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Problem Description

• Use a modular Extended Kalman Filter design for the entire chain of the battery
characterization (i.e. battery Parameter Estimation and State of Charge estimation)

• Explore a method for alleviating range anxiety in electric vehicles using vehicle
modelling equations

• Validate the range anxiety alleviation method by comparing to real vehicle range
data

• Explore situations where the dual Extended Kalman Filter modular design has better
State of Charge estimation performance compared with Coulomb Counting

• Discuss the results, conclude and suggest further work

i



Abstract

The purpose of this thesis was to find a solution to combat range anxiety in electric ve-
hicles (EV). Range anxiety was defined as the fear that the driver will not reach their
destination and is a major barrier to increase EV uptake worldwide. Parameter and state
of charge (SoC) estimation for the Revolve NTNU battery cell were done using an en-
hanced self-correcting (ESC) battery model in combination with a dual Extended Kalman
Filter (EKF). Next, a method was developed to extract high resolution elevation data from
a given Google Maps route. This elevation information was then attached to three differ-
ent speed profiles and passed as an argument into an algorithm which calculated a SoC
estimate. The algorithm used vehicle modelling equations along with the dual EKF to
estimate SoC, as well as extrapolated range and time to go until battery pack depletion.
Range results comparing the simulation to a real Chevy Volt using the same speed profiles
showed a 23% error. The validation of the range algorithm required a different battery
cell, which made it impossible to use the dual EKF tuned to the Revolve cell for SoC
estimation. Instead, coulomb counting (CC) was implemented in SoC estimation for the
validation section. In addition, tests using three different elevation profiles concluded that
topography had a major influence on extrapolated range. Lastly, different situations were
observed where the EKF had superior SoC estimation performance compared with CC.
More focus on speed profile generation will enable future EV users to use their GPS to
estimate range more accurately and thereby help alleviate range anxiety.
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Sammendrag

Denne oppgaven har som formål å finne en løsning på rekkeviddeangst i elektriske kjøretøy.
Rekkeviddeangst er definert som redselen for å ikke nå destinasjonen grunnet at batte-
riet går tomt for strøm. Dette er en betydelig barriere som må overkommes for å øke
prosentandelen av elektriske kjøretøy på veien i mange deler av verden. Parameter og
�State of Charge� (SoC) estimering har blitt gjennomført på en battericelle fra Revolve
NTNU ved hjelp av et dual �Extended Kalman Filter� (EKF) med en �Enhanced Self-
Correcting� (ESC) batteri modell. Videre ble en metode utviklet for å eksportere nøyaktig
høydeprofil data fra Google Maps kjøreruter. Denne dataen ble brukt med tre ulike hastig-
hetsprofiler i en algoritme som estimerte SoC, ekstrapolert rekkevidde og tiden til batteri-
pakken var tom. Algoritmen brukte modelleringsligninger til et elektrisk kjøretøy, i tillegg
til dual EKF til å estimere SoC. En 23 % feil ble utregnet ved å sammenligne simulert
med ekte rekkevidde for en Chevy Volt. Ved validering av algoritmens rekkevidde ble en
annen battericelle benyttet. Siden dual EKF er innstilt til Revolve cellen var det ikke mulig
å bruke dual EKF til SoC estimering og �Coulomb Counting� (CC) ble brukt istedenfor.
Videre viste flere simuleringer at høydeprofil har stor innflytelse på estimert rekkevidde.
Avslutningsvis ble ulike scenarier testet, der en EKF hadde mer nøyaktig SoC estimeringer
enn CC. Større fokus på utvikling av hastighetsprofil vil gjøre det mulig for sluttbrukeren
å taste inn en destinasjon på GPS og få et nøyaktig estimat av rekkevidde.
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Chapter 1
Introduction

1.1 Motivation For The Topic & Thesis Objective

Electric vehicles (EVs) can in general refer to hybrid EVs, where an electric motor is
used in conjunction with an internal combustion engine (ICE) or battery electric vehicles
(BEV), which only uses electric propulsion (Bonges and Lusk, 2016). This report only
focuses on BEVs to reduce the vehicle modelling complexity.

With the goal of limiting global temperatures to 2o Celsius, the Paris Declaration,
the Electric Vehicle Initiative and the International Energy Agency see EV uptake as a
major solution to limiting CO2 emissions. This assumes an increased uptake in renewable
energies in the worldwide electricity grids (Cazzola et al., 2016).

Although EVs currently account for a small percentage of the global vehicle stock,
there are positive trends that suggest EVs could become cost-competitive with ICE vehi-
cles as soon as a decade. Policy support for EVs in countries such as Norway and the
Netherlands has increased public uptake of EVs. In addition, costs for the battery pack,
one of the most expensive components in EVs , have decreased drastically from 1000
USD/kWh in 2008 down to around 220 USD/kWh in 2015. Battery energy densities have
more than tripled over the same period, leading to greater EV range for the same battery
pack volume (Cazzola et al., 2016).

One of the main reasons that EV uptake has been slow worldwide is the issue of range
anxiety. Range anxiety is defined as fear that an EV owner will not be able to reach his/her
intended destination without having to recharge the EV battery (King et al., 2015). If it
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Chapter 1. Introduction

is difficult for the potential customer to easily recharge the EV, the risks of buying an EV
may outweigh the benefits (Bonges and Lusk, 2016). Range anxiety is a much bigger issue
for EVs than ICE vehicles because EV range tends to be much lower.

The objective of this thesis is to alleviate range anxiety by using Google Maps to
generate an elevation profile for a route and then use different speed profiles to extrapolate
an estimated range and time to go until the EV battery pack is depleted. The ultimate goal
in future work is for the EV owner to be able to input their destination into their GPS and
have an algorithm generate a speed profile based on their driving style and the GPS route
elevation profile. Then, this data can be used to estimate extrapolated range and thereby
alleviate range anxiety.

1.2 State of the Art

1.2.1 Industry

Tesla, the innovative electric car maker, combats range anxiety through a combination
of a big network of fast chargers and innovative software. By using a big network of fast
chargers, Tesla owners are able to charge up their vehicles quickly when taking longer
trips. According to (Tesla, 2017), Tesla EVs are able to charge from 10% to 80% in
as little as 40 minutes. Tesla’s range assurance software factors in parameters such as
height changes, wind speed, weather and temperature (Tesla, 2015). It is unsure whether
Tesla calculates a speed profile for the trip to determine the range of the vehicle, yet from
the author’s experience there is a final SoC estimate given for the destination. If Tesla
does calculate a speed profile for a trip, this would be a very similar technique which is
discussed more in this thesis. Given a start position and a destination, the GPS is able to
find an optimal route with known speed limits. From this information, it is possible to
create a speed profile for the entire trip (see Section 4.4). Tesla has also experimented with
battery swapping to combat range anxiety, where the owner’s empty battery pack could be
swapped for a full battery pack in less time than it takes to fill up a gas tank. This program
is not in operation anymore, as there was not enough demand for the service (Korosec,
2015).

1.2.2 Research

(Neaimeh et al., 2013) increases EV range by calculating a minimum energy path
between the start point and the destination. This is achieved by using real data collected
from EVs to make a linear model (i.e. an energy expenditure equation [kWh/km]). This

2
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equation is then used together with traffic and road altitude data in Dijkstra’s graph search
algorithm to find a minimum energy route from the start point to the destination.

Many affordable, current generation EVs have less than 150 km of range. This range
can become drastically smaller if air conditioning or heating is turned on. Therefore,
much of the current research to combat range anxiety has to goal of increasing EV range.
This can be achieved by using new batteries with higher energy densities, better vehicle
charging or using better energy management systems that minimize energy use in vehicles
to increase range (King et al., 2015). (King et al., 2015) focuses on using an on-demand
car sharing solution, where the EV owner can loan an internal-combustion engine vehicle
for longer trips. According to the study, the costs for such a car sharing solution would
be low compared to current subsidies EV makers receive. A similar car-sharing model is
being used by Fiat and Volkswagen.

(Fujimoto et al., 2016) proposes taking traffic signal information to optimize the ve-
hicle velocity profile for minimal energy consumption at a traffic signal. This paper is
implemented using an autonomous EV and the results show that the optimized velocity
profile leads to a 15% reduction in energy consumption compared to a conventional driv-
ing profile.

1.3 Main Contributions

The main contributions to this thesis are:

• parameter and SoC estimation using a dual EKF on the Revolve battery cell

• an algorithm to calculate a high resolution elevation/grade angle profile from a
Google Maps route

• the extrapolated time to go calculation until the battery pack reaches minimum rated
SoC

• validation of extrapolated range algorithm by comparing to real dynamometer range
results using a Chevy Volt in electric mode

• highlighting situations where the EKF has better simulated SoC estimation perfor-
mance compared with CC

3



Chapter 1. Introduction

1.4 Summary of Previous Work

The enhanced cell correcting cell model combines four elements: the Open Circuit Volt-
age as a function of SoC, hysteresis, diffusion voltages (i.e. one or multiple RC parallel
circuits) and linear polarization (i.e. R0) to create an accurate battery model.

Figure 1.1: The ESC battery model models OCV as a function of SoC, linear polarization, diffu-
sion voltages (i.e. warburg impedance), SoC-varying hysteresis and instantaneous hysteresis. It is
referred to as the ESC model (Plett, 2015a).

The state equation is:

iR1,k+1
hk+1
zk+1


︸ ︷︷ ︸

xk+1

=

ARC′ 0 0
0 AH,k 0
0 0 1


︸ ︷︷ ︸

A

iR1,k

hk
zk


︸ ︷︷ ︸

x,k

+


BRC′ 0

0 (AH,k − 1)

−∆t
Q

0


︸ ︷︷ ︸

B

[
ik + wk

sgn(ik + wk)

]
︸ ︷︷ ︸
uk with process noise

(1.1)

where iR1 is the current over the R1 resistor, h is a hysteresis voltage, z is the SoC,
ARC and BRC are RC parallel circuit time constants, AH,k is an exponential constant and
Q refers to the cell capacity. ∆t is a time constant and i refers to the terminal voltage
current (i.e. the current flowing into or out of the battery cell).

The output equation v(t) can be simplified to:

yk = OCV (zk, Tk) +M0sk +Mhk −R1iR1,k −R0ik (1.2)

where OCV(zk,Tk) relates the open-circuit voltage to the SoC and temperature. The
next two elements refer to instantaneous and SoC-varying hysteresis parameters and the
last two elements are terms for the diffusion voltage and linear polarization voltage.
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1.4 Summary of Previous Work

Next, two types of battery testing are done. The first test finds the relationship be-
tween OCV and SoC and the latter finds the dynamic parameters (i.e. the other parameters
in the Figure above). The battery testing phase was completed during the specialization
project, yet the parameter estimation phase to find the unknown ESC parameters was not
completed. Parameter estimation data from a source was used as the input to an EKF,
which calculated the SoC of the battery for the dynamic battery test. Results showed
that the EKF could accurately predict SoC with a maximum mean error of 0.78% and
a standard deviation of 0.46% (see Figure 1.2). Since parameter estimation was not yet
completed for the static (OCV vs SoC) and dynamic values (hysteresis, diffusion voltages,
internal resistance) using the Revolve NTNU battery cell, this step is completed during
this thesis. The SoC results for the dynamic test cycle using the author’s own parameter
estimation results for the Revolve cell can be found in Section 4.2.
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Figure 1.2: SoC simulation results and error bounds

x̂+
k,Error Bounds = x̂+

k ± 3

√√√√√diag

 +∑
x̃,k

 (1.3)

The diagonal elements in the covariance matrix in Equation (1.3) represent the stan-
dard deviation values of the estimated states. It is quite certain that the ”true” states are
within three standard deviations of the estimated states. See (Kvaale, 2016) for more de-
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Chapter 1. Introduction

tailed information.

1.5 Structure of Thesis

The thesis first describes how the parameters of the Revolve battery cell model are
found using battery testing and an EKF. Then, a second EKF is used to estimate the SoC for
a dynamic battery test. Next, an explanation is given for how elevation data from a Google
Maps route can be used and attached to different speed profiles. These speed profiles are
then inputed as an argument to an algorithm that outputs the SoC and extrapolated range.
The second EKF is used to estimate the SoC in the algorithm.

The results section first discusses the Revolve parameter and SoC estimation, before
further exploring the elevation profile of a route using two different sets of elevation data.
A comparison of different speed profiles is given and how regenerative braking affects
extrapolated range. All of the results discussed up until now use the Revolve battery cell
along with parameters from a 2013 Chevy Volt. Next, the extrapolated range results are
compared to a real 2013 Chevy Volt using the Chevy Volt battery cell. Lastly, three cases
are provided which highlight the advantages of the EKF vs CC for SoC estimation.

Import Google 
Maps Distance 
Waypoints Into 

Matlab

Speed Profile

Choose a Google 
Maps Route

Linearly Interpolate 
High Res Elevation 
Profile In Matlab

Elevation Data 
From GPS 
Visualizer

Calculate Grade 
Angle Battery Testing

Parameter 
Estimation using 

EKF

Run Algorithm with 
SoC EKF to find 

SoC, Extrapolated 
Range and Time To 

Go

Figure 1.3: Flowchart for estimating extrapolated range
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Chapter 2
Battery Model & Parameter
Estimation

2.1 Estimating The Unknown Parameters Of The ESC
Battery Model With Revolve Battery

The OCV of the battery cell shown as OCV(z(t)) in Figure 1.1 is a static function
dependent on SoC and temperature. All of the other unknown parameters of the ESC
battery model have a more dynamic relationship. Therefore it is useful to do two separate
battery tests: one test to determine the static relationship (i.e OCV as a function of SoC
and temperature) and another to determine the other unknown dynamic parameters (Plett,
2015a).

In the author’s specialization project (Kvaale, 2016) last semester, parameter estima-
tion was explained in detail. However, the author was not able to complete the parameter
estimation phase for the Revolve battery cell. Instead, the estimated parameters for a dif-
ferent battery to the Revolve battery are used to estimate the SoC. Therefore, this section
focuses on the main theory for the parameter estimation phase. For a more detailed de-
scription, see Reference (Plett, 2015a) and (Kvaale, 2016).
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Parameter 
Estimation

EKF

SoC
Estimation

EKF

1 2 3

Figure 2.1: The blocks show the two EKFs that are used to estimate the unknown parameters and
estimate the SoC of the battery cell. The inputs at point 1 are: voltage and current measurements
from the dynamic testing, the OCV vs SoC relationship given as a lookup table and the estimated
cell capacity. The main output at 2 is the estimated unknown parameters θ =

(
τRC γ M M0 R1 R0

)
from the ESC model. The inputs at 2 to the SoC EKF are the coulombic efficiency η, the estimated
capacity Q and θ. The output of the SoC EKF at 3 is the estimated SoC and the estimated voltage.

2.1.1 Cell Testing To Find the Dynamic Parameters

Static parameters (i.e. coulombic efficiency, OCV vs SoC relationship,cell capacity) can
be found using the static tests described in (Plett, 2015a) or (Kvaale, 2016). For all un-
known parameters from the ESC model that cannot be found from the OCV vs SoC re-
lationship, a separate dynamic battery test is run. The current vs time profile of the test
represents a similar load current to the final application the battery will be used for. The
current profile should excite the entire SoC and temperature range of the cell (Plett, 2015a).
A sample profile can be seen in Appendix 5.1. The real profile used is similar to the sample
profile. The dual EKF (Plett, 2004) is discussed more thoroughly below, where one EKF
estimates the parameters and the other EKF uses these parameters to estimate the SoC.

The dynamic test cycle should be completed at the same test temperatures as the OCV
static test. With the battery fully charged to 100% SoC, discharge the battery to around
90% SoC using a constant current discharge. Run the dynamic profile with rest periods
in between until the cell SoC is around 10%. Then discharge the battery to 0% SoC and
charge the battery at a constant current back up to 100% SoC. This test is only done at 25o
in this report, but can be repeated for different temperatures. A more detailed description
including testing scripts can be found in Section 2.11 of Reference (Plett, 2015a).
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2.1 Estimating The Unknown Parameters Of The ESC Battery Model With Revolve
Battery

2.1.2 The EKF Approach For Finding Dynamic Parameters

In the EKF approach, the unknown parameters to be estimated from the ESC model are de-
noted by θ. In this case θ =

[
τRC γ M M0 R1 R0

]
. γ, M and M0 are hysteresis

parameters,R1 and τRC model diffusion andR0 models linear polarization. Assuming the
parameters change very slowly, they can be modelled as constant with a small deviation,
shown in Equation (2.1). rk−1 is a white noise input that models the slow variation of the
unknown parameters.

θk = θk−1 + rk−1 (2.1)

The output equation is given in Equation (2.2), where g is the ESC output equation
and the white noise ek models sensor noise and any modelling errors.

dk = g(xk, uk, θ, ek) (2.2)

The EKF algorithm shown in Algorithm 1 for parameter estimation is very similar to
a regular EKF. First, the parameter predictions and error covariance matrices are updated.
The output prediction refers to the estimated ESC output voltage in this paper (see Equa-
tion (1.2)). The linearized output matrix Ĉθk requires recursive calculations that are further
explained in Appendix 5.2. The D̂θ

k matrix is equal to one.

Next, the true output dk is found by linearizing the output equation using a first order
Taylor series. Since voltage measurement data from the dynamic parameter estimation test
is available, this data is used for dk instead of the approximated Taylor series. The Kalman
gain is then calculated and the aposterior estimate θ̂+

k is updated using the Kalman gain and
comparing the predicted voltage d̂k with the measured voltage from the dynamic parameter
estimation test. Finally, the error covariance matrix is updated and the algorithm repeats.

The final answer is given by the algorithm output θ̂+
k=n. This answer gives the esti-

mated unknown dynamic parameters of the ESC model. The output from the parameter
estimation EKF is then inputed into the SoC EKF that outputs the SoC (see Figure 2.1).
(Plett, 2016a) (Plett, 2004).

A full description for the SoC EKF is not given in this thesis, as it has been summa-
rized clearly in (Kvaale, 2016). The general EKF code is appended in Appendix 5.3 for
reference.
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Chapter 2. Battery Model & Parameter Estimation

1: for k = 1, 2, . . . n do
2: Parameter prediction time update: θ̂−k = θ̂+

k−1
3: Error covariance time update:

∑−
θ̃,k

=
∑+
θ̃,k−1 +

∑
r̃,k−1

4: Output prediction: d̂k ≈ g(xk, uk, θ̂−k , ēk)

5: Define Ĉθk ,
dg(xk, uk, θ, ek)

dθ

∣∣∣∣
θ=θ̂−

k

6: Define D̂θ
k ,

dg(xk, uk, θ, ek)
dek

∣∣∣∣
ek=ēk

7: dk ≈ g(xk, uk, θ̂−k , ēk) + Ĉθk(θ − θ̂−k ) + D̂θ
k(ek − ēk)

8:
∑
d̃k

= Ĉθk
∑−
θ̃k

(Ĉθk)> + D̂θ
k

∑
ẽ(D̂θ

k)>

9: Kalman gain: Lθk =
∑−
θ̃,k

(Ĉθk)>
[∑

d̃k

]−1

10: Parameter estimate measurement update: θ̂+
k = θ̂−k + Lθk(dk − d̂k)

11: Error covariance measurement update:
∑+
θ̃,k

=
∑−
θ̃,k
−Lθk

∑
d̃,k(Lθk)>

12: end for

Algorithm 1: General EKF For Parameter Estimation
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Chapter 3
Modelling Electric Vehicle (EV)
Range Anxiety

This section explains a novel way for SoC and range estimation. First, it is shown
how you can download elevation data from a desired route on Google Maps. Then, this
elevation data can be attached to three different speed profiles. One speed profile models
city driving with stop and go traffic, another models highway driving and the third models
city driving with higher speeds than the first and more fluid driving (EPA, 2017). These
three speed profiles are then loaded into an algorithm in Section 3.2. The parameter es-
timation data from Section 2 is used and transferred to the second EKF that outputs the
SoC. From this estimated SoC, the range and time to go until the battery is depleted is
extrapolated. This essentially assumes that the speed profiles are looped until battery pack
depletion.

3.1 Google Maps Elevation Data For A Desired Route

By adding a starting point and endpoint in Google Maps, it is possible to get accurate
directions with distance information. Unfortunately, Google Maps does not let you export
elevation information, which is important to get a realistic and accurate SoC estimate. By
using GPSVisualizer (Schneider, 2016), it is possible to insert the Google Maps URL of a
search. GPS Visualizer will then output a text file with information regarding the distance
and elevation data. The text file can then be imported into Matlab. To increase distance
and elevation data resolution, waypoints from the Google Maps route are added. A sample
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Chapter 3. Modelling Electric Vehicle (EV) Range Anxiety

waypoint profile can be seen in Figure 3.1, where the waypoints refer to the points where
the car changes direction. These waypoints are then printed by pressing the ”print text
only” button. This then opens up a new page with directions and the waypoint distances,
where distance information is located. By saving this file as a PDF and converting it to
a text file using (Marketing, 2017), it is possible to import the distance data into Matlab
using a function developed by the author. Then, the sample waypoint distances are linearly
interpolated from the GPS Visualizer distance and elevation data to get higher resolution
elevation data at each waypoint distance.

The algorithm in Section 3.2 requires grade angle information. To calculate the grade
angle, take the arctangent of rise over run over each iteration of the elevation profile (see
Figure 3.3 for a sample profile). These grade angle points are then attached to three dif-
ferent speed profiles explained in Sections 3.2.1 and 4.4. The length of the grade angle
points is then either shortened or made longer to be equal to the speed profile points. This
is necessary to be able to run the algorithm in Section 3.2. If the grade angle points are
shortened, some grade angle information is lost. If the length is increased, the grade angle
points are repeated in a loop. The algorithm in Section 3.2 then outputs the extrapolated
range.

This process is repeated for three different elevation profiles shown in Figure 3.2 to
test the validity of this method. Profile 3.2a is referred to as the downhill profile, profile
3.2b as the mixed profile, and 3.2c as the uphill profile.

The distances in the elevation profiles do not matter in this test, as the grade angle in-
formation length is changed to the same length as the speed profiles. This is an assumption
that is not so realistic, but is currently needed to be able to use the grade angle points in
the algorithm to find the extrapolated range. A better method will be constructed in future
work.
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3.1 Google Maps Elevation Data For A Desired Route

22/03/2017 Medellín - Antioquia, Colombia to Bogotá, Bogota, Colombia - Google Maps

https://www.google.no/maps/dir/Medell%C3%ADn+-+Antioquia,+Colombia/Bogot%C3%A1,+Bogota,+Colombia/@5.6227537,-74.8235405,8z/am=t/data=!4m... 1/3

Medellin, Antioquia, Colombia

Medellín

Take Av. Oriental and Medellín-Santa Elena to Cl. 58

1. Head southeast on Cl. 55 toward Cra. 47

2. Turn right at the 1st cross street onto Cra. 47

3. Turn left at the 2nd cross street onto Cl. 53/Av. Maracaibo

4. Turn left at the 1st cross street onto Cra. 43A/Cra. 46/Av. Oriental
 Continue to follow Av. Oriental

5. Keep left to continue on Medellín-Santa Elena/Av. Oriental
 Continue to follow Medellín-Santa Elena

Take Autopista Medellín-Bogotá, Route 45, Ruta Del Sol, Guaduas-Caparrapí/Route 56, ... and Bogotá-La Vega

to Cl 80 in Bogotá

6. Continue onto Cl. 58

7. Continue straight onto Autopista Nte.

8. Keep left to stay on Autopista Nte.

9. Continue straight to stay on Autopista Nte.

10. Use the right lane to take the ramp to Aeropuerto JMC/Rionegro/Bogotá

11. Continue onto Autopista Medellín-Bogotá/Route 60
 Continue to follow Autopista Medellín-Bogotá

 Partial toll road

12. Continue onto Autopista Medellín-Bogotá/Route 60
 Continue to follow Autopista Medellín-Bogotá

 Partial toll road

13. At the roundabout, take the 1st exit onto the Puerto Libre-Puerto Boyaca/Route 45 ramp to Pto
Salgar

7 min (2.3 km)

59 m

170 m

110 m

700 m

1.3 km

6 h 57 min (408 km)

200 m

280 m

1.2 km

4.4 km

150 m

49.9 km

137 km

170 m

Drive 419 km, 7 h 17 minMedellín - Antioquia, Colombia to Bogotá,
Bogota, Colombia

Figure 3.1: This figure shows sample waypoints from the mixed profile in Figure 3.2b.
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Figure 3.2: The elevation profile for three different routes found using Google Maps is shown.
Three different routes with different elevation profiles are chosen to test the validity of this method
described in Section 3.1.
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Figure 3.3: The grade angle information for the three elevation profiles is calculated. A few of
the grade angle points are unrealistic, yet the mean and standard deviation values are realistic by
comparing the values to the steepest road in the world with a 35% grade angle (Information, 2017).
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3.2 Speed Profile To Battery SoC Vehicle Modelling

3.2 Speed Profile To Battery SoC Vehicle Modelling

This chapter is based on sources (Plett, 2016a) and (Gillespie, 1992) and the author’s
results are compared with results of Gregory Plett given in source (Plett, 2016b). In all
of the calculations in Figure 3.5, values for the current time step are calculated using data
from the previous time step. These calculations assume that the battery is always able to
supply the necessary power for the motor to achieve the limited torque.

For this section, estimated coefficients are assumed to be from a 2013 Chevy Volt.
Instead of using the Volt battery cell, the Volt uses the Revolve NTNU battery cell. The
estimated capacity for the Revolve battery cell is found in Section 2.1 and shown in Table
3.2. Although the Chevy Volt is a hybrid, only the electric mode is turned on. This makes
the Chevy Volt a low-range EV.

Figure 3.4: This figure shows the simulation flowchart calculations. Section 3.2.1 shows how to get
from desired speed to actual speed and Section 3.2.2 shows the calculations from motor power to
battery SoC (Plett, 2016a).

3.2.1 Desired Speed To Actual Speed Calculations

Three different speed profiles are used to get from the desired to the actual speed. The New
York City Cycle (NYCC) cycle models low speed city driving with stop and go traffic. The
Highway Fuel Economy Driving Schedule (HWFET) represents highway driving with a
top speed under 96 km/h. Lastly, the Urban Dynamometer Driving Schedule (UDDS)
models city driving with higher speeds than the NYCC cycle (EPA, 2017). See Figures
4.6, 4.7 and 4.8 for the real speed profiles.

From the desired drive speed profile shown in Figure 3.5, it is possible to sample the
desired speed every second for example. Looking at Equation (3.1), the actual speed is the
speed of the EV at the previous timestep. The desired speed is then equal to the current
value to be sampled in Figure 3.5. For example, assume a sampling period of one second
and a current time of t=6 seconds. The actual speed is then the speed at t=5 seconds and
the desired speed is the value sampled from Figure 3.5 at t=6 seconds. Equation (3.1) then
gives us the desired acceleration for the current sampling time.
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Chapter 3. Modelling Electric Vehicle (EV) Range Anxiety

Chevy Volt Coefficients Value
N 12

Motor Inertia 0.2 kg·m2

Gearbox Inertia 0.05 kg·m2

Number of Wheels 4
Wheel Inertia 8 kg·m2

Wheel Radius 0.35 m
ρair 1.225 kg/m3

frontal area 1.84 m2

Cd 0.22
Cr 0.0111

brake drag 0 N
rated max torque 275 Nm

regen fraction 0.9
wheel radius 0.35 m

Table 3.1: Chevy Volt Coefficient Values for Section 3.2.1. Some of these values are estimated,
so they may not be that accurate. This could also influence the total accuracy of the actual speed
calculation.(Plett, 2016b)

Figure 3.5: This figure shows a sample speed profile that a car should try to follow (Plett, 2016a).

desired acceleration[m/s2] = desired speed[m/s]− actual speed[m/s]
sampling period [s]

(3.1)

The rotating equivalent mass can be found using Equation (3.3). It includes the rotat-
ing inertias from the motor, the gearbox and the wheels. Inertia refers to the phenomenon
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3.2 Speed Profile To Battery SoC Vehicle Modelling

that an object at rest will stay at rest and a moving object will continue moving (QRG,
2017). For example, a rotating wheel on an EV continues rotating unless some counter-
acting force (e.g. road friction) slows the rotation. N refers to the gearbox ratio and is a
unitless number given by Equation (3.2). RPM refers to the the number of full revolutions
per minute.

N = motor RPM
wheel RPM

(3.2)

The motor is connected to the wheels via the gearbox. Since the gearbox inertia is
measured at the motor side of the gearbox and not the output side, the motor and gearbox
inertia’s are multiplied by N2. The wheel inertia is not multiplied by N2 because the
wheels are on the output side of the gearbox. Since the tire is flattened due to the weight
of the car and the contact with the road, this must be taken account in the wheel radius.

rotating equivalent mass [kg]

= 1
(wheel radius [m])2 (

(
motor inertia[kg m2] + gearbox inertia[kg ·m2]

)
∗N2

+ number of wheels · wheel inertia[kg m2]) (3.3)

The equivalent mass is a combination of the maximum vehicle mass and the total
rotational mass of the wheels. The maximum vehicle mass is used to see what the worst
case performance of the vehicle is. This can be seen in Equation (3.4).

equivalent mass [kg] = max vehicle mass [kg] + rotating equivalent mass [kg] (3.4)

Using Newton’s 2nd law, the total force required by the tires on the road surface can
be found from the equivalent mass and desired acceleration shown in Equation (3.5).

desired acceleration force [N] = equivalent mass [kg] · desired acceleration[m/s2] (3.5)

The desired acceleration force provided by the motor is not the only force acting on
the EV. Other forces present are an aerodynamic drag force, a rolling force, a grade force
and brake drag.
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The aerodynamic drag force is given by Equation (3.6), where ρair refers to the air
density and Cd is the drag coefficient.

aerodynamic force [N] = 1
2ρair[kg/m3] · frontal area[m2] ·Cd · (prior actual speed [m/s])2

(3.6)

The rolling force is given in Equation (3.7) and only exists if the car is moving. The
max vehicle mass is again used to find the worst case performance of the vehicle. Cr is a
unitless rolling friction coefficient and g = 9.81 m/s2, the acceleration of gravity.

rolling force [N] = Cr ·max vehicle mass [kg] · g[m/s2] (3.7)

The grade force refers to the force that gravity enforces on the vehicle if the vehicle
is going up or down an incline. The grade angle in Equation (3.8) refers to the angle that
the incline makes with the horizontal plane. A positive grade angle refers to an incline and
a negative grade angle refers to a descent.

grade force [N] = max vehicle mass [kg] · g[m/s2] · sin(grade angle [rad]) (3.8)

Brake drag is a constant force that includes frictional losses from the brakes or other
losses that slow the vehicle down (see Equation (3.9)).

brake drag [N] = constant value (3.9)

From this, it is possible to compute the demanded motor torque in Equation (3.10).
The demanded motor torque is found from τ = F · r, where τ is the torque, F is the total
force and r is the wheel radius. The motor torque is divided by N because the forces and
the wheel radius are on the output side of the gearbox, whereas the motor torque is on the
motor side of the gearbox.

demanded motor torque [Nm] = wheel radius [m]
N

(desired acceleration force [N]

+ aerodynamic force [N] + rolling force [N]

+ grade force [N] + brake drag [N]) (3.10)
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This demanded motor torque must then be compared with the vehicle specific max-
imum torque of the motor. If the demanded motor torque is positive (i.e. the vehicle is
accelerating, motor is spinning in clockwise direction), then the maximum motor torque is
found by looking at Figure 3.6.

If the prior actual motor speed is between 0 RPM and the rated RPM, then the max-
imum motor torque is given by the value of the straight line. In the case of Figure 3.6,
the maximum motor torque is roughly 275 Nm. Otherwise, the prior actual motor speed is
somewhere between rated RPM and maximum RPM. The actual motor speed is limited in
Equations (3.19) and (3.20) to ensure the motor speed cannot exceed the maximum RPM
value. Then the curved line for maximum motor torque is approximated using Equation
(3.11). The rated max torque refers to the straight line in Figure 3.6 (i.e. 275 Nm), the
rated motor speed refers to the rated RPM and the prior actual motor speed is the x-axis.

Figure 3.6: This figure shows the torque vs speed characteristics of a typical ideal 3-phase AC
induction motor. The region from 0 to rated RPM is the constant torque region and the region from
rated RPM to maximum RPM is the constant power region. (Plett, 2016a)

max motor torque [Nm] = rated max torque [Nm] · rated motor speed [RPM]
prior actual motor speed [RPM]

(3.11)

If the demanded motor torque is negative (i.e. deceleration), the motor will help
decelerate until it’s maximum negative torque is reached. If more deceleration is required,
then the brakes will help to decelerate the vehicle. The motor helps with deceleration
because it is able to regenerate (i.e. regen) some of the braking energy and charge up the
battery pack again.
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The max motor torque must be computed like above using either the straight line or
Equation (3.11). Use the absolute value for prior actual motor speed to find the max motor
torque. The maximum regen motor torque can be found using Equation (3.12), where
the regen fraction refers to an efficiency loss and the rated max torque is the straight line
in Figure 3.6. It is important to remember that the max regen motor torque should be
negative.

max regen motor torque [Nm] =−min(max motor torque [Nm],

regen fraction× rated max torque [Nm]) (3.12)

Now the maximum motor torques are calculated for both acceleration and decelera-
tion. The limited motor torque is found using Equation (3.13) and (3.14) for demanded
motor torque ≥ 0 and < 0 respectively. The max motor torque is positive and the max
regen motor torque is negative.

limited motor torque = min(demanded motor torque,max motor torque) (3.13)

limited motor torque = max(demanded motor torque,max regen motor torque) (3.14)

Now the actual acceleration force can be calculated using Equation (3.15).

actual acceleration force [N] = limited motor torque [Nm] · N

wheel radius [m]
− aerodynamic force [N]− rolling force [N]− grade force [N]

(3.15)

From this the actual acceleration can be found (see Equation (3.16)). The equivalent
mass is defined in Equation (3.4).

actual acceleration[m/s2] = actual acceleration force [N]
equivalent mass [kg]

(3.16)
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The calculated actual acceleration may lead to a greater angular velocity than the
motor is rated for. Therefore a test speed is first calculated using Equation (3.17).

test speed [m/s] = prior actual speed [m/s]+actual acceleration[m/s2]·sampling period [s]
(3.17)

Then the motor test speed can be calculated using Equation (3.18). By multiplying
the test speed on the wheel side by the gearbox ratio N, the test motor speed is found. The
60 [s/min] is a conversion factor and the denominator gives the circumference of the wheel
for one revolution.

motor test speed [RPM] = test speed [m/s] ·N · 60[s/min]
2π · wheel radius [m]

(3.18)

To find the limited motor speed for motor test speed >= 0, use Equation (3.19).
Otherwise, use Equation (3.20).

limited motor speed [RPM] = min(motor test speed [RPM],max rated motor speed [RPM])
(3.19)

limited motor speed [RPM] = max(motor test speed [RPM],-max rated motor speed [RPM])
(3.20)

The actual speed can then be calculated using Equation (3.21).

actual speed [m/s] = limited motor speed [RPM] · 2π · wheel radius [m]
60[s/min] ·N

(3.21)

From the actual speed, the distance travelled is estimated in Equations (3.22) and
(3.23).

∆x [m] = actual speed [m/s]− previous actual speed [m/s]
2 ·(current time [s]−previous time [s])

(3.22)
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distance [m] = previous distance [m] + ∆x [m] (3.23)

3.2.2 Motor Power to Battery SoC Calculations

Chevy Volt Coefficients Value
Overhead Power 0.2 kW

Battery Pack Efficiency 0.96
Inverter Efficiency 0.94
Motor Efficiency 0.95
Gear Efficiency 0.97

Revolve Battery Cell Estimated Capacity 6.8 Ah
max rated battery SoC 75 %
min rated battery SoC 25 %

Num Modules 12
Num Parallel Cells Per Module 3
Num Cells in Series Per Module 8

Num Cells Per Pack 288

Table 3.2: Chevy Volt Coefficient Values for Section 3.2.2. Some of these values are estimated,
which could negatively impact the estimated SoC, extrapolated range and time to go until battery
pack depletion. (Plett, 2016b)

The motor power can be calculated from the fundamental physics equation given in
(3.24), where τ is torque, θ is the angle in Figure 3.7 and t is the time.

Figure 3.7: This figure shows how the constant force F rotates the lever arm with radius r. s is the
circular arc and θ is the angle between two different timesteps as F pushes the lever arm around the
axis of rotation. (Sleigh, 2016)
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3.2 Speed Profile To Battery SoC Vehicle Modelling

power = φ · τ
t

(3.24)

The instantaneous motor power is computed in Equation (3.26), where θ = 2π ·
motor speed and τ = limited torque.

average lim motor speed [RPM] = previous lim motor speed [RPM] + lim motor speed [RPM]
2

(3.25)

motor power [kW] = 2π[rad/revolution] · average lim motor speed [RPM] · limited torque [Nm]
60[s/min] · 1000[W/kW]

(3.26)

Positive motor power means the vehicle is accelerating and negative motor power
means the motor is regenerating energy back to the battery.

For positive motor power, use Equation (3.27), where the overhead power refers to the
power needed for other vehicle systems (i.e. air conditioning). Assume overhead power is
a constant value. Even though the overhead power will vary in real life, it is assumed that
the overhead power is insignificant compared to the motor power required to accelerate
the vehicle. This assumption is proven correct by plotting the motor power values. The
drivetrain efficiency looks at the efficiency from battery pack to the wheel output and is
explained in Equation (3.28). The battery pack efficiency includes I2R losses and the
inverter converts direct current (DC) into alternating current (AC).

battery power [kW] = overhead power [kW] + motor power [kW]
drivetrain efficiency

(3.27)

drivetrain efficiency = battery pack efficiency·inverter efficiency·motor efficiency·gear efficiency
(3.28)

For negative motor power, the equation for battery power is very similar to Equa-
tion (3.27), only that motor power is multiplied by drivetrain efficiency (Equation (3.29)).
Assume that the drivetrain efficiency is the same value, regardless of whether the motor
power is positive or negative.

23



Chapter 3. Modelling Electric Vehicle (EV) Range Anxiety

battery power [kW] = overhead power [kW] + motor power [kW] · drivetrain efficiency
(3.29)

It is assumed that the battery can always deliver enough power for the motor to pro-
duce the limited motor torque. Therefore, no limit is put on the battery power. This
assumption is not true in practice, but will hold for these simulations because the battery
is never fully discharged. This could become an issue if the speed profile is longer than
the vehicle range.

In the parameter estimation phase, the relationship between SoC and Open Circuit
Voltage (OCV) is found for the Revolve battery cell. Assuming the battery pack initial
SoC is fully charged at 75 %, this value is used to find the OCV for the fully-charged
vehicle. Assume then that the OCV is equal to the battery cell voltage. The battery pack
voltage is then computed by multiplying the battery cell voltage by the number of cells in
series in a battery module and by the number of modules in a battery pack. This is a rough
assumption assuming that each cell has an equal voltage and therefore each module also
has an equal voltage.

battery pack voltage [V] = cell voltage · num cells in series in one module

· num modules in series in a pack (3.30)

Then the battery current is found using I = P/V . A positive battery current is
defined as a current discharge.

battery current [A] = battery power [kW] · 1000[W/kW]
battery pack voltage [V]

(3.31)

The battery SoC is then computed using the SoC EKF. For a more complete de-
scription of how the EKF computes SoC, see Reference (Kvaale, 2016). For all ”true”
SoC estimates that assume perfect current and voltage measurements in Section 4.10, CC
shown below is sufficient. The coulombic efficiency η is assumed to be equal to one.

battery SoC [%] = prior battery SoC [%]−battery current [A] · sampling period [s]
3600[s/hr] · battery capacity [Ahr]

·100%
(3.32)
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By extrapolating the driving cycle calculations, the driving range can be found. This
calculation loops the speed profile used until the minimum rated battery SoC is found.

range [km] =

total distance simulated [km] · max rated battery SoC [%]−min rated battery SoC [%]
initial SoC [%]− SoC at end of drive cycle [%]

(3.33)

The same calculation can be used used to find ”time to go” until the EV reaches the
minimum rated SoC. Again, the speed profile is looped like in the range calculation above.

time to go [s] =

total time simulated [km] · max rated battery SoC [%]−min rated battery SoC [%]
initial SoC [%]− SoC at end of drive cycle [%]

(3.34)
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Chapter 4
Results & Analysis

4.1 Parameter Estimation Results for the Revolve Battery
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Figure 4.1: This figure shows how good the fit is of the estimated unknown parameters by com-
paring the measured true voltage with the estimated voltage. Equation (1.2) is used to calculate the
estimated voltage in the SoC EKF. The test that is run is the same dynamic test described in Section
2.1.1. The current profile used is shown in Figure 5.1.

The results of the parameter estimation explained in Section 2.1 can be seen clearly
in Figures 4.1 and 4.2. The simulated temperature is 25o C. To test whether the parameters
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Figure 4.2: This figure shows the error between the true voltage and the estimated voltage shown in
Figure 4.1.

Author’s Test State of the Art Test
Mean Voltage Error 13.1 mV -1.69 mV

Standard Deviation of Voltage Error 21.8 mV 11.4 mV
RMS Error 25.4 mV 11.5 mV

Table 4.1: The table compares the test run in this section with the current state of the art by looking
at the mean voltage error, the standard deviation of the voltage error and the RMS error. Error is
defined as the difference between the measured and estimated voltage.

give a good description of the ESC models, two tests are run. The parameter estimation
EKF shown in Figure 2.1 returns values for the ESC unknown model parameters θ. These
values are then fed into a separate EKF that estimates the battery cell SoC. In addition to
outputing the SoC, the second EKF also outputs an estimated voltage for each timestep.
This estimated voltage is given by the blue line in Figure 4.1. Assume the sensor and pro-
cess noises vk = wk = 0 because the measured current ik already includes measurement
noise. OCV(zk, Tk) is found using the theory provided in the first battery test and M0, M,
R1 and R0 are estimated in θ.

From Table 4.1, it can be concluded that the state of the art test performs better than
the author’s test. The battery testing repeats the dynamic current test cycle until the mini-
mum voltage of 3 Volts is reached. Then, the battery is charged up to 4.2 Volts again using
constant current charging. The true voltage of the last two voltage cycles in Figure 4.2
has a greater voltage span than previous cycles. This makes it more difficult for the EKF
to estimate the voltage during this time span. It would be more ideal to have a constant
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current discharge from around 10% SoC (i.e. 3.7 V) to the minimum battery voltage, as
described in (Plett, 2015a). This could potentially lead to a smaller error between 8.5 and
10 hours.

Although this explains the voltage spike, the mean error in Table 4.1 is still much
larger than the state of the art test. This error could potentially be attributed to an error
in the author’s parameter estimation algorithm that leads to suboptimal parameter values.
Looking at Appendix 5.2, it can be seen that the recursive calculations to find the linearized
matrix Ĉθk is complex and could lead to errors. Another possibility is that the dynamic
test run did not excite the dynamic parameters of the ESC model enough (see Appendix
5.1). Both of these possibilities are important for getting good values for the parameter
estimation phase (Plett, 2004). Lastly, it could be possible that a sigma-point Kalman filter
could give better parameter estimation results (Plett, 2016a).

4.2 ESC SoC Estimation Results With Revolve Battery
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Figure 4.3: Simulation results show the estimated SoC in blue, the measured SoC output from the
EKF in orange and the predicted upper and lower bounds of the EKF SoC estimate in yellow and
purple respectively at T=25o C. A description for finding the measured SoC can be found in (Kvaale,
2016). The upper and lower bounds are found using Equation (1.3). Magnification is done using
(Fernandez-Prim, 2009).

The main results for SoC estimation are summarized in Figures 4.3, 4.4 & Tables
4.2 and 4.3. The dynamic current test cycle run is shown in Appendix 5.1 and repeated
multiple times. The estimated SoC never leaves the upper and lower bounds & stays very
close to the true SoC. The same applies for the error & error bounds. The error bounds
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Figure 4.4: Simulation results show the SoC error (i.e. measured - estimated SoC) in blue with
upper and lower error bounds in yellow and orange respectively at 25o C. The error bounds are
found using Equation (1.3). Magnification is done using (Fernandez-Prim, 2009).

Test Temperature Mean SoC Error Standard Deviation of SoC Errors
Author’s Test 25oC -0.22% 0.35 %

State of the Art 25oC -0.2 % 0.47 %

Table 4.2: (Dual EKF SoC error compared to state of the art

Real Cell Capacity [Ah] Estimated Cell Capacity [Ah]
6.55 6.8

Table 4.3: Real vs Estimated Cell Capacity

seem to show slight instabilities due to the current stimuli used in the parameter estimation
section. Zooming in on the error bounds shows the same current profile shape used for
parameter estimation, only inverted. This is because the CC equation used to find SoC in
the EKF subtracts the current stimuli to find SoC, thereby inverting the SoC estimate. The
pattern is then transferred to the error and error bounds.

Both the mean and standard deviation results in Table 4.2 show that the error bound
is small compared to the state of the art. The state of the art test results are found using
(Plett, 2015b). Since η and Q are the two main estimated parameters in the CC equation
to find SoC, good estimates for these two parameters are found. Table 4.3 shows a 4%
error between the real and estimated capacity. The Revolve battery cell data sheet reveals
that the capacity must be greater or equal to 6.55 Ah. A constant current discharge from
max to min rated cell voltage is used to estimate the cell capacity. The cell current used
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to measure cell capacity is smaller in this thesis than the current the battery manufacturer
uses. A smaller current discharge in the current discharge test leads to a higher estimated
capacity (Dubarry et al., 2009), which validates the cell capacity estimate. In addition,
both the SoC estimates and the SoC error estimates remain within the error bounds at all
times (see Figures 4.3 and 4.4).

Although the parameter estimation results are not optimal (see Section 4.1), the es-
timates for η and Q are better. The reason is that the η and Q parameters are not found
using the parameter estimation EKF, but rather by measuring accumulated Ah charged and
discharged during the SoC vs OCV battery test (see Section 2.1).
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4.3 Elevation Profile Results

(a) Google Earth Pro Results
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(b) GPS Visualizer Results

Figure 4.5: This figure shows the elevation profile for the mixed profile (see Figure 3.2) using two
different methods.

Dist. GE Pro [km] Elev. GE Pro [m] Dist. GPS Visual. [km] Elev. GPS Visual. [m]
58.8 2232 65 2240
223 476 246 490
284 1771 312 1800
361 2916 383 2846

Table 4.4: Peak elevation points are sampled for the two elevation profiles using Google Earth Pro
and Google Maps/GPS Visualizer.

Figure 3.2 and Table 4.4 show the results of two different methods for checking the
elevation profile for any route. This case compares the mixed route (see Figure 3.2) from
Medellin to Bogota in Colombia. The profile in Figure 4.5a shows the elevation route
from Google Earth Pro and compares it to the GPS Visualizer results that are used in
this thesis. The Google Earth Pro results are found by inputting the starting point and
destination, right clicking on the route and pressing ”Show Elevation Profile”. Looking at
the elevation profiles visually show that the profile is almost identical for both. Taking a
closer look at Table 4.4, the Google Earth Pro results do deviate from the GPS Visualizer
results. GPS Visualizer uses NASA’s Shuttle Radar Topography Mission (SRTM) and
the United States Geological Survey National Elevation Dataset to calculate GPS data
(Schneider, 2016). Google Earth Pro, on the other hand, uses data from multiple sources
(e.g. SIO, NOAA, US. Navy, NGA, GEBCO). The results are very similar for the uphill
and downhill elevation profiles.

SRTM data used in GPS Visualizer has an absolute elevation accuracy of 6.2 m com-
paring accurate ground measurements in South America to the SRTM data (Farr et al.,
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2007). (Wing and Frank, 2011) uses GPS receivers to triangulate the elevation to an er-
ror of 5 meters in a forest canopy setting. The error between the Google Earth Pro and
GPS Visaulizer data presented in Table 4.4 are much greater than these sampled errors and
show that there could be an error during the linear interpolation of the elevation profiles.
Both routes are inspected visually and it seems the routes used the same roads for most of
the profile length. Yet the distance length is different for both elevation profiles (i.e. 381
km for Google Earth Pro, 419 km for Google Maps/GPS Visualizer), leading the author
to believe that the best routes chosen by Google Maps and Google Earth Pro are slightly
different. Many factors could lead to this deviation, including a different algorithm used
for finding the best route or different GPS data. The Google Earth Pro elevation profile
results are for some unknown reason not shown for the entire distance length, leading to
a limitation in this elevation validation section. This could result in different elevation
profile datapoints. Another point to mention is that it is unsure which of the two elevation
profiles represent accurate true values, as none of the two profiles have been verified for
precision and accuracy. Using mapping-grade GPS receivers or LIDAR connected to an
airplane could give the two profiles a reference profile to validate against (Wing and Frank,
2011). A more specific analysis could be analyzed in future work.
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4.4 Speed Profiles
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Figure 4.6: Simulation results show that the EV’s actual speed is able to follow the desired speed
for the HWFET speed cycle. The magnified region shows a case where the actual speed cannot
keep up with the desired speed. The downhill elevation profile is used. Magnification is done using
(Fernandez-Prim, 2009).

Figures 4.6, 4.7 and 4.8 show the main results for the desired vs actual speed profiles.
To best understand the calculations required to get from desired speed to actual speed, see
Figure 3.4 and Section 3.2.1. The vehicle that is used for the modelling purposes is a 2013
Chevy Volt with Revolve battery cells (see Tables 3.1 and 3.2 for coefficient values). The
Chevy is able to follow the desired speed profiles mostly, except for the magnified region
in Figure 4.6. This is due to a high grade angle that leads to a high grade force. The motor
is not able to supply enough motor torque to sustain the desired speed in this region. If a
flat elevation profile is used, the vehicle is able to follow the desired speed in the magnified
region also.
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Figure 4.7: Simulation results show that the EV’s actual speed is able to follow the desired speed
for the New York City cycle. The uphill elevation profile is used.

0 5 10 15 20 25

Time [min]

0

10

20

30

40

50

60

70

80

90

100

S
p
e
e
d
 [
k
m

/h
]

Urban Dynanometer Driving Schedule (UDDS) Speed vs Time Profile

Desired Speed

Actual Speed

Figure 4.8: Simulation results show that the EV’s actual speed is able to follow the desired speed
for the UDDS cycle. The mixed elevation profile is used.
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4.5 Speed Profiles SoC With And Without Regenerative
Braking
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(a) Regenerative Braking
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Figure 4.9: The figures shows how the different speed profiles shown in Figures 4.6, 4.7 and 4.8
affect the SoC of the battery pack. The SoC is calculated using the SoC EKF and Revolve parameter
estimation data. The SoC increases at times in Figure 4.9a because the EV uses regenerative braking
to recharge the battery pack. This simulation assumes a level surface (i.e. grade angle is zero) and
the Revolve battery cell is used for SoC estimation.
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Figure 4.10: This figure plots the ”error” between Figures 4.9a and 4.9b. The plot shows how
much SoC can be regenerated for the three different speed profiles using regenerative braking. The
Revolve battery cell is used.

This section finds the SoC until the end of each speed profile and compares the effect
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Speed Profile HW-FET NYCC UDDS
SoC Lost With Regen [%] 24.5 3.5 18.1
SoC Lost No Regen [%] 28.4 6.8 28.7

SoC Gained With Regen [%] 3.9 3.3 10.6

Table 4.5: This table shows how much SoC is lost for three different speed profiles, assuming the
EV has or does not have regenerative braking. The SoC lost is found by comparing the initial with
the final values for all of the different scenarios in Figure 4.9. It is assumed that the Revolve battery
cell is used in the battery pack.

regenerative braking has on SoC. The battery current is found from the limited torque (see
Section 3.2.2). The no regenerative braking case is found by setting all negative battery
currents (i.e. recharging currents) equal to zero. In this scenario, the battery is never
charged up during deceleration. The main results are summarized in Table 4.5.

From the results presented in Figures 4.9a and 4.9b, one can conclude that the EV can
handle the desired speed profiles with much range left to spare. Comparing the different
speed profiles, the HW-FET profile discharges the battery the most. This is because the
HW-FET profile has a much higher average speed than the others (see Table 4.6). Looking
at Equation (3.6), the aerodynamic force is proportional to the actual speed squared. This
leads to a much higher aerodynamic drag force for the HW-FET profile compared to the
other profiles. Greater motor torque and more battery power are required to achieve the
desired vehicle speeds. This requires a greater depth of discharge from the battery.

The NYCC profile discharges the battery the least due to the lowest average speed, the
least amount of distance covered and the shortest driving time. The UDDS profile battery
discharge is between the HW-FET and NYCC profiles because the values for average
speed, distance covered and driving time are between the HW-FET and NYCC profiles.

The speed profiles that profit the most from regenerative braking with a flat elevation
profile are the NYCC and the UDDS profiles (see Figure 4.10). Both these profiles have
many deceleration sections, which leads to more regenerative braking opportunities. The
HW-FET profile has fewer deceleration sections, but has one long deceleration at the very
end to decelerate from 90 km/h to a full stop. As can be seen in Figure 4.10, the HW-FET
profile regains little SoC during most of the profile and then increases dramatically during
the end of the profile.
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4.6 Comparison of Three Different Speed Profiles
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Figure 4.11: The simulated distance travelled is calculated for the three different speed profiles
given in Figures 4.6, 4.7 and 4.8 using Equations (3.22) and (3.23).

Speed Profile Average Speed [km/h] Distance [km] Range [km] Time To Go [min]
HW-FET 77.6 16.51 33.6 26
NYCC 11.4 1.90 27 141.9
UDDS 31.5 11.99 33.2 63.1

Table 4.6: The total distance covered is calculated for the three different speed profiles given in
Figures 4.6, 4.7 and 4.8 using Equations (3.22) and (3.23). The distance covered is the final value
in all of the scenarios presented in Figure 4.11 and the extrapolated range is found using Equation
(3.33). Time to go defines how much time remains until the EV reaches the minimum SoC if the
same speed profile repeats itself (see Equation (3.34)). The Revolve battery cell is used in this
calculation and a flat elevation profile is chosen (i.e. grade angle is zero).

The main results for this section are presented in Figure 4.11 and Table 4.6. Looking
at the speed profiles in Figures 4.6, 4.7 and 4.8 and Table 4.6, it is clear that the HW-FET
speed profile covers the greatest distance. The average speed of the HW-FET profile is
more than two times greater than the UDDS profile and about seven times greater than the
NYCC profile. The UDDS profile covers a greater distance than the NYCC profile due to
a higher average speed and driving time.

Looking at the extrapolated range presented in Table 4.6, the HW-FET profile has a
slightly longer range prediction than the UDDS profile. The NYCC profile has the lowest
extrapolated range of the three speed profiles. Comparing the HW-FET profile with the
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4.6 Comparison of Three Different Speed Profiles

UDDS profile, one notices that the former profile has a higher average speed and less
deceleration periods than the latter. Equation (3.6) shows that a higher average speed
leads to a much greater aerodynamic force and requires more battery SoC to maintain
the desired speed. Comparing the speed profiles with the required battery currents, one
notices that quick acceleration periods require more battery current than more constant
speed profiles.

Although the HW-FET profile has higher aerodynamic forces that act upon the EV
than the UDDS profile, the UDDS profile has a greater degree of quick acceleration peri-
ods. Both aerodynamic forces and quick acceleration periods require more battery current
and SoC to maintain the desired speed. Although deceleration periods regenerate some
battery SoC, there are losses in the regenerative braking process. These are two possible
reasons that the HW-FET and the UDDS profiles have similar extrapolated ranges. Also,
an EV with greater battery capacity would lead to greater extrapolated range and most
likely a more pronounced deviation between the three speed profile ranges.

By comparing the actual acceleration plots of the NYCC and UDDS cycles, one no-
tices that the NYCC cycle requires quicker acceleration periods than the UDDS cycle. The
HW-FET cycle requires more gradual acceleration periods than the NYCC and UDDS cy-
cles. Since quicker accelerations require more pack current, this depletes more battery
SoC. In addition, the NYCC profile regenerates the least amount of SoC of the three pro-
files. The NYCC profile has the lowest distance covered of the three speed profiles. This
distance is used to calculate extrapolated range. Both quick acceleration periods, low
regenerative braking capabilities and the lowest distance covered help explain why the
NYCC cycle has the lowest extrapolated range of the three speed profiles.

The time to go calculations estimate how much time is remaining until the EV reaches
the minimum battery pack SoC, assuming the speed profile repeats itself until the mini-
mum SoC is reached. As can be seen from Table 4.6, the NYCC profile has the greatest
time remaining. The UDDS profile has the next highest time to go and the HW-FET profile
has the shortest time to go profile. The HW-FET profile length is 12.8 minutes, the NYCC
profile is 10 minutes and the UDDS profile is 22.8 minutes. The two biggest components
to calculate time to go are the profile length in minutes and the SoC value at the end of
the speed profile. Since the NYCC profile loses the least amount of SoC by a factor over
more than 5 compared to the other profiles, this helps the NYCC profile achieve the great-
est time to go. The UDDS profile has a longer profile length and loses less SoC than the
HW-FET profile. This helps explain why the UDDS profile has a longer time to go than
the HWFET profile.

One also notices that that the range and average speed affect the time to go calcula-
tions by looking at Table 4.6. All three profiles have very similar extrapolated range until
min rated SoC is reached. Since the HW-FET profile has more than double the average
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speed of the UDDS profile and is a factor of 7 greater than the NYCC profile, it is logical
that the HW-FET profile has the lowest time to go. By dividing the extrapolated range by
average speed, one can find the time to go.

4.7 Elevation To Speed Profile To SoC

Figures 4.12, 4.13 and 4.14 showcase one of the main results of this thesis. By loading a
Google maps profile, it is possible to download elevation data using GPS Visualizer, attach
this information to a speed profile (i.e. UDDS,HW-FET,NYCC) and get a SoC estimate
with known error bounds. The known error bounds can be calculated using Equation
(1.3) and give more certainty that the SoC is within this region. The error bounds are not
attached in Figures 4.12, 4.13 and 4.14 because it decreases the readability.

The author makes some crude assumptions to achieve these results. It is assumed that
each battery cell in the battery pack has the same parameter estimation properties. Also,
the battery cell voltage is found using only the relationship between OCV and SoC and
neglecting the other ESC parameters (hysteresis, diffusion voltages & internal resistance)).
The tests are done by adding white noise with a standard deviation of 1% to the simulated
battery pack voltage and a constant bias of 1% to the simulated battery pack current.

Adding more noise to the EKF leads to instability, where the EKF oscillates between
-5% and 105% SoC, similar to Figure 4.19a. The UDDS, HWFET and NYCC speed
profiles used in Figures 4.12, 4.13 and 4.14 can be transformed into a current profile using
Section 3.2. The reason for this unstable oscillation could be because the ESC model is
parametrized using a different current profile than the current profiles used in Figures 4.12,
4.13 and 4.14. One of the limitations of the ESC model is that it is unsure how the cell
behaves for different current profiles (Plett, 2015a). This uncertainty can affect the voltage
estimate in the EKF, which can lead to instabilities in the SoC estimate. The SoC estimate
oscillates between -5% and 105% because an upper and lower bound are set in the SoC
EKF to prevent even greater instability.

The SoC results for Figures 4.12, 4.13 and 4.14 are discussed next. The extrapolated
range calculations are based upon the estimated SoC from the EKF (see Equation (3.33)).
Section 4.9 discusses that the extrapolated range calculations make sense compared to
the true vehicle values because a smaller battery pack capacity and potentially less of
the pack capacity is used. This hypothesis is verified by increasing the pack capacity.
Therefore, if one assumes the extrapolated range is considerably accurate given the battery
pack differences, the SoC estimates presented in this section must be reasonably accurate
too. It is important to note that the extrapolated range verification using the bigger pack
capacity uses CC because the dual EKF is only tuned to work for the Revolve battery.
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Another important point to note is that the validation section assumes a flat grade angle is
used. A more detailed analysis could be discussed in future work.

Comparing the three cases, it is noticeable after an in depth analysis that the speed
and elevation profiles have a profound effect on SoC. As discussed previously in Section
4.6, the profile speed, the amount of acceleration and deceleration periods as well as the
profile length influence the SoC estimate. Higher speeds and greater acceleration peri-
ods require more current discharge to combat the aerodynamic force and to make the car
accelerate quicker. Deceleration periods lead to greater regenerative currents, increasing
SoC. Section 4.8 comes to the main conclusion that an uphill elevation profile leads to less
extrapolated range (less SoC lost) than a mixed or downhill elevation profile for the same
speed profiles. This is due to a greater grade force (see Equation (3.8)) which decelerates
the vehicle.

As the SoC is essential for estimating range and time to go until battery depletion, it
is important to estimate SoC accurately. As discussed previously, the dual EKF is tuned
using a different current profile to the current profiles tested in this vehicle. To verify the
SoC results very accurately, one would need to do dynamic battery tests with the Revolve
cell using the profile currents in Figures 4.12, 4.13 and 4.14. See Section 2.11 of Reference
(Plett, 2015a) for further information on battery testing.
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Figure 4.12: The downhill elevation profile grade angle points are attached to the HW-FET speed
profile (see Section 3.1 for a description). Using the algorithm in Section 3.2 and running the algo-
rithm through an EKF using the parameter estimation data in Section 4.1 leads to a SoC estimate.
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Figure 4.13: The mixed elevation profile grade angle points are attached to the UDDS speed profile
(see Section 3.1 for a description). Using the algorithm in Section 3.2 and running the algorithm
through an EKF using the parameter estimation data in Section 4.1 leads to a SoC estimate.
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Figure 4.14: The uphill elevation profile grade angle points are attached to the NYCC speed profile
(see Section 3.1 for a description). Using the algorithm in Section 3.2 and running the algorithm
through an EKF using the parameter estimation data in Section 4.1 leads to a SoC estimate.
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4.8 Speed Profile Extrapolated Range & Time To Go For
Different Elevation Profiles

Est. Elevation Profile HW-FET NYCC UDDS
Est. Range Downhill Revolve Cell [km] 46.8 55 43.6
Est. Range Mixed Revolve Cell [km] 24.6 19.2 29.5
Est. Range Uphill Revolve Cell [km] 15 14.8 14.5
Est. Range Flat Revolve Cell [km] 33.6 27 33.2

Table 4.7: This table compares the extrapolated range of three different speed profiles with three
different elevation profiles. The EKF is used to estimate the SoC and extrapolated range. Speed
profiles can be found in Section 4.4 and the elevation profiles in Section 3.1. The Revolve battery
cell in a simulated 2013 Chevy Volt are used to find the extrapolated range. The flat results are the
same as found in Table 4.6.

Elevation Profile HW-FET NYCC UDDS
Time To Go Downhill [min] 36.2 289.2 83.1

Time To Go Flat [min] 26 141.9 63.1
Time To Go Mixed [min] 19.1 101 56.2
Time To Go Uphill [min] 11.6 78.1 27.5

Table 4.8: This table compares the extrapolated time to go of three different speed profiles with
three different elevation profiles. The speed profiles can be found in Section 4.4 and the elevation
profiles in Section 3.1. Time to go is extrapolated using the Revolve battery cell using Equation
(3.34).
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Figure 4.15: The graphical representation of Tables 4.7 and 4.8 is shown.

From the results in Table 4.7, it is evident that the grade angle (i.e. elevation) has
a large influence on driving range. The extrapolated range table above shows that the
downhill profile has the longest extrapolated range followed by the flat, mixed and uphill
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elevation profiles for all speed profiles. This is due to the fact that an uphill profile requires
greater battery currents to be able to follow the three speed profiles, whereas a downhill
profile makes great use of the regenerative braking capabilities. The mixed profile requires
large discharge currents for the uphill and acceleration sections and allows for regenerative
braking. The results for the flat profile in relation to the mixed and uphill profiles show
that a lot of range is lost as soon as the car travels uphill. Even though the mixed profile
has downhill sections with regenerative braking, this is not enough to increase range more
than the flat elevation profile.

Looking more specific at the downhill elevation profile, one can see that the NYCC
profile has the greatest extrapolated range compared with the HW-FET and UDDS pro-
files. This is an interesting result, as Table 4.6 shows that the NYCC profile has the small-
est extrapolated range for the flat profile. From Equation 3.33, the main components in
extrapolated range are distance travelled and the SoC lost. Since the distance travelled is
smallest for the NYCC profile, it must be that the NYCC profile loses the least amount
of SoC for the downhill profile. Looking at the simulated SoC gained from regenerative
braking shows that both the NYCC and HW-FET profiles regenerate more SoC than the
NYCC profile. As discussed in Section 4.5, the low average speed of the NYCC profile
leads to a small aerodynamic force and less energy lost compared with the other profiles.
Therefore, the NYCC profile does lose the least amount of SoC for the downhill elevation
profile.

It is important to note that although the same elevation profiles are used for the differ-
ent speed profiles, the length of the elevation profiles are adjusted to the length of the speed
profiles. Therefore, the elevation profiles are either shortened (lose some grade angle data)
or looped. This affects the extrapolated range and time to go calculation results.

Table 4.8 and Graph 4.15b show the main results for time to go. Graph 4.15b shows
that the downhill profile has the greatest time to go, followed by the flat, mixed and uphill
elevation profiles for all three speed profiles. This is the same pattern that is evident by
looking at extrapolated range in Graph 4.15a. As time to go measures a very similar result
compared to extrapolated range, it makes sense that this pattern is transferred to the time
to go results.

4.9 Validation of Extrapolated Range For Flat Elevation
Profile

Comparing this to real results from 2013 Chevy Volt in Table 4.9, the results are encourag-
ing. After an extensive search, the author is unsure whether the real dynamometer testing
uses a constant flat elevation profile during the entire test cycle. Therefore, it is assumed
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Range [km] HW-FET NYCC UDDS
Est. Range Chevy Volt 2013 [km] 75 60 74
True Range Chevy Volt 2013 Method 1 [km] 101 - 104
True Range Chevy Volt 2013 Method 2 [km] 61 - 61

Table 4.9: This table compares the extrapolated range of a simulated 2013 Chevy Volt with higher
capacity battery cells to true dynamometer values using two different methods (DOE, 2013) (DOE,
2017). CC is used to find the estimated extrapolated range because the EKF is only adjusted to the
Revolve battery cell. The speed profiles can be found in Section 4.4 and a flat elevation profile is
used.

the elevation profile is flat for the whole duration of the test. A dynamometer measures
engine power by placing the vehicle on a flat surface with rolls to measure the wheel out-
put power. An explanation for finding the dynamometer and true driving values can be
found in Appendix 5.4. Although Table 4.9 shows that the true range for the HW-FET
and UDDS profiles are roughly two to three times (i.e. using Method 1 or 2) greater than
the estimated range for the flat profile seen in Table 4.7, this is mainly due to a different
battery pack capacity. The rated pack capacity for the true vehicle is 45 Ah (DOE, 2013),
whereas the simulated Chevy Volt with Revolve cells has half of the pack capacity because
the lower capacity Revolve battery cell is used.

To test whether this algorithm makes sense with the true values, the cell capacity is
increased to 15 Ah, which increases the pack capacity to 45 Ah. Since each module has
an assumed three cells in parallel, the pack capacity is the cell capacity multiplied with
the number of parallel cells in a module (Plett, 2016a). Regular CC is used instead of
the EKF to measure the SoC for the increased cell capacity. This is because the EKF
uses parameter estimation data, which is only valid for the Revolve battery. Since none of
the ESC battery model parameters are known apart from capacity for the real Chevy Volt
battery cell, CC must be implemented. In addition, white noise on the current is turned off
in the extrapolated range algorithm to simulate noise-free current signals. It is important to
note that many coefficients in the simulated Chevy Volt vehicle are estimated, which could
greatly influence the simulated current. This is discussed further below. Since the current
and capacity are the two main components in CC, good current signals with a reliable
capacity estimate lead to accurate SoC and extrapolated range estimates.

As can be seen from Table 4.9, the extrapolated range results for the Chevy Volt
capacity are in between the true values of the Chevy Volt using Methods 1 and 2. Since
Method 1 uses the rated pack energy from the battery manufacturer to calculate the range,
it is unsure how accurate this value is (see Appendix 5.4). Method 2 uses range data given
in miles, which makes these range values more believable. In addition, the results from
Table 4.9 show that the Method 1 range results are 65% greater than the Method 2 range.
Because of this, the estimated range will only be compared to the real range using Method
2.
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The estimated range values for the HW-FET and UDDS profiles are greater than the
real range using Method 2 in Table 4.9. Both estimated range values are approximately
23% greater compared to the true values. There are multiple reasons why this could be
the case. Many of the coefficient values in Tables 3.1 and 3.2 are estimated, which can
influence the extrapolated range. Two examples that influence range extensively are the
min and max rated SoC and the aerodynamic force.

It is unsure what the max and min rated battery SoC values are for the real Chevy Volt
(see Table 3.2). These values help prevent over-charge and over-discharge and define when
the vehicle is fully charged or fully discharged. These values determine the real utilizable
battery capacity and directly influence the true range . By decreasing these values to 30%
and 70% for example, the estimated range is the same as the true range using Method 2
(see see Equation (3.33)). Also, the EPA simulates road load forces, such as aerodynamic
drag, during the dynamometer testing. Each car manufacturer is allowed to decide how
to measure the road-load force themselves (Bunker, 2015). After an extensive search, it
is unsure how Chevy determines both the max and min SoC values and the road load
forces (i.e. aerodynamic drag). Although there is a level of uncertainty regarding the
estimated vehicle values in Tables 3.1 and 3.2, auto manufacturers have access to accurate
vehicle parameters. By further improve the modelling equations and using accurate vehicle
parameters, auto manufacturers will be able to increase the range estimation accuracy.

If a system similar to this were to be implemented on an EV, it would be very im-
portant to estimate a more conservative range. The current results show that the estimated
range is greater than the true range, which would most likely result in EV owners being
too optimistic about the range of their EV. Thereby, many EV owners not being able to
reach their destination because of a depleted battery pack.
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4.10 EKF vs CC for HW-FET and NYCC profile

The EKF used in this section is based upon code provided in (Plett, 2015b). The code is
updated for increased author readability and understanding.

The parameter estimation data in Section 2 uses a dynamic current test cycle stimuli.
The first EKF then finds estimated parameter values for the unknown ESC model values
(see Section 1.4). These values are then inputed into another EKF that outputs the SoC
(see Figure 2.1). The dual EKF method uses both current and voltage measurements, along
with the ESC battery model to generate an estimated voltage. This estimated voltage
is compared to the measured voltage in order to update the SoC estimate. CC, on the
other hand, only uses current measurements to update the SoC estimate. Therefore, it
is expected that the EKF can handle current measurement errors better than CC (Plett,
2016a). (Mastali et al., 2013), for example, shows a situation where the CC SoC estimate
diverges drastically from the experimentally measured SoC and the EKF estimated SoC
because CC only uses current measurements. This section presents three cases (i.e. a
50% standard deviation current sensor white noise, losing current sensor measurements
and a 50% current bias) using two speed profiles where the EKF has better SoC estimation
performance compared with CC. The current sensor errors occur after 6 minutes in all
profiles. The voltage sensor simulation measurements are assumed perfect without any
white noise.

It is assumed that each battery cell has the same behavior as the entire battery pack.
Since the focus is on the EKF vs CC behavior and not realistic battery pack modelling,
the author assumes this assumption is viable. The author realizes that each cell will have a
slightly different behavior and different parameter estimation values in the real world. In
addition, the SoC of each cell will be slightly different to one another in practice. It is also
assumed that one current sensor is used to measure the battery pack. From the author’s
understanding, this can be done in practice (Xin et al., 2010).

In all of the figures in this section, it is presumed that the CC line without error has
been initialized correctly to 100%. All of the cells in the battery pack are inferred to have
the same SoC and each cell in the battery pack discharges equally. To truly initialize the
battery pack SoC close to 100%, it would be possible to take take each cell and charge it up
fully to T=25 oC, since this is often defined as 100% SoC from the battery manufacturer
(Plett, 2015a). It is also assumed that CC without any current error has perfect current
measurements and the Revolve cell capacity estimate is perfectly correct. Thereby, the CC
without error line is defined as the ”true” SoC. There will naturally be some errors if these
tests are validated using experimental data. This could be a possibility to discuss in future
work.

The rest of this section focuses on the results and analysis for the 50% white noise on

49



Chapter 4. Results & Analysis

the current (Figures 4.17 and 4.18), losing current sensor measurements (Figures 4.19 and
4.20) and a 50% current bias (Figures 4.21 and 4.22).

The current sensor with 50% white noise and perfect voltage sensor measurements
results are seen in Figures 4.17 and 4.18. As can be seen, both CC and EKF with the
current sensor error are able to follow the true SoC well. The RMS SoC error for the
HWFET profile is slightly smaller for CC than EKF (0.3% vs 0.5%). The opposite result
can be seen for the NYCC profile (0.3% SoC error for EKF vs 1% SoC error for CC).
It is reasonable that the EKF should have a lower error than CC, as the EKF is able to
use the perfect voltage measurements to update the SoC estimate. Since the white noise
is random, the author has also noticed situations where the EKF has a lower RMS error
than CC for the HWFET profile. In the NYCC profile, a bias can be seen in the CC line
with the current sensor error that is not noticeable in the HWFET profile. This is most
likely because the NYCC is a more aggressive profile that requires higher battery pack
currents. The 50% white noise then increases these currents even more compared with the
HWFET profile, which results in a noticeable drift away from the true SoC. Looking at
Figures 4.17b and 4.18b, the EKF estimated voltage is able to follow the simulated voltage
without a problem. The HWFET voltage magnified region shows a drop at 50% SoC that
is due to an error in parameter estimation. The simulated voltage is calculated using a
lookup table of SoC vs Open-Circuit voltage. This lookup table has a drop very similar to
this at 50% SoC .

Figures 4.19 and 4.20 assume a current sensor error at the beginning of the speed
profile. Once the error occurs, the sensor outputs 0 A until the end of the test. Therefore,
the CC line with the sensor error remains flat once the error occurs. The RMS error of the
EKF vs CC SoC results for the HWFET profile is much better at 3.3% compared to 32.4%
for CC. The same is true for the NYCC profile (i.e. 0.9% vs. 22%)

The EKF is able to follow the true SoC accurately with little RMS error after a tran-
sient response when the current error occurs in both speed profiles. Compared to the CC
results, the EKF follows the true SoC more accurately. Figure 4.19a is able to follow the
real SoC after 1.5 minutes, whereas Figure 4.20a has a 35 minute transient response to to
adjust to the true SoC. Looking at the estimated voltage plots in Figures 4.19b and 4.20b
shows that the EKF has an easier time of adjusting to the real voltage of the HWFET than
the NYCC profile. This is most likely because the HWFET current profile is smoother and
less aggressive than the NYCC profile. Since the current is found using the battery pack
voltage, the pack voltage must also be smoother for the HWFET profile. Therefore, it is
easier for the EKF to estimate the simulated voltage for the HWFET profile.

In Figure 4.19a, the EKF becomes unstable for a few minutes before converging
to the ’true’ SoC again. Looking at Figure 4.19b, one can see that the simulated pack
voltage has a steep drop in the magnified region at around 50% SoC. This is due to the
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same error as explained in the current sensor error with 50% white noise scenario above.
The simulated voltage drop is enough to induce instabilities in the EKF voltage and SoC
estimates because the current sensor error is so different from the true current. The reason
the SoC oscillates between -5% and 105% is because a boundary is set for the estimated
SoC value in the EKF to help with stability.

Figures 4.21 and 4.22 depict results for the 3rd case, where a 50% current bias is
added to the current measurements. Both positive and negative currents are multiplied by
1.4 and the voltage measurements are still assumed perfect. Both SoC plots show that the
EKF is able to follow the true SoC after a transient period. The CC with current error
line, on the other, diverges dramatically away from the true SoC. The RMS error for both
speed profiles is smaller for the EKF than for CC (16.2% vs 1% for HWFET and 11% vs
1% for NYCC). CC with error diverges downwards compared with the true SoC in both
figures because there are more current discharges than regenerative charging portions in
both speed profiles. Multiplying this net discharge profile by 1.5 results in a lower SoC
compared with the true SoC. The RMS error for the HWFET estimated voltage is slightly
smaller at 0.5 V than the NYCC profile at 0.6 V. This is most likely because the NYCC
profile requires more aggressive battery currents, which results in more volatile battery
voltages. The EKF then has more difficulty adapting to a quicker changing reference
signal.

There is no noise added to the simulated voltage measurements, which helps to ex-
plain why the EKF is able to reacquire the SoC in Figures 4.17 - 4.22. White noise is added
to the voltage measurements in separate tests, and this led to an almost instant instability
in the SoC and voltage estimates in the EKF. This can be confirmed by calculating the
eigenvalues of the EKF using Equation (4.1). The A and C matrices are the state equation
matrices in Equation (1.1) and L refers to the Kalman gain. Looking at the SoC eigen-
value for the HWFET profile using the 0A current sensor error in Figure 4.16 shows that
the eigenvalue is equal to one as soon as the current sensor error begins, which means the
filter is unstable (Brown and Hwang, 2012). The EKF is also unstable for the NYCC speed
profile using the 0A current sensor error. For the other two current error test, the EKF is
barely stable for both speed profiles. This is logical, as the situations discussed are quite
extreme and test the boundary stability conditions of the EKF. A more detailed description
of Kalman filter stability can be further discussed in future work.

eig(Ak−1 − Lk · Ck ·Ak−1) < 1 ⇒ EKF is stable (4.1)

(Brown and Hwang, 2012)

All three cases show extreme situations and thus it is very clear that adding voltage
noise in addition to the current sensor error will result in a divergence from the true SoC.
The ESC model used to estimate the voltage in the EKF has difficulties predicting accu-
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rate voltages for current profiles different to the stimuli used in the parameter estimation
testing phase (see Appendix 5.1). Both the NYCC and UDDS profiles are very different
to the parameter estimation current stimuli and this could help explain the stability issues
mentioned. Physics-based battery models could potentially lead to better results (Plett,
2015a).
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Figure 4.16: The SoC eigenvalue in the z-plane is found for the HWFET SoC profile together with
the 0A current error using Equation (4.1). The EKF is unstable if the eigenvalue is ≥ 1 (Brown and
Hwang, 2012).
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(a) This figure compares CC with and without a
current sensor error to an EKF with a current sen-
sor error. The ’true’ SoC is the line in yellow. The
RMS error is 0.5% for the EKF and 0.3% for CC.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 0.15 V.

Figure 4.17: Both figures assume a 50% current sensor white noise is added after 6 minutes. The
voltage sensor has no measurement errors. A flat elevation profile along with a looped HWFET
speed profile are used.
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(a) This figure compares CC with and without a
current sensor error to an EKF with a current sen-
sor error. The ’true’ SoC is the line in yellow. The
RMS error is 0.3% for the EKF and 1% for CC.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 0.17 V.

Figure 4.18: Both figures assume a 50% current sensor white noise is added after 6 minutes. The
voltage sensor has no measurement errors. A flat elevation profile along with a looped NYCC speed
profile are used.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 2.9 V.

Figure 4.19: Both figures assume the current sensor outputs 0A after 6 minutes. The voltage sensor
has no measurement errors. A flat elevation profile along with a looped HWFET speed profile are
used.
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(a) This figure compares CC with and without a
current sensor error to an EKF with a current sen-
sor error. The ’true’ SoC is the line in yellow. The
RMS error is 0.9% for the EKF and 22% for CC.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 0.5 V.

Figure 4.20: Both figures assume the current sensor outputs 0A after 6 minutes. The voltage sensor
has no measurement errors. A flat elevation profile along with a looped NYCC speed profile are
used.
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4.10 EKF vs CC for HW-FET and NYCC profile
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(a) This figure compares CC with and without a
current sensor error to an EKF with a current sen-
sor error. The ’true’ SoC is the line in yellow. The
RMS error is 1% for the EKF and 16.2% for CC.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 0.5 V.

Figure 4.21: Both figures assume the current sensor outputs a 50% current bias after 6 minutes (i.e.
current·1.5)). The voltage sensor has no measurement errors. A flat elevation profile along with a
looped HWFET speed profile are used.
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(a) This figure compares CC with and without a
current sensor error to an EKF with a current sen-
sor error. The ’true’ SoC is the line in yellow. The
RMS error is 1% for the EKF and 11% for CC.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 0.6 V.

Figure 4.22: Both figures assume the current sensor outputs a 50% current bias after 6 minutes (i.e.
current·1.5). The voltage sensor has no measurement errors. A flat elevation profile along with a
looped NYCC speed profile are used.
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Chapter 4. Results & Analysis
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Chapter 5
Conclusion

The goal of this thesis is to find a way to combat range anxiety for EVs. First, the ESC
battery model is explained and a method for parameter estimation of the unknown ESC
model values is given using two battery tests and an EKF. A second EKF then uses the
parameter estimation data, along with voltage and current data from the dynamic battery
test, to estimate the SoC and find the estimated voltage. The estimated voltage is then
compared to the real voltage to verify the parameter values of the Revolve battery cell.

Next, a method is developed to download elevation and distance data from a random
Google Maps distance profile. The Google Maps profile represents the starting point and
destination of the EV. The route is loaded into Matlab for accurate distance information
at each waypoint. Elevation data from GPS Visualizer is then downloaded for the spe-
cific Google Maps distance profile. This elevation data resolution is further increased by
interpolating elevation points using the Google Maps distance information. The eleva-
tion information is then transformed into grade angle information and attached to three
different speed profiles (i.e. HWFET,NYCC,UDDS).

An algorithm then inputs the speed profile and grade angle information to calculate
the battery SoC, extrapolated range and time to go until battery depletion. The parameter
estimation data from the Revolve battery is used and the SoC is calculated using the SoC
EKF described in the first paragraph of the conclusion.

The main result from this thesis shows that the extrapolated range is 23% greater
compared to real test data using the 2013 Chevy Volt for two speed profiles assuming a flat
elevation profile. The cell capacity is increased to resemble the real Chevy Volt and not
a Chevy Volt with Revolve battery cells. Since parameter estimation is not done for the
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Chapter 5. Conclusion

Chevy Volt cell, CC must be used for SoC estimation. For all other results, the Revolve
cells are used in combination with the dual EKF. Test trends using the same speed profiles
with three different elevation profiles indicate that the extrapolated range is greatest for a
downhill elevation profile, followed by the flat, mixed and uphill profiles. The downhill
sections regenerate battery pack SoC, while the uphill sections deplete more SoC. Lastly,
three test cases with three different types of current sensor errors and two different speed
profiles illustrate situations where the EKF has better SoC estimation performance than
CC.

It can be concluded that this methodology for finding the extrapolated range from
a Google Maps profile shows promising results for all four elevation profiles. To the
best of the author’s knowledge, such a system does not yet exist. Tesla has a similar
system, yet it is unsure how accurate the SoC estimation is. Many EV parameters in the
vehicle modelling section are currently estimated, as this information is not public. Auto
manufacturers will be able to use true values to increase the modelling accuracy. Some
further improvements will allow the EV owner to input their destination in a GPS, which
will then generate a SoC at the destination, as well as extrapolate the range and time to go
until battery pack depletion. This information is essential to alleviate range anxiety and
increase the uptake of EVs worldwide. It is important to note that the extrapolated range
estimate should be conservative when tested in real vehicles to ensure that drivers do not
deplete the battery pack fully and thereby cannot reach their destination.

Although the method shows promise, there is still room for improvement in future
work. The top priority is to find a better way to model the speed profile given a Google
Maps route. The author tried unsuccessfully to use the Google Maps distance waypoints
with the elevation information to generate a speed profile, where the car fully stops at every
distance waypoint. It might be helpful to use past driving data from the individual driver to
generate a speed profile. The second priority is to validate this strategy using a real EV and
following a desired route. True speed for the route can be measured and recorded using
an app such as SpeedView. This will allow a comparison between the real and generated
speed profiles, as well as a comparison between real measured and estimated vehicle SoC
at the destination. It is important to note that the real measured vehicle SoC most likely
uses CC, so it is unsure how accurate this estimate is. Nonetheless, this validation strategy
is a cost-effective first step to further optimize the methodology and increase extrapolated
range and time to go accuracy.
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Appendix

5.1 Dynamic Test Cycles For Parameter Estimation
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Figure 5.1: This figure shows two dynamic test cycles that can be run multiple times with rest
periods in between from approximately 90% SoC to 10% SoC. These test cycles can be used for
estimation of dynamic parameters and for testing the EKF over a sample profile similar to the final
application of the battery (Plett, 2015a).

Figure 5.1a shows the current profile used in the parameter estimation section of
this thesis. The current profile for the UDDS speed profile is shown in Figure 5.1b. An
analysis of both figures shows that the UDDS profile has more varying currents and is more
dynamic over the entire profile, whereas the Revolve profile repeats the same sequence
over and over. As discussed in the thesis, this could be a major reason why the estimation
results of the dynamic ESC parameters are not as good as the state of the art results.
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5.2 General EKF Algorithm For Parameter Estimation

To find Ĉθk in Algorithm (1), a recursive calculation is done below.

dg(xk, uk, θ, ek) = ∂g(xk, uk, θ, ek)
∂xk

dxk + ∂g(xk, uk, θ, ek)
∂uk

duk

+ ∂g(xk, uk, θ, ek)
∂θ

dθ + ∂g(xk, uk, θ, ek)
∂ek

dek

dg(xk, uk, θ, ek)
dθ

= ∂g(xk, uk, θ, ek)
∂xk

dxk
dθ

+ ∂g(xk, uk, θ, ek)
∂uk

duk
dθ︸︷︷︸
0

+ ∂g(xk, uk, θ, ek)
∂θ

dθ

dθ
+ ∂g(xk, uk, θ, ek)

∂ek

dek
dθ︸︷︷︸
0

= ∂g(xk, uk, θ, ek)
∂θ

+ ∂g(xk, uk, θ, ek)
∂xk

dxk
dθ

Equation (5.1) is a recursive function. To find the next value of
dxk
dθ

, Equation (5.1)

goes all the way back to
dx0

dθ
, which is initialized to 0 unless a better estimate is known.

dxk
dθ

= ∂f(xk−1, uk−1, θ, wk−1)
∂θ

+ ∂f(xk−1, uk−1, θ, wk−1)
∂xk−1

dxk−1

dθ
(5.1)

(Plett, 2016a)

5.3 The General EKF Algorithm

1: for k = 1, 2, . . . n do
2: State prediction time update: x̂−k ≈ f(x̂+

k−1,uk−1, w̄k−1)
3: Error covariance time update: x̃−k = xk − x̂−k ≈

(
Âk−1x̃

+
k−1 + B̂k−1w̃k−1

)
∑∑∑−

x̃,k ≈ Âk−1
∑∑∑+

x̃,k−1 Â
>
k−1 + B̂k−1

∑∑∑
w̃ B̂>k−1
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4: Output estimate: ŷk = E [g(xk,uk,vk)|Yk−1] ≈ g(x̂−k ,uk, v̄k)

5: Kalman gain matrix Lk: Define Ĉk ,
dg(xk,uk,vk)

dxk

∣∣∣∣
xk=x̂

−
k

Define D̂k ,
dg(xk,uk,vk)

dvk

∣∣∣∣
vk=v̄k∑∑∑

ỹ,k ≈ Ĉk

∑∑∑−
x̃,k Ĉ>k + D̂k

∑∑∑
ṽ D̂>k∑∑∑−

x̃ỹ,k ≈ E
[
(x̃−k )(Ĉkx̃

−
k + D̂kṽk)>

]
=
∑∑∑−

x̃,k Ĉ>k

Lk =
∑∑∑−

x̃,k Ĉ>k

[
Ĉk

∑∑∑−
x̃,k Ĉ>k + D̂k

∑∑∑
ṽ D̂>k

]−1

6: State estimate measurement update: x̂+
k = x̂−k + Lk(yk − ŷk)

7: Error covariance measurement update:
∑∑∑+

x̃,k =
∑∑∑−

x̃,k +Lk

∑∑∑
ỹ,k L>k

8: Compute error bounds: x̂+
k,Error Bounds = x̂+

k ± 3
√

diag
(∑∑∑+

x̃,k

)
9: end for

(Plett, 2016a)

The EKF used for the SoC estimation (the second EKF in Figure 2.1) uses a form
of the adaptive EKF, where the SoC index of the process error covariance matrix

∑
X

increases in value if there is a bad voltage estimate. In addition, the Joseph form is used to
ensure that the process covariance matrix remains symmetric and positive-definite (Plett,
2016a). The Joseph form update is done after

∑
X has been updated using the Kalman

gain. These additions help the EKF reacquire in some cases.

5.4 Finding the True Range of 2013 Chevy Volt

The true driving range is found in Table 4.9 using two different methods. The first method
finds dynamometer values that are given at 22 degrees Celsius for the UDDS and HWFET
profiles in the units Wh/mile (DOE, 2013). Unfortunately, direct range estimation results
in miles are not given. To find estimated true values in kilometers, the rated pack energy
given in kWh is divided by the values given in Wh/mile. Since the true power expelled
during the speed profiles is unknown, this is the best guess. This leaves a result in miles,
which is easily converted to km.

To find the true driving values in Method 2, source (DOE, 2017) is consulted. This
source gives gives an extrapolated range of 61 km (38 miles) for the 2013 Chevy Volt in the
fully electric mode. The range is based on 45% highway driving (i.e. HWFET profile) and
55% city driving (i.e. UDDS profile) (EPA, 2017) (EPA, 2016). From this, it is desirable
to get the true extrapolated range values for the HWFET and UDDS profiles. Since we
only have one known variable (i.e. 61 km) and two unknown variables (i.e. true HWFET
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range and UDDS range), the author makes a simplification that the range consists of 50%
HWFET and 50% UDDS cycle results. This is a valid assumption because the HWFET
and UDDS profiles have very similar simulated and true ranges for the Revolve and Chevy
Volt battery packs (see Tables 4.7 and 4.9). This simplification results in a true range of
61 km for both the HWFET and UDDS cycles.

66


	Problem Description
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation For The Topic & Thesis Objective
	State of the Art
	Industry
	Research

	Main Contributions
	Summary of Previous Work
	Structure of Thesis

	Battery Model & Parameter Estimation
	Estimating The Unknown Parameters Of The ESC Battery Model With Revolve Battery
	Cell Testing To Find the Dynamic Parameters
	The EKF Approach For Finding Dynamic Parameters


	Modelling Electric Vehicle (EV) Range Anxiety
	Google Maps Elevation Data For A Desired Route
	Speed Profile To Battery SoC Vehicle Modelling
	Desired Speed To Actual Speed Calculations
	Motor Power to Battery SoC Calculations


	Results & Analysis
	Parameter Estimation Results for the Revolve Battery
	ESC SoC Estimation Results With Revolve Battery
	Elevation Profile Results
	Speed Profiles
	Speed Profiles SoC With And Without Regenerative Braking
	Comparison of Three Different Speed Profiles
	Elevation To Speed Profile To SoC
	Speed Profile Extrapolated Range & Time To Go For Different Elevation Profiles
	Validation of Extrapolated Range For Flat Elevation Profile
	EKF vs CC for HW-FET and NYCC profile

	Conclusion
	Bibliography
	Appendix
	Dynamic Test Cycles For Parameter Estimation
	General EKF Algorithm For Parameter Estimation
	The General EKF Algorithm
	Finding the True Range of 2013 Chevy Volt


