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Summary

In the resent years the fear of violent storms occuring more often, and with increasing violence,

has drawn new attention to research on wave runup and wave rundown. Severe storm conditions

could cause great damage on coastal infrastructure, buildings, and the land itself; both due to

flooding and direct impact from waves.

Since wave runup is an important design parameter for coastal protection work, it is important

to have reliable methods to predict this parameter. This thesis presents a method for estimating

wave runup and wave rundown based on wind and wave statistics, and is based on published

methods. Both wind and wave statistics were applied to the method, and several empirical wave

runup and wave rundown equations were used to provide results.

Based on general equations representing the empirical equations, a formulae was obtained for

wave runup and wave rundown as a function of wave period, significant wave height, and bottom

slope. Through a Phillips spectrum this formulae was further modified to be a function of mean

wind speed. Both wind and wave distributions were applied to the associated version of the

formulae to generate results. Also, extreme values were found based on the probability of

exceeding once every n-year for the wind distributions, and from environmental contour lines

for the wave distributions.

Results obtained by the different empirical equations showed that some of the equations gener-

ated estimates significantly different from the others. However, these equations are developed

from different conditions, and deviations in results are therefore expected. The extreme value

estimates, which are important in design, did in general lie outside the range of validity of the

empirical equations, and they were therefore based on extrapolation with associated uncertainty.

This method could be convenient to use due to its simplicity, but because of large uncertainties

it should only be used in early estimates followed by more accurate analysis.
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Sammendrag

Bølgeoppskylling og bølgenedskylling har i de siste årene fått økende oppmerksomhet som

følge av frykt for at klimaendringer skal føre til hyppigere og mer voldsomme stormer. Kraftige

stormer kan forårsake stor skade på infrastruktur, bygninger og jordmasser langs kysten; enten

som følge av bølgeslag eller oversvømmelse.

Bølgeoppskylling er en viktig designparameter i prosjektering av konstruksjoner langs kysten,

og det er derfor viktig å ha pålitelige metoder for å beregne oppskyllingshøyden. Her blir det

presentert en metode for estimering av oppskyllingshøyden basert på vind- og bølgestatistikk.

Metoden er et resultat av å kombinere flere forskjellige publiserte metoder, og tar utgangspunkt

i empiriske formler for bølgeoppskylling og bølgenedskylling. Vind- og bølgestatistikk fra flere

områder er anvendt på metoden for å vise resultater som denne metoden kan gi.

To generelle formler representerer de empiriske formlene for bølgeoppskylling og bølgenedskylling.

Ved å omformulere de generelle formlene blir de uttrykt ved bunnhellingen, signifikant bølgehøyde

og toppunktperioden. Formlene kan deretter bli uttrykt ved gjennomsnittlig vindhastighet ved

å bruke et Phillipsspekter for å relatere vindhastigheten til bølgeparameterne. På denne måten

kan både vind- og bølgestatistikk anvendes for å finne bølgeoppskyllingen. I tillegg er ek-

stremverdier estimert basert på gjentaksintervall for vindstatistikk, og konturlinjer for et gitt

gjentaksintervall for bølgestatistikk. Både vind- og bølgestatistikk fra forskjellige områder er

anvendt på denne metoden både for å vise hvordan den kan bli brukt og for å sammenlikne de

svarene den gir.

Resultatene viser at noen av de empiriske formlene gir en bølgeoppskylling som avviker be-

tydelig fra de andre. De formlene som gir størst avvik er de som er basert på andre forhold

og dette er derfor forventet. Ekstremverdiene ligger stort sett utenfor de parameterområdene

som formlene er basert på, og ekstrapolering av formlene er derfor benyttet, noe som fører til
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usikkerhet i deres pålitelighet.

Metoden er relativt enkel og kan derfor være nyttig å bruke for å gjøre overslag i tidligfase

design. Den er imidlertid forbundet med nokså stor usikkerhet og det bør derfor gjøres mer

nøyaktige beregninger i den videre prosessen.
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Chapter 1

Introduction

When waves are approaching the coast, they usually break and run up on the coast, be it a struc-

ture or a beach. For low laying land or areas particularly exposed to the elements this can have

critical consequences, such as flooding, coastal erosion, and damage on coastal infrastructure.

Research on wave runup has been in progress for many years. According to de la Pena et al.

(2014) the first statistical studies on wave runup were done on structures exposed to regular

waves by Iribarren and Nogales (1949), and Miche (1944), cited in de la Pena et al. (2014).

Furthermore, Hunt (1959) linked the Iribarren number to the runup; and van Oorshot and

D’Angremond (1968) conducted the first experiments with irregular waves, followed by Battjes

(1974) who studied gentler slopes more suitable for beaches (de la Pena et al. 2014); all cited in

de la Pena et al. (2014). Still, extensive research is published. In the resent years attention has

increased driven by the focus on climate change and consequently possible sea level rise and

more extreme weather.

It is especially the extreme situations that are critical, and extreme value estimates are hence

important in design of coastal protection works. In the recent years, new attention has therefore

been drawn towards finding reliable methods for predicting extreme wave runup events and

new values for sea levels that reflect the changes in the environment in order to maintain safe

and cost effective coastal protection and constructions. For that reason, experiments on wave

runup and wave rundown have recently been performed, and empirical equations based on the

experiments have been published.

Even though the sophistication of numerical methods is continuously increasing, experimental
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methods are still highly relevant in wave runup and wave rundown analysis, both for deter-

mining empirical equations and for validation of numerical methods. In the surf zone area,

where irregular waves are breaking, numerical analysis become complex, and experiments are

therefore essential despite todays fast increasing computer power. Because detailed numerical

analysis of wave runup and wave rundown is time consuming and resource demanding, it would

be useful with a simple method for initial estimation of the phenomenon in for instance early

feasibility studies, or for estimations in the field.

This thesis is based on research in Myrhaug (2015), Myrhaug & Leira (2017), and Myrhaug

(2017) as a basis for further development of a method for calculating characteristic statistical

values of wave runup and wave rundown, including extreme values. The objective of the thesis

is to provide a method for estimating wave runup and wave rundown based on either long-term

wind or wave distributions, and to compare the results that are generated by this method.

A selection of the empirical equations is included in this thesis with focus on choosing those

with a relatively simple expression in order to be able to use these in analytical calculations. The

equations are then combined with long-term wind and wave distributions to provide examples

of estimates of wave runup and wave rundown. Also, extreme values for wave runup and wave

rundown for n-years return periods are found based on these distributions.

The method could be convenient to use for initial estimations because it only requires analytical

calculations, and it is therefore relatively simple to implement in a computer program such as

MATLAB, which is used here. The thesis is limited to comparison of nine runup models, two

rundown models, four long-term wind distributions, and ten long-term wave distributions.

This thesis starts out by giving a background on the theory behind relevant phenomena in the

surf zone. The empirical wave runup and wave rundown equations that are used in the thesis are

then presented along with the long-term wind and wave distributions that are applied to these

equations. A brief background on statistical modelling of wind and waves is also included.

Then, the method for calculating the characteristic statistical values is presented, including the

method for calculating the extreme values. Moreover, the results found by applying the runup

models and the distributions to the method is presented, compared, and discussed.
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Chapter 2

Background

This chapter presents relevant theory for the wave runup and wave rundown phenomena. This

includes the two main components, swash and setup; but also other phenomena that can con-

tribute to change in sea level. Some empirical wave runup and wave rundown formulae that

are used in the thesis are presented, and also a background on long-term wind and wave mod-

elling. Finally, the Inversed First-Order-Reliability-Method is presented, which is used to find

environmental contours for a given return period for the long-term wave distributions.

2.1 Surf Zone Theory

2.1.1 Terminology and Definitions

In this section some definitions and relevant terminology for the surf zone will be presented,

mainly based on Nielsen (2009).

The surf zone is the shallow water region between the land and the sea where waves are break-

ing. This zone is bounded seawards by the point where the largest waves start to break, and

landward by the highest point that the waves reach on the coast. The extent of the surf zone will

change with tides and wave conditions.

The inner most part of the surf zone is called the swash zone, and this area alternates between

being covered by water and not. The swash zone is limited by wave runup landwards and wave

rundown seawards. Wave runup is defined as the vertical distance between the still water level
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(SWL) and the highest point that the waves reach at a given location. Wave rundown is defined

as the vertical distance between the SWL and the lowest point that the waves reach at a given

location.

Wave runup can be described as a combination of two physical phenomena: the wave setup,

which is the deviation of the mean water level (MWL) from SWL; and the swash motion,

which is the oscillating motion around MWL. Other factors can also cause the sea level to rise,

such as tides and storm surges. These two components combined are called storm tide. Figure

2.1 shows the different components causing the sea level to rise at the shore.

Figure 2.2 shows a swash zone on a beach, where wave runup and wave rundown are the upper

and lower limit of the oscillating motion. The transition between the saturated and the unsatu-

rated surface shows the extent of recent wave runup events.

Figure 2.2: Swash zone on a beach with wave runup and wave rundown in the upper and lower

limits of the oscillating motion. The transition between the saturated and the unsaturated surface

shows the extent of recent wave runup events. (Pedersen 2014)

Wave runup and wave rundown are often described in terms of the wave runup exceeded by

2% of the wave runup maxima, and the wave rundown exceeded by 2% of the wave rundown

minima; due to the stochastic nature of the incoming waves, and consequently also the wave

runup and wave rundown. This will be referred to as R2 in the following for both wave runup

and wave rundown.
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The bottom slope is an important parameter for calculation of wave runup and wave rundown.

This parameter is often taken as the averaged bottom slope of the swash zone or the surf zone.

2.1.2 Swash Motion

Swash motion is the oscillating motion of the water around MWL on the shoreline. On very

flat beaches, lots of wave energy is dissipated by breaking before they reach the shoreline. In

this case, there will be very little swash motion. On steep beaches or structures, however, larger

swash motion can take place.

Experiments have shown that the wave runup is proportional to the wave height and the surf

similarity parameter for breaking waves (Nielsen 2009). The surf similarity parameter x , also

called Iribarren number, is often used to characterise the surf zone. This quantity, defined in

Eq. (2.1), gives a measure of the extent at which wave energy is being reflected when waves

approach the shore contrary to being dissipated by breaking (Holthuijsen 2007).

x = tang/
p

H/L0 (2.1)

Here, L0 is the deep water wave length, tang is the bottom slope, and H can be either the deep

water wave height H0 or the breaker height Hb, and the ratio H/L0 is the wave steepness.

For steep waves and/ or gentle slopes the surf similarity parameter is small, which in terms

means that the reflection is small; while for steep slopes and gentle wave steepness the surf

similarity parameter is large and consequently also the reflection dissipation ratio. This is in

line with the large amount of energy being dissipated at flat beaches.

The magnitude of the surf similarity parameter also describes different wave breaker types

when the surf similarity parameter xb is defined by the breaker height. Table 2.1 shows the

approximate range for commonly classified breaker types on a straight slope (Nielsen 2009).
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Table 2.1: Breaker types classified by the magnitude of the surf similarity parameter xb

Surf similarity parameter range Breaker types

4 < xb little or no breaking

2 < xb <4 surging breakers

0.4 < xb <2 plunging breakers

xb < 0.4 spilling breakers

For irregular waves the surf similarity parameter can be expressed in terms of HS and TP, where

HS is the significant wave height, and TP is the spectral peak period for the sea state. This

is done by utilising the relation L0 = g
2p

T 2
P between wave length L0 and TP from deep water

linear wave theory, where g is the acceleration of gravity, see for instance Dean & Dalrymple

(1984) for details on linear wave theory. The surf similarity parameter in deep water can then

be expressed as in Eq. (2.2) by inserting this relation and naming the bottom slope tang = m.

xP = m

s
g

2p

T 2
P

HS
= m

 
HS
g

2p

T 2
P

!�1/2

(2.2)

The background of the surf similarity parameter can be described by considering the oscillation

up and down along a plane slope caused by an incoming wave. In the following, this description

will be presented based on Nielsen (2009).

The amplitude of the oscillating motion that corresponds to perfect reflection is 1
2

H
sing

, see Figure

2.3. For an incoming wave with angular frequency w the corresponding maximum acceleration

along the slope is of the order given in Eq. (2.3).

Amax = w

2 H
2

1
sing

(2.3)
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Figure 2.3: Amplitude of an oscillating motion along a slope, which is H/2sing for perfect reflection

of wave energy

For the oscillatory motion to be possible, this acceleration must be smaller than the acceleration

due to gravity along the slope given in Eq. (2.4).

Ag = gsing (2.4)

If not, then the waves must break, so a criterion for reflection contrary to breaking becomes

Amax < Ag. By applying the formulations for Amax and Ag in Eq. (2.3) and Eq. (2.4), this

criterion can be written as shown in Eq. (2.5), where the relation w

2/g µ 1/L0 has been utilised.

Ag

Amax
=

gsing

w

2 H
2

1
sing

µ L0

H
sin2

g > const. (2.5)

For gentle bottom slopes the angle g is small, so the actual slope tang can be approximated by

sing . The above criterion can then, for gentle slopes, be written as L0/H tang > const., and this

is recognised as the surf similarity parameter in Eq. (2.1).

2.1.3 Wave Setup

In the following a mathematical description of wave setup will be presented based on Dean &

Dalrymple (1984).

By using Eulers formula on the free surface, Eq. (2.6), an expression for mean surface elevation

can be derived by using linear theory of waves. Here, f is the velocity potential for a propagat-
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ing wave, and C(t) is a constant, for an axis system where x points in the direction normal to

the shore and z points in the vertical direction. Also, the velocity vector is~v =�—f .

1
2

"✓
∂f

∂x

◆2
+

✓
∂f

∂x

◆2
#
� ∂f

∂ t
+gz =C(t) (2.6)

From linear theory, the expressions for the surface elevation in Eq. (2.7) and the velocity poten-

tial in (2.8) are known, where a is the wave amplitude, k is the wave number, and h is the water

depth.

h = acos(kx�wt) (2.7)

f =�ga
w

coshk(z+h)
coshkh

(2.8)

By using Taylor expansion of Eq. (2.6) around the still water level (z = 0) to the first order of

h , time-averaging over one wave period, and keeping terms of order a2, then Eq. (2.6) can be

expressed as in Eq. (2.9). Due to time averaging, the second term is neglected.

1
2

"✓
∂f

∂x

◆2
+

✓
∂f

∂x

◆2
#

z=0

� ∂f

∂ t

�����
z=0

� h

∂

2
f

∂ t∂ z

�����
z=0

+gh =C(t) (2.9)

After substituting (2.7) and Eq. (2.8) into Eq. (2.9), an expression for the time averaged free

surface elevation h can be expressed as in Eq. (2.10).

h =� a2k
2sinh2kh

+
C(t)

g
(2.10)

At deep water (kh>> 1), h is zero, which gives C(t) = 0 because sinh2kh goes to infinity when

kh increases. The expression for h can then be expressed as in (2.11) as the waves approach

shallow water because sinh2kh goes to 2kh when kh decreases. In other words, h becomes

more and more negative as kh decreases. This phenomenon is called wave setdown, and is valid

until breaking occurs.

h =� a2k
2sinh2kh

< 0 (2.11)
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At the point where the waves break, the wave amplitude can be expressed by the empirical

breaker index k as in Eq. (2.12), where hb is the water depth at the breaking point, and hb is the

mean surface elevation from Eq. (2.11) at the breaking point.

a =
k(hb +hb)

2
(2.12)

For shallow water, where sinh(2kh)! 2kh, Eq. (2.11) can be expressed as in Eq. (2.13), and

combined with Eq. (2.12) the expression can be formulated as in Eq. (2.14) by assuming that

hb ⌧ hb.

h =�a2

4h
(2.13)

hb =� k

2

4hb

1
4
(hb +hb)

2 ⇡�k

2

16
hb (2.14)

Typical values for k are 0.7  k  1.3, and for k = 0.8 the mean surface elevation at breaking

hb becomes  5% of hb.

Radiation stress in the direction of the waves can be defined as in Eq. (2.15), see for instance

Holthuijsen (2007). The radiation stress is the time-averaged transport of x-momentum in x-

direction when the x-direction is defined normal to the shore. Here, E is the time-averaged,

wave energy per unit horizontal area for linear waves, cg is the group velocity and c is the phase

speed of the waves. In shallow water cg = c, and by substituting E = 1
2rga2 and Eq. (2.12) into

Eq. (2.15), the radiation stress can be expressed by Eq. (2.16), where r is the water density.

Sxx =

✓
2

cg

c
� 1

2

◆
E (2.15)

Sxx =
3
16

rgk

2 (h+h)2 (2.16)

The relation in Eq. (2.17) can be derived from the change in horizontal momentum flux for

waves that are approaching a beach, see Dean & Dalrymple (1984) for details. By substituting

Eq. (2.16) into Eq. (2.17), the expression in Eq. (2.18) can be obtained; and by integrating
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Eq. (2.18) from xb to x, an expression for the mean surface elevation after breaking can be

formulated as in Eq. (2.19). Here, xb is the location of the breaking point in the x-direction.

� 1
rg(h+h)

dSxx

dx
=

dh

dx
(2.17)

dh

dx

✓
1+

3k

2

8

◆
=�3k

2

8
dh
dx

(2.18)

h(x) = hb +
3k

2/8
1+3k

2/8
(hb �h(x)) (2.19)

For waves approaching a shoreline or a coastal structure, the depth h(x) after breaking is smaller

than hb, which means that h(x) increases with x. This phenomenon is called setup.

At the shoreline, where h= 0, the term Eq. (2.19) reduces to Eq. (2.20), and this term represents

the contribution from the wave setup to the wave runup. For k = 0.8, h(0) is approximately

15% of hb.

h(0) = hb +
3k

2/8
1+3k

2/8
hb (2.20)

Figure 2.4 illustrates the deviation of h from SWL, z = 0, that is the setdown and the setup. At

deep water the deviation is zero, and h decreases before breaking and increases after breaking.

Figure 2.4: Deviation of the mean surface elevation from the still water level before and after

breaking. h coincide with SWL at deep water (leftmost in the figure), decreases towards breaking,

and increases after breaking

11



2.1.4 Tides

The theory on tides in this section is based on Myrhaug (2012). Tides are caused by the gravita-

tional forces from the Moon and the Sun, and the centripetal acceleration caused by the Earths

and Moons rotation around their common centre of mass.

The gravitational force from the Moon with mass M acting on a body with mass m̂ at a point

on Earth can be written as in Eq. (2.21); where r is the vector from the Moon to the point on

Earth, and G is the gravitational constant. This force will vary with the location on Earth. In

addition, the centrifugal force will act on the body with mass m̂ with the force in Eq. (2.22),

where �!rE is the vector from the Moon to the Earth’s centre. Figure 2.5 shows an Earth-Moon

system that illustrates the different components in these equations. Note that the axis of rotation

for the Earth-Moon system in reality lies inside the Earth.

FG =�G
m̂M
r2 (2.21)

FC =�m̂
�!
W ⇥�!

W ⇥�!rE (2.22)

Figure 2.5: Illustration of an Earth-Moon system where gravitational and centrifugal forces act on

a point on earth and causes a resulting tidal force

At the centre of the Earth, the gravitational and the centrifugal force is balanced. However, at

positions closer and further away from the centre, these two forces are not balanced causing

a resultant force that acts in the direction towards the Moon on the side that faces the Moon,
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and away from the Moon on the opposite side. At the Earth’s surface this causes the water to

be drawn in the directions that these forces act, causing two tidal bulges at each side of the

Earth. As the Earth rotates around itself once each day, two high tides and two low tides will be

observed each day at one location at the Earth.

Similarly, a tidal force is caused by the Sun with a magnitude of approximately 50% of the tidal

force generated by the Moon. When the Moon and Sun are aligned, such that the tidal forces

from both the Moon and the Sun contribute in the same direction, a larger tidal range than usual

will occur, called spring tide. When these forces counteract, a smaller tidal range will occur,

and this is called neap tide. The former occurs when the Sun, the Moon and the Earth is aligned;

and the latter occurs when the Moon and the Sun are separated by 90° when viewed from the

Earth.

In reality the tides will deviate from this regularity because of several effects. These effects

include the fact that the Earth’s real axis of rotation is not perpendicular to the axis between the

centres of the Earth and the Moon, and the fact that the time it takes for the Moon and the Earth

to rotate around their common axis is 24h 50min and 47sec. This gives a daily variation in the

tides.

In addition, the Moon’s path around the Earth, and the Earth’s path around the Sun are elliptic;

thus, the tidal forces will be stronger when the separation is smaller with periods of approxi-

mately one month and one year respectively. The geometry of these paths changes every 8.85

year for the Moon and every 20 900 year for the Sun. Also, tidal forces have its maxima when

the paths of the planets cross the Equator plan, which happens every 14th day for the Moon,

and every half year for the Sun. Also, the tidal stream is influenced by land and other effects,

giving local variations in the tidal range.

2.1.5 Storm Surge

The theory in this section is based on Pugh (2004). Storm surge is the excess sea level generated

by a storm, and is produced by two contributions. Firstly, the change in barometric pressure

associated with low pressure weather systems, and secondly the forces caused by wind drag at

the sea surface.

The first contribution is often called the ”inverted barometer effect”, and is caused by the low
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atmospheric pressure in the presence of a low pressure weather system. For a given change

in atmospheric pressure DPA, the corresponding change in sea level can be expressed as in Eq.

(2.23) for equilibrium conditions of the sea, which is a condition where there are no currents

caused by this pressure difference.

Dh =�DPA

rg
(2.23)

This equation indicates that for every millibar decrease in atmospheric pressure, an increase in

sea level of one centimetre will occur. Typical values for atmospheric pressures in extra-tropical

regions are in the range 980-1030 millibar. By comparing with a Standard Atmosphere of 1013

millibar, this will cause a change in sea level from +33cm to -17cm.

The second contribution is due to the drag from wind on the sea surface. This will move the

water and can cause sea level rise. The drag is theoretically given as CDrAU2
10, where CD is

the drag coefficient of the surface, and rA is the air density, and U10 is the mean wind speed

at 10 metre elevation above the sea level. At steady state the force from the wind stress will

be balanced by the pressure gradient caused by this rise in sea level. By neglecting the bottom

friction, the surface slope can be written as in Eq. (2.24).

slope =
Increase in sea level
Horizontal distance

=
CDrAU10

rgh
(2.24)

The time it takes to reach steady state is of the same order as the period of the Earth’s rotation.

Hence, rotational effects cannot be ignored. At the northern hemisphere the net transport of the

water is shifted to the right of the wind stress direction in accordance with the Ekman transport.

This results in a net transport per metre of section normal to the wind stress given in Eq. (2.25).

Here, F is the wind stress; f is the Coriolis parameter 2wS sin ŵ , where ŵ is the latitude, and

wS is the Earth’s angular velocity.

transport =
F
f r

(2.25)

An important effect of this phenomenon is observed for wind blowing along the coast. If the

coast is on the right hand side of the wind stress direction, this will increase the sea level at
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the coast in the northern hemisphere. The resulting sea surface slope can be written as in Eq.

(2.26), where u is the generated current parallel to the shore given in Eq. (2.27).

slope =
f u
g

(2.26)

u =
Ft
rh

(2.27)

Here, t is the time, which from Eq. (2.27) indicates that the current is proportional to time

and inversely proportional to the water depth. This current is, however, limited by the bottom

friction.

2.2 Empirical Equations for Wave Runup and Wave Run-

down

In this section the empirical wave runup and wave rundown formulae, called runup models, that

will be used in the calculations are presented with a brief description of how they were obtained

and the data that they were based on.

Blenkinsopp et al. (2016) have presented two wave runup and one wave rundown formulae

given in Eq. (2.28), Eq. (2.29) and Eq. (2.30). The wave runup formulae are based on the

formulations by Mase (1989) and Hedges & Mase (2004), with new empirical coefficients fitted

to the equations. Regression analysis were performed in order to find the coefficients that

most closely matched the data from the BARDEX II experiment. The wave rundown formula

was found by linear regression through the wave rundown data when plotted as wave rundown

normalised by the deep water significant wave height as a function of the deepwater Iribarren

number.

R2 = 1.165x

0.77
P HS (2.28)

R2 = (0.39+0.795xP)HS (2.29)
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R2 = (0.21�0.44xP)HS (2.30)

This experiment was a large-scale laboratory experiment performed in 2012 in the Delta Flume

in the Netherlands. A 4.5m high sand barrier was constructed in the flume with medium sized

sand with sediment size D50 =0.42mm. Shallow water irregular waves were generated by a

wavemaker based on the JONSWAP spectrum, and the deepwater significant wave height was

calculated according to linear wave theory. Different sensor techniques were used in this exper-

iment; however, only the data obtained from an ultrasonic sensor array was used to calculate the

new coefficients. The bottom slope was taken as the beach face gradient (swash zone gradient)

and varied between 0.088 and 0.154 during the measurements leading to an Iribarren number in

the range 0.99 to 2.87. For details on the BARDEX II experiment, see Masselink et al. (2016).

Schüttrumpf et al. (1994) performed a laboratory experiment in the Large Wave Flume of Han-

nover, Germany. The experiment was carried out using both uniform slopes with steepness 1:6

and 1:12, and composite slopes with steepness 1:3 for the lower slope and 1:6 for the upper

slope. For the composite slopes an appropriate average slope was calculated. The slope surface

was covered by an asphalt concrete layer imitating the surface of dikes and similar structures.

The waves were generated based on Pierson-Moskowitz and JONSWAP wave spectra covering

wave steepness HS/L0 in the range 0.001-0.031. For the range 0.5< x <2.5 Schüttrumpf et al.

(1994) suggested the formula in Eq. (2.31) for wave rundown.

R2 =�0.1x

2.21HS (2.31)

de la Pena et al. (2014) have proposed a runup model for deep water Iribarren number xP <0.6.

The formula is given in Eq. (2.32), where m is the average slope between the time-averaged

water level at the shore and the depth of closure.

R2

HS
= 4m0.3

xp (2.32)

This model is based on a model experiment performed at CEDEX Laboratory for Maritime

Experimentation. The conditions tested, in which the runup model is based on, correspond to

the following full scale values: D50 =0.7mm, xP =0.1-0.6, HS =0.5-4m and TP =4-14s. Three

different slopes were tested: 1/50, 1/30 and 1/20 corresponding to dissipative, intermediate and
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reflective beaches. Irregular waves were generated by a piston type wave paddle according to

JONSWAP spectrum with a peakedness parameter of 3.3, and the wave height was measured

by wave gauges close to the paddle. A runup wire parallel with the slope measured the swash

motion and another gauge measured the setup. The geometric scale of the model was 1:20 and

Froude similarity was used for scaling. Wave runup, R2, was obtained directly from the sample

by the peak method. The proposed runup model was found by scaling the wave runup with

xP by least-squares regression forced through the origin. Application of the formula to storm

conditions is within the range of the Iribarren numbers in this experiment for dissipative and

intermediate beaches, but not for reflective beaches. Higher scatter in data were found for the

results from the reflective beach compared to the dissipative and intermediate.

Based on a field experiment performed in 1982, Holman (1987) presented the runup model

given in Eq. (2.33). This experiments was performed at CERC Field Research Facility at Duck,

North Carolina. The beach used in the experiment is located at the Outer Banks with little

disturbance of incoming waves.

R2 = 0.83tanb

p
HSL0 +0.2HS = (0.2+0.83xP)HS (2.33)

The data used to determine the model was collected during a three-week period by Super-8

movie cameras in time-series of 35 minutes with a frame shot every second. Markers were

placed at known locations at the beach to provide reference to the images. Profile data for the

beach were collected once or twice a day by FRF Zeiss Elta-2 electronic total station system,

and the beach slope was found as the mean slope over 5m width of the beach. Wave data were

found a two locations: one at deep water by an offshore wave buoy 3km offshore at 20m depth;

and another at intermediate water depth 560m offshore at approximately 6m depth. Tidal data

were provided by a NOAA gauge at the latter offshore location, which was outside the surf zone

other than during the largest storms.

Digitisation of the film data was performed resulting in 149 runup time series, where most of

them were at two locations at the beach. All data were converted to the vertical component

of wave runup and the tidal component was removed. Therefore, the wave runup represents

the swash peaks relative to the still water level. Regression coefficients were found for wave

runup normalised by the deep water significant wave height as a function of Iribarren number.

The result is the regression line 0.83xP + 0.20, which is the runup model in Eq. (2.33), with
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coefficients ±0.06 and ±0.10 respectively.

The data obtained during the experiment contained measurements from a major storm, causing

the conditions for when the data was obtained to vary significantly both in incoming waves and

beach morphology. On the other hand, data were obtained at only one beach, hence the accuracy

of the runup model applied on other locations is most likely poorer. Performance of application

to other locations have been investigated by for instance Atkinson et al. (2017).

Another empirical runup model has been proposed by Vousdoukas & Wziatek (2012). This

model is based on field experiments performed at Faro Beach at the southern coast of Portugal.

The beach is characterised as reflective with a beach face slope decreasing eastward on the

beach ending in a low tide terrace state at the far east of the beach. Sediments were classified

as medium to very coarse, moderately well sorted with D50 =0.50mm and D90 =2mm.

Offshore wave data were provided from an offshore wave buoy at 93m depth by the Portuguese

Hydrographic Institute, and tidal data were measured at Huelva Harbor and provided by Spanish

Port Authorities. Offshore wave conditions in terms of significant wave height and spectral peak

period that were measured during the experiments were in the range 0.17m< HS <3.6m with a

mean of 1.4m and mode of 0.4m, and 2.7s< TP <16.5s with a mean of 9.5s and mode of 4.2s.

Topographic monitoring was performed by a real time kinematics differential GPS detecting

beach face slopes in the range 4%< m <15% with a mean of 10.3% and mode of 10%. Iribarren

numbers varied from 0.3 to 2.8779.

Video cameras were used to detect the wave runup recording 10min every hour during daylight

with an acquisition frequency of 1Hz. Time stack images for wave runup were generated hourly

from the recordings. Then, lens distortion correction was applied and transformation from

image to world coordinates was carried out. Linear regression was fitted to the profile section

in the vertical range of tidal surface elevation ± two times the standard deviation of the swash

motion. This resulted in 426 wave runup measurements that were used to produce empirical

runup models by fitting the results to different parameters. The runup model that showed the

best performance with an RMS error equal 0.39m was the model in Eq. (2.34).

R2 = 0.53b

p
HSLP +0.58tanbHS +0.45 = (0.58m+0.53xP)HS +0.45 (2.34)

Atkinson et al. (2017) have presented two new models that are based on nine existing and
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commonly used runup models. Eight of the models are based on field-data and one is based on

data from a large scale wave flume. Together they cover a wide range of beach types and sea

states. Some of the models are, however, based on the same data sets. None of the experiments

that the models are based on recorded significant wave heights larger than 4.6m or spectral peak

perioda above 17s, hence applying the Atkinson et al. (2017) models beyond these limits would

be baseless. These models are on the form C tanb

p
HSLP proposed by Hunt (1958), where C

is a coefficient found by least square analysis for the line of best fit to the predictions from

the models. These models are given in Eq. (2.35) and Eq. (2.36), where the former is forced

through the origin. The least square analysis gave a coefficient of variation R2 for the line of

values 0.71 and 0.72 respectively.

R2 = 0.99tanb

p
HSLP = 0.99xPHS (2.35)

R2 = 0.92tanb

p
HSLP +0.16HS = (0.16+0.92xP)HS (2.36)

None of the empirical models that Eq. (2.35) and Eq. (2.36) are based on are valid for near

vertical slopes, such as cliffs. Hence, these models are neither. Extreme wave runup events often

occur when the wave runup strikes a near vertical structure, and consequently, these models are

not valid for conditions resulting in such extreme wave runup events. However, the models

dependence on HS and LP allow for extrapolation to extreme conditions, but their accuracy in

such a case is uncertain.

According to Poate et al. (2016), the wave runup on gravel beaches are under-predicted by runup

models developed using data from sandy beaches. Gravel beaches do usually have steeper pro-

files and they are able to maintain their profile characteristics even during highly energetic con-

ditions; sandy beaches, however, are usually dominated by infragravity waves during extreme

conditions while the incident storm waves are breaking and dissipating their energy further off-

shore. Poate et al. (2016) have therefore presented two new runup models intended for pure

gravel beaches. These models are given in Eq. (2.37) and Eq. (2.38).

R2 = 0.49tang

0.5TZHS (2.37)
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R2 = 0.33tang

0.5TPHS (2.38)

These models are based on synthetic data from a numerical model of a gravel beach. This allows

for generation of data runs over a large parameter space, which in this care is m =0.05-0.20,

D50 =2-50, HS =2.00m-7.02m, TP =5.11s-19.55s. The runup models are validated by field data

obtained at four gravel beaches in the southern England. Parameter range for the beaches were

m=0.10-0.40 and D50 =2-60mm during the measurements. Measurements were centred during

high energy conditions causing large wave runup due to waves breaking directly at the shore

and therefore also little dissipation of energy further offshore.

Each of the empirical equations are given an abbreviation for later reference, and these are given

in Table 2.2.

Table 2.2: Abbreviation for runup model equations

Equation number Abbreviation

2.28 Bl1

2.29 Bl2

2.30 Bld

2.31 Sc

2.32 Pe

2.33 Ho

2.34 Vo

2.35 At1

2.36 At2

2.37 Po1

2.38 Po2

2.3 Statistical Modelling of Wind and Waves

This section presents the theory behind long-term wind and wave modelling. Also, the long-

term wind and wave distributions that are applied to the method herein are presented.
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2.3.1 Long-Term Wind Statistics

DNV-RP-C205 (2014) recommends assuming a Weibull distribution for the mean wind speed

in 10 minutes intervals at a given height above the sea level unless data indicates otherwise. The

cumulative distribution function (cdf) for a two-parameter Weibull distribution is given in Eq.

(2.39), where a and b are the shape and scale parameters. The n’th moment for this distribution

can be expressed as in (2.40), where G is the gamma function.

FU10(u10) = 1� exp

�
✓

u10

b

◆
a

�
(2.39)

µ

n
U10

= b

nG
⇣

1+
n
a

⌘
(2.40)

The distribution of the mean wind speed can also be expressed in terms of a joint probability

density function (pdf) of HS and U10 on the form given in Eq. (2.41). Such a joint pdf consists

of a conditional distribution of U10 given HS, and a marginal distribution of HS. In DNV-RP-

C205 (2014) a two-parameter Weibull distribution is suggested also for the conditional model

like for the marginal distribution of U10. For the marginal distribution of HS, DNV-RP-C205

(2014) recommends a three-parameter Weibull distribution unless data indicates otherwise. The

conditional and marginal distributions are expressed in Eq. (2.42), and Eq. (2.43) where s is the

scale parameter, r is the shape parameter, and t is the location parameter for the distribution.

fU10HS(hs,u10) = fU10|HS(u10|hs) fHS(hs) (2.41)

fU10|HS(u10|hs) =
a

b

✓
u10

b

◆
a�1

exp

�
✓

u10

b

◆
a

�
(2.42)

fHS(hs) =
r
s

✓
hs � t

s

◆r�1
exp

�
✓

hs � t
s

◆r�
(2.43)

The probability of exceeding a certain value of the mean wind speed u10,max can be expressed

in Eq. (2.44) as the probability of exceeding once every Treturn years, where N is the number

of individual U10 during Treturn years (Myrhaug & Lian 2009), and N can be calculated by Eq.

(2.45).
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P(U10 > u10,max) = 1�FU10(u10) =
1
N

(2.44)

N = Treturn ·365 ·24 · 60min
10min

(2.45)

A value for mean wind speed corresponding to this probability of exceedance can be found by

inserting Eq. (2.39) into Eq. (2.44) and solve for u10,max, resulting in the expression in Eq.

(2.46).

u10,max = b (lnN)1/a (2.46)

2.3.2 Mean Wind Distributions

Johannessen et al. (2002) have presented a cumulative two-parameter Weibull distribution for

1-hour mean wind speed at 10m above sea level, hereafter referred to as JMH02. Parameters for

this distribution, a = 1.708 and b = 8.426, were estimated by method of moments from data

obtained in the Northern North Sea in the period 1973-1999. The data used for the estimation

are based on measurements from the fields Brent, Troll, Statfjord, Gullfaks and from the weather

ship Stevenson, and model data from the Norwegian hindcast archive (WINCH, gridpoint 1415)

where data were missing, so that a continuous time-series of 20 years were obtained.

Mao & Rychlik (2016) have presented two two-parameter Weibull distributions for 10min av-

erage wind speed U10, hereafter reffered to MR15 (1) and MR15 (2). A spatio-temporal wind

model was used to estimate Weibull parameters at fixed locations in the North Atlantic from

hindcast data for the period 2003-2013. For the location 10°W 40°N just outside the west coast

of Portugal these parameters were estimated to a = 2.30 and b = 7.11, and at 20°W 60°N south

of Iceland the estimated parameters are a = 2.46 and b = 10.99.

Bitner-Gregersen (2015) has presented a joint model for wind, waves and current. This joint

model contains a joint distribution for U10 and HS that will be used here, hereafter reffered

to as BG15. The parameters for this distribution were estimated from hindcast data from the

Northwest Shelf of Australia generated for the period 1994-2005. The joint model for U10

and HS is given by the conditional two-parameter Weibull distribution for 10 minute mean
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wind speed U10 given HS in Eq. (2.42), and a three-parameter marginal Weibull distribution

for HS in Eq. (2.48). The estimated parameters for the two-parameter Weibull distribution

are a = c1 + c2hc3
s and b = c4 + c5hc6

s , where c1 =1.250, c2 =5.600, c3 =0.660, c4 =0.050,

c5 =5.514 and c6 =0.280 for the Northwest Shelf of Australia. The parameters for the three-

parameter marginal distribution are s =0.605, r =0.867 and t =0.322.

Table 2.3 shows the Weibull parameters for the distributions. The pdfs for the distributions

are shown in Figure 2.6, where the conditional distribution is used for the BG15 distribution.

Figure 2.6 shows that the conditional probability function is narrower and higher than the other

three marginal distributions, indicating higher kurtosis for this distribution. The JMH02 and

the MR15 (1) distributions are both skewed to the left, while the MR15 (2) distribution is more

symmetric.

Table 2.3: Parameters for the long-term Weibull wind distributions

Distribution a b

JMH02 1.708 8.426

MR15 (1) 2.30 7.11

MR16 (2) 2.46 10.99

BG15 1.250+5.600h0.660
s 0.050+5.514h0.280

s
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Figure 2.6: Wind probability density functions

2.3.3 Long-Term Wave Statistics

Long-term wave statistics is often expressed in terms of a joint pdf of HS and TP, or HS and TZ .

Joint pdfs for HS and TP, or HS and TZ , are given on the form in Eq. (2.47), where T represents

either TP or TZ . The relation between T and TP is defined as TP = ĉT , where ĉ is a coefficient.

Here, fHS|T (t|hs) is the conditional pdf of T given HS, and fHS(hs) is the marginal pdf of HS.

fHST (hs, t) = fHS|T (t|hs) fHS(hs) (2.47)

DNV-RP-C205 (2014) suggests that a joint distribution of significant wave height and period

is modelled by a three-parameter Weibull distribution for the marginal distribution of HS and a

lognormal distribution for the conditional distribution. The form of this marginal distribution is

given in Eq. (2.48) where s is the scale parameter, r is the shape parameter, and t is the location

parameter for the distribution.
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fHS(hs) =
r
s

✓
hs � t

s

◆r�1
exp

�
✓

hs � t
s

◆r�
(2.48)

The conditional pdf fT |HS(t|hs) is given by Eq. (2.49), where µT and s

2
T are the mean value and

the variance of lnT . The mean value of lnT is on the form in Eq. (2.50), and the variance or

standard deviation can either be on the form in Eq. (2.51), (2.53), or (2.52); where a1, a2, a3,

b1, b2 and b3 are parameters determined by the distribution.

fT |HS(t|hs) =
1p

2psT t
exp

�(ln t �µT )2

2s

2
T

�
(2.49)

µT = a1 +a2Ha3
S (2.50)

s

2
T = b1 +b2 exp(b3HS) (2.51)

sT = b1 +b2 exp(b3HS) (2.52)

sT = b1 +b2Hb3
S (2.53)

Another alternative for the marginal distribution of HS is a combined log-normal and Weibull

distribution given in Eq. (2.54) (Haver 1980), where h⇤s is the shifting point from the log-normal

to the Weibull distribution. The parameters µH and s

2
H are the mean value and the variance of

lnHS, and s and r are Weibull parameters.

fHS(hs) =

8
><

>:

1p
2psHhs

exp
h
� (lnhs�µH)2

2s

2
H

i
for hs  h⇤s

r hr�1
s
sr exp

h
�
⇣

hs
s

⌘ri
for hs > h⇤s

(2.54)

2.3.4 Joint Wave Distributions

Moan et al. (2005) have presented a joint pdf for HS and TP consisting of a log-normal condi-

tional distribution of TP given HS in Eq. (2.49) with parameters in Eq. (2.50) and Eq. (2.51),
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and a combined log-normal and two-parameter Weibull marginal distribution in Eq. (2.54);

hereafter referred to as MGAU05. This distribution was fitted to data recorded by a wave buoy

in the Northern North Sea during a 29-year period from 1974 to 2002. Measurements of the

significant wave height ranged from 0.25m to 12.75m in this period, and spectral peak period

from 0.5s to 29.5s.

The shifting point h⇤s between the two marginal distributions was determined by an iterative

procedure based on chi-square testing, resulting in h⇤s =3.25m (Moan et al. 2005). Parameters

for this joint distribution were provided by Gao (2007) cited in Myrhaug & Fouques (2010),

where the values for the conditional distribution are presented in Table 2.4; and values for the

parameters of the combined marginal distribution are µH = 0.801 and s

2
H = 0.371 for the mean

and the variance of lnHS, and the Weibull parameters are s = 2.713 and r = 1.531. The Weibull

parameters are also given in Table 2.5.

Orimolade et al. (2016) have presented parameters for a long-term joint distribution of HS

and TP, hereafter referred to as OHG16. This joint distribution consists of a three-parameter

marginal Weibull distribution of HS in Eq. (2.48); and a log-normal conditional distribution of

TP given HS in Eq. (2.49), with parameters in Eq. (2.50) and Eq. (2.51). Estimation of the

parameters for the joint distribution was based on hindcast data from the Norwegian Reanalysis

10km (NORA10) consisting of 3hourly wave fields at a resolution of 10km. This data was col-

lected in the Barents Sea at 72.02°N 22.10 °E during a period of 57 years from 1957 to 2014.

In this area the significant wave height ranged from 0.2m to 17m during that period. Parameters

for the marginal distribution of HS were estimated by the method of moments resulting in the

parameters presented in Table 2.5, and the estimated parameters for the conditional distribution

for TP given HS are presented in Table 2.4.

Bitner-Gregersen & Guedes Soares (2007) have presented parameters for a joint distribution

of HS and TZ based on five different data sets, hereafter referred to as BGGS07. The joint

distribution is given by Eq. (2.48), and (2.49) with parameters in Eq. (2.50) and Eq. (2.53). For

estimation of the parameters the least square method is used on the datasets.

All the data were collected form the ocean region west of the British Isles and south of Iceland

in the North Atlantic. Three datsets from global databases are among these. These datasets

consist of data collected at three locations in the North Atlantic at the locations 59°N 19°W,

54 °N 21 °W and 59 °N 18.45 °W, west of the British Isles. The data were collected over a
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period of 44, 19 and 12 years at the respective locations every third hour for all but the second

location where data were sampled every sixth hour. Another dataset from the Global Wave

Statistics is also used for estimation of parameters from data from the region. These data are

based on visual observations collected from ships in service since 1949 in the selected ocean

region. The fifth dataset is based on data collected over a 13-year period at the Ocean Weather

Station Juliet stationed at 52 °N 20 °W in the mid-1900s. The parameter values are given in

Table 2.4 where the number of the datasets are referred to in the parenthesis. Parameters for the

marginal distribution in Eq. (2.48) are given in Table 2.5.

Mathisen & Bitner-Gregersen (1990) have presented three joint distributions with associated

parameters. These distributions consist of three-parameter marginal Weibull distributions for

HS in Eq. (2.48), and conditional log-normal distributions for TZ given HS in Eq. (2.49) with

parameters in Eq. (2.50) and Eq. (2.52).

Parameters for the joint distributions were estimated based on three data sets from the Norwe-

gian Continental Shelf at Tromsøflaket (71°30’N 19°00’E), Utsira (59°18’N 4°48’E), and Hal-

tenbanken (64°11’N 9°8’E). Data for Tromsøflaket were provided by the Environmental Data

Centre of the Norwegian Meteorological Institute and is based on observations by Waverider

buoys every three hour during the period 1977-1983, and data for Utsira and Haltenbanken were

extracted from two reports of the ODAP - Oceanographic Data Acquisition Project. Weibull pa-

rameters were estimated by nonlinear least squares, and the log-normal parameters were found

by first calculating µT and sT for each class of significant wave height and then fitting the a1,

a2, a3, b1, b2 and b3 parameters to Eq. (2.50) and Eq. (2.52) by the nonlinear least squares

technique.

The parameter values for the conditional log-normal distribution are given in Table 2.4, and

parameter values for the marginal Weibull distribution are given in Table 2.5.
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Table 2.4: Parameters for the conditional wave distributions for T given HS

Distribution Parameters

a1 a2 a3 b1 b2 b3

MGAU05 1.780 0.288 0.474 0.001 0.097 -0.255

OHG16 0.740 1.200 0.210 0.001 0.113 -0.275

BGGS07 (1) 1.350 0.366 0.392 0.020 0.165 -0.166

BGGS07 (2) 1.365 0.375 0.453 0.033 0.285 -0.752

BGGS07 (3) 0.790 0.805 0.292 0.055 0.195 -0.269

BGGS07 (4) 0.835 1.139 0.119 0.140 0.030 -0.958

BGGS07 (5) 1.952 0.168 0.499 0.070 0.066 -0.081

MBG90 (1) 1.240 0.337 0.538 0.0728 0.383 -0.665

MBG90 (2) 1.090 0.479 0.417 0.0407 0.221 -0.289

MBG90 (3) 0.933 0.578 0.395 0.0550 0.336 -0.585

Table 2.5: Weibull parameters for marginal distribution of HS in (2.48)

Distribution s r t

MGAU05 2.713 1.531

OHG16 1.690 1.160 0.760

BGGS07 (1) 3.104 1.357 0.906

BGGS07 (2) 2.848 1.419 1.021

BGGS07 (3) 2.939 1.240 0.896

BGGS07 (4) 2.857 1.449 0.838

BGGS07 (5) 2.420 1.169 1.258

MBG90 (1) 1.410 1.120 0.987

MBG90 (2) 1.910 1.270 0.532

MBG90 (3) 1.500 1.150 0.679

Figure 2.7 shows the conditional pdfs of T given HS =3m. This figure shows that the BGGS07

distributions have significantly higher kurtosis than the MGAU05 and OHG16 distributions, and

28



the MBG90 distributions show even higher kurtosis. The MGAU05 and OHG16 distributions

show very similar shape and peak wave period.
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Figure 2.7: Conditional wave probability density functions for HS =3m

2.4 Inversed First-Order-Reliability-Method

This method is based on DNV-RP-C205 (2014). First, the joint distribution for the relevant sea

state parameters are established. The form of a joint distribution for HS and TZ is given in Eq.

(2.55).

fHST (hs, t) = fHS|T (t|hs) fHS(hs) (2.55)

The joint distribution can then be transformed to standard normalised U-space, with axis u1 and

u2, by Eq. (2.56) and Eq. (2.57).
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F(u1) = FHS(h) (2.56)

F(u2) = FTP|HS(t|h) (2.57)

In the standard normalised U-space, points with constant probability density are located on a

circle with a constant radius r. For a given return period this radius can be found from Eq.

(2.58), where q is the probability of exceedance associated with the given return period.

r =
q

u2
1 +u2

2 =�F�1 (q) (2.58)

The circle can then be transformed back to environmental parameter space defining the contour

line for the given return period by Eq. (2.59) and Eq. (2.60).

hs = F�1
HS

(F(u1)) (2.59)

t = F�1
T |HS

(F(u2)) (2.60)
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Chapter 3

Method

This chapter presents the method that is used to calculate characteristic statistical values of

wave runup and wave rundown by using the empirical formulae and the long-term wind and

wave distributions presented in Chapter 2.

3.1 General Equations for Wave Runup and Wave Rundown

In this section two general formulae are presented. All the emprical formulae in Section 2.2 can

be expressed through these two equations.

The first eight equations for R2, Eqs. (2.28) to (2.36), can be described by the general expression

given in Eq. (3.1). Eq. (2.37) and Eq. (2.38) can both be described by Eq. (3.2). Here, T

represents either TP or TZ , and the relation between TP and TZ is taken as TP = 1.28TZ so that

ĉ = 1 for T = TP, and ĉ = 1.28 for T = TZ , based on Figure 11 in Myrhaug & Kjeldsen (1987).

This is valid for a JONSWAP spectrum with peakedness factor 3.3, and is not necessarily valid

for the distributions used here.

R2 = (a+bx

c
P)HS +d

= aHS +bmcĉc
⇣ g

2p

⌘c/2
H1�c/2

S T c +d
(3.1)

R2 =Cm0.5ĉT HS (3.2)
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Values for the different parameters in Eq. (3.1) and Eq. (3.2) are given in Table 3.1 for each

runup model. Table 3.2 gives an overview of the range of the runup models. Note that some

values in Table 3.2 have been read from figures in the orginal articles, and are not necessarily

values specified explicitly by the authors of these articles.

Table 3.1: Parameter values for the general equations for runup models

Runup Values in general equations

model a b c d C

Bl1 0 1.165 0.77 0

Bl2 0.39 0.795 1 0

Bld 0.21 -0.44 1 0

Sc 0 -0.1 2.21 0

Pe 0 4m0.3 1 0

Ho 0.2 0.83 1 0

Vo 0.58m 0.53 1 0.45

At1 0 0.99 1 0

At2 0.16 0.92 1 0

Po1 0.49/1.28

Po2 0.33
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Table 3.2: Overview of runup model range. Bold indicates values that the authors have suggested

as range for the formulae. Normal is values from the experiments that the formulae are based on.

Runup Range

model m [-] x [-] D50 [mm] HS [m] TP [s] H/L [-]

Bl1, Bl2, Bld 0.088-

0.154

0.99-2.87 0.42

Sc 0.5-2.5 asphalt

concrete

0.001-

0.031

Pe 1/50,

1/30, 1/20

<0.6 0.7 0.5-4 4-14

Ho dissipative

to

reflective

beach 0.4-4.0 4-17

Vo 0.04-0.15 0.3-

2.8779

0.50 0.17-3.6 2.7-16.5

At1, At2 dissipative

to

reflective

-4.6 -17s

Po1, Po2 0.05-0.20 0.20-1.94 2-50 2-7.02 5.11-

19.55

3.2 Wave Runup and Wave Rundown Based on Wind Statis-

tics

This section presents the method for calculating characteristic statistical values of wave runup

and wave rundown based on wind statistics. Both a stochastic, and a simplified deterministic

approach are presented. This stochastic method is based on Myrhaug (2017).
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3.2.1 Stochastic Approach

An expression for R2 can be derived from the single sided Phillips spectrum given in Eq. (3.3),

where w ! •, w � wp = g/U10, where â=0.0081 is the Phillips constant.

S(w) = â

g2

w

5 (3.3)

ω

ω
p

S(ω)

     

Figure 3.1: Phillips spectrum

From the restrictions of spectral peak frequency wP, an expression for the spectral peak period

TP can be defined by utilising the relation TP = 2p/wP. This gives an expression for TP as a

function of U10 defined in Eq. (3.4).

Tp =
2p

wp
=

2p

g
U10 (3.4)

The moments of the spectrum are defined as mn =
•R

0
w

nS(w)dw . Based on the moments, an

expression can be found for both the significant wave height HS and the zero-crossing period

TZ . By estimating HS from the spectrum, the expression is found from the relation HS = 4
p

m0.

The expression for HS as a function of U10 is given in Eq. (3.5).

HS = 4
p

m0 =
2
p

â

g
U2

10 (3.5)
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The zero-crossing period can be found from the spectrum by using the relation TZ = 2p

p
m0/m2.

The expression for TZ as a function of U10 is given in Eq. (3.6).

TZ = 2p

r
m0

m2
=

p
2p

g
U10 (3.6)

In order to write the general expression for R2 in Eq. (3.1) as a function of U10, the expression

for xP in Eq. (2.2) in Section 2.1.2. and the expressions for TP and HS are inserted into the

original expression. The result is given in Eq. (3.7), where C1 is given in Eq. (3.8), and the

details in the calculation can be found in Appendix A.1.

R2 = (a+bx

c
P)HS +d

= aHS +b
✓

m
r

g
2p

TPp
HS

◆c

HS +d

=

2

4a
2
p

â

g
+bmc

✓
2p

g

◆ c
2
 

2
p

â

g

!1� c
2
3

5U2
10 +d

=C1U2
10 +d

(3.7)

C1 = a
2
p

â

g
+bmc

✓
2p

g

◆ c
2
 

2
p

â

g

!1� c
2

(3.8)

Expressions for the expected value and the variance of R2 can be found by utilising the relation

between R2 and U10 in Eq. (3.7). These expressions are given in Eq. (3.9) and Eq. (3.10), where

µ

n
U10

is the n’th moment of U10 in Eq. (2.40).

E[R2] = E
⇥
C1U2

10 +d
⇤
=C1E

⇥
U2

10
⇤
+d

=C2µ

2
U10

+d
(3.9)

Var[R2] =Var
⇥
C1U2

10 +d
⇤
=Var

⇥
C1U2

10
⇤

= E
h�

C1U2
10
�2
i
�
�
E
⇥
C1U2

10
⇤�2

=C2
1E
⇥
U4

10
⇤
�C2

1
�
E
⇥
U2

10
⇤�2

=C2
1

⇣
µ

4
U10

�
�
µ

2
U10

�2
⌘

(3.10)
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For the general expression in Eq. (3.2), R2 can be expressed in terms of U10 as shown in Eq.

(3.11), where C2 is given in Eq. (3.12), and the details in the calculation can be found in

Appendix A.1.

R2 =Cm0.5T HS =C2U3
10 (3.11)

C2 =

8
><

>:

0.49m0.5 2p

p
2â

g2 for Po1

0.33m0.5 4p

p
â

g2 for Po2
(3.12)

The expected value and variance of R2 in Eq. 3.2 can be written as in Eq. (3.13) and Eq. (3.14).

E[R2] = E
⇥
C2U3

10
⇤
=C2E

⇥
U3

10
⇤
=C2µ

3
U10

(3.13)

Var[R2] = E
⇥
R2

2
⇤
� (E [R2])

2

= E
h�

C2U3
10
�2
i
�
�
E
⇥
C2U3

10
⇤�2

=C2
2E
h
U6

10

i
�C2

2
�
E
⇥
U3

10
⇤�2

=C2
2

⇣
µ

6
U10

�
�
µ

3
U10

�2
⌘

(3.14)

3.2.2 Deterministic Approach

When information is limited, a deterministic approach can be used. For this approach, only

the expected value of the mean wind speed is needed, in contrast to the 0’th to 6’th moment

of the distribution in the stochastic approach. The expected value of the wave runup and wave

rundown can in this case be calculated by Eq. (3.15) for the general equation in Eq. (3.1), and

by Eq. (3.16) for the general equation in Eq. (3.2). The standard deviation becomes zero for

the deterministic approach.

E[R2] =C1E
⇥
U2

10
⇤
+d =C1 (µU10)

2 +d (3.15)

E[R2] =CE
⇥
U3

10
⇤
=C (µU10)

3 (3.16)
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3.2.3 Extreme Values

Extreme values for R2, R2,max, can be found by utilising the relation between R2 and U10 in Eq.

(3.7) and Eq. (3.11). By inserting the extreme values for the mean wind speed found by Eq.

(2.46) into this relation, values of R2,max can be obtained by Eq. (3.17) and Eq. (3.18).

R2,max =C1 (u10,max)
2 +d (3.17)

R2,max =C2 (u10,max)
3 (3.18)

3.3 Wave Runup and Rundown Based on Wave Statistics

This section presents the method for calculating characteristic statistical values of wave runup

and wave rundown based on wave statistics.

3.3.1 Stochastic Approach

The method in this section is based on methods presented by Myrhaug (2015) and Myrhaug &

Leira (2017), and is used for calculating wave runup and wave rundown based on joint distribu-

tions of HS and TP, or HS and TZ .

Based on the general equation for R2 in Eq. (3.1), a joint pdf for HS and R can be found

by change of variables from the joint pdf for HS and T in Eq. (2.47). Here, R is defined as

R = R2 �aHS �d to simplify the calculations. This joint pdf will be on the form in Eq. (3.19),

and the change of variables will only affect the conditional pdf for R given HS, leaving f (HS)

unchanged.

f (HS,R) = f (R|HS) f (HS) (3.19)

The conditional pdf for R given HS can be found by change of variables from the conditional

pdf for T given HS in Eq. (2.49), and the result is given in Eq. (3.20). The mean value and
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variance of lnR are given in Eq. (3.21) and Eq. (3.22), and µT and sT are found in Eq. (2.50),

and Eq. (2.51), (2.52) or (2.53). For further details on the calculation, see Appendix A.2.

f (R|HS) =
1p

2psRR
exp

�(lnR�µR)2

2s

2
R

�
(3.20)

µR = cµT + ln
✓

bmcĉc
⇣ g

2p

⌘c/2
H1�c/2

S

◆
(3.21)

s

2
R = c2

s

2
T (3.22)

The conditional cdf for R given HS can be found from Eq. (3.23), where F is the standard

Gaussian cdf. From this expression the conditional expected value and standard deviation of R

given HS can be described as in Eq. (3.24) and Eq. (3.25) (Bury 1975).

F(R|HS) = F


lnR�µR

sR

�
(3.23)

E[R|HS] = exp
✓

µR +
1
2

s

2
R

◆
(3.24)

s [R|HS] =
h⇣

es

2
R �1

⌘
exp
�
2µR +s

2
R
�i1/2

(3.25)

The conditional expected value and standard deviation of R2 can then be found by utilising the

relationship R = R2 �aHS �d, and the expressions are given in Eq. (3.26) and Eq. (3.27).

E[R2|HS] = E[R|HS]+aHS +d (3.26)

s [R2|HS] = s [R|HS] (3.27)

Similarly, change of variables can be performed by considering the general expression in Eq.

(3.2). This change of variables results in the conditional pdf given in Eq. (3.28) with the

mean and variance of lnR2 in Eq. (3.29) and Eq. (3.30), see Appendix A.2 for details on the

calculation.
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f (R2|HS) =
1p

2psR2R2
· exp

"
�(lnR2 �µR2)

2

2s

2
R2

#
(3.28)

µR2 = µT + ln
⇣

Cm0.5ĉHS

⌘
(3.29)

sR2 = sT (3.30)

The expected value and standard deviation of R2 can then be found from Eq. (3.31) and Eq.

(3.32).

E[R2|HS] = exp
✓

µR2 +
1
2

s

2
R2

◆
(3.31)

s [R2|HS] =
h⇣

es

2
R2 �1

⌘
exp
�
2µR2 +s

2
R2

�i1/2
(3.32)

3.3.2 Expected Value of HS

The expected value of the marginal distribution of HS can be calculated from Eq. (3.33) by

calculating the first moment of the respective distributions.

E[HS] = µHS =
Z •

�•
hs f (hs)dhs (3.33)

By performing this calculation for the marginal distributions fHS(hs) in Eq. (2.48) and Eq.

(2.54), the resulting expected values can be written as in Eq. (3.34) and Eq. (3.35).

E[HS] = t + sG
✓

1+
1
r

◆
(3.34)

E[HS] = eµH+
1
2 sH F

"
lnh⇤s �

�
µH +s

2
H
�

sH

#
+bG

✓
1+

1
a

,

✓
h⇤s
b

◆
a

◆
(3.35)
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3.3.3 Contour Lines

Contour lines for HS and TP can be found from the Inversed First-Order-Reliability-Method

presented in Section 2.4. For a given return period Treturn, the probability of exceedance is

calculated by Eq. (3.36), where md is the number of sea states per year.

q =
1

Treturnmd
(3.36)

For each return period, combinations of u1 and u2 in the standard normalised U-space are found

through the relations u1 = r cosq and u2 = r sinq based on Eq. (2.58) for q between 0 and 2p .

For every combination of u1 and u2, a pair of HS and TP values are calculated by Eq. (2.59) and

Eq. (2.60).

The cumulative distribution function for the marginal distributions presented in Eq. (2.48) and

Eq. (2.54) and the conditional distribution in Eq. (2.49) are given in the following along with

expressions for hs and t found from Eq. (2.59) and Eq. (2.60).

For the combined log-normal and Weibull distribution in Eq. (2.54) the corresponding cumula-

tive distribution is given in Eq. (3.37), and the expression for hs is given in Eq. (3.38).

F(HS) =

8
><

>:

F
h

lnhs�q

k

i
for HS  3.25 m

1� exp
h
�
⇣

hs
s

⌘ri
for HS > 3.25 m

(3.37)

hs =

8
><

>:

exp(s+u1k) for HS  3.25 m

s [� ln(1�F (hs))]
1/r for HS > 3.25 m

(3.38)

For the three-parameter marginal Weibull distribution in Eq. (2.48) the corresponding cumula-

tive distribution is given in Eq. (3.39), and the expression for hs is given in Eq. (3.40).

F(hs) = 1� exp

�
✓

hs � t
s

◆r�
(3.39)

hs = t + s [� ln(1�F (hs))]
1/r (3.40)
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For the conditional log-normal distribution of T given HS the corresponding cumulative distri-

bution is given in Eq. (3.41), and an expression for t is given in Eq. (3.42).

F (t|hs) = F


ln t �µT

sT

�
(3.41)

t = exp(u2s +µ) (3.42)

The combinations of t and hs values are then plotted giving the contour lines of the probability

determined by q.

3.3.4 Extreme Values

When the contour lines for the distributions are established, extreme wave runup and wave

rundown can be found on the contour lines for each of the runup models.

In order to do so, first the wave runup and wave rundown values are calculated by each runup

model for every combination of HS and TP, or HS and TZ along the contours. Then, the largest

wave runup or wave rundown value is located, along with the sea state combination that pro-

duces this value. This wave runup or wave rundown is identified as the extreme runup/ rundown

R2,max.

By plotting each of the runup models with their R2,max in the contour line plots, the models

appears as a tanget to the associated contour line. An example is shown in Figure 3.2 where

the Bl1 runup model appears as a tangent to the MGAU05 contour lines for five different return

periods. Here the Bl1 runup model is plotted with the R2,max that were found for this combina-

tion of distribution and runup model. Similar plots for other combinations of runup models and

wave distributions can be found in Appendix B.4.
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Figure 3.2: Contour lines for the MGAU05 distribution (solid lines) with runup model Bl1 (dashed

lines) for extreme wave runup
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Chapter 4

Individual Studies

The analytical method for estimating characteristic statistical values is exemplified through ap-

plication of several empirical wave runup and wave rundown equations, along with both wind

and wave distributions. Eleven runup models, four wind distributions, and ten wave distribu-

tions were applied. This selection of models and distributions are all available in the literature

and they were chosen because of their relevance and relatively simple expression. The latter

criterion was relevant in order to be able to do analytical calculations without unnecessary diffi-

culties. The method is explained in Chapter 3, and the runup models and distributions that were

applied are presented in Section 2.2, 2.3.2, and 2.3.4.

For the wind distributions to be used, the Phillips spectrum was chosen for establishing a re-

lation between wind and waves. This particular spectrum was chosen due to its simplicity in

its expression allowing the formulae to continue to be relatively simple and possible to handle

analytically. This resulted in an expression for wave runup and wave runup based on wind statis-

tics, and it is this expression that was used in the calculations, presented in Section 3.2. Both

a stochastic and a deterministic approach was used. Calculating the ratio between the expected

values from both approaches allowed for comparison of the results from these two approaches.

A deterministic approach could be convinient when information is limited because only the ex-

pected value of the wind distribution is required for the calculations. For the conditional BG15

distribution, a significant wave height of 3m was used.

For the wave distribution to be applied, transformation of variables was performed generating

an expression for wave runup and wave rundown based a joint pdf for HS and T , as described
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in Section 3.3. The wave runup and wave rundown are described in terms of the expected value

and the standard deviation. In order to generate results for the conditional wave distributions, a

significant wave height of 3m was also here chosen for the calculations.

Most of the results are presented on dimensionless form, where R2 is normalised by the signif-

icant wave height. Results with dimensions can be found in Appendix B.1 and B.2. For the

wind distributions the significant wave height used in the normalisation was found through the

Phillips spectrum by inserting the expected mean wind speed for the distribution in Eq. (3.5).

For the wave distribution, the R2 values are normalised by the expected value of the significant

wave height found from the respective marginal distributions calculated by the procedure in

Section 3.3.2. Results from wind and wave distributions have been compared for a significant

wave height of 3m and a bottom slope of 1/10.

The wave rundown is defined such that positive values indicate wave rundown above SWL and

negative values indicate wave rundown below SWL. Due to complications in the calculations

by applying this definition, the wave rundown was calculated with opposite sign, and then the

sign was changed back in the presentation of the results.

Extreme values of R2 have been found from both wind and wave distributions for return periods

of 1, 10, 100, 1000 and 10 000 years for a bottom slope of 1/10. For the wind distributions the

method in Section 3.2.3 was used. When applying the JMH02 distribution averages of 1 hour

were used, while for the other distributions 10min averages were used, so that 8760 and 52 560

averages were assumed respectively.

Extreme values based on the wave distributions were found from the contour lines for a given

return period according to the procedure in Section 3.3.4. It was assumed 2920 sea states per

year in the calculations of the contour lines. Furthermore, 1 year return period extreme values

for bottom slope 1/10 from both wind and wave distributions were compared. Finally, the

extreme values for the distributions were compared with the range of validity for the empirical

equations.

All calculations were performed in MATLAB. The codes can be found in Appendix C.
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Chapter 5

Results

This chapter presents the results that were found through the method in Chapter 3, which was

further explained in Chapter 4. First, the results based on long-term wind statistics will be

presented; secondly, the results based on long-term wave statistics; and finally, extreme values

for given return periods.

5.1 Wave Runup and Wave Rundown Based on Wind Statis-

tics

5.1.1 Stochastic Approach

The expected value of the mean wind speed E [U10] for the long-term wind distributions, and the

significant wave height, calculated by inserting E [U10] into (3.5), are shown in Table 5.1. This

table shows that the significant wave height calculated from the four different wind distributions

are not the same, and varies with E [U10].
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Table 5.1: Expected value of mean wind speed and corresponding significant wave height calculated

from the expected mean wind speed

Distribution E[U10] [m/s] HS [m]

JMH01 7.52 1.04

MR15 (1) 6.30 0.73

MR15 (2) 9.75 1.74

BG15 7.25 0.97

Figure 5.1 shows the expected value of the wave runup and wave rundown normalised by the

significant wave height in Table 5.1 as a function of bottom slope for different runup models.

This figure shows that the normalised wave runup increases with increasing bottom slope; and

that wave rundown decreases, meaning the rundown becomes more negative with increasing

bottom slope. In other words, the ratio between wave runup or wave rundown, and significant

wave height increases for steeper slopes. For gentle slopes, the difference between wave runup

and wave rundown is small, indicating little swash motion compared to steep slopes. At steep

slopes, it is observed that the results from runup model Pe differs significantly from results from

the other runup models. Figure 5.1 does not show the results from the Pe model at very steep

slopes because this model is based on experiments with a maximum slope of 0.05, hence its

reliability at steeper slopes is limited.

Varying runup models predict the largest wave runup depending on the bottom slope. For the

MR15 (1) and BG15 distributions, it is the Po1 and Po2 models that estimate significantly

lower wave runup than the other models. Recall that wave runup and wave rundown are defined

relative to SWL. At gentle slopes the Bld model predicts wave rundown above SWL, and at

steep slopes it predicts more negative wave rundown than the Sc model, which predicts less

diversed estimates.
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Figure 5.1: Expected value of wave runup and wave rundown normalised by the significant wave

height as a function of bottom slope. Solid lines are used for wave runup, and dashed lines for wave

rundown

Figure 5.2 shows the expected value (circles) and the standard deviation (bars) of the wave runup

calculated by the different runup models for the four wind distributions and for four different

bottom slopes. The bottom slopes are identified by different colours. Also here, the wave runup

is normalised by the significant wave height in Table 5.1.

It is observed from Figure 5.2 that the difference between the runup models has the same trend

for all four distributions. This figure also shows that results from runup model Pe differs signif-

icantly from the other runup models at steep bottom slopes. In addition it is observed that the
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Figure 5.2: Expected value (circle) with standard deviation (bars) for wave runup normalised by

significant wave height at four different bottom slopes
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Figure 5.2: (Continued)
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MR15 (1) and the BG15 distributions predict smaller wave runup with the Po1 and Po2 models

at steep bottom slopes compared to the other two distributions. At more gentle bottom slopes

the Bl2 and Vo models predict slightly larger wave runup than the other models, and for the

JMH02 and the MR15 (2) distributions, also the Po1 and Po2 models predict slightly larger val-

ues. The standard deviation in Figure 5.2 increases with increasing bottom slope. Furthermore,

the expected values of the normalised wave runup are quite similar for the four distributions,

while the standard deviation differs more. The BG15 distribution stands out from the other dis-

tributions by its significantly lower standard deviation and slightly lower expected value. Recall

that BG15 is a conditional distribution, while the other three are marginal distributions.

Figure 5.3 shows the expected value (circles) and the standard deviation (bars) of the wave

rundown calculated by the different runup models for the four wind distributions and at four

different bottom slopes. The estimates are also here normalised by the significant wave height

in Table 5.1.

Figure 5.3 shows that the trend between the distributions are in general the same. Slightly

different expected value is observed between the distributions, and the Sc model gives less

variation in the expected value compared to Bld. The BG15 distribution does also here stand

out from the others by its significantly lower standard deviation. It is observed that the wave

rundown decreases, with increasing bottom slope for both runup models, meaning that it gets

further below SWL. Some of the estimates are larger than zero for the Bld model, indicating

wave rundown above SWL.
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Figure 5.3: Expected value (circle) with standard deviation (bars) for wave rundown normalised by

significant wave height

51



5.1.2 Deterministic Approach

Table 5.2 shows the ratio between the expected value from the deterministic and the stochastic

approach presented in Section 3.2.2. This ratio is equal for all the runup models with d=0 in

Table 3.1, and the Po1 and Po2 runup models do also generate results similar to each other. All

the ratios are less than one, meaning that the stochastic approach generates higher absolute wave

runup and wave rundown values. The difference in the results between the deterministic and the

stochastic approach is at its smallest for the BG15 distribution. The MR15 (1) and MR15 (2)

distributions do also give large ratios, and the ratio is at its smallest for the JMH02 distribution.

Table 5.2: Ratio between expected value of wave runup and wave rundown calculated by the deter-

ministic and the stochastic approach

Runup Ratio

model JMH02 MR15 (1) MR15 (2) BG15

Bl1 0.733 0.825 0.841 0.991

Bl2 0.733 0.825 0.841 0.991

Bld 0.733 0.825 0.841 0.991

Sc 0.733 0.825 0.841 0.991

Pe 0.733 0.825 0.841 0.991

Ho 0.733 0.825 0.841 0.991

Vo 0.857 0.926 0.900 0.996

At1 0.733 0.825 0.841 0.991

At2 0.733 0.825 0.841 0.991

Po1 0.439 0.594 0.626 0.974

Po2 0.439 0.594 0.626 0.974
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5.2 Wave Runup and Wave Rundown Based on Wave Statis-

tics

5.2.1 Stochastic Approach

The expected value of the significant wave height calculated from the marginal distributions of

HS for the long-term wave statistics are presented in Table 5.3.

Table 5.3: Expected value of the significant wave height for the wave distributions

Distribution E[HS] [m]

MGAU05 2.1

OHG16 2.4

BGGS07 (1) 3.7

BGGS07 (2) 3.6

BGGS07 (3) 3.6

BGGS07 (4) 3.4

BGGS07 (5) 3.6

MBG90 (1) 2.3

MBG90 (2) 2.3

MBG90 (3) 2.1

Figure 5.4 shows the expected value of the wave runup and wave rundown normalised by the

expected value of the significant wave height in Table 5.3 as a function of bottom slope for the

different runup models. A quite similar trend with increasing wave runup and wave rundown

for increasing bottom slope is observed as from the results generated from wind distributions in

Figure 5.1. However, it is not the same runup models that generate the largest estimates. Still,

the Pe model predicts significantly larger estimates at steep bottom slopes, but the Po1 and Po2

models generate some of the highest esimates as opposed to what was observed from the wind

distributions. With exception of the Pe model it is in general the Po1 model that predicts the

largest wave runup, and the Vo model that predicts the smallest. The wave rundown estimates

are not significantly different from the estimates based on the wind distributions.
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Figure 5.4: Expected value of wave runup and wave rundown normalised by the expected value of

significant wave height over varying bottom slope for different runup models
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Figure 5.4: (Continued)

Figure 5.5 shows the expected values (circles) and standard deviation (bars) for the wave runup

calculated from the long-term wave distributions for each runup model at four different bottom

slopes. The values are normalised by the expected value of the significant wave height in Table

5.3. Like for the wind distributions, the runup models show the same trend for all the wave

distributions. However, the expected value is significantly larger in value for the MGAU05

distribution, followed by the OHG16 and the three MBG90 distributions. Also here, the Pe

model predicts significantly larger wave runup than the other models, and this model is not

included when the estimates are very different because it is strictly not valid.

At gentle bottom slopes it is the Bl2, Po1 and Po2 models that predict the largest wave runup,
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while Pe and At1 predicts the smallest values. At steeper bottom slopes, however, it is the Vo

model that stands out with smaller estimates than the others, and the Pe model with very large

estimates. The standard deviation does also here increase with increasing bottom slope along

with the increasing expected values. The MGAU05 and the OHG16 distributions generated

larger standard deviation than the other wave distributions, but at the same time they do also

predict larger expected values.

Figure 5.6 shows the expected value (circles) and standard deviation (bars) for the wave run-

down calculated from the long-term wave distributions for each runup model at four different

bottom slopes. The estimates are also here normalised by the expected value of the significant

wave height in Table 5.3. The expected values in Figure 5.6 do not change much with different

distirbutions, but it is observed that the MGAU05 and the OHG16 distributions predict a more

negative wave rundown with the Bld model at steep bottom slopes. The Sc model does also

here, like with the wind distributions, generate estimates with little spread with varying bottom

slope. The standard deviation is largest for the MGAU05 and the OHG16 distributions that

showed the largest expected values, and a larger spread in the expected values is also observed

for these two distributions. The Bld model predicts postive wave rundown for the most gentle

slopes, indicating wave rundown above SWL, and the wave rundown becomes more negative

with increasing bottom slope.
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Figure 5.5: Expected value (circle) with standard deviation (bars) for wave runup normalised by

significant wave height at four different bottom slopes
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Figure 5.5: (Continued)
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Figure 5.5: (Continued)

59



Runup models
Bl1 Bl2 Pe Ho Vo At1 At2 Po1 Po2

R
2
/H

S
 [

-]

0

0.5

1

1.5

2

2.5

3

(g) BGGS07 (5)

Runup models
Bl1 Bl2 Pe Ho Vo At1 At2 Po1 Po2

R
2
/H

S
 [

-]

0

0.5

1

1.5

2

2.5

3

(h) MBG90 (1)

Figure 5.5: (Continued)
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Figure 5.5: (Continued)
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Figure 5.6: Expected value (circle) with standard deviation (bars) for wave rundown for four differ-

ent bottom slopes
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Figure 5.6: (Continued)
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5.2.2 Comparison of Results

Table 5.4 shows the wave runup and wave rundown values from the long-term wave distributions

for 3m significant wave height and bottom slope 1/10. This table shows that it is generally

little difference between the distributions for a given runup model. Yet, it is observed that all

BGGS07 distributions gave results more similar to each other than the rest of the distributions.

Similarly; the MBG90 distributions generated results close in value, and also the MGAU05 and

the OHG16 distribution generated results quite similar to each other.

Table 5.4: Wave runup and wave rundown R2 in metres for HS =3m

Runup Distributions

model MGAU05 OHG16 BGGS07 (1) BGGS07 (2) BGGS07 (3)

Bl1 2.68 2.65 2.45 2.59 2.44

Bl2 2.87 2.85 2.68 2.79 2.67

Bld -0.31 -0.30 -0.21 -0.27 -0.20

Sc -0.15 -0.15 -0.11 -0.13 -0.11

Pe 4.28 4.23 3.81 4.08 3.79

Ho 2.37 2.35 2.18 2.29 2.17

Vo 1.75 1.74 1.63 1.70 1.62

At1 2.11 2.09 1.88 2.01 1.87

At2 2.44 2.42 2.23 2.35 2.22

Po1 3.58 3.54 3.19 3.42 3.17

Po2 3.08 3.05 2.75 2.94 2.73
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Table 5.4: (Continued)

Runup Distributions

model BGGS07 (4) BGGS07 (5) MBG90 (1) MBG90 (2) MBG90 (3)

Bl1 2.90 3.15 2.33 2.33 2.28

Bl2 3.05 3.26 2.58 2.58 2.54

Bld -0.41 -0.53 -0.15 -0.15 -0.13

Sc -0.18 -0.23 -0.10 -0.10 -0.09

Pe 4.74 5.28 3.55 3.55 3.47

Ho 2.56 2.78 2.07 2.07 2.04

Vo 1.88 2.02 1.56 1.56 1.54

At1 2.34 2.61 1.76 1.76 1.71

At2 2.66 2.90 2.11 2.11 2.07

Po1 3.97 4.42 2.98 2.97 2.90

Po2 3.42 3.81 2.56 2.56 2.50
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5.3 Extreme Value Estimates

5.3.1 Based on Long-Term Wind Distributions

For consistency and simplicity it would be preferable to a assume that a 10 min average can be

used for alle the long-term wind distributions for calculation of extreme values. However, since

the JMH02 distribution is based on 1 hour mean wind speed, in contrast to 10min for the others,

it is strictly 1 hour that should be used for the extreme value calculations for this distribution.

Choosing a 1 hour mean instead of a 10 min mean results in a different number of individual

U10 averages during Treturn years in Eq. (2.45), and consequently also another value of U10,max.

A mean of 1 hour leads to N = 8760Treturn, while a mean of 10 min leads to N = 52560Treturn.

Recall from Eq. (2.46) that U10,max = b (lnN)1/a . Thus, the U10,max values will not be the same,

even though the paramters for the distribution are equal. Values for U10,max calculated from both

1 hour and 10 min means are shown in Table 5.5.

Table 5.5: Mean wind speed for the JMH02 distribution for 1 hour and 10 minute averages

Return period U10,max (m/s)

(years) 1 hour 10 min

1 30.7 34.1

10 35.0 38.1

100 39.0 41.9

1000 42.7 45.4

10000 46.2 48.8

As described in Section 3.2.3, R2,max can be written as a function of U2
10,max or U3

10,max, depend-

ing on the runup model. A difference in N will thus cause a difference in R2,max in line with

Eq. (3.17) and (3.18). Calculating U10,max from 10 min mean resulted in a maximum of 11%

higher U10,max values compared with calculations with 1 hour means. This would lead to an

even larger difference in the R2,max values because R2,max and U10,max are connected with an

exponent larger than one.

Due to the significant influence of the average length on the results, it was descided to use 1
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hour means for the JMH02 distribution in the calculations. The other three wind distributions

were based on 10 min averages.

Table 5.6 shows the extreme mean wind speed U10,max along with the corresponding sea state

parameters HS,max and TP,max for five different return periods.

Table 5.6: Extreme mean wind speed and corresponding sea state parameters from the long-term

wind distributions for five different return periods

(a) JMH02

Return period

(years)

U10,max

(m/s)

HS,max

(m)

TP,max

(s)

1 30.7 17.2 19.6

10 35.0 22.5 22.4

100 39.0 27.9 25.0

1000 42.7 33.4 27.3

10000 46.2 39.2 29.6

(b) MR16 (1)

Return period

(years)

U10,max

(m/s)

HS,max

(m)

TP,max

(s)

1 20.1 7.4 12.9

10 21.8 8.7 14.0

100 23.4 10.0 15.0

1000 24.8 11.3 15.9

10000 26.2 12.6 16.8

(c) MR15 (2)

Return period

(years)

U10,max

(m/s)

HS,max

(m)

TP,max

(s)

1 29.0 15.4 18.6

10 31.3 18.0 20.1

100 33.5 20.5 21.4

1000 35.4 23.0 22.7

10000 37.2 25.4 23.8

(d) BG15

Return period

(years)

U10,max

(m/s)

HS,max

(m)

TP,max

(s)

1 9.1 1.5 5.8

10 9.2 1.6 5.9

100 9.3 1.6 6.0

1000 9.5 1.6 6.1

10000 9.5 1.7 6.1

For each long-term wind distribution, the extreme wave runup R2,max was calculated based on

U10,max. Table 5.7 show the estimates of R2,max normalised with the corresponding HS,max value

in Table 5.6. Estimates were calculated for five different return periods with each of the runup

models for bottom slope 1/10. The wave runup and wave rundown values are presented in
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increasing order, so that the wave rundown values are the two uppermost rows in the tables.

Values are given relative to SWL so that negative values indicate wave runup or wave rundown

below SWL. Results with dimensions can be found in Appendix B.3.

From Table 5.7 it is observed that the order of runup models is the same for the JMH02, MR15

(1) and MR15 (2) distributions. Estimates above one are observed for the runup models Pe,

Po2 and Po1 for the JMH02, MR15 (1) and MR15 (2) distributions, indicating larger predicted

wave runup than the offshore significant wave height. For the BG15 distribution, only the

Pe model predicts normalised wave runup larger than one. The other runup models predict

normalised wave runup in the range 0.39-0.86, which correspond to smaller wave runup than

the offshore significant wave height. Regarding the wave rundown estimates, the Bld and Sc

models give negative estimates indicating wave rundown below SWL. Only estimates from the

runup models Vo, Po1 and Po2 change size with the wind distributions due to cancellation in the

general equation for R2 in Eq. (3.1) for the other runup models when this equation is normalised

with HS found from the Phillips spectrum.

68



Ta
bl

e
5.

7:
W

av
e

ru
nu

p
an

d
w

av
e

ru
nd

ow
n

fo
rfi

ve
di

ff
er

en
tr

et
ur

n
pe

rio
ds

fo
rt

he
w

in
d

di
st

rib
ut

io
n

no
rm

al
is

ed
by

si
gn

ifi
ca

nt
w

av
e

he
ig

ht
fo

rb
ot

to
m

sl
op

e

1/
10

.V
al

ue
s

ar
e

gi
ve

n
re

la
tiv

e
to

SW
L,

so
th

at
ne

ga
tiv

e
va

lu
es

in
di

ca
te

w
av

e
ru

nu
p

or
w

av
e

ru
nd

ow
n

be
lo

w
SW

L

(a
)J

M
H

02

R
un

up
R

et
ur

n
pe

rio
d

(y
ea

rs
)

m
od

el
1

10
10

0
10

00
10

00
0

B
ld

-0
.0

50
-0

.0
50

-0
.0

50
-0

.0
50

-0
.0

50

Sc
-0

.0
31

-0
.0

31
-0

.0
31

-0
.0

31
-0

.0
31

Vo
0.

40
0.

39
0.

39
0.

38
0.

38

A
t1

0.
58

0.
58

0.
58

0.
58

0.
58

H
o

0.
69

0.
69

0.
69

0.
69

0.
69

A
t2

0.
70

0.
70

0.
70

0.
70

0.
70

B
l1

0.
78

0.
78

0.
78

0.
78

0.
78

B
l2

0.
86

0.
86

0.
86

0.
86

0.
86

Pe
1.

18
1.

18
1.

18
1.

18
1.

18

Po
2

2.
05

2.
34

2.
61

2.
85

3.
09

Po
1

2.
15

2.
46

2.
74

3.
00

3.
24

(b
)M

R
15

(1
)

R
un

up
R

et
ur

n
pe

rio
d

(y
ea

rs
)

m
od

el
1

10
10

0
10

00
10

00
0

B
ld

-0
.0

50
-0

.0
50

-0
.0

50
-0

.0
50

-0
.0

50

Sc
-0

.0
31

-0
.0

31
-0

.0
31

-0
.0

31
-0

.0
31

Vo
0.

43
0.

42
0.

42
0.

41
0.

41

A
t1

0.
58

0.
58

0.
58

0.
58

0.
58

H
o

0.
69

0.
69

0.
69

0.
69

0.
69

A
t2

0.
70

0.
70

0.
70

0.
70

0.
70

B
l1

0.
78

0.
78

0.
78

0.
78

0.
78

B
l2

0.
86

0.
86

0.
86

0.
86

0.
86

Pe
1.

18
1.

18
1.

18
1.

18
1.

18

Po
2

1.
34

1.
46

1.
56

1.
66

1.
75

Po
1

1.
41

1.
53

1.
64

1.
74

1.
84

69



Ta
bl

e
5.

7:
(C

on
tin

ue
d)

(c
)M

R
15

(2
)

R
un

up
R

et
ur

n
pe

rio
d

(y
ea

rs
)

m
od

el
1

10
10

0
10

00
10

00
0

B
ld

-0
.0

50
-0

.0
50

-0
.0

50
-0

.0
50

-0
.0

50

Sc
-0

.0
31

-0
.0

31
-0

.0
31

-0
.0

31
-0

.0
31

Vo
0.

40
0.

40
0.

39
0.

39
0.

39

A
t1

0.
58

0.
58

0.
58

0.
58

0.
58

H
o

0.
69

0.
69

0.
69

0.
69

0.
69

A
t2

0.
70

0.
70

0.
70

0.
70

0.
70

B
l1

0.
78

0.
78

0.
78

0.
78

0.
78

B
l2

0.
86

0.
86

0.
86

0.
86

0.
86

Pe
1.

18
1.

18
1.

18
1.

18
1.

18

Po
2

1.
94

2.
09

2.
24

2.
37

2.
49

Po
1

2.
03

2.
20

2.
35

2.
48

2.
61

(d
)B

G
15

R
un

up
R

et
ur

n
pe

rio
d

(y
ea

rs
)

m
od

el
1

10
10

0
10

00
10

00
0

B
ld

-0
.0

50
-0

.0
50

-0
.0

50
-0

.0
50

-0
.0

50

Sc
-0

.0
31

-0
.0

31
-0

.0
31

-0
.0

31
-0

.0
31

A
t1

0.
58

0.
58

0.
58

0.
58

0.
58

Po
2

0.
61

0.
62

0.
62

0.
63

0.
64

Po
1

0.
64

0.
65

0.
66

0.
66

0.
67

Vo
0.

67
0.

66
0.

65
0.

65
0.

64

H
o

0.
69

0.
69

0.
69

0.
69

0.
69

A
t2

0.
70

0.
70

0.
70

0.
70

0.
70

B
l1

0.
78

0.
78

0.
78

0.
78

0.
78

B
l2

0.
86

0.
86

0.
86

0.
86

0.
86

Pe
1.

18
1.

18
1.

18
1.

18
1.

18

70



5.3.2 Based on Long-Term Wave Distributions

Table 5.8 shows the extreme wave runup and wave rundown corresponding to five different

return periods for bottom slope 1/10. The values are normalised with the corresponding sig-

nificant wave height at the tangent point between the contour lines and the runup models in

Appendix B.5. The runup models are presented in increasing order with respect to the size of

their estimates.

The order of the runup models is the same for all the wave distributions, with exception of the

Bld and Sc models in MGAU05, OHG16 and BGGS07 (2). It is also the same as for the extreme

values from the marginal JMH02, MR15 (1) and MR15 (2) wind distributions. Estimates above

one are observed for the runup models Pe, Po2 and Po1, indicating that these models predict

larger wave runup than the offshore significant wave height. The other runup models predicts

normalised wave runup in the range 0.37-0.93, which correspond to smaller wave runup than

the offshore significant wave height.

Regarding the wave rundown models, both the Bld and Sc models give negative estimates in-

dicating rundown below SWL. It depends on the distribution, which runup model that estimate

the largest abolute wave rundown.
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5.3.3 Comparison of Extreme Values

Figure 5.7 shows the normalised wave runup and wave rundown estimated from both wind and

wave distributions with different runup models for 1 year return period and bottom slope 1/10.

The runup models are in increasing order with respect to the values that they predict for most

of the distributions.

From Figure 5.7 it is observed that the runup models Po1 and Po2 give estimates of the nor-

malised wave runup with large spread between the distributions. The Pe model does also gener-

ate larger spread than the general trend. The runup models At1, Ho, At2, Bl1 and Bl2, however,

give very similar values with a maximum normalised spread of 0.12. For the Vo runup model,

the BG15 distribution stands out from the other distributions, but the value is closer to the esti-

mates from the other models. For the Bld and Sc models it is observed a larger spread compared

with the At1, Ho, At2, Bl1 and Bl2 models, and the wave rundown is not in increasing order

for all the distributions. The wind distributions give estimates with larger spread than the wave

distributions.
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Figure 5.7: Extreme values of wave runup and wave rundown normalised with significant wave

height. Values are calculated from both long-term wind and wave distributions for bottom slope

1/10 and a return period of 1 year

5.3.4 Range of Validity

The validity of the runup models for the extreme values was investigated by comparing the

runup models range of validity in Table 3.2 with the sea state paramters for the extreme wave

runup and wave rundown conditions in Table 5.6 for the long-term wind distributions, and in

Appendix B.5 for the long-term wave distributions. It was only a few combinations of distribu-

tions and runup models that met the criterias for the models. A checkmark symbol is only used

when all the available criterias were met. A validity range was suggested by the authors that

presented the Pe and Sc runup models, and this range is considered here. For the other models,

the range considered are the conditions that the experiments contained.

78



Table 5.9: Validity of runup models for the extreme values of 1 year return period and bottom slope

1/10 for wind and wave distributions. Xindicates that the runup model is valid for the sea state

parameters from the corresponding distribution.

Runup and rundown models

Wind and

wave

distributions

Bl1,

Bl2

Bld Sc Pe Ho Vo At Po1,

Po2

MGAU05 X X
OHG16 X X
BGGS07 (1) X X
BGGS07 (2) X
BGGS07 (3) X
BGGS07 (4) X
BGGS07 (5) X
MBG90 (1) X X X
MBG90 (2) X X
MBG90 (3) X X X
JMH02 X X
MR15 (1) X X
MR15 (2) X X
BG15 X X X X X

The data from which the Pe model is based on does only include measurements with more

gentle bottom slope than 1/10. Yet, this model is described as valid for several distributions in

Table 5.9 because the authors of de la Pena et al. (2014) suggested that the runup model is valid

for xP <0.6, and these distributions have xP within this limit for their extreme values.
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Chapter 6

Discussion

6.1 Wave Runup and Wave Rundown Based on Wind and

Wave Statistics

Results based on wind distributions showed that the normalised expected values had approx-

imately the same trend, with exception of the Pe model at steep slopes. Since this model is

developed for dissipative slopes through experiments with bottom slopes 1/50, 1/30, and 1/20,

it is not reliable for very steep slopes, and this could explain the deviation from the other runup

models. By considering the standard deviation in addition to the expected values it was observed

that most of the results cover approximately the same region of values. Also, the conditional

BG15 distribution generated results with significantly lower standard deviation than the other

marginal wind distributions.

In the comparison of the results for the expected value calculated from the stochastic and de-

terministic approach in Table 5.2, it was observed that the ratios between the results were all

smaller than one for all combinations of distributions and runup models. Also, the stochastic

approach contains more information about the wave spectrum and is therefore considered the

more complete approach, and this indicates that the deterministic approach underestimates the

expected values for wave runup and wave rundown. Thus the stochastic approach should be

used whenever possible.

Results based on wave distributions did also show that the wave distributions in general had

81



the same trend, and that the Pe model standed out from the other runup models at steep slopes.

When including the standard deviation, the results did also here overlap to a certain extent.

Because all the BGGS07 distributions are developed from data collected in the same ocean area,

it would be natural to assume that they lead to quite similar wave runup and wave rundown.

From Figure 2.7 it was observed that the probability density functions for the distributions

are not that similar, so some differences were expected. Table 5.4 shows that all BGGS07

distributions gave quite similar results. The MGAU05 and OHG16 distributions did also give

quite similar results, even though they are not from the same ocean region. Both the Barents

Sea and the Northern North Sea are, however, known for their harsh environments; and Figure

2.7 shows that their pdfs are very similar. It was also observed from Figure 2.7 that the pdfs of

all the three MBG90 distributions are quite similar in shape, but the kurtosis varies, and they

generated very similar results.

6.2 Extreme Value Estimates

By comparing the results for the sea state parameters for the extreme value estimates with the

range of the runup models in Table 3.2, it was observed that most of the runup models are

strictly not valid for the extreme values, as outlined in Table 5.9.

In the comparison of results in Figure 5.7 it was observed that the runup models At1, Ho, At2,

Bl1 and Bl2 predicted extreme values with small spread; both between the different distribution,

and between the runup models. It was also observed that the extreme value calculated by the

Vo runup model from the BG15 long-term wind distribution stands out from the rest of the

estimates calculated by this model. This distribution is the only one that is strictly valid for this

runup model, and this estimate was also more in line with estimates from the other models.

The Pe runup model predicted wave runup estimates with larger values than the just mentioned

models. However, from the criteria of validity for the models it was observed that this model

was more frequently valid than other models, but it should be noted that this model is not

based on the bottom slope used in the calculation of extreme values. Note, though, that the

distributions that are valid gave lower estimates, thus closer to the results with small spread.

For the Po1 and Po2 models, where the spread between the distributions was large, none of the
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distributions are strictly valid. Recall though, that these models are intended for gravel beaches

that are often very steep, and a direct comparison with other models developed from sandy

beaches would hence not be fair.

The normalised extreme values did not change much with increasing return period. However,

the significant wave height increased significantly with increasing return period, resulting in

large wave runup and wave rundown, especially for the Po1 and Po2 models, see Appendix

B.5. Also, the extreme mean wind speed in Table 5.5 induced large wave runup values, see

Appendix B.3.

Extreme values calculated from the BG15 long-term wind distribution are valid for several of

the runup models due to the given significant wave height that limits the extreme sea state

values. For this distribution it is only the Bl and Po models that are not valid.

It could seem like the models are more in agreement when the models are extrapolated to larger

waves than to other bottom slopes from which they were based on. The model Pe, Po1, and Po2

were developed from quite narrow range of conditions, and this could explain why they differ

that much from the other models.

6.3 Error Sources and Uncertanties

The data for the wind distributions were collected over a period of maximum 26 years. Thus,

calculations of values with return periods of 100, 1000 and 10 000 years require use of the

extrapolated part in the tail of their pdfs. So, one should keep in mind that the results for these

return periods are not necessarily based on actual records of such extreme values; and it follows

that uncertainty is connected with these values because of the uncertainty in the tails of the

distributions.

The same uncertainty issue addresses the wave distributions. Even though the records of the

wave data are of greater extent, with a maximum length of 57 years, it is still considered a

short period when dealing with 1000 and 10 000 years return periods. Nevertheless, the wave

runup and wave rundown can be calculated directly from the wave distributions, while sea

state parameters must be calculated through the Phillips spectrum when the wind distributions

are applied. This spectrum does not necessarily represent the distributions well, resulting in
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increased uncertanty. Other wave spectra could also have been used, and they might give a

more realistic transition from wind to wave conditions.

Also for the runup models, extrapolation is required in order to use the models beyond their orig-

inal range resulting in further increase in the uncertainty. Furthermore, possible error sources

could be associated with the measuring of data both in wave runup experiments, and in wind and

wave data measurements. Also, fitting of models to the data could cause errors and uncertainty,

in addition to the already addressed issues.

Behind the final estimates of wave runup and wave rundown it does therefore lie a great deal of

possible errors and uncertainties, and the values are therefore not to be considered as accurate.

However, they do indicate the magnitude of the wave runup and wave rundown.

6.4 Evaluation of Results

Both large storm surge and wave runup are likely to occur simultaneously during storm condi-

tions. Combined with high tide, and in particular spring high tide, the total sea level could be

dramatic. At a particular location, the tide could influence the wave runup and wave rundown

because the changing water depth could affect the amount of energy being dissipated by wave

breaking, and the location at which the waves break could change, causing the wave runup and

wave rundown to change. At flat beaches, the dissipation is larger than at steep beaches, and

the wave runup will therefore be smaller. The results indicate the same trend, which is a direct

result of the formulations of the runup models.

Most of the runup models used herein are developed from studies on beaches. They could also

be applied on structures, but since the surface and the bathymetry usually are different, it is

not expected to give very reliable results. Restrictions on bottom slopes for the application of

the runup models are of course still important, and since structures usually have steep slopes,

there are not many of the runup models herein that can be relied on for such estimates. If such

estimates are performed after all, the models Po1 and Po2 would be the most relevant models

for wave runup because they are intended for steep bottom slopes, and the Sc model would be

the most relevant model for wave rundown because it is based on experiments on a structure.

Even though the wind and wave conditions found for the extreme conditions could occur on
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a long term perspective, it is not necessarily likely that the wave runup and wave rundown

predicted by the runup models are representative for these wind and wave conditions because

the runup models are used beyond their range. Some of the runup models generated very large

extreme wave runup estimates. This is not that evident in the normalised results, but when

wind speed and sea state parameters become large, the wave runup becomes severe because the

normalised values are multiplied with the significant wave height. It is the Pe model, but in

particular the Po1 and Po2 models, that predict the largest wave runup for the longest return

periods, see Appendix B.5. These models predicted a wave runup up to 100 metres, which

would flood large areas of land; but again, application of the runup models to these sea states is

way beyond their range, and the reliablity is therefore poor.
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Chapter 7

Conclusions and Recommendations

Overall the estimates of wave runup and wave rundown are associated with a large amount of

uncertainty. However, when considering the normalised results with their respective standard

deviation, quite similar results are found for the models that are based on approximately the

same conditions. The method presented in this thesis is convenient due to its simplicity, but it

should only be used for early estimates due to large uncertainties related to the results. It was

observed that the Pe, Po1, and Po2 models led to results that deviated significantly from the

results obtained by the other runup models. These three runup models were developed from

a limited selection of conditions, which can explain their deviation, and they should therefore

only by applied to the conditions that they were based on.

In order to improve the method it is recommended to investigate the effect of changing the wave

spectrum that is used to find sea state parameters from the wind statistics. A Phillips spectrum

was used here, but it is also possible to express a Pierson-Moskowitz spectrum in terms of the

mean wind speed, and applying this spectrum to the wind distributions in the same manner as

for the Phillips spectrum. A Pierson-Moskowitz spectrum does also contain low frequencies,

while the Phillips spectrum only covers frequencies from the peak frequency and above. Since

the Phillips spectrum includes the peak frequency, it represents most of the energy in the sea

state, and it is therefore not expected that the results would have been greatly affected.

The method can be implemented in a computer program that requires only a few input param-

eters in order to give an estimate of the wave runup and wave rundown. The output of such a

program could be extreme values relevant for early estimates of design parameters. This pro-
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gram should take the range of the runup models into account, providing an indication of which

runup model being the most reliable for the current condition. It is important though, to only

consider the method to provide estimates, rather than accurate values, indicating that further

and more detailed analysis must be carried out at a later stage in the design process.
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Appendix A

Calculations

A.1 Expressing R2 in Terms of U10

In order to express R2 in terms of U10, xP is first rewritten on the form in Eq. (A.1).

xp = m

 
HS
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For the first general equation in Eq. (3.1), the expression for R2 is used as a starting point for the

derivation, and the relations TP = 2p

g U10 and HS =
2
p

â

g U2
10 are inserted. The derivation is given in

Eq. (A.2).
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â

g
U2

10 +b
✓

m
r

g
2p

2p

g

◆c 2
p

â
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â

g
U2

10 +b

 
m

s
2p

g

!c 
2
p

â
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For the second general equation in Eq. (3.2), an expression in terms of U10 is found for each of

the two runup models that this equation represents. The relations TP = 2p

g U10 or TZ = Tm02 =

2p

q
m0
m2

=
p

2p

g U10, and HS =
2
p

â

g U2
10 are inserted into the equations, resulting in the expressions

in Eq. (A.3) and Eq. (A.4).

R2 = 0.49m0.5 2p

p
2â

g2 U3
10 (A.3)

R2 = 0.33m0.5 4p

p
â

g2 U3
10 (A.4)
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A.2 Change of Variables from (HS,T ) to (HS,R2)

A log-normal conditional distribution is given in Eq. (A.5) for T given HS.

f (T |HS) =
1p

2psT T
exp

�(lnT �µT )2

2s

2
T

�
(A.5)

In order to do a change of variables from (HS,T ) to (HS,R2) a relation between R2 and T must be

obtained. As a starting point the general expression for R2 in Eq. (A.6) and the definition of the

surf parameter in Eq. (A.7) are used. The relation between T and TP is defined as TP = ĉT , where

ĉ = 1 for T = TP, and ĉ = 1.28 for T = TZ .

R2 = (a+bx

c
P)HS +d (A.6)
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A relation between R2 and T can then be found by inserting Eq. (A.7) into Eq. (A.6) and replacing

TP with ĉT as shown in Eq. (A.8).

R2 = aHS +bHSx
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Further, R = R2 �aHS �d is defined for mathematical help. An expression for T as a function of

R can be found by rearranging Eq. (A.8), and the results is shown in Eq. (A.9).
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The relation between the conditional pdf for T given HS, and the conditional pdf for R given HS

are given in Eq. (A.10), where |∂T/∂R| is the Jacobian in Eq. (A.11).
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The conditional pdf for R given HS can then be found by inserting the expression for T as a

function of R in Eq. (A.9) into f (T |HS) in Eq. (A.10) and inserting the relation in Eq. (A.11) for

the Jacobian.
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From Eq. (A.12) it can be concluded that f (R|HS) is log-normal distributed by recognising µR and

s

2
R in Eq. (A.13) and Eq. (A.14) as the the mean value and variance of lnR.
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Similarly, for the general equation in Eq. (3.2), a change of variable can be performed by consid-

ering the expression for R2 given in Eq. (A.15).

R2 =Cm0.5ĉT HS (A.15)

By rewriting Eq. (A.15) an expression for T in Eq. (A.16) can be defined and the Jacobian can be

calculated as given in Eq. (A.17).

T =
R2

Cm0.5ĉHS
(A.16)
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The conditional pdf for R2 given HS can then be found by inserting the expression for T as a

function of R2 in Eq. (A.15) into f (T |HS) in Eq. (A.10), and inserting the relation in Eq. (A.17)

for the Jacobian. The result is shown in Eq. (A.18).
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From Eq. (A.18) it can be concluded that f (R|HS) is log-normal distributed by recognising µR2

and s

2
R2

in Eq. (A.19) and Eq. (A.20) as the the mean value and variance of lnR2.
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Appendix B

Results

The values in this chapter are given with the following dimensions: U10 (m/s), HS (m), TP (s), xP

(-), and R2 (m).
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B.1 Based on Wind Distributions

Table B.1: R2 from JMH02 wind distribution. Values are given in metres as expected value ± standard

deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 1.87 ± 2.20 1.10 ± 1.29 0.64 ± 0.76 0.32 ± 0.37

Bl2 1.88 ± 2.21 1.21 ± 1.43 0.88 ± 1.04 0.68 ± 0.80

Bld -0.44 ± 0.51 -0.07 ± 0.08 0.11 ± 0.13 0.22 ± 0.26

Sc -0.20 ± 0.24 -0.04 ± 0.05 -0.01 ± 0.01 0.00 ± 0.00

Pe 4.12 ± 4.85 1.67 ± 1.97 0.68 ± 0.80 0.21 ± 0.24

Ho 1.67 ± 1.96 0.98 ± 1.15 0.63 ± 0.74 0.42 ± 0.50

Vo 1.50 ± 1.23 0.97 ± 0.62 0.71 ± 0.31 0.55 ± 0.12

At1 1.65 ± 1.94 0.83 ± 0.97 0.41 ± 0.49 0.17 ± 0.19

At2 1.76 ± 2.07 0.99 ± 1.17 0.61 ± 0.72 0.38 ± 0.45

Po1 1.76 ± 3.31 1.25 ± 2.34 0.88 ± 1.65 0.56 ± 1.05

Po2 1.68 ± 3.15 1.19 ± 2.23 0.84 ± 1.58 0.53 ± 1.00
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Table B.2: R2 from MR15 (1) wind distribution. Values are given in metres as expected value ±

standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 1.17 ± 1.02 0.69 ± 0.60 0.40 ± 0.35 0.20 ± 0.17

Bl2 1.17 ± 1.02 0.76 ± 0.66 0.55 ± 0.48 0.43 ± 0.37

Bld -0.27 ± 0.24 -0.04 ± 0.04 0.07 ± 0.06 0.14 ± 0.12

Sc -0.13 ± 0.11 -0.03 ± 0.02 -0.01 ± 0.01 0.00 ± 0.00

Pe 2.57 ± 2.24 1.05 ± 0.91 0.42 ± 0.37 0.13 ± 0.11

Ho 1.04 ± 0.91 0.61 ± 0.53 0.39 ± 0.34 0.26 ± 0.23

Vo 1.11 ± 0.57 0.78 ± 0.29 0.61 ± 0.14 0.52 ± 0.06

At1 1.03 ± 0.90 0.52 ± 0.45 0.26 ± 0.23 0.10 ± 0.09

At2 1.10 ± 0.96 0.62 ± 0.54 0.38 ± 0.33 0.24 ± 0.21

Po1 0.77 ± 1.01 0.54 ± 0.71 0.38 ± 0.51 0.24 ± 0.32

Po2 0.73 ± 0.96 0.52 ± 0.68 0.36 ± 0.48 0.23 ± 0.30
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Table B.3: R2 from MR15 (2) wind distribution. Values are given in metres as expected value ±

standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 2.74 ± 2.24 1.61 ± 1.32 0.94 ± 0.77 0.47 ± 0.38

Bl2 2.75 ± 2.25 1.78 ± 1.46 1.29 ± 1.06 1.00 ± 0.82

Bld -0.64 ± 0.52 -0.10 ± 0.08 0.17 ± 0.14 0.33 ± 0.27

Sc -0.30 ± 0.24 -0.06 ± 0.05 -0.01 ± 0.01 0.00 ± 0.00

Pe 6.04 ± 4.94 2.45 ± 2.01 1.00 ± 0.81 0.30 ± 0.25

Ho 2.45 ± 2.00 1.43 ± 1.17 0.92 ± 0.75 0.62 ± 0.50

Vo 1.99 ± 1.26 1.22 ± 0.63 0.83 ± 0.31 0.60 ± 0.13

At1 2.42 ± 1.98 1.21 ± 0.99 0.61 ± 0.50 0.24 ± 0.20

At2 2.58 ± 2.11 1.46 ± 1.19 0.89 ± 0.73 0.56 ± 0.46

Po1 2.69 ± 3.30 1.90 ± 2.34 1.35 ± 1.65 0.85 ± 1.04

Po2 2.56 ± 3.15 1.81 ± 2.23 1.28 ± 1.57 0.81 ± 1.00
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Table B.4: R2 from BG15 wind distribution for HS =3m. Values are given in metres as expected value

± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 1.29 ± 0.24 0.76 ± 0.14 0.44 ± 0.08 0.22 ± 0.04

Bl2 1.29 ± 0.24 0.84 ± 0.15 0.61 ± 0.11 0.47 ± 0.09

Bld -0.30 ± 0.06 -0.05 ± 0.01 0.08 ± 0.01 0.15 ± 0.03

Sc -0.14 ± 0.03 -0.03 ± 0.01 -0.01 ± 0.00 0.00 ± 0.00

Pe 2.84 ± 0.52 1.15 ± 0.21 0.47 ± 0.09 0.14 ± 0.03

Ho 1.15 ± 0.21 0.67 ± 0.12 0.43 ± 0.08 0.29 ± 0.05

Vo 1.17 ± 0.13 0.81 ± 0.07 0.63 ± 0.03 0.52 ± 0.01

At1 1.14 ± 0.21 0.57 ± 0.10 0.28 ± 0.05 0.11 ± 0.02

At2 1.21 ± 0.22 0.69 ± 0.12 0.42 ± 0.08 0.26 ± 0.05

Po1 0.71 ± 0.19 0.50 ± 0.13 0.36 ± 0.09 0.23 ± 0.06

Po2 0.68 ± 0.18 0.48 ± 0.13 0.34 ± 0.09 0.21 ± 0.06
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B.2 Based on Wave Distributions

Table B.5: R2 from MGAU05 wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 4.56 ± 0.76 2.68 ± 0.45 1.57 ± 0.26 0.78 ± 0.13

Bl2 4.56 ± 0.74 2.87 ± 0.37 2.02 ± 0.18 1.51 ± 0.07

Bld -1.25 ± 0.41 -0.31 ± 0.20 0.16 ± 0.10 0.44 ± 0.04

Sc -0.69 ± 0.35 -0.15 ± 0.08 -0.03 ± 0.02 -0.00 ± 0.00

Pe 10.53 ± 2.29 4.28 ± 0.93 1.74 ± 0.38 0.53 ± 0.11

Ho 4.14 ± 0.77 2.37 ± 0.38 1.49 ± 0.19 0.95 ± 0.08

Vo 3.06 ± 0.49 1.75 ± 0.25 1.10 ± 0.12 0.71 ± 0.05

At1 4.22 ± 0.92 2.11 ± 0.46 1.06 ± 0.23 0.42 ± 0.09

At2 4.40 ± 0.85 2.44 ± 0.43 1.46 ± 0.21 0.87 ± 0.09

Po1 5.06 ± 1.10 3.58 ± 0.78 2.53 ± 0.55 1.60 ± 0.35

Po2 4.36 ± 0.95 3.08 ± 0.67 2.18 ± 0.47 1.38 ± 0.30
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Table B.6: R2 from OHG16 wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 4.52 ± 0.79 2.65 ± 0.46 1.56 ± 0.27 0.77 ± 0.13

Bl2 4.52 ± 0.76 2.85 ± 0.38 2.01 ± 0.19 1.51 ± 0.08

Bld -1.23 ± 0.42 -0.30 ± 0.21 0.17 ± 0.11 0.44 ± 0.04

Sc -0.68 ± 0.36 -0.15 ± 0.08 -0.03 ± 0.02 -0.00 ± 0.00

Pe 10.41 ± 2.37 4.23 ± 0.96 1.72 ± 0.39 0.52 ± 0.12

Ho 4.10 ± 0.80 2.35 ± 0.40 1.48 ± 0.20 0.95 ± 0.08

Vo 3.03 ± 0.51 1.74 ± 0.25 1.10 ± 0.13 0.71 ± 0.05

At1 4.18 ± 0.95 2.09 ± 0.48 1.04 ± 0.24 0.42 ± 0.10

At2 4.36 ± 0.88 2.42 ± 0.44 1.45 ± 0.22 0.87 ± 0.09

Po1 5.00 ± 1.14 3.54 ± 0.81 2.50 ± 0.57 1.58 ± 0.36

Po2 4.31 ± 0.98 3.05 ± 0.69 2.16 ± 0.49 1.36 ± 0.31
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Table B.7: R2 from BGGS07 (1) wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 4.18 ± 0.51 2.45 ± 0.30 1.44 ± 0.18 0.71 ± 0.09

Bl2 4.19 ± 0.48 2.68 ± 0.24 1.93 ± 0.12 1.47 ± 0.05

Bld -1.04 ± 0.26 -0.21 ± 0.13 0.21 ± 0.07 0.46 ± 0.03

Sc -0.52 ± 0.19 -0.11 ± 0.04 -0.02 ± 0.01 -0.00 ± 0.00

Pe 9.38 ± 1.49 3.81 ± 0.60 1.55 ± 0.25 0.47 ± 0.07

Ho 3.75 ± 0.50 2.18 ± 0.25 1.39 ± 0.12 0.92 ± 0.05

Vo 2.81 ± 0.32 1.63 ± 0.16 1.04 ± 0.08 0.69 ± 0.03

At1 3.76 ± 0.60 1.88 ± 0.30 0.94 ± 0.15 0.38 ± 0.06

At2 3.98 ± 0.55 2.23 ± 0.28 1.35 ± 0.14 0.83 ± 0.06

Po1 4.51 ± 0.71 3.19 ± 0.51 2.25 ± 0.36 1.43 ± 0.23

Po2 3.89 ± 0.62 2.75 ± 0.44 1.94 ± 0.31 1.23 ± 0.19

XIV



Table B.8: R2 from BGGS07 (2) wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 4.41 ± 0.54 2.59 ± 0.32 1.52 ± 0.18 0.75 ± 0.09

Bl2 4.41 ± 0.51 2.79 ± 0.26 1.98 ± 0.13 1.49 ± 0.05

Bld -1.16 ± 0.28 -0.27 ± 0.14 0.18 ± 0.07 0.45 ± 0.03

Sc -0.61 ± 0.22 -0.13 ± 0.05 -0.03 ± 0.01 -0.00 ± 0.00

Pe 10.05 ± 1.59 4.08 ± 0.65 1.66 ± 0.26 0.50 ± 0.08

Ho 3.98 ± 0.54 2.29 ± 0.27 1.44 ± 0.13 0.94 ± 0.05

Vo 2.96 ± 0.34 1.70 ± 0.17 1.08 ± 0.09 0.70 ± 0.03

At1 4.03 ± 0.64 2.01 ± 0.32 1.01 ± 0.16 0.40 ± 0.06

At2 4.22 ± 0.59 2.35 ± 0.30 1.42 ± 0.15 0.85 ± 0.06

Po1 4.83 ± 0.77 3.42 ± 0.54 2.41 ± 0.38 1.53 ± 0.24

Po2 4.16 ± 0.66 2.94 ± 0.47 2.08 ± 0.33 1.32 ± 0.21
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Table B.9: R2 from BGGS07 (3) wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 4.16 ± 0.64 2.44 ± 0.38 1.43 ± 0.22 0.71 ± 0.11

Bl2 4.17 ± 0.61 2.67 ± 0.30 1.92 ± 0.15 1.47 ± 0.06

Bld -1.03 ± 0.34 -0.20 ± 0.17 0.21 ± 0.08 0.46 ± 0.03

Sc -0.53 ± 0.24 -0.11 ± 0.05 -0.02 ± 0.01 -0.00 ± 0.00

Pe 9.32 ± 1.88 3.79 ± 0.77 1.54 ± 0.31 0.47 ± 0.09

Ho 3.74 ± 0.63 2.17 ± 0.32 1.38 ± 0.16 0.91 ± 0.06

Vo 2.80 ± 0.40 1.62 ± 0.20 1.04 ± 0.10 0.68 ± 0.04

At1 3.74 ± 0.76 1.87 ± 0.38 0.93 ± 0.19 0.37 ± 0.08

At2 3.96 ± 0.70 2.22 ± 0.35 1.35 ± 0.18 0.83 ± 0.07

Po1 4.48 ± 0.91 3.17 ± 0.64 2.24 ± 0.45 1.42 ± 0.29

Po2 3.86 ± 0.78 2.73 ± 0.55 1.93 ± 0.39 1.22 ± 0.25
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Table B.10: R2 from BGGS07 (4) wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 4.95 ± 0.58 2.90 ± 0.34 1.70 ± 0.20 0.84 ± 0.10

Bl2 4.93 ± 0.57 3.05 ± 0.28 2.11 ± 0.14 1.55 ± 0.06

Bld -1.45 ± 0.31 -0.41 ± 0.16 0.11 ± 0.08 0.42 ± 0.03

Sc -0.85 ± 0.29 -0.18 ± 0.06 -0.04 ± 0.01 -0.01 ± 0.00

Pe 11.67 ± 1.77 4.74 ± 0.72 1.93 ± 0.29 0.59 ± 0.09

Ho 4.53 ± 0.59 2.56 ± 0.30 1.58 ± 0.15 0.99 ± 0.06

Vo 3.30 ± 0.38 1.88 ± 0.19 1.16 ± 0.09 0.74 ± 0.04

At1 4.68 ± 0.71 2.34 ± 0.35 1.17 ± 0.18 0.47 ± 0.07

At2 4.83 ± 0.66 2.66 ± 0.33 1.57 ± 0.16 0.92 ± 0.07

Po1 5.61 ± 0.85 3.97 ± 0.60 2.81 ± 0.42 1.77 ± 0.27

Po2 4.84 ± 0.73 3.42 ± 0.52 2.42 ± 0.37 1.53 ± 0.23
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Table B.11: R2 from BGGS07 (5) wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 5.38 ± 0.54 3.15 ± 0.32 1.85 ± 0.19 0.91 ± 0.09

Bl2 5.35 ± 0.55 3.26 ± 0.27 2.22 ± 0.14 1.59 ± 0.05

Bld -1.69 ± 0.30 -0.53 ± 0.15 0.05 ± 0.08 0.40 ± 0.03

Sc -1.06 ± 0.31 -0.23 ± 0.07 -0.05 ± 0.01 -0.01 ± 0.00

Pe 12.99 ± 1.70 5.28 ± 0.69 2.14 ± 0.28 0.65 ± 0.09

Ho 4.97 ± 0.57 2.78 ± 0.29 1.69 ± 0.14 1.04 ± 0.06

Vo 3.59 ± 0.37 2.02 ± 0.18 1.23 ± 0.09 0.76 ± 0.04

At1 5.21 ± 0.68 2.61 ± 0.34 1.30 ± 0.17 0.52 ± 0.07

At2 5.32 ± 0.63 2.90 ± 0.32 1.69 ± 0.16 0.96 ± 0.06

Po1 6.24 ± 0.82 4.42 ± 0.58 3.12 ± 0.41 1.97 ± 0.26

Po2 5.38 ± 0.70 3.81 ± 0.50 2.69 ± 0.35 1.70 ± 0.22
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Table B.12: R2 from MBG90 (1) wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 3.97 ± 0.38 2.33 ± 0.22 1.37 ± 0.13 0.67 ± 0.06

Bl2 3.99 ± 0.35 2.58 ± 0.18 1.87 ± 0.09 1.45 ± 0.04

Bld -0.93 ± 0.20 -0.15 ± 0.10 0.24 ± 0.05 0.47 ± 0.02

Sc -0.44 ± 0.12 -0.10 ± 0.03 -0.02 ± 0.01 -0.00 ± 0.00

Pe 8.75 ± 1.10 3.55 ± 0.45 1.44 ± 0.18 0.44 ± 0.06

Ho 3.54 ± 0.37 2.07 ± 0.18 1.34 ± 0.09 0.89 ± 0.04

Vo 2.68 ± 0.24 1.56 ± 0.12 1.01 ± 0.06 0.67 ± 0.02

At1 3.51 ± 0.44 1.76 ± 0.22 0.88 ± 0.11 0.35 ± 0.04

At2 3.74 ± 0.41 2.11 ± 0.20 1.30 ± 0.10 0.81 ± 0.04

Po1 4.21 ± 0.53 2.98 ± 0.37 2.10 ± 0.26 1.33 ± 0.17

Po2 3.63 ± 0.45 2.56 ± 0.32 1.81 ± 0.23 1.15 ± 0.14
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Table B.13: R2 from MBG90 (2) wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 3.97 ± 0.41 2.33 ± 0.24 1.36 ± 0.14 0.67 ± 0.07

Bl2 3.99 ± 0.38 2.58 ± 0.19 1.87 ± 0.09 1.45 ± 0.04

Bld -0.93 ± 0.21 -0.15 ± 0.10 0.24 ± 0.05 0.47 ± 0.02

Sc -0.44 ± 0.13 -0.10 ± 0.03 -0.02 ± 0.01 -0.00 ± 0.00

Pe 8.75 ± 1.17 3.55 ± 0.48 1.44 ± 0.19 0.44 ± 0.06

Ho 3.54 ± 0.39 2.07 ± 0.20 1.34 ± 0.10 0.89 ± 0.04

Vo 2.68 ± 0.25 1.56 ± 0.13 1.01 ± 0.06 0.67 ± 0.03

At1 3.51 ± 0.47 1.76 ± 0.24 0.88 ± 0.12 0.35 ± 0.05

At2 3.74 ± 0.44 2.11 ± 0.22 1.30 ± 0.11 0.81 ± 0.04

Po1 4.21 ± 0.56 2.97 ± 0.40 2.10 ± 0.28 1.33 ± 0.18

Po2 3.63 ± 0.49 2.56 ± 0.34 1.81 ± 0.24 1.15 ± 0.15

XX



Table B.14: R2 from MBG90 (3) wave distribution for HS =3m. Values are given in metres as expected

value ± standard deviation

Runup Bottom slope

model 1/5 1/10 1/20 1/50

Bl1 3.90 ± 0.34 2.28 ± 0.20 1.34 ± 0.12 0.66 ± 0.06

Bl2 3.92 ± 0.31 2.54 ± 0.16 1.86 ± 0.08 1.44 ± 0.03

Bld -0.89 ± 0.17 -0.13 ± 0.09 0.25 ± 0.04 0.48 ± 0.02

Sc -0.42 ± 0.11 -0.09 ± 0.02 -0.02 ± 0.00 -0.00 ± 0.00

Pe 8.54 ± 0.97 3.47 ± 0.39 1.41 ± 0.16 0.43 ± 0.05

Ho 3.47 ± 0.33 2.04 ± 0.16 1.32 ± 0.08 0.89 ± 0.03

Vo 2.63 ± 0.21 1.54 ± 0.10 1.00 ± 0.05 0.67 ± 0.02

At1 3.42 ± 0.39 1.71 ± 0.19 0.86 ± 0.10 0.34 ± 0.04

At2 3.66 ± 0.36 2.07 ± 0.18 1.28 ± 0.09 0.80 ± 0.04

Po1 4.10 ± 0.47 2.90 ± 0.33 2.05 ± 0.23 1.30 ± 0.15

Po2 3.54 ± 0.40 2.50 ± 0.28 1.77 ± 0.20 1.12 ± 0.13
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B.3 Extreme Values from Wind Distributions

Table B.15: JMH02

(a) Runup model Bl1

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 13.4

10 35.0 22.5 22.4 0.59 17.5

100 39.0 27.9 25.0 0.59 21.7

1000 42.7 33.4 27.3 0.59 26.0

10000 46.2 39.2 29.6 0.59 30.4

(b) Runup model Bl2

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 14.8

10 35.0 22.5 22.4 0.59 19.3

100 39.0 27.9 25.0 0.59 24.0

1000 42.7 33.4 27.3 0.59 28.8

10000 46.2 39.2 29.6 0.59 33.7

(c) Runup model Bld

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 -0.861

10 35.0 22.5 22.4 0.59 -1.123

100 39.0 27.9 25.0 0.59 -1.393

1000 42.7 33.4 27.3 0.59 -1.671

10000 46.2 39.2 29.6 0.59 -1.956

(d) Runup model Sc

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 -0.539

10 35.0 22.5 22.4 0.59 -0.702

100 39.0 27.9 25.0 0.59 -0.871

1000 42.7 33.4 27.3 0.59 -1.045

10000 46.2 39.2 29.6 0.59 -1.224

(e) Runup model Pe

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 20.4

10 35.0 22.5 22.4 0.59 26.6

100 39.0 27.9 25.0 0.59 33.0

1000 42.7 33.4 27.3 0.59 39.6

10000 46.2 39.2 29.6 0.59 46.4

(f) Runup model Ho

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 11.9

10 35.0 22.5 22.4 0.59 15.5

100 39.0 27.9 25.0 0.59 19.2

1000 42.7 33.4 27.3 0.59 23.1

10000 46.2 39.2 29.6 0.59 27.0
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Table B.15: (Continued)

(g) Runup model Vo

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 6.8

10 35.0 22.5 22.4 0.59 8.8

100 39.0 27.9 25.0 0.59 10.8

1000 42.7 33.4 27.3 0.59 12.9

10000 46.2 39.2 29.6 0.59 15.0

(h) Runup model At1

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 10.1

10 35.0 22.5 22.4 0.59 13.1

100 39.0 27.9 25.0 0.59 16.3

1000 42.7 33.4 27.3 0.59 19.6

10000 46.2 39.2 29.6 0.59 22.9

(i) Runup model At2

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 12.1

10 35.0 22.5 22.4 0.59 15.8

100 39.0 27.9 25.0 0.59 19.6

1000 42.7 33.4 27.3 0.59 23.5

10000 46.2 39.2 29.6 0.59 27.5

(j) Runup model Po1

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 37.1

10 35.0 22.5 22.4 0.59 55.2

100 39.0 27.9 25.0 0.59 76.3

1000 42.7 33.4 27.3 0.59 100.2

10000 46.2 39.2 29.6 0.59 126.9

(k) Runup model Po2

Year U10 HS TP xP R2

1 30.7 17.2 19.6 0.59 35.3

10 35.0 22.5 22.4 0.59 52.6

100 39.0 27.9 25.0 0.59 72.6

1000 42.7 33.4 27.3 0.59 95.4

10000 46.2 39.2 29.6 0.59 120.9
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Table B.16: MR15 (1)

(a) Runup model Bl1

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 5.7

10 21.8 8.7 14.0 0.59 6.8

100 23.4 10.0 15.0 0.59 7.8

1000 24.8 11.3 15.9 0.59 8.8

10000 26.2 12.6 16.8 0.59 9.8

(b) Runup model Bl2

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 6.3

10 21.8 8.7 14.0 0.59 7.5

100 23.4 10.0 15.0 0.59 8.6

1000 24.8 11.3 15.9 0.59 9.7

10000 26.2 12.6 16.8 0.59 10.8

(c) Runup model Bld

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 -0.369

10 21.8 8.7 14.0 0.59 -0.436

100 23.4 10.0 15.0 0.59 -0.502

1000 24.8 11.3 15.9 0.59 -0.566

10000 26.2 12.6 16.8 0.59 -0.629

(d) Runup model Sc

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 -0.231

10 21.8 8.7 14.0 0.59 -0.273

100 23.4 10.0 15.0 0.59 -0.314

1000 24.8 11.3 15.9 0.59 -0.354

10000 26.2 12.6 16.8 0.59 -0.394

(e) Runup model Pe

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 8.7

10 21.8 8.7 14.0 0.59 10.3

100 23.4 10.0 15.0 0.59 11.9

1000 24.8 11.3 15.9 0.59 13.4

10000 26.2 12.6 16.8 0.59 14.9

(f) Runup model Ho

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 5.1

10 21.8 8.7 14.0 0.59 6.0

100 23.4 10.0 15.0 0.59 6.9

1000 24.8 11.3 15.9 0.59 7.8

10000 26.2 12.6 16.8 0.59 8.7
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Table B.16: (Continued)

(g) Runup model Vo

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 3.2

10 21.8 8.7 14.0 0.59 3.7

100 23.4 10.0 15.0 0.59 4.2

1000 24.8 11.3 15.9 0.59 4.7

10000 26.2 12.6 16.8 0.59 5.1

(h) Runup model At1

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 4.3

10 21.8 8.7 14.0 0.59 5.1

100 23.4 10.0 15.0 0.59 5.9

1000 24.8 11.3 15.9 0.59 6.6

10000 26.2 12.6 16.8 0.59 7.4

(i) Runup model At2

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 5.2

10 21.8 8.7 14.0 0.59 6.1

100 23.4 10.0 15.0 0.59 7.1

1000 24.8 11.3 15.9 0.59 8.0

10000 26.2 12.6 16.8 0.59 8.9

(j) Runup model Po1

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 10.4

10 21.8 8.7 14.0 0.59 13.4

100 23.4 10.0 15.0 0.59 16.5

1000 24.8 11.3 15.9 0.59 19.8

10000 26.2 12.6 16.8 0.59 23.2

(k) Runup model Po2

Year U10 HS TP xP R2

1 20.1 7.4 12.9 0.59 9.9

10 21.8 8.7 14.0 0.59 12.7

100 23.4 10.0 15.0 0.59 15.7

1000 24.8 11.3 15.9 0.59 18.8

10000 26.2 12.6 16.8 0.59 22.1
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Table B.17: MR15 (2)

(a) Runup model Bl1

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 12.0

10 31.3 18.0 20.1 0.59 14.0

100 33.5 20.5 21.4 0.59 16.0

1000 35.4 23.0 22.7 0.59 17.9

10000 37.2 25.4 23.8 0.59 19.7

(b) Runup model Bl2

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 13.3

10 31.3 18.0 20.1 0.59 15.5

100 33.5 20.5 21.4 0.59 17.7

1000 35.4 23.0 22.7 0.59 19.8

10000 37.2 25.4 23.8 0.59 21.8

(c) Runup model Bld

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 -0.770

10 31.3 18.0 20.1 0.59 -0.901

100 33.5 20.5 21.4 0.59 -1.027

1000 35.4 23.0 22.7 0.59 -1.149

10000 37.2 25.4 23.8 0.59 -1.269

(d) Runup model Sc

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 -0.482

10 31.3 18.0 20.1 0.59 -0.563

100 33.5 20.5 21.4 0.59 -0.642

1000 35.4 23.0 22.7 0.59 -0.719

10000 37.2 25.4 23.8 0.59 -0.794

(e) Runup model Pe

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 18.3

10 31.3 18.0 20.1 0.59 21.4

100 33.5 20.5 21.4 0.59 24.3

1000 35.4 23.0 22.7 0.59 27.2

10000 37.2 25.4 23.8 0.59 30.1

(f) Runup model Ho

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 10.6

10 31.3 18.0 20.1 0.59 12.4

100 33.5 20.5 21.4 0.59 14.2

1000 35.4 23.0 22.7 0.59 15.9

10000 37.2 25.4 23.8 0.59 17.5
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Table B.17: (Continued)

(g) Runup model Vo

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 6.2

10 31.3 18.0 20.1 0.59 7.1

100 33.5 20.5 21.4 0.59 8.1

1000 35.4 23.0 22.7 0.59 9.0

10000 37.2 25.4 23.8 0.59 9.9

(h) Runup model At1

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 9.0

10 31.3 18.0 20.1 0.59 10.5

100 33.5 20.5 21.4 0.59 12.0

1000 35.4 23.0 22.7 0.59 13.5

10000 37.2 25.4 23.8 0.59 14.9

(i) Runup model At2

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 10.8

10 31.3 18.0 20.1 0.59 12.7

100 33.5 20.5 21.4 0.59 14.5

1000 35.4 23.0 22.7 0.59 16.2

10000 37.2 25.4 23.8 0.59 17.9

(j) Runup model Po1

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 31.4

10 31.3 18.0 20.1 0.59 39.6

100 33.5 20.5 21.4 0.59 48.3

1000 35.4 23.0 22.7 0.59 57.2

10000 37.2 25.4 23.8 0.59 66.3

(k) Runup model Po2

Year U10 HS TP xP R2

1 29.0 15.4 18.6 0.59 29.9

10 31.3 18.0 20.1 0.59 37.8

100 33.5 20.5 21.4 0.59 46.0

1000 35.4 23.0 22.7 0.59 54.4

10000 37.2 25.4 23.8 0.59 63.1
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Table B.18: BG15

(a) Runup model Bl1

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 1.2

10 9.2 1.6 5.9 0.59 1.2

100 9.3 1.6 6.0 0.59 1.2

1000 9.5 1.6 6.1 0.59 1.3

10000 9.5 1.7 6.1 0.59 1.3

(b) Runup model Bl2

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 1.3

10 9.2 1.6 5.9 0.59 1.3

100 9.3 1.6 6.0 0.59 1.4

1000 9.5 1.6 6.1 0.59 1.4

10000 9.5 1.7 6.1 0.59 1.4

(c) Runup model Bld

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 -0.076

10 9.2 1.6 5.9 0.59 -0.078

100 9.3 1.6 6.0 0.59 -0.080

1000 9.5 1.6 6.1 0.59 -0.082

10000 9.5 1.7 6.1 0.59 -0.083

(d) Runup model Sc

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 -0.047

10 9.2 1.6 5.9 0.59 -0.049

100 9.3 1.6 6.0 0.59 -0.050

1000 9.5 1.6 6.1 0.59 -0.051

10000 9.5 1.7 6.1 0.59 -0.052

(e) Runup model Pe

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 1.8

10 9.2 1.6 5.9 0.59 1.9

100 9.3 1.6 6.0 0.59 1.9

1000 9.5 1.6 6.1 0.59 1.9

10000 9.5 1.7 6.1 0.59 2.0

(f) Runup model Ho

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 1.0

10 9.2 1.6 5.9 0.59 1.1

100 9.3 1.6 6.0 0.59 1.1

1000 9.5 1.6 6.1 0.59 1.1

10000 9.5 1.7 6.1 0.59 1.2
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Table B.18: (Continued)

(g) Runup model Vo

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 1.0

10 9.2 1.6 5.9 0.59 1.0

100 9.3 1.6 6.0 0.59 1.0

1000 9.5 1.6 6.1 0.59 1.1

10000 9.5 1.7 6.1 0.59 1.1

(h) Runup model At1

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 0.9

10 9.2 1.6 5.9 0.59 0.9

100 9.3 1.6 6.0 0.59 0.9

1000 9.5 1.6 6.1 0.59 1.0

10000 9.5 1.7 6.1 0.59 1.0

(i) Runup model At2

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 1.1

10 9.2 1.6 5.9 0.59 1.1

100 9.3 1.6 6.0 0.59 1.1

1000 9.5 1.6 6.1 0.59 1.2

10000 9.5 1.7 6.1 0.59 1.2

(j) Runup model Po1

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 1.0

10 9.2 1.6 5.9 0.59 1.0

100 9.3 1.6 6.0 0.59 1.1

1000 9.5 1.6 6.1 0.59 1.1

10000 9.5 1.7 6.1 0.59 1.1

(k) Runup model Po2

Year U10 HS TP xP R2

1 9.1 1.5 5.8 0.59 0.9

10 9.2 1.6 5.9 0.59 1.0

100 9.3 1.6 6.0 0.59 1.0

1000 9.5 1.6 6.1 0.59 1.0

10000 9.5 1.7 6.1 0.59 1.1

XXIX



XXX



B.4 Contour Lines with Runup Models
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(a) Runup model Bl1
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(b) Runup model Bl2
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(c) Runup model Bld
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(d) Runup model Sc
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(e) Runup model Pe
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(f) Runup model Ho

Figure B.1: MGAU05
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(g) Runup model Vo
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(h) Runup model At1
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(i) Runup model At2

T
P
 [s]

0 5 10 15 20 25 30 35

H
S
 [

m
]

0

5

10

15

20

25

30

35
1 year
10 year
100 year
1000 year
10 000 year

(j) Runup model Po1
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(k) Runup model Po2

Figure B.1: (Continued)
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(a) Runup model Bl1
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(b) Runup model Bl2
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(c) Runup model Bld
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(d) Runup model Sc
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(e) Runup model Pe

T
P
 [s]

0 5 10 15 20 25 30 35

H
S
 [

m
]

0

5

10

15

20

25

30

35
1 year
10 year
100 year
1000 year
10 000 year

(f) Runup model Ho

Figure B.2: OHG16
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(g) Runup model Vo
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(h) Runup model At1

T
P
 [s]

0 5 10 15 20 25 30 35

H
S
 [

m
]

0

5

10

15

20

25

30

35
1 year
10 year
100 year
1000 year
10 000 year

(i) Runup model At2
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(j) Runup model Po1
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(k) Runup model Po2

Figure B.2: (Continued)
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(a) Runup model Bl1
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Figure B.6: (Continued)
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Figure B.10: (Continued)
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B.5 Extreme Values from Wave Distributions

Table B.19: MGAU05

(a) Runup model Bl1

Year HS TP xP R2

1 10.2 15.2 0.60 8.0

10 12.0 16.3 0.59 9.3

100 13.9 17.0 0.57 10.5

1000 15.5 17.9 0.57 11.7

10000 17.0 18.8 0.57 12.8

(b) Runup model Bl2

Year HS TP xP R2

1 10.3 15.0 0.58 8.8

10 12.3 15.9 0.56 10.3

100 14.1 16.8 0.56 11.7

1000 15.7 17.7 0.56 13.1

10000 17.2 18.6 0.56 14.4

(c) Runup model Bld

Year HS TP xP R2

1 3.6 19.4 1.28 -1.271

10 3.4 22.1 1.50 -1.526

100 3.6 24.4 1.61 -1.781

1000 3.7 26.5 1.71 -2.030

10000 3.2 30.0 2.10 -2.285

(d) Runup model Sc

Year HS TP xP R2

1 1.7 20.1 1.95 -0.724

10 1.6 23.3 2.32 -1.012

100 1.3 26.5 2.94 -1.375

1000 1.2 30.0 3.43 -1.823

10000 1.1 33.7 3.95 -2.372

(e) Runup model Pe

Year HS TP xP R2

1 9.8 15.6 0.62 12.2

10 11.8 16.5 0.60 14.2

100 13.7 17.2 0.58 16.0

1000 15.3 18.1 0.58 17.7

10000 16.8 18.9 0.58 19.4

(f) Runup model Ho

Year HS TP xP R2

1 10.2 15.2 0.60 7.1

10 12.2 16.1 0.58 8.3

100 13.9 17.0 0.57 9.4

1000 15.5 17.9 0.57 10.4

10000 17.2 18.6 0.56 11.4

LI



Table B.19: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 10.0 15.4 0.61 4.3

10 12.0 16.3 0.59 4.9

100 13.7 17.2 0.58 5.5

1000 15.5 17.9 0.57 6.0

10000 17.0 18.8 0.57 6.6

(h) Runup model At1

Year HS TP xP R2

1 9.8 15.6 0.62 6.0

10 11.8 16.5 0.60 7.0

100 13.7 17.2 0.58 7.9

1000 15.3 18.1 0.58 8.8

10000 16.8 18.9 0.58 9.6

(i) Runup model At2

Year HS TP xP R2

1 10.2 15.2 0.60 7.2

10 12.0 16.3 0.59 8.4

100 13.9 17.0 0.57 9.5

1000 15.5 17.9 0.57 10.6

10000 17.0 18.8 0.57 11.6

(j) Runup model Po1

Year HS TP xP R2

1 10.3 15.0 0.58 18.8

10 12.2 16.1 0.58 23.7

100 13.9 17.0 0.57 28.7

1000 15.5 17.9 0.57 33.7

10000 17.2 18.6 0.56 38.8

(k) Runup model Po2

Year HS TP xP R2

1 10.3 15.0 0.58 16.2

10 12.2 16.1 0.58 20.5

100 13.9 17.0 0.57 24.7

1000 15.5 17.9 0.57 29.0

10000 17.2 18.6 0.56 33.4

LII



Table B.20: OHG16

(a) Runup model Bl1

Year HS TP xP R2

1 10.6 15.9 0.61 8.5

10 13.0 17.2 0.60 10.2

100 15.6 18.3 0.58 11.9

1000 17.9 19.4 0.57 13.6

10000 20.1 20.5 0.57 15.2

(b) Runup model Bl2

Year HS TP xP R2

1 10.8 15.7 0.60 9.3

10 13.2 17.0 0.59 11.3

100 15.7 18.1 0.57 13.2

1000 18.0 19.2 0.57 15.1

10000 20.3 20.3 0.56 17.0

(c) Runup model Bld

Year HS TP xP R2

1 3.6 19.7 1.29 -1.306

10 4.0 22.0 1.38 -1.583

100 3.7 24.8 1.60 -1.856

1000 3.3 28.1 1.92 -2.123

10000 3.5 30.5 2.04 -2.401

(d) Runup model Sc

Year HS TP xP R2

1 1.9 20.1 1.81 -0.712

10 1.9 23.4 2.11 -0.998

100 1.6 26.6 2.63 -1.358

1000 1.6 30.2 3.02 -1.800

10000 1.3 33.7 3.74 -2.345

(e) Runup model Pe

Year HS TP xP R2

1 10.5 16.1 0.62 13.0

10 13.0 17.2 0.60 15.6

100 15.4 18.4 0.59 18.1

1000 17.6 19.6 0.58 20.6

10000 20.1 20.5 0.57 23.1

(f) Runup model Ho

Year HS TP xP R2

1 10.6 15.9 0.61 7.5

10 13.2 17.0 0.59 9.1

100 15.6 18.3 0.58 10.6

1000 17.9 19.4 0.57 12.1

10000 20.1 20.5 0.57 13.6

LIII



Table B.20: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 10.6 15.9 0.61 4.5

10 13.0 17.2 0.60 5.3

100 15.6 18.3 0.58 6.1

1000 17.9 19.4 0.57 6.9

10000 20.1 20.5 0.57 7.7

(h) Runup model At1

Year HS TP xP R2

1 10.5 16.1 0.62 6.4

10 13.0 17.2 0.60 7.7

100 15.4 18.4 0.59 8.9

1000 17.6 19.6 0.58 10.2

10000 20.1 20.5 0.57 11.4

(i) Runup model At2

Year HS TP xP R2

1 10.6 15.9 0.61 7.7

10 13.0 17.2 0.60 9.2

100 15.6 18.3 0.58 10.8

1000 17.9 19.4 0.57 12.3

10000 20.1 20.5 0.57 13.8

(j) Runup model Po1

Year HS TP xP R2

1 10.6 15.9 0.61 20.5

10 13.2 17.0 0.59 27.3

100 15.6 18.3 0.58 34.5

1000 17.9 19.4 0.57 42.0

10000 20.1 20.5 0.57 50.0

(k) Runup model Po2

Year HS TP xP R2

1 10.6 15.9 0.61 17.6

10 13.2 17.0 0.59 23.5

100 15.6 18.3 0.58 29.7

1000 17.9 19.4 0.57 36.2

10000 20.1 20.5 0.57 43.1

LIV



Table B.21: BGGS07 (1)

(a) Runup model Bl1

Year HS TZ xP R2

1 14.4 12.5 0.53 10.3

10 17.2 13.7 0.53 12.3

100 19.7 14.8 0.53 14.2

1000 21.6 16.3 0.56 16.1

10000 23.9 17.4 0.57 18.0

(b) Runup model Bl2

Year HS TP xP R2

1 15.0 12.0 0.50 11.7

10 17.8 13.1 0.50 14.0

100 20.2 14.5 0.52 16.2

1000 22.7 15.5 0.52 18.3

10000 25.1 16.5 0.53 20.3

(c) Runup model Bld

Year HS TP xP R2

1 7.1 13.0 0.78 -0.955

10 8.7 14.6 0.79 -1.200

100 9.7 15.9 0.82 -1.458

1000 11.7 17.4 0.81 -1.733

10000 12.7 18.7 0.84 -2.023

(d) Runup model Sc

Year HS TP xP R2

1 9.1 13.3 0.71 -0.423

10 10.4 14.8 0.73 -0.525

100 11.7 16.2 0.76 -0.632

1000 12.8 17.5 0.78 -0.746

10000 14.0 18.8 0.81 -0.866

(e) Runup model Pe

Year HS TP xP R2

1 14.1 12.7 0.54 15.3

10 16.2 14.2 0.56 18.3

100 18.6 15.4 0.57 21.3

1000 20.9 16.6 0.58 24.3

10000 23.1 17.7 0.59 27.3

(f) Runup model Ho

Year HS TP xP R2

1 14.7 12.3 0.51 9.2

10 17.2 13.7 0.53 11.0

100 19.7 14.8 0.53 12.7

1000 22.2 15.9 0.54 14.4

10000 24.5 17.0 0.55 16.1

LV



Table B.21: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 14.4 12.5 0.53 5.3

10 16.7 14.0 0.55 6.3

100 19.2 15.2 0.55 7.2

1000 21.6 16.3 0.56 8.1

10000 23.9 17.4 0.57 9.0

(h) Runup model At1

Year HS TP xP R2

1 14.1 12.7 0.54 7.6

10 16.2 14.2 0.56 9.1

100 18.6 15.4 0.57 10.5

1000 20.9 16.6 0.58 12.0

10000 23.1 17.7 0.59 13.5

(i) Runup model At2

Year HS TP xP R2

1 14.4 12.5 0.53 9.3

10 17.2 13.7 0.53 11.1

100 19.7 14.8 0.53 12.9

1000 21.6 16.3 0.56 14.6

10000 23.9 17.4 0.57 16.3

(j) Runup model Po1

Year HS TP xP R2

1 14.7 12.3 0.51 28.0

10 17.5 13.4 0.51 36.5

100 19.7 14.8 0.53 45.4

1000 22.2 15.9 0.54 54.8

10000 24.5 17.0 0.55 64.5

(k) Runup model Po2

Year HS TP xP R2

1 14.7 12.3 0.51 24.1

10 17.5 13.4 0.51 31.4

100 19.7 14.8 0.53 39.1

1000 22.2 15.9 0.54 47.2

10000 24.5 17.0 0.55 55.6

LVI



Table B.22: BGGS07 (2)

(a) Runup model Bl1

Year HS TP xP R2

1 13.1 13.7 0.60 10.3

10 15.4 15.1 0.61 12.3

100 17.6 16.4 0.62 14.3

1000 19.7 17.7 0.64 16.2

10000 21.7 18.9 0.65 18.1

(b) Runup model Bl2

Year HS TP xP R2

1 13.2 13.5 0.59 11.4

10 15.6 14.9 0.60 13.6

100 17.8 16.2 0.61 15.7

1000 19.9 17.4 0.63 17.7

10000 21.9 18.7 0.64 19.7

(c) Runup model Bld

Year HS TP xP R2

1 8.8 13.5 0.73 -0.967

10 11.4 15.0 0.71 -1.175

100 13.5 16.4 0.71 -1.403

1000 15.8 17.8 0.71 -1.650

10000 18.2 19.1 0.72 -1.915

(d) Runup model Sc

Year HS TP xP R2

1 1.3 13.0 1.79 -0.485

10 1.2 15.4 2.23 -0.717

100 1.2 18.1 2.62 -1.028

1000 1.2 21.0 3.13 -1.440

10000 1.1 24.2 3.66 -1.963

(e) Runup model Pe

Year HS TP xP R2

1 12.9 13.8 0.61 15.9

10 15.2 15.2 0.62 19.0

100 17.3 16.5 0.64 22.1

1000 19.4 17.8 0.65 25.2

10000 21.3 19.1 0.66 28.2

(f) Runup model Ho

Year HS TP xP R2

1 13.1 13.7 0.60 9.2

10 15.4 15.1 0.61 10.9

100 17.6 16.4 0.62 12.7

1000 19.7 17.7 0.64 14.3

10000 21.7 18.9 0.65 16.0

LVII



Table B.22: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 13.1 13.7 0.60 5.4

10 15.4 15.1 0.61 6.4

100 17.6 16.4 0.62 7.3

1000 19.7 17.7 0.64 8.2

10000 21.7 18.9 0.65 9.2

(h) Runup model At1

Year HS TP xP R2

1 12.9 13.8 0.61 7.8

10 15.2 15.2 0.62 9.4

100 17.3 16.5 0.64 10.9

1000 19.4 17.8 0.65 12.4

10000 21.3 19.1 0.66 13.9

(i) Runup model At2

Year HS TP xP R2

1 13.1 13.7 0.60 9.4

10 15.4 15.1 0.61 11.2

100 17.6 16.4 0.62 12.9

1000 19.7 17.7 0.64 14.7

10000 21.7 18.9 0.65 16.4

(j) Runup model Po1

Year HS TP xP R2

1 13.1 13.7 0.60 27.7

10 15.4 15.1 0.61 36.0

100 17.6 16.4 0.62 44.8

1000 19.7 17.7 0.64 53.9

10000 21.7 18.9 0.65 63.5

(k) Runup model Po2

Year HS TP xP R2

1 13.1 13.7 0.60 23.9

10 15.4 15.1 0.61 31.1

100 17.6 16.4 0.62 38.6

1000 19.7 17.7 0.64 46.5

10000 21.7 18.9 0.65 54.7

LVIII



Table B.23: BGGS07 (3)

(a) Runup model Bl1

Year HS TP xP R2

1 15.6 15.5 0.63 12.7

10 18.9 17.6 0.65 15.7

100 22.0 19.5 0.67 18.8

1000 25.1 21.4 0.68 21.8

10000 27.2 23.9 0.73 24.9

(b) Runup model Bl2

Year HS TP xP R2

1 16.0 15.2 0.61 14.0

10 19.3 17.2 0.63 17.2

100 22.6 19.1 0.64 20.3

1000 25.7 20.9 0.66 23.5

10000 28.7 22.6 0.67 26.6

(c) Runup model Bld

Year HS TP xP R2

1 10.1 16.3 0.82 -1.530

10 12.8 18.8 0.84 -2.041

100 14.7 21.1 0.88 -2.598

1000 17.8 23.4 0.89 -3.200

10000 19.7 25.6 0.92 -3.851

(d) Runup model Sc

Year HS TP xP R2

1 10.9 16.4 0.80 -0.658

10 12.8 18.8 0.84 -0.870

100 14.7 21.1 0.88 -1.105

1000 16.4 23.3 0.92 -1.365

10000 18.2 25.5 0.96 -1.650

(e) Runup model Pe

Year HS TP xP R2

1 15.2 15.8 0.65 19.8

10 18.4 17.9 0.67 24.6

100 20.7 20.3 0.72 29.6

1000 23.5 22.4 0.74 34.7

10000 26.2 24.4 0.76 40.0

(f) Runup model Ho

Year HS TP xP R2

1 15.6 15.5 0.63 11.3

10 18.9 17.6 0.65 13.9

100 22.0 19.5 0.67 16.6

1000 25.1 21.4 0.68 19.3

10000 28.0 23.3 0.70 21.9

LIX



Table B.23: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 15.6 15.5 0.63 6.6

10 18.4 17.9 0.67 8.0

100 21.4 20.0 0.69 9.5

1000 24.3 21.9 0.71 11.0

10000 27.2 23.9 0.73 12.6

(h) Runup model At1

Year HS TP xP R2

1 15.2 15.8 0.65 9.8

10 18.4 17.9 0.67 12.2

100 20.7 20.3 0.72 14.6

1000 23.5 22.4 0.74 17.2

10000 26.2 24.4 0.76 19.7

(i) Runup model At2

Year HS TP xP R2

1 15.6 15.5 0.63 11.5

10 18.9 17.6 0.65 14.3

100 22.0 19.5 0.67 17.0

1000 24.3 21.9 0.71 19.8

10000 27.2 23.9 0.73 22.6

(j) Runup model Po1

Year HS TP xP R2

1 16.0 15.2 0.61 37.7

10 19.3 17.2 0.63 51.5

100 22.0 19.5 0.67 66.7

1000 25.1 21.4 0.68 83.2

10000 28.0 23.3 0.70 100.9

(k) Runup model Po2

Year HS TP xP R2

1 16.0 15.2 0.61 32.5

10 19.3 17.2 0.63 44.4

100 22.0 19.5 0.67 57.5

1000 25.1 21.4 0.68 71.7

10000 28.0 23.3 0.70 87.0

LX



Table B.24: BGGS07 (4)

(a) Runup model Bl1

Year HS TP xP R2

1 11.6 13.0 0.61 9.3

10 13.6 13.9 0.60 10.7

100 14.9 15.1 0.63 12.1

1000 16.6 15.9 0.63 13.5

10000 17.4 17.3 0.66 14.8

(b) Runup model Bl2

Year HS TP xP R2

1 12.2 12.4 0.57 10.3

10 14.3 13.1 0.56 11.9

100 16.3 13.8 0.55 13.4

1000 17.7 14.9 0.57 14.9

10000 19.4 15.5 0.56 16.3

(c) Runup model Bld

Year HS TP xP R2

1 6.3 14.9 0.95 -1.306

10 7.0 16.3 0.99 -1.572

100 7.6 17.7 1.03 -1.843

1000 9.1 19.0 1.01 -2.124

10000 9.8 20.3 1.04 -2.414

(d) Runup model Sc

Year HS TP xP R2

1 5.2 14.8 1.04 -0.565

10 5.7 16.3 1.09 -0.689

100 6.1 17.7 1.15 -0.820

1000 6.4 19.0 1.20 -0.959

10000 6.8 20.3 1.25 -1.107

(e) Runup model Pe

Year HS TP xP R2

1 10.8 13.6 0.66 14.4

10 12.1 14.9 0.69 16.7

100 13.7 16.0 0.69 18.9

1000 15.2 16.9 0.69 21.1

10000 15.7 18.3 0.74 23.3

(f) Runup model Ho

Year HS TP xP R2

1 11.9 12.7 0.59 8.2

10 13.6 13.9 0.60 9.5

100 15.4 14.7 0.60 10.7

1000 16.6 15.9 0.63 11.9

10000 18.2 16.7 0.63 13.1

LXI



Table B.24: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 11.2 13.3 0.64 4.9

10 13.1 14.3 0.63 5.6

100 14.3 15.6 0.66 6.3

1000 15.9 16.4 0.66 6.9

10000 17.4 17.3 0.66 7.6

(h) Runup model At1

Year HS TP xP R2

1 10.8 13.6 0.66 7.1

10 12.1 14.9 0.69 8.2

100 13.7 16.0 0.69 9.3

1000 15.2 16.9 0.69 10.4

10000 15.7 18.3 0.74 11.5

(i) Runup model At2

Year HS TP xP R2

1 11.6 13.0 0.61 8.4

10 13.6 13.9 0.60 9.7

100 14.9 15.1 0.63 11.0

1000 16.6 15.9 0.63 12.2

10000 17.4 17.3 0.66 13.4

(j) Runup model Po1

Year HS TP xP R2

1 11.9 12.7 0.59 23.5

10 14.0 13.5 0.58 29.3

100 15.4 14.7 0.60 35.1

1000 17.2 15.4 0.60 41.0

10000 18.8 16.1 0.59 47.0

(k) Runup model Po2

Year HS TP xP R2

1 11.9 12.7 0.59 20.3

10 14.0 13.5 0.58 25.2

100 15.4 14.7 0.60 30.3

1000 17.2 15.4 0.60 35.4

10000 18.8 16.1 0.59 40.5

LXII



Table B.25: BGGS07 (5)

(a) Runup model Bl1

Year HS TP xP R2

1 14.6 15.2 0.64 12.0

10 17.8 16.6 0.63 14.5

100 20.9 18.0 0.63 17.0

1000 23.9 19.3 0.63 19.5

10000 26.8 20.5 0.63 22.0

(b) Runup model Bl2

Year HS TP xP R2

1 15.2 14.7 0.60 13.2

10 18.6 15.9 0.59 16.0

100 21.4 17.5 0.61 18.7

1000 24.5 18.8 0.61 21.4

10000 27.5 20.0 0.61 24.0

(c) Runup model Bld

Year HS TP xP R2

1 8.7 16.3 0.89 -1.563

10 10.1 18.0 0.90 -1.902

100 12.6 19.7 0.89 -2.266

1000 14.1 21.3 0.90 -2.655

10000 15.6 22.8 0.92 -3.069

(d) Runup model Sc

Year HS TP xP R2

1 8.7 16.3 0.89 -0.665

10 10.1 18.0 0.90 -0.810

100 11.5 19.6 0.92 -0.966

1000 12.8 21.2 0.95 -1.132

10000 15.6 22.8 0.92 -1.311

(e) Runup model Pe

Year HS TP xP R2

1 14.2 15.5 0.66 18.7

10 17.3 16.9 0.65 22.6

100 19.5 18.7 0.68 26.5

1000 22.3 20.1 0.68 30.4

10000 25.0 21.5 0.69 34.5

(f) Runup model Ho

Year HS TP xP R2

1 15.0 15.0 0.62 10.7

10 17.8 16.6 0.63 12.9

100 20.9 18.0 0.63 15.1

1000 23.9 19.3 0.63 17.3

10000 26.8 20.5 0.63 19.5

LXIII



Table B.25: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 14.6 15.2 0.64 6.2

10 17.8 16.6 0.63 7.4

100 20.3 18.3 0.65 8.6

1000 23.1 19.7 0.66 9.8

10000 26.0 21.1 0.66 11.0

(h) Runup model At1

Year HS TP xP R2

1 14.2 15.5 0.66 9.2

10 17.3 16.9 0.65 11.2

100 19.5 18.7 0.68 13.1

1000 22.3 20.1 0.68 15.0

10000 25.0 21.5 0.69 17.0

(i) Runup model At2

Year HS TP xP R2

1 14.6 15.2 0.64 10.9

10 17.8 16.6 0.63 13.2

100 20.9 18.0 0.63 15.4

1000 23.9 19.3 0.63 17.7

10000 26.0 21.1 0.66 19.9

(j) Runup model Po1

Year HS TP xP R2

1 15.0 15.0 0.62 34.7

10 18.2 16.3 0.61 46.0

100 21.4 17.5 0.61 58.2

1000 23.9 19.3 0.63 71.3

10000 26.8 20.5 0.63 85.3

(k) Runup model Po2

Year HS TP xP R2

1 15.0 15.0 0.62 29.9

10 18.2 16.3 0.61 39.6

100 21.4 17.5 0.61 50.2

1000 23.9 19.3 0.63 61.4

10000 26.8 20.5 0.63 73.5

LXIV



Table B.26: MBG90 (1)

(a) Runup model Bl1

Year HS TP xP R2

1 9.9 11.3 0.58 7.5

10 12.1 13.0 0.60 9.5

100 14.4 14.8 0.62 11.6

1000 16.5 16.6 0.65 13.9

10000 18.6 18.5 0.68 16.2

(b) Runup model Bl2

Year HS TP xP R2

1 9.9 11.3 0.58 8.4

10 12.1 13.0 0.60 10.5

100 14.4 14.8 0.62 12.7

1000 16.5 16.6 0.65 15.0

10000 18.6 18.5 0.68 17.4

(c) Runup model Bld

Year HS TP xP R2

1 1.4 10.8 1.44 -0.611

10 10.7 13.1 0.64 -0.770

100 12.6 14.9 0.67 -1.066

1000 15.0 16.8 0.69 -1.431

10000 16.9 18.7 0.73 -1.864

(d) Runup model Sc

Year HS TP xP R2

1 1.2 10.9 1.57 -0.336

10 1.2 12.7 1.88 -0.472

100 1.1 14.6 2.20 -0.641

1000 1.1 16.5 2.53 -0.849

10000 1.1 18.6 2.88 -1.100

(e) Runup model Pe

Year HS TP xP R2

1 9.8 11.4 0.58 11.4

10 12.0 13.2 0.61 14.6

100 14.1 14.9 0.64 18.0

1000 16.3 16.8 0.67 21.7

10000 18.4 18.7 0.70 25.7

(f) Runup model Ho

Year HS TP xP R2

1 9.9 11.3 0.58 6.7

10 12.1 13.0 0.60 8.5

100 14.4 14.8 0.62 10.3

1000 16.5 16.6 0.65 12.3

10000 18.6 18.5 0.68 14.3

LXV



Table B.26: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 9.9 11.3 0.58 4.0

10 12.1 13.0 0.60 5.0

100 14.1 14.9 0.64 6.0

1000 16.3 16.8 0.67 7.1

10000 18.4 18.7 0.70 8.3

(h) Runup model At1

Year HS TP xP R2

1 9.8 11.4 0.58 5.7

10 12.0 13.2 0.61 7.2

100 14.1 14.9 0.64 8.9

1000 16.3 16.8 0.67 10.7

10000 18.4 18.7 0.70 12.7

(i) Runup model At2

Year HS TP xP R2

1 9.9 11.3 0.58 6.8

10 12.1 13.0 0.60 8.6

100 14.4 14.8 0.62 10.5

1000 16.5 16.6 0.65 12.6

10000 18.4 18.7 0.70 14.7

(j) Runup model Po1

Year HS TP xP R2

1 9.9 11.3 0.58 17.4

10 12.1 13.0 0.60 24.6

100 14.4 14.8 0.62 32.9

1000 16.5 16.6 0.65 42.5

10000 18.6 18.5 0.68 53.3

(k) Runup model Po2

Year HS TP xP R2

1 9.9 11.3 0.58 15.0

10 12.1 13.0 0.60 21.2

100 14.4 14.8 0.62 28.4

1000 16.5 16.6 0.65 36.6

10000 18.6 18.5 0.68 45.9

LXVI



Table B.27: MBG90 (2)

(a) Runup model Bl1

Year HS TP xP R2

1 10.2 10.8 0.54 7.4

10 12.4 12.0 0.54 9.0

100 14.4 13.1 0.55 10.6

1000 16.4 14.2 0.56 12.2

10000 18.3 15.3 0.57 13.8

(b) Runup model Bl2

Year HS TP xP R2

1 10.3 10.7 0.53 8.4

10 12.5 11.9 0.54 10.2

100 14.5 13.0 0.55 12.0

1000 16.5 14.1 0.55 13.7

10000 18.4 15.2 0.56 15.5

(c) Runup model Bld

Year HS TP xP R2

1 2.9 9.9 0.94 -0.577

10 2.6 10.8 1.07 -0.677

100 2.7 11.6 1.13 -0.772

1000 2.8 12.3 1.18 -0.864

10000 2.3 13.4 1.41 -0.954

(d) Runup model Sc

Year HS TP xP R2

1 9.7 10.9 0.56 -0.267

10 11.7 12.0 0.56 -0.328

100 1.1 11.9 1.85 -0.412

1000 1.0 13.1 2.09 -0.511

10000 0.9 14.3 2.35 -0.626

(e) Runup model Pe

Year HS TP xP R2

1 10.2 10.8 0.54 11.0

10 12.4 12.0 0.54 13.5

100 14.4 13.1 0.55 15.9

1000 16.4 14.2 0.56 18.4

10000 18.3 15.3 0.57 21.0

(f) Runup model Ho

Year HS TP xP R2

1 10.2 10.8 0.54 6.6

10 12.4 12.0 0.54 8.1

100 14.4 13.1 0.55 9.5

1000 16.4 14.2 0.56 10.9

10000 18.3 15.3 0.57 12.3
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Table B.27: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 10.2 10.8 0.54 4.0

10 12.4 12.0 0.54 4.7

100 14.4 13.1 0.55 5.5

1000 16.4 14.2 0.56 6.3

10000 18.3 15.3 0.57 7.0

(h) Runup model At1

Year HS TP xP R2

1 10.2 10.8 0.54 5.5

10 12.4 12.0 0.54 6.7

100 14.4 13.1 0.55 7.9

1000 16.4 14.2 0.56 9.1

10000 18.3 15.3 0.57 10.3

(i) Runup model At2

Year HS TP xP R2

1 10.2 10.8 0.54 6.7

10 12.4 12.0 0.54 8.2

100 14.4 13.1 0.55 9.6

1000 16.4 14.2 0.56 11.1

10000 18.3 15.3 0.57 12.5

(j) Runup model Po1

Year HS TP xP R2

1 10.2 10.8 0.54 17.1

10 12.4 12.0 0.54 22.9

100 14.4 13.1 0.55 29.2

1000 16.4 14.2 0.56 36.0

10000 18.3 15.3 0.57 43.3

(k) Runup model Po2

Year HS TP xP R2

1 10.2 10.8 0.54 14.7

10 12.4 12.0 0.54 19.8

100 14.4 13.1 0.55 25.2

1000 16.4 14.2 0.56 31.1

10000 18.3 15.3 0.57 37.3
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Table B.28: MBG90 (3)

(a) Runup model Bl1

Year HS TP xP R2

1 9.7 10.8 0.55 7.2

10 11.9 12.2 0.56 8.9

100 14.1 13.6 0.58 10.8

1000 16.2 14.9 0.59 12.6

10000 18.3 16.3 0.61 14.5

(b) Runup model Bl2

Year HS TP xP R2

1 9.8 10.7 0.55 8.1

10 12.0 12.1 0.56 10.0

100 14.2 13.4 0.57 12.0

1000 16.3 14.8 0.58 14.0

10000 18.3 16.3 0.61 16.0

(c) Runup model Bld

Year HS TP xP R2

1 1.5 9.7 1.26 -0.520

10 1.5 10.9 1.45 -0.622

100 12.4 13.5 0.61 -0.739

1000 14.2 14.9 0.63 -0.958

10000 16.6 16.4 0.64 -1.211

(d) Runup model Sc

Year HS TP xP R2

1 1.0 9.9 1.62 -0.278

10 0.9 11.5 1.96 -0.391

100 0.8 13.2 2.32 -0.533

1000 0.8 15.0 2.69 -0.709

10000 0.8 16.9 3.08 -0.924

(e) Runup model Pe

Year HS TP xP R2

1 9.7 10.8 0.55 10.7

10 11.9 12.2 0.56 13.5

100 14.1 13.6 0.58 16.3

1000 16.2 14.9 0.59 19.3

10000 18.0 16.4 0.62 22.3

(f) Runup model Ho

Year HS TP xP R2

1 9.7 10.8 0.55 6.4

10 11.9 12.2 0.56 8.0

100 14.1 13.6 0.58 9.6

1000 16.2 14.9 0.59 11.2

10000 18.3 16.3 0.61 12.9
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Table B.28: (Continued)

(g) Runup model Vo

Year HS TP xP R2

1 9.7 10.8 0.55 3.9

10 11.9 12.2 0.56 4.7

100 14.1 13.6 0.58 5.6

1000 16.2 14.9 0.59 6.5

10000 18.3 16.3 0.61 7.4

(h) Runup model At1

Year HS TP xP R2

1 9.7 10.8 0.55 5.3

10 11.9 12.2 0.56 6.7

100 14.1 13.6 0.58 8.1

1000 16.2 14.9 0.59 9.5

10000 18.0 16.4 0.62 11.0

(i) Runup model At2

Year HS TP xP R2

1 9.7 10.8 0.55 6.5

10 11.9 12.2 0.56 8.1

100 14.1 13.6 0.58 9.7

1000 16.2 14.9 0.59 11.4

10000 18.3 16.3 0.61 13.2

(j) Runup model Po1

Year HS TP xP R2

1 9.7 10.8 0.55 16.2

10 11.9 12.2 0.56 22.5

100 14.1 13.6 0.58 29.6

1000 16.2 14.9 0.59 37.5

10000 18.3 16.3 0.61 46.1

(k) Runup model Po2

Year HS TP xP R2

1 9.7 10.8 0.55 14.0

10 11.9 12.2 0.56 19.4

100 14.1 13.6 0.58 25.5

1000 16.2 14.9 0.59 32.3

10000 18.3 16.3 0.61 39.7
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Appendix C

MATLAB Codes

C.1 Wave Runup and Wave Rundown Based on Wind Statis-
tics

close all
%% INFORMATION
% This script calculates expected value and standard deviation of wave
% runup and wave rundown based on wind distributions.
% Results can be found in the variable "Results", where the matrixes are
% ordered so that each row represent one bottom slope in the vector md,
% and each column represent one equation

%% PARAMETERS

% Input
alpha hat=0.0081; % Phillips constant
g=9.81; % Acceleration of gravity
neq = 11; % number of equations
nm=7; % number of slopes in calculation
nd = 4; % number of distributions
md = [1/5 1/7 1/10 1/15 ...

1/20 1/30 1/50]; % bottom slopes

% Declarations
Results = struct([]); % Structure for saving results
ER2=zeros(nm,neq); % expected value of R2
VarR2=zeros(nm,neq); % variance of R2
ER2det=zeros(nm,neq); % deterministic expected value of R2

% Colours for plot
colours = [

0 0 0; % black
0.402 0.402 0.402; % grey
0 0 0; % black
0.402 0.402 0.402; % grey
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1.000 0 0.500; % pink
0 0.447 0.741; % blue
1.000 0.500 0; % orange
0.494 0.184 0.556; % purple
0.466 0.674 0.188; % green
0.301 0.745 0.933; % light blue
0.635 0.078 0.184]; % red

% Strings for plots and saving results
markers = {'-','-','--','--','-','-','-','-','-','-','-'};
distr = {'JMH02','MR15 1040','MR15 2060','BG15'};
distr name = {'JMH02','MR15 (1)','MR15 (2)','BG15'};

%% CALCULATIONS
for i = 1:nd

% Parameters distributions
if i == 1 % JMH01

alpha=1.708;
beta=8.426;

elseif i ==2 % MR15 (1)
alpha=2.30;
beta=7.11;

elseif i ==3 % MR15 (2)
alpha=2.46;
beta=10.99;

else % BG15
hs=3;
alpha=1.250+5.600*hsˆ(.660);
beta=0.050+5.514*hsˆ(.280);

end

%% Moments of the distributions
W=zeros(1,6);
for mo=1:6

W(mo)= betaˆmo * gamma(1+mo/alpha);
end

%% Statistical values

for mn = 1:nm
m = md(mn);
K=4*mˆ(0.3);

% General equation 1
a=[0 0.39 -0.21 0 0 0.2 0.58*m 0 0.16];
b=[1.165 0.795 0.44 0.1 K 0.83 0.53 0.99 0.92];
c=[0.77 1 1 2.21 1 1 1 1 1];
d=[0 0 0 0 0 0 0.45 0 0];
for eq = 1:(neq-2)

C = a(eq)*2*sqrt(alpha hat)/g + b(eq)*mˆ(c(eq))*...
(2*pi/g)ˆ(c(eq)/2)*(2*sqrt(alpha hat)/g)ˆ(1-c(eq)/2);

ER2(mn,eq) = C*W(2)+d(eq);
VarR2(mn,eq) = Cˆ2*(W(4)-(W(2))ˆ2);
ER2det(mn,eq) = C*(W(1))ˆ2+d(eq);

end

% General equation 2
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C1 = 0.49*mˆ(.5)*2*pi*sqrt(2*alpha hat)/(gˆ2);
C2 = 0.33*mˆ(.5)*4*pi*sqrt(alpha hat)/(gˆ2);
ER2(mn,10) = C1*W(3);
ER2(mn,11) = C2*W(3);
VarR2(mn,10) = C1ˆ2*(W(6)-(W(3))ˆ2);
VarR2(mn,11) = C2ˆ2*(W(6)-(W(3))ˆ2);
ER2det(mn,10) = C1*(W(1))ˆ3;
ER2det(mn,11) = C2*(W(1))ˆ3;

end

StdR2=sqrt(VarR2);

%% Other calculations

% EXPECTED MEAN WIND AND SIGNIFICANT WAVE HEIGHT
EU10 = W(1); % Expected mean wind speed
EHS=2*sqrt(alpha hat)/g*EU10ˆ2; % Expected significant wave heigth
xiPd=piˆ.5/alpha hatˆ(1/4)*EU10;
xiP=md.*xiPd; % Surf parameter

% DIMENSIONLESS RUNUP
ER2D= ER2/EHS; % divided by Hs
ER2DD(1,:) = ER2(1,:)./xiP(1); % divided by surf parameter
ER2DD(2,:) = ER2(2,:)./xiP(2); % divided by surf parameter
ER2DD(3,:) = ER2(3,:)./xiP(3); % divided by surf parameter
ER2DD(4,:) = ER2(4,:)./xiP(4); % divided by surf parameter
ER2DD(5,:) = ER2(5,:)./xiP(5); % divided by surf parameter

% RATIO BETWEEN DET. AND STOCH. METHOD
ER2comp=ER2det./ER2;

% VECTORS WITH RUNUP ONLY
ER up=zeros(nm,neq-2);
STD up=zeros(nm,neq-2);
ER up(:,1:2)=ER2(:,1:2);
STD up(:,1:2)=StdR2(:,1:2);
ER up(:,3:9)=ER2(:,5:11);
STD up(:,3:9)=StdR2(:,5:11);

%CALCULATING ERRORBAR
error min = zeros(nm,neq-2);
for mn = 1:nm

for eq = 1:neq-2
if ER up(mn,eq) < STD up(mn,eq)

error min(mn,eq) = ER up(mn,eq);
else

error min(mn,eq) = STD up(mn,eq);
end

end
end

% CREATING FILE FOR TABLES
ResTab = zeros(neq,8);
mnd=1;
for mn = [1 3 5 7]

ResTab(:,mnd) = ER2(mn,:);
ResTab(:,mnd+1) = StdR2(mn,:);
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mnd = mnd+2;
end

%CHANGING SIGN ON RUNDOWN
ER2(:,3) = ER2(:,3)*(-1);
ER2(:,4) = ER2(:,4)*(-1);
kd=1;
for k = 1:4

ResTab(3,kd)=ResTab(3,kd)*(-1);
ResTab(4,kd)=ResTab(4,kd)*(-1);
kd=kd+2;

end

% VECTORS WITH RUNDOWN ONLY
ER down=zeros(nm,2);
STD down=zeros(nm,2);
ER down(:,1:2)=ER2(:,3:4);
STD down(:,1:2)=StdR2(:,3:4);

%% SAVING RESULTS
Results(i).Distributions = distr name(i);
Results(i).ExpU10 = EU10;
Results(i).ExpHs = EHS;
Results(i).SurfParameter = xiP.';
Results(i).ExpectedValue=ER2;
Results(i).StandardDeviation=StdR2;
Results(i).ExpRunup = ER up;
Results(i).StdRunup = STD up;
Results(i).MinRunup = error min;
Results(i).ExpRundown = ER down;
Results(i).StdRundown = STD down;
Results(i).MinRundown = STD down;

end

C.2 Wave Runup and Wave Rundown Based on Wave Statistcs

close all
%% INFORMATION
% This script calculates expected value and standard deviation of wave
% runup and wave rundown based on wave distributions.
% Results can be found in the variable "Results", where the matrixes are
% ordered so that each row represent one bottom slope in the vector md,
% and each column represent one equation

%% PARAMETERS

% Input
g=9.81; %Acceleration of gravity
Hs=3; %Significant wave height
nd=10; %number of distributions
neq=11; %number of equations for R2
nm=7; %number of bottom slopes
hs shift = 3.25; % shifting point combined distribution
md = [1/5 1/7 1/10 1/15 ...
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1/20 1/30 1/50]; % bottom slopes
marginal = ...

[1 2 3 3 3 3 3 4 4 4]; % type of distribution
% 1:MGAU05 2:OHG16 3:BGGS07 4:MBG90

c hat = [1 1 1.28 1.28 1.28 ...
1.28 1.28 1.28 1.28 1.28]; % coefficient: 1 for T=Tp, 1.28 for T=Tz

% Declaration
ER2=zeros(length(md),neq); % expected value of R2
STDR2=zeros(length(md),neq); % standard deviation of R2
EHS = zeros(1,nd); % Expected value of Hs
ER up=zeros(nm,neq-2); % expected value runup
STD up=zeros(nm,neq-2); % standard deviation runup
ER down=zeros(nm,2); % expected value rudown
STD down=zeros(nm,2); % standard deviation rundown
Results = struct([]); % structure for results
ResTab = zeros(neq,nm*2); % matrix for storing results

% Colours for plot
colours = [

0 0 0; % black
0.402 0.402 0.402; % grey
0 0 0; % black
0.402 0.402 0.402; % grey
1.000 0 0.500; % pink
0 0.447 0.741; % blue
1.000 0.500 0; % orange
0.494 0.184 0.556; % purple
0.466 0.674 0.188; % green
0.301 0.745 0.933; % light blue
0.635 0.078 0.184]; % red

% Strings for plots and saving results
model = {'Bl1', 'Bl2', 'Bld','Sc', 'Pe', 'Ho', 'Vo', 'At1', 'At2','Po1','Po2'};
markers = {'-','-','--','--','-','-','-','-','-','-','-'};
distr = {'MGAU05','NORA10', 'BGGS07 1', 'BGGS07 2','BGGS07 3'...

,'BGGS07 4', 'BGGS07 5','MBG90 1','MBG90 2','MBG90 3'};
distr name = {'MGAU05','NORA10', 'BGGS07 (1)', 'BGGS07 (2)','BGGS07 (3)'...

,'BGGS07 (4)', 'BGGS07 (5)','MBG90 (1)','MBG90 (2)','MBG90 (3)'};

%% Parameters distributions

% Parameters for conditional distribution of Hs and T
a1=[1.780 0.74 1.350 1.365 0.790 0.835 1.952 1.240 1.090 0.933];
a2=[0.288 1.20 0.366 0.375 0.805 1.139 0.168 0.337 0.479 0.578];
a3=[0.474 0.21 0.392 0.453 0.292 0.119 0.499 0.538 0.417 0.395];
b1=[0.001 0.001 0.020 0.033 0.055 0.140 0.070 0.0728 0.0407 0.0550];
b2=[0.097 0.113 0.165 0.285 0.195 0.030 0.066 0.383 0.221 0.336];
b3=[-0.255 -0.275 -0.166 -0.752 -0.269 -0.958 -0.081 -0.665 -0.289 -0.585];

%Parameters for marginal distirbution of Hs
s = [0.801 1.690 3.104 2.848 2.939 2.857 2.420 1.410 1.910 1.500];
r = [1.531 1.160 1.357 1.419 1.240 1.449 1.169 1.120 1.270 1.150];
t = [2.713 0.760 0.906 1.021 0.896 0.838 1.258 0.987 0.532 0.679];
k = [0.371ˆ0.5 0 0 0 0 0 0 0 0 0];

%% CALCULATIONS
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for i = 1:nd %distributions
mnd=1;
for mn = 1:nm %bottom slope

%% Parameters equations
m = md(mn);
K=4*mˆ(0.3);

%Parameters for general equation 1
a=[0 0.39 -0.21 0 0 0.2 0.58*m 0 0.16];
b=[1.165 0.795 0.44 0.1 K 0.83 0.53 0.99 0.92];
c=[0.77 1 1 2.21 1 1 1 1 1];
d=[0 0 0 0 0 0 0.45 0 0];

%Parameters for general equation 2
C = [0 0 0 0 0 0 0 0 0 0.49/1.28 0.33];

%% Statistical values

for j = 1:neq %equations
meanT = a1(i)+a2(i)*Hsˆa3(i);
if marginal(i) == 1 | | marginal(i) == 2

varT = b1(i)+b2(i)*exp(b3(i)*Hs);
elseif marginal(i) == 3

varT = (b1(i)+b2(i)*Hsˆ(b3(i)))ˆ2;
elseif marginal(i) == 4

varT = (b1(i)+b2(i)*exp(b3(i)*Hs))ˆ2;
end
if j <= neq-2 %General equation 1

meanR = c(j)*meanT+log(b(j)*mˆ(c(j))*c hat(i)ˆ(c(j))...
*(g/(2*pi))ˆ(c(j)/2)*Hsˆ(1-c(j)/2));

varR = c(j)ˆ2*varT;
ER = exp(meanR+0.5*varR);
STDR = ((exp(varR)-1)*exp(2*meanR+varR))ˆ0.5;
ER2(mn,j) = ER + a(j)*Hs+d(j);
STDR2(mn,j) = STDR;

elseif j > neq-2 %General equation 2
meanR = meanT +log(C(j)*mˆ.5*c hat(i)*Hs);
varR = varT;
ER2(mn,j) = exp(meanR+0.5*varR);
STDR2(mn,j) = ((exp(varR)-1)*exp(2*meanR+varR))ˆ0.5;

end
end

ResTab(:,mnd) = ER2(mn,:);
ResTab(:,mnd+1) = STDR2(mn,:);
mnd = mnd+2;

end

%CHANGING SIGN ON RUNDOWN
ER2(:,3) = ER2(:,3)*(-1);
ER2(:,4) = ER2(:,4)*(-1);
kd=1;
for k = 1:nm

ResTab(3,kd)=ResTab(3,kd)*(-1);
ResTab(4,kd)=ResTab(4,kd)*(-1);
kd=kd+2;
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end

%% EXPECTED VALUE OF HS
if marginal(i) == 1

EHS(i) = exp(s(i)+0.5*k(i)ˆ2)*normcdf((log(hs shift)-(s(i)...
+k(i)ˆ2))/k(i))+ t(i)*gammainc(1+1/r(i),(hs shift/t(i))ˆr(i));

else
EHS(i) = t(i) + s(i)*gamma(1+1/r(i));

end

%% OTHER CALCULATIONS

% VECTORS WITH RUNUP ONLY
ER up(:,1:2)=ER2(:,1:2);
STD up(:,1:2)=STDR2(:,1:2);
ER up(:,3:9)=ER2(:,5:11);
STD up(:,3:9)=STDR2(:,5:11);

% VECTORS WITH RUNDOWN ONLY
ER down(:,1:2)=ER2(:,3:4);
STD down(:,1:2)=STDR2(:,3:4);

%CALCULATING ERRORBARS
error min = zeros(nm,neq-2);
for mn = 1:nm

for eq = 1:neq-2
if ER up(mn,eq) < STD up(mn,eq)

error min(mn,eq) = ER up(mn,eq);
else

error min(mn,eq) = STD up(mn,eq);
end

end
end

%% SAVING RESULTS

% Saving results in struct
Results(i).Distribution = distr name(i);
Results(i).ExpectedValues = ER2;
Results(i).StandardDeviation = STDR2;
Results(i).ExpValueRunup = ER up;
Results(i).StdRunup = STD up;
Results(i).MinRunup = error min;
Results(i).ExpValueRundown = ER down;
Results(i).StdRundown = STD down;
Results(i).MinRundown = STD down;

end

C.3 Extreme Value Estimates Based on Wind Statistcs

close all
%% INFORMATION
% This script calculates the extreme values from wind statistics
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%% PARAMETERS

% Input
alpha hat=0.0081; % Phillips constant
g=9.81; % Acceleration of gravity
neq = 11; % number of equations
nm=7; % number of slopes in calculation
m = 0.1; % bottom slope
RP = [1 10 100 1000 10000]; % return periods
K=4*mˆ(0.3);

% Declaration
U max = zeros(1,length(RP));
Hs max = zeros(1,length(RP));
Tp max = zeros(1,length(RP));
Tz max = zeros(1,length(RP));
R2 max = zeros(neq,length(RP));
xi max = zeros(1,length(RP));

% Strings for plots and saving results
model = {'Bl1','Bl2','Bld','Sc','Pe','Ho','Vo','At1','At2','Po1','Po2'};
period = {'1', '10', '100', '1000', '10000'};
distr = {'JMH02','MR15 1040','MR15 2060','BG15'};
model char = [1 1 1 1 1 1 1 1 1 2 3];

%% Parameters equations

%Parameters for general equation 1
a=[0 0.39 0.21 0 0 0.2 0.58*m 0 0.16];
b=[1.165 0.795 -0.44 -0.1 K 0.83 0.53 0.99 0.92];
c=[0.77 1 1 2.21 1 1 1 1 1];
d=[0 0 0 0 0 0 0.45 0 0];

for nd = 1:4 %DISTRIBUTION

%% DISTRIBUTION PARAMETERS
if nd == 1 % JMH01

alpha=1.708;
beta=8.426;

elseif nd ==2 % MR15 10W40N
alpha=2.30;
beta=7.11;

elseif nd ==3 % MR15 20W60N
alpha=2.46;
beta=10.99;

else % BG15
hs=3;
alpha=1.250+5.600*hsˆ(.660);
beta=0.050+5.514*hsˆ(.280);

end

%% CALCULATION OF EXTREME VALUES

for ieq = 1:neq %RUNUP MODEL
for irp = 1:length(RP) %RETURN PERIOD

rp = RP(irp);
if nd == 1 % JMH01
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N = 365*24*60/60*rp;
else

N = 365*24*60/10*rp;
end
U max(irp) = beta*(log(N))ˆ(1/alpha);
Tp max(irp) = 2*pi/g*U max(irp);
Hs max(irp) = 2*sqrt(alpha hat)/g*U max(irp)ˆ2;
Tz max(irp) = sqrt(2)*pi/g*U max(irp);
xi max(irp) = m*sqrt(g/(2*pi)*Tp max(irp)ˆ2/Hs max(irp));

if model char(ieq) == 1 %General equation abcd
R2 max(ieq,irp) = (a(ieq)+b(ieq)*xi max(irp)ˆc(ieq))...

*Hs max(irp)+d(ieq);
elseif model char(ieq) == 2 %Po1

R2 max(ieq,irp) = 0.49*mˆ.5*Tz max(irp)*Hs max(irp);
elseif model char(ieq) == 3 %Po2

R2 max(ieq,irp) = 0.33*mˆ.5*Tp max(irp)*Hs max(irp);
end

end
end
%% Writing results to file for tables in the report

%Extreme sea state values
FileName = ['ExtremeValuesSeastate ' distr{nd} '.txt'];
FilePath = ...

'/Users/tonjesunde/Documents/MATLAB/Masteroppgave/Tables Extreme dimless 1hour';

fid = fopen(fullfile(FilePath,FileName),'w');
for irp = 1:length(RP)

fprintf(fid,'%-5d & %-5.1f & %-5.1f & %-5.1f \\\\ \n',...
RP(irp),U max(irp),Hs max(irp),Tp max(irp));

end
fclose(fid);

%Extreme runup values
Model = (1:neq).';
R2 max1 = R2 max(:,1)/Hs max(1);
R2 max10 = R2 max(:,2)/Hs max(2);
R2 max100 = R2 max(:,3)/Hs max(3);
R2 max1000 = R2 max(:,4)/Hs max(4);
R2 max10000 = R2 max(:,5)/Hs max(5);
Sep = {'&';'&';'&';'&';'&';'&';'&';'&';'&';'&';'&';};
EndSep = {'\\';'\\';'\\';'\\';'\\';'\\'...

;'\\';'\\';'\\';'\\';'\\'};
R2tab = [Model R2 max1 R2 max10 R2 max100 R2 max1000 R2 max10000];
R2sort = sortrows(R2tab,2);

FileName = ['ExtremeValuesRunup ' distr{nd} '.txt'];
FilePath = ...

'/Users/tonjesunde/Documents/MATLAB/Masteroppgave/Tables Extreme dimless 1hour';
fid = fopen(fullfile(FilePath,FileName),'w');
for ieq = 1:neq

if ieq == 1 | | ieq == 2
fprintf(fid,...

'%-5s & %-5.3f & %-5.3f & %-5.3f & %-5.3f & %-5.3f \\\\ \n'...
,model{R2sort(ieq)}, R2sort(ieq,2), R2sort(ieq,3),...
R2sort(ieq,4), R2sort(ieq,5), R2sort(ieq,6));

else

LXXIX



fprintf(fid,...
'%-5s & %-5.2f & %-5.2f & %-5.2f & %-5.2f & %-5.2f \\\\ \n'...
,model{R2sort(ieq)}, R2sort(ieq,2), R2sort(ieq,3),...
R2sort(ieq,4), R2sort(ieq,5), R2sort(ieq,6));

end
end
fclose(fid);

end

C.4 Extreme Value Estimates Based on Wave Statistcs

%% INFORMATION
% This script calculates the extreme values from wave statistics

%% PARAMETERS

% Input
neq = 11; % number of equations
m = 0.1; % bottom slope
g=9.81; % acceleration of gravity
sp =100; % number of sampling points
RP = [1 10 100 1000 10000]; % return periods
Axis = [0 35 0 35]; % axis contour line plots
x = Axis(1):0.1:Axis(2); % x-values in plot
model char = ...

[1 2 2 1 1 2 2 1 2 3 4]; % type of runup model
% 1:a=0 2:c=1 3:Po1 4:Po2

% Declaration
Re = zeros(1,length(RP)); % handle for contour line plots
R2 = zeros(1,sp); % R2
T max = zeros(neq,length(RP)); % extreme value wave period
H max = zeros(neq,length(RP)); % extreme value Hs
R2 max = zeros(neq,length(RP)); % extreme value R2
xi max = zeros(neq,length(RP)); % extreme value surf parameter
R2sort compWave=struct([]); % R2 sorted by value

% Strings for plots and saving results
distr = {'MGAU05','NORA10', 'BGGS07 1', 'BGGS07 2','BGGS07 3','BGGS07 4'...

, 'BGGS07 5','MBG90 1','MBG90 2','MBG90 3'};
model = {'Bl1','Bl2','Bld','Sc','Pe','Ho','Vo','M1','M2','Po1','Po2'};
model name = {'Bl1','Bl2','Bld','Sc','Pe','Ho','Vo','At1','At2','Po1','Po2'};
color = {'[0 0.4470 0.7410]','[0.8500 0.3250 0.0980]'...

,'[0.9290 0.6940 0.1250]','[0.4940 0.1840 0.5560]'...
,'[0.4660 0.6740 0.1880]'};

%Parameters for marginal distirbution of Hs
s = [0.801 1.690 3.104 2.848 2.939 2.857 2.420 1.410 1.910 1.500];
r = [1.531 1.160 1.357 1.419 1.240 1.449 1.169 1.120 1.270 1.150];
t = [2.713 0.760 0.906 1.021 0.896 0.838 1.258 0.987 0.532 0.679];
k = [0.371ˆ0.5 0 0 0 0 0 0 0 0 0];

%Parameters for conditional distribuiton of Tp given Hs
marginal = [3 1 2 2 2 2 2 4 4 4];
c hat = [1 1 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28];
a1=[1.780 0.74 1.350 1.365 0.790 0.835 1.952 1.240 1.090 0.933];
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a2=[0.288 1.20 0.366 0.375 0.805 1.139 0.168 0.337 0.479 0.578];
a3=[0.474 0.21 0.392 0.453 0.292 0.119 0.499 0.538 0.417 0.395];
b1=[0.001 0.001 0.020 0.033 0.055 0.140 0.070 0.0728 0.0407 0.0550];
b2=[0.097 0.113 0.165 0.285 0.195 0.030 0.066 0.383 0.221 0.336];
b3=[-0.255 -0.275 -0.166 -0.752 -0.269 -0.958 -0.081 -0.665 -0.289 -0.585];

%Parameters for general equation 1
a=[0 0.39 0.21 0 0 0.2 0.58*m 0 0.16];
b=[1.165 0.795 -0.44 -0.1 4*mˆ(0.3) 0.83 0.53 0.99 0.92];
c=[0.77 1 1 2.21 1 1 1 1 1];
d=[0 0 0 0 0 0 0.45 0 0];

%Parameters for general equation 2
C = [0 0 0 0 0 0 0 0 0 0.49/1.28 0.33];

%% CALCULATIONS
for nd = 1:10 %distributions

close all;
for ieq =1:neq %runup model

for rp = 1:length(RP) %return period
%% Contour lines

%Creating values for imaginary plane
q = 1/(2920*RP(rp));
beta = -norminv(q,0,1);
theta = linspace(0,2*pi,sp);
u1 = beta*cos(theta);
u2 = beta*sin(theta);

%Transforming back to physical plane
F = normcdf(u1,0,1);

if marginal(nd) == 1 %OHG16
H = t(nd)+s(nd)*(-log(1-F)).ˆ(1/r(nd));
meanT = a1(nd)+a2(nd)*H.ˆa3(nd);
stdT = sqrt(b1(nd)+b2(nd)*exp(b3(nd)*H));
T = exp(stdT.*u2+meanT);

elseif marginal(nd) == 2 %BGGS07
H = t(nd)+s(nd)*(-log(1-F)).ˆ(1/r(nd));
meanT = a1(nd)+a2(nd)*H.ˆ(a3(nd));
stdT = b1(nd)+b2(nd)*H.ˆ(b3(nd));
T = exp(stdT.*u2+meanT);

elseif marginal(nd) == 3 %MGAU05
H = t(nd)*(-log(1-F)).ˆ(1/r(nd)); % Hs > 3.25m
for j=1:sp

if H(j) <= 3.25 % Hs<= 3.25m
H(j) = exp(s(nd)+u1(j)*k(nd));

end
end
meanT = a1(nd)+a2(nd)*H.ˆa3(nd);
stdT = sqrt(b1(nd)+b2(nd)*exp(b3(nd)*H));
T = exp(stdT.*u2+meanT);

else % MBG90
H = t(nd)+s(nd)*(-log(1-F)).ˆ(1/r(nd));
meanT = a1(nd)+a2(nd)*H.ˆa3(nd);
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stdT = b1(nd)+b2(nd)*exp(b3(nd)*H);
T = exp(stdT.*u2+meanT);

end

%% Plotting contour lines

figI = figure(nd*20+ieq);
Re(rp) = plot(T,H,'LineWidth',1.5,'Color',color{rp});
hold on
if nd == 1 | | nd == 2

xlabel('T P [s]')
else

xlabel('T Z [s]')
end
ylabel('H S [m]')
set(gca,'Fontsize',22, 'Fontname','Times New Roman')
axis(Axis)

%% Maximum values for runup along contour lines

for j = 1:sp
if model char(ieq) == 1 %a=0

R2(j) = b(ieq)*(m*c hat(nd))ˆc(ieq)*(g/(2*pi))ˆ(c(ieq)/2)...
*H(j)ˆ(1-c(ieq)/2)*T(j)ˆc(ieq)+d(ieq);

elseif model char(ieq) == 2 %c=1
R2(j) = a(ieq)*H(j)+b(ieq)*m*c hat(nd)...

*sqrt(g/(2*pi)*H(j))*T(j)+d(ieq);
else %Po

R2(j) = C(ieq)*mˆ.5*c hat(nd)*T(j)*H(j);
end

end

if ieq == 3 | | ieq == 4
maxd=find(R2==min(R2));

else
maxd=find(R2==max(R2));

end

T max(ieq,rp) = T(maxd); %Tp or Tz
H max(ieq,rp) = H(maxd);
R2 max(ieq,rp) = R2(maxd);
xi max(ieq,rp) = m*sqrt(g/(2*pi))*c hat(nd)*...

T max(ieq,rp)/sqrt(H max(ieq,rp));

%% Plotting runup models for maximum runup

x = Axis(1):0.1:Axis(2);
y = Axis(3):0.1:Axis(4);

if model char(ieq) == 1 %a=0
H1 = ((R2(maxd)-d(ieq))./(b(ieq)*(m*c hat(nd))ˆc(ieq)...

*(g/(2*pi))ˆ(c(ieq)/2).*x.ˆc(ieq))).ˆ(2/(2-c(ieq)));

figure(nd*20+ieq);
plot(x,H1,'--','Color',color{rp},'linewidth',1.5);

elseif model char(ieq) == 2 %c=1
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T1 = (R2(maxd)-a(ieq).*y-d(ieq))./...
(b(ieq)*m*c hat(nd)*sqrt(g/(2*pi)).*sqrt(y));

figure(nd*20+ieq);
plot(T1,y,'--','Color',color{rp},'linewidth',1.5);

else %Po
H1 = R2(maxd)/(C(ieq)*mˆ.5*c hat(nd))./x;

figure(nd*20+ieq);
plot(x,H1,'--','Color',color{rp},'linewidth',1.5);

end

end

legend(Re,'1 year','10 year','100 year','1000 year','10 000 year',...
'Location', 'NE')

hold off

%% Write extreme values to file for tables in report

FileName = ['ExtremeValues ' distr{nd} ' ' model{ieq} '.txt'];
FilePath = ...

'/Users/tonjesunde/Documents/MATLAB/Masteroppgave/Tables ExtremeValues';

fid = fopen(fullfile(FilePath,FileName),'w');
if ieq == 3 | | ieq == 4

for rp = 1:length(RP)
fprintf(fid,'%-8d & %-10.1f & %-10.1f & %-10.2f & %-10.3f \\\\ \n'...

,RP(rp),H max(ieq,rp),T max(ieq,rp),xi max(ieq,rp),R2 max(ieq,rp));
end

else
for rp = 1:length(RP)

fprintf(fid,'%-8d & %-10.1f & %-10.1f & %-10.2f & %-10.1f \\\\ \n'...
,RP(rp),H max(ieq,rp),T max(ieq,rp),xi max(ieq,rp),R2 max(ieq,rp));

end
end
fclose(fid);

end

Model = (1:neq).';
R2dim = R2 max./H max;
R2tab = [Model R2dim(:,1) R2dim(:,2) R2dim(:,3) R2dim(:,4) R2dim(:,5)];
R2sort = sortrows(R2tab,2);

FileName = ['ExtremeValues ' distr{nd} '.txt'];
FilePath = ...

'/Users/tonjesunde/Documents/MATLAB/Masteroppgave/Tables Extreme dimless';

fid = fopen(fullfile(FilePath,FileName),'w');
for ieq = 1:neq

if ieq == 1 | | ieq == 2
fprintf(fid,'%-5s & %-5.3f & %-5.3f & %-5.3f & %-5.3f & %-5.3f \\\\ \n'...

,model name{R2sort(ieq)}, R2sort(ieq,2), R2sort(ieq,3),...

LXXXIII



R2sort(ieq,4), R2sort(ieq,5), R2sort(ieq,6));
else

fprintf(fid,'%-5s & %-5.2f & %-5.2f & %-5.2f & %-5.2f & %-5.2f \\\\ \n'...
,model name{R2sort(ieq)}, R2sort(ieq,2), R2sort(ieq,3),...
R2sort(ieq,4), R2sort(ieq,5), R2sort(ieq,6));

end
end
fclose(fid);

R2sort compWave(nd).Distribution = distr(nd);
R2sort compWave(nd).R2sortWave = R2sort;

end
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