
High speed color 3D scanner
using NVIDIA Jetson

Rubin Ingwer Gerritsen

Master of Science in Cybernetics and Robotics

Supervisor: Morten Alver, ITK

Department of Engineering Cybernetics

Submission date: June 2017

Norwegian University of Science and Technology

Problem statement

Many industrial applications of 3D vision involve the use of laser scanning of objects
on a conveyor and imaging with 2D camera, with image processing that extracts the
laser line 3D information and other reflectance properties. Processing of images from
these 2D cameras must often be done at 500-1000 fps, and consequently require fast
processing. Some custom 3D cameras use FPGA, and some software packages use GPU
processing to this end. The goal of this Master’s thesis is to implement an embedded 3D
vision system, based on laser scanning, with image processing done on an NVIDIA Jetson
GPU+CPU board. Such an embedded 3D vision system enables low cost integration into
many industrial applications. The implemented system is intended to enable 3D vision
in color, with multiple imaging modes.

This master’s thesis builds on the project work ”Embedded 3D vision for industrial
applications using NVIDIA Jetson” where a basic implementation of the scanning system
has been established. In this thesis, the task is to integrate the basic implementation into
a full experimental setup at SINTEF Sealab and improve functionality, with particular
focus on making the system reliable and robust when faced with real-world variability in
image quality and processing times.

Tasks included in the project:

• Integrate the NVIDIA Jetson scanner implementation into the experimental setup
at SINTEF Sealab

• Development of extended functionality:

– Handling of color and 12 bit images

– Adapt system to allow external trigging of camera

– Review architecture options for multiple camera setups

• System performance and reliability

– Handling variations in image quality. Analyze accuracy and repeatability of
scans.

– Handling variability in processing time. Ensure graceful degradation if pro-
cessing is unable to keep up with camera frame rate.

i

ii

Abstract

Automatic quality grading of food products is often performed by machine vision systems.
The maximum performance of such a system is determined by the amount and quality
of the data used. A 3D color scanner is able to capture more data than conventional
machine vision systems; in addition to color and shape, it also extracts height profiles.
However, 3D line scanners available on the market today are expensive because they use
advanced customized components. Therefore, SINTEF Ocean has developed a 3D line
scanner for only a third of the price by using standardized off-the-shelf components. This
price reduction makes the solution applicable to a wider range of problems.

This thesis presents a distributed 3D line scanner using a GPU enabled NVIDIA
Jetson TK1 and a NVIDIA Jetson TX1, which reduces the hardware and deployment
cost even more compared to SINTEF’s solution. The developed scanner is able to operate
in multiple modes and is highly configurable over TCP/IP. Each of the modes extracts
different object parameters such as height, scatter, and color. It presents how the scanner
is benchmarked to find its maximum performance, and how the scan quality is examined
by performing repeatability tests and by performing scans of salmon.

The accuracy of the scanner is determined by the scan rate and camera image size.
Increasing the image size increases the cross section accuracy but decreases the scan rate.
When both color and height is extracted from an image with size 1280x192 pixels, it was
found that the Jetson TK1 and Jetson TX1 were able to obtain a scan rate of respectively
220 and 620 frames per second. This is much slower than the image processing module,
which is able to obtain a theoretical maximum frame rate of 4600 and 7300 frames per
second. The Jetson TK1 is limited by its slow memory transfer speed, while the Jetson
TX1 is limited by the maximum frame rate of the camera.

The developed scanner utilizing the Jetson TX1 has the same performance as the
previous system developed by SINTEF. The image processing implementation is portable
to other GPUs and much faster than the camera can handle. Consequently, there is a
large potential performance increase by using another camera solution. Therefore, this
master thesis is a valuable contribution to further development of high speed, low cost,
3D line scanners.

iii

iv

Sammendrag

Automatisk kvalitetskontroll av matprodukter blir ofte utført av maskinsynsystemer. Den
maksimale ytelsen til slike systemer avhenger av mengden tilgjengelig data og dataens
kvalitet. En 3D-fargeskanner innhenter mer data enn konvensjonelle maskinsynsystemer.
Grunnen til det er at det i tillegg til farge og form ogs̊a leses ut høydeprofiler. Men
3D-skannere tilgjengelige i dag er dyre fordi de baserer seg p̊a avanserte skreddersydde
komponenter. Derfor har SINTEF Ocean utviklet en 3D-skanner til kun en tredjedel
av prisen. Det har de klart ved å bruke standardiserte hyllevarer. Prisreduksjonen gjør
løsningen anvendelig til et større spekter av problemer.

Denne masteroppgaven presenterer en distribuert 3D-linjeskanner som bruker en NVIDIA
Jetson TK1 og NVIDIA Jetson TX1 som har innebygde GPUer. Dette senker b̊ade
komponent- og installasjonskostnadene mer sammenlignet med SINTEF sin løsning. Skan-
neren kan brukes i forskjellige modi, og er konfigurerbar over TCP/IP. Hver av modusene
henter ut forskjellige egenskaper til objekter, slik som for eksempel høyde, lysspredning
og farge. Denne rapporten presenterer hvordan skanneren er testet for å finne maksimal
ytelse. Skannekvaliteten er undersøkt ved repeterbarhetstester og ved å skanne laks.

Nøyaktigheten til skanneren avhenger av skannehastigheten og kameraets bildestørrelse.
Ved å øke bildestørrelsen, øker tverrsnittsnøyaktigheten, men da blir skannehastigheten
redusert. N̊ar b̊ade farge og høydeprofil blir hentet fra en bildestørrelse p̊a 1280x192
piksler, viste testresultater at Jetson TK1 og Jetson TX1 oppn̊adde en maksimal skan-
nehastighet p̊a respektive 220 og 620 bilder i sekundet. Dette er mye tregere enn bilde-
prosesseringsmodulen som har en teoretisk maksimal hastighet p̊a 4600 og 7300 bilder i
sekundet. Jetson TK1 er begrenset fordi den har begrenset minnehastighet, mens Jetson
TX1 er begrenset av kameraets maksimale opptaksfrekvens.

Skanneren som benytter seg av Jetson TX1 har samme ytelse som systemet utviklet
av SINTEF. Bildeprosesseringsimplementasjonen er kompatibel med andre GPUer, og
er mye raskere enn kameraets begrensninger. Derfor finnes det et stort ytelsespotensiale
som kan bli utnyttet ved å bytte kameraløsning, noe som gjør denne masteroppgaven
et verdifullt bidrag til videre utvikling av 3D-skannere med høy skannehastighet og lav
kostnad.

v

vi

Preface

This master thesis is a continuation of the project ”Embedded 3D vision for industrial
applications using NVIDIA Jetson” and was written at the department of Engineering
Cybernetics at NTNU. The thesis’ problem statement was created by SINTEF Ocean in
order to research if the cost and size requirements of their existing color 3D scanner could
be reduced.

The work done in this thesis is a completely new implementation than rather than
an extension to the previous scanner. The previous project work uncovered a number of
weaknesses, and together with new requirements, this required a full architecture revision.
Therefore, a lot of time has been used to redesign functionality that was already present in
the previous scanner. The new architecture has led to a system with drastically improved
performance, a range of new features, and enhanced flexibility and robustness.

Many problems during the development were resulting from the used PointGrey cam-
era. Luckily, PointGrey’s support team has been very helpful and provided test programs
and suggestions to alternative implementation strategies. The received test programs
made it possible to confirm that the camera design had bugs and limitations that Point-
Grey were unaware of. To clarify these uncertainties, contact was kept with PointGrey
during major parts of this thesis work. In addition, it became necessary to redesing the
error handling implemention. Therefore, the camera problems have consumed time that
else would have been used to develop other features.

I would like to thank my supervisor and co-supervisor for all the constructive input
given throughout both my specialization project and master thesis. Although the many
answers from Vijay Venkatraman from PointGrey’s support team in some cases have
frustrated me, also he deserves credit for this thesis. At last, I also want to thank my
family and girlfriend for motivating me throughout the whole period.

vii

viii

Table of Contents

Problem statement i

Abstract iii

Sammendrag v

Preface vii

Table of Contents ix

List of Figures xiii

List of Tables xix

List of Code Snippets xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Scanner principles . 2

1.3 Similar products . 4

1.4 Previous work . 5

1.5 Project outline . 7

1.6 Structure of the thesis . 10

2 Equipment and setup 13

2.1 The PointGrey Camera . 13

2.2 The NVIDIA Jetson TK1 and TX1 . 20

2.3 Scanner module synchronization . 20

3 Scanner design 25

3.1 Message interface . 25

3.2 Definitions of image parameters . 30

ix

4 Line scanner module implementation 35
4.1 Application architecture . 35
4.2 Image processing . 37
4.3 Error detection and correction . 44
4.4 Performance measurement framework . 46

5 Host control system implementation 49
5.1 Application architecture . 49
5.2 Data extraction . 50
5.3 Data visualization . 51

6 Test descriptions 55
6.1 Line scanner module tests . 55
6.2 Repeatability tests . 57
6.3 Host control system tests . 58
6.4 System functionality tests . 58

7 Results 61
7.1 Line scanner module test results . 61
7.2 Repeatability test results . 65
7.3 Host control system test results . 68
7.4 System functionality test results . 69

8 Discussion 73
8.1 Line scanner module result interpretation 73
8.2 Repeatability results interpretation . 76
8.3 Host control system result interpretation 77
8.4 System functionality result interpretation 77

9 Conclusion 79

10 Future work 81
10.1 Optimize scan quality . 81
10.2 Implement new features . 82
10.3 Consider system architecture alternatives 83

Bibliography 86

Appendices 87

A Introduction to GPU programming using CUDA 89
A.1 Parallel programming and processing speed 89
A.2 The CUDA execution model . 90
A.3 The CUDA memory model . 90
A.4 The CUDA programming model . 92

x

A.5 Asynchronous execution using CUDA streams 93

B Setup of the Jetson TK1 and Jetson TX1 97
B.1 Proposed setup . 97
B.2 Step-by-step installation guide . 98

C Development environment setup 103
C.1 Proposed setup . 103
C.2 Step-by-step installation guide . 104

D Using the applications and tools 107
D.1 The line scanner module . 107
D.2 The configuration tools . 108
D.3 The LabVIEW host . 108
D.4 The benchmarker . 109
D.5 The data extractor . 110

E Code snippets 113
E.1 Configuration structure definitions . 113
E.2 Image processing . 117
E.3 Other snippets . 123

F Detailed test results 127
F.1 Line scanner results . 127
F.2 System functionality results . 138

xi

xii

List of Figures

1.1 Overall system architecture used in this master thesis. Each Jetson is
connected to a single camera and to a host computer over a network.
SINTEF’s centralized solution uses one centralized computer to perform
all tasks. 3

1.2 Equipment setup when multiple cameras and lasers are included. This
illustration is taken from (Sture 2015). 3

1.3 A object moving through the laser line. This illustration is taken from
(Sture 2015). 4

1.4 Scan rate characteristics for the ColorRanger E55434. This image is re-
trieved from its product information (SICK 2011). 5

1.5 Triangulation setup 4 of the MV1 camera is used for high scatter and
reflectance materials. This image is taken from its product manual (Focus
2016). 6

1.6 The maximum framerate for the MV1 camera with given image heights.
It is assumed that the image width is 2048 for all these measures. This
table is Table 5.3 in its user manual (Focus 2016). 6

2.1 This figure shows the orientation of the pixels of an image with the Bayer
filter format RGGB. 16

2.2 Contour plot of the maximum available frame rate for the pixel formats
RAW12 and RAW16. The values are retrieved using the FlyCapture2 SDK. . 17

2.3 Interpolated values of the measured maximum frame rate. It is lower than
the specified maximum frame rate given in Figure 2.2. 19

2.4 Timing diagram for scan mode 0. Scan mode 0 uses only the laser image
type. When multiple cameras are used, there are multiple instances of
each signal. 22

2.5 Timing diagram for scan mode 4. The state of the LED and laser determine
the image type. 22

2.6 A possible timing diagram for scan mode 4 when two cameras and lasers
are used. The laser frames are obtained separately at different times, while
the blank and color frames are obtained at the same time. 23

xiii

2.7 Conceptional wiring diagram. The Arduino controls all components of a
line scanner module. When multiple line scanner modules are used, some
signals might be shared, as shown in Figure 2.6. 24

3.1 The general definition of a message. The defined types are given in Ta-
ble 3.1. The length is encoded in little endian format. 26

3.2 The format of the RESPONSE message. The numbers above indicate the
byte number. The request code indicates to which request the response
belongs. The response value is one of the values defined in Table 3.3. . . 27

3.3 The format of the GOTO STATE message. The new state is one of the states
defined in Table 3.2, and is encoded with four bytes. 27

3.4 The format of the CONFIG CAMERA message. The config function is de-
fined in the type camera config type t in Listing E.1. The config data
is defined as the data in the type camera config t. 28

3.5 The format of the CONFIG SCAN message. The config data is defined in the
type scan config t in Listing E.2. 28

3.6 The format of the SCAN DATA message. The length of the payload depends
on the image width and image buffer size. The scan configuration is defined
in the type scan config t in Listing E.2. The values of image parameters
are defined in section 3.2. The values of the benchmark properties are
defined in subsection 4.4.2. 29

3.7 An inverted monochrome image of 5 fingers placed in the camera’s line of
sight. 30

3.8 These plots show the resulting height parameter when different approaches
are used. 31

3.9 A close-up of the image shown in Figure 3.7. At this detail level, salt and
pepper noise is revealed. 32

3.10 The stencils used to extract color. The center pixel is located at the given
height for the cases when it is even and when it is odd. The debayering
filter used is given in Equation 3.5. 33

4.1 Simplified application architecture. The numbered events are explained in
Table 4.1. 36

4.2 Indexing pixels in an image buffer can be done in different ways. The
approach will affect the number of required multiplications. 39

4.3 When image parameters, such as height, is extracted from images, the
pixels are often visited in a predefined pattern. This figure shows how
height extraction iterates over the pixels columns when frames are buffered. 40

4.4 The sequence of events used to buffer images and synchronize CUDA
streams. Error detection and handling is omitted here, but is explained in
Figure 4.6. 41

4.5 Two ways of finding scan line, local scan line, and image index. local scan line

represents the column of the image divided by two, while scan line is the
global column number divided by two. 43

xiv

4.6 This sequence of events show the error detection and recovery mechanisms
in the Scanner module. Buffering details are left out, but are presented in
Figure 4.4. 46

5.1 The producer/consumer architecture is dependent on a common queue.
The two loops may run concurrently. This figure is taken from (National
Instruments 2016). 50

5.2 This figure shows how the endianness of the retrieved data is changed. The
input data is a byte array. The bytes are reversed by first rotating two
and two bytes, and then by rotating the individual bytes. 51

5.3 An example of a FIFO buffer implemented in LabVIEW. This FIFO is 10
elements long, and inputs the value 3.15 every loop iteration. 51

5.4 This figure shows how scanner data from multiple line scanner modules
is synchronized. The VI depends on that both data sources are present
before it executes. 52

5.5 A sample of the visual output of 2DVisualization.vi. The scan data is
presented in the order height, intensity, color, scatter, and reflectance.
The big button is used to save the samples. 53

7.1 Execution profiles of the <Device, Host> configuration running on the
Jetson TX1. Memory transfers are concurrent with kernel execution for
both image buffer sizes. 63

7.2 Image buffering framework time for the Jetson TK1 and Jetson TX1. The
maximum framerate was calculated using Equation 4.3. 64

7.3 Total image processing time benchmark results for scan mode 0 and 4.
The test setup parameters were those given in Table 6.2. For each image
buffer size, the thread block size with the maximum theoretical frame rate
was chosen. 65

7.4 TCP send time of the output buffer divided by the number of frames this
output buffer includes. The samples were obtained with scan mode 0. . . 66

7.5 Maximum image processing rate for various buffer and thread block sizes
for scan mode 4. The results are obtained using the test parameters given
in Table 6.2. 66

7.6 Plot of frame rate constraints for scan mode 4 on the Jetson TK1 (left) and
TX1 (right) for an image height of 192 pixels. The results were obtained
using the configuration parameters given in Table 6.3. 67

7.7 The captured height profile of the Rexroth bar used for repeatability test-
ing. The height was obtained using scan mode 4. 67

7.8 Profiler results of the LabVIEW host implementation. 68

7.9 TCP send time for different image buffer sizes measured with the Lab-
VIEW host control system. 68

7.10 Scan results of a salmon obtained with scan mode 0 and the test parameters
given in Table 6.4. 70

xv

7.11 Scan results of a salmon obtained with scan mode 4 and the test parameters
given in Table 6.4. 71

7.12 Height profile of a salmon seen from the side. Scan mode 0 has more
uneven results than scan mode 4. The results were obtained with the test
parameters given in Table 6.4. 72

7.13 Combining the height and color image from Figure 7.11 results in a colored
3D model. The lowest values of the height profile are removed to accentuate
the salmon. 72

A.1 The abstraction layers using SMs, blocks and threads makes CUDA pro-
grams portable over a large range of GPUs. This is Figure 5 taken from
the Cuda C Programming Guide (NVIDIA 2016b). 91

A.2 Pinned memory transfers data faster between host and device. 92
A.3 Execution traces when both input and output data is stored in device

memory. 95
A.4 Execution traces when only input data is stored in device memory. Note

that the traces are almost identical to the traces (b) and (c) in Figure A.3,
without requiring property (a) to be true. 95

C.1 Configuration windows for remote synchronized projects in NVIDIA Nsight
Eclipse Edition. For the Jetson TX1, the remote toolkit path must be
modified. 104

C.2 The synchronized projects must be configured to use the right CUDA
compute capability. This windows shows how the IDE is configured for
the Jetson TX1. 105

D.1 Console output of the Ubuntu configuration tool when an error is reported. 108
D.2 TestScannerPanel.vi in the host control system application must be con-

figured similar to the configuration shown here. 109
D.3 A sample of the visual output of 3DVisualization.vi. 109
D.4 The start menu of the data extractor. The data extractor must be executed

with target IP address and port as arguments. 110
D.5 Visualization of the height profile using the data extractor. The thickness

of the line corresponds to the measured scatter. The height profile is
updated in real time. 111

D.6 Visualization of the image processing time obtained by the data extractor.
The histogram is updated in real time. 111

F.1 Detailed framework benchmark results. See subsection F.1.1 for a descrip-
tion of the results. 128

F.2 Theoretical maximum frame rate and standard deviation for scan mode 0. 129
F.3 Theoretical maximum frame rate and standard deviation for scan mode 1. 129
F.4 Theoretical maximum frame rate and standard deviation for scan mode 2. 130
F.5 Theoretical maximum frame rate and standard deviation for scan mode 3. 130
F.6 Theoretical maximum frame rate and standard deviation for scan mode 4. 130

xvi

F.7 Scan mode 0 with multiple image buffer and thread block sizes.. 131
F.8 Scan mode 1 with multiple image buffer and thread block sizes.. 132
F.9 Scan mode 2 with multiple image buffer and thread block sizes. 133
F.10 Scan mode 3 with multiple image buffer and thread block sizes. 134
F.11 Scan mode 4 with multiple image buffer and thread block sizes. 135
F.12 Plot of frame rate constraints for scan mode 4 on the Jetson TK1. 136
F.13 Plot of frame rate constraints for scan mode 4 on the Jetson TX1. 137
F.14 Two different scans of a salmon obtained with scan mode 0. 138
F.15 Two different scans of a salmon obtained with scan mode 1. 139
F.16 Two different scans of a salmon obtained with scan mode 2. The brightness

is increased to improve printing quality. 140
F.17 Two different scans of a salmon obtained with scan mode 3. 141
F.18 Two different scans of a salmon obtained with scan mode 4. 142

xvii

xviii

List of Tables

1.1 State of the laser line and LED strip for the defined image types. 9

1.2 Definitions of the image sequences for each scan mode. 10

2.1 Achieved frame rate and dropped frames for various pixel formats. The
results were obtained using the test program in submitted together with
this thesis. The achieved frame rate is lower than the maximum. The
number of dropped frames is unreliable. 18

2.2 A comparison between the NVIDIA Jetson TK1 and TX1. Some of the
values are retrieved from the CUDA function cudaGetDeviceProperties(). 20

2.3 Description of the control signals used for synchronization of line scanner
modules. 21

3.1 This table presents the message types used by the 3D scanner. The syntax
and semantics of these message types is given in subsection 3.1.1. 26

3.2 The line scanner module states with their main purpose and behavior. . . 26

3.3 The response values defined by the system. 27

4.1 Description of the events shown in the application architecture diagram in
Figure 4.1. 37

4.2 Compile time flags configuring where images and output buffers are stored. 39

6.1 Test setup parameters for scanner framework benchmarks. The image
buffer size is set to 1 to include kernel launches in every measurement. . . 56

6.2 Test setup parameters for line extraction implementation comparison. The
image size parameters are similar to those used in a SINTEF’s previous
solution (Sture et al. 2016). 57

6.3 Test setup parameters for testing scan mode 4. The tests are performed
at 200 FPS instead of 400 FPS due to camera limitations. 57

6.4 Configuration parameters used for repeatability and system functionality
tests. 59

xix

7.1 For the Jetson TK1 line scanner module, the image buffering framework
limits the maximum frame rate. These test result correspond to an image
size of 1280x192 and image buffer size of 128. 61

7.2 For the Jetson TX1 line scanner module, the camera limits the maximum
frame rate. These test result correspond to an image size of 1280x192 and
image buffer size of 128. 62

7.3 Concurrency of the tested memory configurations. Limited in this context
means that execution is concurrent when the image buffer size is less than
or equal to 4 when executed on the Jetson TX1. The Jetson TK1 does not
run image processing kernels concurrently. 62

7.4 The height measurements of a rexroth bar represent the repeatability of
the scanner. 67

xx

List of Code Snippets

E.1 Definition of camera configuration function enumeration and data structure.113
E.2 Definition of scanner configuration enumeration and structures. 115
E.3 This code snippet demonstrates how a lookup table is placed in texture

memory. The values are created in host memory, before they are trans-
ferred to the GPU. 117

E.4 This code snippet shows how the image processing parameters are retrieved
for scan mode 4. The variables d frame buffer and d output buffer are
inputs to the image processing kernels and contain the required image
processing parameters. The variable blockIdx contains threads specific
parameters. 119

E.5 Extraction of the height and reflectance properties of an image. scan line index

represents the first index of the column containing red values. PITCH is
the width of the image. For the case when a black frame is used, line 11
is modified to subtract p black data[input index]. 120

E.6 Extraction of the intensity and scatter properties of an image. 121
E.7 Extraction of the color an image. local scan line represents the column

index of a the columns containing red values. 122
E.8 Calculating the time difference between two images using the embedded

time stamp. Line 21 to 26 indicate the bugfix for the occasional negative
time difference. 123

E.9 The TCP server transfers execution to other threads after receiving a chunk
of data. 124

E.10 This code snippet demonstrates how the application scheduling policy was
set to maximum priority. 124

E.11 This code snippet shows the implementation of scan mode x used for mem-
ory configuration tests. It uses computationally expensive operations. . . 125

xxi

xxii

Chapter 1
Introduction

This chapter gives an overview of the goals and motivation of this master thesis. In
order to understand the goals and the rest of this thesis, it is highly recommended to
read section 1.2, which present the principles of the scanner. Section 1.3 describes some
similar available solutions available on market. Next follows the project outline, which
presents the interpretation and priority of the goals of this thesis in detail. Finally, in
section 1.6, the structure of this thesis is given.

1.1 Motivation

In many industries, inspection and quality grading is a task performed by computer sys-
tems. Compared to humans, computer systems are often cheaper, faster, more accurate,
and give results that are more consistent across different production lines. Therefore, the
manufacturer might not only experience decreased production costs, but also increased
consistancy.

The quality of a product is commonly determined by a number of acceptance rules.
These can for example limit the size of an object within some boundaries. However, using
acceptance rules becomes impractical when the number of parameters gets large and the
parameters are interdependent. This is often the case for the food industry. The quality
of food is not only determined by its shape, but also by its color. In addition, the shape
of food is often irregular. Therefore, machine learning systems are more often used for
this purpose, because they can handle a large number of parameters.

The maximum performance of the machine learning system is determined by the
amount, quality, and type of the received data. For the case of the food industry, objects
are often captured as 2D images. Although 2D images do not express as much information
as a human can obtain, it is many cases sufficient (Brosnan and Sun 2004). SINTEF
Fisheries and Aquaculture found that by using colored 3D models in combination with
a machine learning system, the performance of a system quality sorting Atlantic salmon
increased (Sture et al. 2016). The idea is that this approach mimics how humans performs
this task more closely. Because of the generality of this solution, this approach can be
used in many other application areas.

1

Chapter 1. Introduction

When SINTEF quality graded Atlantic salmon, a line scanner obtained the 3D models.
The scanner works by projecting a laser line around the entire salmon, and observing
this line by multiple cameras. The laser line is extracted from the camera images, and
interpreted as a cross-section of the object. By moving the salmon through the scanner,
cross sections are merged together to a 3D model.

The process of extracting laser lines from images and merging the cross sections to
complete 3D models requires lots of computational power. Similar products on the mar-
ket therefore perform this with customized electronics. This increases the performance,
however, due to increased hardware and development costs, the price increases likewise.

The scanner designed by SINTEF is a centralized solution. All cameras are connected
to a high-end computer performing both image analysis and quality classification. There-
fore, it requires the computer to be placed in the field, in vicinity to both dust, water,
and biomass. To prevent the system from being damaged, the system is extensively
shielded. Because of the size and shielding requirements, the deployment cost increases.
However, the scanner uses off-the-shelf hardware, and is therefore much cheaper than
similar products on the market. For a centralized setup with three cameras, the scanner
hardware costs approximately 6500 USD. This approximately one third of the price of
similar products on the market. Of course, the hardware cost alone cannot justify such
a solution. However, it indicates that it is worth optimizing this scanner further.

SINTEF suggested designing a distributed 3D scanner to decrease the deployment
and hardware costs even more. The image processing should be performed by multi-
ple NVIDIA Jetsons, which are GPU-enabled embedded computers. The specialization
project investigated how the previous scanner can be distributed using multiple NVIDIA
Jetson TK1s (Gerritsen 2016). Its implementation had multiple functional and architec-
tural issues that should be addressed before the system could be put into use. In addition,
the developed solution was too slow. It was therefore suggested to use the newer Jetson
TX1 for further development. The major tasks of this master thesis are therefore to fix
the existing issues, integrate it into an experimental lab setup at SINTEF Sealab, port
the implementation to the TX1, in addition to develop new features as described in the
problem statement.

1.2 Scanner principles

This section describes the general principles of how 3D models are generated using a
setup developed by SINTEF and the setup used in this master thesis. The explanations
are meant to be brief, with its purpose to make it easier to define the project outline and
describe the previous work. Refer to chapter 3 and chapter 4 for a detailed description
of the design and implementation.

The scanner creates 3D models of objects moving over a conveyor belt through the scan-
ner, or alternatively, the scanner passes over the object. The scanner obtains cross
sections, and merges them together to a complete model. The system developed by SIN-
TEF performs all these operations on the same computer. In this thesis, the operation of

2

1.2. Scanner principles

obtaining cross sections is distributed among multiple embedded computers, called line
scanner modules, and a centralized computer which merges the cross sections together.

Figure 1.1: Overall system architecture used in this master thesis. Each Jetson is con-
nected to a single camera and to a host computer over a network. SINTEF’s centralized
solution uses one centralized computer to perform all tasks.

Figure 1.2: Equipment setup when multiple cameras and lasers are included. This
illustration is taken from (Sture 2015).

The cross sections are obtained by using multiple cameras. The cameras are mounted
at different angles around the conveyor belt to give a full view of the object as shown in
Figure 1.2. A laser line is drawn around the object, which is observed by the cameras.
Because the cameras are mounted at a fixed angle relative to the laser, the displacement
of the laser line determines the height of the object. Therefore, the laser line extractions
represent cross sections of the observed object. Color information can also be added to
the cross sections, but this is only possible if the laser line is turned off. This can be
achieved when the laser is turned off every second image.

A number of factors determine the accuracy of the 3D model. The accuracy in the
z-axis (see Figure 1.3) is determined by the image acquisition rate and the speed of the

3

Chapter 1. Introduction

Figure 1.3: A object moving through the laser line. This illustration is taken from
(Sture 2015).

conveyor only. The accuracy of the cross section is determined not only by the image
resolution, but also by the line extraction algorithm used. When the resolution in the
x-axis is increased, it is possible to scan wider objects, or it is possible to move the camera
closer to the object. And when the resolution in the y axis is increased, it both possible
the scan taller objects, and to increase the accuracy by increasing the angle between the
camera and laser. In general, it is therefore possible to say that to increase the accuracy
of the 3D model, the image processing workload must be increased.

1.3 Similar products

On the market today, there are multiple products similar to the scanner described in the
previous section. In this section, three products from different manufactures are presented
and compared. Unfortunately, it was not possible to retrieve the pricing of these products,
because pricing is only given out to companies considering buying such products, and
not to students. However, SINTEF estimated the pricing of the ColorRanger, Photon
Focus, and Cognex cameras to be respectively around 8250, 4250, and 4250 USD. These
estimated guesses were made from previous experiences with similar products from these
companies.

The included software functionality used for 3D model processing is not compared
here, because this master thesis focuses on image feature extraction. Such functionality
might be calibration methods, volume calculation, quality assurance, etc. It should be
kept in mind that software development and configuration cost are a large contribution
to the final installation cost. Therefore, these available features should also be considered
before buying a scanner.

4

1.4. Previous work

The ColorRanger E55434 is an advanced line scanner module produced by SICK. It
is interfaced through Gigabit Ethernet and can provide a maximum scan rate of 35000
3D profiles per second. The MultiScan technology allows the camera to be configured to
simultaneously extract up to 10 different parameters from each image. These parameters
are for example color, height, scatter, intensity, greyscale data, etc. This is achieved
by using a custom image sensor where different regions are assigned to the specified
parameters. The maximum image width is 1536 pixels with a bit depth of 8 bits per
pixel. The product information guide explains additional functionality and specifications
(SICK 2011).

Figure 1.4: Scan rate characteristics for the ColorRanger E55434. This image is re-
trieved from its product information (SICK 2011).

The MV1 is a camera produced by Photon Focus. It can operate in camera mode, line
scanner mode or combined mode where it outputs both image and height information.
In the line scanner mode, it outputs both height, width, and intensity of the laser line.
It is possible to include color information by using the combined mode. However, it is
stated that this mode should be used for debugging purposes. The camera supports a
wide range of camera and laser arrangements. The different arrangements are designed to
increase the scan quality for objects with high reflectance, high absorption, transparent
objects etc. For more information about this camera, refer to its manual (Focus 2016).

The Cognex DS1000 is an IP65 classified line scanner which allows scan rates up to
10 kHz. A special feature of the DS1000 is that is allows 3D image stitching. Multiple
scanners will then be able to scan a wide production line, or to scan objects with increased
accuracy. The system is distributed, and needs a VC5 controller to process the incoming
data.

1.4 Previous work

The TTK4550 specialization project (Gerritsen 2016) done at NTNU in fall 2016 is the
basis of this master thesis. The previous implementation by SINTEF has not been

5

Chapter 1. Introduction

Figure 1.5: Triangulation setup 4 of the MV1 camera is used for high scatter and
reflectance materials. This image is taken from its product manual (Focus 2016).

Figure 1.6: The maximum framerate for the MV1 camera with given image heights. It
is assumed that the image width is 2048 for all these measures. This table is Table 5.3
in its user manual (Focus 2016).

available and has therefore not been used. The specialization project implemented an
experimental line scanner module on the NVIDIA Jetson TK1. The developed system
was functional, however, it was too slow, and had functional and architectural issues that
needed to be fixed to be able to continue the development. Many of these issues are to
be addressed in this thesis, and are presented in the next section. The following list gives
a summary of the tasks performed in the specialization project:

• A flexible cross platform development environment was set up. This allows both
debugging and profiling GPU execution.

• A configuration interface for online configuration of the camera and image process-
ing was developed.

• Simple benchmarking utilities were developed.

6

1.5. Project outline

• Line extraction of monochrome images was implemented and benchmarked. How-
ever, this was done at a low frame rate of 100 FPS, because the system was unstable
at higher frame rates.

The following list gives a summary of functional issues:

• The system requires a too high network bandwidth. This issue can only be fixed
by revising the communication interface.

• The line scanner module architecture does not allow color extraction. The archi-
tecture must be revised to add this functionality.

• The benchmarking approach is not able to distinguish between image processing
time and network overhead. This requires the benchmark framework to be revised.

• The system does not allow synchronized triggering of multiple cameras. In order
to achieve this, a synchronization primitive must be developed.

• The implementation does not include error-correcting behavior.

1.5 Project outline

The problem statement give the overall goals of this thesis. The purpose of this section
is to elaborate how these are interpreted, and clarify on which parts are seen as the
most important. In addition to the problem statement, there have been set additional
goals and assumptions by SINTEF during the development of the system, which will be
described in subsection 1.5.4.

1.5.1 Integration into experimental setup at SINTEF Sealab

This task is interpreted as documenting how the different components are interconnected
and how the components are synchronized. For this project, it includes one camera, a
laser line, a LED strip, and a conveyor belt, in addition to equipment that allows external
control of these components. This task is closely related to improved error handling and
system level synchronization.

1.5.2 Development of extended functionality

Development of extended functionality is seen as the most important task of this thesis.
The system implemented in fall 2016 was lacking both performance and functionality
compared to the system previously developed by SINTEF. The goal should therefore be
to reach the performance and functionality of the system developed by SINTEF. The
next paragraphs explain the most important parts of the new extended functionality.

7

Chapter 1. Introduction

Handling of color and 12 bit images

The previous implementation on the Jetson TK1 extracted the laser line from 8-bit
monochrome images. The switch to colored images requires a new line extraction al-
gorithm. Handling of color information requires the camera to switch to another mode.
Because the camera cannot output RGB images at a high frame rate, the line extraction
must use RAW images. As presented in the previous project report, extracting color
information requires the architecture of the line scanner module to be revised.

Adapt system to allow external trigging of camera

The suggested system architecture uses multiple line scanner modules. The correctness
of the scanner requires these modules to be synchronized. This is achieved through
some kind of synchronization mechanisms that involve synchronized triggering of the
equipment. This will require an extra centralized module in the system, extra wiring,
and extra configuration options for the camera.

Review architecture options for multiple camera setups

Even though the previously presented system architecture will be used for this system
as well, the system architecture options should be reviewed. The previous project report
presented challenges related to network bandwidth and synchronization, and it is expected
that these will be solved for this project. Other system architectures with its strengths
and weakness should also be considered.

1.5.3 System performance and reliability

Besides functionality, system performance and reliability are two major concerns. The
focus of the specialization projects was setting up a test environment, and not on system
reliability. It is therefore natural to continue with that now.

Performance is interpreted as the accuracy and repeatability of the measurements. In
terms of a scanner module, the accuracy is translated to the product of image resolution
and scan rate. The upper limits of accuracy of should be found, both in terms of the
individual components, and of the entire system. The bottlenecks of the system should
be found.

The repeatability is a factor of image quality and camera calibration, which requires a
lot of testing with different image parameters. Because this task is thought to be very time
consuming without improving the quality of the scanner much, this will not be strongly
emphasized in this thesis. It is expected that the camera must be re-calibrated when put
into operation anyways. However, the repeatability should be tested by comparing an
object scanned multiple times, and a discussion should be included to point out techniques
that can be used to cope with variable image quality.

Reliability is defined as the ability of an item to perform a required function, under
given environmental and operational conditions and for a stated period of time (ISO 8402)
[ch 1.4] (Rausand and Høyland 2004). One example of such a condition is handling

8

1.5. Project outline

variability in processing time. This might mean including safety margins, or returning
suboptimal results. It is expected to define under which the conditions the system should
be operable.

1.5.4 Additional requirements and assumptions set by SINTEF
during the development

To simplify the system architecture, it was stated that the system should expect to
always handle 16-bit images. This would simplify memory management. Adding the
possibility of handling 8-bit images would double the number of possible configurations
of the system, and make memory management more complicated. This is not directly an
issue, but it would make it more challenging and time consuming to implement and test
all combinations.

Although not stated explicitly, it is expected that the host control system should be
implemented in LabVIEW. In fact, the functionality provided by the host control system
could have been obtained using any programming environment. Nevertheless, SINTEF’s
previous scanner uses LabVIEW, and therefore by implementing the host control system
in LabVIEW, this would make future system integration easier.

The system should also be able to operate in different scan modes. This would make
the system more flexible, and simplify the future development: Instead of modifying the
image processing implementation, a new scan mode can be added.

1.5.5 Scan mode definitions

This section describes the scan modes the system should support. A scan mode is defined
by its image sequence and image processing algorithm. For the current system, three
image types were defined. However, it should be kept in mind that more image types
may be added in the future. The state of the laser and LED strip for each of these image
types are given in Table 1.1.

Image type LED strip state Laser line state
Laser (L) OFF ON
Color (C) ON OFF
Black (B) OFF OFF

Table 1.1: State of the laser line and LED strip for the defined image types.

Depending on which frame types that are included, some requirements are set:

• For modes including a laser frame, the height, intensity, scatter and reflectance
profile should be calculated. The used definitions of these parameters are found in
section 3.2.

• For modes including a color frame, the color should be calculated.

9

Chapter 1. Introduction

• For modes including a black frame, the height should be calculated from the image
resulting from subtracting the black frame from the laser frame.

Mode Image sequence
Mode 0 L L L L ...
Mode 1 L C L C ...
Mode 2 C C C C C ...
Mode 3 L B L B ...
Mode 4 L B C L B C ...

Table 1.2: Definitions of the image sequences for each scan mode.

From the scan mode definitions it is clear that the maximum scan rate is determined
by both the camera frame rate, and the image sequence length. Therefore, when the
camera operates at a fixed frequency, the scan rate of mode 1 is faster than scan mode
4. Choosing between those modes is therefore a trade-off between scan rate and scan
quality.

1.6 Structure of the thesis

• Chapter 2. Describes the functionality and limitations of the used equipment.
It is described how the different components are interconnected and how they are
synchronized.

• Chapter 3. This chapter describes message interface between the host control
system and line scanner module, and the used image parameter definitions.

• Chapter 4. In chapter 4, some of the most important implementation details of the
line scanner module are given. It is explained how error detection and correction is
achieved, and how the image processing speed is increased.

• Chapter 5. In this chapter, a simple LabVIEW host implementation is described.
It is described how data is retrieved, extracted, and how it is visualized.

• Chapter 6. The scanner is subjected to a range of tests. This chapter describes the
test setups used to find limitations, performance, and repeatability of the scanner.

• Chapter 7. The results of the scanner tests and benchmarks are given in chapter
7.

• Chapter 8. This chapter discusses the validity and implications of the obtained
results.

• Chapter 9. The work of this master thesis is concluded in chapter 9.

10

1.6. Structure of the thesis

• Chapter 10. Further development of new features and alternative architectures is
discussed in this chapter.

This report includes multiple appendices:

• Appendix A. Many readers might be unfamiliar with GPU programming and
CUDA. This chapter gives the necessary background information to understand
the implementation details given in chapter 4.

• Appendix B. This Appendix describes which and how an operating system was
flashed onto the Jetsons. A step-by-step installation guide is given describing how
the necessary tools were installed, and how the Jetsons were configured for maxi-
mum performance.

• Appendix C. In Appendix C, a proposal of a development environment is given,
and it is described how this is achieved using NVIDIA Nsight Eclipse Edition.

• Appendix D. Multiple applications and tools were developed for different purposes
for this master thesis. In this chapter it is explained how to launch and use the line
scanner module, LabVIEW host, configuration tools and benchmarker.

• Appendix E. The code snippets referred to in this report are placed in Appendix
E.

• Appendix F. Appendix E gives detailed test results omitted from chapter 7. These
results might be used as reference for further development.

11

Chapter 1. Introduction

12

Chapter 2
Equipment and setup

For this master thesis, the following components were used:

• A GS3-U3-23S6C-C Point Grey Grasshopper3 USB3.0 color camera.

• A NVIDIA Jetson TK1 and a NVIDIA Jetson TX1 for image processing.

• A Lenovo Yoga 500 with an Intel Core i7-6500U CPU and 8GB memory as host
control system computer.

• A Z40M18SF660LP30 line laser from Z-LASER GmbH.

• A 24V LED strip.

• A conveyor belt.

• An Arduino Mega.

First, this chapter gives a description on the camera and Jetsons with focus on its
features and limitations. Next follows an explanation on how these are interconnected,
and how synchronization is achieved.

2.1 The PointGrey Camera

This section introduces the PointGrey camera used for this project. First, an overview of
its features and interface capabilities is given. Next, the output formats of the camera,
and the Bayer filter format are described. Then comes an overview of the maximum
frame rate for various image sizes. The last sections present limitations and anomalies of
the camera found during the development of this system.

13

Chapter 2. Equipment and setup

2.1.1 Feature overview

GS3-U3-23S6C-C is a color camera from the Grasshopper3 series manufactured by Point-
Grey. The camera can be interfaced through either USB2.0 or USB3.0. It has a wide
range of functionality ranging configurable exposure time, contrast, capture modes, pixel
formats, selecting a region of interest, etc. A complete list of camera features can be
found in its Technical Reference Manual (Point Grey 2016a).

Camera control is achieved through one of the available Software Development Kits
(SDKs) provided by Point Grey. When this project was started fall 2016, there were
two available SDKs, the FlyCapture SDK and FlyCapture2 SDK. Later on the Spinnaker
SDK also appeared. Because the camera host computers used for this project, NVIDIA
Jetsons, run Ubuntu ARM, and the fact that the Spinnaker SDK does not support this
operating system, the FlyCapture2 SDK is used.

Later it is described that the Jetson TK1 runs Ubuntu 14.04, and the Jetson TX1
runs Ubuntu 16.04. Therefore, two different versions of the FlyCapture2 SDK must be
used. The TK1 uses version 2.9.3.43, while the TX1 uses version 2.10.3.266. There is a
minor API incompatibility between these versions. The newest version includes a field
highPerformanceRetrieveBuffer in fc2Config structure, while the older version the does
not.

The SDK provides two methods for retrieving images. Images can be obtained syn-
chronously by calling fc2RetrieveBuffer(), or asynchronously through a callback by
first calling fc2SetCallback(). Image retrieval is only possible after the camera is con-
figured and fc2StartCapture() is called. The user is responsible for retrieving and
processing images in time. If images are not handled in time, the behavior it specified
by the selected buffer policy, fc2GrabMode. This can be either FC2 BUFFER FRAMES or
FC2 DROP FRAMES.

The camera can operate using two modes, free-running and in asynchronous mode.
The first mode sets the camera to capture images at a given frame rate, while the second
mode waits for an incoming trigger. The incoming trigger can be either a software trigger,
or an external trigger through one of the GPIO ports. Depending on which trigger mode
the camera is configured to use, the camera can overlap image retrieval and data transfer
(Point Grey 2015b).

It is possible to embed extra information to the images. This information is the
encoded into the upper left pixels of an image. It is for example possible to detect if frames
are dropped by embedding the time stamp and/or frame counter can be embedded to
each image. By embedding the GPIO state into each image, the image can be tagged with
a type. For more information about embedded image information, refer to PointGrey’s
Technical Application Note 10536 (Point Grey 2016b).

2.1.2 Limitations in the FlyCapture2 SDK

Browsing the header files FlyCapture C.h and FlyCaptureDefs C.h found in the include
folder reveal that most of the functionality of the camera described by its Reference man-
ual is exposed through the SDK. In addition to the functionality provided through the

14

2.1. The PointGrey Camera

SDK functions, it is possible to configure the camera registers directly through func-
tions similar to fc2WriteRegister(). Camera register information can be found in the
Register Reference (Point Grey 2015a).

However, one function not provided by the SDK, is the possibility of retrieving mul-
tiple images at a time. The Register Reference explains how the multi-shot mode can be
used to send multiple images from the onboard image frame buffer [sec. 3.3.3](Point Grey
2015a). Point Grey’s support team has confirmed that this functionality is not supported
for either of the provided SDK’s.

Another feature not available to the SDK is the ability to buffer images directly to
GPU memory. There exists a function fc2SetUserBuffers(), but when this is used to
point to GPU memory, images are not received. PointGrey’s support team has confirmed
the lack of this feature.

When images are retrieved, only a pointer to the image data is provided. This sets
a limitation on image buffering in the user application. If the user wants to buffer
images, it is required to copy the retrieved images into its own buffer. This because the
buffer layout of the buffer provided by fc2SetUserBuffers() is unknown. The ”extra”
required copy operation limits the maximum performance. The SDK could have used
an alternative approach where it provided an interface to its own image buffers. This
would have removed the need for the extra copy operation, however would probably also
increase the probability of memory corruption.

2.1.3 Image output format and the Bayer filter

The camera is able to output images encoded as either MONO, RBG, YUV, or RAW, where
each pixel format may have multiple pixel depth choices. The project goal states images
should have a pixel depth of minimum 12 bits per pixel, and that color images should be
supported. This limits us to choose either YUV or RAW. The YUV format transforms the
image into brightness and color components, while the RAW is the image retrieved directly
from the imaging sensors. Because the RAW format is easier to interpret, and the camera
is able achieve a higher frame rate using this format, the RAW format will be used for this
project.

The RAW format outputs the image with a Bayer tile format. The Bayer tile format
is obtained when light is filtered through a Bayer filter. This filter is one of the most
commonly used color filter array for arranging RGB pixels on a set of photo resistive
sensors. The use of color filter arrays makes it is cheaper to produce image sensors,
because the same photo sensors can be used for the entire image sensor. The Bayer
filter consists of twice as many green filters as red and blue, which mimics the higher
receptiveness to green of the human eye. A typical Bayer filter, called RGGB, is shown
in Figure 2.1.

In fact the camera will typically always capture images of the type RAW, and convert it
to the given format before it is sent to the host. This process is called debayering. When
a RAW image is converted to an RGB image, this is done by interpolating. Depending
on which requirements of the converted image, there exist a large number of debayering
techniques.

15

Chapter 2. Equipment and setup

Figure 2.1: This figure shows the orientation of the pixels of an image with the Bayer
filter format RGGB.

2.1.4 Documented maximum frame rate

An important property of the camera is its maximum achievable frame rate. This depends
on the interface used, the packet size, and the region of interest. Table 8.4.4.2 in the
Technical Reference Manual (Point Grey 2016a) summarizes the maximum frame rates
for some given pixel formats and image sizes. However, this table is rather limited and
does not give a good view on its limitations.

Using the FlyCapture2 SDK it is possible to retrieve the maximum frame rate for
given configurations. For the pixel formats RAW12 and RAW16, the maximum frame rate
varies with the size of the region of interest. From Figure 2.2 it is understood that RAW12
is the fastest pixel format of these.

The camera technical reference manual (Point Grey 2016a) states that the camera only
has a 12-bit ADC. This means that it is unnecessary to use the 16-bit pixel format, as
this only adds padding. It is verified that the received data for both 12 and 16 bit images
only use 12 bits. Therefore, the reduced frame rate for RAW16 can only be explained by
the necessary padding operation. However, because the difference in maximum frame
rate is small, and because RAW12 requires padding on the host computer, RAW16 will be
used.

2.1.5 Anomalies in the FlyCapture2 SDK

During the development process, several bugs and undocumented features of the Point-
Grey Grasshopper3 camera were discovered. These discoveries drastically change the
maximum speed of the system and how error correction and error detection can be im-
plemented. Investigation of these bugs consumed a lot of time during the project. The
next paragraphs summarize the most important findings. These findings are crucial points
to consider for any further development using PointGrey cameras.

16

2.1. The PointGrey Camera

512 768 1024 1280 1536 1792

Image width (pixels)

64

128

192

256

Im
a
g
e
 h

e
ig

h
t
(p

ix
e
ls

)

Maximum frame rate

800

800

12001200

18001800

RAW12

RAW16

Figure 2.2: Contour plot of the maximum available frame rate for the pixel formats
RAW12 and RAW16. The values are retrieved using the FlyCapture2 SDK.

The frame counter does not work correctly in asynchronous mode

When the camera was set to run 1000 FPS, and a debug message was printed out to the
console every 500 frames, it turned out that the messages were printed out at a rate of
one message a second. This indicated that the actual frame rate was 500 FPS. When
the camera was set to free running mode, the frame counter indicated that 500 frames
were dropped every second. However, when the camera was configured for asynchronous
mode, the frame counter indicated that no frames were dropped. Therefore, it was
concluded that the embedded frame counter does not work in asynchronous trigger mode.
PointGrey’s support team suggested using embedded time stamps to be able to see if
frames are dropped when the camera is triggered externally.

The time between image time stamps is sometimes negative

After PointGrey’s support team was informed with that the embedded frame counter as
not working in asynchronous mode, they provided some code to extract the time difference
between embedded timestamps. However, this code contained a bug. Occasionally a
negative time difference was returned. PointGrey’s support team did not answer what
the cause of this problem was. I assumed the bug was related to the second counter
overflowing. However, the maximum value of this counter was unknown. By trial and
error it was found out that this value was 128. It was therefore possible to provide a
bugfix as shown in Listing E.8. PointGrey confirmed that this bugfix would work.

17

Chapter 2. Equipment and setup

There exists no reliable method for retrieving the number of dropped frames

PointGrey provided an extensive test application to determine what the actual maximum
frame rate is. It uses the three available methods to determine if frames are dropped:
The embedded frame counter, the dropped frames register, and the embedded image
timestamps. However, Table 2.1 shows a test result from this code, and shows that all
three methods return a different number of dropped frames. Therefore, it was concluded
with that at maximum one of the methods was reliable. PointGrey’s support team were
not able to answer which, but pointed out that the embedded time stamp method should
be used until they found a better solution.

RAW8
1920 x 50

RAW16
1920 x 50

RAW8
1920 x 200

RAW16
1920 x 200

Maximum available frame rate 1961 1961 803 500
The whole grab loop used (s) 0.531 1.016 1.247 3.993
Average FPS based on grab
loop time

1883 984 801 250

Dropped frames based on
register

0 921 0 997

Dropped frames based on
frame counter

0 999 0 999

Dropped frames based on
timestamp

0 999 0 963

Average grab time (ms) 0.304 0.784 0.984 3.639
Average FPS based on Re-
trieveBuffer()

3287 1275 1016 274.76

Minimum grab time (ms) 0.201 0.188 0.165 0.161
Maximum grab time(ms) 0.602 3.82 2.983 4.384

Table 2.1: Achieved frame rate and dropped frames for various pixel formats. The
results were obtained using the test program in submitted together with this thesis. The
achieved frame rate is lower than the maximum. The number of dropped frames is
unreliable.

The calculated maximum frame rate does not depend on the shutter time

This bug was discovered when the maximum frame rate was always 250 FPS, regardless
of the set image height. It turned out that the SDK does not take the shutter time into
account when the maximum frame rate is calculated. It is therefore allowed to set a
shutter time of one second and a frame rate of two FPS. In that case, the camera will
take images at 1 FPS. The solution to this bug is to turn the auto shutter functionality
off, and set the shutter time to a low value.

18

2.1. The PointGrey Camera

The reported maximum frame rate is not correct

It was discovered that the actual maximum frame rate usually is lower that the reported
maximum frame rate. This is especially the case when the frame height is low and the
pixel format is RAW16. PointGrey’s support team suggested that this is related to the USB
driver. Therefore I tried running the camera on multiple computers, running different
versions of Ubuntu and Windows, however, this gave similar results. At last, they did
also confirm they were not able to reach the reported maximum frame rate themselves.

A test was performed to measure the actual maximum frame rate. This was done
by triggering the camera at with a duty cycle of 400 µs and using PointGrey’s test
application. This should have given resulting frame rates in the sequence defined by

y =
106 · n

400
∀n = 1, 2, 3, ... (2.1)

It was found that the actual maximum frame rate was lower than the specification.
Figure 2.3 show the actual maximum frame rate, where the results are interpolated. This
because the test revealed another strange behavior: When the image with was set to
1920, and height to 160, 192, 224, and 256 pixels, the maximum frame rate was measured
to be 501, 417, 208, and 357 FPS. The expected result would decrease the frame rate
as the height increases. Because the results were reproducible for multiple computers, I
therefore concluded with that this is a bug and that the maximum frame rate should be
determined by trial and error.

512 768 1024 1280 1536 1792

Image width (pixels)

64

128

192

256

Im
a

g
e

 h
e

ig
h

t
(p

ix
e

ls
)

Maximum frame rate, actual

400

800

800

1200

1200

RAW16

Figure 2.3: Interpolated values of the measured maximum frame rate. It is lower than
the specified maximum frame rate given in Figure 2.2.

19

Chapter 2. Equipment and setup

2.2 The NVIDIA Jetson TK1 and TX1

The NVIDIA Jetson TK1 and TX1 are low cost embedded computers with a built in
GPU. They are built to be able to deliver high performance as well as having a low power
consumption. The fact that they have a small form factor, a GPU, and a USB3 interface
make them useful for this project.

The 3D scanner should be as cheap as possible while delivering the required per-
formance. The specialization project suggested that the cheaper TK1 wasn’t powerful
enough. Therefore, the implementation software will run on both the TK1 and the TX1
for comparison reasons. Table 2.2 compares the specifications of those two computers.

Jetson TK1 Jetson TX1
Release June 2014 November 2015
Price (Mar. 2017) 192 USD 499 USD
Dimensions 127 mm x 127 mm 224 mm x 208 mm
GPU architecture Kepler, 192 CUDA

cores
Maxwell, 256 CUDA
cores

CPU 2.32GHz ARM quad-
core Cortex-A15 CPU

1.73 GHz ARM quad-
core Cortex-A57

DRAM 2GB DDR3L 4GB LPDDR4
Max GPU performance 326 GFLOPS 1 TFLOPS
Support concurrent kernels yes yes
Async engine count 1 1
GPU Compute capability 3.2 5.3
Multiprocessor count 1 2

Table 2.2: A comparison between the NVIDIA Jetson TK1 and TX1. Some of the
values are retrieved from the CUDA function cudaGetDeviceProperties().

NVIDIA provides several tools and packages for simplifying the development process.
Linux For Tegra (L4T) is a package containing a bootloader, kernel, and a sample file
system. By installing this, the device can run a full-fledged Linux OS. Because the Jet-
son TX1 is newer, it only support Ubuntu 16.04, whilst the TK1 only supports Ubuntu
14.04. In addition, NVIDIA provides an variant to the Eclipse IDE, called NSight Eclipse
Edition. This supports debugging GPU code, profiling GPU execution, and remote de-
velopment. An extended guide on how to use the profiler and debugger can be found in
the Profiler User’s Guide (NVIDIA 2016c). Appendix B describes how the Jetsons are
configured and how libraries and applications are installed.

2.3 Scanner module synchronization

In order to merge the line scans from multiple scanner modules together correctly, the
system requires the components and line scanner modules to be synchronized. The lab
setup used for this master thesis only consists of one scanner module, and the need for

20

2.3. Scanner module synchronization

synchronization is therefore limited. Despite this, this section gives a general solution on
how multiple cameras, lasers, and LEDs can be synchronized using external triggering.
First, it is described which control signals are used, and the purpose of those. Next,
their timing characteristics are given for some of the scanning modes defined in the
project outline. Finally it is described how this is implemented using an Arduino Mega.
Synchronization of the retrieved scan lines at the host controller is handled in software,
and is therefore not described until chapter 5.

2.3.1 Control signals and timing

A scanner module consists of one laser, a LED strip, one camera, and one Jetson. These
are interconnected to a central trigger module using the signals described Table 2.3 as
shown in Figure 2.7. In general, each scanner module has its own set of control wires.
However, the LED strip and laser might be shared amongst multiple scanner modules,
and might therefore use shared control lines. In addition, the GPIO and trigger signals
can be shared if overlapped image capture is allowed.

Name Description
Camera trigger When this signal is set to low for at least 500µs, an image

is captured and sent to the host. If the camera was busy
at this time, no image is taken.

Camera GPIO Indicates indicate the type of image taken. It consists of
two wires that allows four image type definitions.

Jetson ready This signal is set to low when the Jetson is processing an
incoming image. This value is set to high when it is ready
to retrieve a new image.

Laser The value of this signal represents the laser being on or off.
LED This signal is used to turn the LEDs on and off.

Table 2.3: Description of the control signals used for synchronization of line scanner
modules.

The timing characteristics depend on the camera frame rate and the current scan
mode. Figure 2.4 and Figure 2.5 show timing diagrams for scan mode 0 and scan mode
4 for a single scanner module. When multiple scanner modules are used, it might not
be practical to overlap laser frames because they might interfere. This can be solved by
obtaining laser frames sequentially as shown in Figure 2.6.

When multiple line scanner modules are used, not only is it necessary that the images
are taken sequentially, it is also required that each line scanner module is has retrieved
the same amount of images. Therefore, the triggering sequence should only start when all
line scanner modules are ready to receive images. For this case, it is therefore necessary
that the triggering module and line scanner modules communicate.

It was pointed out in the previous project (Gerritsen 2016), that it was hard to log
the time used to process an incoming image when the frame rate was high. Now it will

21

Chapter 2. Equipment and setup

Camera trigger

Camera GPIO LASER LASER LASER LASER LASER LASER

Jetson ready

Laser

LED

Figure 2.4: Timing diagram for scan mode 0. Scan mode 0 uses only the laser image
type. When multiple cameras are used, there are multiple instances of each signal.

Camera trigger

Camera GPIO LASER BLANK COLOR LASER BLANK COLOR

Jetson ready

Laser

LED

Figure 2.5: Timing diagram for scan mode 4. The state of the LED and laser determine
the image type.

be possible to obtain these values by attaching an oscilloscope to the Jetson ready signal
on the Jetson. In addition, the Jetson ready signal can be used for error detection.

2.3.2 External triggering and synchronization using an Arduino
Mega

For this master thesis, an Arduino Mega was used for external triggering and synchro-
nization. The Mega is a general-purpose electronic prototyping development kit built
around the ATmega2560 microcontroller. It is well suited for this thesis because it is
easy to setup, and has an IDE which as provides a wide range of high abstraction pro-
gramming interfaces. In addition, the Mega has a large number of general purpose input
output connectors (GPIOs), hardware timers, and communication modules. For more
information about the Mega, refer to the product overview (Arduino 2017).

Figure 2.7 shows how one single line scanner module in addition to a LED strip is
connected to the Arduino. The Arduino ports used are chosen arbitrary from the available
non-reserved ports. The LED strip requires external power, and is therefore connected
through a relay. When the system consists of multiple line scanner modules, these must
be connected in a similar fashion.

22

2.3. Scanner module synchronization

Camera 1 trigger

Camera 2 trigger

Camera 1 GPIO LASER BLANK COLOR LASER BLANK COLOR

Camera 2 GPIO LASER BLANK COLOR LASER BLANK COLOR

Jetson 1 ready

Jetson 2 ready

Laser 1

Laser 2

LED

Figure 2.6: A possible timing diagram for scan mode 4 when two cameras and lasers
are used. The laser frames are obtained separately at different times, while the blank
and color frames are obtained at the same time.

For this master thesis, only one line scanner module was used. It was therefore not
necessary to implement communication between the line scanner module and Arduino as
described earlier. However, this is not difficult to implement. A suggested approach is
to use one GPIO line for each line scanner module, where the value indicates if the line
scanner module is ready to start scanning.

23

Chapter 2. Equipment and setup

D2

D3

D4

D6

D7

D8

VDD

GND

Arduino

24V

0V

Trigger

GND

LED

Vout

GND

Power

Ready

USB

Jetson

Trigger

VIN

GND

Laser

Trigger

GPIOUSB

Camera

Figure 2.7: Conceptional wiring diagram. The Arduino controls all components of a
line scanner module. When multiple line scanner modules are used, some signals might
be shared, as shown in Figure 2.6.

24

Chapter 3
Scanner design

This chapter describes the message interface and definitions of the line parameters used
for this project. These descriptions are implementation independent, and can therefore be
regarded as specification documents for the scanner. For implementation specific details
refer to chapter 4 and chapter 5.

3.1 Message interface

Any type of high bandwidth communication protocol is applicable to communicate be-
tween the line scanner modules and host control system. For industrial setup, high speed
industrial control networks such as Foundation Fieldbus HSE could have been used. For
this thesis, this would have required extra equipment and drivers and therefore increase
the development time. Therefore, Ethernet with TCP was used as communication inter-
face.

An alternative to TCP is UDP. UDP is able to utilize more of the network bandwidth,
and achieve lower latency. However, it removes the guarantee of the message integrity,
arrival, and order of arrival of messages [ch 2.1](Kurose and Ross 2012). Therefore, using
UDP would require extra error detection and correction. For this reason, TCP was chosen
as transport layer.

The line scanner modules are configured as TCP servers. This has some benefits
during setup, configuration and testing. Because the line scanner modules are TCP
servers, the hosts must connect to them, which simplifies the situation when multiple hosts
are available. In addition, this system architecture allows one application to configure
the scanner, and another application use it.

A flexible generic message interface has been designed which makes the development of
host and client simple and generic. All messages are defined by the format <Type, Length,
Value> as shown in Figure 3.1. This message definition allows up to 256 configurable
message types, which makes it easy to expand the system functionality.

The generic communication pattern is that the host sends a request to a line scanner
module, which then sends a response back. When the line scanner module is the state
SCANNING (see Table 3.2), the normal communication pattern is broken. In this state the

25

Chapter 3. Scanner design

0 1 5 · · · 5 + Length

Type Length Payload

Figure 3.1: The general definition of a message. The defined types are given in Table 3.1.
The length is encoded in little endian format.

Value Name Description
0x01 GOTO STATE Controls the state of a line scanner module.
0x02 CONFIG CAMERA Configures the camera.
0x03 CONFIG SCAN Configures the scanning module and the image processing.
0x04 GET IMAGE Retrieve an image from the camera.
0x05 SCAN DATA Scan data for one or multiple frames.
0x06 SCAN ERROR An unrecoverable error has occurred during scanning.
0x80 RESPONSE The message is a response to a previous request.

Table 3.1: This table presents the message types used by the 3D scanner. The syntax
and semantics of these message types is given in subsection 3.1.1.

line scanner module only accepts the message GOTO STATE, and only sends messages of the
type SCAN DATA and SCAN ERROR. Instead of sending messages and expecting a response,
the line scanner modules send messages to the host without waiting for a response. This
makes it possible to increase the throughput.

State name Value Description
IDLE 0x01 The device returns to this state when the

connection state in the TCP server changes.
SCANNING 0x02 The device is scanning and returns scan data.

This state can only be entered through the
state IDLE.

CONFIG 0x03 The system can be configured. This state is
only reached through IDLE.

Table 3.2: The line scanner module states with their main purpose and behavior.

3.1.1 Message definitions

This subsection briefly describes the content and structure of messages defined in Ta-
ble 3.1. For additional details, refer to the implementations.

Message RESPONSE

The response message type is sent from the line scanner module to the host when it has
received a message. Its structure is given in Figure 3.2. The encoding and value of the
response message is generic, and is defined by its request.

26

3.1. Message interface

0 1 5 6 7

Type Length Payload

RESPONSE
2 + response
payload length

Request code Response value response payload

Figure 3.2: The format of the RESPONSE message. The numbers above indicate the byte
number. The request code indicates to which request the response belongs. The response
value is one of the values defined in Table 3.3.

Response name Value Description
SUCCESS 0x00 The request was handled successfully.
ERROR INVALID STATE 0x01 The request is invalid because of the current

state of the system.
ERROR NO MEM 0x02 Memory allocation failed. Memory alloca-

tion is often performed during configuration.
ERROR OTHER 0x03 Unspecified error.
ERROR INVALID LENGTH 0x04 The configuration data had a wrong length.
ERROR NOT IMPLEMENTED 0x05 The requested functionality is not imple-

mented.
ERROR NULL 0x06 Null pointer exception.
ERROR INVALID PARAMETER 0x07 A given parameter is invalid.
ERROR INVALID CONFIG 0x08 The given configuration is invalid.
ERROR BUSY 0x09 The system is busy. Request failed.
ERROR NOT INITIALIZED 0x0A The given operation is invalid because the

module is not initialized.

Table 3.3: The response values defined by the system.

Message GOTO STATE

The GOTO STATE message is sent from the host to a line scanner module and dictates
the next state of the line scanner module. The defined states are found in Table 3.2.
The valid state transitions are IDLE ↔ SCANNING and IDLE ↔ CONFIG. The line scanner
module might reject this request even though the transition is valid, for example when
the scanner is not initialized. The structure of the message is given in Figure 3.3.

Type Length Payload

GOTO STATE 4 New state

Figure 3.3: The format of the GOTO STATE message. The new state is one of the states
defined in Table 3.2, and is encoded with four bytes.

27

Chapter 3. Scanner design

3.1.2 Message CONFIG CAMERA

The message type CONFIG CAMERA makes it possible to configure the camera over TCP.
Because the camera configuration calls are both for input and output, the response pay-
load is also utilized. In this section, the lengths of the payloads for the different calls are
not described. However, these follow straight forward from the API. The general format
of such a message is given in Figure 3.4.

Type Length Payload

CONFIG CAMERA
4 + config data

length
Config function Config data

Figure 3.4: The format of the CONFIG CAMERA message. The config function is defined
in the type camera config type t in Listing E.1. The config data is defined as the data
in the type camera config t.

3.1.3 Message CONFIG SCAN

The message type CONFIG SCAN configures the image processing and scanner. It is there-
fore possible to set scan mode, image parameters, GPU execution properties etc. over
TCP. The message is sent from the host to the line scanner. Currently the response
message does not include any payload; however, for future use an extended error can be
added. The structure of the scan config message is found in Figure 3.5.

Type Length Payload

CONFIG SCAN 1 Config data

Figure 3.5: The format of the CONFIG SCAN message. The config data is defined in the
type scan config t in Listing E.2.

Message GET IMAGE

The message type GET IMAGE is sent from host to the line scanner module. The line
scanner module sends a response with a camera image as payload. The returned image
is encoded with the PNG format. This feature is not a critical component of the scanner,
but very useful during setup and configuration. Using this feature, it is possible to verify
that the image size and region of interest captures the laser line.

28

3.1. Message interface

Message SCAN DATA

SCAN DATA is sent from the line scanner to the host when the line scanner is in the
SCANNING state. It does not expect a response from the host. The structure of the message
has been kept simple: For all scan modes, the definition is the same as shown in Figure 3.6.
Because some scan modes do not utilize all fields, there might be a performance gain in
removing unused fields for some of the defined scan modes. However, a better approach
is to define new message types.

The line scanner module is allowed to buffer scan data, and is therefore allowed to
send image parameters from multiple frames in the same message. The number of frames
included in a message is determined by the image buffer size, residing in the field scan
config. The length of the message does also depend the width of each image. Because
only each second column is used in each image, the number of data points per image
parameter is buffer size ·width/2. Each parameter image parameter is encoded with a
16 bit value. For the case of the RGB data, each data point therefore contains a 16-bit
triplet. The GPU and total execution represent execution time in milliseconds and are
benchmark parameters encoded as 4 byte floats each. Because the scan configuration
contains 46 bytes, the total payload length is L = 46+7 · 2 · buffer size ·width/2+2 · 4.

Type Length Payload

SCAN

DATA
L

Scan
config

Height Intensity
Reflec-
tance

Scatter RGB
GPU ex-
ecution

Total ex-
ecution

Figure 3.6: The format of the SCAN DATA message. The length of the payload depends
on the image width and image buffer size. The scan configuration is defined in the type
scan config t in Listing E.2. The values of image parameters are defined in section 3.2.
The values of the benchmark properties are defined in subsection 4.4.2.

The larger the image buffer size, the smaller impact the message header and scan
configuration data has on the bandwidth usage. Therefore, the highest bandwidth is
required when only one image is included per message. For this case, when the image is
1280 pixels wide, the message length is 9019 bytes. Because a Gigabit Ethernet link has
a maximum bandwidth of approximately 120 MB/s, this message type definition allows
up almost 14000 scan data messages per second. When three line scanner modules share
share this link, each camera is then able to output above 4000 samples each second.

Message SCAN ERROR

A SCAN ERROR message is sent from the line scanner module to the host when an error
occurs during scanning. The message does not expect a response. When this message is
sent, the line scanner module returns to the IDLE state.

29

Chapter 3. Scanner design

3.2 Definitions of image parameters

Four parameters should be extracted from each image containing a laser line. The pa-
rameters reflect some property of the line at every column. Images where the LED is
turned on should be used for color extraction. For some of the parameters there exist
many different ways to calculate these.

In general, the simplest (assumed to be fastest) solutions are chosen, except for the
case of calculating the height. The described definitions correspond to the definitions used
by SINTEF’s 3D scanners. The purpose of this section is describe some of the strengths
and weaknesses of these definitions, and suggest how the parameters can be described in
a more precise way. Because the objective of this thesis is not to optimize the quality of
the features, this section should be kept as a reference for further development.

Figure 3.7: An inverted monochrome image of 5 fingers placed in the camera’s line of
sight.

3.2.1 Height

The height parameter reflects where the laser line is found in the image. The suggested
definition of the height parameter is given as

Height =
Σ(xi − Threshold)Power · i

Σ(xi − Threshold)Power
, ∀(xi − Threshold) ≥ 0 (3.1)

where xi is the brightness of pixel i in a given scan line. For the case when a black frame
is used (see subsection 1.5.5), xi is the brightness of the laser frame subtracted with the
brightness of the black frame. Threshold is a fixed integer parameter, and Power is a
fixed floating point constant.

The height definition is a modified form of a weighted average. Because the definition
requires many multiplications and summations, the calculation is quite costly. However,
because the height profile is the most important parameter constructing the 3D model,
it is important that is that the parameter is calculated accurately. A faster approach is
to use the pixel with the maximum intensity, but this approach is more susceptible to
salt and pepper noise [p. 338](Gonzalez and Woods 2007). The center of mass is a much
more robust approach as this considers all pixels when finding the height. Because the
distribution of salt and pepper noise is uniform, its effect will be canceled out. Another
advantage with this approach is that it will give sub-pixel resolution.

Two modifications are made to the general center of mass algorithm to find a more
optimal result. First, a threshold is added which removes background noise. The power

30

3.2. Definitions of image parameters

parameter decreases the effect of background noise, because the highest value will be
weighted more.

Although it the center of mass approach is robust against uniform salt and pepper
noise, the calculation will be affected by non-uniform background noise. There are two
main approaches that can be used to solve this problem. First, the image region can be
shielded for exterior light. Secondly, more advanced image processing techniques can be
used. A possible solution is to estimate the background noise and subtract this from the
measurement. This is the approach used in scan mode 4 given in Table 1.2.

0 20 40 60 80 100

Column

0

1

2

3

4

5

6

7

In
te

n
s
it
y

#104

(a) Height calculated using mass center.

0 20 40 60 80 100

Column

0

1

2

3

4

5

6

7

In
te

n
s
it
y

#104

(b) Height calculated using mass center with
a threshold value.

0 20 40 60 80 100

Column

0

0.5

1

1.5

2

2.5

3

3.5

4

In
te

n
s
it
y

#109

(c) Height calculated with the squared inten-
sity profile using a mass center with a threshold
value.

Figure 3.8: These plots show the resulting height parameter when different approaches
are used.

31

Chapter 3. Scanner design

3.2.2 Intensity

Intensity = xHeight (3.2)

The intensity reflects the intensity of the laser line. The current approach uses the
brightness of the pixel located at the height. This makes the parameter susceptible to
both uniform and non-uniform noise. A more robust approach is an average of multiple
pixels, in addition to use the ratio between the intensity of the line and background.

Figure 3.9: A close-up of the image shown in Figure 3.7. At this detail level, salt and
pepper noise is revealed.

3.2.3 Reflectance

Reflectance =
Σxi

Image height
∀(xi − Threshold) ≥ 0. (3.3)

The reflectance is defined as the sum of the intensities of the pixels for the entire col-
umn. The value returned will therefore depend on the light conditions. This dependency
can be removed by subtracting the background noise using a black frame. The parameter
is made invariant to image height by returning the average intensity.

3.2.4 Scatter

Scatter = x(Height+Scatter offset) (3.4)

The scatter should reflect how wide the laser line is perceived by the camera. This is
affected by the light conditions and the reflectance of the object measured. When only
one pixel some distance from the calculated height is used, the calculated value will be
very susceptible to salt and pepper noise. A better approach would therefore to use an
average of some number of pixels around the height.

The parameter can also be made invariant to light conditions by returning a ratio
between the line intensity and the intensity some distance from the line. This approach
will therefore be similar to the more advanced approach of calculating the intensity.

32

3.2. Definitions of image parameters

3.2.5 Color

The color of the line is determined at the height of the line. Because only even columns
are used for this analysis (see subsection 4.2.3), there exist only two definitions of the
color extraction, depending if the height is even or odd.

For denotational simplicity, we define a stencil that is a 3 by 3 pixels region around
the pixel of interest. The pixels are numbered 1-9 from top left to bottom right. This
allows us to define the different color components as following:

Reven = x5 (3.5a)

Geven =
x2 + x4 + x6 + x8

4
(3.5b)

Beven =
x1 + x3 + x7 + x9

4
(3.5c)

Rodd =
x2 + x8

2
(3.5d)

Godd = x5 (3.5e)

Bodd =
x4 + x6

2
(3.5f)

(3.5g)

(a) Even stencil. (b) Odd stencil.

Figure 3.10: The stencils used to extract color. The center pixel is located at the given
height for the cases when it is even and when it is odd. The debayering filter used is
given in Equation 3.5.

33

Chapter 3. Scanner design

34

Chapter 4
Line scanner module implementation

This chapter describes the implementation of a line scanner module. Each of the most
important parts of the implementation is devoted a section: The application architec-
ture, image processing, error detection and recovery, and the performance measurement
framework. The language used in this chapter has in some cases a high technical detail
level. Therefore, it is expected that the reader has some general programming experience
and CUDA GPU programming knowledge. If the reader has no previous experience with
CUDA GPU programming, it is highly recommended first reading Appendix A. This ap-
pendix presents all the required GPU programming vocabulary necessary to understand
the details in this chapter.

The presented implementation is able to run on both the Jetson TK1 and Jetson TX1.
Appendix B describes how to install the prerequisite software, and Appendix D describes
how the line scanner module application can be launched, configured, and tested. For
additional implementation details, refer to the implementation itself.

4.1 Application architecture

The line scanner module application is an event driven application. That is, operations are
executed when either a TCP event or camera event arrives. A simplified communication
diagram is shown in Figure 4.1. The events, numbered 1-11 are described in Table 4.1.

The TCP Server launches a thread that continuously polls for data in the background.
When a message is received, the TCP event is forwarded to the state machine. Depending
on the message type and state (see Table 3.1 and Table 3.2), the events are forwarded to
other modules. This might either start or stop scanning, or configure the image processing
and camera.

When the system is in the CONFIG state, the messages are forwarded to the Config
event broker, which decodes and validates the lengths of the messages, before the events
are forwarded to the camera or scanner. When a configuration message arrives at either
the Scanner or the Camera, the configuration is applied (or rejected), and a response is
sent back. In section 3.1 it is discribed how to configure the Scanner and Camera over
TCP.

35

Chapter 4. Line scanner module implementation

The TCP server is written with performance in mind. There are no requirements of
incoming messages to be handled fast, and when the system is in the SCANNING state, it
is desirable that the TCP server affects the scanner as little as possible. Therefore the
TCP server calls pthread yield() after each time some data is received, as shown in
Listing E.9. This transfers execution back to the scanner after each TCP receive.

When the system is enters the SCANNING state, a thread is launched in the Scanner
module. This thread continuously polls the Camera module for images. When an image
arrives, this is denoted as a camera event. The Scanner module buffers the images before
they are sent to the Image processing module. When images are finished processing,
the Image processing module sends the results to the TCP Server. Alternatively, the
asynchronous image retrieval functionality of the FlyCapture2 SDK could have been
used. However, it was found that this resulted in a slower maximum frame rate.

The performance of the application is also increased by modifying the scheduler op-
tions. Listing E.10 shows how the scheduling priority of the application is changed to
maximum. This will minimize the influence of other applications on the line scanner
module application. Note that in order to launch the application with scheduler options
enabled, the application must be launched with super user rights.

Figure 4.1: Simplified application architecture. The numbered events are explained in
Table 4.1.

36

4.2. Image processing

Event Name Description
1 state machine on tcp evt Called each time data is received. The

state machine forwards the event to the
correct module.

2 tcp server send message Called when either a command result or
scan data should be returned to the client.

3 scanner start Called when the scanner should start.
This starts the camera polling loop.

4 scanner stop Called when the scanner should stop. This
terminates the camera polling loop.

5 camera start capture Called when the camera should
start capturing images. It is now
possible to retrieve images using
camera get buffer().

6 camera stop capture Called when the camera should stop cap-
turing images.

7 img processing start Starts an image processing task. The call
is nonblocking, and the task will therefore
be performed in the background.

8 on config evt Called when a config event is received.
The event is decoded and forwarded to the
correct module. Returns success value.

9 camera set config Called when the camera is configured. Re-
turns success value.

10 scanner set config Called when the scanner is configured.
Returns success value.

11 img processing set config Called when the image processing module
is configured. Returns success value.

Table 4.1: Description of the events shown in the application architecture diagram in
Figure 4.1.

4.2 Image processing

The system architecture is designed to allow image processing tasks to be performed both
asynchronous and in parallel. This allows the system to run with a high frame rate and
to be scalable to more advanced GPUs. This section describes how this is achieved using
CUDA with the onboard GPU. The last part of this section describes how the different
features are extracted from the images.

4.2.1 Image buffering and memory management

The incoming images are stored to subbuffers corresponding to the image type defined
by a scan mode before they are processed by the GPU. Therefore, for scan mode 4, there

37

Chapter 4. Line scanner module implementation

exist three subbuffers: One buffer for laser images, one for blackframe images and one for
color images. Because GPU kernels then process multiple images at the time, this results
in fewer kernel launches and less and faster memory transfers. This reduces the fraction
of sequential code, and by strong and weak scaling (Equation A.1, Equation A.2), this
increases the throughput.

The tradeoff with a large image buffer size is an increased scan result latency. Because
scan results are available only when all images are received and processed, the maximum
latency depends not only on the buffer size, but also on the camera frame rate. When
a scan mode is used with a image sequence length of N , the camera framerate is fc, the
buffer size is B, and the image processing time is ti, the maximum latency tl is expressed
as:

tl =
B ·N

fc
+ ti. (4.1)

When it is assumed that C image processing tasks can execute in parallel, the image
processing tasks can last at maximum C times the image buffering time. Therefore, the
latency can be expressed as:

tl < (1 + C)

(

B ·N

fc

)

. (4.2)

Images are buffered either synchronously or asynchronously. When the images are
buffered synchronously, the application is blocked until the memory transfer is com-
pleted. Therefore, the asynchronous configuration is preferred because it allows the CPU
to continue with other tasks in the meanwhile. For benchmarking purposes explained
later, both variants are available through compile time flags SCANNER BUFFER SYNC or
SCANNER BUFFER ASYNC.

The image buffering framework sets a limitation on the maximum frame rate of the
system. When images are buffered synchronously, the maximum frame rate is given by
the framework processing time tf , only. When images are buffered asynchronously, the
image buffering time must be considered. When it is assumed that there is only one
memory transfer at the time, then the maximum framework frequency ff cannot exceed
the image buffering time tb. Therefore, when the image buffering framework time is
considered as the bottleneck of the system, the maximum frame rate is given as

ff =
1

max(tf , tb)
(4.3)

The image buffers and scan results can be stored in either host or device memory. In
section A.5 it is described that the capabilities of the GPU affects which configuration is
the best. Therefore, the application is designed to allow different configuration options
for increased portability. The location of the image buffers and output buffers can be set
at compile time with the compile time flags given in Table 4.2.

When images are buffered, pixel index calculations become more complicated. In
addition to the row and column, also the image index must be used. Two different
approaches are shown in Figure 4.2 where the second approach is more effective when

38

4.2. Image processing

Flag Description
FRAME BUFFER STORE DEVICE Images are buffered in device memory.

This does not require an additional copy
operation because the images must be
buffered anyways. This flag cannot be set
when FRAME BUFFER STORE HOST is set.

FRAME BUFFER STORE HOST Images are buffered to host memory.
The host memory is pinned to al-
low the GPU kernel to access the im-
ages. This flag cannot be set when
FRAME BUFFER STORE DEVICE is set.

OUTPUT BUFFER DEVICE The scan results are stored in device mem-
ory. This requires an additional copy
operation when the image processing is
complete. This flag cannot be set when
OUTPUT BUFFER HOST is set.

OUTPUT BUFFER HOST The output buffer is stored in pinned host
memory. This flag cannot be set when
OUTPUT BUFFER DEVICE is set.

Table 4.2: Compile time flags configuring where images and output buffers are stored.

this function is used often. Accessing the pixels is also often done in a predefined pattern,
which is seen in Figure 4.3. Later in subsection 4.2.3 it described how this can be used
to simplify pixel indexing even more.

1 #define GET INDEX(row, column, image) (WIDTH∗HEIGHT∗image + row∗WIDTH + column)

(a) A naive way of calculating the index of a pixel. The multiplication WIDTH*HEIGHT must
be performed every time.

1 #define GET INDEX(row, column, offset) (offset + column + WIDTH∗row)

(b) A more optimized way of finding the index of a pixel. The image offset must now only be
calculated once.

Figure 4.2: Indexing pixels in an image buffer can be done in different ways. The
approach will affect the number of required multiplications.

Allocation and deallocation of image and output buffers is a source of unclear and hard
to maintain code. Later is explained how image processing tasks is performed in multiple
streams, which results in an even larger amount of buffers. In order to keep control of all
buffers, those have been placed in a structure called stream data t. This does not only
increase cohesion, it also simplifies code maintenance and memory management.

39

Chapter 4. Line scanner module implementation

Figure 4.3: When image parameters, such as height, is extracted from images, the pixels
are often visited in a predefined pattern. This figure shows how height extraction iterates
over the pixels columns when frames are buffered.

4.2.2 Parallel asynchronous image processing

The application performs all image processing procedures asynchronously and in parallel.
Different GPU threads handle each of the columns of the received images. Dependent on
the used GPU and image processing parameters, multiple image processing tasks might
execute in parallel. This is achieved by committing all operations into CUDA streams
and keeping separate memory buffers for each stream. For each stream, the following
steps are performed in order:

1. Images are buffered. This occurs each time an image arrives. Depending on the
configuration images are buffered either to host or to device memory.

2. The image processing kernel is executed. The execution parameters, that is, the
block and thread sizes, are retrieved from the image processing configuration.

3. The output data is transferred back to host memory. This task is only executed if
STREAM DATA OUTPUT BUFFER DEVICE is set.

4. A CUDA callback is launched where the TCP server sends the output data back to
the host.

The maximum available frame rate with this pattern depends on the image buffering
time, TCP send time, and image processing time. The theoretical maximum frame rate,
only considering TCP send time, is achieved when the camera duty cycle is equal to the

40

4.2. Image processing

TCP send time. Therefore, when the TCP send time is expressed as tTCP , the maximum
frame rate is

fTCP =
1

tTCP

. (4.4)

The maximum frame rate only considering image processing depends on the capa-
bilities of the GPU and the length of the image sequence for the selected scan mode.
The highest performance is achieved when image processing executes concurrently with
image buffering (see section A.5). If this is true, and the selected scan mode has an
image sequence length L, the image processing may execute during this entire length.
When the maximum number of concurrent kernel executions is expressed as C, and the
kernel execution time per image is tk, the maximum frame rate of the image processing
is expressed as

fi =
L · C

tk
. (4.5)

Because the image processing framework is asynchronous, there must be a synchro-
nization primitive present to prevent images to be buffered to an ongoing image processing
task. This is handled by the Scanner module. After an image processing task is launched,
cudaStreamSynchronize() is called on the next stream. This will block the CPU until
it is possible to start buffering images to that stream. A detailed view of the buffering of
images and stream synchronization is given in Figure 4.4.

1. Start the scanner. Initialize stream data. Set the image sequence index to 0. Set
current stream to 0.

2. An image arrives. The image type is retrieved.

3. Add image to the frame buffer corresponding to the current stream and image type.
Images are buffered asynchronously. Jump to the next image sequence index.

4. Check if image processing should start. If the image buffer is full, and the image
type is equal to the last image type of the sequence, jump to the next point. Else,
jump back to point 2.

5. Start image processing.

6. Switch to the next stream and synchronize. Jump back to point 2.

Figure 4.4: The sequence of events used to buffer images and synchronize CUDA
streams. Error detection and handling is omitted here, but is explained in Figure 4.6.

41

Chapter 4. Line scanner module implementation

4.2.3 Image parameter extraction

This subsection describes how the different parameters described in section 3.2 are ex-
tracted from images. The code examples given are only extractions from the implemen-
tations of the different scan modes. The actual code is therefore a combination of these
code segments with slight modifications. Nevertheless, the code segments give enough
insight into the parameter extraction.

To reduce the computational load, only every second column of the image is used.
Because the image is received as a raw image, this means that that only the columns
where red pixels are present will be used (see Figure 2.1). Therefore, there is no need to
interpolate the red color, and retrieve the line parameters of the interpolated columns.
This simplification is therefore valid.

Another applied optimization is precalculating pointers to sub-buffers in the scan data
message. The output buffer has a fixed structure, and therefore pointers to the fields of the
scan data buffer are fixed. By precalculating these pointers at initialization time, execu-
tion time is saved. The pointers are stored in the structure called scan output buffer t,
and are initialized in stream data init(). The scan output buffer structure is provided
as a p̊arameter to the image processing kernels.

Image processing configuration and parameter retrieval

Each image processing kernel requires some predefined configuration to be able to extract
the image parameters. This configuration includes image sizes, image buffer size, scatter
distance, etc. This configuration must be accessible by the GPU and is therefore sent
as a parameter to the GPU kernel function. In addition, each thread in the kernel must
also know on which memory it should operate. This is done often, and it is therefore
important that this is done effectively. That is, with the least amount of costly arithmetic
operations such as division and modulo operations.

Listing E.4 shows how these parameters are found for scan mode 4. Because mul-
tiplication with powers of 2 are substituted with logical shifts, only the calculation of
scan line, local scan line, and image offset use the multiplication engine. Even
though they use costly operations, this has been improved drastically compared to the
previous implementation. Previously the image index was calculated using an modulo
operation as shown in Figure 4.5a. Now this is done cheaper by utilizing multidimen-
sional kernel launches. In Figure 4.5b it is shown that the image index is retrieved from
the y-dimension.

Height extraction

The height is defined in Equation 3.1. Calculating the height is the most computational
expensive feature extraction. Not only is it necessary to use the entire column, it also
requires a large amount of multiplications and exponentiation. Therefore, the implemen-
tation has applied a number of optimization techniques to speed up this calculation.

• Pixels are visited only once. Both the numerator and denominator of the definition
are calculated in the same loop.

42

4.2. Image processing

1 const uint32 t scan line = blockIdx.x∗blockDim.x + threadIdx.x;
2 const uint32 t image index = scan line / NUM SCAN LINES PER IMAGE;
3 const uint32 t local scan line = scan line % NUM SCAN LINES PER IMAGE;

(a) The local scan line and image index are found using expensive arithmetic operations. The
kernel is launched in only one dimension, that is blockDim.y = 1.

1 const uint32 t image index = blockIdx.y;
2 const uint32 t local scan line = blockIdx.x∗blockDim.x + threadIdx.x;
3 const uint32 t scan line = image index ∗ NUM SCAN LINES PER IMAGE + local scan line;

(b) When using multidimentional kernel launches, the calculation of the local scan line and
image index can be simplified. Now blockDim.y = image buf size.

Figure 4.5: Two ways of finding scan line, local scan line, and image index.
local scan line represents the column of the image divided by two, while scan line is
the global column number divided by two.

• Index calculation is simplified because pixels are visited in a fixed pattern. This
reduces the number of multiplications needed for index calculations.

• Instead of performing exponentiation, the intensity values are retrieved from a
lookup table. Because all intensity values are retrieved from a lookup table, the
threshold is a builtin feature of this table.

The lookup table is an array of size 212, which represents 12 bit of pixel depth. The
lookup table is placed in CUDA texture memory which gives fast memory access (see
section A.3). Alternatives to using texture memory are constant memory and shared
memory. These were found to be less efficient: Constant memory serializes accesses and
therefore decreases execution speed, and shared memory requires a lot of resources which
limits kernel and thread execution parallelism. An example of the texture initialization
is shown in Listing E.3.

The height value is returned as a 16 bit unsigned integer (see section 3.1). To utilize
the entire bitfield, the height is scaled from MAX HEIGHT to 216, which is seen on line 32
in Listing E.5.

Reflectance calculation

The reflectance is defined in Equation 3.3. Because it iterates over the same pixels as
the height extraction, the same loop can be used for this purpose. In Listing E.5 the
computation of the reflectance is shown.

Intensity and scatter extraction

The intensity and scatter have rather simple definitions described in Equation 3.2 and
Equation 3.4. Because the calculated height or scatter height might be right between two

43

Chapter 4. Line scanner module implementation

red pixels in the Bayer filter, the value might need to be interpolated. Alternatively, the
height could have been rounded to the nearest even-numbered value. The implementation
of intensity and scatter extraction is shown in Listing E.6.

Color extraction

The color extraction is defined precisely in its definition in Equation 3.5. Therefore,
the implementation matches the definition quite closely. As seen in Listing E.7, the
border pixels are ignored which reduces the number of execution paths. To optimize pixel
indexing, only the first index of the used stencil is indexed using the macro GET INDEX().

4.3 Error detection and correction

In subsection 1.5.3 it is described that one of the major goals of this master thesis is
to increase the reliability of the system. One of the factors influencing the reliability is
its fault tolerance. This section will first describe how and which errors the line scanner
module is able to detect. Next, it is described which mechanisms are used to correct
these errors. Because fault tolerance in general decreases the performance, some of the
detected errors are defined as unrecoverable. Which of the failures, and why they are
defined as unrecoverable is given in the last part of this section.

4.3.1 Detectable errors

The fault tolerance of the line scanner module is based on error detection. The following
list describes which errors that are detected, and how:

• Image validity. When an image is received, it must be validated against the image
processing configuration. This means that the pixel format and dimensions must
be correct. In addition the image type must match the next expected image type
from the image sequence corresponding to the current scan mode.

• An image is not received, or received at an unexpected time. The camera is con-
figured to enable embedded time stamps. Therefore, it is possible to compare the
timestamp of an incoming image to the previous received image. In this way, the
time difference between the two last images is measured.

• Internal GPU errors. CUDA kernels may fail internally, both synchronously and
asynchronously. These types of errors are detected after each CUDA call.

• Configuration errors. Each module that can be configured, that is either the scanner
or camera validates the configuration parameters. Therefore, a configuration error
will be detected.

• Messages arriving when the line scanner module is in an invalid state. The valid
state transitions, and which messages that are accepted in each state is described
in Table 3.2.

44

4.3. Error detection and correction

4.3.2 Non-detectable errors

A configuration mismatch between the camera and image processing is not detected at
the time the system is configured. However, when images start to arrive, this results
in an image validation failure. Therefore, a configuration mismatch is not entirely a
non-detectable error.

4.3.3 Recoverable errors

Some errors are recoverable in some degree. This might mean that a suboptimal solution
is used, or that the request is denied. The list of recoverable errors and how they are
recovered are is found below:

• An image is not received, or it is received late. When an image is received, it is
checked if frames are dropped. If this is the case, the previous received image is
used for image processing instead. This however, will affect the correctness and
give a suboptimal output.

• Configuration errors. Configuration errors are always recoverable, because the con-
figuration is denied in case of an invalid configuration.

• Messages arriving when the line scanner module is in an invalid state. When the
system tries to transition to a new invalid state, this operation is rejected, and
therefore recoverable.

4.3.4 Unrecoverable errors

When an unrecoverable error is detected, and error message is returned (see Table 3.1),
and the system resets itself to the IDLE state. The list of unrecoverable errors is found
below:

• Image validity. A configuration mismatch between scanner and image processing is
only recoverable by reconfiguration, which must be done by the host.

• An image is not received, or it is received late. Previously it was described that
this type of error could be recovered into some degree. However when too many
images are dropped, it is unlikely that the system will catch up. Therefore, this is
seen as an unrecoverable error.

• Internal GPU errors. The nature of an internal GPU error is often unknown. It
might be a memory error, a lack of resources, etc. Because of this and the fact that
internal GPU errors will stall the image processing, it is seen as an unrecoverable
error.

45

Chapter 4. Line scanner module implementation

4.3.5 Error detection and recovery in the scanner module

The sequence of events presented in Figure 4.6 present how error detection and recovery is
done. For the case that an unrecoverable error occurs, the system sends an error message
resets itself as described earlier. Notice that this sequence is similar to the buffering
sequence presented in Figure 4.4. The actual implementation is a combination of these
two.

1. An image arrives.

2. Image format validation. If the format of the retrieved image does not match the
format of the image processing configuration, this is an unrecoverable error.

3. The time difference between the current and previous image is retrieved. If it fails
to retrieve the time difference, this is an unrecoverable error.

4. If the time difference is larger that 50 frames, this is defined as an unrecoverable
error.

5. If the time difference between the current and previous frame is correct, that is the
time minus the cycle time is less than a threshold, go to point 6. Else jump to point
9.

6. Retrieve the image type. If it fails, this failure is unrecoverable.

7. If the image type was different from the expected image type, this is an unrecov-
erable error. Notice that it is not possible that a frame was dropped because the
time difference was checked earlier.

8. Backup the received image.

9. Buffer images. Use the last received image. For each image added, subtract the
cycle time from the frame time difference. Continue until the frame time difference
is below the threshold or negative.

Figure 4.6: This sequence of events show the error detection and recovery mechanisms
in the Scanner module. Buffering details are left out, but are presented in Figure 4.4.

4.4 Performance measurement framework

The performance of the system is determined by the latency and throughput of the
scanner framework and image processing algorithms. The throughput is the most inter-
esting measure, because it affects the maximum accuracy of the scanner. The maximum

46

4.4. Performance measurement framework

throughput is determined by the camera, the scanner framework latency, the GPU ex-
ecution time, and the TCP sending time. This section describes how a measurement
framework is set up to allow retrieval of these values.

4.4.1 Measuring scanner framework execution time

The scanner framework determines how fast incoming images are validated and buffered.
Because every image first arrives in the scanner framework, it is impractical to measure
and store the time used in the framework for every image because this would lead to
a lot of data. In addition, because the TCP connection handle is used asynchronously,
the scanner framework cannot send benchmark results back over TCP without risking
network data corruption. Therefore, another mechanism is used to measure the latency
of the scanner framework.

Using a GPIO pin of the board (referred to as Jetson Ready in section 2.3), the
Jetson can signalize when the scanner framework is entered and when it is left. The
framework processing time can therefore be measured by monitoring this pin. The GPIO
pin is interfaced through the GPIO driver located at /sys/class/gpio. Before it is used
a string value must be written to the <driver_path>/export file descriptor. Setting
the value is done by writing the strings ”0” or ”1” to the corresponding <driver_pat

h>/gpio<pin>/value file. For more details about GPIO handling, refer to the GPIO
implementation files.

Previously it was stated that asynchronous image buffering is the the preferred buffer-
ing implementation. However, described in Equation 4.3, the image transfer time must
be known in order to find the maximum frame rate of the system. The asynchronous
memory transfer time could have been measured similar to how GPU execution is mea-
sured. However, this approach is complicated and adds some overhead. Therefore, a
better approach is to estimate the memory transfer time by comparing the synchronous
and asynchronous buffering implementation.

4.4.2 Measuring GPU execution time and TCP sending time

The GPU execution time and TCP sending time are measured with CUDAs event frame-
work. These functions are named cudaEventRecord() and cudaEventElapsedTime().
The event recording function is appended to a CUDA stream, and are therefore exe-
cuted when the queue has executed the previous elements. At a later time step the
cudaEventElapsedTime(t1,t2) can be called to determine the time difference between
those events. This mechanism for performance measurement is advantageous over CPU
time measurement because it is executed by the GPU itself, and does therefore not in-
terfere with CPU execution. In addition, this mechanism allows independent timers for
each CUDA stream, which simplifies timer management.

1. Call cudaEventElapsedTime(prev startEvent, prev kernelFinishedEvent). This
returns the previous GPU processing time. The alternative is to place this function
call as the last element of this sequence. However, this blocks the system until
image processing is complete, reducing the maximum throughput drastically.

47

Chapter 4. Line scanner module implementation

2. Call cudaEventElapsedTime(prev startEvent, prev tcpFinishedEvent). This
returns the previous total processing time. The TCP processing time is found by
subtracting the GPU processing time.

3. Call cudaEventRecord(new startEvent) to store the start time of GPU process-
ing.

4. Launch the GPU kernel.

5. Call cudaEventRecord(new kernelFinishedEvent). This function will be called
when the kernel is finishes executing.

6. Call cudaStreamAddCallback() to add the TCP sending function to the stream.

7. Call cudaEventRecord(new tcpFinishedEvent). This function will be called when
the callback is finished executing.

48

Chapter 5
Host control system implementation

This chapter describes an implementation of a simple host control system developed in
LabVIEW. First, the architecture is described. Next, it is described how the scan data is
encoded. Finally, it is described how the scan results are visualized in real-time using the
IMAQ package. The LabVIEW host implementation is rather a proof of concept than an
application with all functionality included. Therefore, line scanner module configuration
is not available through LabVIEW. However, this can be done through for example the
configuration tool (see section D.2. Refer to section D.3 for a description on how to use
the application.

5.1 Application architecture

The host control system was developed in LabVIEW (Laboratory Virtual Instrument En-
gineering Workbench), which is a development environment for creating applications for
instrumentation control and data acquisition. Applications in LabVIEW are developed
using the graphical programming language ”G” and the application development is based
on data flow. The host application could have been developed in any type of program-
ming environment. LabVIEW was chosen because it was used for the previous scanner
developed by SINTEF. In addition, LabVIEW provides packages for simple visualization.

The application is designed to use a producer/consumer architecture. This architec-
ture implementation is achieved based on a queue. The producer loop acquires data and
enqueues it into the common queue, while the consumer dequeues elements and uses it for
i.e. visualization. Because both to enqueue and to dequeue are independent operations,
this system architecture allows concurrent data retrieval and visualization (National In-
struments 2016). An example implementation of the producer/consumer architecture is
shown in Figure 5.1.

The LabVIEW Host implementation uses multiple queues, one for each type of scan
result. That is, one queue for height, one for intensity, reflectance, scatter, and one for
color. By decoupling the parameters, it allows each parameter to be processed indepen-
dently and at different rates. This allows the application to run with an even higher
concurrency.

49

Chapter 5. Host control system implementation

Figure 5.1: The producer/consumer architecture is dependent on a common queue. The
two loops may run concurrently. This figure is taken from (National Instruments 2016).

5.2 Data extraction

Reading and decoding data is done in the producer loop. Because the SCAN DATA mes-
sage has a fixed structure (see section 3.1.3), the extraction of the image parameters is
straightforward. First, it is necessary to read the configuration to determine the num-
ber of scan lines to retrieve. Next, the data is divided and decoded to the predefined
parameters. Finally, the decoded data is put into their respective queues.

LabVIEW uses the less common byte order called big endian. This means that most
significant byte is stored at the lowest address. Data received from the line scanner are
encoded in little endian byte order, which is the opposite. Therefore, every multibyte
value received from a line scanner module must be decoded. For the case of integer
values, this means that the bytes must be reversed. For the case of floating-point values,
this means that the value must first be interpreted as an integer, then the bytes must be
reversed, and finally reinterpreted as a floating-point value. This operation is shown in
Figure 5.2.

In order to speed up the data extraction some optimizations are applied:

• The TCP buffer is initialized outside of the producer loop. One-time initialization
removes the necessity of reinitializing the buffer every loop iteration.

• Only one buffer is used for incoming data, and all data operation are done on parts

50

5.3. Data visualization

of this buffer. Therefore, there is no need for copying out data and/or additional
memory. To achieve this, all image parameters are extracted as sub-arrays of this
buffer. This optimization reduces both the memory consumption and prevents
repeated memory allocation and deallocation.

Figure 5.2: This figure shows how the endianness of the retrieved data is changed. The
input data is a byte array. The bytes are reversed by first rotating two and two bytes,
and then by rotating the individual bytes.

5.3 Data visualization

Data visualization is done in the consumer loop. Each loop iteration the image parameter
queues are read and placed into the visualization buffers. The visualization buffers are
used as input to the IMAQ library to visualize the incoming data.

The visualization buffers are arrays modified to work as first-in-first-out (FIFO)
buffers. Therefore, for some given size, these represent the last received data. To achieve
the FIFO buffer functionality, shift register functionality is used. The shift register func-
tionality in LabVIEW passes values between each loop iteration (National Instruments
2015). Therefore, it is possible to store internal state, which in this case is the state of
the buffer. Each loop iteration the oldest elements are removed, and new elements of the
same size are inserted. An FIFO buffer example is shown in Figure 5.3.

Figure 5.3: An example of a FIFO buffer implemented in LabVIEW. This FIFO is 10
elements long, and inputs the value 3.15 every loop iteration.

The IMAQ library provides simple functionality for visualizing arrays. By using the
ArrayToImage block, this is done automatically. Even though the IMAQ library is easy

51

Chapter 5. Host control system implementation

to use, it restricts the LabVIEW Host to run on Windows only. LabVIEW is a cross
platform solution, but the IMAQ library is not yet available for other operating systems.

The experimental LabVIEW host is implemented to visualize scan data from one line
scanner module only, however it is easily expanded to support multiple data sources. In
order to assemble data from multiple data sources, the retrieved data must be synchro-
nized. In a graphical programming language, such as ”G”, this is done by inputting both
data sources to the same VI as shown in Figure 5.4. The data sources are implemented
as separate queues in the same fashion as done for the different scan parameters.

Building 3D models with data from multiple sources is harder. However such a task
will depend on the requirements set by the system using the models. There exist a large
number of 3D formats, and each model must be built in different ways. Common for all
approaches is that each scan sample must be translated to some coordinate and stored
in a point cloud, where the translation is obtained by a calibration routine.

Figure 5.4: This figure shows how scanner data from multiple line scanner modules is
synchronized. The VI depends on that both data sources are present before it executes.

52

5.3. Data visualization

Figure 5.5: A sample of the visual output of 2DVisualization.vi. The scan data is
presented in the order height, intensity, color, scatter, and reflectance. The big button is
used to save the samples.

53

Chapter 5. Host control system implementation

54

Chapter 6
Test descriptions

This chapter is devoted to describe what features of the system are tested, which test
parameters were used, and how the tests were performed. First, a description of the tests
performed on the line scanner module is given. Next, it is described how the repeatability
is tested. Finally, the last two sections of this chapter describe how the host control system
was tested and how scans of salmon were performed.

6.1 Line scanner module tests

The line scanner module is tested to determine the maximum throughput of the system.
There are four factors that limit the throughput: The camera, the image buffering frame-
work, the TCP send time, and the image processing. Therefore, when combining the
equations 4.4, 4.3, and 4.5, and expressing the maximum camera frame rate as fc, the
maximum frame rate of the line scanner module is expressed as:

f = min(fc, fTCP , ff , fi) = min

(

fc,
1

tTCP

,
1

max(tf , tb)
,
L · C

tk

)

(6.1)

In order to find the bottleneck of the system, the image buffering framework, TCP
send time, and image processing are benchmarked. Because all these test result depend on
the memory configuration of the line scanner module, the optimum memory configuration
is found first. Next, the image buffering framework limitations are found. At last the
scan mode implementations are benchmarked to find the TCP send time and maximum
rate of the image processing implementation.

6.1.1 Memory configuration

The memory configurations described in Table 4.2 affect how images are buffered, pro-
cessed, and how the output data is stored. The concurrency of these operations depend
on the capabilities of the GPU. Because there does not exist a tool to determine the
concurrency at compile time, this property is checked manually using NVIDIAs Visual
Profiler. All four possible memory configurations are tested on both the Jetson TK1 and

55

Chapter 6. Test descriptions

Jetson TX1. Because the concurrency depends on the size of the kernel, the tests are
performed with frame buffer sizes of 1, 2, 4, and 8 images.

Ideally, the concurrency should be verified by running the image processing tasks at
a very high frame rate, which will force the system to run at maximum concurrency.
However, it turns out that the camera is the bottleneck of the system. Therefore a more
computational expensive image processing kernel is used, which is shown in Listing E.11.

6.1.2 Scanner framework benchmarks

The scanner framework is benchmarked by attaching an oscilloscope to the Jetson Ready
pin. By measuring the time this signal is 0 volts, the framework time is found. The test
is performed 20 times. The scanner is configured as described in Table 6.1.

Even though the scanner framework uses asynchronous buffering, the image buffer
time must still be known as described in Equation 4.3. A simple conservative approxima-
tion is to use the synchronous processing time. Therefore, the framework processing time
is approximated to be the the maximum of the synchronous and asynchronous processing
time.

Parameter Value
Frame rate 200 FPS
Height 64, 128, and 192 pixels
Width 256, 512, 768, 1024, 1280,

1536, 1792, and 1920 pixels
Image buffer size 1

Table 6.1: Test setup parameters for scanner framework benchmarks. The image buffer
size is set to 1 to include kernel launches in every measurement.

6.1.3 Scan mode implementation benchmarks

The project goals stated that the accuracy of the scanner should be measured. In terms
of the line scanner module, this means the throughput and scan resolution. The scan
mode implementation tests benchmark the image processing rate and TCP send time.
For each scan mode, the optimum thread block size should be found, and it should found
how the image buffer size affects the image processing speed on both the Jetson TK1 and
Jetson TX1.

The tests are performed by the benchmarker described in section D.4. In order to
minize network overhead, all test are performed with the line scanner module connected
directly to the host computer. For each of the implemented scan modes, 300 samples
of the total processing time are collected. The test setup is described in Table 6.2.
Scan mode 4 is the most advanced implementation and therefore this implementation is
subjected to more tests. It is found how the image size affects the image processing time
and TCP send time. The test parameters used for these tests are given in Table 6.3.

56

6.2. Repeatability tests

Parameter Value
Frame rate 400 FPS
Height 192 pixels
Width 1280 pixels
Threads per block 32, 64, 128, 256, and 512
Image buffer size 1, 2, 4, 8, 16, 32, 64, and 128
Number of CUDA streams 4

Table 6.2: Test setup parameters for line extraction implementation comparison. The
image size parameters are similar to those used in a SINTEF’s previous solution (Sture
et al. 2016).

Parameter Value
Frame rate 200 FPS
Height 64, 128, and 192 pixels
Width 256, 512, 768, 1024, 1280, 1536, 1792, and 1920 pixels
Threads per block 256
Image buffer size 8
Number of CUDA streams 4

Table 6.3: Test setup parameters for testing scan mode 4. The tests are performed at
200 FPS instead of 400 FPS due to camera limitations.

6.2 Repeatability tests

A high repeatability means that the same 3D model is obtained every time the object
scanned. However, because it is difficult to compare 3D models quantitative, it is difficult
to define repeatability in hard numbers. If direct comparison is used, it is required that
the objects are perfectly aligned on the conveyor. Because of human error, and elasticity
and unregular movements of the conveyor, this is hard to achieve. Calibration techniques
are able to place scanned objects in a common reference frame, and therefore create close
to perfect alignment. However, using direct comparison, the repeatability tests will still
measure the quality of the calibration method, instead of measuring repeatability. In
addition, the result will also depend on the nature of the scanned object.

Because the calibration techniques are not implemented and direct comparison is
difficult, the repeatability is tested using a simple method. Instead of scanning a object
multiple times, an object is only scanned once. The scanned object is a Rexroth bar,
which an object with a very even height. The repeatability can therefore be defined as
the measured height deviation of this bar. Because the Rexroth has a high and uneven
reflectance, and therefore is harder to scan, it is well suited for repeatability tests.

Both scan mode 0 and scan mode 4 are used to test repeatability. These modes
use different height extraction algorithms: Scan mode 4 uses black frame subtraction,
while scan mode 0 does not. Scan mode 4 is therefore expected to yield a better quality
height profile. The other scan modes are only variations of these two scan modes, and

57

Chapter 6. Test descriptions

therefore there is no need in testing them as well. The number of samples included in the
comparison should be as many as possible, and include the entire length of the Rexroth
bar. Because scan mode 4 has a lower scan rate than scan mode 0 for the same camera
frame rate, this implementation should be used to determine the number of samples.

For this test, simple linear calibration is used to be able to express the repeatability
in millimeters. This linear calibration utilizes two measure points: The minimum value
is taken as a average of a column beside the Rexroth, and the maximum value is the
average of the test column on the Rexroth. The height of the Rexroth is known to be 3
cm.

6.3 Host control system tests

The LabVIEW implementation is an experimental implementation, and is therefore sub-
jected to fewer tests than the line scanner module. However, the bottlenecks of the
implementation should still be found.

The bottlenecks of the implementation are found using LabVIEWs profiler. This
profiler is able to compare the execution time and memory usage of each VI. It is also able
to distinguish between application logic execution and application visualization execution.
The test is to be executed with the configuration described in Table 6.4. The test results
should not be used for other than indicating which parts of the application that consume
the most time and memory.

The faster the LabVIEW host works, the faster TCP packets are read, and the faster
the line scanner module is able to send them. Therefore, monitoring the TCP send
time from the line scanner module gives an indication of the speed of the LabVIEW
implementation. These results can be compared with the results obtained from the
benchmarker.

6.4 System functionality tests

The system functionality tests should verify that 3D models are built as expected. For
this purpose a salmon obtained from SINTEF Ocean is used. The salmon is scanned with
all the implemented scan modes at a rate of 400 frames per second. The test parameters
described in Table 6.4.

58

6.4. System functionality tests

Parameter Value
Frame rate 400 FPS
Height 192 pixels
Width 1280 pixels
Threads per block 256
Image buffer size 32
Number of CUDA streams 4
Pixel power value 2
Pixel threshold 2300
Scatter distance 10
Camera shutter time 0.5 ms
Camera gain 30

Table 6.4: Configuration parameters used for repeatability and system functionality
tests.

59

Chapter 6. Test descriptions

60

Chapter 7
Results

This chapter presents the results of the tests described in the previous chapter. The
results are given in the same order as the test are described. That is, first benchmarks
of the line scanner, next repeatability test result, then benchmarks of the host control
system and finally the test results illustrating the functionality of the system.

For clarity, this chapter only presents the most important benchmark results. These
results reflect the overall performance and limitations of the developed system. The more
comprehensive results are presented in Appendix F.

7.1 Line scanner module test results

For an image size of 1280x192 it was found that the frame rate was determined by image
buffering framework and the camera only. The maximum frame rate for an image size
1280x192 given Equation 6.1 for both the Jetson TK1 and Jetson TX1 are presented in
Table 7.1 and Table 7.2. The next subsections give a more detailed view on the test
results and show the limitations of each component.

Scan mode Camera Framework TCP send time Image processing
Mode 0 620 220 5806 2020
Mode 1 620 220 11000 3860
Mode 2 620 220 26660 29240
Mode 3 620 220 11530 3200
Mode 4 620 220 16990 4660

Table 7.1: For the Jetson TK1 line scanner module, the image buffering framework limits
the maximum frame rate. These test result correspond to an image size of 1280x192 and
image buffer size of 128.

61

Chapter 7. Results

Scan mode Camera Framework TCP send time Image processing
Mode 0 620 1020 10740 3480
Mode 1 620 1020 15980 6470
Mode 2 620 1020 10930 29240
Mode 3 620 1020 16420 5160
Mode 4 620 1020 20190 7300

Table 7.2: For the Jetson TX1 line scanner module, the camera limits the maximum
frame rate. These test result correspond to an image size of 1280x192 and image buffer
size of 128.

7.1.1 Memory configuration

Table 7.3 summarizes the memory configuration tests. It turns out that the configuration
<Host, Host> and <Device, Host> gives the desired behavior: Concurrent memory
transfers and kernel execution both on the Jetson TK1 and Jetson TX1. Because<Device,
Host> gives faster memory access during image processing (see section A.3), this is the
preferred configuration. Some of the obtained execution profiles for the configuration
<Device, Host> are shown in Figure 7.1.

Frame buffer Output buffer Concurrent kernels Overlapping kernel
and memory trans-
fer

Host Host Limited N/A
Host Device No No
Device Host Limited Yes
Device Device No No

Table 7.3: Concurrency of the tested memory configurations. Limited in this context
means that execution is concurrent when the image buffer size is less than or equal to
4 when executed on the Jetson TX1. The Jetson TK1 does not run image processing
kernels concurrently.

7.1.2 Scanner framework benchmarks

The scanner framework was tested as described in subsection 6.1.2. Assuming that the
framework was the limiting factor, the resulting frame rate for a variety of image sizes is
shown in Figure 7.2. For all image sizes, the TX1 is multiple times faster than the Jetson
TK1. For both the Jetson TK1 and Jetson TX1 the framework overhead increases as the
image size increases. The detailed test results presented in subsection F.1.1 reveal that
the synchronous execution time is the limiting factor for almost all image sizes.

62

7.1. Line scanner module test results

(a) When the image buffer size is 2, kernel execution is concurrent.

(b) Image buffer size is 8 gives sequential kernel execution.

Figure 7.1: Execution profiles of the <Device, Host> configuration running on the
Jetson TX1. Memory transfers are concurrent with kernel execution for both image
buffer sizes.

7.1.3 Scan mode implementation benchmarks

The section describes the benchmark results of the implementation of the image process-
ing kernels for scan mode 0 and scan mode 4 described in section 4.2. The performance
of the additional implementations is presented in subsection F.1.2. Here it is assumed
that the maximum frame rate is limited by the image processing time, and the maximum
frame rate is therefore calculated using Equation 4.5 with the concurrency set to 1.

The TK1 image processing test results are not directly affected by the image buffering
limitation of 220 frames per second. However, it was observed that frames were dropped,
and therefore the suboptimal backup images were used. It was found that when the image
buffer size and image sequence increased, more frames were dropped. For scan mode 4,
an image buffer size of 128, and thread block size of 128 or larger, it was not possible to
perform the benchmarks because too many frames were dropped.

Figure 7.3 illustrates that the Jetson TK1 has a faster image processing rate than

63

Chapter 7. Results

TK1

2
5

6

5
1

2

7
6

8

1
0

2
4

1
2

8
0

1
5

3
6

1
9

2
0

64

128

192

Im
a
g
e
 h

e
ig

h
t
(p

ix
e
ls

)
TX1

2
5

6

5
1

2

7
6

8

1
0

2
4

1
2

8
0

1
5

3
6

1
9

2
0

Image width (pixels)

125

186

277

413

615

915

1363

2029

3022

4500

T
h
e
o
re

ti
c
a
l
m

a
x
 f
ra

m
e
 r

a
te

Figure 7.2: Image buffering framework time for the Jetson TK1 and Jetson TX1. The
maximum framerate was calculated using Equation 4.3.

the TX1 when the image buffer size 1. When the image buffer size increases, the image
processing rate increases. For a buffer size of 128, the TX1 performs almost twice as fast
as the TK1. The TX1 has a smaller standard deviation in image processing time. As for
the execution time, the standard deviation decreases as the image buffer size increases.

Figure 7.4 illustrates that the TX1 performs worse than the TK1 in terms of TCP
send time when the image buffer size is small. When the image buffer size is 1, the
average send time per image is as much as 2-3 time larger. However, when the image
buffer size increases, the TX1 and TK1 obtain the same results.

The maximum image processing rate for scan mode 4 with varying block sizes and
image buffer sizes for the TX1 and TK1 are shown in Figure 7.5. This figure shows that
the Jetson TK1 and Jetson TX1 have different optimum thread block sizes. In general,
the Jetson TK1 has the highest image processing rate when the block size is 64, while
the results of the Jetson TX1 indicate that 128 is the optimal block size for the TX1.
However, the detailed results presented subsection F.1.2 indicate that the optimimum
block size may vary across the different scan mode implementations.

Figure F.13 plots the frame rate constraints for scan mode 4 for various widths and
an image height of 192 pixels. Additional plots for image heights of 64 and 128 pixels are
given in subsection F.1.2. It is clear that image processing is much faster than both the

64

7.2. Repeatability test results

1 2 4 8 16 32 64 128

Image buffer size

1000

1500

2000

2500

3000

3500

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Jetson TK1

Jetson TX1

1 2 4 8 16 32 64 128

Image buffer size

10-3

10-2

10-1

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 p

e
r

im
a
g
e
 (

m
s
)

Jetson TK1

Jetson TX1

(a) Theoretical maximum frame rate and standard deviation for scan mode 0.

1 2 4 8 16 32 64 128

Image buffer size

2000

3000

4000

5000

6000

7000

8000

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Jetson TK1

Jetson TX1

1 2 4 8 16 32 64 128

Image buffer size

10-3

10-2

10-1
S

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 p

e
r

im
a
g
e
 (

m
s
)

Jetson TK1

Jetson TX1

(b) Theoretical maximum frame rate and standard deviation for scan mode 4.

Figure 7.3: Total image processing time benchmark results for scan mode 0 and 4.
The test setup parameters were those given in Table 6.2. For each image buffer size, the
thread block size with the maximum theoretical frame rate was chosen.

framework and camera. For the TK1, the image buffering framework is the bottleneck,
while the camera is the bottleneck for the TX1. For the TX1 and large image widths,
the framework overhead is almost the same as the camera limitation.

7.2 Repeatability test results

The test results presented in Table 7.4 show that scan mode 4 has a better repeatability
than scan mode 0. The test was performed with an image height of 192, where the
Rexroth utilized 1/6 of the image height. For each test 150 height samples were used.
Figure 7.7 shows the captured height profile for scan mode 4.

65

Chapter 7. Results

1 2 4 8 16 32 64 128

Image buffer size

0

0.1

0.2

0.3

0.4

0.5

S
e

n
d

 t
im

e
 (

m
s
)

Jetson TK1

Jetson TX1

1 2 4 8 16 32 64 128

Image buffer size

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

m
s
)

Jetson TK1

Jetson TX1

Figure 7.4: TCP send time of the output buffer divided by the number of frames this
output buffer includes. The samples were obtained with scan mode 0.

TX1

1

2

4

8

1
6

3
2

6
4

1
2
8

 Image buffer size

32

64

128

256

512

T
h

re
a

d
 b

lo
c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2
8

2000

2308

2663

3072

3545

4090

4720

5446

6284

7250

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Figure 7.5: Maximum image processing rate for various buffer and thread block sizes
for scan mode 4. The results are obtained using the test parameters given in Table 6.2.

66

7.2. Repeatability test results

256 512 768 1024 1280 1536 1792 1920

Image width (pixels)

102

103

104

105

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Camera

Image processing

Framework

TCP send time

256 512 768 1024 1280 1536 1792 1920

Image width (pixels)

102

103

104

105

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Camera

Image processing

Framework

TCP send time

Figure 7.6: Plot of frame rate constraints for scan mode 4 on the Jetson TK1 (left)
and TX1 (right) for an image height of 192 pixels. The results were obtained using the
configuration parameters given in Table 6.3.

Minimum (mm) Maximum (mm) Standard deviation (mm)
Scan mode 0 27.92 31.06 0.70
Scan mode 4 28.66 31.14 0.41

Table 7.4: The height measurements of a rexroth bar represent the repeatability of the
scanner.

0 50 100 150

Scan column

2.85

2.9

2.95

3

3.05

3.1

3.15

Im
a

g
e

 h
e

ig
h

t(
c
m

)

Figure 7.7: The captured height profile of the Rexroth bar used for repeatability testing.
The height was obtained using scan mode 4.

67

Chapter 7. Results

7.3 Host control system test results

Figure 7.8 shows an extraction of the LabVIEW profiler results. It is clear that 2DVisu-
alization.vi is most time expensive VI. This VI uses IMAQ ArrayToImage, which is both
time consuming and is executed more often. Reading TCP messages is time consuming,
while decoding the scan data, done in ExtractScanData.vi, is not.

Figure 7.8: Profiler results of the LabVIEW host implementation.

Figure 7.9 shows that the average send time per image is high when the TCP packet
size is small. When the image buffer size was 4 and smaller, it was necessary to reduce
the scan rate. This because the TCP read time occasionally returned very large values,
resulting in too many dropped frames. For image buffer sizes 8 and larger, it was possible
to run the camera at 400 frames per second.

1 2 4 8 16 32 64 128

Image buffer size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
e

n
d

 t
im

e
 (

m
s
)

1 2 4 8 16 32 64 128

Image buffer size

0

0.05

0.1

0.15

0.2

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

m
s
)

Figure 7.9: TCP send time for different image buffer sizes measured with the LabVIEW
host control system.

68

7.4. System functionality test results

7.4 System functionality test results

Figure 7.10 and Figure 7.11 present scan results of a salmon obtained with scan mode
0 and scan mode 4. The colors indicate the values: The value increases from blue to
green to red. The height profile obtained using scan mode 4 is more even than the profile
obtained using scan mode 0. This is visualized more clearly when the height profile
is viewed from the side as shown in Figure 7.12. Combining height profile and color
results in a colored 3D model is shown in Figure 7.13. Additional salmon scan results are
presented in section F.2.

69

Chapter 7. Results

(a) Height profile. (b) Intensity profile.

(c) Reflectance profile. (d) Scatter profile.

Figure 7.10: Scan results of a salmon obtained with scan mode 0 and the test parameters
given in Table 6.4.

70

7.4. System functionality test results

(a) Height profile. (b) Intensity profile. (c) Reflectance profile.

(d) Scatter profile. (e) Color image.

Figure 7.11: Scan results of a salmon obtained with scan mode 4 and the test parameters
given in Table 6.4.

71

Chapter 7. Results

(a) Height profile obtained with scan mode 0.

(b) Height profile obtained with scan mode 4.

Figure 7.12: Height profile of a salmon seen from the side. Scan mode 0 has more
uneven results than scan mode 4. The results were obtained with the test parameters
given in Table 6.4.

Figure 7.13: Combining the height and color image from Figure 7.11 results in a colored
3D model. The lowest values of the height profile are removed to accentuate the salmon.

72

Chapter 8
Discussion

This chapter reflects on the results presented in the previous chapter. First, the line scan-
ner module test results are discussed. Next follows the discussions on the repeatability,
host control system, and finally the system level test results. Missing features and future
development are discussed in chapter 10.

8.1 Line scanner module result interpretation

The line scanner module benchmarks found that the implementation on the Jetson TK1
is limited by its slow memory transfer speeds, while the Jetson TX1 is limited by the
maximum frame rate of the camera. For both line scanner modules, the maximum image
processing rate and TCP send time is much faster than both the scanner framework and
the camera.

8.1.1 Memory configuration results

The memory configuration tests found that both the <Host, Host> and <Device, Host>
configurations allowed limited concurrent kernel execution, and stated that the <Device,
Host> is the preferred configuration. This assumption is valid because the camera SDK
requires the images to be copied out from its own buffer. If the camera library had pro-
vided direct access to the image buffers, this extra copy operation would have been unec-
essary for the <Host, Host> configuration, and therefore increased the scanner framework
performance. However, this configuration requires all memory to be accessed as pinned
memory, which is slower than direct access to GPU memory, which reduces the image pro-
cessing rate. Therefore, choosing between these two configurations is a trade-off between
image processing speed and scanner framework performance.

The validity of the observation that image processing kernels execute concurrently,
is discussable. First, a fake image processing kernel was used instead of the actual scan
mode implementations. This was necessary because the maximum camera frame rate
was much lower than the maximum image processing rate. Even though the kernel
launch parameters were correct, the fake kernel resource usage might differ from the

73

Chapter 8. Discussion

image processing kernel resource usage. Therefore, this test is only valid to show that
the GPU is able to run multiple kernels concurrently, and should not be used to find the
concurrency factor. The property of concurrent kernel execution and memory transfers
is not affected by changing the image processing kernel to a fake kernel, and these results
are therefore valid.

The maximum number of concurrent kernel executions was not obtained with the
memory configuration tests. To find the number of maximum concurrent kernels, a faster
camera must be used in combination with the scan mode implementations. Instead of
using a faster camera, an alternative approach is to use a camera mock. A camera mock
can simulate the arrival of images at any rate. Such an approach would therefore push
the image processing to its limits. However, the image buffering framework is still slower
than the image processing implementations. Therefore, this approach is only useful if the
image buffering framework is optimized further.

All memory configuration test results were obtained using NVIDIAs Visual Profiler.
Because the profiler was unable to launch the line scanner module application with su-
peruser rights, which is necessary to change the execution priority of the application (see
section 4.1), this feature was turned off. This might have changed CPU execution, how-
ever, not the blocking and concurrency properties of the GPU. Therefore, the profiler has
not affected the validity of the memory configuration test results.

8.1.2 Scanner framework benchmark results

The scanner framework benchmark results were obtained by measuring both the syn-
chronous and asynchronous framework execution speed. Instead of determining the ac-
tual image buffering time, the synchronous execution speed was used as a conservative
estimate. Because the synchronous execution speed was the limiting factor for most of
the image sizes, it is expected that the framework is able to operate at a somewhat higher
frame rate than stated here. The actual image buffering time could have been determined
by using CUDA events. However, this would have created extra overhead.

It is assumed that only one memory transfer may be active at the time. For the Jetson
TK1 and TX1, which both have only one copy engine, this is most certain the case.
However, high end GPUs might be able to run multiple concurrent memory transfers.
If a GPU allows high memory copy concurrency, this might result in the asynchronous
memory framework being the bottleneck of the image buffering framework. Figure F.1
shows that the asynchronous framework is very fast, and therefore it is unlikely that
the asynchronous image buffering framework will be the bottleneck of the line scanner
module.

The framework benchmark results indicate that the Jetson TK1 performs worse than
the TX1 in terms of memory transfer speed. An entry in NVIDIAs forums suggests that
the Jetson TK1 is not able to copy pinned memory fast1. The observation of that the
TK1 drops more frames at large image buffer sizes and image sequence lengths, which
requires more pinned memory, strengthens this theory.

1https://devtalk.nvidia.com/default/topic/948258/performance-of-v4l2_memory_mmap-b

uffer-memcpy/

74

https://devtalk.nvidia.com/default/topic/948258/performance-of-v4l2_memory_mmap-buffer-memcpy/
https://devtalk.nvidia.com/default/topic/948258/performance-of-v4l2_memory_mmap-buffer-memcpy/

8.1. Line scanner module result interpretation

The framework overhead was measured with an image buffer size of 1, which does only
require a litte amount of pinned memory. Because it seems like more pinned memory
reduces the memory transfer rate, the image buffering framework overhead might be larger
when large image buffer sizes are used. On the other hand, when the image buffer size
were small, the TK1 did not drop frames as expected from the framework benchmarkmark
results. It is therefore likely that this estimate is conservative for small buffer sizes. In
order to find the actual image buffering overhead, this can be verified by trial and error,
observing if frames are dropped or not.

The problem statement required the scanner to use 12-bit images. This increases the
accuracy of scan results. However, if 8-bit images are found to give high enough accuracy,
this will increase the performance of the scanner framework because 8-bit images are
only half the size of 16-bit images. Therefore, the memory transfer would probably only
consume half of the time, and thereby doubling the performance of the image buffering
framework.

It is also possible to increase scanner framework performance by removing failsafe
functionality. Figure 4.6 describes how each image first is stored as a backup, before it
is copied to the image processing buffers. This failsafe feature can be made optional,
thereby removing one memory transfer for each image, increasing the image buffering
speed. Therefore, the performance of the image buffering framework is a trade-off between
maximum image buffering rate rate, and failsafe functionality.

As mentioned earlier, the scanner framework processing time can be increased dras-
tically by using another camera SDK that does not require images to be copied out.
For this case, it is assumed that the framework will perform similar to the asynchronous
framework, and therefore allow a frame rate of thousands of images per second as shown
in Figure F.1.

8.1.3 Scan mode implementation benchmarks

Previously it was shown that the TX1 executed image processing kernels concurrently
when the image buffer size was 4 or less. However, as stated, this is not included in
the image processing benchmark results. Therefore, if the concurrency results were in-
cluded, then the TX1 would have performed better for small image buffer sizes. Then
the performance gap between the TX1 and TK1 would be even larger.

For all scan mode implementations, the Jetson TK1 performs better at image buffer
size 1. This is true even though the Jetson TX1 has a three times higher available com-
putational power than the TK1. However, GPU performance is measured in throughput,
and not latency. These result are therefore explained by the TX1 not utilizing its full
power for this buffer size. When the buffer size increases, more of its power can be uti-
lized, and thereby the image processing speed increases. On the other hand, the TK1
reaches its maximum performance at even the smallest buffer sizes, and does therefore
not benefit from larger image buffer sizes.

Not only the image processing speed benefits from increased image buffer sizes. Both
benchmarks of the TCP send time and results from the host control system results indicate
that the average send time per scan result decreases as the image buffer size increases.

75

Chapter 8. Discussion

The trade-off for a large image buffer size is increased latency. However, the latency is
only equal to sum of the capture time of the image buffer and image processing time,
which at high frames is still only a fraction of a second. Therefore, if the scan results are
needed a given time or location on the production line, it might be easier to move the
scanner further up.

For all scan modes on both the Jetson TK1 and TX1, the standard deviation in image
processing time is small. This is indicates that memory is fetched with few cache misses,
or that cache is missed in a regular manner. A small standard deviation reduces the
requirement of safety margins in calculating the maximum scan rate, and is therefore
desirable.

From Table 7.1 and Table 7.2 it is clear that scan mode 2 processes images much faster
than all other scan modes. However, this scan mode does only obtain color information,
which is a fast operation. Instead of using this scanner for obtaining a stream of color
data, it is probably cheaper and less complex to use and an ordinary color camera.

The bottleneck plots of scan mode 4 are retrieved with an image buffer size of 8.
Benchmarks done with larger image buffer sizes indicate an approximate 20% perfor-
mance gain when the image buffer size increases from 8 to 128. Therefore, the actual
image processing speed is even faster than shown in these plots. However, because of
the limitations of the camera and image buffering framework, this does not affect the
maximum scan rate.

8.2 Repeatability results interpretation

The repeatability test results is a measure on the quality of the scan results. A large
number of factors affect the repeatability. In order to compare repeatability, all these
factor must be kept constant. Some of these are given below:

• Light conditions. The darker the scan area, the less likely it is for light disturbance
to occur. Therefore, a shielded scan area will increase the repeatability. Refer to
section 3.2 for a discussion on how external disturbances can be minimized.

• The object itself. For this test, a Rexroth bar was used. Because this object has a
high reflectance, the expected measured height deviation is large. A non-reflecting
surface would probabily yield a higher repeatability.

• Physical setup. The repeatability results are presented in millimeters. The maxi-
mum accuracy, and therefore the repeatability, is determined by the angle between
the laser and camera, and the distance between the object and camera.

• Camera parameters. The camera has a large number of parameters that can be al-
tered to increase the image quality. Such parameters are for example white balance,
contrast, shutter time, gain, etc.

• Image processing parameters. For this test only one set of image processing param-
eters was used. Different parameters will probably yield different results.

76

8.3. Host control system result interpretation

Table 7.4 presents results for only one given configuration, and therefore this result
does only present a small aspect of the scan quality. Because the same test parameters
were used for both testing scan mode 0 and scan mode 4, it is valid to compare those
results. As expected, scan mode 4 utilizing black frame subtraction, yields better re-
peatability. However, using black frame subtraction reduces the scan rate because the
corresponding image sequence length is longer. Therefore, there is a trade-off between in-
creased repeatability and increased scan rate. In addition it might be possible to achieve
the same repeatability by modifying camera and image processing parameters.

Finding an optimum configuration for maximizing the repeatability is a research
project itself. The most obvious parameter changes are the image processing param-
eters, and especially the pixel power parameter (see section 3.2). A large value might
give more accurate results, but might be more susceptible to noise. In addition, it is
possible to use another set of values in the pixel power lookup table (see section 4.2.3).

8.3 Host control system result interpretation

The host control system benchmark results indicated that visualization and TCP message
reception are the two most computational expensive tasks. These are therefore the two
first components to optimize when the performance of the host application must be
increased. The current implementation is not able to handle small image buffer sizes well,
but has sufficient performance for larger sizes. Therefore there is no need in optimizing
the application for the current usage. However, when more features are added, and
multiple line scanner modules are used, this might not be the case.

Because real-time visualization is not a strictly necessary task to perform, this can
be removed in order to increase performance. It will still be required to build the 3D
models, but because this can occur in background, it is assumed to take less processing
power. Including less computational expensive visualization is possible by reducing the
update rate. It is for example possible to visualize a complete 3D model only every time
an object has passed.

When Figure 7.4 and Figure 7.9 it is clear that LabVIEW uses more time to read TCP
messages than the benchmarker when the image buffer size is small. When the buffer
size increases, the average send time per image is close to the results obtained with the
benchmarker. Therefore, the LabVIEW host should not be used when the image buffer
size is small.

Reading TCP messages is done through stardardized LabVIEW blocks for reading a
TCP port. Therefore, it is not possible to speed up this process. However, performance
may be increased by increasing the scheduling priority of the application. This might
also affect the hosts ability to receive smaller image buffer size scan data.

8.4 System functionality result interpretation

The system functionality test results verified that the scanner is able to scan salmon and
reproduce a relative accurate 3D model of it. It is clear that scan mode 4 reproduces the

77

Chapter 8. Discussion

salmon more accurate, with a slower scan rate as its extra cost.
Comparing all the individual salmon scan results indicates that scan mode 4 in overall

gives gives better scan results than scan mode 0. The height profile is much more even
for scan mode 4 than scan mode 0. This is emphasized by the intensity profile, which
has larger red areas, which indicate a higher hit rate of the laser line. The uneven scatter
profile for scan mode 0 indicates the same result. However, there is no big difference
in reflectance between scan mode 0 and scan mode 4. This is probably because the
reflectance definition is robust against noise.

It is unexpected that the scatter value is higher on the conveyor than the salmon.
This might be caused by the the definition of scatter and its test configuration value. For
the case when the height is slightly miscalculated, the laser line will be some distance
away from the calculated height. Because the definition of the scatter is the intensity
some distance from the height, the scatter will in this case report the intensity of the
laser line. Therefore, it is suggested to improve this definition, to include an intensity on
both sides of the calculated height.

The color image retrieved from scan mode 4 is quite dark and green tinted. This is
not caused by the line scanner module, but is a result of the camera parameters. The
camera is set to a low shutter period, and high gain to be able run at a high frame rate.
This effect is easily removed by post processing the color image.

78

Chapter 9
Conclusion

In this thesis a distributed color 3D scanner was developed and integrated into an exper-
imental setup at SINTEF Sealab. The scanner is able to operate in multiple modes in
order to extract different object parameters such as height, intensity, reflectance, scatter
and color. Each of the modes have corresponding image sequences defined by the state
of a laser line and LED. Black frame subtraction subtracts the background noise and is
used to increase the quality of the measurements. The background noise is estimated by
using frames where both the laser and LED is turned off.

Image parameter extraction is implemented on both the NVIDIA Jetson TK1 and
the NVIDIA Jetson TX1. The implementation allows both asynchronous and concurrent
execution on their GPUs. Several techniques are used to increase the image parameter
extraction speed: first, images are buffered, which decreases the average image processing
time per image. Next, pre-calculated lookup tables replace repeated calculations needed
for pixel intensity transformations. Finally, images are traversed in a way where image
pixels are visited as few times and with as few time-expensive operations as possible.

The maximum scan rate is determined by the maximum performance of the camera,
the image buffering framework, and image processing implementation. For all scan modes,
the maximum image processing rate is large. For the scan mode retrieving color and
applying black frame subtraction, the TX1 is able to process images at a rate of 7300
frames per second while the TK1 is able to process 4600 frames per second. However, these
frame rates are not achievable for full system due to limitations in system components. It
was found that respectively the memory transfer speed and camera frame rate were the
limiting factors for the Jetson TK1 and the Jetson TX1 line scanner modules. Therefore,
for an image size of 1280x192, the maximum camera frame rate is 220 for the Jetson TK1
and 620 for the Jetson TX1.

The scan quality and repeatability of the scanner were tested on a Rexroth bar and
on a salmon. For a given test setup, it was found that a height measurement of the
Rexroth had a standard deviation of respectively 0.41 mm and 0.70 mm when black frame
subtraction was enabled and disabled. A qualitative comparison of the scans performed
on salmon confirmed that black frame subtraction increases the overall scan quality.

The camera is the major bottleneck of the developed scanner, both in terms of max-

79

Chapter 9. Conclusion

imum available frame rate and in terms of SDK limitations. Therefore, if a higher scan
rate is required, it is suggested to port the implementation to use another camera type.
However, it should also be noticed that the scanner accuracy can be changed to obtain a
higher scan rate. This can be done by either improving feature extraction, image quality,
or by changing the physical arrangement of the components of the scanner.

The distributed color 3D scanner developed in this thesis is able to reach the per-
formance of the scanner developed by SINTEF, given that the TX1 is used for image
processing. The image processing implementations handles 12-bit images, is portable to
more advanced GPUs, and is able to extract all image parameters at a high rate. The
bottlenecks and limitations of the system are found, and error detection and correction
is implemented. Therefore, the goals of thesis this are achieved and makes it a valuable
contribution to SINTEF’s further development of high-speed color 3D scanners.

80

Chapter 10
Future work

This chapter presents ideas for further development of the scanner presented in this thesis.
The chapter is divided into three parts. The first section provides ideas on how the scan
quality can be increased. Next, there is a discussion on suggestions to new functionality.
The last section of this chapter investigates architecture alternatives that can reduce cost,
increase performance, and add functionality to the scanner.

10.1 Optimize scan quality

In section 8.2 it is described that the repeatability of the scanner is determined by a large
number of factors. By changing these parameters, it is might be possible to achieve a
sufficient scan quality without black frame subtraction. By disabling black frame sub-
traction, the image sequence length decreases, which increases the maximum scan rate.
Finding an optimum parameter set may be time consuming, and does also dependend on
the type of object scanned. However, an increased scan rate increases the accuracy, and
is therefore valuable.

Redefining the image parameters is another way of increasing scan quality. Especially
the lookup table used for height extraction has many configurations. Changing the value
range to be piecewise linear, instead of exponential might give other repeatability results.
Section 3.2 discusses how some of the current line parameters can be made more noise
robust.

It is discussed that the current definition of scatter is not accurate. This definition
should therefore be updated. The definition might include an average pixel intensity of
an area, or some fraction between the intensity and surrounding reflectance.

The retrieved color images of the salmon revealed that it might be necessary to post-
process the color images. This may also be applied to the other scan result parameters.
For example, the height profile can be processed by simple interpolation, removing out-
liers, or by using more advanced techniques combining all parameters. However, it should
be kept in mind that post-processing might be time consuming. Care should therefore
be taken to prevent post-processing becoming the bottleneck of the system.

81

Chapter 10. Future work

10.2 Implement new features

There are several other features that will increase the number of use cases, and improve
the overall quality and performance of the 3D scanner. The features list is ordered with
the taks assumed to have the highest priority listed first. Each of the tasks are presented
with their problem, and with some ideas on how they can be implemented:

• Calibration. The current scanner implementation lacks calibration, and therefore
all scan data is returned without unit. Because most application areas require some
sort of reference frame, the scanner is not of value before calibration is implemented.
Because there exist a large variety of calibration methods, this task can be both
small or large. Due to the spare computational power on the Jetsons, coordinate
transformations may be performed directly in the line scanner modules.

• Allow the system to use multiple line scanner modules. There are only two mi-
nor modifications required to achieve this functionality. First, the LabVIEW host
implementation must be modified to retrieve data from multiple sources. In sec-
tion 5.3 there are already some suggestions on how data from multiple scanners
can be combined. Next, it is required to synchronize the Arduino and line scanner
modules to provide synchronized scan data. A suggested approach is described in
section 2.3.

• Object detection. The current scanner outputs a continuous stream of data, which
the host control system visualizes. In order to analyze objects, the input data
stream must be split into objects. This is a task easily done by the host control
system. The boundaries can be found by monitoring the scan height.

• Allow to use 8-bit images. The current line scanner module is only able to use 16-
bit images. When the pixel depth is halved, the image size is halved Therefore it is
likely that the performance of the image buffering framework will double. Because
the image buffering framework is the bottleneck for Jetson TK1, this improvement
will increase the performance of this line scanner module. Reducing the pixel depth
reduces scan accuracy, and it should be investigated how this affects the scan quality.

• Allow a user configurable lookup table. The current lookup table used for height
extraction has a fixed exponential shape. Other transformations might give better
scan quality results. If this table is modifiable over TCP, it will be easier to test dif-
ferent configuration types. In addition, the number of image processing parameters
is reduced.

• More advanced and configurable error handling. By making error handling and
failsafe features optional, the framework overhead can be decreased. It should
be user configurable to set a maximum number of dropped frames, if a backup
frame should be used, etc. Removing the extra memory transfer needed for the
backup image is especially valuable for the TK1 where memory transfer speeds
is the bottleneck. In addition the error responses should be more intuitive. The

82

10.3. Consider system architecture alternatives

current error handling returns an error message when the scanner fails. This should
be expanded to include a message informing what went wrong.

• Multiple scan data message definitions. The current line scanner module defines
only one scan data message format. Because some of the fields are unused for some
of the scan mode definitions, new scan data message definitions can reduce the
network overhead. In addition, this will require smaller memory buffers, possibly
increasing both image processing speed and framework overhead.

10.3 Consider system architecture alternatives

Some of the limitations of the developed scanner are related to its architecture and used
components. It is therefore natural to investigate other solutions. This section first
considers other alternative synchronization mechanisms. Next comes a discussion on
other camera alternatives.

10.3.1 System synchronization

In section 2.3 it is described how the components of the system are synchronized using
an Arduino Mega. Using the Arduino makes synchronization simple, however, the extra
component increases both the equipment and installation cost. It is described how usage
of an external synchronization component makes it more difficult to synchronize multiple
line scanner modules. In addition, it is more difficult to reconfigure the scan mode and
frame rate: Either the Arduino must be reprogrammed every time, or through a message
interface. Using a message interface requires the Arduino to be connected to either one
of the line scanner modules, or to the host computer. It is clear that this will increase
the complexity.

Instead of using the Arduino for synchronization, one of the PointGrey cameras can be
used. The cameras have GPIO connectors that can be used for output signals. Therefore
one camera can be configured to output a pulse signal with a given frequency on one or
multiple of its output pins to synchronize the other cameras. Such a solution simplifies
the synchronization between multiple line scanner modules and it simplifies scanner con-
figuration. With this system architecture, it is possible to configure the synchronization
through the camera SDK.

10.3.2 Camera alternatives

The major scan rate limitation of this scanner is the camera. For an image size of
1280x192 using 16-bit quality, the camera is only able to reach a rate of 620 frames
per second. This corresponds to a bandwidth usage of approximately 290 MB/s. The
theoretical maximum USB3.0 bandwidth is 625 MB/s. Therefore, it highly suggested
to investigate if other camera providers are able to reach a higher frame rate. This will
increase the maximum scan rate drastically.

83

Chapter 10. Future work

The camera is interfaced through its SDK. Using an SDK is convinient, however it
does also come with performance trade-offs. As described in subsection 2.1.2, the SDK
requires images to be copied in order to store them in a buffer. In addition, the SDK does
not provide the functionality of retrieving multiple images at a time. A more flexible SDK
would provide direct access to its buffers, which would eliminate the need for this extra
copy operation, and therefore increase performance. In order to obtain such a feature, it
is necessary to switch camera provider.

Using USB cameras adds an extra limitation on the system architecture: Each Jetson
has only one USB3 port, and it is therefore not possible to let each Jetson handle mul-
tiple USB cameras. Requiring one Jetson per camera increases the total hardware and
installation cost.

Even though the Jetson TK1 and TX1 only have one USB3 interface, there are some
possibilities to connect more cameras to the Jetsons. The Jetson TX1 has a four lane
PCI Express 2.0 interface, and the Jetson TK1 is assumed to have one lane PCI Express
2.0 interface1. These connectors can be used for USB expansion cards. Because each PCI
2.0 express lane allows transfer speeds up to 500 MB/s, it is possible to add one extra
USB port to the TK1 and four to the TX1.

Another approach is to use a different type of camera. Both the Jetson TK1 and
Jetson TX1 are equipped with Camera Serial Interface (CSI) connectors. These are low
level serial interfaces, where each lane is able to provide a bandwidth of 312.5 MB/s.
Using two- or four-lane CSI cameras, a bandwidth of 625 MB/s or 1.25 GB/s is achieved.
The Jetson TK1 has four CSI lanes, while the Jetson TX1 has twelve. Therefore it is
possible to connect multiple CSI cameras to each Jetson. In addition, the maximum
camera bandwidth is increased.

CSI provides high throughput, however this interface has some major trade-offs. First,
developing low-level solutions add more complexity which increases the development cost.
Next, CSI connectors only allow very short cables, typically an absolute maximum of 50
cm. Therefore, it might not be practically possible to connect more than one camera per
Jetson. Finally, there are only a few configurable high-speed cameras available, which in
addition only seem to support large image sizes. The e-CAM40 CUTK1 is such a camera
providing only 330 fps at an image size of 672x380 (e-con Systems 2015).

1https://devtalk.nvidia.com/default/topic/763037/-jetson-tk1-mini-pci-express-versi

on-/

84

https://devtalk.nvidia.com/default/topic/763037/-jetson-tk1-mini-pci-express-version-/
https://devtalk.nvidia.com/default/topic/763037/-jetson-tk1-mini-pci-express-version-/

Bibliography

Amdahl, Dr. Gene M. (1967). “Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities”. In: AFIPS Conference Proceedings 30, 483–48.

Arduino (2017). Arduino MEGA 2560 & Genuino MEGA 2560. url: https://www.
arduino.cc/en/Main/arduinoBoardMega2560 (visited on 04/18/2017).

Brosnan, Tadhg and Da-Wen Sun (2004). “Improving quality inspection of food products
by computer vision––a review”. In: Journal of Food Engineering 61.1. Applications of
computer vision in the food industry, pp. 3 –16. issn: 0260-8774.

e-con Systems (2015). e-CAM40 CUTK1 Datasheet. url: https://www.e-consystems.
com/downloadecamdoc.asp?file=mb161013jEcAm40CuTk1DaShmIpi01 (visited on
05/28/2017).

Focus, Photon (2016). MV1-D2048-3D03/3D04 Camera Series user manual. url: http:
//www.photonfocus.com/fileadmin/web/manuals/MAN052_e_V3_1_MV1_D2048_

3D03_3D04.pdf (visited on 05/18/2017).
Gerritsen, Rubin Ingwer (2016). Embedded 3D vision for industrial applications using the

NVIDIA Jetson TK1.
Gonzalez, Rafael C. and Richard E. Woods (2007). Digital Image Processing. 3rd ed.

Pearson. isbn: 978-0131687288.
Gustafson, John L. (1988). “Reevaluating Amdahl’s law”. In: Communications of the

ACM 31, pp. 532–533.
Hennessy, John L. and David A. Patterson (2006). Computer Architecture: A Quantitative

Approach. 4th ed. Morgan Kaufmann. isbn: 0123704901.
Kurose, James F. and Keith W. Ross (2012). Computer Networking: A Top-Down Ap-

proach. 6th ed. Pearson. isbn: 978-0132856201.
National Instruments (2015). Tutorial: Timing, Shift Registers, and Case Structures. url:

http://www.ni.com/white-paper/7592/en/ (visited on 05/19/2017).
— (2016). Application Design Patterns: Producer/Consumer. url: http://www.ni.

com/white-paper/3023/en/ (visited on 04/03/2017).
NVIDIA (2012). How to Optimize Data Transfers in CUDA C/C++. url: https://

devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-

cc/ (visited on 12/11/2016).

85

https://www.arduino.cc/en/Main/arduinoBoardMega2560
https://www.arduino.cc/en/Main/arduinoBoardMega2560
https://www.e-consystems.com/downloadecamdoc.asp?file=mb161013jEcAm40CuTk1DaShmIpi01
https://www.e-consystems.com/downloadecamdoc.asp?file=mb161013jEcAm40CuTk1DaShmIpi01
http://www.photonfocus.com/fileadmin/web/manuals/MAN052_e_V3_1_MV1_D2048_3D03_3D04.pdf
http://www.photonfocus.com/fileadmin/web/manuals/MAN052_e_V3_1_MV1_D2048_3D03_3D04.pdf
http://www.photonfocus.com/fileadmin/web/manuals/MAN052_e_V3_1_MV1_D2048_3D03_3D04.pdf
http://www.ni.com/white-paper/7592/en/
http://www.ni.com/white-paper/3023/en/
http://www.ni.com/white-paper/3023/en/
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/

Bibliography

NVIDIA (2014). Remote application development using NVIDIA R© NsightTM Eclipse Edi-
tion. url: https://devblogs.nvidia.com/parallelforall/remote-application-
development-nvidia-nsight-eclipse-edition/ (visited on 12/11/2016).

— (2016a). CUDA C Best Practices Guide. DG-05603-001 v8.0. url: http://docs.
nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf (visited on 12/04/2016).

— (2016b). CUDA C Programming Guide. PG-02829-001 v8.0. url: http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf (visited on 12/04/2016).

— (2016c). Profiler User’s Guide. DU-05982-001 v8.0. url: http://docs.nvidia.com/
cuda/pdf/CUDA_Profiler_Users_Guide.pdf (visited on 12/04/2016).

Point Grey (2015a). Register Reference for Point Grey Digital Cameras. Version 3.2. url:
http://www.ptgrey.com/support/downloads/10130/ (visited on 12/04/2016).

— (2015b). What external IIDC trigger modes are supported by my camera. url: https:
//www.ptgrey.com/KB/10250 (visited on 03/15/2017).

— (2016a). Grasshopper3 U3 USB 3.0 Camera Technical Reference. Revision 17. url:
http://www.ptgrey.com/support/downloads/10125/ (visited on 12/04/2016).

— (2016b). Technical Application Note TAN10563, Working with Embedded Image In-
formation. url: https://www.ptgrey.com/support/downloads/10563 (visited on
04/09/2017).

— (2016c). Technical Application Note TAN2009003, Getting Started with FlyCapture
2.x and Linux. url: https://www.ptgrey.com/support/downloads/10385 (visited
on 12/04/2016).

Rausand, Marvin and Arnljot Høyland (2004). System Reliability Theory. Models, Sta-
tistical Methods, and Application. 2nd ed. John Wiley & Sons, Inc. isbn: 978-0-471-
47133-2.

SICK (2011). ColorRanger E 3D Cameras Product Information. url: https://www.
sick.com/media/docs/8/08/408/Product_information_ColorRanger_E_3D_

Cameras_en_IM0035408.PDF (visited on 05/12/2017).
Sture, Øystein (2015). Automatic Quality Control of Salmon - Using Machine Learning

Algorithms based on Input from a 3D Machine Vision System.
Sture, Øystein et al. (2016). “A 3D machine vision system for quality grading of At-

lantic salmon”. In: Computers and Electronics in Agriculture 123, pp. 142 –148.
issn: 0168-1699. url: http://www.sciencedirect.com/science/article/pii/
S0168169916300576.

86

https://devblogs.nvidia.com/parallelforall/remote-application-development-nvidia-nsight-eclipse-edition/
https://devblogs.nvidia.com/parallelforall/remote-application-development-nvidia-nsight-eclipse-edition/
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
http://www.ptgrey.com/support/downloads/10130/
https://www.ptgrey.com/KB/10250
https://www.ptgrey.com/KB/10250
http://www.ptgrey.com/support/downloads/10125/
https://www.ptgrey.com/support/downloads/10563
https://www.ptgrey.com/support/downloads/10385
https://www.sick.com/media/docs/8/08/408/Product_information_ColorRanger_E_3D_Cameras_en_IM0035408.PDF
https://www.sick.com/media/docs/8/08/408/Product_information_ColorRanger_E_3D_Cameras_en_IM0035408.PDF
https://www.sick.com/media/docs/8/08/408/Product_information_ColorRanger_E_3D_Cameras_en_IM0035408.PDF
http://www.sciencedirect.com/science/article/pii/S0168169916300576
http://www.sciencedirect.com/science/article/pii/S0168169916300576

Appendices

87

Appendix A
Introduction to GPU programming using

CUDA

CUDA, which is an abbreviation for Compute Unified Device Architecture, is a program-
ming model and abstraction layer used programming GPUs from NVIDIA. This appendix
gives a short introduction to CUDA and GPU programming. Despite the overview is
rather limited, it should give enough insight to be able to understand the architecture
and implementation design descisions discussed in this report. For readers unfamiliar to
CUDA, it is therefore strongly advised to read this chapter to learn the basic terms and
ideas. To learn more about CUDA, refer to NVIDIAs Best Practices Guide (NVIDIA
2016a) and the Programming Guide (NVIDIA 2016b).

The first section of this chapter presents the general concepts of why and how parallel
programming can speed up execution. Next follows sections describing CUDA specific
details. It will be described how parallel processes execute on a GPU, how memory is
arranged, and how to create an application using a CUDA enabled GPU. At last follows
a more detailed description on how the utilize CUDA streams; a powerful tool to be able
to run tasks in parallel and asynchronously.

A.1 Parallel programming and processing speed

Gene M. Amdahl stated (Amdahl 1967) that to achieve higher performance, a large
portion as possible should be executed in parallel. His text is often rephrased as Amdahl’s
law, and can be written down as:

Speedup =
1

s+ p

N

(A.1)

Here s and p is the fraction of respectively sequential and parallel execution, and N is the
number of parallel execution lines. From this model it is possible to derive that as N and
the fraction of parallel operations and increases, the speedup reaches infinity. Amdahl did
also see that this equation had a limited validity range, because with increased parallelism

89

Appendix A. Introduction to GPU programming using CUDA

comes increased complexity. John L. Gustafson later stated that the problem size scales
with the number of processors(Gustafson 1988) and came up with his own model:

Speedup = s+ p ·N (A.2)

The two principles these two equations illustrate are often referred to as strong and
weak scaling (NVIDIA 2016a). They teach us that in order to increase performance, the
parallelism should be increased while keeping the problem complexity low.

A.2 The CUDA execution model

CPUs are designed to minimize the latency, while GPUs are designed is to maximize the
throughput. This results in two different hardware implementations. High end CPUs
often have only a few pipelines, but is often equipped with instruction level parallelism,
advanced prediction schemes, and speculative execution [ch. 2](Hennessy and Patterson
2006). A GPU has the capability of launching thousands of threads in parallel, but let
groups of threads, in CUDA called warps, share the same, simpler control logic.

The difference in control logic affects how branching (executing non-linear code) is
executed. An if-clause has a condition C, which result executing code A or code B.
An advanced CPU with speculative execution might execute both A and B in parallel,
before the value of C is finished computing, and commit either A or B when C is present.
Therefore, the cost of branching is low. However, on a GPU, this type of control logic
is not present. In addition, warps, which are groups of threads, share the same control
logic. Therefore, the GPU must first calculate C, and if different threads in the same
warp result in different condition values, first A, then B will be executed because the
control logic does not allow simultaneous execution of diverging threads.

CUDA does also group threads into blocks, where the size of a block is typically much
larger than the warp size. A number of blocks can be executed in parallel on the same
or multiple streaming multiprocessors (SMs). Due to this abstraction, CUDA code is
portable over a wide range of GPUs, having capabilities of running only a few hundred
threads to many thousand threads in parallel. Because newer GPUs might have a newer
instruction set, this is expressed by a version number called the compute capability.

A.3 The CUDA memory model

The memories of a GPU and a CPU are physically separated, by CUDA called respec-
tively device and host memory. In general, this means that a GPU cannot operate on
host memory, and a CPU cannot operate on device memory. Therefore, to be able to
process data from the CPU on the GPU, the data must first be transferred to the de-
vice (abbreviated as H2D), and when the operation is complete, be sent back to the
host (abbreviated as D2H). Memory allocation is done using cudaMalloc(), and mem-
ory transfers are done using cudaMemcpy(). At a lower level of abstraction, such memory
transfers are usually done using a Direct Memory Access controller (DMA), which allows

90

A.3. The CUDA memory model

Figure A.1: The abstraction layers using SMs, blocks and threads makes CUDA pro-
grams portable over a large range of GPUs. This is Figure 5 taken from the Cuda C
Programming Guide (NVIDIA 2016b).

the CPU to continue execution while the memory transfer is in progress. This capability
allows for asynchronous memory transfers. This means that when a memory transfer
starts, the execution is transferred back to main application. The memory transfer then
continues to operate in the background. Asynchronous memory transfers is implemented
by the function cudaMemcpyAsync(). The number of concurrent transfers between host
and device is determined by the direction of transfers, other ongoing operations, and the
number of DMA engines, which are called asynchronous engines in CUDA.

Previously it was explained that speedup is achieved when parallelism is increased
while time spent on serial execution is kept low. In terms of GPU programming, this
often means that the fraction between memory transfers and GPU execution should be
low. This can be achieved by reducing the number of memory transfers and by speeding
them up. A limiting factor of memory transfer speed is often the virtual memory system.
Most operating systems today use a concept of virtual memory. Virtual memory allows
us to define a larger memory area than physically available. This allows more applications
to be present in memory at once, and simplifies memory isolation between applications.
However, this design slows down memory transfers between the CPU and GPU. Before
a memory transfer between pages is started, it must be verified if the pages are present
in physical memory, and if necessary swapped in.

CUDA allows CPU memory to be pinned, also called to lock pages, of the virtual

91

Appendix A. Introduction to GPU programming using CUDA

memory system. This bypasses the availability checking and swapping process, which
allows faster memory transfers as shown in Figure A.2. When memory is pinned, CUDA
is even able to let the GPU access CPU memory directly, although this might be slow.
Memory can be pinned by calling cudaHostRegister() (NVIDIA 2012).

Figure A.2: Pinned memory transfers data faster between host and device.

CPUs normally have to types of memory, global memory and registers, in addition to
caches to speed up accesses to global memory. Global memory is large, but slow, while
registers fast, but a limited resource. CUDA GPUs also have global memory and register
memory. When calling cudaMalloc(), global memory is allocated. In addition to these
two types of memory, GPUs also have three other types of memory:

• Shared memory is memory that is shared between all threads in a block. It is faster
than global memory, but slower than registers. Using shared memory it is possible
to speed up i.e. matrix multiplication drastically. The shared memory has more
size restrictions and affect how many thread blocks than can run in parallel.

• Constant memory acts as a kind of cache memory. It is as fast as reading registers,
given that all threads in a warp read the same address. However, when differ-
ent addresses are read, the read operations are serialized, which increases latency.
Constant memory is also limited in size, and cannot be changed during execution.

• Texture memory is another type of read-only cached memory. When texture mem-
ory is read, nearby memory in a multidimensional memory space is also cached.
Therefore, texture memory is often used for multidimensional image processing.
Because the caching scheme is more advanced than for constant memory, the min-
imum latency is larger; however it is more optimized for multi-address access.

A.4 The CUDA programming model

Functions run a GPU are in CUDA named kernels. Kernels are called just the same way as
normal sequential functions are called, however the degree of parallelism must be specified.

92

A.5. Asynchronous execution using CUDA streams

This is specified as the number of blocks and the number of threads per block that should
be launched for this function call. The syntax for this is function name<<<blockdim,

threaddim>>>(parameter list). In addition, the function prototype must be prefixed
with global so that the compiler knows this function should be compiled for GPU
execution.

The following sequence of operations summarize how data can be processed on a GPU:

1. Call cudaMalloc(...) to allocate memory on the GPU.

2. Call cudaMemcpy(..., cudaMemcpyHostToDevice) to transfer data from the CPU
to the GPU.

3. Call function name<<<blockdim, threaddim>>>(...) to launch a CUDA kernel.

4. Call cudaMemcpy(..., cudaMemcpyDeviceToHost) to transfer data back from the
GPU to the CPU.

5. Call cudaFree(...) to deallocate the memory on the GPU.

A.5 Asynchronous execution using CUDA streams

One of the key features of CUDA GPU programming is asynchronous execution. This
means that memory transfers and kernels can be started, and while they are running, the
CPU can continue with other tasks. Using CUDA streams, this will in some cases even
allow parallel execution of GPU kernels and memory transfers.

A CUDA stream is simply a kind of first-in-first-out (FIFO) buffer of operations.
The CPU commits operations to streams, which are for example memory transfers or
kernel executions. The GPU reads this queue, and is responsible for executing them.
This means that operations on streams are executed asynchronously from the CPU point
of view. Because the operations are asynchronous, CUDA has added synchronization
primitives to be able to prevent data races and informing to signal when operations are
finished. One such example is the function cudaStreamSynchronize(), which waits until
all operations on a given stream are finished.

Both memory transfers and kernel execution can be committed to a stream and it
is therefore possible to commit a H2D copy, kernel execution and D2H copy twice to
two different streams before synchronizing. The resulting execution trace depends on the
capabilities of the GPU. It might execute all operations serially, or they might be executed
in parallel. If the tasks are executed in parallel depends on a number of properties
described in detail in CUDAs C programming guide [sec. 3.2.5](NVIDIA 2016b). In
general, it is required to have multiple SMs, pinned host memory, having one or more
asynchronous engines etc. Even though a GPU might not be able to operate all operations
in parallel, it might be valuable to design the program to use multiple streams in case
the program will be ported to a more advanced GPU later.

93

Appendix A. Introduction to GPU programming using CUDA

A.5.1 Some execution traces

This subsection presents some possible execution traces for GPUs with different capabil-
ities. The purpose is to give deeper insight how the capabilities of a GPU might limit
or increase the throughput of a process. In the general case, there exists a large set of
possible execution traces. Therefore, some assumptions are set to limit the number of
traces. First, the assumption is made that there is a continuous stream of GPU tasks.
Secondly it is assumed that memory transfers and kernel executions is concurrent. The
analysis is then only based on two properties of the GPU:

(a) If H2D and D2H transfers are independent. When this property is false, the se-
quence of H2D (stream 1), D2H (stream 1), H2D (stream 2), will block on H2D
(stream 2) until D2H (stream 1) is finished. This requires at least two copy engines.

(b) If kernel executions are concurrent. The maximum concurrency of the GPU, that
is the maximum number of kernels that can be executed concurrently, depends on
the kernel and GPU itself. This property is therefore more difficult to verify.

In Figure A.3 traces are given for when both input and output data is stored in
device memory. Therefore, it is necessary with both a H2D and a D2H transfer. In
Figure A.4 traces are presented when output data is located accessed through pinned
host memory. For this case, it is then only necessary with a H2D transfer. It is clear
that this configuration does not need property (a) to be true to achieve high throughput.
Therefore, for this configuration will likely be favorable for low end GPUs. However, it
must be remembered that memory access to output data will be slower, and therefore it
should be verified which configuration gives the best performance.

94

A.5. Asynchronous execution using CUDA streams

H2D transfer 1 2

D2H transfer 1 2

Execution stream 1 1

Execution stream 2 2

(a) Property (a) is false, property (b) is false)

H2D transfer 1 2 3 4 5

D2H transfer 1 2 3

Execution stream 1 1 3

Execution stream 2 2 4

(b) Property (a) is true, property (b) is false.

H2D transfer 1 2 3 4 5 6 7 8

D2H transfer 1 2 3 4 5

Execution stream 1 1 3 5 7

Execution stream 2 2 4 6

(c) Property (a) is true, property (b) is true.

Figure A.3: Execution traces when both input and output data is stored in device
memory.

H2D transfer 1 2 3 4 5

Execution stream 1 1 3

Execution stream 2 2 4

(a) Property (b) is false.

H2D transfer 1 2 3 4 5 6 7 8

Execution stream 1 1 3 5 7

Execution stream 2 2 4 6

(b) Property (b) is true.

Figure A.4: Execution traces when only input data is stored in device memory. Note
that the traces are almost identical to the traces (b) and (c) in Figure A.3, without
requiring property (a) to be true.

95

Appendix A. Introduction to GPU programming using CUDA

96

Appendix B
Setup of the Jetson TK1 and Jetson TX1

This chapter describes the configuration of the operating system tools and libraries on
the NVIDIA Jetson TK1 and Jetson TX1. First the proposed setup is given, next follows
a step-by-step guide describing how to configure the Jetsons to the setup used by this
thesis.

B.1 Proposed setup

The proposed setup contains a version of Linux for Tegra, a variant of the Flycapture2
SDK for the camera, and a CUDA toolchain. This setup was chosen because of limitations
of the used equipment, performance reasons, and for increasing the ease of use.

Linux for Tegra (L4T) is a package for the Jetsons created by NVIDIA containing a
bootloader and Ubuntu file system. The TK1 uses version 21.5, which contains Ubuntu
14.04, while the TX1 uses version 24.2.1 which contains Ubuntu 16.04. Because Linux
for Tegra is the default setup, the number of installation guides and available support is
large, which decreases setup time.

The Flycapture2 SDK was chosen because it is the only Linux compatible SDKs for
the PointGrey camera. Because the Jetson TK1 and TX1 run two different Ubuntu
versions, two different SDK versions must be used: 2.9.3.43 and 2.10.3.266. It is doubtful
if the Flycapture2 SDK will work on other Linux distributions, because it depends on
many libraries only available through Ubuntu. These are for example libraw1394-8,
libgtkmm-2.4-dev, and libusb-1.0. The full set of requirements are found in Technical
Application Note 2009003 (Point Grey 2016c).

The CUDA toolchains were installed on the Jetsons because the NVIDIA Nsight IDE
was unable to configure projects for cross compilation (see Appendix C). The CUDA
toolchains available for the Jetson TK1 and TX1 are for CUDA version 6.5 and 8.0.
Unfortunately, these toolchains are not available through direct download. However, these
are available through the NVIDIA Jetpack, which is an installation package installing
both Linux for Tegra, IDE, and toolchain.

The Jetson TK1 and TX1 are designed to maximize computational power per energy
unit. Therefore, these computers contain many configuration options for turning on and

97

Appendix B. Setup of the Jetson TK1 and Jetson TX1

off power saving features. For this thesis, power consumption is not an issue. Therefore,
the Jetsons can be configured for maximum performance. This includes enabling all
CPU cores, use the high performance CPU cores, and maximizing the CPU, GPU, and
memory clock rate. The Jetson TX1 sample file system contains a script performing all
these operations. During this project, the script has been generalized to work on both
the TK1 and TX1. The script is included in the delivery as jetson clocks.sh.

B.2 Step-by-step installation guide

This section is a step-by-step guide on how the software was installed and configured
on the NVIDIA Jetson TK1 and Jetson TX1. First, it describes how the file system is
set up and flashed. Then it is described how the CUDA Toolkit and the binaries of the
Flycapture2 SDK are installed.

For clarity: Files and folders are emphasized as my folder/my file, text to be in-
serted or modified is emphasized as some text. Command line statements are emphasized
as my command .

The following list gives the prerequisites for the setup. Software components belonging
to the Jetson can be downloaded from https://developer.nvidia.com/embedded/do

wnloads. The Flycapture2 SDK can be downloaded from https://www.ptgrey.com/s

upport/downloads:

• A host computer running Ubuntu 14.04. The newest stable release, 16.04, is not
supported.

• A NVIDIA Jetson TK1 and/or NVIDIA Jetson TX1.

• A micro USB cable for flashing the boards.

• A keyboard and monitor or a serial cable. This is used to access its terminal.

• A driver package. The Jetson TK1 uses version 21.5 where the downloaded file
is named Tegra124_Linux_R21.5.0_armhf.tbz2. The Jetson TX1 uses version
24.2.1 where the downloaded file is named Tegra210_Linux_R24.2.1_aarch64.tb

z2.

• The L4T Sample Root Filesystem. The Jetson TK1 uses version 21.5 where the
downloaded file is named Tegra_Linux_Sample-Root-Filesystem_R21.5.0_armh

f.tbz2. The Jetson TK1 uses version 24.2.1 where the downloaded file is named
Tegra_Linux_Sample-Root-Filesystem_R24.2.1_aarch64.tbz2.

• The Flycapture2 SDK files. The Jetson TK1 uses version 2.9.3.43 where the down-
loaded file is named flycapture.2.9.3.43_armhf.tar.gz. The Jetson TX1 uses
version 2.10.3.266 where the downloaded file is named flycapture.2.10.3.266_

arm64.tar.gz.

98

https://developer.nvidia.com/embedded/downloads
https://developer.nvidia.com/embedded/downloads
https://www.ptgrey.com/support/downloads
https://www.ptgrey.com/support/downloads

B.2. Step-by-step installation guide

• A CUDA Toolkit for L4T. The Jetson TX1 uses version 6.5 for L4T version 21.5,
while the TX1 uses version 8.0 for L4T version 24.2.1. These toolkits can unfor-
tunately not be downloaded directly from the support websites of NVIDIA. How-
ever, by reading the configuration files of the NVIDIA Jetpack installer direct links
were obtained: http://developer.download.nvidia.com/devzone/devcenter/

mobile/jetpack_l4t/005/linux-x64/cuda-repo-l4t-r21.5-6-5-local_6.5-53_

armhf.deb and http://developer.download.nvidia.com/devzone/devcenter/

mobile/jetpack_l4t/006/linux-x64/cuda-repo-l4t-8-0-local_8.0.34-1_arm64.

deb.

B.2.1 Configure and flash the operating system

The steps in the list below describe how the bootloader, kernel and file system are config-
ured and flashed onto the Jetson. NVIDIA has created a setup, called NVIDIA Jetpack,
which does all this, however, it does not configure the USB port to use USB3 for the
Jetson TK1. The best way is therefore to follow this guide.

1. Extract the Jetson TK1 Driver Package. The folder should be named Linux_For_

Tegra.

2. Extract the Sample Root Filesystem in the folder Linux_For_Tegra/rootfs.

3. Next the system must be modified to use USB3 instead of USB2, however this step is
only necessary for the TK1. First ensure line 38 in Linux_For_Tegra/jetson-tk1.

conf contains the value 0x6209C000. Change
usb port owner info=0 to usb port owner info=2 in the file Linux_For_Tegra/bo

otloader/ardbeg/jetson-tk1_extlinux.conf.emmc to use USB3. Then and add
the line usbcore.usbfs memory mb=1000 to the same file to increase the internal
USB buffer size.

4. To compile and create the binaries to be transferred, run sudo ./apply binaries.sh .

5. Before the Jetson can be flashed, it must be set in bootloader mode. This is done by
holding the recovery button and pressing the reset button. Verify that the device
has entered bootloader mode, run the command lsusb and check that an NVIDIA
device appears on the list.

6. Run sudo ./flash jetson-tk1 mmcblk0p1 or sudo ./flash.sh jetson-tx1 mmcblk0p1
to flash the bootloader, kernel, and file system onto the Jetson. This may take a
while.

Now that the Jetson is up and running, hook up a keyboard and monitor or connect to
it using a serial cable. Log in using the credentials Username: ubuntu, Password: ubuntu.
If the device is connected to the internet, change its password by using the command
passwd. After this is done it is possible to connect to the device using ssh. Update the

system to use the newest updates using sudo apt-get update and sudo apt-get upgrade,
however do not upgrade to newer versions of Ubuntu.

99

http://developer.download.nvidia.com/devzone/devcenter/mobile/jetpack_l4t/005/linux-x64/cuda-repo-l4t-r21.5-6-5-local_6.5-53_armhf.deb
http://developer.download.nvidia.com/devzone/devcenter/mobile/jetpack_l4t/005/linux-x64/cuda-repo-l4t-r21.5-6-5-local_6.5-53_armhf.deb
http://developer.download.nvidia.com/devzone/devcenter/mobile/jetpack_l4t/005/linux-x64/cuda-repo-l4t-r21.5-6-5-local_6.5-53_armhf.deb
http://developer.download.nvidia.com/devzone/devcenter/mobile/jetpack_l4t/006/linux-x64/cuda-repo-l4t-8-0-local_8.0.34-1_arm64.deb
http://developer.download.nvidia.com/devzone/devcenter/mobile/jetpack_l4t/006/linux-x64/cuda-repo-l4t-8-0-local_8.0.34-1_arm64.deb
http://developer.download.nvidia.com/devzone/devcenter/mobile/jetpack_l4t/006/linux-x64/cuda-repo-l4t-8-0-local_8.0.34-1_arm64.deb

Appendix B. Setup of the Jetson TK1 and Jetson TX1

B.2.2 Install CUDA

These steps assumes the system is accessed through ssh. Because the project setup
compiles the programs directly on the Jetson, the entire toolchain must be installed.
This is done by following the next steps:

1. From the host, copy the CUDA Toolkit to device using scp <toolchain name.deb>

ubuntu@ip address:˜ .

2. On the target install the package by running sudo dpkg -i <toolchain name.deb> .

3. Now update the system sources, run sudo apt-get update .

4. Install the CUDA toolkit, run sudo apt-get install cuda-core-6-5 cuda-toolkit-6-5

or sudo apt-get install cuda-core-8-0 cuda-toolkit-8-0 .

5. Now that the nvcc compiler is installed, it must be added to the PATH variable
of the system. This is done by adding /usr/local/cuda-6.5/bin or /usr/local/cuda-

8.0/bin to the PATH variable in /etc/environment. Run . /etc/environment

when finished. Verify that the nvcc compiler is found by running nvcc –version .

6. The last step is to add the CUDA libraries to the libraries search path. Edit
the file etc/ld.so.conf.d/cuda.conf and add the line usr/local/cuda-6.5/lib or
usr/local/cuda-8.0/lib. Close and save the file and run sudo ldconfig .

B.2.3 Install the Flycapture2 SDK binaries

The Flycapture2 SDK binaries must be installed on the Jetson in order to use the camera.
Because the system is compiled locally on the Jetsons, the header files must also be copied
to the correct include folders.

1. First some prerequisite libraries must be installed. This is done by running
sudo apt-get install build-essential libraw1394-11 libgtkmm-2.4-1c2a libusb-1.0-0 .
Ignore possible errors.

2. From the host copy the archive to the device:
scp <sdk files.tar.gz> ubuntu@ip address:˜ . Next extract it using

tar -xvzf <sdk files.tar.gz> .

3. Install the SDK by navigating into the flycapture folder and run sudo ./flycap2-conf .
When prompted with which user to add to some video groups, use ubuntu. Reboot
the system when complete.

100

B.2. Step-by-step installation guide

4. Next is to move the library binaries and include folders to the correct folders in the
file system. This is done by the following steps:
sudo mkdir /usr/include/flycapture

cd ˜/flycapture.<version>/include/

sudo cp -r * /usr/include/flycapture/

sudo mkdir /usr/lib/flycapture

cd ˜/flycapture.<version>/lib/

sudo cp -r * /usr/lib/flycapture/

5. Finally, the libraries can be added to the library search path. Edit the file etc/

ld.so.conf.d/flycapture.conf by adding the lines /usr/lib/flycapture and /us-
r/lib/flycapture/C. Run sudo ldconfig to complete.

101

Appendix B. Setup of the Jetson TK1 and Jetson TX1

102

Appendix C

Development environment setup

This chapter describes how the development environment for the Jetson TK1 and Jetson
TX1 was configured. It is required that the Jetsons are configured as described in Ap-
pendix B. The first section describes the proposed setup, and section C.2 is a step-by-step
installation guide.

C.1 Proposed setup

Using an Integrated Development Environment (IDE) simplifies development. An IDE
usually provides both code completion, debug functionality, and an integrated toolchain.
Both Nsight Visual Studio Edition and Nsight Eclipse Edition and provide advanced
CUDA GPU debugging and GPU profiling. The Visual Studio Edition runs on Windows
only, and does not support remote development. Therefore, the Eclipse edition is the
only available IDE compatible with NVIDIA Jetson development.

Nsight Eclipse Edition allows two different types of remote development projects
(NVIDIA 2014). A cross-compiled project compiles the application on the host com-
puter, while a synchronized project transfers the files to the device and compiles them
there. It is beneficial to compile the program on the host computer because it speeds
up the compilation speed. However, it was found impossible to configure Nsight from
cross-compilation because NVIDIA does not longer provide any up to date guide for
this configuration. The resulting development environment therefore uses synchronized
projects. This creates some overhead in compiling and file transfer, but delivers most of
the functionality directly in the IDE. The entire application in this project uses about
one (TX1) or two (TK1) minutes to compile when all source files are rebuilt.

The Nsight debugger was found to be very slow. It was therefore often beneficial to
edit the program, recompile, and restart the application instead of launching a debug
session. This issue will probably be present when using cross-compiled projects as well.

103

Appendix C. Development environment setup

C.2 Step-by-step installation guide

This is a step-by-step guide for installing Nsight Eclipse Edition and how to configure
the projects to use synchronized developed projects. The guide is tested with the Jetsons
configured as described in Appendix B.

A prerequisite for synchronized remote projects is that the target system is connected
to the same network, ssh is available, and that git is installed on both the host and
target system. The host computer must run Ubuntu 14.04. Nsight Eclipse Edition does
unfortunately not support the latest stable Ubuntu release, 16.04.

The easiest way to install Nsight Eclipse Edition is to run through the NVIDIA
Jetpack installer using the installation guide found at http://docs.nvidia.com/jetp

ack-l4t/. For this project, Jetpack version 2.3.1 is used which supplies Nsight version
8.0. The installation guide will also prompt to install a preconfigured operating system
on the Jetson. Feel free to do this, but remember to replace it with the setup described
in Appendix B afterwards.

To develop an application for the Jetson, it should be started by using Empty CUDA
Project as project type in the new project wizard in Nsight. When the source files
are added, the build, debug, run, and profile configuration should be edited to use a
remote toolchain. These configuration windows should look similar to what is shown in
Figure C.1. The build configuration is found in the menu Project → Properties → Build
→ Target Systems. The run, debug, and profile configurations, are found in the Run
menu bar.

Figure C.1: Configuration windows for remote synchronized projects in NVIDIA Nsight
Eclipse Edition. For the Jetson TX1, the remote toolkit path must be modified.

The Jetson TK1 and Jetson TX1 have different CUDA compute capabilities. NVIDIA
Nsight must therefore be configured differently for these two boards. The compute capa-
bility options are found in Project → Properties → Build → Settings. The Jetson TK1 is
should use the configuration <3.2, 3.0>, while the TX1 should use <5.2, .0>. Figure C.2
shows the configuration window where the compute capability is selected.

104

http://docs.nvidia.com/jetpack-l4t/
http://docs.nvidia.com/jetpack-l4t/

C.2. Step-by-step installation guide

Figure C.2: The synchronized projects must be configured to use the right CUDA
compute capability. This windows shows how the IDE is configured for the Jetson TX1.

When these steps are performed, the development environment is configured. It is
possible to add multiple build targets in order to develop for both the Jetson TK1 and
TX1 at the same time. However, this sometimes leads to merge conflicts. These are
easiest resolved by removing the entire project directory on the Jetsons. By rebuilding
the project, these files are resynchronized and rebuilt.

105

Appendix C. Development environment setup

106

Appendix D

Using the applications and tools

This appendix chapter describes how to run the developed applications in order to test
and benchmark the developed scanner. First, in section D.1, it is presented how the line
scanner module is compiled and launched. Next follows a description of two configuration
tool, which performs line scanner module configuration in either Windows or Ubuntu. In
section D.3 it is explained how the LabVIEW host is tested and configured. The last
two sections of this appendix describe the benchmarker and a python tool for scan data
visualization in Ubuntu.

The necessary source code and project setups is delivered together with this report.
Each of the applications are found in separate folders. It is required that the Jetsons
are flashed and programmed as described by Appendix B, and the test setup installed as
described in Appendix C.

D.1 The line scanner module

The line scanner module application implementation is described in chapter 4. Us-
ing NVIDIA Nsight Eclipse Edition, it is possible to import a project from the folder
JetsonTX1Project. It might be necessary to reconfigure the project to set the correct
IP addresses, CUDA compute capabilities, and build paths for the target system. Ap-
pendix C describes how this is done.

Before the application is started, it must be built. Compiling is done by pressing
CTRL + B. This might take more than two minus on the Jetson TK1 and one minute for
the Jetson TX1. The build status is shown in the console at the lower half of the screen.
When the application is built, it must be started remotely. The application cannot be
launched from NVIDIA Nsight, because it requires super user rights for changing execu-
tion priority. Therefore, launch the application through ssh: ssh ubuntu@<ip address> ,

sudo ./<application> . The application logs a message Application started to the termi-
nal when the application is started.

107

Appendix D. Using the applications and tools

D.2 The configuration tools

The configuration tools are applications that connect to a line scanner module, sends
camera and scanner configuration parameters, before they disconnects. A project created
in Visual Studio can be extracted from the folder WindowsCHost, while a project created
in Eclipse can be extracted from the folder ConfigurationTool.

The port, IP address, and the given configuration executions of the Jetson must
be set in main.c. The most important system parameters are found in the two files
scan_config.c and camera_config.c. In the file scan_config.c the scanner settings
and image processing parameters are set. Using camera_config.c it possible to configure
camera parameters such as white balance, gain, and shutter time.

Because the configuration tool is applicable for both the Jetson TK1 and Jetson TX1
line scanner module, and because they use different versions of the FlyCapture2 SDK,
these must be differentiated. When FLYCAPTURE2 SDK 1404 is defined, the camera con-
figuration will only be accepted on the TK1. When FLYCAPTURE2 SDK 1604 is defined,
the configuration calls are only applicable on the TX1. Because the length of the config-
uration calls differ, an invalid configuration will be denied by the line scanner module.

The application is started by pressing either CTRL + F5 on Windows, or by pressing
CTRL + F11 on Ubuntu. When invalid parameters are set, this is shown in the console
window as in Figure D.1. The definition of error codes are found in ret_code.h.

Figure D.1: Console output of the Ubuntu configuration tool when an error is reported.

D.3 The LabVIEW host

The line scanner module should be started as described in the previous section before
the host control system is launched. The LabVIEW host control system retrieves and
visualizes data from a line scanner module. The application requires the host computer
to run Windows with LabVIEW and the IMAQ package installed. Its implementation is
described in chapter 5.

Before the application is started, it must first be configured with some parameters.
These are found in TestScannerPanel.vi. Fill in the parameters similar to the values
shown in Figure D.2. When this is done, press the run button in the top left corner. To

108

D.4. The benchmarker

include visualization open 2DVisualization.vi and/or 3DVisualization.vi. A sample of 2D
visualization and 3D visualization is given in Figure 5.5 and Figure D.3

Figure D.2: TestScannerPanel.vi in the host control system application must be con-
figured similar to the configuration shown here.

Figure D.3: A sample of the visual output of 3DVisualization.vi.

D.4 The benchmarker

The benchmarker is a variant of the configuration tool for Ubuntu. Does nothing more
that starting the scanner with a given image buffer and block size configuration, decodes
the GPU and TCP processing time and stores the results to text files. Because of its
simplicity, it is assumed that the benchmarker affects the TCP send time measurements
as little as possible.

109

Appendix D. Using the applications and tools

The benchmarker functionality is added by adding the lines benchmarker do all()

or benchmarker start() to main.c, , which either starts a range of tests or one test
case. The test case parameters are found in benchmarker.c and benchmarker.h. The
benchmarker is started the same way as the configuration tool: By pressing CTRL +
F11.

The name of the output files, such asWed May 3 08 53 43 2017 ImgBuf2BlockSize128.txt,
is a combination of the time the tests started, the image buffer size, and thread block
size. The content of the benchmark files is first a summary, then the GPU benchmark
values, then the TCP benchmark values, and finally the total execution time results. The
summary includes the minimum, maximum, average and variance of the measurements.
This predefined format simplifies the extraction and comparison with other test results.

D.5 The data extractor

The data extractor is a Python client made to visualize and record both line data and
benchmark parameters in Ubuntu. The tool makes it easy to validate the correctness
of the received data, without needing to switch to a Windows computer during de-
velopment. The data extractor is found in the DataExtracter folder. The applica-
tion runs using python 2.7 and has dependencies to python libraries numpy and mat-
plotlib. The libraries are installed using: sudo apt-get install python-pip python-dev

and sudo pip install numpy matplotlib .
The start menu gives three options as shown in Figure D.4. The first option enters

a new menu and changes the state of the target to scan mode. The second function
retrieves an image from the device, which is useful for camera and laser alignment. The
last option, provided a file name from a previously recorded benchmark, plots histograms
of the latency and throughput measurements.

Figure D.4: The start menu of the data extractor. The data extractor must be executed
with target IP address and port as arguments.

In scanning mode options are provided to either show the sampled height profile,
visualize the benchmark results, or save benchmarks to file. The visualization tools plot
data in real time, at these tools are therefore very useful for testing.

The file format of the benchmarks is simple. Each line contains one sample. A set of
samples is preceded with either ”Callback processing time:” or ”Image processing time”.
It is therefore possible to add extra information to the file using a text editor and still be
able to plot the data using option 3 in the start menu.

110

D.5. The data extractor

Figure D.5: Visualization of the height profile using the data extractor. The thickness
of the line corresponds to the measured scatter. The height profile is updated in real
time.

Figure D.6: Visualization of the image processing time obtained by the data extractor.
The histogram is updated in real time.

111

Appendix D. Using the applications and tools

112

Appendix E
Code snippets

This appendix includes all code snippets referred to from the report. Many of the code
snippets here are only extractions from the actual implementation files. Therefore, refer
to those when a deeper understanding is needed. The first section of this chapter lists
configuration structure definitions. Next the code snippets regarding image parameter
extraction is given. The last section of this chapter presents other code snippets not
fitting into the two first categories.

E.1 Configuration structure definitions

The configuration structures and enumerations are C code equivalents to message struc-
ture definitions defined in subsection 3.1.1. The definitions are presented in C code
because the representation is close to the real byte representations.

Listing E.1: Definition of camera configuration function enumeration and data struc-
ture.

1 /** @brief Camera configuration types.

2 *

3 * @details The configuration types correspond to the FlyCapture2 SDK configuration

calls.

4 */

5 typedef enum

6 {

7 CAMERA_CONFIG_fc2GetConfiguration = 0x01,

8 CAMERA_CONFIG_fc2SetConfiguration = 0x02,

9 CAMERA_CONFIG_fc2GetCameraInfo = 0x03,

10 CAMERA_CONFIG_fc2GetPropertyInfo = 0x04,

11 CAMERA_CONFIG_fc2GetProperty = 0x05,

12 CAMERA_CONFIG_fc2SetProperty = 0x06,

13 CAMERA_CONFIG_fc2GetVideoModeAndFrameRateInfo = 0x07,

14 CAMERA_CONFIG_fc2GetVideoModeAndFrameRate = 0x08,

15 CAMERA_CONFIG_fc2SetVideoModeAndFrameRate = 0x09,

16 CAMERA_CONFIG_fc2GetFormat7Info = 0x0A,

17 CAMERA_CONFIG_fc2ValidateFormat7Settings = 0x0B,

113

Appendix E. Code snippets

18 CAMERA_CONFIG_fc2GetFormat7Configuration = 0x0C,

19 CAMERA_CONFIG_fc2SetFormat7ConfigurationPacket = 0x0D,

20 CAMERA_CONFIG_fc2SetFormat7Configuration = 0x0E,

21 CAMERA_CONFIG_fc2GetEmbeddedImageInfo = 0x0F,

22 CAMERA_CONFIG_fc2SetEmbeddedImageInfo = 0x10,

23 CAMERA_CONFIG_fc2GetTriggerModeInfo = 0x11,

24 CAMERA_CONFIG_fc2GetTriggerMode = 0x12,

25 CAMERA_CONFIG_fc2SetTriggerMode = 0x13,

26 CAMERA_CONFIG_fc2GetTriggerDelayInfo = 0x14,

27 CAMERA_CONFIG_fc2GetTriggerDelay = 0x15,

28 CAMERA_CONFIG_fc2SetTriggerDelay = 0x16,

29

30 CAMERA_CONFIG_FORCE32_BIT = 0xFFFFFFFF

31 } camera_config_type_t;

32

33

34 /** @brief Configuration data for the FlyCapture2 SDK calls. */

35 typedef struct

36 {

37 camera_config_type_t type; /**< Type of configuration. */

38

39 union

40 {

41 fc2Config config; /**< Config struct used when

type is @ref CAMERA_CONFIG_fc2GetConfiguration or @ref

CAMERA_CONFIG_fc2SetConfiguration. */

42 fc2CameraInfo cameraInfo; /**< Config struct used when

type is @ref CAMERA_CONFIG_fc2GetCameraInfo. */

43 fc2PropertyInfo propertyInfo; /**< Config struct used when

type is @ref CAMERA_CONFIG_fc2GetPropertyInfo. */

44 fc2Property property; /**< Config struct used when

type is @ref CAMERA_CONFIG_fc2GetProperty or @ref

CAMERA_CONFIG_fc2SetProperty. */

45 fc2TriggerModeInfo triggerModeInfo; /**< Config struct used when

type is @ref CAMERA_CONFIG_fc2GetTriggerModeInfo. */

46 fc2TriggerMode triggerMode; /**< Config struct used when

type is @ref CAMERA_CONFIG_fc2GetTriggerMode or @ref

CAMERA_CONFIG_fc2SetTriggerMode. */

47 fc2TriggerDelayInfo triggerDelayInfo; /**< Config struct used when

type is @ref CAMERA_CONFIG_fc2GetTriggerDelayInfo. */

48 fc2TriggerDelay triggerDelay; /**< Config struct used when

type is @ref CAMERA_CONFIG_fc2GetTriggerDelay or @ref

CAMERA_CONFIG_fc2SetTriggerDelay. */

49

50 struct

51 {

52 fc2VideoMode videoMode;

53 fc2FrameRate frameRate;

54 BOOL supported;

55 } video_framerate_info; /**< Config struct used when type

is @ref CAMERA_CONFIG_fc2GetVideoModeAndFrameRateInfo, @ref

CAMERA_CONFIG_fc2GetVideoModeAndFrameRate, or @ref

CAMERA_CONFIG_fc2SetVideoModeAndFrameRate. */

114

E.1. Configuration structure definitions

56

57 struct

58 {

59 fc2Format7Info format7Info;

60 BOOL supported;

61 } format7Info; /**< Config struct used when type

is @ref CAMERA_CONFIG_fc2GetFormat7Info. */

62

63 struct

64 {

65 fc2Format7ImageSettings imageSettings;

66 fc2Format7PacketInfo packetInfo;

67 BOOL supported;

68 } format7Settings; /**< Config struct used when type

is @ref CAMERA_CONFIG_fc2ValidateFormat7Settings.*/

69

70 struct

71 {

72 fc2Format7ImageSettings imageSettings;

73 union

74 {

75 unsigned int packetSize;

76 float percentage;

77 };

78 } format7Configuration; /**< Config struct used when type

is @ref CAMERA_CONFIG_fc2GetFormat7Configuration,

CAMERA_CONFIG_fc2SetFormat7ConfigurationPacket, or

CAMERA_CONFIG_fc2SetFormat7Configuration.*/

79

80 fc2EmbeddedImageInfo embeddedImageInfo;

81 } data;

82

83 } camera_config_t;

Listing E.2: Definition of scanner configuration enumeration and structures.

1 /** @brief This enum defines the GPIO pin values for the Jetson TK1 and TX1. */

2 typedef enum

3 {

4 // Jetson TK1 pins

5 gpio57 = 57, // J3A1 - Pin 50

6 gpio160 = 160, // J3A2 - Pin 40

7 gpio161 = 161, // J3A2 - Pin 43

8 gpio162 = 162, // J3A2 - Pin 46

9 gpio163 = 163, // J3A2 - Pin 49

10 gpio164 = 164, // J3A2 - Pin 52

11 gpio165 = 165, // J3A2 - Pin 55

12 gpio166 = 166, // J3A2 - Pin 58

13

14 // Jetson TX1 pins

15 gpio36 = 36, // J21 - Pin 32 - Unused - AO_DMIC_IN_CLK

16 gpio37 = 37, // J21 - Pin 16 - Unused - AO_DMIC_IN_DAT

115

Appendix E. Code snippets

17 gpio38 = 38, // J21 - Pin 13 - Bidir - GPIO20/AUD_INT

18 gpio63 = 63, // J21 - Pin 33 - Bidir - GPIO11_AP_WAKE_BT

19 gpio184 = 184, // J21 - Pin 18 - Input - GPIO16_MDM_WAKE_AP

20 gpio186 = 186, // J21 - Pin 31 - Input - GPIO9_MOTION_INT

21 gpio187 = 187, // J21 - Pin 37 - Output - GPIO8_ALS_PROX_INT

22 gpio219 = 219 // J21 - Pin 29 - Output - GPIO19_AUD_RST

23 } gpio_pin_t;

24

25

26 /**@brief The defined scan modes.

27 *

28 * @details Up to 2^32 scan modes can be defined. In the description the frame types

are abbreviated as following:

29 *

30 * L: An image containing the laser line.

31 * B: An image where the laser line and LED is turned off.

32 * C: An illuminated by LEDs.

33 */

34 typedef enum

35 {

36 SCAN_MODE_0 = 0, /**< L, L, L, ... */

37 SCAN_MODE_1 = 1, /**< L, C, L, C, ... */

38 SCAN_MODE_2 = 2, /**< C, C, C, ... */

39 SCAN_MODE_3 = 3, /**< L, B, L, B, ... */

40 SCAN_MODE_4 = 4, /**< L, B, C, L, B, C, ... */

41

42 SCAN_MODE_FORCE_32_BIT = 0xFFFFFFFF

43 } scan_mode_t;

44

45 /**@brief The image info structure holds information about image configuration. */

46 typedef struct image_info_s

47 {

48 uint32_t frame_height; /**< The height of the image in

pixels. */

49 uint32_t num_scan_lines_per_image; /**< The number of scan lines per

image. That is the number of columns divided by two. */

50 } image_info_t;

51

52

53 /** @brief Image processing configuration. */

54 typedef struct

55 {

56 uint32_t scatter_distance; /**< Scatter distance is the intensity of the pixel

calculated some distance from the height. Defined in pixels. */

57 uint32_t threshold_value; /**< The threshold value sets a lower limit of pixel

intensities. All values below are not used for height and reflectance

calculations. */

58 float pixel_power; /**< The exponent used for height calculation. */

59

60 uint32_t num_streams; /**< The number of CUDA streams used for image

processing. */

61 uint32_t threads_per_block; /**< The threads per block is a kernel launch

parameter. */

116

E.2. Image processing

62 uint32_t frames_per_message; /**< Frames per message indicates the size of the

frame buffer and output message. */

63 } img_processing_config_t;

64

65

66 /** @brief Scanner configuration. */

67 typedef struct scan_config_s

68 {

69 scan_mode_t scan_mode; /**< The active scan mode used

to retrieve the image parameters. */

70 image_info_t image_info; /**< The image size used for

parameter extraction. */

71 gpio_pin_t scanner_ready_pin; /**< The GPIO indicating when

the scanner framework is busy. */

72 float fps; /**< The expected camera frame

rate. This is used to see if frames are dropped. */

73 float cycle_time_diff_threshold_ms; /**< A threshold value

determining the maximum jitter in image reception time.*/

74

75 img_processing_config_t img_processing_config; /**< The image processing

configuration used for parameter extraction. */

76 } scan_config_t;

E.2 Image processing

The code snippets presented in this section are extractions from the image processing
implementation files. The actual implementation files might differ slightly from those
presented here.

Listing E.3: This code snippet demonstrates how a lookup table is placed in texture
memory. The values are created in host memory, before they are transferred to the GPU.

1 ret_code_t scan_mode_0_init(scan_config_t * p_config)

2 {

3 float h_texture[LOOKUP_TABLE_LENGTH];

4 cudaError_t cuda_error;

5 float * d_texture;

6 cudaArray *cuArray;

7

8

9 for (int i = 0; i < LOOKUP_TABLE_LENGTH; i++)

10 {

11 // implement threshold

12 if (i > (p_config->img_processing_config.threshold_value >> 4))

13 {

14 h_texture[i] = pow(i,p_config->img_processing_config.pixel_power);

15

16 // values are in the range 0 .. 2^16

17 h_texture[i] = (1<<16)*(h_texture[i] /

pow(LOOKUP_TABLE_LENGTH,p_config->img_processing_config.pixel_power));

117

Appendix E. Code snippets

18 }

19 }

20

21 cuda_error = cudaMalloc((void **) &d_texture, sizeof(h_texture));

22 if (cuda_error != cudaSuccess)

23 {

24 LOG("Failed allocating texture memory\n");

25 return RET_ERROR_NO_MEM;

26 }

27

28 // Allocate texture array and copy image data

29 cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0,

cudaChannelFormatKindFloat);

30

31 cuda_error = cudaMallocArray(&cuArray,

32 &channelDesc,

33 LOOKUP_TABLE_LENGTH * sizeof(float),

34 1);

35 if (cuda_error != cudaSuccess)

36 {

37 LOG("Failed allocating texture array memory\n");

38 return RET_ERROR_NO_MEM;

39 }

40

41 cuda_error = cudaMemcpyToArray(cuArray,

42 0,

43 0,

44 h_texture,

45 LOOKUP_TABLE_LENGTH * sizeof(float),

46 cudaMemcpyHostToDevice);

47 if (cuda_error != cudaSuccess)

48 {

49 LOG("Failed copying texture array memory\n");

50 return RET_ERROR_NO_MEM;

51 }

52

53 // Bind the array to the texture

54 cuda_error = cudaBindTextureToArray(lookup_table, cuArray, channelDesc);

55 if (cuda_error != cudaSuccess)

56 {

57 LOG("Failed binding texture array memory\n");

58 return RET_ERROR_NO_MEM;

59 }

60 return RET_SUCCESS;

61 }

118

E.2. Image processing

Listing E.4: This code snippet shows how the image processing parameters are retrieved
for scan mode 4. The variables d frame buffer and d output buffer are inputs to the
image processing kernels and contain the required image processing parameters. The
variable blockIdx contains threads specific parameters.

1 const uint16_t * p_raw16_data = (uint16_t *)d_frame_buffers[0].d_image_buffer;

2 const uint16_t * p_black_data = (uint16_t *)d_frame_buffers[1].d_image_buffer;

3 const uint16_t * p_color_data = (uint16_t *)d_frame_buffers[2].d_image_buffer;

4

5 const uint32_t NUM_SCAN_LINES_PER_IMAGE = d_frame_buffers[0].s_width /

(sizeof(uint16_t) * 2);

6 const uint32_t MAX_HEIGHT = d_frame_buffers[0].s_height;

7 const uint32_t SCATTER_DISTANCE =

d_output_buffer->p_config->img_processing_config.scatter_distance;

8 const uint16_t PITCH = d_frame_buffers[0].d_pitch / sizeof(uint16_t);

9

10 const uint32_t image_index = blockIdx.y;

11 const uint32_t local_scan_line = blockIdx.x*blockDim.x + threadIdx.x;

12 const uint32_t scan_line = image_index * NUM_SCAN_LINES_PER_IMAGE + local_scan_line;

13

14 const uint32_t column = local_scan_line * 2;

15 const uint32_t image_offset = image_index * PITCH * MAX_HEIGHT;

16 const uint32_t scan_line_start_index = image_offset + column;

17

18 if (local_scan_line >= NUM_SCAN_LINES_PER_IMAGE)

19 {

20 return;

21 }

119

Appendix E. Code snippets

Listing E.5: Extraction of the height and reflectance properties of an image.
scan line index represents the first index of the column containing red values. PITCH

is the width of the image. For the case when a black frame is used, line 11 is modified to
subtract p black data[input index].

1 float height = 0;

2 uint32_t reflectance = 0;

3

4 // First calculate the height based only on the red pixels

5 uint32_t i, input_index;

6

7 input_index = scan_line_start_index;

8

9 for (i = 0; i < MAX_HEIGHT; i += 2) // only use data from each second line

10 {

11 float val = tex1D(lookup_table, p_raw16_data[input_index] >> 4);

12

13 reflectance += val;

14 height += i * val;

15

16 input_index += 2*PITCH; // jump 2 lines to the next line containing RED.

17 }

18

19 if (reflectance != 0)

20 {

21 height /= reflectance;

22 }

23 else

24 {

25 height = 0;

26 }

27

28 // normalize the height to its range

29 d_output_buffer->p_height_buffer[scan_line] = (height/MAX_HEIGHT)*(1 << 16);

30 d_output_buffer->p_reflectance_buffer[scan_line] = reflectance/(float)MAX_HEIGHT;

120

E.2. Image processing

Listing E.6: Extraction of the intensity and scatter properties of an image.

1 if (((uint16_t)height & 1) == 0)

2 {

3 d_output_buffer->p_intensity_buffer[scan_line]

4 = p_raw16_data[GET_INDEX(column, (uint16_t)height, image_offset)];

5 }

6 else

7 {

8 d_output_buffer->p_intensity_buffer[scan_line]

9 = p_raw16_data[GET_INDEX(column, (uint16_t)height - 1, image_offset)] / 2

10 + p_raw16_data[GET_INDEX(column, (uint16_t)height + 1, image_offset)] / 2;

11 }

12

13 const uint32_t scatter_height = MIN((uint16_t)height + SCATTER_DISTANCE, MAX_HEIGHT -

2);

14

15 if ((scatter_height & 1) == 0)

16 {

17 d_output_buffer->p_scatter_buffer[scan_line]

18 = p_raw16_data[GET_INDEX(column, scatter_height, image_offset)];

19 }

20 else

21 {

22 d_output_buffer->p_scatter_buffer[scan_line]

23 = p_raw16_data[GET_INDEX(column, scatter_height - 1, image_offset)] / 2

24 + p_raw16_data[GET_INDEX(column, scatter_height + 1, image_offset)] / 2;

25 }

121

Appendix E. Code snippets

Listing E.7: Extraction of the color an image. local scan line represents the column
index of a the columns containing red values.

1 #define GET_INDEX(column, height, offset) ((offset) + (column) + PITCH*(height))

2

3 const uint32_t r_index = scan_line * 3;

4 const uint32_t g_index = r_index + 1;

5 const uint32_t b_index = r_index + 2;

6

7 if (local_scan_line > 0 && local_scan_line < NUM_SCAN_LINES_PER_IMAGE - 1

8 && (uint16_t)height > 0 && (uint16_t)height < MAX_HEIGHT - 1)

9 {

10 const uint32_t first_index = GET_INDEX(column - 1, (uint16_t)height - 1,

image_offset);

11

12 if (((uint16_t)height & 1) == 0)

13 {

14 d_output_buffer->p_rgb_buffer[r_index]

15 = p_color_data[first_index + PITCH + 1];

16

17 d_output_buffer->p_rgb_buffer[g_index]

18 = p_color_data[first_index + PITCH] / 4

19 + p_color_data[first_index + PITCH + 2] / 4

20 + p_color_data[first_index + 1] / 4

21 + p_color_data[first_index + 2 * PITCH + 1] / 4;

22

23 d_output_buffer->p_rgb_buffer[b_index]

24 = p_color_data[first_index] / 4

25 + p_color_data[first_index + 2] / 4

26 + p_color_data[first_index + 2 * PITCH] / 4

27 + p_color_data[first_index + 2 * PITCH + 2] / 4;

28 }

29 else

30 {

31 d_output_buffer->p_rgb_buffer[r_index]

32 = p_color_data[first_index + 1] / 2

33 + p_color_data[first_index + 2 * PITCH + 1] / 2;

34

35 d_output_buffer->p_rgb_buffer[g_index]

36 = p_color_data[first_index + PITCH + 1];

37 d_output_buffer->p_rgb_buffer[b_index]

38 = p_color_data[first_index + PITCH] / 2

39 + p_color_data[first_index + PITCH + 2] / 2;

40 }

41 }

122

E.3. Other snippets

E.3 Other snippets

Listing E.8: Calculating the time difference between two images using the embedded
time stamp. Line 21 to 26 indicate the bugfix for the occasional negative time difference.

1 static ret_code_t get_diff_to_previous(fc2Image * pImage, float * p_diff_ms)

2 {

3 static fc2TimeStamp prev_time_stamp;

4

5 if (m_scanner.first_image_received == false)

6 {

7 // Reset prev_time_stamp

8 prev_time_stamp = fc2GetImageTimeStamp(pImage);

9

10 m_scanner.first_image_received = true;

11

12 *p_diff_ms = m_scanner.cycle_time_ms;

13 return RET_SUCCESS;

14 }

15

16 fc2TimeStamp curr_time_stamp = fc2GetImageTimeStamp(pImage);

17

18 int secondsDiff = curr_time_stamp.cycleSeconds - prev_time_stamp.cycleSeconds;

19 int countDiff = curr_time_stamp.cycleCount - prev_time_stamp.cycleCount;

20

21 // START BUGFIX

22 if (secondsDiff < 0)

23 {

24 secondsDiff = 128 + secondsDiff;

25 }

26 // END BUGFIX

27

28 if (countDiff < 0)

29 {

30 // There are 8000 cycles in a second

31 countDiff = 8000 + countDiff;

32 secondsDiff--;

33 }

34

35 *p_diff_ms = double(secondsDiff)*1000 + double(countDiff) / 8;

36

37 memcpy(&prev_time_stamp, &curr_time_stamp, sizeof(fc2TimeStamp));

38

39 return RET_SUCCESS;

40 }

123

Appendix E. Code snippets

Listing E.9: The TCP server transfers execution to other threads after receiving a chunk
of data.

1 static ret_code_t try_read_length(uint32_t length)

2 {

3 uint32_t bytes_read;

4 int temp_bytes_read;

5

6 bytes_read = 0;

7 while (bytes_read < length)

8 {

9 temp_bytes_read = recv(client_fd,&recv_buffer[bytes_read],length - bytes_read,

0);

10 if (temp_bytes_read <= 0)

11 {

12 return RET_ERROR_OTHER;

13 }

14

15 bytes_read += temp_bytes_read;

16

17 pthread_yield();

18

19 }

20 return RET_SUCCESS;

21 }

Listing E.10: This code snippet demonstrates how the application scheduling policy
was set to maximum priority.

1 ret_code_t set_scheduler_options(void)

2 {

3 int err;

4

5 // set scheduler to be RR with high priority

6 struct sched_param param;

7 param.sched_priority = sched_get_priority_max(SCHED_RR);

8 err = sched_setscheduler(0, SCHED_RR, ¶m);

9 if (err != 0)

10 {

11 perror("Setting scheduler parameters");

12 return RET_ERROR_OTHER;

13 }

14

15 return RET_SUCCESS;

16 }

124

E.3. Other snippets

Listing E.11: This code snippet shows the implementation of scan mode x used for
memory configuration tests. It uses computationally expensive operations.

1 __global__

2 void scan_mode_x_kernel(frame_buffer_t * d_frame_buffers,

3 scan_output_buffer_t * d_output_buffer)

4 {

5 uint32_t i,j;

6 for (i = 0; i < 200; i++)

7 {

8 for (j = 0; j < 10; j++)

9 {

10 const uint32_t scan_lines =

d_output_buffer->p_config->image_info.num_scan_lines_per_image;

11 d_output_buffer->p_height_buffer[i % scan_lines] = j*3.41 + 3.4 * i / (j %

23 + 1);

12 }

13 }

14 }

125

Appendix E. Code snippets

126

Appendix F
Detailed test results

Many tests were performed on the scanner. The result chapter of this thesis is not suited
for presenting all these results. This appendix gives the detailed test results, which
might be used to obtain deeper understanding or as a reference for future development.
The additional test results are only related to line scanner module tests and system
functionality tests. Those test results are therefore given in section F.1 and in section F.2.

F.1 Line scanner results

The detailed line scanner results are presented in the same order as done in section 7.1.
Therefore, the image buffering framework test results are presented first, and then the
scan mode implementation benchmark results.

F.1.1 Detailed scanner framework benchmark results

The detailed framework benchmark results presented in this section include both syn-
chronous, asynchronous, and two estimates of the actual image buffering time. The first
estimate subtracts the asynchronous execution speed from the synchronous. The second
approach uses the minimum frame rate of the synchronous and asynchronous results.
Both estimates give similar results.

127

Appendix F. Detailed test results

Sync

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
9
2
0

64

128

192
Im

a
g
e
 h

e
ig

h
t
(p

ix
e
ls

)

Async

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
9
2
0

Est. buffering time

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
9
2
0

64

128

192
min(Sync, Async)

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
9
2
0

Image width (pixels)

125

186

277

413

615

915

1363

2029

3022

4500

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

(a) TK1 benchmark results.

Sync

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
9
2
0

64

128

192

Im
a
g
e
 h

e
ig

h
t
(p

ix
e
ls

)

Async

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
9
2
0

Est. buffering time

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
9
2
0

64

128

192
min(Sync, Async)

2
5
6

5
1
2

7
6
8

1
0
2
4

1
2
8
0

1
5
3
6

1
9
2
0

Image width (pixels)

125

186

277

413

615

915

1363

2029

3022

4500

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

(b) TX1 benchmark results.

Figure F.1: Detailed framework benchmark results. See subsection F.1.1 for a descrip-
tion of the results.

128

F.1. Line scanner results

F.1.2 Detailed scan mode implementation benchmark results

This section first presents a summary of the image processing benchmarks for each of the
scan modes for different image buffer sizes. For each image buffer size, the thread block
size with the maximum theoretical framerate was chosen. Next the more detailed image
processing implementations are shown, where the test results include all image buffer and
thread block sizes. The final test results presented here include the line scanner module
bottlenecks for some given image sizes.

1 2 4 8 16 32 64 128

Image buffer size

1000

1500

2000

2500

3000

3500

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Jetson TK1

Jetson TX1

1 2 4 8 16 32 64 128

Image buffer size

10-3

10-2

10-1

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 p

e
r

im
a
g
e
 (

m
s
)

Jetson TK1

Jetson TX1

Figure F.2: Theoretical maximum frame rate and standard deviation for scan mode 0.

1 2 4 8 16 32 64 128

Image buffer size

2000

3000

4000

5000

6000

7000

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Jetson TK1

Jetson TX1

1 2 4 8 16 32 64 128

Image buffer size

10-3

10-2

10-1

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 p

e
r

im
a
g
e
 (

m
s
)

Jetson TK1

Jetson TX1

Figure F.3: Theoretical maximum frame rate and standard deviation for scan mode 1.

129

Appendix F. Detailed test results

1 2 4 8 16 32 64 128

Image buffer size

0.5

1

1.5

2

2.5

3

T
h
e
o
re

ti
c
a
l
m

a
x
 f
ra

m
e
 r

a
te

#104

Jetson TK1

Jetson TX1

1 2 4 8 16 32 64 128

Image buffer size

10-4

10-3

10-2

10-1

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 p

e
r

im
a
g
e
 (

m
s
)

Jetson TK1

Jetson TX1

Figure F.4: Theoretical maximum frame rate and standard deviation for scan mode 2.

1 2 4 8 16 32 64 128

Image buffer size

1000

2000

3000

4000

5000

6000

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Jetson TK1

Jetson TX1

1 2 4 8 16 32 64 128

Image buffer size

10-3

10-2

10-1

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 p

e
r

im
a
g
e
 (

m
s
)

Jetson TK1

Jetson TX1

Figure F.5: Theoretical maximum frame rate and standard deviation for scan mode 3.

1 2 4 8 16 32 64 128

Image buffer size

2000

3000

4000

5000

6000

7000

8000

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Jetson TK1

Jetson TX1

1 2 4 8 16 32 64 128

Image buffer size

10-3

10-2

10-1

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 p

e
r

im
a
g
e
 (

m
s
)

Jetson TK1

Jetson TX1

Figure F.6: Theoretical maximum frame rate and standard deviation for scan mode 4.

130

F.1. Line scanner results

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512
T

h
re

a
d

 b
lo

c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

750

883

1039

1223

1439

1694

1994

2346

2761

3250

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512

T
h

re
a

d
 b

lo
c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

0.0001

0.0002

0.0005

0.001

0.0022

0.0046

0.01

0.0215

0.0464

0.1

G
P

U
 p

ro
c
e
s
s
in

g
 s

td
.
d
e
v
ia

ti
o
n
 (

m
s
)

Figure F.7: Scan mode 0 with multiple image buffer and thread block sizes..

131

Appendix F. Detailed test results

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512
T

h
re

a
d

 b
lo

c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

1750

2016

2322

2675

3081

3549

4089

4710

5426

6250

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512

T
h

re
a

d
 b

lo
c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

0.0001

0.0002

0.0005

0.001

0.0022

0.0046

0.01

0.0215

0.0464

0.1

G
P

U
 p

ro
c
e
s
s
in

g
 s

td
.
d
e
v
ia

ti
o
n
 (

m
s
)

Figure F.8: Scan mode 1 with multiple image buffer and thread block sizes..

132

F.1. Line scanner results

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512
T

h
re

a
d
 b

lo
c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

5000

5979

7150

8550

10224

12226

14620

17483

20906

25000

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512

T
h

re
a

d
 b

lo
c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

0.0001

0.0002

0.0005

0.001

0.0022

0.0046

0.01

0.0215

0.0464

0.1

G
P

U
 p

ro
c
e
s
s
in

g
 s

td
.
d
e
v
ia

ti
o
n
 (

m
s
)

Figure F.9: Scan mode 2 with multiple image buffer and thread block sizes.

133

Appendix F. Detailed test results

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512
T

h
re

a
d

 b
lo

c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

1500

1715

1960

2241

2562

2928

3347

3826

4374

5000

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512

T
h

re
a

d
 b

lo
c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

0.0001

0.0002

0.0005

0.001

0.0022

0.0046

0.01

0.0215

0.0464

0.1

G
P

U
 p

ro
c
e
s
s
in

g
 s

td
.
d
e
v
ia

ti
o
n
 (

m
s
)

Figure F.10: Scan mode 3 with multiple image buffer and thread block sizes.

134

F.1. Line scanner results

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512
T

h
re

a
d

 b
lo

c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

2000

2308

2663

3072

3545

4090

4720

5446

6284

7250

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

TX1

1

2

4

8

1
6

3
2

6
4

1
2

8

 Image buffer size

32

64

128

256

512

T
h

re
a

d
 b

lo
c
k
 s

iz
e

TK1

1

2

4

8

1
6

3
2

6
4

1
2

8

0.0001

0.0002

0.0005

0.001

0.0022

0.0046

0.01

0.0215

0.0464

0.1

G
P

U
 p

ro
c
e
s
s
in

g
 s

td
.
d
e
v
ia

ti
o
n
 (

m
s
)

Figure F.11: Scan mode 4 with multiple image buffer and thread block sizes.

135

Appendix F. Detailed test results

256 512 768 1024 1280 1536 1792 1920

Image width (pixels)

102

103

104

105

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Camera

Image processing

Framework

TCP send time

(a) Image height is 64 pixels.

256 512 768 1024 1280 1536 1792 1920

Image width (pixels)

102

103

104

105

T
h
e
o
re

ti
c
a
l
m

a
x
 f
ra

m
e
 r

a
te

Camera

Image processing

Framework

TCP send time

(b) Image height is 128 pixels.

256 512 768 1024 1280 1536 1792 1920

Image width (pixels)

102

103

104

105

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Camera

Image processing

Framework

TCP send time

(c) Image height is 192 pixels.

Figure F.12: Plot of frame rate constraints for scan mode 4 on the Jetson TK1.

136

F.1. Line scanner results

256 512 768 1024 1280 1536 1792 1920

Image width (pixels)

102

103

104

105

T
h
e
o
re

ti
c
a
l
m

a
x
 f
ra

m
e
 r

a
te

Camera

Image processing

Framework

TCP send time

(a) Image height is 64 pixels.

256 512 768 1024 1280 1536 1792 1920

Image width (pixels)

102

103

104

105

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Camera

Image processing

Framework

TCP send time

(b) Image height is 128 pixels.

256 512 768 1024 1280 1536 1792 1920

Image width (pixels)

102

103

104

105

T
h

e
o

re
ti
c
a

l
m

a
x
 f

ra
m

e
 r

a
te

Camera

Image processing

Framework

TCP send time

(c) Image height is 192 pixels.

Figure F.13: Plot of frame rate constraints for scan mode 4 on the Jetson TX1.

137

Appendix F. Detailed test results

F.2 System functionality results

This section present scan results of a salmon. Each scan is performed twice in each
mode with the test parameters given in Table 6.4. For the height, intensity, scatter and
reflectance, the colors indicate the values: The values increase from blue to green to red.
The brightness of the color images is increased to improve the printing quality.

(a) Height 1. (b) Intensity 1. (c) Reflectance 1. (d) Scatter 1.

(e) Height 2. (f) Intensity 2. (g) Reflectance 2. (h) Scatter 2.

Figure F.14: Two different scans of a salmon obtained with scan mode 0.

138

F.2. System functionality results

(a) Height 1. (b) Intensity 1. (c) Reflectance 1. (d) Scatter 1. (e) Color image 1.

(f) Height 2. (g) Intensity 2. (h) Reflectance 2. (i) Scatter 2. (j) Color image 2.

Figure F.15: Two different scans of a salmon obtained with scan mode 1.

139

Appendix F. Detailed test results

(a) Color image 1. (b) Color image 2.

Figure F.16: Two different scans of a salmon obtained with scan mode 2. The brightness
is increased to improve printing quality.

140

F.2. System functionality results

(a) Height 1. (b) Intensity 1. (c) Reflectance 1. (d) Scatter 1.

(e) Height 2. (f) Intensity 2. (g) Reflectance 2. (h) Scatter 2.

Figure F.17: Two different scans of a salmon obtained with scan mode 3.

141

Appendix F. Detailed test results

(a) Height 1. (b) Intensity 1. (c) Reflectance 1. (d) Scatter 1. (e) Color image 1.

(f) Height 2. (g) Intensity 2. (h) Reflectance 2. (i) Scatter 2. (j) Color image 2.

Figure F.18: Two different scans of a salmon obtained with scan mode 4.

142

	Problem statement
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	List of Tables
	List of Code Snippets
	Introduction
	Motivation
	Scanner principles
	Similar products
	Previous work
	Project outline
	Structure of the thesis

	Equipment and setup
	The PointGrey Camera
	The NVIDIA Jetson TK1 and TX1
	Scanner module synchronization

	Scanner design
	Message interface
	Definitions of image parameters

	Line scanner module implementation
	Application architecture
	Image processing
	Error detection and correction
	Performance measurement framework

	Host control system implementation
	Application architecture
	Data extraction
	Data visualization

	Test descriptions
	Line scanner module tests
	Repeatability tests
	Host control system tests
	System functionality tests

	Results
	Line scanner module test results
	Repeatability test results
	Host control system test results
	System functionality test results

	Discussion
	Line scanner module result interpretation
	Repeatability results interpretation
	Host control system result interpretation
	System functionality result interpretation

	Conclusion
	Future work
	Optimize scan quality
	Implement new features
	Consider system architecture alternatives

	Bibliography
	Appendices
	Introduction to GPU programming using CUDA
	Parallel programming and processing speed
	The CUDA execution model
	The CUDA memory model
	The CUDA programming model
	Asynchronous execution using CUDA streams

	Setup of the Jetson TK1 and Jetson TX1
	Proposed setup
	Step-by-step installation guide

	Development environment setup
	Proposed setup
	Step-by-step installation guide

	Using the applications and tools
	The line scanner module
	The configuration tools
	The LabVIEW host
	The benchmarker
	The data extractor

	Code snippets
	Configuration structure definitions
	Image processing
	Other snippets

	Detailed test results
	Line scanner results
	System functionality results

