 ė3 = f2 + g2ωu − α̇2 (3.44b)

and the first Lyapunov function is chosen as

V1 = 1

2
e2

1 (3.45)

V̇1 = e1( f1 + g1(e2 +α1)− ṗr ) (3.46)

taking the control law α1 as

α1 = − f1 −k1e1 + ṗr

g1
(3.47)

yields

V̇1 =−k1e2
1 + g1e1e2 (3.48)

The next step in the backstepping procedure is introduced with the Lyapunov function V2 and

its derivative and yields
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V2 =V1 + 1

2
e2

2 (3.49)

V̇2 =−k1e2
1 +e2(g1e1 +e3 +α2 − α̇1) (3.50)

taking the control law α2 as

α2 =−g1e1 −k2e2 + α̇1 (3.51)

yields

V̇2 =−k1e2
1 −k2e2

2 +e2e3 (3.52)

The last part of the backstepping procedure is introduced with the Lypunov function V3 and

its derivative and yields

V3 =V2 + 1

2
e2

3 (3.53)

V̇3 =−k1e2
1 −k2e2

2 +e3(e2 + f2 + g2ωu − α̇2) (3.54)

Choosing the controller ωu as

ωu = −e2 − f2 + α̇2 −k3e3

g2
(3.55)

yields

V̇3 =−k1e2
1 −k2e2

2 −k3e2
3 (3.56)

where k1,k2,k3 > 0.

As with the second order controller, the term g e1 in α̇2 causes problems for the system as

the term is ill-conditioned. Removing this term, however, seems to provide a good controller

for the system, but at the same time the proof of stability collapses. The final control laws and
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controller then becomes

α1 = − f1 −k1e1 + ṗr

g1
(3.57a)

α2 =−k2e2 + α̇1 (3.57b)

ωu = −e2 − f2 + α̇2 −k3e3

g2
(3.57c)

The system can be rewritten in terms of the virtual states with the control laws α1 and α2 and

the controller ωu introduced to the system. The system then becomes

ė1 =−k1e1 + g1e2 (3.58a)

ė2 =−k2e2 +e3 (3.58b)

ė3 =−k3e3 −e2 (3.58c)

The system can be rewritten as

ξ̇1 =−k1ξ1 +
(
g1 0

)
ξ2 (3.59a)

ξ̇2 =
−k2 1

−1 −k3

ξ2 (3.59b)

where

ξ1 = e1 (3.60a)

ξ2 =
e2

e3

 (3.60b)

A =
−k2 1

−1 −k3

 (3.60c)
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The system is now written as a cascade system where ξ2 is an input in system ξ1. Note that

the system ξ̇1 is the same as in Equation (3.15a), and thus, Assumption 1 - 3 already holds for

this system. Theorem 1 holds if Equation 3.59b can be proven UGAS and Assumption 4 holds.

For Equation 3.59b to be UGAS the eigenvalues of the matrix A needs to satisfy Re(λ) < 0. The

eigenvalues of A is given by

det(A−λI ) =
∣∣∣∣∣∣−k2 −λ 1

−1 −k3 −λ

∣∣∣∣∣∣=λ2 + (k2 +k3)λ+k2k3 +1 (3.61)

solving the polynomial in Equation (3.61) yields

λ= −(k2 +k3)±
√

(k2 +k3)2 −4(k2k3 +1)

2
(3.62)

λ=
−(k2 +k3)±

√
k2

2 +2k2k3 +k2
3 −4k2k3 −4

2
(3.63)

λ= −(k2 +k3)±
√

(k2 −k3)2 −4

2
(3.64)

By analyzing Equation (3.64) the stability of the system can be validated. From the beckstepping

procedure it is known that k2,k3 > 0. If (k2 − k3)2 ≤ 4, then clearly Re(λ) < 0 since the values

inside the square root is negative and thus imaginary. When (k2 −k3)2 > 4, the values inside the

square root are no longer imaginary. However, since the term outside the square is defined such

that any increase in either k2 or k3 will lead to a larger negative value, while inside the square

root, in order to achieve an increase in value, one of either k2 or k3 needs to have a low value

while the other increases. Because of this behavior, the worst case scenario in terms of defining

values for k2 and k3 (i.e. ending up with a case where Re(λ) < 0 no longer holds) is when either

k2 or k3 is so small that it is practically 0, while the other is extremely large. However, since

k2,k3 > 0, the term outside the square will always be larger in magnitude that the term inside

the square root, and thus, for valid choices of k1 and k2, Re(λ) < 0 will hold. In addition, the term

−4 inside the square root further strengthens this proof as it decreases the total value inside the

square root. Equation 3.59b is therefor UGAS.

In order to verify whether the system satisfies Assumption 4, the solution for the system in

Equation 3.59b is given by Equation 3.65
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ξ2 = e Atξ2(0) (3.65)

Here e At given by

e At = f (A) = h(A) =β0I +β1 A (3.66)

where β0 and β1 are obtained by solving

h(λi ) = f (λi ) (3.67a)

h(λi ) =β0 +β1λi (3.67b)

f (λi ) = eλi t (3.67c)

where λi , i ∈ [1,2] are the eigenvalues of A and are obtained through Equation 3.64. Solving the

equalities from Equation 3.67 yields the results from Equation 3.70 - 3.71

β0 +λ1β1 = eλ1t (3.68)

β0 +λ2β1 = eλ2t (3.69)

β0 =−λ1

(−eλ1t +eλ2t

λ2 −λ1

)
+eλ1t (3.70)

β1 = −eλ1t +eλ2t

λ2 −λ1
(3.71)

e At is then given by

e At =β0I +β1 A (3.72)

=
(
−λ1

(−eλ1t +eλ2t

λ2 −λ1

)
+eλ1t

)1 0

0 1

+ −eλ1t +eλ2t

λ2 −λ1

−k2 1

−1 k3

 (3.73)
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In order to simplify further calculations, e At can be be rewritten as shown in Equation

e At =
a b

c d

 (3.74a)

a =−λ1
−eλ1t +eλ2t

λ2 −λ1
+eλ1t −k2

−eλ1t +eλ2t

λ2 −λ1
(3.74b)

b = −eλ1t +eλ2t

λ2 −λ1
(3.74c)

c =−−eλ1t +eλ2t

λ2 −λ1
(3.74d)

d =−λ1
−eλ1t +eλ2t

λ2 −λ1
+eλ1t +k3

−eλ1t +eλ2t

λ2 −λ1
(3.74e)

Setting the initial value ξ2(t0) =
(
ξ2,1(t0)
ξ2,2(t0)

)
= ( c1

c2

)
, [c1,c2] ∈ R1 the solution of ξ2 is given by Equa-

tion 3.75

ξ2 = e Atξ2(0) (3.75a)

ξ2 =
a b

c d

c1

c2

 (3.75b)

ξ2,1 = ac1 +bc2 (3.75c)

ξ2,2 = cc1 +dc2 (3.75d)

In order for the system to satisfy Assumption 4, the solutions in Equations 3.75c - 3.75c needs to

satisfy

∫ ∞

t0

|ξ2,1(t ; t0,ξ2,1(t0))|d t ≤α1(|ξ2,1(t0)|) (3.76a)∫ ∞

t0

|ξ2,2(t ; t0,ξ2,2(t0))|d t ≤α2(|ξ2,2(t0)|) (3.76b)

Since the verification of assumption 4 relies on integration with respect to t (note that c1 and c4
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are functions of t0 rather than t and will behave as constants in this integration), the solutions

from Equations 3.75c - 3.75c can be further simplified in order to ease the integration task. The

simplification of ξ2,1 is performed in Equation 3.77

ξ2,1 =ac1 +bc2 (3.77a)

=
(
−λ1

−eλ1t +eλ2t

λ2 −λ1
+eλ1t −k2

−eλ1t +eλ2t

λ2 −λ1

)
c1 + −eλ1t +eλ2t

λ2 −λ1
c2 (3.77b)

= λ1c1

λ2 −λ1
eλ1t + −λ1c1

λ2 −λ1
eλ2t + c1eλ1t + k2c1

λ2 −λ1
eλ1t+ (3.77c)

−k2c1

λ2 −λ1
eλ2t + −c2

λ2 −λ1
eλ1t + c2

λ2 −λ1
eλ2t (3.77d)

=
(
λ1c1

λ2 −λ1
+ c1 + k2c1

λ2 −λ1
+ −c2

λ2 −λ1

)
eλ1t+ (3.77e)( −λ1c1

λ2 −λ1
+ −k2c1

λ2 −λ1
+ c2

λ2 −λ1

)
eλ2t (3.77f)

=c3eλ1t + c4eλ2t (3.77g)

Likewise, a simplification of ξ2,2 is performed in Equation 3.78

ξ2,2 =cc1 +dc2 (3.78a)

=− −eλ1t +eλ2t

λ2 −λ1
c1 +

(
−λ1

−eλ1t +eλ2t

λ2 −λ1
+eλ1t +k3

−eλ1t +eλ2t

λ2 −λ1

)
c2 (3.78b)

= c1

λ2 −λ1
eλ1t + −c1

λ2 −λ1
eλ2t + λ1c2

λ2 −λ1
eλ1t+ (3.78c)

−λ1c2

λ2 −λ1
eλ2t + c2eλ1t + −k3c2

λ2 −λ1
eλ1t + k3c2

λ2 −λ1
eλ2t (3.78d)

=
(

c1

λ2 −λ1
+ λ1c2

λ2 −λ1
+ c2 + −k3c2

λ2 −λ1

)
eλ1t+ (3.78e)( −c1

λ2 −λ1
+ −λ1c2

λ2 −λ1
+ k3c2

λ2 −λ1

)
eλ2t (3.78f)

=c5eλ1t + c6eλ2t (3.78g)

Here c3,c4,c5,c6 ∈R, consists only of constant values decided by the choice of k1 and k2 (λ1 and

λ2 are given by k1 and k2 according to Equation 3.64) and are given by
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c3 = c3(c1,c2) =
(
λ1c1

λ2 −λ1
+ c1 + k2c1

λ2 −λ1
+ −c2

λ2 −λ1

)
(3.79a)

c4 = c4(c1,c2) =
( −λ1c1

λ2 −λ1
+ −k2c1

λ2 −λ1
+ c2

λ2 −λ1

)
(3.79b)

c5 = c5(c1,c2) =
(

c1

λ2 −λ1
+ λ1c2

λ2 −λ1
+ c2 + −k3c2

λ2 −λ1

)
(3.79c)

c6 = c6(c1,c2) =
( −c1

λ2 −λ1
+ −λ1c2

λ2 −λ1
+ k3c2

λ2 −λ1

)
(3.79d)

Since eλ1t ,eλ2t ≥ 0, then clearly

∫ ∞

t0

|ξ2,1(t ; t0,ξ2,1(t0)|d t =
∫ ∞

t0

∣∣∣c3eλ1t + c4eλ2t
∣∣∣d t ≤

∫ ∞

t0

(|c3|eλ1t +|c4|eλ2t )d t (3.80)

Then integrating ξ2,1 yields

∫ ∞

t0

(|c3|eλ1t +|c4|eλ2t )d t =− |c3|eλ1t0

λ1
− |c4|eλ2t0

λ2
(3.81)

=− |c3(c1,c2)|eλ1t0

λ1
− |c4(c1,c2)|eλ2t0

λ2
(3.82)

=− |c3(ξ2(t0))|eλ1t0

λ1
− |c4(ξ2(t0))|eλ2t0

λ2
(3.83)

Likewise, for ξ2,2

∫ ∞

t0

(|c5|eλ1t +|c6|eλ2t )d t =− |c5|eλ1t0

λ1
− |c6|eλ2t0

λ2
(3.84)

=− |c5(c1,c2)|eλ1t0

λ1
− |c6(c1,c2)|eλ2t0

λ2
(3.85)

=− |c5(ξ2(t0))|eλ1t0

λ1
− |c6(ξ2(t0))|eλ2t0

λ2
(3.86)

Since the values of λi < 0 and t0 ≥ 0, the largest value of eλi t is 1. The class K functions αi (·)
can be chosen as in Equation 3.87
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α1(ξ2(t0)) =−|c3(ξ2(t0))|
λ1

− |c4(ξ2(t0))|
λ2

(3.87a)

α2(ξ2(t0)) =−|c5(ξ2(t0))|
λ1

− |c6(ξ2(t0))|
λ2

(3.87b)

Here the functions ci (ξ2(t0)) are linear and since to λi < 0, the functions αi (ξ2(t0)) are strictly

increasing. In addition α(0) = 0 and thus satisfying the criteria for being a class K function.

The inequalities in Equation 3.88a holds and thus Assumption 4 holds.

∫ ∞

t0

(|c3|eλ1t +|c4|eλ2t )d t ≤−|c3(ξ2(t0))|
λ1

− |c4(ξ2(t0))|
λ2

(3.88a)∫ ∞

t0

(|c4|eλ1t +|c5|eλ2t )d t ≤−|c5(ξ2(t0))|
λ1

− |c6(ξ2(t0))|
λ2

(3.88b)

Theorem 1 is then satisfied the the 3rd order system is therefore UGAS.

3.2.1 Controller Validation 3rd Order Backstepping Controller

Figure 3.6 displays the results from simulating the 3rd order design model and integrator back-

stepping controller in the pr step changes scenario. In this simulation, the controller does a

good job in tracking the reference signal pr with the choke pressure pc . However, compared to

the 2nd order controller from Section 3.1.1, the error e1 is significantly larger in this case. The

error e1 is still small, with the larges peak being less than 5×10−3 bar, which is not even notice-

able considering pc typically having values that are greater than 1×105 bar. Nonetheless, this

observation indicates that the extra step performed in the development of the 3rd order back-

stepping controller slightly impacts the performance of the controller. This is not necessarily

surprising since the extra step significantly increases the number of terms and derivatives in the

developed controller, and thus increases the number of possibilities for small errors in terms of

offsets to appear.
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Figure 3.6: Plot results from a simulation of the 3rd order integrator backstepping controller

with the 3rd order design model in the pr step changes scenario
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A simulation of the connection scenario is illustrated in Figure 3.7. In this scenario, the pres-

sure pc drops slightly during the ramp down of the flow qi n , and during the ramp up of qi n the

pressure pc increases slightly. The controller manages to keep the pressure pc close to the refer-

ence value pr . Compared to the 2nd order integrator backstepping controller which managed

to keep the pressure pc exactly equal pr , the 3rd order controller clearly performs worse. The

error between pc and pr is only 0.2bar at worst which is still good.
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Figure 3.7: Plot results from a simulation of the 3rd order integrator backstepping controller

with the 3rd order design model in the connection scenario



Chapter 4

Adaptive Integrator Backstepping

Controller with Tracking

It is not uncommon in real life scenarios that some parameters are unknown in the system.

This is the case for ρ and β in the system covered in this thesis. This chapter will cover the

development of adaptive backstepping controllers where the parametersβ and ρ are considered

to be unknown.

4.1 Adaptive Controller 2nd Order System

For the second order system an adaptive controller can be developed based on the following

design model

ṗc = θ1 f3 +θ2g3z (4.1a)

ż =ωu (4.1b)

59
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where

f3 = qi n

V
(4.2a)

g3 =−Kc

V

√
2(pc −pco) (4.2b)

θ1 =β (4.2c)

θ2 = βp
ρ

(4.2d)

Here θ1 and θ2 are the parameters that need to be estimated and the following error variables

are introduced

θ̃1 = θ̂1 −θ1
˙̃θ1 = ˙̂θ1 (4.3a)

θ̃2 = θ̂2 −θ2
˙̃θ2 = ˙̂θ2 (4.3b)

where θ̂1 and θ̂2 are the estimated values of θ1 and θ2 respectively.

In order to perform the backstepping procedure, the following virtual states are introduced

e1 = pc −pr e2 = z −α (4.4a)

ė1 = θ1 f3 +θ2g3(e2 +α)− ṗr ė2 =ωu − α̇ (4.4b)

The first step of the development of the adaptive backstepping controller is created with the

following Lyapunov function and its derivative

V1 = 1

2θ2
e2

1 (4.5)

V̇1 = e1

(
θ1

θ2
f3 + g3(e2 +α)− 1

θ2
ṗr

)
(4.6)
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Before choosing the control law α, new estimation parameters are introduced

θ3 = θ1

θ2
= β

βp
ρ

=p
ρ (4.7a)

θ4 = 1

θ2
= 1

βp
ρ

=
p
ρ

β
(4.7b)

with the corresponding estimation errors

θ̃3 = θ̂3 −θ3
˙̃θ3 = ˙̂θ3 (4.8a)

θ̃4 = θ̂4 −θ4
˙̃θ4 = ˙̂θ4 (4.8b)

The control law α is then chosen as

α= −θ̂3 f3 −k1e1 + θ̂4ṗr

g3
(4.9)

and the derivative of the Lyapunov function V1 becomes

V̇1 =−k1e2
1 + g3e1e2 − θ̃3 f3e1 + θ̃4ṗr e1 (4.10)

For the next step in the beckstepping design the following Lyapunov function is chosen

V2 =V1 + 1

2
e2 (4.11)

V̇2 =−k1e2
1 − θ̃3 f3e1 + θ̃4ṗr e1 +e2(g3e1 +ωu − α̇) (4.12)

where α̇ is given by

α̇= − ˙̂θ3 f3 − θ̂3 ḟ3 −k1ė1 + ˙̂θ4ṗr + θ̂4p̈r

g3
− (−θ̂3 f3 −k1e1 + θ̂4ṗr )ġ3

g 2
3

(4.13)

α̇= − ˙̂θ3 f3 − θ̂3 ḟ3 −k1θ1 f3 −k1θ2g3z +k1ṗr + ˙̂θ4ṗr + θ̂4p̈r

g3
− (−θ̂3 f3 −k1e1 + θ̂4ṗr )ġ3

g 2
3

(4.14)
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The controller ωu is then chosen as

ωu =−g3e1 + ˙̂α−k2e2 (4.15)

Here ˙̂α is the same as control law α̇, but instead of using the unknown parameters θ1 and θ2 it

uses the estimated parameters θ̂1 and θ̂2. ˙̂α is then given as

˙̂α= − ˙̂θ3 f3 − θ̂3 ḟ3 −k1θ̂1 f3 −k1θ̂2g3z +k1ṗr + ˙̂θ4ṗr + θ̂4p̈r

g3
− (−θ̂3 f3 −k1e1 + θ̂4ṗr )ġ3

g 2
3

(4.16)

and ˙̃α= ˙̂α− α̇ then becomes

˙̃α=−k1θ̂1 f3

g3
− k1θ̂2g3z

g3
+ k1θ1 f3

g3
+ k1θ2g3z

g3
(4.17)

˙̃α=−k1 f3

g3
θ̃1 −k1zθ̃2 (4.18)

Inserting ωu into V̇2 then yields

V̇2 =−k1e2
1 −k2e2

2 +e2 ˙̃α− θ̃3 f3e1 + θ̃4ṗr e1 (4.19)

V̇2 =−k1e2
1 −k2e2

2 − θ̃1
e2k1 f3

g3
− θ̃2e2k1z − θ̃3 f3e1 + θ̃4ṗr e1 (4.20)

(4.21)

In order to obtain the update laws for ˙̂θi where i ∈ {1,2,3,4} The following Lyapunov candidate

is chosen

V3 =V2 + 1

2γi
θ̃i , i ∈ [1,2,3,4] (4.22)

V̇3 =−k1e2
1 −k2e2

2 + θ̃1

(
1

γ1

˙̂θ1 − e2k1 f3

g3

)
+ θ̃2

(
1

γ2

˙̂θ2 −e2k1z

)
+ θ̃3

(
1

γ3

˙̂θ3 − f3e1

)
+ θ̃4

(
1

γ4

˙̂θ4 + ṗr e1

)
(4.23)
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Choosing the following update laws

˙̂θ1 = γ1e2k1 f3

g3

˙̂θ2 = γ2e2k1z ˙̂θ3 = γ3 f3e1
˙̂θ4 =−γ4ṗr e1 (4.24)

yields

V̇3 =−k1e2
1 −k2e2

2 (4.25)

Asymptotic tracking is achieved and the adaptive controller with its update law for the second

order system can be written as

ωu =−g e1 + ˙̂α−k2e2 (4.26a)

˙̂θ1 = γ1e2k1 f3

g3
(4.26b)

˙̂θ2 = γ2e2k1z (4.26c)

˙̂θ3 = γ3 f3e1 (4.26d)

˙̂θ4 = γ4ṗr e1 (4.26e)

4.1.1 Controller Validation 2nd Order Adaptive Backstepping Controller

Figure 4.1 displays the pr step changes simulation with the 2nd order adaptive integrator back-

stepping controller and the 2nd order design model. During this simulation, the parameters in

the controller are equal to the ones listen in table 4.1. It is clear that the controller manages to

track the reference pr with the choke pressure pc . However, looking at the position z and the

control outputωu it is clear that the controller causes oscillations during the reference changes.

The reason for this behavior is due to the term −g1e1. This term behaves better in the adaptive

controller compared to the non-adaptive controller. This is due to βp
ρ

being removed from the

term, causing the magnitude of g1 to be significantly smaller. However, the term still causes

problems for the adaptive controller. Since the adaptive controller relies on the update laws

θ̂1 − θ̂4 in order to prove stability, cascade theory can not be used in order to prove stability of

the adaptive controller without the term −g1e1, since it will not cover the stability of the update
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laws.
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Figure 4.1: Plot results from a simulation of the 2nd order adaptive integrator backstepping

controller with the 2nd order design model in the pr step changes scenario
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β Bulk modulus 1×109 Pa
ρ Density of fluid 1500 kgm−3

V Annulus volume 150 m3

Kc Choke gain 0.002850
k1 Controller gain 1 1×10−7

k2 Controller gain 2 10
γ1 Update law 1 gain 1×107

γ2 Update law 2 gain 1×104

γ3 Update law 3 gain 1
γ4 Update law 4 gain 1×10−18

Table 4.1: Parameters for 2nd order adaptive integrator backstepping controller during simula-
tions with the 2nd order design model

Figure 4.2 shows a simulation with the 2nd order adaptive controller during the connection

scenario. In this case the controller manages to keep the pressure pc on the reference value

pr during both ramp down and ramp up, with the biggest offset being less that 5×10−6 bar. In

this scenario, there are no oscillations caused by the controller, indicating that the controller is

capable of handling flow changes in qi n . However, since the controller already behaved badly

during the pr step changes scenario, and considering that this simulation is on a perfect system,

the performance of the adaptive 2nd order controller is not satisfactory.

Due to the behavior of the adaptive controller for the second order system, an adaptive con-

troller for the 3rd order system will not be developed in this thesis. The same term g e1 will

appear in a 3rd order controller and likely cause the same problems.
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Figure 4.2: Plot results from a simulation of the 2nd order adaptive integrator backstepping

controller with the 2nd order design model in the connection scenario



Chapter 5

Straume Validation Tests

This chapter covers validation of the performance of the 2nd and 3rd order integrator back-

stepping controller when used with Straume®. The 2nd order adaptive integrator backstepping

controller will not be used due to the bad performance in Section 4.1.1.

The simulations will use the pr step changes scenario and the connection scenario. In

addition, simulations with these scenarios, but with wrong parametrization for bulk modulus

or density will be performed in order to determine the controllers robustness in terms of bad

parametrization.

The Straume® version provided by Kelda contains several inputs and outputs. For the vali-

dation tests the inputs zc and qp , and the outputs qc , qa and pc will be used.

zc is the choke position for the choke in Straume®. Since the choke input takes the position

rather than the angular velocity, parts of the dynamic models used for the control development

will be used in order to obtain the choke position z from the control output ωu .

Since the simulator requires the position as input for the choke, it becomes easy to imple-

ment the necessary mapping function h(z) from Section 2.1. h(z) will simply be implemented

between the dynamic model and Straume®. In the simulations in this chapter, the values of

both z and h(z) will be plotted. h(z) will be the actual output from the controller that will be

used as input into Straume®, while the value of z will be used as a variable within the controller.

By using the mapping function h(z) as input, the actual choke opening within Straume® will

be similar to z. This means that in order to understand the behavior of how the choke position

affects the pressure in Straume®, it is important to focus on z rather than h(z).

67
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qp is the pump flow from the mud pumps in the system. qi n , which is the flow used in the

dynamic models used for the control developments, is not possible to manipulate directly in

Straume® (nor in a real life scenario). In order to obtain the ramp changes in qi n , which is used

for the connection scenarios in the validation testing, qp will be used instead. qp and qi n are

directly related, and the flow behavior through the drillstring and annulus will impact how qi n

will behave during the ramp changes in qp

qc is the choke flow in Straume®. This output will be used to observe how the controllers

affect the choke flow in the system and its behavior will provide useful information for the vali-

dation tests.

qa is an array containing 100 separate flow values evenly spread throughout the length of

the annulus. By extracting the last value the flow qi n is obtained, providing the controller with

a necessary input. qi n will be used together with qp in the validation tests in order to observe

how the choke behaves during the different scenarios.

pc is the choke pressure in the system and will be used as an input for the controllers. It will

also provide crucial information during the validation tests as it is the variable that should track

the reference signal pr .

5.1 2nd Order Integrator Backstepping Controller

In this section the performance of the 2nd order integrator backstepping controller will be vali-

dated. During the validation tests the parameters of the controller are given in Table 5.1.

In order to provide Straume® with the correct choke input the design model in Equation 5.1

ż = sat(ωu) (5.1)

The state z from this design model will be used in the mapping function h(z) and the choke

input in Straume® will be given as in Equation 5.2

zc = h(z) (5.2)

The simulations consisting of wrong density parametrization had little to no impact at all on
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β Bulk modulus 1×109 Pa
ρ Density of fluid 1500 kgm−3

V Annulus volume 100 m3

Kc Choke gain 0.002850
k1 Controller gain 1 1
k2 Controller gain 2 1

Table 5.1: Parameters for 2nd order integrator backstepping controller during Straume® valida-
tion simulations

the controllers performance. Plot results from these simulations are therefore omitted in this

chapter, but can be found in Appendix B.1

5.1.1 Validation Test With Reference Value Step Changes Scenario

Simulating Straume® with the 2nd order integrator backstepping controller in the pr step changes

scenario yields the results in Figure 5.1. For each step change, the choke pressure pc tracks pr

quite well. However, the error e1 is never 0 % in the time periods pc is steady state, meaning that

there is a slight offset between pc and pr . There is also a slight offset between the flow qc and

qi n . This is due the mud being compressed before the choke, causing a slight decrease in flow.

It is also worth mentioning the good behavior of z andωu in this simulation. Neither of them

has any unnecessary oscillations in order to achieve the wanted results in this simulation
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Figure 5.1: Plot results from a simulation of the 2nd order integrator backstepping controller

with Straume® in the pr step changes scenario
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5.1.2 Validation Test with Connection Scenario

Figure 5.2 contains the plot results from simulating the Straume® simulator with the 2nd order

integrator backstepping controller in the connection scenario. In this scenario, the controller

manages to keep the pressure pc close to the reference value pr during the simulation, and

during ramp down and ramp up the choke pressure also changes slightly. This is due to the

ramping in qi n happening before the ramping in qc . This can clearly be seen in the plot. During

the ramp down, qc slightly lags behind qi n , meaning that qc is slightly larger than qi n in this

period. This causes a small, yet constant decrease in pressure during the the ramp down. The

opposite holds true during the ramp up. For a short period of time, qi n is larger than qc , causing

an increase in pc for a short time during the ramp up. It’s also important to note the offset

between pc and pr during steady state. When the flow qi n = 0 it is impossible for the controller

to do anything about the offset since it is necessary for the flow qi n > 0 (thus making it possible

to achieve qi n > qc ) in order to produce an increase in the pressure pc . However, there is also

an offset between pc and pr before the ramp down and after the ramp up. In these periods the

controller is presented with the necessary conditions in order to compensate for this offset. The

reason for this offset not being dealt with is likely due to the lack of any term containing e1 in

the controller. Had the term −g e1 still been a part of the controller, it might have canceled out

the offset. An interesting situation in this scenario is the oscillations in the system happening

just after the ramp down. This is likely due to the oscillations in qi n where the flow also holds

negative values, meaning that the flow in the choke goes in the opposite direction.
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Figure 5.2: Plot results from a simulation of the 2nd order integrator backstepping controller

with Straume® in the connection scenario
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5.1.3 Validation Test with Reference Value Step Changes Scenario with Low

Bulk Modulus

A simulation of the pr step changes scenario is illustrated in Figure 5.3. In this simulation the

value of the bulk modulus β within Straume® holds the value 1×108 Pa. This corresponds to

5 % gas in the fluid in the annulus. This is a high amount of gas, but still within what could be

expected to happen during a drilling operation. It is clear from the simulation that this heavily

affects the capability of tracking the reference signal pr with the choke pressure pc . However,

looking at the behavior ofωu and the choke position z it becomes clear that the controller is not

to blame in this situation. In this simulation, the controller closes the choke almost completely,

which is the correct choice in order to increase the pressure pc . Due to the low bulk modulus

β, the pressure pc will simply not increase fast enough in order to keep up with the reference

value pr . In order to provide the controller with a validation test that properly validates the con-

trollers capability of handling reference changes in pr with a low bulk modulus β, the pr steps

validation test needs to be altered in order for the pressure pc to actually be able to keep up with

the reference value pr .
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Figure 5.3: Plot results from a simulation of the 2nd order integrator backstepping controller

with Straume® in the pr step changes scenario with low bulk modulus in Straume

Figure 5.4 displays the results of simulating the 2nd order integrator backstepping controller
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against Straume® with an altered pr step changes scenario. In this scenario there are fewer step

changes, and the size of the steps are significantly smaller compared to the the simulation from

Figure 5.3. In this simulation, the the pressure pc is capable of following the reference changes

in pr , however, there is a significant offset between the two. One interesting point regarding

this offset is that the offset remain the same in magnitude in between the step changes. This

means that the controller does not manage to cancel out this offset over time, nor does the

offset seem to increase. It is also noteworthy that both the offset between the choke pressure pc

and the reference value pr and the offset between the flows qi n and qc are much larger in this

scenario compared to the same scenario that had correct parametrization for bulk modulus.

This indicates that the flow difference could be responsible for the offset in pressure.
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Figure 5.4: Plot results from a simulation of the 2nd order integrator backstepping controller

with Straume® in the altered pr step changes scenario with low bulk modulus in Straume
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5.1.4 Validation Test With Connection Scenario with Low Bulk Modulus

A simulation of the connection scenario with the 2nd order integrator backstepping controller

is illustrated in Figure 5.5. In this simulation the bulk modulus β in Straume® holds the value

of 1×108 Pa. As with the simulation of the pr step changes with low bulk modulus β in Sec-

tion 5.1.3, there is an significant offset between the reference pr and the choke pressure pc .

Compared to the same connection scenario from Section 5.2.2, the offset in this simulation is

significantly bigger, indicating that the lower β value impacts this offset. In addition, this offset

decreases as the flow qi n ramps down and when the flow qi n = 0 the offset is 0 as well. This

indicates that the offset is largely due to the flow qi n . Apart from the offset, the controller seems

to handle this scenario quite well, even with the β value being so far off.
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Figure 5.5: Plot results from a simulation of the 2nd order integrator backstepping controller

with Straume® in the connection scenario with low bulk modulus in Straume
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β Bulk modulus 1.25×109 Pa
ρ Density of fluid 1500 kgm−3

V Annulus volume 100 m3

Kc Choke gain 0.002850
k1 Controller gain 1 1
k2 Controller gain 2 1
k3 Controller gain 3 1
τω actuator time constant 0.5

Table 5.2: Parameters for 3rd order integrator backstepping controller during Straume® valida-
tion simulations

5.2 3rd Order Integrator Backstepping Controller

In this section the performance of the 3rd order integrator backstepping controller will be val-

idated in simulations with Straume®. During these simulations the controller’s parameters are

given in Table 5.2.

In order to provide Straume® with the correct input, the the dynamic model in Equation (5.3b)

is implemented.

ż =ω (5.3a)

ω̇= 1

τω

(−ω+ sat(ωu)
)

(5.3b)

From this dynamic model, the state z can be used as an input for zc in Straume®. However, in

order to compensate for the mapping of the position zc to the actual area choke opening in the

choke within Straume®, the mapping function h(z) is added to the system, i.e.

zc = h(z) (5.4)

The simulations consisting of wrong density parametrization had little to no impact at all on

the controllers performance. Plot results from these simulations are therefore omitted in this

chapter, but can be found in Appendix B.2
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5.2.1 Validation Test with Reference Value Step Changes Scenario

Simulating Straume® with the pr step changes scenario with the 3rd order integrator backstep-

ping controller yields the results in Figure 5.6. It is clear that pc tracks pr quite well, however,

there is a slight offset between the two during steady state. This is likely due to the lack of a term

containing e1 in the controller. It is possible that if −g e1 was still a part of the controller and

not ill-conditioned, the offset could have been compensated for. The controller also behaves

well in this scenario as it does not produce any unnecessary oscillations in order to achieve the

tracking.
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Figure 5.6: Plot results from a simulation of the 3rd order integrator backstepping controller

with Straume® in the pr step changes scenario
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5.2.2 Validation Test with Connection Scenario

In Figure 5.7 the results from simulating Straume® in the connection scenario are plotted. The

controller manages to keep pc close to the reference value pr , however, the offset is still quite

noticeable. The results in this case are much alike the results from the same scenario, but with

the 2nd order controller in terms of tracking, and the offset occurring this scenario is due to the

same reasons as with the 2nd order controller. Unlike the 2nd order controller, the 3rd order

controller output ωu produces quite a lot of oscillations. These oscillations are especially bad

when the flow qi n reaches 0, but there are also oscillations during the ramp up of the flow qi n .

This indicates that the 3rd order controller does not only behave poorly during low flow, but it

seems to handle flow changes bad in general.
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Figure 5.7: Plot results from a simulation of the 3rd order integrator backstepping controller

with Straume® in the connection scenario



CHAPTER 5. STRAUME VALIDATION TESTS 84

5.2.3 Validation Test with Reference Value Step Changes Scenario with Low

Bulk Modulus

A simulation of the altered pr step changes scenario (from Section 5.1.3) with a bulk modulus

value ofβ= 1×108 Pa in Straume® is performed with the 3rd order integrator backstepping con-

troller in Figure 5.8. In this simulation the controller is capable of tracking the reference value

pr with the choke pressure pc quite well. However, there is a noteworthy offset between the

reference value pr and the choke pressure pc in this simulation. This offset does not change in

magnitude between the step changes, meaning that the controller does not manage to decrease

this offset during the step changes.
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Figure 5.8: Plot results from a simulation of the 3rd order integrator backstepping controller

with Straume® in the pr step changes scenario with low bulk modulus
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5.2.4 Validation Test with Connection Scenario with Low Bulk Modulus

Figure 5.9 displays the results from simulating the 3rd order integrator backstepping controller

with Straume in the connection scenario with the bulk modulus in Straume® being 1×108 Pa.

The controller manages to some degree to maintain the pressure during ramp down and ramp

up in qi n , however, there is an offset before the ramp down and after the ramp up. This indicates

that the offset caused is largely due to qi n , since the offset disappears when qi n = 0. Since the

offset before and after the connection in this simulation is larger than the offset in the same

simulation, but with the correct value for β in Section 5.2.2, indicates that the bulk modulus β

also impacts this offset.
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Figure 5.9: Plot results from a simulation of the 3rd order integrator backstepping controller

with Straume® in the connection scenario



Chapter 6

Summary and Recommendations for

Further Work

This chapter covers the results from this project and a discussion around the performance of

the developed controllers. It also cover recommendations for further work in order to improve

the performance of the controllers developed in this thesis.

6.1 Summary and Conclusions

In MPD one relies on good choke control in order to obtain the correct pressure at the bottom of

the well during drilling operations. In this thesis, controllers based on integrator backstepping

and adaptive integrator backstepping were developed in order to obtain an understanding on

how well these controllers manage to control the choke pressure. The controllers should be able

to control the choke pressure such that it follows a reference value controlled by an operator, and

should be able to achieve this by adjusting the choke’s angular velocity.

The controllers were developed based on dynamic models for the choke pressure and then

simulated in two different scenarios that validated the controllers performance. The controllers

would be simulated with the dynamic models that was used in their development, and thus

the conditions during the simulation is considered perfect for the controller. The first scenario

consisted of a series of increasing and decreasing step changes in the pressure reference value.

In this scenario the controller should be able to change the choke pressure in order to track

88
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the reference value. The second scenario simulated a connection, a procedure were the flow

into the choke decreases until there is no flow and then increases the flow until it reaches its

original value. In this scenario the controller should be able to maintain the choke pressure

during flow changes. These tests were designed to verify whether the controller can handle

normal operations during drilling, and since the conditions are perfect, these tests verify if the

controllers simply works as expected.

Good performing controllers would then go through further testing with Straume®, a high-

end multiphase well simulator. When simulated with Straume®, the controllers would go through

the reference value changes scenario and the connection scenario in order to verify whether

the controllers handles normal operations on a system that give a better representation of oil-

drilling in reality. In addition, the controllers would go through the same scenarios, but with bad

parameterization for the bulk modulus and density. This would test the controllers robustness

in terms of handling wrong parameterization of the often unknown parameters.

Chapter 2 covers the development of the dynamic models used to describe the change of

choke pressure in the system. The first dynamic model was of 2nd order. This model described

how the choke pressure changed based on the flow in and out of the choke were the flow out

of the choke depended on the choke opening. The choke opening changed according to the

angular velocity of the choke. The second model was of 3rd order and was an extension of the

2nd order model. The 3rd order model also featured the actuator dynamics in the choke which

was given as a first order linear filter. Two dynamic models were used since the complexity of

backstepping controllers drastically increases as the order of the system increases. A controller

would first be developed for the 2nd order system, if it provided good results during testing, a

new controller would be developed for the 3rd order system. This chapter also covers the de-

velopment of a reference filter which would provide the backstepping controllers with a filtered

reference value and its derivatives for the controller to track.

In Chapter 3 regular integrator backstepping controllers were developed. The first controller

for the 2nd order model behaved badly due to an ill-conditioned term. Removing this term from

the controller provided good results, however, this term appeared as part of the development in

order to satisfy a Lyapunov function, and by removing it the proof of stability would no longer

hold. The controller was instead proved stable by using cascade theory, and thus provided a
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well behaved controller for the 2nd order system. The controller for the 3rd order system en-

countered the same problem with the same ill-conditioned term. The ill-conditioned term was

removed from the controller and cascade theory was used in order to prove that the controller

for the 3rd order system was stable. The 3rd order controller also provided good results during

testing.

An adaptive integrator backstepping controller was developed for the 2nd order system in

Chapter 4. As with the regular integrator backstepping controllers, the adaptive controller per-

formed badly during testing due to an ill-conditioned term. Unlike the regular controllers, the

adaptive controller could not be proved stable using cascade theory. This is due to the adaptive

controller relying on update laws for its parameter estimation and cascade theory does not pro-

vide stability proof for these update laws. Since the controller for the 2nd order system behaved

badly, a controller for the 3rd order system was not developed. This is due to the ill-conditioned

term that would also be a part of the 3rd order controller.

The regular integrator backstepping controllers based on the 2nd and 3rd order system per-

formed well enough during the first tests. These controllers were simulated with Straume® in

Chapter 5 and went through a series of validation tests. Since Straume® takes the choke position

as input rather than the choke’s angular velocity, the 2nd and 3rd order design models were used

in order to provide Straume® with the choke position based on the controllers angular velocity

output. This is not optimal since the actuator dynamics (which is the main difference between

the controllers based on the 2nd and 3rd order model) is modeled outside of Straume®, and the

advantage the 3rd order model could have because of this disappears due to this setup.

In the validation tests, the 2nd order controller handled the changes in reference value sce-

nario well, even though there was a small offset between the reference value and the choke pres-

sure. During the connection scenario, the 2nd order controller managed to maintain the choke

pressure quite well, however, it was a notable offset between the choke pressure and the refer-

ence value in this scenario as well. These offset could might have been handled properly by the

controller if the ill-conditioned term was still a part of the controller (and not ill-conditioned).

Running the same scenarios with wrong parameter value for density had little to no impact on

the performance of the controller. Running the same scenarios with wrong parameter values for

bulk modulus (lower bulk modulus in Straume® than in the controller), however, had a signif-
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icant impact on the performance. The changes in choke pressure became significantly slower,

making it impossible for the controller to actually keep up with the reference value. In addi-

tion, the offset between the the reference value and choke pressure became significantly larger

compared to the scenarios with correct bulk modulus.

The backstepping controller based on the 3rd order performed much like the controller

based on the 2nd order system during all scenarios with a few exceptions. The 3rd order con-

troller had some small yet noteworthy oscillations in the control output during the connection

scenario. These oscillations could also be seen in the choke pressure. The control output also

produced some very small oscillations during the step changes scenario, however, in this simu-

lation the oscillations could not be seen in the choke pressure.

6.2 Discussion

In this thesis, three controllers were developed based on integrator backstepping. Two regu-

lar integrator backstepping controllers developed based on a 2nd and 3rd order design model,

and an adaptive integrator backstepping controller based on a 2nd order dynamic model. The

adaptive controller behaved badly even in the perfect case simulations and were not consid-

ered for further testing. The regular integrator backstepping controllers performed well when

simulated with Straume during normal operation with the exception of a small offset between

the reference value and the choke pressure. Also, the 3rd order controller had some oscilla-

tions in its output. These oscillations had notable impact during the connection scenario where

the choke pressure started oscillating. Both controllers performed significantly worse when the

bulk modulus parameter was wrong and both controllers had an increase in offset between the

choke pressure and its reference value during these simulations.

Based on these finding both the regular integrator backstepping controllers can be used in

order to control the choke, but in doing so one will need to be aware of the constant offset

between the reference value and the choke pressure. It is also important to be aware of the

significant impact wrong parametrization of the bulk modulus has on the controllers capability

of tracking the reference signal. Even if it is possible to use the controllers, it is recommended

that the current issues are dealt with before the controllers are used.
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6.3 Recommendations for Further Work

The term g1e1 caused a lot of problems in the controller development throughout this thesis.

The term was ill-conditioned and caused all controllers to behave badly when developed based

on integrator backstepping theory. Because of this a lot of time was spent on proving stability

for the regular integrator backstepping controllers using cascade theory and a working adaptive

integrator backstepping controller was not developed in the end.

For further work it is recommended to find a better way to deal with this ill-conditioned

term. This could be solved by using a different Lyapunov function during the development of

the integrator backstepping controllers. This Lyapunov function would either need to provide

a controller without this ill-conditioned term or somehow manage to compensate for the large

oscillations the ill-conditioned term creates.

Another solution in order to deal with the ill-conditioned term could be to change the units

within the controller in such a way that the ill-conditioned terms magnitude becomes signifi-

cantly smaller. If this ill-conditioned term is dealt with properly, the performance of the regu-

lar integrator backstepping controllers might increase significantly and the adaptive integrator

backstepping controller might actually work properly.

A Lyapunov approach that handles the ill-condition term properly will also have to deal with

the saturations of the choke position and angular velocity properly in the Lyapunov stability

proof.

During the validation tests with Straume®, the 2nd and 3rd order design models were used

in order to provide Straume® with the choke position based on the controllers angular velocity

output. This means that the actuator dynamics that the 3rd order controller is designed to han-

dle is not properly tested during these validation tests. It is recommended that Straume® gets

an update were the simulator consists of well modeled choke dynamics that takes the angular

velocity as input. If this is done and the same validation tests are performed without the use of

design models, but with the controller output directly connected to Straume®, there is a chance

that the differences between the 2nd and 3rd order controller become more apparent.

In order to perform the backstepping procedure, a mapping function h(z) was added in the

dynamic models during controller development in order to compensate for the mapping func-
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tion g (z) that naturally occurs in the choke. The addition of this mapping function came with

two important criteria. The first is that the mapping function g (z) is known and the second is

that there must be possible to actually add the mapping function h(z) before the choke posi-

tion input. These criteria might be hard to accomplish and for further work it is recommended

to find a way to develop integrator backstepping controllers without the use of the mapping

function h(z). This could be accomplished by using different virtual states or use a Lyapunov

function that handles this mapping function properly during the controller development.



Appendix A

Acronyms

MPD Managed Pressure Drilling

UGES Uniform Exponential Asymptotic Stability

UGES Uniform Global Asymptotic Stability

UGB Uniformly Globally Bounded
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Appendix B

Straume Simulations with Wrong Density

This appendix holds the results from the simulations of the 2nd and 3rd order integrator back-

stepping controllers during simulations with Straume with wrong parametrization for density.

The density in the controllers are ρ = 1500kgm−3. The density in Straume® is ρ = 900kgm−3

during the simulations with low density and ρ = 1800kgm−3 during simulations with high den-

sity.

Information regarding the scenarios are found in the caption of each figure.
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B.1 2nd Order Integrator Backstepping Controller

B.1.1 Reference value step changes scenario with low density
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Figure B.1: Plot results from a simulation of the 2nd order integrator backstepping controller

with Straume® in the pr step changes scenario with low density in Straume
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B.1.2 Reference value step changes scenario with high density
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Figure B.2: Plot results from a simulation of the 2nd order integrator backstepping controller

with Straume® in the pr step changes scenario with high density in Straume
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B.1.3 Connection scenario with low density
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Figure B.3: Plot results from a simulation of the 2nd order integrator backstepping controller

with Straume® in the connection scenario with low density in Straume
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B.1.4 Connection scenario with high density
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Figure B.4: Plot results from a simulation of the 2nd order integrator backstepping controller

with Straume® in the connection scenario with high density in Straume
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B.2 3rd Order Integrator Backstepping Controller

B.2.1 Reference value step changes scenario with low density
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Figure B.5: Plot results from a simulation of the 3rd order integrator backstepping controller

with Straume® in the pr step changes scenario with low density in Straume
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B.2.2 Reference value step changes scenario with high density

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

P
re

ss
ur

e 
[B

ar
]

Choke Pressure

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

F
lo

w
 [l

/m
in

]

Choke Flow

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

P
os

iti
on

 [%
]

Choke Position

0 100 200 300 400 500 600 700 800 900 1000
-10

-5

0

5

A
ng

ul
ar

 V
el

oc
ity

 [%
/s

]

Choke Angular Velocity

0 100 200 300 400 500 600 700 800 900 1000
-10

-5

0

5

e
1
: P

re
ss

ur
e 

[B
ar

]

-10

0

10

20

e
2
: P

os
iti

on
 [%

]Tracking and Position Control error

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

4

e
3
: A

ng
ul

ar
 V

el
oc

ity
 [%

/s
]

Angular Velocity Control error

Figure B.6: Plot results from a simulation of the 3rd order integrator backstepping controller

with Straume® in the pr step changes scenario with high density in Straume
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B.2.3 Connection scenario with low density
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Figure B.7: Plot results from a simulation of the 3rd order integrator backstepping controller

with Straume® in the connection scenario with low density in Straume
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B.2.4 Connection scenario with high density
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Figure B.8: Plot results from a simulation of the 3rd order integrator backstepping controller

with Straume® in the connection scenario with high density in Straume
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