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(a) This figure compares CC with and without a
current sensor error to an EKF with a current sen-
sor error. The ’true’ SoC is the line in yellow. The
RMS error is 3.3% for the EKF and 32.4% for CC.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 2.9 V.

Figure 4.19: Both figures assume the current sensor outputs 0A after 6 minutes. The voltage sensor
has no measurement errors. A flat elevation profile along with a looped HWFET speed profile are
used.
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(a) This figure compares CC with and without a
current sensor error to an EKF with a current sen-
sor error. The ’true’ SoC is the line in yellow. The
RMS error is 0.9% for the EKF and 22% for CC.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 0.5 V.

Figure 4.20: Both figures assume the current sensor outputs 0A after 6 minutes. The voltage sensor
has no measurement errors. A flat elevation profile along with a looped NYCC speed profile are
used.
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4.10 EKF vs CC for HW-FET and NYCC profile
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(a) This figure compares CC with and without a
current sensor error to an EKF with a current sen-
sor error. The ’true’ SoC is the line in yellow. The
RMS error is 1% for the EKF and 16.2% for CC.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 0.5 V.

Figure 4.21: Both figures assume the current sensor outputs a 50% current bias after 6 minutes (i.e.
current·1.5)). The voltage sensor has no measurement errors. A flat elevation profile along with a
looped HWFET speed profile are used.
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(a) This figure compares CC with and without a
current sensor error to an EKF with a current sen-
sor error. The ’true’ SoC is the line in yellow. The
RMS error is 1% for the EKF and 11% for CC.
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(b) This figure shows the simulated true voltage
and EKF estimated voltage. The simulated and es-
timated voltages are found using Equations (3.30)
& (1.2). The RMS error is 0.6 V.

Figure 4.22: Both figures assume the current sensor outputs a 50% current bias after 6 minutes (i.e.
current·1.5). The voltage sensor has no measurement errors. A flat elevation profile along with a
looped NYCC speed profile are used.
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Chapter 5
Conclusion

The goal of this thesis is to find a way to combat range anxiety for EVs. First, the ESC
battery model is explained and a method for parameter estimation of the unknown ESC
model values is given using two battery tests and an EKF. A second EKF then uses the
parameter estimation data, along with voltage and current data from the dynamic battery
test, to estimate the SoC and find the estimated voltage. The estimated voltage is then
compared to the real voltage to verify the parameter values of the Revolve battery cell.

Next, a method is developed to download elevation and distance data from a random
Google Maps distance profile. The Google Maps profile represents the starting point and
destination of the EV. The route is loaded into Matlab for accurate distance information
at each waypoint. Elevation data from GPS Visualizer is then downloaded for the spe-
cific Google Maps distance profile. This elevation data resolution is further increased by
interpolating elevation points using the Google Maps distance information. The eleva-
tion information is then transformed into grade angle information and attached to three
different speed profiles (i.e. HWFET,NYCC,UDDS).

An algorithm then inputs the speed profile and grade angle information to calculate
the battery SoC, extrapolated range and time to go until battery depletion. The parameter
estimation data from the Revolve battery is used and the SoC is calculated using the SoC
EKF described in the first paragraph of the conclusion.

The main result from this thesis shows that the extrapolated range is 23% greater
compared to real test data using the 2013 Chevy Volt for two speed profiles assuming a flat
elevation profile. The cell capacity is increased to resemble the real Chevy Volt and not
a Chevy Volt with Revolve battery cells. Since parameter estimation is not done for the
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Chapter 5. Conclusion

Chevy Volt cell, CC must be used for SoC estimation. For all other results, the Revolve
cells are used in combination with the dual EKF. Test trends using the same speed profiles
with three different elevation profiles indicate that the extrapolated range is greatest for a
downhill elevation profile, followed by the flat, mixed and uphill profiles. The downhill
sections regenerate battery pack SoC, while the uphill sections deplete more SoC. Lastly,
three test cases with three different types of current sensor errors and two different speed
profiles illustrate situations where the EKF has better SoC estimation performance than
CC.

It can be concluded that this methodology for finding the extrapolated range from
a Google Maps profile shows promising results for all four elevation profiles. To the
best of the author’s knowledge, such a system does not yet exist. Tesla has a similar
system, yet it is unsure how accurate the SoC estimation is. Many EV parameters in the
vehicle modelling section are currently estimated, as this information is not public. Auto
manufacturers will be able to use true values to increase the modelling accuracy. Some
further improvements will allow the EV owner to input their destination in a GPS, which
will then generate a SoC at the destination, as well as extrapolate the range and time to go
until battery pack depletion. This information is essential to alleviate range anxiety and
increase the uptake of EVs worldwide. It is important to note that the extrapolated range
estimate should be conservative when tested in real vehicles to ensure that drivers do not
deplete the battery pack fully and thereby cannot reach their destination.

Although the method shows promise, there is still room for improvement in future
work. The top priority is to find a better way to model the speed profile given a Google
Maps route. The author tried unsuccessfully to use the Google Maps distance waypoints
with the elevation information to generate a speed profile, where the car fully stops at every
distance waypoint. It might be helpful to use past driving data from the individual driver to
generate a speed profile. The second priority is to validate this strategy using a real EV and
following a desired route. True speed for the route can be measured and recorded using
an app such as SpeedView. This will allow a comparison between the real and generated
speed profiles, as well as a comparison between real measured and estimated vehicle SoC
at the destination. It is important to note that the real measured vehicle SoC most likely
uses CC, so it is unsure how accurate this estimate is. Nonetheless, this validation strategy
is a cost-effective first step to further optimize the methodology and increase extrapolated
range and time to go accuracy.
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Appendix

5.1 Dynamic Test Cycles For Parameter Estimation
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Figure 5.1: This figure shows two dynamic test cycles that can be run multiple times with rest
periods in between from approximately 90% SoC to 10% SoC. These test cycles can be used for
estimation of dynamic parameters and for testing the EKF over a sample profile similar to the final
application of the battery (Plett, 2015a).

Figure 5.1a shows the current profile used in the parameter estimation section of
this thesis. The current profile for the UDDS speed profile is shown in Figure 5.1b. An
analysis of both figures shows that the UDDS profile has more varying currents and is more
dynamic over the entire profile, whereas the Revolve profile repeats the same sequence
over and over. As discussed in the thesis, this could be a major reason why the estimation
results of the dynamic ESC parameters are not as good as the state of the art results.
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5.2 General EKF Algorithm For Parameter Estimation

To find Ĉθk in Algorithm (1), a recursive calculation is done below.

dg(xk, uk, θ, ek) = ∂g(xk, uk, θ, ek)
∂xk

dxk + ∂g(xk, uk, θ, ek)
∂uk

duk

+ ∂g(xk, uk, θ, ek)
∂θ

dθ + ∂g(xk, uk, θ, ek)
∂ek

dek

dg(xk, uk, θ, ek)
dθ

= ∂g(xk, uk, θ, ek)
∂xk

dxk
dθ

+ ∂g(xk, uk, θ, ek)
∂uk

duk
dθ︸︷︷︸
0

+ ∂g(xk, uk, θ, ek)
∂θ

dθ

dθ
+ ∂g(xk, uk, θ, ek)

∂ek

dek
dθ︸︷︷︸
0

= ∂g(xk, uk, θ, ek)
∂θ

+ ∂g(xk, uk, θ, ek)
∂xk

dxk
dθ

Equation (5.1) is a recursive function. To find the next value of
dxk
dθ

, Equation (5.1)

goes all the way back to
dx0

dθ
, which is initialized to 0 unless a better estimate is known.

dxk
dθ

= ∂f(xk−1, uk−1, θ, wk−1)
∂θ

+ ∂f(xk−1, uk−1, θ, wk−1)
∂xk−1

dxk−1

dθ
(5.1)

(Plett, 2016a)

5.3 The General EKF Algorithm

1: for k = 1, 2, . . . n do
2: State prediction time update: x̂−k ≈ f(x̂+

k−1,uk−1, w̄k−1)
3: Error covariance time update: x̃−k = xk − x̂−k ≈

(
Âk−1x̃

+
k−1 + B̂k−1w̃k−1

)
∑∑∑−

x̃,k ≈ Âk−1
∑∑∑+

x̃,k−1 Â
>
k−1 + B̂k−1

∑∑∑
w̃ B̂>k−1
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4: Output estimate: ŷk = E [g(xk,uk,vk)|Yk−1] ≈ g(x̂−k ,uk, v̄k)

5: Kalman gain matrix Lk: Define Ĉk ,
dg(xk,uk,vk)

dxk

∣∣∣∣
xk=x̂

−
k

Define D̂k ,
dg(xk,uk,vk)

dvk

∣∣∣∣
vk=v̄k∑∑∑

ỹ,k ≈ Ĉk

∑∑∑−
x̃,k Ĉ>k + D̂k

∑∑∑
ṽ D̂>k∑∑∑−

x̃ỹ,k ≈ E
[
(x̃−k )(Ĉkx̃

−
k + D̂kṽk)>

]
=
∑∑∑−

x̃,k Ĉ>k

Lk =
∑∑∑−

x̃,k Ĉ>k

[
Ĉk

∑∑∑−
x̃,k Ĉ>k + D̂k

∑∑∑
ṽ D̂>k

]−1

6: State estimate measurement update: x̂+
k = x̂−k + Lk(yk − ŷk)

7: Error covariance measurement update:
∑∑∑+

x̃,k =
∑∑∑−

x̃,k +Lk

∑∑∑
ỹ,k L>k

8: Compute error bounds: x̂+
k,Error Bounds = x̂+

k ± 3
√

diag
(∑∑∑+

x̃,k

)
9: end for

(Plett, 2016a)

The EKF used for the SoC estimation (the second EKF in Figure 2.1) uses a form
of the adaptive EKF, where the SoC index of the process error covariance matrix

∑
X

increases in value if there is a bad voltage estimate. In addition, the Joseph form is used to
ensure that the process covariance matrix remains symmetric and positive-definite (Plett,
2016a). The Joseph form update is done after

∑
X has been updated using the Kalman

gain. These additions help the EKF reacquire in some cases.

5.4 Finding the True Range of 2013 Chevy Volt

The true driving range is found in Table 4.9 using two different methods. The first method
finds dynamometer values that are given at 22 degrees Celsius for the UDDS and HWFET
profiles in the units Wh/mile (DOE, 2013). Unfortunately, direct range estimation results
in miles are not given. To find estimated true values in kilometers, the rated pack energy
given in kWh is divided by the values given in Wh/mile. Since the true power expelled
during the speed profiles is unknown, this is the best guess. This leaves a result in miles,
which is easily converted to km.

To find the true driving values in Method 2, source (DOE, 2017) is consulted. This
source gives gives an extrapolated range of 61 km (38 miles) for the 2013 Chevy Volt in the
fully electric mode. The range is based on 45% highway driving (i.e. HWFET profile) and
55% city driving (i.e. UDDS profile) (EPA, 2017) (EPA, 2016). From this, it is desirable
to get the true extrapolated range values for the HWFET and UDDS profiles. Since we
only have one known variable (i.e. 61 km) and two unknown variables (i.e. true HWFET
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range and UDDS range), the author makes a simplification that the range consists of 50%
HWFET and 50% UDDS cycle results. This is a valid assumption because the HWFET
and UDDS profiles have very similar simulated and true ranges for the Revolve and Chevy
Volt battery packs (see Tables 4.7 and 4.9). This simplification results in a true range of
61 km for both the HWFET and UDDS cycles.
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