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Abstract

A domain where humans have unfolded their creativity for thousands of years is cooking.

However, can a human’s creativity within cooking be transferred to a computer program?

The case-based reasoning (CBR) methodology allows to incorporate creativity when using

earlier experiences to solve new problems. The main objective of our research is to design

and construct a CBR based recipe recommender system that enhances creativity to adapt

recipes based on a given user query.

We have reviewed related work performed in the field of recipe recommendation and

identified typical approaches and features within those. Further, we developed a knowledge

engineering heavy system that retrieve, compare, adapt, and suggest recipes given a user

query containing desired and undesired ingredients.

The system was tested with controlled observations, questionnaires, and an online quiz.

Evaluation results show that the system appears user-friendly, self-explanatory, and with

meaningful recipe recommendations. The resulting system is able to adapt recipes in a way

that humans find it challenging to distinguish them from human created recipes.





Sammendrag

Matlagning er et domene hvor mennesker har utfoldet sin kreativitet gjennom tusener

av år. Kan menneskers kreatitivet innen matlagning overføres til et dataprogram? Case-

basert resonnering (CBR) er en generell metode som åpner for å inkorporere kreativitet

n̊ar tidligere erfaringer brukes for å løse nye problemer. Hovedm̊alet for v̊ar forskning er å

designe og konstruere et CBR-basert anbefalingssystem for oppskrifter som p̊a en kreativ

m̊ate modifiserer oppskrifter basert p̊a en gitt brukerforespørsel.

Vi har vurdert relaterte anbefalingssystemer for oppskrifter, og identifisert typiske

metoder og egenskaper i disse. Videre har vi utviklet et system som krever fokus p̊a

kunnskapsmodellering. Systemet henter, sammenligner, modifiserer og foresl̊ar oppskrifter

for en gitt brukerforespørsel best̊aende av ønskede og uønskede ingredienser.

Systemet ble testet under kontrollerte observasjoner, spørreskjemaer, og en online quiz.

Resultater fra evalueringen viser at systemet fremst̊ar brukervennlig, selvforklarende og med

meningsfulle anbefalinger. Systemet er i stand til å modifisere oppskrifter p̊a en slik m̊ate

at mennesker har store vanskeligheter med å skille dem fra menneskeskapte oppskrifter.





Acknowledgements

This thesis was written during the autumn of 2016 and spring of 2017 for the Department of

Computer Science (IDI) at the Norwegian University of Science and Technology (NTNU).

The subject for the thesis was defined in cooperation with our supervisor Kerstin Bach,

with background in the Computer Cooking Contest (CCC) at the International Conference

on Case-Based Reasoning (ICCBR).

We would like to thank Kerstin Bach and Agnar Aamodt for enthusiastic contributions,

help, and feedback throughout the project. We would also like to thank our friends and

family for the invaluable support and motivation the last year.





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals and research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 The Computer Cooking Contest . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Competition rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Case-based reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 CBR cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Typical CBR domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 CBR compared to other AI approaches . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Recommender systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Knowledge acquisition and construction . . . . . . . . . . . . . . . . . 10

2.3.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.4 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Related work 15

3.1 Competitors of the CCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Taaable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 CookIIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 CookingCAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.4 JaDaWeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Non-CBR related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 AllRecipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Chef Watson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Yummly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



CONTENTS

4 Method 25

4.1 Data modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Case base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.3 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 IntelliMeal’s modified CBR cycle . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Retrieval in myCBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.2 New retrieval method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Case base retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6.1 Rule engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6.2 Adaptation with undesired query . . . . . . . . . . . . . . . . . . . . . 37

4.6.3 Adaptation with desired query . . . . . . . . . . . . . . . . . . . . . . 40

4.6.4 Suitable adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Constructing an ephemeral case base . . . . . . . . . . . . . . . . . . . . . . . 45

4.7.1 Filter original cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7.2 Filter adapted instances . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7.3 Creating an ephemeral case base . . . . . . . . . . . . . . . . . . . . . 47

4.8 Ephemeral case base retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Revise and retain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Implementation 51

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Generating CSV instance file . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.2 Generating JSON tree for recipe storage . . . . . . . . . . . . . . . . . 53

5.2.3 Generating list of duplicate values . . . . . . . . . . . . . . . . . . . . 54

5.3 Running application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Core system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Evaluation and results 63

6.1 Similarity score increase with adaptation . . . . . . . . . . . . . . . . . . . . . 63

6.2 Ranking of recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Quality of modified recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Usability testing with questionnaire . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Discussion 73

7.1 State of the art research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 CBR and its opportunities for creativity . . . . . . . . . . . . . . . . . . . . . 74

7.3 Implemented adaptation process . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 System behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4.1 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.5 Demonstrating the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



8 Conclusion 81

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2.1 Data modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2.2 System improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Evaluation and results 87

A.1 Results from evaluation of similarity scores . . . . . . . . . . . . . . . . . . . 87

A.2 Ranking of recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.3 Results from ranking of recipes . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.4 Queries used and cases added to quiz case base . . . . . . . . . . . . . . . . . 90

A.5 Results from quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.6 Usability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.7 Results from usability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Acronyms 97

Glossary 99

Bibliography 99

ix





List of Tables

6.1 Queries used for measuring similarity scores . . . . . . . . . . . . . . . . . . . 64

6.2 Tasks for ranking of recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Number of recipes in common for the system and test subjects . . . . . . . . 66

A.1 The average score of the top five results . . . . . . . . . . . . . . . . . . . . . 87

A.2 Ranking measure for evaluation of ranking of recipes test . . . . . . . . . . . 87

A.3 The system’s ranking of recipes per query . . . . . . . . . . . . . . . . . . . . 88

A.4 The offset of recipe ranks between the system and each test subject . . . . . 89

A.5 Queries used and cases added to ”Bot or Not?” case base . . . . . . . . . . . 90

A.6 Guessing results for the ”Bot or not?” quiz . . . . . . . . . . . . . . . . . . . 91

A.7 Replies to pre usability testing form . . . . . . . . . . . . . . . . . . . . . . . 96

A.8 Replies to SUS form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.9 Replies to post usability testing form . . . . . . . . . . . . . . . . . . . . . . . 96

xi





List of Figures

2.1 CBR cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Knowledge-based systems overview . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Three-layer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 myCBR attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Instance example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Excerpt from the Meat taxonomy defined in myCBR . . . . . . . . . . . . . . 28

4.5 Global similarity measures as defined in myCBR . . . . . . . . . . . . . . . . 28

4.6 Modified version of the CBR cycle . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Splitting a user query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.8 Comparing only attributes present in the query . . . . . . . . . . . . . . . . . 33

4.9 Calculating the local similarity between meat ingredients . . . . . . . . . . . 33

4.10 Case base retrieval example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.11 Adaptation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.12 Rule formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.13 Undesired adaptation process overview . . . . . . . . . . . . . . . . . . . . . . 37

4.14 Firing the deletion rule lettuce,tomato → cucumber . . . . . . . . . . . . . . . 38

4.15 Firing the substitution rule tuna; supplement → mayonnaise . . . . . . . . . 39

4.16 Finding a similar ingredient in the myCBR taxonomy . . . . . . . . . . . . . 40

4.17 Desired adaptation process overview . . . . . . . . . . . . . . . . . . . . . . . 40

4.18 Excerpt from the Tomato taxonomy defined in myCBR . . . . . . . . . . . . 41

4.19 Firing the adding rule tomato,lettuce* → cucumber* . . . . . . . . . . . . . . 41

4.20 Firing the substitution rule pork; supplement → barbeque sauce . . . . . . . . 42

4.21 Finding a similar ingredient in the myCBR taxonomy . . . . . . . . . . . . . 43

4.22 Suitable adaptation process overview . . . . . . . . . . . . . . . . . . . . . . . 43

4.23 Generating title based on recipe ingredients . . . . . . . . . . . . . . . . . . . 44

4.24 Generating title based on previous title . . . . . . . . . . . . . . . . . . . . . 45

4.25 Process overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.26 Several cycles of adaptation result in equal cases . . . . . . . . . . . . . . . . 47

4.27 Creating an ephemeral case base . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.28 Ephemeral case base retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.29 Decreasing the similarity score of an adapted recipe . . . . . . . . . . . . . . 48

5.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii



LIST OF FIGURES

5.2 Generating CSV file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 UI takes in a user query and makes a request to the API . . . . . . . . . . . . 54

5.4 Input fields on front page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Ingredient search completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 Specified desired and undesired ingredients . . . . . . . . . . . . . . . . . . . 57

5.7 Website after retrieval of similar recipes . . . . . . . . . . . . . . . . . . . . . 58

5.8 Example of adapted case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.9 Infotip explaining the adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.10 Example of a recommended recipe lacking desired ingredients . . . . . . . . . 60

5.11 Adding a case to the case base . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Average similarity score for original versus adapted case . . . . . . . . . . . . 64

6.2 Box plot of ranking of recipes result . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Screenshot from the quiz ”Bot or not?” . . . . . . . . . . . . . . . . . . . . . 67

6.4 Confusion matrix for quiz responses . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 Distribution of test subjects’ age . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.6 Issues detected during usability testing . . . . . . . . . . . . . . . . . . . . . . 71

8.1 Possible substitution results during adaptation . . . . . . . . . . . . . . . . . 83

8.2 Example of different results with different adaptation orders . . . . . . . . . . 83

8.3 Filtering of alternative recipes . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.1 Tasks for usability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Pre user testing reply form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 System Usability Scale Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.4 Post user testing reply form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiv



Chapter 1: Introduction

1.1 Motivation

Artificial Intelligence (AI) can control self-driving cars, be a fierce poker player and beat

Magnus Carlsen in chess; machines outperform humans at an impressively increasing number

of tasks. The field has a long history and is still in constant growth and change. However,

what exactly is intelligence exhibited by machines? In 1950, Alan Turing stated that if a

machine could lead a conversation with a human and the human could not distinguish the

machine from another human being, it was reasonable to say that the machine was thinking,

and hence, intelligent (Turing 1950). The field of AI Research was founded as an academic

discipline in 1956.

For the next fifty years, research within AI was mostly targeted towards solving partic-

ular sub-problems such as natural language understanding, or ways to represent knowledge

(Brooks 1991). Replicating the human intelligence as a total is yet to be accomplished, and

up until today, researchers do not agree on whether the so-called Turing Test is passed by

any computing machine.

In the first decade of the twenty-first century, the access to faster computers, big amount

of data and the evolution of more advanced machine learning techniques contributed to

giving the AI field a boom. Today AI is infiltrating ”everywhere,” so to say. It is in our

phones, cars, and banks. Functioning as our personal assistants, simplifying our everyday

life by, amongst more, making decisions for us. However, can AI actually imitate the human

decision making process?

When humans make decisions, the brain goes through three steps (Klein 2008). First,

we gather information, either through sense or by remembering. Secondly, we decide on

which information is relevant and important, and lastly, we act on the given information.

These three steps are what the majority of AI systems are trying to imitate. Usually, the

reasoning involves using generalized sets of rules to make decisions. However, there is one

AI approach that takes a very different view: Case-Based Reasoning (CBR). Rather than

having generalized rules as knowledge, CBR systems operate with cases recording specific

previous experiences. The cases are then used to form conclusions or solutions to new

problems (Leake 1996). The methodology provides a computational model that is very

close to human reasoning; humans often use their previous experiences to find solutions to

1



CHAPTER 1. INTRODUCTION

new situations (Aamodt 1991; Kolodner 1992; Aamodt 1995). Still, can AI imitate human

behavior completely, such as the aspect of being creative?

Well, computers have written both poems1 and news articles (BBC 2014), and the first

music composed by AI was considered good enough to be played by one of the world’s leading

orchestras, London Symphony Orchestra (Ball 2012). Perhaps even more impressive, a full

musical was generated by AI (Brown 2015). The musical was performed with success in

London, West End, at the beginning of 2016.

The potential of computer programs to be more than feature-rich tools; such as to be

creative on a human level, and to act autonomous, has been studied and exploited since the

very early days of computer science. The field is known as Computational Creativity (CC)2,

and CC is by some researchers characterized as the final frontier for AI research (Colton

and Wiggins 2012).

The goal of CC is to design systems that are capable of human-level creativity, or that

enhance human creativity without necessarily being creative themselves. Theoretical work

on the nature of creativity is studied on in parallel with practical work on how this can be

imitated by systems (Besold, Schorlemmer, and Smaill 2015).

A domain where humans have unfolded their creativity for thousands of years is cook-

ing. For many years, the cookbook was the main source for recipes. However, in today’s

digital world, recipe search engines allow faster searching and scalable content. Some sys-

tems even utilize AI to find the best matching recipe given a problem. In this thesis, recipe

recommender systems enhancing creativity are considered. The goal is to make the recom-

mendations even more customized. Can a human’s creativity within cooking be transferred

to a computer system?

1.2 Goals and research questions

Research goal 1: Consider previous research on recipe recommender systems to

discover advantages and drawbacks with their approach and to discover oppor-

tunities for improvements.

RQ1: What are features previously showcased in recipe recommender systems?

RQ2: What are approaches typically used in recipe recommender systems?

1www.nil.fdi.ucm.es/?q=node/206
2www.prosecco-network.eu/prosecco
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Research goal 2: Contribute to Case-Based Reasoning research by investigating

the possibilities of enhancing creativity in a recipe recommender system using

CBR.

RQ3: Is CBR a suitable approach for developing a recipe recommender system?

RQ4: How can CBR provide opportunities to being creative?

RQ5: If there exist opportunities, how can creativity be incorporated?

RQ6: How do the creative adjustments affect the system output?

RQ7: How can the system be demonstrated in a suitable manner to a broad range of people?

1.3 Research methodology

March and Smith have created a framework for IT research (March and Smith 1995). The

framework consists of four steps: Build, Evaluate, Theorize and Justify. System creation

and system evaluation are viewed as the basics steps of design science (Simon 1996), while

theory proposal and theory justification are the basic steps of natural science. With other

words, the understanding of how and why the developed system work, is crucial. This thesis

starts out with a literature review, aiming for background knowledge about previous recipe

recommender system. Further, the framework proposed by March and Smith is followed.

This process is run by first developing a recipe recommender system, then evaluate the

system and finally theorize and justify the results.

1.4 Thesis structure

The thesis is divided into eight chapters. Chapter 2 discusses the background for the project,

introduces CBR and features a comparison of CBR to other AI approaches. Chapter 3

contains a detailed description of earlier work involving recipe recommendation, along with

a discussion on the different systems and how they are interesting in relation to our work.

In Chapter 4, the system method employed in the developed system is explained. Further,

Chapter 5 describes the implementation and architecture of the implemented system. In

Chapter 6, the process of evaluating the implemented system is described, and the results of

the evaluation are presented. Chapter 7 follow up with a discussion on the evaluation and

results. Lastly, Chapter 8 contains a summary and conclusion of the examined work, and

also includes a section concerning possible future additions or adjustments.
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Chapter 2: Background

The Computer Cooking Contest (CCC) is an event of the International Conference on Case

Based Reasoning (ICCBR). CBR is an AI method for building learning systems. Broadly

construed, the process involves solving new problems based on the solutions of similar past

problems. The CCC and CBR will be explained in Section 2.1 and Section 2.2, respectively.

To reason based on concrete problem situations stands out from other AI approaches

(Aamodt and Plaza 1994). In order to show that CBR is a suitable approach for developing

a recipe recommender system, it is compared with other AI approaches in Section 2.3.

2.1 The Computer Cooking Contest

The ICCBR conference series was established in 1995. In 2008, the first CCC event was

launched. Since then, the competition has been running almost every year, with minor

adjustments. The goal is to attract people working with artificial intelligent technologies to

both target problem areas in general, such as efficient retrieval and adaptation, but also to

exhibit concrete solutions. A competition with common data sets allows comparison and

better evaluation of developed CBR methodologies. In this section, the competition rules

will be clarified, and the motivation to join the competition is pointed out.

2.1.1 Competition rules

The competition task is to develop a system that proposes recipes based on a restricted

set of ingredients. Hence, a recipe recommender system. The user of the system must

be able to tell the system which ingredients they desire and which ingredients it must not

allow in the proposed recipe. The participants of the CCC gets access to some data sets

of initial recipes. Whether the competition is limited to a specific data set varies. The

participants can freely choose their focus area within CBR. A jury of experts from AI and

cooking evaluates the competing systems. The jury is given access to the systems and can

explore them themselves. At some of the events, the suggested recipes have been prepared

and tasted by the audience.
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2.1.2 Motivation

The competition will be used as a tool to showcase CBR and AI by explaining what can

be done in the context of recipe recommendations. The decision-making process is forced

to be creative when working with a limited data set. The idea is to compete with other AI

researchers and “open the magic box a little.” Experimenting with food recipes as experi-

ences is a great advantage in the way that there is no sensitive data, in comparison to for

example experiences with patients in a hospital. In other words, the CBR system can be

demonstrated in detail to a broader community.

2.2 Case-based reasoning

The idea behind CBR is to use previous problem situations to understand and solve new

problems (Aamodt 1991; Kolodner 1992). The assumption that similar problems have sim-

ilar solutions is the basis for the idea. Human beings reason this way all the time (Aamodt

1995). Whenever it is more convenient or simply requires less effort to reuse experience,

humans reason like this rather than going back to square one.

CBR simulates this kind of human problem-solving technique. The approach has been

formalized as a four-step process: Retrieve, Reuse, Revise and Retain. These steps have

come to be known as the ’4 REs’ (Mantaras et al. 2006) and the cycle is usually referred to

as the CBR cycle.
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2.2.1 CBR cycle

Figure 2.1: CBR cycle

An overview of the CBR cycle is illustrated in Figure 2.1. The retrieve step of solving a

problem by CBR involves measuring the similarity between the new problem description to

previous problem descriptions stored in a case base (Mantaras et al. 2006). After finding one

or more similar matches, the solutions contained in those cases are considered as candidates

for solving the current problem. Retrieval is considered the primary step in the CBR cycle

and many researchers therefore focus on this step.

The reuse step involves mapping one or more of the retrieved solutions to the target

problem. This process may involve adapting the best matching solution as needed to fit

the new situation, or somehow combine the retrieved solutions. Similarity-based reasoning

is used both when retrieving cases, and in the reuse and adaptation parts. Similarity is

therefore considered a core concept in CBR. How exactly similarity between two cases is

defined is domain dependent (Richter and Weber 2013).

The proposed solution for the target problem has to be tested for success, e.g. through

simulation, in the real world environment or by being evaluated by a domain expert. If

problems emerge, the solution must be modified accordingly. This process is called the

revise step of the CBR process.
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Once the new solution has been confirmed or validated, the resulting experience can be

retained as a new case in the case base. In other words, the system has learned to solve a

new problem. The idea is that the CBR process starts again when a new problem situation

occur and this way, the system keeps on learning.

2.2.2 Typical CBR domains

CBR is usually preferred whenever it is difficult to formulate domain rules, or if the rules

require more input information than is typically available at the problem-solving time (Leake

1996). Besides, exceptions from general knowledge are handled well by CBR compared to

other AI approaches. CBR tends to be a good approach for complex domains where cases are

available in an easy format (i.e. not cases described with natural language text) and in which

there are multiple ways to generalize them. This covers a wide variety of problem-solving

tasks.

CBR is not limited to the reuse of experience. For E-commerce, sales are typically

recorded. If sales were recorded as experiences in the standard way humans think, old

demands could be compared to new demands. However, in those scenarios, similarity is

rather measured by comparing user specifications with product descriptions, where the goal

is to customize an offer by finding the smallest possible gap between customer demands

and product features (Richter and Weber 2013). Commercial applications have shown great

success with CBR, much due to the advantage that new recommendations (i.e. solutions)

can be derived from old recommendations more easily than from scratch1.

2.3 CBR compared to other AI approaches

CBR has grown to a field of widespread interest (Montani and Jain 2014), and has become

a powerful approach for computer reasoning (Brown and Gupta 1994). This section aims to

show that CBR is a suitable approach for developing a recommender system by comparing

it to other AI approaches. More specifically, CBR will be compared to rule-based systems

and three types of recommender systems: Collaborative, content-based and knowledge-

based recommender systems. The techniques employed in these types are among the most

popularly used in recommender systems today (Ricci, Rokach, and Bracha 2011). The

techniques have different advantages and drawbacks as will be discussed in this section.

A common approach to building recommender systems is to combine techniques, using

advantages of one technique to try fixing the disadvantages of others. However, combined

techniques will not be considered in the comparisons.

1www.dfki.de/web/research/km/expertise/research/case-based-reasoning
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Figure 2.2: Knowledge-based systems overview

CBR is considered a knowledge-based system. Content-based and knowledge-based rec-

ommender systems also go under the term knowledge-based systems. In general, knowledge-

based systems, also called expert systems, are systems using AI techniques to solve prob-

lems in specific domains. Figure 2.2 shows a common division of knowledge-based systems.

How knowledge is represented in knowledge-based systems varies from simple rules to more

complex models. As for these representations, this section focuses on comparing CBR to

rule-based systems. Rule-based systems in the classical sense are the simplest form of AI. A

set of ”if-then” statements are used to make deductions or choices. Decisions are made by

matching the interaction of input against the ”if”-assertions. Accordingly, the ”then”-part

of the rules states how to act upon those assertions (Cawsey 1998; Hayes-Roth 1985). An

advantage to writing everything into rules is that the human expert’s knowledge within a

field is captured. Even if the person retires or leaves the firm, the knowledge is not lost and

can still be available for an extensive range of people2.

2.3.1 Recommender systems

Recommendations are closely related to sales scenarios where customizing an offer by match-

ing customer needs against product features is desired. However, a recommendation does

not need to answer a specific demand or customer needs. The query is rather in the form of a

general wish (Richter and Weber 2013). A recommendation is the result of a decision-making

process, such as which items to buy, what music to listen to, or what movie to watch (Ricci,

Rokach, and Bracha 2011). User preferences are taken into consideration when available.

Recommender systems are used to predict the rating that a user would give to an item.

Personal tastes vary, but the predictions are based on the fact that people follow patterns.

The utility function can be based on more than just item similarity, for instance, past user

behavior, context, relations with other users and the fact that people tend to like the same

things as similar people like.

There are several ways to develop a recommender system. A CBR approach is one

of them, as will be discussed later in this chapter. However, the most well-known type of

2www.ramalila.net/adventures/ai/rule based systems
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recommender system is the collaborative- or social-filtering type (Burke 2000). For these

systems, the main idea is to exploit information about existing user’s previous behavior and

use that information to predict which items the current user of the system will most likely

be interested in (Jannach et al. 2010). In other words, when one user likes an item, the

system can recommend that same item to similar users.

Both Kristi and Anna have bought and rated ”Notting Hill,” ”Love Actually,”

and ”Bridget Jones’s Diary” with four or five out of five stars. After that, Anna

watches ”About Time.” Based on the similarity in their previous purchasing

patterns, the system guesses that Kristi also will like this movie and therefore

recommends it to her.

With a content-based recommender system, on the other hand, the user will be recom-

mended items similar to the ones the user preferred in the past. Items are compared based

on associated features, like movie genres (Ricci, Rokach, and Bracha 2011).

Anna rates ”Notting Hill” with five out of five stars. The system then guesses

that she would also enjoy watching ”Love Actually.” The similarity between the

two items is the basis for this assumption. They both have the genre romantic

comedy, and they both have high ratings.

Another type of recommender system is the knowledge-based recommender system.

These systems use explicit knowledge about recommendation criteria, user preferences, and

the item assortment to generate a recommendation, reasoning about what products meet

the target customer’s needs. Recommendation criteria are associated with the context in

which items should be recommended. For instance, highlighting Halloween products on a

party product site in the middle of October.

Recommender systems have become incredibly widespread in recent years. The systems

are now one of the most popular mechanisms in electronic commerce and have proven to be

a helpful way for online users to cope with the often overwhelming number of alternatives.

Online shopping, for instance, used to be a static experience in which users searched for

and potentially bought products. Due to recommender systems, it is now usually a much

richer and customized experience. The popular movie streaming service, Netflix, and the

popular online store, Amazon, are examples of services that employs a recommender system

to personalize the experience for each customer.

2.3.2 Knowledge acquisition and construction

It has become a widely recognized problem that acquisition of high-quality knowledge is very

expensive and time-consuming (Jannach et al. 2010). This problem is known as the knowl-

edge acquisition bottleneck (Hayes-Roth, Waterman, and Lenat 1983; Aamodt 1991). This

subsection will discuss whether or not the knowledge acquisition bottleneck is a potential

problem for the mentioned systems, and if so, how crucial the problem is.
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Collaborative recommender systems depend on ratings to generate recommendations

(Burke 2000). Also, the number of rated items that can be associated with a given user

greatly affects the accuracy of the recommendations. With only a small base of ratings, a

couple of special recommendation cases can be the reason for recommendations that does

not apply to the given user at all (Maes and Shardanand 1995).

Accordingly, the system will not be of service for most users without a large number of

users whose habits are known. Until a sufficient number of item ratings are collected, the

system cannot be useful for a particular user. Consequently, a collaborative recommender

system should have a large base of ratings initially to assure accuracy.

The same type of problem applies to content-based recommender systems. To be able

to provide accurate recommendations to a user, these systems need to collect enough ratings

from the user. Hence, reliable recommendations can not be provided to users that have few

ratings available (Ricci, Rokach, and Bracha 2011).

The problem of knowledge acquisition also applies for rule-based and knowledge-based

systems (Leake 1996; Aamodt 1995). It is usually addressed by knowledge-based systems

by focusing on only one type of knowledge for one application task (using a rule-based

approach). However, figuring out which rules the system should depend on is challeng-

ing, and the construction of rules used in these systems requires domain-specific knowledge

(Hayes-Roth 1985). Such generative systems should ideally account for all problems that

are in principle possible, and there is no assurance that the rules cover the knowledge it is

supposed to. The rule acquisition process is both cumbersome and unreliable.

However, a knowledge-based recommender system avoids some of the drawbacks related

to collaborative recommender systems because its decisions are independent of individual

user preferences. Unlike a collaborative recommender system, it does not depend on a large

amount of statistical data about particular rated items or individual users. Additionally,

research show that knowledge-based systems do not require as much data. These systems

need only enough knowledge to decide how similar items are to each other and general

knowledge concerning the context.

The problem of knowledge acquisition can be simplified with CBR. It turns out that it

is easier for domain experts to recall concrete experiences which they have encountered in

practice rather than define decision rules describing all possible options. In other words, their

mental set evince signs of being oriented towards a CBR approach (Barletta and Hennesy

1989; Goodman 1989; Kolodner 1992).

In contrast to the construction of knowledge-based and rule-based systems, building a

case base does not require expert knowledge. Also, CBR systems do not require an explicit

model. Instead, the main implementation of CBR can be reduced to identify significant

case features. Therefore, CBR systems work with partial knowledge and their output can

be approximate answers (Richter and Weber 2013).

If cases do not come from a database or a preexisting case base, there is no fully

automated technique for building a case base. However, advanced database techniques ease
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the task of implementing cases. Also, as the CBR cycle in Section 2.2.1 shows, cases can

be added to the case base after deployment as well as during development. Accordingly,

developing a CBR system can be a lot faster and easier than constructing the same system

with a rule-based or a model-based approach.

2.3.3 Generalization

Reasoning is usually described as a process of forming conclusions, judgements, or inferences

from facts or premises that are chained together as generalized rules (Leake 1996). Case-

based systems have a very different way of generalizing knowledge. In the retrieval part of

the CBR cycle, specific previous situations in the case base are partially matched to the

new problem case. This partial matching can be seen as a matching at a more general or

abstract level, or, an implicit generalization process (Aamodt 1995).

2.3.4 Maintenance

Failing or detonating systems or components cannot be ignored, and the need for main-

tenance is evident in many CBR systems (Roth-Berghofer 2003). In rule-based systems,

modification of knowledge bases can be complicated (Aamodt 1995), especially if the rules

are not written clearly or if the maintenance is done by someone unqualified. This is among

other factors due to possible dependencies between rules, redundant rules, and the risk of

creating contradictions3 (Liao, Zhang, and Mount 2010). Difficulties in maintaining and

updating a system’s knowledge have resulted in research on new methods such as capturing

domain knowledge as models of deeper and more principled knowledge, instead of sets of

if-then rules (David, Krivine, and Reid 1993).

For knowledge-based recommender systems, new information is discovered by inference,

while with CBR, new knowledge come by adaptation (Richter and Weber 2013). Mainte-

nance by CBR is both easier and more systematic than by knowledge-based systems. A

CBR system has mainly two sources of change: 1) Changes due to the use of the system

such as learning a new case and 2) changes in the environment such as in legislation, in

technology, or in norms. When adding a case as explained in the retain step of the CBR

cycle, it does not need any further checking or debugging.

However, although one added case does not affect the functionality of the system, it

may affect its outcome. Therefore, validation is necessary. Serious performance problems

can arise if the case base grows large without being controlled. Retrieval efficiency weakens

and redundant, incorrect or inconsistent cases can be a consequence which will be hard to

detect.

The main idea behind CBR maintenance is to prevent any undesired changes in the

system. The goal of maintenance is not to make improvements, but merely to be able to

restore or delay a previous state of operation. Accordingly, it is challenging to improve

3www.knowledgeengineering.blogspot.no/2007/12/case-based-reasoning-cbr-vs-rule-based
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system performance if the system is initially poorly designed. Consequently, maintenance

has to begin early in a project.

There are alternative case base maintenance policies, regarding how maintenance op-

erations work and when the various maintenance policies are triggered (Leake and Wilson

2001; Burke 2000). Maintenance operations may be done periodically (e.g., each time a new

case is added to the case base), conditionally (e.g., when the number of times cases have

been retrieved has reached a prespecified limit), or on ad hoc basis (e.g. by unpredictable

intervention by a human maintainer). The periodically triggering is the most common and

is explained as the revise step of the CBR cycle. It is important that the system’s perfor-

mance is observable and that the maintenance is designed with clear and convincing criteria

and control conditions. Current CBR maintenance research primarily focus on improving

case-based reasoners and, in particular, case bases.

2.4 Discussion

Based on the related work presented in this chapter, it seems that CBR is a better approach

for developing a recipe recommender system than rule-based reasoning, especially when it

comes to the time and effort required. Chefs over the entire world create thousands of recipes

every year. It would have been extremely challenging to get a grip on the whole domain of

cooking. Even if a considerably smaller design than this is considered, boiling the knowledge

down to operational recipes will be challenging.

Reuse of prior solutions, both successful solutions and failed experiences, helps increase

problem-solving efficiency by avoiding repetition of prior effort (Leake 1996). There are also

many exceptions and specific combinations when it comes to which ingredients and flavors

go well together, which accordingly will be handled better by a CBR system. As shown in

this chapter, CBR seems to be a better approach than rule-based reasoning when it comes

to knowledge acquisition, construction, generalization, maintenance, and revision. Since the

focus is the composition of food and ingredients and not individual user preferences, the

idea of using a collaborative recommender system or a content-based approach is dismissed.

By employing CBR in a recipe recommender system while targeting the CCC task

description, the new problem will be the desired and undesired ingredients. The problem

to be solved is to find stored experiences with food (i.e. a recipe) that will fit the query.

Hence, recipes are seen as specific situation experiences on how to combine ingredients. The

recipes in the case base will be the previous problem experiences that are already solved.

The idea that recipes are seen as experience by CBR seems like a great advantage

that could not be handled better by any knowledge-based recommender system. The CCC

provides a set of initial recipes which can easily be transferred to cases in a case base.

If domain knowledge were to be captured as required by knowledge-based recommender

systems, both the knowledge acquisition and construction part would have been much more

challenging and time-consuming.
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Also, there are clear indications that maintenance is easier with a CBR approach since

the system only needs to handle problems that occur (e.g. the dish type salad), while

generative systems must account for all problems that are principally possible (i.e. must

account for all dish types possible).

To find the best matches in the case base, the system needs a way to compare recipes.

Therefore, important features of a recipe must be identified. Also, the system must measure

the similarities between all features to be able to calculate how similar two recipes are.

Chapter 3 looks into previous CCC participants’ challenges and solutions, as well as other

recipe recommender systems that does not target CBR.
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Chapter 3: Related work

The goal of this chapter is to provide an overview of the state of art research within the

field of computer cooking, focusing chiefly on the relevant work of earlier contributions to

the CCC in Section 3.1. Further, other approaches to the computer cooking domain are

presented in Section 3.2. Lastly, the chapter provides a discussion of the presented work in

Section 3.3.

3.1 Competitors of the CCC

Several research groups have contributed to the CCC over the years using information re-

trieval, information extraction and semantic technologies along with CBR when developing

recipe recommender systems. The researchers have contributed with various approaches to

the task. This section introduces four of the most influential systems.

3.1.1 Taaable

The Taaable team has contributed to the CCC six times, incrementally improving the sys-

tem. The system is built over a generic CBR engine called Tuuurbine (Gaillard et al. 2014).

The researchers aim to improve the efficiency of managing data within the system by using

a homemade semantic wiki, called WikiTaaable (Blansché et al. 2010).

WikiTaaable serves as the main knowledge base and is composed of a cooking domain

ontology, a recipe base indexed by concepts, as well as else-wise knowledge which has ap-

peared useful for efficient retrieval and adaptation (Badra et al. 2009). The domain ontology

contains four concepts: ingredients, dish moments, dish types and dish origins. Further, in-

gredient knowledge is stored in a hierarchical taxonomy which describes the relationship of

ingredients. For example, apple juice is a subclass of fruit juice.

A complex generalization-specialization method extracts necessary knowledge about

which ingredients can substitute for each other in various contexts (Gaillard, Lieber, and

Nauer 2015). When the system receives a query, the system first tries to find an exact

match within the recipe base. If no match is found, the system aims to find the minimal

generalization function in a way that there exist at least one recipe exactly matching the
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generalized query. For example, the ingredient mango may be generalized into tropical fruit,

which can be specialized into fig.

Ingredients are given a similarity score based on their position in the taxonomy. Child

nodes are given a similarity of 1.0 to their parents. This means that a search including

the generalized term tropical fruit is seen as a perfect match with fig, mango, and all other

children. Mango and fig and the other hand have a similarity of 0.6 due to their sibling

relationship.

The 2010 version of the system was expanded with nutritional values for all ingredients.

By adding this to all ingredients, amounts of the ingredients are adjusted due to the modified

ingredients nutritional values. For example, when substituting mango with fig, the amount

of sugar can be decreased.

Another expansion of the 2010 version was the adaptation of preparation steps. The

adaptation is made by adding natural language processing and Formal Concept Analysis.

Preparation steps do not necessarily stay the same after ingredients are modified. The idea

is that, for each ingredient, there exists a preparation prototype describing the different

ways the particular ingredient can be used. Hence, target sets of ingredients are built. An

example of such a target set is sauce. Also, the sequence of actions applied to any ingredient

is attempted to be identified. FCA is further used to group similar measures that might not

necessarily replace each other, like peel and remove-pit, or cut and slice. Hence, the method

makes it possible to replace the textual preparation steps in the original recipe by retrieving

the preparation steps from the recipe description in which the substitute ingredient belongs.

3.1.2 CookIIS

The developers behind the CookIIS system has contributed to the CCC three times. The

system was built using the industrial strength tool Information Access Suite (e:IAS). In

the second version, the researchers focused on collection adaptation knowledge from online

cooking communities (Ihle, Hanft, and Althoff 2009). In the latest version of the system,

the main goal was to improve the performance of the CBR ’4 RE’ processes (Newo et al.

2010). The focus was pre-processing to enrich the source data.

The knowledge model consist of several taxonomies. Each taxonomy represent a cat-

egorization, such as fish, meat, or fruit. Additionally, every ingredient is represented by

at least one concept. For example, meat can be organized by both parts (e.g. fillet) and

by kind (e.g. pork). All preparation steps and tools required for the preparation are also

modeled in separate category taxonomies.

The system builds upon the recipes provided by the CCC, which are divided into one

XML file per recipe. During project setup, the system automatically recognizes different

aspects of each recipe. The ingredient type is recognized based on the categories in the

knowledge model. Type of meal is recognized based on indicative keywords in the recipe

title along with indicative ingredients or combinations of them. Type of cuisine is recognized
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by three ruled based approaches: 1) identification of the recipes origin in the recipe title, 2)

identification of characteristic strings in the recipe title and mapping them to an origin, and

3) identification of occurrences of spices, herbs or other ingredients to find characteristic

elements for the given type. After this process, each recipe is defined by the taxonomy

categories and the belonging ingredients.

To gather adaptation knowledge beyond the taxonomies, the researchers collected con-

crete pairs of ingredients given as advice in comments on online cooking communities. Also,

a rule engine is used to detect similar ingredients in the recipe base.

The system performs a pipeline of occurrences when receiving a query. The pipeline

aims to retrieve and adapt recipes from the case base. The user query is analyzed, and

concepts are extracted using a text miner before meta information is computed based on

the query input. The retrieval continues by collecting the most similar cases based on the

calculated similarities.

To be able to assess dietary practices, the system uses a filter to sort out the applicable

ingredients. The filter ensures that recommended recipes do not contain any undesired

ingredients.

The similarity between a query and a case is calculated with local and global similarities.

The system uses a weighted generalization-specialization method to compute the similarity

between ingredients within a category. The weights for generalization and specialization is

given so that the similarities can be automatically computed. In addition to the weights

computed with the taxonomies, the system uses table based similarity measures for some

ingredients, because the taxonomies do not reflect the reality in every case. These were

manually added by the researchers. Each category is given a weight which reflects the overall

importance of the category. The global similarity measure for a recipe is the weighted sum

of all the local similarities of the categories in the case.

The adaptation process of a recipe goes sequentially through three steps. First, the

system considers the community-based adaptation rules gathered from online cooking com-

munities. Second, model-based adaptation rules are applied. These are the rules that are

extracted from the taxonomy. Lastly, the system carries out the actual adaptation of the

recipe in five steps: 1) searching for ingredient definitions in the text, 2) replacing any plurals

with singular form, 3) considering ingredient synonyms, 4) simplifying two-word-concepts

(e.g. generalizing peanut oil into oil), and 5) replacing the old ingredient with the new.

3.1.3 CookingCAKE

CookingCAKE is mainly based on Collaborative Agent-Based Knowledge Engine (CAKE)

(Freßmann et al. 2005), which provides efficient ways of information retrieval and sophisti-

cated similarity calculations (Fuchs et al. 2009).

During development of the later versions of the system, the focus was mainly targeted

on the preparation instructions. This means adapting the cooking instructions in the form
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of cooking workflows (Minor et al. 2010). With this approach, a recipe is represented as a

workflow which describes the process of preparing a particular dish. The cooking workflows

consist of a set of preparation steps (tasks), and a set of ingredients (data items) shared

between its tasks. Control-flow blocks like parallel (AND), alternative (XOR), and repeated

execution (loops) are also used. All tasks and control flow blocks are linked by control-flow

edges, which defines an execution order.

The developers behind CookingCAKE built a hierarchical and category-based ontology

in XML. The ontology consists of a taxonomy of ingredients to define the semantics of data

items, and a taxonomy of preparation steps to define the semantics of tasks. The structure is

based on an analysis of the recipes provided by the CCC, which gave the developers the idea

of three types of nodes: category-nodes, ingredient-nodes, and synonym nodes (to represent

typos, British versus American English, and so forth). Five origin types were further created:

animal, herbal, baking, liquid, and spices. These origin types serve as category nodes, and

all ingredient nodes are placed below them. Ingredients were extracted from the recipe case

base by filtering stop words, cooking units, and state of the ingredients. For example, 1 lg

Onion (sliced and quartered) was transformed to Onion.

To be able to compare and adapt recipes on a higher level, the researchers decided

to create a classification model on specific cuisine and meal types. To classify recipes and

ingredients, the developers manually selected 70 ingredients and 130 recipes for the type of

meal (e.g. breakfast, lunch), and 80 ingredients and 90 recipes for the type of cuisine (e.g.

stew, salad). RapidMiner 4.3, which is an open-source Java based mining solution, along

with a Naive Bayes classifier, was further used to build a classification model out of the

pre-classified recipes and ingredients. Then, all recipes in the database were automatically

classified using the classification model.

CookingCAKE involves a PHP-based User Interface (UI), where the user can specify

any desired and undesired ingredients or preparation steps. The UI also include check boxes

for dietary practices, type of cuisine, and type of meal. The system uses Process-Oriented

Case-Based Reasoning Query Language (POQL) to capture the query provided by the user

(Müller and Bergmann 2015). The query is further used to guide the retrieval, trying to find

a workflow case that contains all desired ingredients and none of the undesired ingredients.

The taxonomies of ingredients and preparation steps are used to evaluate the similarity

between ingredients and preparation steps. The similarity is calculated by mapping each

query element to the case elements. The system can estimate the similarity between cases

using the ingredient taxonomy; the closer the ingredients are in the taxonomy, the more

similar they are. Say that a query contains the general term meat. Then, the immediate

children, such as beef or pork, are given a similarity of 1.0 to the query.

The system uses two approaches for preparation step adaptation. The first approach

involves generalization and specialization of workflows. This process is done by comparing

similar workflows from the case base. For example, if three workflows contain beef, chicken,

and pork, the system can generalize to meat. Secondly, the system uses workflow streams

to adapt recipes. Workflow streams are based on the idea that each workflow can be de-
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composed into sub-components. For example, in a sandwich, the sauce can be prepared

separately, and hence, substituted as a whole.

To generate such adaptation knowledge, CookingCAKE uses the workflows contained

in the case base. The cases are first generalized, then made into workflow streams and

adaptation rules. This process is automated, and solutions are stored for future adaptation

processes.

Modified cases are represented by the original workflow along with a solution part which

contains the adapted workflow and with a description of the steps that are done to transform

the workflow. All cases used for experimenting was created by hand by the researchers. The

researchers found that the hard part in the reuse phase was finding the location of where to

make the changes. Also, the generation of natural language cooking step descriptions has

not yet been addressed.

When analyzing the cooking steps, the researchers found that the level of detail was not

consistent, and the instructions lacked a uniform language and phrasing. Further, represen-

tation of the amount and state of ingredients was found challenging as there is no uniform

representation of such information. Lastly, the researchers discovered difficulties with sub-

stituting ingredients where the old or new ingredient is a so-called aggregated ingredient

(e.g. whipped cream, which consists of cream and sugar). These are obstacles that the

researchers have yet to solve.

3.1.4 JaDaWeb

The JaDaWeb project is implemented with the jCOLIBRI framework, which supports tex-

tual processing and the use of ontologies (Herrera et al. 2009). In their latest contribution, a

graphical, web-based, natural language UI was added (Ballesteros, Mart́ın, and Dı́az-Agudo

2010). To clarify, JaDaWeb does not adapt recipes. The system focus on optimizing the

retrieval process and similarity calculations.

JaDaCook reasons using the case base of recipes provided by the CCC along with an

incrementally built cooking ontology and a set of association rules. The association rules

are obtained using data mining techniques to capture co-occurrences of ingredients in the

recipes.

The ontology consist of a hierarchical taxonomy where ingredients are organized into

categories to enable the possibility of inheritance of properties. Ingredients are classified as

one of the following: 1) origin ingredients like fish, meat, milk, and eggs, 2) plant origin

ingredients like cereals, nuts, fruits, and vegetables, and 3) all other classes like drinks,

sweeteners, oils, and salt.

The taxonomy is mainly used for calculating ingredient similarity, with the assumption

that two ingredients are more similar if they are closely located in the taxonomy. Association

rules are used to propose suggestions for similar ingredients, along with a case base of menus.
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The case base is built collaboratively using non-expert users feedback and is used to build

meaningful three-course menus by combining single dishes.

JaDaWeb takes user input as a single sentence in natural English language. It then

uses a MiniPar parser to understand the natural language query. The parser returns a

dependency tree with all nouns from the query sentence and also differentiates between

desired and undesired ingredients by detecting negation in the query. Two dependency tree

lists then represent the query: 1) desired ingredients, and 2) undesired ingredients.

After parsing the query, all nouns (i.e. ingredients) in both lists are looked up in the

lexical-semantic net WordNet to find their definition, synonyms, antonyms, and so forth.

Further, the algorithm searches for all the ingredients, including their synonyms, in the

taxonomy. If an ingredient is not found, the system uses the noun and ingredient definitions

to find a similar or matching node in the taxonomy to place the new ingredient. If no

suitable node is found, the system asks the user to help classify and put the ingredient

where it belongs.

The Apriori algorithm was applied to find a relationship between ingredients. It is

used to mine association rules using Weka (a collection of machine learning algorithms for

data mining tasks) over the recipe case base. Weka sorts rules according to metrics like

confidence, leverage and lift. For example, a rule can say that sugar can substitute for

vanilla with a confidence of 87%.

The total similarity score of a recipe is normalized by the number of ingredients in the

query. If an ingredient is not in the recipe, all siblings and parent ingredients are checked.

The similarity metric is adjusted according to the hierarchical relationship, for example,

siblings are consequently given a similarity of 0.8. Lastly, JaDaWeb also includes a fuzzy

table of ingredients defined in a XML file. Here, for example, macaroni and rice are manually

given a similarity of 0.4.

Finally, the recipe suggestions are ordered by similarity as well as season characteristics,

for example, soups go well in the fall and winter, while salad is more suitable for spring and

summer. Season features are subtracted from words like cozy, warm, light, and so forth in

the recipe description.

3.2 Non-CBR related work

This section studies and discuss software approaches to the computer cooking domain where

CBR has not been applied to the solutions. These are all commercial systems, specially

developed to reach out to as many users as possible.
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3.2.1 AllRecipes

AllRecipes1 is one of the most popular and extensive websites for sharing of recipes, with

more than forty-seven thousand recipes collected since 1997. Here, both novice and expert

cooks can share and rate cooking recipes.

The website itself does not implement any AI technologies, but in 2012, a team of

researchers experimented with ingredient networks on the data set of recipes downloaded

from AllRecipes.com (Teng, Lin, and Adamic 2012). The idea came from the thought

of how the massive database of recipes could provide significant information about which

ingredients go well together based on their co-occurrence in recipes. Also, user reviews of

recipes could provide clues as to the flexibility of a recipe when it comes to leaving out

ingredients, modifying the quantity or substituting an ingredient with another.

The team created two networks to capture the association between ingredients; 1) a

complement network to capture which ingredients tend to co-occur, and 2) a substitute

network derived from user-generated suggestions for modifications. One of their overall

goals was to measure whether an ingredient is essential for a recipe, along with if and how

its quantity can be modified.

The team processed every recipe and its comments to create the networks. The com-

plement network was constructed based on point-wise mutual information, defined on pairs

of ingredients extracted from the recipes themselves. While setting up the substitution net-

work, the team parsed all reviews, split them on punctuation and stop words, and used

simple heuristics to detect when a review suggested modifying a recipe. Only suggestions

mentioned more than five times were included. This process resulted in a weighted, directed

network consisting of ingredients as nodes. The weights are based the proportion of substi-

tutions of ingredient a that suggested ingredient b. For example, 68% of substitutions for

white sugar were to Splenda. Hence the assigned weight for the sugar-Splenda edge is 0.68.

Analyses and visualization of both of the networks revealed clear patterns and strong

clusters in the relationship of ingredients and also revealed regional preferences when it

comes to ingredients and cooking methods. In the substitution network, it was found that

additions are positively correlated with increases and deletions with decreases. Healthy

ingredients such as sugars and fat are more likely to be exchanged or decrease, while flavor

ingredients such as cinnamon and toppings are more apt to be increased. Recipe frequency is

negatively correlated with modifications of the recipe. For example, salt appeared in over 21

000 recipes and was only modified in 18, while Worcheshire sauce appeared in 1532 recipes,

and was dropped explicitly in 148 reviews.

1www.allrecipes.com
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3.2.2 Chef Watson

Watson2 is a cognitive computing application developed by a research team concerning

a project at IBM. Originally, Watson was created to answer questions on the quiz show

Jeopardy. In the later years, several applications have employed the software; utilizing

management decisions within lung cancer treatments and recommending new songs to users

in a music application, are just two amongst more (Upbin 2013).

In 2014, IBM and Bon Appétit3 started working together, with the goal to build a

creative cooking application that could help discover new recipes: Chef Watson4. Bon

Appétit provided their database of over ten thousand recipes, in which Watson searches

for patterns. Technically, the biggest challenge when creating Chef Watson was natural

language processing. In other words; how to understand the recipes, and extract the relevant

information into a knowledge base (Ferrucci et al. 2010). The computer attempts to combine

the recipes into new, unexpected combinations by looking at pairings of ingredients that go

well together. The system also uses extensive knowledge of the science behind food pairings

to combine the recipes (Pinel 2015).

The outcome of the recipe generator has been widely tested, both by expert chefs and

novice cooks. The results have been surprising and fun, and (mostly) well-tasting. Dishes

like the Vietnamese apple kebab including pork, apples, mushrooms and strawberry is one

of them. In the recipe, ingredients share similar flavor compounds even though it does not

sound very appetizing at first.

3.2.3 Yummly

Yummly5 provides personalized recipe recommendations, semantic recipe search, a digital

recipe box, and shopping lists. The application had fifteen million active users in the US

in 2014 (Goldfisher 2010). The website and application allow users to filter their search

by ingredients, diet, nutrition, price, cuisine, taste, time, allergy and much more, and aims

to learn what the users likes and dislikes. The site also calculates nutritional values. The

preferences are stored, and the information is further used to categorize food and recipes

to make personalized recommendations in the future. The more it is used, the better the

recommendation.

In March 2013, Yummly opened full access to its Application Programming Interface

(API) as a paid service for other companies. This API allow searching for ingredients,

cooking methods and nutritional data (Fitchard 2013). With more than one million recipes

and one hundred thousand classifications, the API serves a great opportunity as a basis for

endless of applications.

2www.ibm.com/watson
3www.bonappetit.com
4www.ibmchefwatson.com
5www.yummly.com
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3.3 Discussion

The cooking domain is widely targeted within research with AI. By targeting the cooking

domain, it does not necessarily exist a correct solution to any problem, which provides the

contingency of being creative. Also, the cooking domain has a broad target group. After

all, everyone has to eat, and many people use some cooking recipe service several times per

week, may it be online or in a textual book.

In Section 3.2, three commercial products were presented. When it comes to these,

entirely new solutions were implemented with the sole goal of enlisting as many users as

possible. The results are astonishing, and all of the systems have reached success with a

great number of sales and daily users. This factor is just another argument to the question

of whether or not cooking is a convenient domain to target.

Chef Watson has proven, even to expert chefs, that a computer program can detect pat-

terns in ingredient complementarity, and hence, suggest entirely new and creative dishes that

fulfills culinary quality. The research on complementary ingredients on the AllRecipes.com

database has yet again proven that there does indeed exist clear patterns within ingredients

networks. Edges in the networks can indicate patterns within several different concepts:

meal type, season, culture, regional preferences, and so on. Combining such extensive cook-

ing knowledge with for example the personalized recipe recommendations that Yummly

provides, could further tailor the recommendations targeted towards a specific user.

In the CCC, tasks given varies from year to year, but the competition usually includes

an open challenge. For the open challenge in the CCC, the focus is adapting the cooking

recipes in any way possible, as long as the recipe base provided is used as a basis. Evaluation

criteria for the emitted system evolve around the scientific quality of the solution, along with

culinary quality and originality.

It is mainly the solutions to the open challenges, along with the general CBR sys-

tem implementations that were explained in Section 3.1. These four systems are designed

and implemented for the purpose of research within CBR, and all showcase new ways of

approaching CBR in a domain specific solution. They all follow the CBR cycle: retrieve

relevant recipes, reuse earlier experiences, revise the given solution, and retain the new case

in the case base.

When comparing the systems, it appears that the implementations are widely dissimilar

in many ways, although they share common CBR principles. The Taaable researchers built

their system around a collaborative, semantic wiki, which also serves as the main knowledge

base. The CookIIS researchers focused on the preprocessing of data to make the substitution

of ingredients fluent and more realistic. CookingCAKE targets the preparation instructions

by implementing cooking workflows, and lastly, the JaDaWeb researchers focused on the

implementation of natural language understanding.

All the CCC systems include some cooking ontology, which is interesting to discuss as

this is the main knowledge base for ingredient similarity measurement. Taaable has a simple

23



CHAPTER 3. RELATED WORK

hierarchical taxonomy of ingredients, not separated in any categorizations. CookIIS include

one taxonomy per ingredient category, and CookingCAKE and JaDaWeb have taxonomies

split into categories. Taaable, CookingCAKE, and JaDaWeb calculate the similarity between

two ingredients by measuring their nearness in the taxonomy. CookIIS on the other side

has specified each ingredient’s similarity to its closest ingredient nodes, and the similarity

measures are more specialized than with the other approaches. On the other hand, CookIIS

can not measure the similarity between ingredients in different taxonomies. For example,

salmon and ham is located in separate taxonomies and can hence not substitute for the

other, which can sometimes be a troublesome drawback.

The results from earlier CCC systems have varied plenty, due to the complexity of

the given input. Typically, challenges have arisen when working with smaller case bases.

With smaller cases bases, the systems simply do not have enough freedom to find suitable

substitutions or to combine recipes in a pleasing culinary fashion. For example, substituting

spinach with ruccula in a salad can happen seamlessly, while completely changing the essence

of the salad or swapping chicken (i.e. the main ingredient), is seen as a big challenge.

The thought of more radical adaptation reveals an opportunity for creativity. Can

recipe recommender systems be implemented in such a way that the recipes are modified

and combined in a more creative way, by, for example, not restricting ingredient substitutions

to non-key ingredients? If a system is given the freedom to modify ingredients not specified

in the user query, this opens for changing the nature of the recipe entirely.

Another key difference to note between the commercial systems and the CCC competi-

tors, is the UI. The commercial systems have implemented well though-trough designs and

easy-to-use functionality, which helps them reach out to a greater target group. The CCC

competitors have not focused on usability, and it can be challenging for an inexperienced

user to understand the thought process of the system. Hence, creating a user-friendly and

self-explanatory UI can help a system to stand out in the CCC.
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Chapter 4: Method

This chapter explains this project’s contribution to CBR research. To conduct the research,

a CBR based recipe recommender system was implemented. The system is called Intel-

liMeal. The recommendations are based on a user query consisting of desired and undesired

ingredients.

Figure 4.1: Three-layer architecture

IntelliMeal employs a three-layer architecture as illustrated in Figure 4.1. Preprocessing

of data and the user layer is explained in Chapter 5, while this chapter focuses on the data

layer and the application layer. Section 4.1 introduces the data used in IntelliMeal and

explains how it was modeled. The following sections consider the application layer and the

usage of CBR in the system. That is, what happens between the user query and the result

recipes recommended to the user, as well as how the system can improve by considering

feedback from the user. First, an overview of the implemented version of the CBR cycle is

given in Section 4.2. After that, each process step introduced in the overview is explained

in separate sections.
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4.1 Data modeling

The CCC described in Section 2.1 provided access to twenty-one sandwich recipes repre-

sented by a XML file. This exact recipe data was chosen because of the narrow domain it

represents. A small data set is easier to get a grip on and evaluate it. Besides, it forces the

system to be more creative when customizing recipes to fit a query.

The researchers behind CookIIS, an earlier participant of the CCC, provided access

to the knowledge base used in their system. The CookIIS knowledge base was modeled in

myCBR. MyCBR is a similarity-based retrieval tool which provides a software development

kit (SDK) and an accompanying workbench. The project contained hundreds of ingredients

and similarity knowledge between these. Gathering such knowledge is time-consuming and

not within the time span of this project. Therefore, the choice to take advantage of the

existing myCBR knowledge base came naturally.

In this project, the workbench was used to expand and improve the already existing

myCBR knowledge model. In the myCBR project, a concept is defined, and within the

concept, there is a flat structure of attributes or ingredient categories. Making the myCBR

project more suitable for IntelliMeal, some adjustments were made. This section explains

the resulting data model, taxonomies, and similarity knowledge in the project.

4.1.1 Attributes

Figure 4.2: myCBR attributes

Figure 4.2 shows the attributes in the myCBR project. The top two attributes, CaseId and

Title, are explaining attributes. They explain the recipes but do not say anything directly

about the content. For these attributes, there is no predefined value range, and they do not

take part in retrieval processes.

The remaining attributes are retrieval attributes, containing particular types of ingre-

dients. In Figure 4.2, the number of predefined ingredients per attribute is specified. The

Vegetable attribute, for example, contains 203 vegetable ingredients.

26



4.1.2 Case base

A myCBR concept can contain several case bases, and for this project different case bases

was used for various purposes. For example, one case base was explicitly used for evaluation

in addition to the main case base. The main case base initially contains twenty-one original

sandwich recipes.

Figure 4.3: Instance example

Instances can be imported to myCBR through CSV files. When added to a case base,

an instance is referred to as a case. An instance example is illustrated in Figure 4.3. The

initial sandwich recipes were only provided in a XML file which had to be parsed to CSV.

This step is considered preprocessing and will be further explained in Section 5.2.1.

When importing recipe instances through a CSV file, the ingredients are matched

against the myCBR model. If an ingredient in the CSV file does not exist in the model, it

is simply ignored. Therefore, it is important to make sure all recipe ingredients are present

in the model. All missing ingredients were added to the model as a part of the initial setup.

If a recipe does not specify any ingredients for an attribute, the attribute is configured with

the special value unknown , as seen in Figure 4.3. Note that all retrieval attributes can

contain multiple ingredients for a case.
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4.1.3 Similarity measures

Figure 4.4: Excerpt from the Meat taxonomy defined in myCBR

Each retrieval attribute has its own taxonomy hierarchy that defines the similarities for its

belonging ingredients. Figure 4.4 shows an excerpt of the active taxonomy for the meat

attribute. By accessing the taxonomy, the similarity between attributes in two different

instances can be fetched. If an attribute contains several ingredients, an average is calculated.

Figure 4.5: Global similarity measures as defined in myCBR

Global similarity refers to the similarity between a query and an adequate instance and

is calculated by the weighting of local similarities. In other words, the importance of each

attribute can be defined. In this project, meat and fish are weighted 1.5, while carbs (e.g.

bread) is weighted 1.3, as Figure 4.5 illustrates. The discriminant column describes which

attributes are considered in the retrieval process, and as the figure shows, CaseId and Title

are set to false. When calculating the global similarity score between a query and a case the

value is normalized, giving a score between zero (not similar) and one (very similar).
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4.2 IntelliMeal’s modified CBR cycle

Figure 4.6: Modified version of the CBR cycle

All steps of the CBR cycle are employed in IntelliMeal. However, not in the order of the

traditional ’4 REs’. Figure 4.6 shows an overview of the implemented version of the CBR

cycle. This section briefly explains each step in the figure and refers to following sections in

this chapter for more detailed descriptions.

Step 1 The problem presented is the user query, which consists of desired and undesired

ingredients. As Figure 4.6 illustrates, the query is split in two: One undesired query con-

taining the undesired ingredients and one desired query containing the desired ingredients.

Section 4.3 explains the problem in detail.

Step 2 As Figure 4.6 illustrates step two involves retrieving the cases from the case base

that have the best match to the user query. Hence, cases with the best starting point to end
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up in successful recipe recommendations. Section 4.4 explains how retrieval works in our

system in general. The case base retrieval process is explained in Section 4.5. Further, the

retrieved cases are duplicated. The retrieved original cases are kept for later use while the

duplicated versions are considered in the reuse step.

Step 3 The reuse step is the most comprehensive step of the cycle. The goal is to customize

cases (i.e. recipes) so that they better fit the user query. However, with restrictions to

avoid distasteful recipe results. The customization is referred to as adaptation. As Figure

4.6 illustrates, domain knowledge, rules, and the queries are employed in the adaptation

process. In general, the process involves three steps: 1) Adaptation with the undesired

query, 2) adaptation with the desired query and 3) suitable adaptation. These processes

and the reuse step are explained in Section 4.6. The result from the reuse step is adapted

versions of the cases in the case base, further referred to as adapted instances.

Step 4 The strategies used to set up an ephemeral case base mainly concern using the

undesired query to discard cases that are not satisfying. As Figure 4.6 illustrates, both

original cases from the case base as well as the adapted instances resulting from the reuse

step takes part in the setup. The result is an ephemeral case base containing a selection of

both types. This step is explained in Section 4.7.

Step 5 The ephemeral case base retrieval involves comparing the cases in the ephemeral

case base to the desired query. The result is a mixture of original cases and adapted instances,

together with their resulting similarity score. Section 4.8 explains the ephemeral case base

retrieval.

Step 6 The revise step involves getting feedback on recommendations. More specifically,

the user gets the opportunity to confirm that adapted recipe recommendations are tasty.

Step 7 Only when an adapted recipe is confirmed tasty, the recipe instance will be added

as a case to the case base together with the original cases. This refers to the retain step of

the cycle. Both step 6 and 7 are described in Section 4.9.

4.3 Problem description

As explained, the user query consists of desired and undesired ingredients. In reference to the

CBR cycle, this query is the new problem that the system has to solve. A retrieval process in

CBR involves comparing a query instance to cases to find the best matching cases. However,

the problem consists of two opposite types of ingredients: desired and undesired. Recipes

should be a good match to the desired ingredients, but not to the undesired ingredients.
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Accordingly, the desired and the undesired ingredients can not be mixed into one query

instance to be used in a retrieval process.

Figure 4.7: Splitting a user query

Consequently, the user query is divided in two: One desired query and one undesired

query. The desired query represent the “perfect” recipe instance containing the ingredients

from the desired search field. The undesired query represents the absolute worst possible

recipe instance that can be presented. Figure 4.7 shows a user query example. Egg and

bacon are the desired ingredients, while mushroom is an undesired ingredient.

The undesired query is considered in the case base retrieval, reuse step and when cre-

ating the ephemeral case base to strictly avoid recommending recipes that contain any

undesired ingredients. However, it needs to be expanded a bit before usage. In myCBR,

mushroom is only defined as one ingredient. However, we assume that when mushroom is de-

fined as an undesired ingredient, this means the user does not want fossil sponge, chantarelle,

or any mushroom. In general, this means that the system needs to fetch all children of all

undesired ingredients and add them to the undesired query as well. Children of ingredients

are found in the attribute’s taxonomy hierarchy in the myCBR project.

The desired query plays a major role in both retrieval steps and in the reuse step. It is

also used when creating an ephemeral case base. The desired ingredients are however not

considered as strict as the undesired ones. The user can not be ensured that all desired

ingredients will be included in the presented recipes. If that was the case, queries could

require the system to modify cases uncontrollably much which probably would result in
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recipes that are not very tasty. Nonetheless, the system will try its best to customize

recipes, but with limitations to avoid undesired results.

4.4 Retrieval

This section starts out by describing how the retrieval method incorporated in myCBR

works, to give grounds for why we have implemented our own retrieval method. Further,

the implemented method is explained.

4.4.1 Retrieval in myCBR

myCBR provides sequential retrieval. Sequential retrieval computes the similarity of the

query and all cases in the case base to get the most similar cases. This involves first

calculating the local similarities. That is the similarity between corresponding attributes.

Then, they are weighted and summed to generate the global similarity. That is the similarity

between the query and the case. The retrieved cases are ordered by their similarity score.

In myCBR, attributes can be disabled so that they do not partake in the retrieval pro-

cess. The attribute Title for example, can be disabled because it is not directly relevant

when comparing the ingredients in recipes. However, attributes can not be disabled depen-

dent on a query. The fact that all retrieval attributes take part in every retrieval process

appeared to be a problem for our system.

Whenever an attribute does not contain any ingredients, the attribute value is set as

unknown . When comparing two and two instances in the retrieval process, unknown

attributes can match against each other as any other values. Match on unknown gets a

preset value as local similarity score. If this value is set to one, it means that two recipes

both containing no vegetable ingredients will match as equal on this attribute.

Hence, when calculating the similarity, these unknown matches will be as important

as any ingredient match if the unknown value is set as one. This means that for queries

with few ingredients, recipes containing unknown values on many attributes will have an

advantage. This would have been the desired behavior if the user was aware that if s/he

does not specify an ingredient for a specific attribute, it means that s/he does not want

that type of ingredients. However, the user does not necessarily know which attributes the

system contain or care about what attributes various ingredients belong to. The user should

be able to simply type in the desired and undesired ingredients without having to think

about the model structure.

If the unknown similarity is set to zero, on the other hand, recipes containing ingre-

dients on many attributes will have an advantage because some match is better than zero.

This is also considered an undesired behavior.
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4.4.2 New retrieval method

Figure 4.8: Comparing only attributes present in the query

The desired behavior for the system is to simply ignore attributes in the query instance that

have the value unknown . For example, if the desired ingredients are egg, pita bread, parma

ham and olive oil, the system should only consider their belonging attributes and ignore the

rest. An example is illustrated in Figure 4.8.

To enable this behavior, a new retrieval method was created. As with retrieval in

myCBR, one query instance is compared to all cases in a case base. The method iterates

through every retrieval attribute in the query. Attributes with unknown values are ignored.

The rest of the attributes are considered valid and takes part in the similarity calculation.

Figure 4.9: Calculating the local similarity between meat ingredients
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Figure 4.9 shows how the system calculates local similarity for an attribute. The my-

CBR project is used to provide similarities and attribute weights. For each valid attribute,

the similarity between the query attribute and the corresponding instance attribute is fetched

from myCBR. The similarity is weighted with the configured attribute weight.

When calculating the global similarity, the local similarities are summed up and divided

by the number of valid attributes. To sum up, the system calculates the global similarity

exactly as done in myCBR, except that the attributes that have the unknown value in the

query instance are ignored.

4.5 Case base retrieval

The goal with the case base retrieval is to retrieve the cases from the case base that are

to be considered in the reuse step. The system attempts retrieving the cases with the best

starting point for ending up in successful recipe recommendations. The desired cases are

cases with the best possible match on the desired query and the worst possible match on

the undesired query.

Figure 4.10: Case base retrieval example

Accordingly, the retrieval method is employed twice: One time comparing all cases

to the desired query and one time comparing them to the undesired query. Consequently,

each case receives one desired similarity score and one undesired similarity score. The total

score is calculated by subtracting the undesired score from the desired score as illustrated

in Figure 4.10. The result from the case base retrieval is twenty of the best matching cases,

ordered by their similarity score.

4.6 Reuse

Copied versions of the retrieved original cases take part in the reuse step. The original

versions are kept for later use in the cycle.
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Figure 4.11: Adaptation process

As illustrated in Figure 4.11, the adaptation process involves three steps: Adaptation

with undesired query, adaptation with undesired query, and suitable adaptation. By having

only twenty-one recipes in the case base, chances are small that the original recipes will be

good matches to an arbitrary query. Adaptation, on the other hand, enables the system to

be much more flexible by customizing original recipes so that they better match the user

query.

The different adaptation steps employ some shared methods to do modifications. Some

of them are rule-based and some of them are based on the taxonomies provided by the

myCBR project. The rule engine is explained in Section 4.6.1.

The first step in the process involves using the undesired query to modify the retrieved

recipes so that they no longer contain any of the undesired ingredients. If this step is

unsuccessful, the adapted recipe is rejected right away by being labeled invalid. As men-

tioned, undesired ingredients are very strictly considered. The undesired adaptation process

is explained in Section 4.6.2.

The second step involves using the desired query to customize the retrieved recipes to

increase their similarity score to the desired query. This is done by substituting desired

ingredients into the recipe. The desired adaptation process is explained in Section 4.6.3.

Last, but not least, the recipe should make sense. If important ingredients are substi-

tuted in the previous steps, the system aims to further complete the change of style. For

instance, if the main ingredient is substituted out of the recipe, the supplements should

change to suit the new ingredients better. To set the record straight, this step is called

Suitable Adaptation. The suitable adaptation process is explained in Section 4.6.4.
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4.6.1 Rule engine

(a) Simple Rule Format (b) Substitution Rule Format

Figure 4.12: Rule formats

A rule engine was created for this specific system as a set of adaptation rules. An overview

of the rules is illustrated in Figure 4.12. Addition rules, deletion rules, suitable rules and

title rules are created with the Simple Rule format, while substitution rules has its own

format called Substitution Rule format. In this section, the functionality of rules and the

two formats are explained. Each specific rule is explained further in the reuse step, together

with the methods where they are employed.

If one rule were to specifically target only the manually specified ingredients, numerous

rules would have to be written. Therefore, the rule engine is also able to consider all

children of the given ingredient. The children are fetched from the taxonomies in myCBR.

This enables one single rule to apply to hundreds of ingredients. For example, consider a

rule saying any type of meat can substitute for any type of fish. These ingredients have 191

and 74 ingredients, respectively. Hence, this one rule will form 14 134 various combinations.

A rule containing chicken and salmon would be one of them.

The functionality to ignore children of a specific ingredient was also implemented. This

is done by writing a * after the ingredient. With this functionality, a rule containing meat*

and fish* will only form one combination.

Rule requirements refer to the ingredients in the recipe that have to be present for the

rule to be valid. There can be zero or as many requirements as desired for a rule to fire.

One requirement is satisfied if the recipe considered contains either the stated ingredient

requirement or one of its children. A rule is valid when all requirements are satisfied.

Substitution rule

requirement, requirement, requirement; ingredient1* → ingredient2 requirement,

requirement; ingredient1 ←→ ingredient2

Two examples of the Substitution Rule format is illustrated above. A simple right arrow

→ means that ingredient1 can be substituted with ingredient2, and a double arrow ←→
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means that the substitution is valid in both directions. However, only when the requirements

are satisfied. The ingredients may belong to different attributes.

Simple rule

requirement, requirement, requirement → ingredient

The next rule format is called Simple Rule. The requirements work the same way.

Exactly what happens with the specified ingredient depends on the situation in which the

rule is used.

4.6.2 Adaptation with undesired query

Figure 4.13: Undesired adaptation process overview

The adaptation process of a recipe starts with considering the undesired query, and the

steps of the process are illustrated in Figure 4.13. The goal is to eliminate any undesired

ingredient in the recipe. As explained, all children of all undesired ingredients are added to

the undesired query. The system iterates all undesired ingredient and checks whether the

ingredient is in the recipe and if so, action is taken. This subsection explains the various

substitution methods used to get rid of undesired ingredients. If none of the substitution

methods were successful for the recipe, adaptation with the undesired query is considered

unsuccessful, and the adapted instance is labeled invalid.
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Consider simply deletion rules

Figure 4.14: Firing the deletion rule lettuce,tomato → cucumber

First, the system considers if the undesired ingredient can simply be deleted from the recipe.

The system iterates a set of deletion rules to see if any of the rules apply to the currently

considered undesired ingredient. The deletion rules are of the type Simple Rule. Hence,

for the ingredient to be deleted there might be requirements that other ingredients must be

present in the recipe. An example is illustrated in Figure 4.14. In the example, any type

of cucumber can be deleted from the recipe if the recipe also contains lettuce (or a child of

lettuce) and tomato (or a child of tomato).

Consider substitution rules

If no deletion rules are valid, the system considers if the ingredient can be substituted out in

favor for another ingredient. Here, the Substitution Rule type is used. When looping through

the rules, more than one substitute alternative may be found. All rules are considered equally

good. If this is the case, a random substitute ingredient is chosen among the alternatives.

Next, the undesired ingredient is deleted from the recipe, and the chosen ingredient is added.
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Figure 4.15: Firing the substitution rule tuna; supplement → mayonnaise

An example is illustrated in Figure 4.15. If the recipe contains tuna, any type of unde-

sired supplement can be substituted out in favor for mayonnaise. In this case, pesto sauce

is the undesired ingredient. The system always makes sure that the alternative ingredient is

not specified within the undesired query. The rule would not be applied if both pesto sauce

and mayonnaise were undesired.

Consider similarity substitutions

If no substitution rules were successfully applied, similarity substitutions are considered.

Similarity substitutions are based on the taxonomies provided by myCBR. With similarity

substitutions, the system is only able to find a substitute ingredient within the same attribute

because there are no similarities defined across taxonomies. The system aims to find the

ingredient in the hierarchy that receives the highest similarity score when compared to the

undesired ingredient. The system makes sure that no other undesired ingredient is found as

an alternative.
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Figure 4.16: Finding a similar ingredient in the myCBR taxonomy

An example is illustrated in Figure 4.16. If several ingredients receive the best score,

a random among them is chosen. If only very dissimilar ingredients are found, substitution

is avoided. An adaptation threshold for each attribute is set to control this. If the best

ingredient found satisfies the threshold, the substitution is carried out.

The system is configured to never substitute any ingredient with a parent. If this were

not the case, the system would always end up trying to generalize. If the undesired ingredient

were cherry tomato, the system would always suggest the parent, tomato, because parent

ingredients always receive a score of 1.0 to their children.

4.6.3 Adaptation with desired query

Figure 4.17: Desired adaptation process overview

The steps of adaptation with the desired query are illustrated by Figure 4.17. The process

is very similar to the undesired query process. The difference is opposite goals: With the

desired query, ingredients are substituted into the recipe instead of out. During the process,

the system makes sure that no other desired ingredients are substituted out and that no

undesired ingredients are substituted in.
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Figure 4.18: Excerpt from the Tomato taxonomy defined in myCBR

In this process, the system recognizes parents and children of the desired ingredient.

Consider the tomato hierarchy in Figure 4.18. If the desired ingredient is cherry tomato

and the recipe contains its parent, tomato, or its grandparent, fruit vegetables, the desired

ingredient is considered satisfied. The same accounts for children. If the desired ingredient is

tomato and the recipe contains cherry tomato, the desired ingredient is considered satisfied.

Child-parent relationships are displayed to the user, so that s/he understands why the

ingredient is satisfied. If the desired ingredient is satisfied, the system continues to the next

desired ingredient. If not, it aims to find a way to add the ingredient.

Consider simply addition rules

Figure 4.19: Firing the adding rule tomato,lettuce* → cucumber*

First, the addition rules are considered. The addition rules are of the type Simple Rule. If

the requirements are satisfied, the ingredient can be safely added to the recipe. Consider

the example in Figure 4.19. Cucumber can be added if the recipe contains tomato (or a

child of tomato) and lettuce.
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Consider substitution rules

Figure 4.20: Firing the substitution rule pork; supplement → barbeque sauce

If no addition rule was found, substitution rules are considered. The same substitution rules

are used for the desired adaptation as for the undesired adaptation. However, this time a

substitution alternative, or substitution offer, must be found inside the recipe. Consider the

example in Figure 4.20. If the recipe contains some kind of pork and a supplement type,

the supplement barbeque sauce is added to the recipe and the supplement pesto sauce is

removed.
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Consider similarity substitutions

Figure 4.21: Finding a similar ingredient in the myCBR taxonomy

If no rules apply, similarity substitutions are considered. Similarity substitutions are less

complex for the desired adaptation than the undesired because the substitute is found in-

side the recipe. Hence, the system only needs to calculate similarity between the desired

ingredient and ingredients in the recipe that belong to the same attribute. Consider the

example in Figure 4.21. Tomato is the desired ingredient. Therefore, cucumber, avocado,

and lettuce, which also belongs to the Vegetable attribute are considered as substitution

offers. The alternative with the highest similarity score is the chosen offer. As with the

undesired adaptation, the system only goes through with the substitution if the adaptation

threshold is satisfied.

4.6.4 Suitable adaptation

After the undesired and desired adaptation process, the style of the recipe may have changed.

The idea with suitable adaptation is to make the new ingredients fit the recipe better.

Figure 4.22: Suitable adaptation process overview
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The steps is illustrated in Figure 4.22. The process starts by iterating all modifications

of the recipe instance. For every new ingredient, the system checks whether a so-called

suitable rule applies. Suitable rules are of the type Simple Rule, which means that there

may be requirements for the rule to be valid.

Consider the rule pork, pita bread→ barbeque sauce. If all required ingredients are in the

recipe and at least one of the requirements is a new ingredient added to the recipe, the rule

is valid. That means if pork has been added to a recipe which also contains pita bread, the

system aims to add barbeque sauce to the recipe. In this case, barbeque sauce is the suitable

ingredient. However, the suitable ingredients are not necessarily simply added to the recipe.

The system aims to substitute barbeque sauce into the recipe the same way any desired

ingredients are added. Hence, addition rules, substitution rules, and similarity substitutions

are considered in the process. If several suitable ingredients are found, a random one among

them is chosen.

Title adaptation

When ingredients are replaced by new ingredients in a recipe, the recipe title may be out of

context. Two types of adaptation methods were implemented to rename the title to better

fit the modified recipe.

Figure 4.23: Generating title based on recipe ingredients. The system recognizes that there

is both mozzarella and tomato in a modified recipe previously called Turkey Club. Conse-

quently, the recipe is renamed to Mozzarella Tomato Sandwich.

First, the system considers pre-defined rules. For the record, the rules are called title

rules and are of the type Simple Rule. An example is illustrated in Figure 4.23. In the

example, an adapted recipe contains tomato and mozzarella, and the title is consequently

renamed to Mozzarella Tomato Sandwich.
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If no specific rules on ingredients apply, a different approach is considered. The method

focuses on the previous title, and apply to titles containing ingredients. The system aims to

match the content of the title with the substitutions that are done. If substituted ingredients

are found in the title, the same substitutions are carried out in the title.

Figure 4.24: Generating title based on previous title. The system recognize recipe ingredients

in the title that are part of substitutions. The same substitutions are done in the title.

An example is illustrated in Figure 4.24. The system recognizes both salmon and sand-

wich as ingredients that took part of substitutions. Consequently, the same substitutions

are done to the title. The resulting title is Tuna Cucumber Baguette.

4.7 Constructing an ephemeral case base

Figure 4.25: Process overview

This section explains the strategies used to set up an ephemeral case base containing all

cases that can be safely presented to the user. The steps are illustrated in Figure 4.25. The

information used to build an ephemeral case base is gathered during the current cycle only

(Mizzaro and Tasso 2002). This involves the user query, cases from the original case base and

the newly adapted instances. The ephemeral case base will be further used in the retrieve

step, where the best selection of the cases will be chosen to be used as recommendations.

At the end of the cycle, the ephemeral case base is lost. None of the information is stored

persistently for later use.
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4.7.1 Filter original cases

To consider the original cases as valid recommendations, none of them should contain any

undesired ingredients. By using the undesired query, the system discards all these invalid

recipes. This leaves us with a selection of the original cases. Note that the cases will still

be in the case base, but they will not be added to the ephemeral case base that is about to

be created.

4.7.2 Filter adapted instances

The reuse step results in three categories of instances: Zero-modification instances, invalid

instances, and valid instances. Zero-modification instances are instances where no modifica-

tions were made during the reuse step. These instances will still contain the same ingredients

as its corresponding original case and are therefore discarded. Invalid instances are instances

that still contain some undesired ingredients after the reuse step. Consequently, these are

also discarded. Valid instances, however, are instances that satisfy the undesired query and

are different from their corresponding original case. These are sent further to a new filtering

process.

By discarding the zero-modifications instances, it is ensured that no adapted instance is

equal to its corresponding original case. However, a more comprehensive check is necessary.

The cases must differ from all existing cases. As the user can add adapted instances to

the system’s case base, the size of the case base will increase over time. The user query

decides how cases are modified and consequently what the cases that might be added to the

case base look like. The similarity between cases in the case base and the direction of their

evolution will be out of control. Chances increase that adaptation will lead to a new case

being equal to an already existing case in the case base. Even two modified instances that

come from different roots might end up with the same ingredients.
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Figure 4.26: Third generation modified version of case 1 ends up having the exact same

ingredients as case 2

Figure 4.26 illustrates how adaptation of cases can lead to a new case being equal to

an already existing case. In the example, the adapted instance 1.1.2 is equal to the original

case 2. Consequently, the system takes basis in valid instances resulting from the reuse step

and discards cases that are equal to any other case in the case base. The result from this

filtering process is a selection of unique and valid adapted instances.

4.7.3 Creating an ephemeral case base

Figure 4.27: Creating an ephemeral case base

As Figure 4.27 shows, the remaining cases from the filtering of both the original cases and

the adapted instances are added to an ephemeral case base.
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4.8 Ephemeral case base retrieval

Figure 4.28: Ephemeral case base retrieval

As Figure 4.28 illustrates, the retrieval method explained in Section 4.4.2 is called with the

desired query and the newly created ephemeral case base. All cases in the ephemeral case

base are compared to the desired query in the retrieval process. Based on the comparison,

they receive a similarity score. The undesired query is not considered in this step because

all instances containing undesired ingredients have already been discarded.

Punishment of adapted instances

The ephemeral case base retrieval results in a mixture of original and adapted cases, ordered

by their similarity score. Original cases refer to cases from the main case base, while adapted

cases are created in the current cycle based on the user query. Accordingly, original cases

are assumed to be safer suggestions. They are either one of the twenty-one initial recipes

created by humans or recipes that are confirmed tasty by a user. Therefore, if an original

case and an adapted instance receive the same similarity score, the original recipe should be

recommended in favor for the adapted one. In general; The more a case has been modified,

the more unsafe is it as a recommendation.

Figure 4.29: Decreasing the similarity score of an adapted recipe. The punishment score is

calculated by comparing the adapted instance to its origin case (second retrieval in figure).

Thereafter, the punishment score is subtracted from the similarity score that the adapted

instance originally received (first retrieval in figure).
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Figure 4.29 illustrates how the system punishes the similarity score of adapted instances.

The punishment is based on the modifications made. That means, the more radical mod-

ifications made, the more the adapted instance is punished. The retrieval method is used

to compare the adapted instance to its corresponding origin case. The resulting similarity

score for the adapted instance is its similarity score minus the difference from its origin.

However, the suitable adaptations should not affect the similarity score and should not

be punished. As explained in the Section 4.6, suitable adaptations are done to fix recipes

where the style has changed during adaptation. Based on this, the substitutions resulting

from the suitable adaptation are not considered in the ephemeral case base retrieval, and

hence, not punished.

4.9 Revise and retain

To fulfill the retain step of the CBR cycle, the case base must evolve and grow over time.

This calls for satisfying cases from the reuse step to be added to the case base. However, the

system itself is not able to measure the level of excellence for a case. The level of similarity

towards a query does not say anything about the tastefulness of a recipe. Hence, the newly

adapted cases are only added to the case base if the user that did the initial query approves

of it. Any cases approved by the user is considered complete and will be used for future

retrieval and adaptation processes.
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Chapter 5: Implementation

This chapter describes the implementation and architecture of IntelliMeal. An overview of

the system is presented in Section 5.1. Further, Section 5.2 describes necessary preprocessing

of the original recipe file provided by the CCC. Lastly, Section 5.3 describes the running

application.

5.1 Overview

Figure 5.1: System overview

In Figure 5.1, an overview of the implemented components of the system is illustrated. All

components are somehow coupled. Before setting up the system, the provided XML recipe

file went through necessary preprocessing. Recipe instances were manually imported to the

myCBR project, and any duplicate ingredients were removed.

The backend consists of the myCBR project file, the database of recipe metadata, and

the core application itself. The core application is responsible for retrieval and adaptation
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processes described in Chapter 4. The backend also provides a REST API for the frontend

and UI.

5.2 Preprocessing

The preprocessing phase of this project mainly involved modeling of taxonomies and in-

stances in myCBR. The modeling phase is explained in Section 4.1. To summarize, a my-

CBR project consists of a concept, and within the concept, attributes and possible values

are defined. Each attribute and its belonging values are modeled as a taxonomy. In this

project, the attributes are ingredient categorizations (e.g. vegetable), and the values are

ingredients that belong to that classification (e.g. tomato). The attributes and values are

used to define recipe instances, which in this project defines the id, title, and ingredients of

a recipe.

The recipes used in this project were provided in a XML file. For the recipes to be

useful, a preprocessing script was necessary. The script takes in the XML file and outputs

three files: 1) a CSV file containing all instances to be imported to myCBR, 2) a JSON

recipe object tree to store recipe metadata, and 3) a list of duplicate values within the

taxonomies.

While the JSON tree is included in and needed for the running application, the other

files were manually added to the myCBR project once, and then scrapped.

5.2.1 Generating CSV instance file

Recipe instances can be imported to myCBR from CSV files. The CSV file must specify in-

gredients below their corresponding attribute in the myCBR concept, which was not present

in the XML file.
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Figure 5.2: Generating CSV file

The preprocessing script aim to find the corresponding myCBR attribute for each in-

gredient in a recipe. An example of the process is illustrated in Figure 5.2. In the example,

the script found that tomato is a value of the Vegetable attribute and therefore write this

ingredient below the Vegetable column in theCSV file.

If any recipe ingredient did not match a myCBR value, the missing ingredients were

manually added to the taxonomy, and the script was re-run before importing the instances

to myCBR.

5.2.2 Generating JSON tree for recipe storage

During preprocessing a JSON tree was also generated. This tree serves as a NoSQL database

for recipe representation usage. In the JSON tree each node represent a recipe, with the

case instance id as the key. This database, in addition to the case instances in myCBR, was

created for two reasons. Firstly, the preparation steps are needed for frontend representation

of recipes, and the myCBR instances do not include these. Secondly, ingredients are written

differently for the user than in the taxonomy.

<ingredient food=”tomato” ..>2 tomatoes</ingredient>

53



CHAPTER 5. IMPLEMENTATION

In the XML file, each ingredient element contain a tag defining the ingredient name

that corresponds to a value within myCBR in addition to the original ingredient text. For

example, myCBR can read ”tomato,” while ”2 tomatoes” is displayed for the user.

In addition to the information from the XML file, a boolean field was added to each

JSON recipe object. The field is set to true if the recipe is adapted.

5.2.3 Generating list of duplicate values

During initial testing, duplicate values within the taxonomies were discovered. Examples

are low-fat yogurt, reduced fat yogurt, and light yogurt. Because of this, a script detecting

duplicates, plural versus singular form, and other synonyms were created. The output value

list generated by the script was further used to remove duplicate values from the myCBR

workbench manually. Keeping synonyms or misspellings will only make ingredient matching

unnecessary complex, and removing them made the taxonomies more consistent.

5.3 Running application

As mentioned introductorily, the running application consists of two components; A backend

and a frontend. The backend is the core system, and it is responsible for all CBR related

functionality described in Chapter 4. The frontend implements a UI which lets users search

for recipes by specifying desired and undesired ingredients.

Figure 5.3: The user interface takes in a user query and makes a request to the API, which

return a list with the most similar cases and their similarity score
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Figure 5.3 shows how data flow from the user, via the UI and to the backend API. The

core system then retrieves cases from the case base and if possible, adapt them to fit the

user query. Lastly, a list of the most similar cases and their similarity score is returned. The

five most similar cases are displayed to the user in the UI.

5.3.1 Core system

The backend is a Java application, which puts the system into a Spring container and

provides REST services through a Swagger API. The REST API serve as the connecting

link between the backend and the frontend.

The API define all necessary request methods for the frontend; Fetching all attributes

and values, retrieving similar cases given a user query, adding new cases to the case base,

and so forth.

The myCBR project file is included in the backend of the system. The project includes

the case base of recipes and the attribute taxonomies. The project defines the weighting of

each attribute, and the taxonomies specifies similarity between ingredients. The core system

retrieves cases from the myCBR project, and uses the taxonomies to calculate the similarity

between ingredients or cases.

As mentioned, the core system within the backend is responsible for retrieval and re-

usage of cases. In this project, the CBR reuse step involves adaptation of recipes whenever

this is possible. The implementation of these routines will not be further described in this

chapter, as all processes are thoroughly explained in Chapter 4.

Test coverage

Functionality was tested continuously during implementation. The project includes a test

environment, and JUnit tests cover all core functionality. Tests ensure that changes in

prerequisites will not affect the behavior of existing methods (Do, Rothermel, and Kinneer

2006). Also, developers can be more self-confident when implementing new functionality as

the tests will alert if the new feature damage performance of existing functionality. Below

is an overview of the functionality that is tested by JUnit tests:

- Extension of undesired query

- Simple additions

- Substitutions for the desired query

- Similarity substitutions for the desired query

- Simple deletions

- Substitutions for undesired query

- Similarity substitutions for undesired query

- Considering suitable ingredients

- Retrieval and similarity scores
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- Filtration of recipes containing undesired ingredients

- Removal of duplicate cases in the filtering process

5.3.2 User Interface

The frontend application of this project was built using Angular 2 with TypeScript. For

this part of the system, the main focus was usability.

Figure 5.4: Input fields on front page

As shown in Figure 5.4, the UI prompts the user with two input fields; desired ingredi-

ents, and undesired ingredients. The user is forced to specify at least one desired ingredient

before clicking the search button. This restriction is set because the system is not configured

to calculate similarities to an empty query case.

Figure 5.5: Ingredient search completion

On initialization, the application retrieves all attribute values (ingredients) from the

API. When the user starts typing, the system will continuously suggest matching ingredients,

as shown in Figure 5.5 where the user has just typed ”re”. Suggesting ingredients is done

to decrease the risk of the user misspelling ingredient names, which will decrease similarity.

For example, a query including the word asparages will not match the ingredient asparagus

from the knowledge model, and hence the similarity score will not be correctly calculated.
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Figure 5.6: Specified desired and undesired ingredients

The user decides how many desired or undesired ingredients to specify. The specified

ingredients are displayed for the user as shown in Figure 5.6. When the user has specified

the ingredients and clicks the search button, the system translates this information into

a JSON formatted query and further initiates a request to the backend API. The request

returns a list of the most similar cases and their similarity score for the given query. The

UI then displays the five cases with the highest similarity score for the user in decreasing

order.
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Figure 5.7: Website after retrieval of similar recipes

Figure 5.7 shows the full website after the request has returned. Any recipe with a

grayed out photography represent a case that is adapted to suit the query.
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Figure 5.8: Example of adapted case

Figure 5.8 shows an example of how the UI present an adapted recipe. In this partic-

ular case, the adaptation involves both removal, addition, and substitution of ingredients.

Removed ingredients (both substituted and simply removed) are styled with strike-through,

while added ingredients (both substitutions and simply added) are displayed in bold. Also,

a short text informing the user that the recipe is modified is displayed below the recipe title.

Figure 5.9: Infotip explaining the adaptation

All adapted ingredients have a question mark with an accompanying infotip next to

them, as Figure 5.9 shows. Modified ingredients can look confusing for an inexperienced

user; Giving an explanation of the reasoning processes employed to solve the problem is

considered good practice within recommender systems (Ye and Johnson 1995; Herlocker,

Konstan, and Riedl 2000). The displayed text is standardized for additions, removals, and

substitutions.
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Figure 5.10: Example of a recommended recipe lacking desired ingredients

If a recommended recipe is missing any of the desired ingredients, the UI will display

a message below the title stating which ingredients is missing, as illustrated in Figure 5.10.

This information is extracted by subtracting the intersection of desired ingredients and recipe

ingredients from the desired ingredients.

Consider that a user specifies a parent or child ingredient as desired, while the recipe

contains its belonging child or parent. The system will never substitute a child with its parent

or a parent with its child, but their similarity is always 1. Consequently, the system aims to

expose the generalization or specification for the given ingredient to the user, as displayed

in Figure 5.10. Note that the recipe is not adapted. In the example, the desired ingredient

red onion is generalized to the recipe ingredient onion, while the desired ingredient fish

is specialized to the recipe ingredient smoked salon. The necessary ingredient information

to display these relationships is transmitted along with the case details from the API. As

with explaining the ingredient adaptations described earlier, this is done to clarify for the

user that the ingredient in question is considered equal to its child or parent in the recipe.

Displaying this relationship can increase the user’s trust and confidence in the system (Ye

and Johnson 1995; Herlocker, Konstan, and Riedl 2000).
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Figure 5.11: Adding a case to the case base

In the UI, the user gets the opportunity to add modified recipes to the case base. Figure

5.11 shows the link in which the user has to click to do this, as well as the modal that the

user is prompted with if this takes place. If the user decides to add the case, the modal

will confirm whether the process was successful, and the yes button will be deactivated to

prevent adding duplicate cases to the case base.
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Chapter 6: Evaluation and results

This chapter describes the process of evaluating the implemented system. The nature of the

system demanded a varied evaluation approach. The assessment was not only concerned

with improved behavior. It was also interesting to evaluate aspects such as usability and

that users understand the recipe representation and layout. Among other things, it was

desired to validate that the system is something that users find necessary and helpful in an

everyday setting such as cooking, to further validate that cooking is indeed a proper domain

to showcase CBR.

Five approaches for evaluation was used. Section 6.1 aims to show that the similarity

score of a recipe increases when the recipe is adapted. Further, Section 6.2 seeks to evaluate

the calculated similarity scores and hence the order of the presented recipes. Section 6.3

evaluates if the user can tell the difference between human and computer modified recipes.

Lastly, Section 6.4 describes the process of usability testing.

6.1 Similarity score increase with adaptation

This section describes the process of evaluating whether the similarity score for recipe recom-

mendations increases with the implemented adaptation process. Having a higher similarity

score means that the recipe appears more useful for the given query. The end user will more

often feel satisfied with the proposed recipes, as they in a higher percentage of the cases will

contain more of the desired ingredients.

The process was done in three steps: 1) doing a set of queries with the adaptation

process turned off and note the similarity scores achieved for the top five results, 2) doing

the same set of queries with the adaptation process turned on, and 3) compare the similarity

scores.
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Query Desired ingredients Undesired ingredients

Q1 tuna -

Q2 pain de mie, beans, avocado hummus, mint, radish

Q3 baguette, pork, barbeque sauce parma ham

Q4 egg, cheese, pepper, tomato, lettuce parsley, chive

Q5 roast beef, cheese, pickled cucumber, tomato -

Q6 avocado, bacon, mozzarella, pesto, tomato -

Q7 tuna, onion, chick pea -

Q8 peanut butter, banana, bacon -

Q9 mozzarella, tomato -

Q10 pita bread, lamb egg

Table 6.1: Queries used for measuring similarity scores

In Table 6.1 the ten queries used to conduct this evaluation process is displayed. Note

that the punishing of adapted cases described in Subsection 4.8 was turned off during the

process. This choice was made to measure the exact similarity score each case receives

without taking tastefulness into consideration.

Results

Figure 6.1: Average similarity score for the top five suggested cases with and without the

adaptation process turned on

Figure 6.1 shows the results from the evaluation process. The yellow bars show the average

similarity score for the top five suggested recipes with no adaptation, while the green bars

show the average increase in similarity score for the top five suggested recipes when the

adaptation process was turned on.

64



As indicated by the figure, the average similarity score for the top five recipes per query

increased at all occurrences. The overall average amount of increased score for the top five

recommended recipes was 0.32. Collected raw data from the process can be seen in Appendix

Table A.1.

6.2 Ranking of recipes

To evaluate the system performance of ordering and calculating each recipe’s similarity score,

tasks were constructed where test subjects were to order recipes based on given queries. The

goal was to evaluate whether the system proposes the same recipes, in the same order, as a

human would assume.

Task Desired ingredients Undesired ingredients

1 bread, fish, mayonnaise, avocado egg

2 pita bread, chicken, tomato

3 egg, oyster, dill sausage

Table 6.2: Tasks for ranking of recipes

The three queries created can be seen in Table 6.2. For this evaluation approach, a test

panel that had extended knowledge about food and ingredients was preferred. This choice

was made because of the nature of the test; For a person to be able to estimate the similarity

score of a recipe given a query, they would have to know a little about different foods.

The test subjects were given some information about the system. They were told that

the system aims to match the user’s desires by calculating the similarity between the user’s

desires and the ingredients in each recipe.

An evaluation system to measure the similarity between the test subject and system

solution was created. The ranking system was created so that the score represents the

discrepancy between the system’s and the user’s ranking for each recipe, ranging from 0

(same ranking from 1 to 5) to 25 (no recipes in common within the top 5). The evaluation

system is displayed in Appendix Table A.2.

Results

The ranking of recipes process was conducted with seven randomly chosen test subjects.

Giving the necessary information and conducting all three tasks took in average sixteen

minutes per test subject.
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Task No of recipes in common per test subject Average

1 4 2 4 3 3 1 4 3.00

2 4 4 4 4 4 4 4 4.00

3 4 5 3 3 3 5 3 3.71

Average 4.00 3.67 3.67 3.33 3.33 3.33 3.67 3.57

Table 6.3: Number of recipes in common for the system and test subjects for the top five

query results.

Two metrics was calculated to represent the results from this process. Firstly, the

number recipes in common for the top five results in the system versus the user was extracted.

These metrics are represented by Table 6.3. The average number of common recipes per

user can be seen in the bottom row, while the average of common recipes per query is shown

in the rightmost column. As seen, the test subjects and the system had on average 3.57

recipes in common for the top 5 results.

Secondly, the offset between the system’s and the test subject’s recipe order was calcu-

lated using the evaluation system previously described. The system’s proposal for ranking

of the recipes for each query can be seen in the Appendix Table A.3. Appendix Table A.4

represent the raw data for the test subject’s rankings, as well as the calculated discrepancy

to the system’s ranking. The calculated metrics show that the overall average offset score

was 5.52 out of 25, with results ranging from 2.33 to 7.67 per user, and 2.57 to 7.57 per task.

Figure 6.2: Box plot of ranking of recipes result. The boxes represent the inter-quartile

range, the top line represent the upper quartile of the results, and the bottom line represent

the lower quartile of the results.

Figure 6.2 illustrates the offset calculations from the three ranking tasks visually. The

band inside the boxes represent the median offset per task, while the boxes themselves

represent the inter-quartile range. That is, the middle 50% of the scores. Further, 75% of
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the scores fall below any top line (i.e. the upper quartile), while 25% of scores fall above

any bottom line (i.e. the lower quartile). The plot also reveals one outlier result for task 1,

where one test subject had an offset of 16 compared to the system’s recipe ranking.

6.3 Quality of modified recipes

In principle, it is easy to modify recipes to match the user query. However, it is also of

importance that the computer modified recipes are considered tasty and meaningful by

humans. Taste is individual and hence hard to evaluate, but in this phase of evaluation, the

goal was to assess if a human can detect whether a recipe is created/adapted by a computer.

Inspired by the Turing Test introduced in Chapter 1, a quiz was set up to conduct this

evaluation.

Figure 6.3: Screenshot from the quiz ”Bot or not?”

A screenshot from the quiz can be seen in 6.3. As seen, the user is prompted with one

recipe at a time and is to choose whether s/he think the recipe is created by a human or

a computer. Using this method to gather evaluation data allowed for a wider distribution

and faster response to the tasks. In general, the threshold for participating in an organized

evaluation process is higher than doing an online quiz (Hohwü et al. 2013). Also, it is cost

effective, scales well, and preserves user anonymity. To further lower the threshold, the quiz

was created in such a way that the users could choose how many recipes they wanted to go

through themselves.

To provide recipes for the quiz, a separate case base was initialized. All twenty-one orig-

inal recipes were added to this case base, along with twenty-one adapted recipes. Appendix

Table A.5 shows the queries made to conclude which recipes to add, along with the titles
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for all added cases. The queries were made (and cases added) in the presented order, which

led to adding recipes adapted for multiple generations. In the quiz, recipes are displayed to

the user in random order.

The quiz itself was distributed through Facebook, Twitter, and other social media. It

did not keep track on the number of users going through the quiz; it simply kept track of

the number of correct and incorrect guesses per recipe.

Results

The quiz was kept running for seven days (168 hours) and gathered in total 3414 responses

distributed over the 42 recipes. The raw results can be seen in Appendix Table A.6. The

number of guesses per recipe varied from 64 to 93. The reason for this span is that the list

of recipes to be presented was shuffled and displayed randomly to the user. The average of

responses per recipe was 81.

Figure 6.4: Confusion matrix for quiz responses

Figure 6.4 shows the distribution of responses. To clarify, the value true refers to an

adapted recipe. In total, the test subjects achieved an accuracy of 48.33%, which represent

the number of correct guesses. In 53.43% of the cases, users guessed that a human created

the computer created recipes. Besides, the original recipes were in 49.91% of the cases

recognized as adapted. Together, these numbers indicate that the users struggled with

separating computer and human created recipes from one another.

There is, of course, a possibility that the people that answered the quiz focused more on

classifying a recipe as human created or computer created rather than food quality. However,

with the assumption that people expect computer created recipes to be strangely composed

the results are interpreted as valid.
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6.4 Usability testing with questionnaire

To evaluate the usability of IntelliMeal as well as the general attitude towards and opinion

of the system, a usability test with an accompanying questionnaire was organized.

The test was constructed with no prerequisite concerning age, cooking skills or cooking

habits, as the system can be beneficial for all age groups and is targeted to neither novice

chefs or amateurs. The test subjects were given no information about the system before the

test, other than that it is a website for searching recipes.

A reply form concerning cooking skills and habits as well as general thoughts on already

existing websites for recipes was created. This form was filled out before the usability testing

and can be found in Appendix Figure A.2.

To perform the test and collect data, the participants needed tasks to solve. Three tasks

were produced, and the tasks can be found in Appendix Figure A.1. All three tasks involved

querying for different recipes. Task one was conducted with no adaptation. The goal was to

evaluate whether users find the result more pleasing with or without the adaptation. Task

three also involved adding a case to the case base.

Two people in addition to the test subject were present during the test; one to take

notes and observe the subject’s reactions and behavior, and one to read all tasks out loud

and to take care of organizational tasks related to the process. During the task solving, test

subjects were encouraged to speak their mind out loud, which makes it easier for observers to

understand how they engage the task. The users were not provided any help or hints if they

could not understand any functionality. However, since IntelliMeal is fully English while

all test subjects were Norwegian, ingredients and metadata were translated when necessary.

All environmental decisions were made based upon common usability testing guides (Dumas

and Redish 1999).

After completion of the usability testing tasks, the test subjects was immediately asked

to give written feedback. Two forms were set up to collect feedback. First is a System

Usability Scale (SUS) form (Brooke 1996). SUS is a well known and thoroughly tested us-

ability scale. The form used can be seen in Appendix Figure A.3. It involves ten question

items, giving a global view of subjective assessments of usability. Besides, six post usability

testing questions targeting online recipe recommender systems were prepared. These ques-

tions can be found in Appendix Figure A.4. The goal with these questions was mapping

whether the user found such a system to be useful, whether the system could improve a

person’s knowledge about recipe composition, and whether such a system seems preferable

over a system that does not have any knowledge about ingredient similarity (and hence do

not adapt recipes).

Using questionnaires to gather information about the user’s opinions allowed for eas-

ily comparing of results, because of the quantitative nature of some of the data produced.

To produce measurable and comparable results, all questions in the three forms were for-

mulated as statements with a five-stage scale with the end labels ”strongly disagree” and
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”strongly agree.” For simplicity and to avoid misapprehension, all tasks and questionnaires

were translated into Norwegian.

Between each candidate, the case base was reset not to contain any adapted cases. The

counter-argument to this is that the system under evaluation is indeed an evolving system.

However, to be able to compare the user’s answers and collect quantitative data, the user’s

search results had to be equal.

Test subjects

Figure 6.5: Distribution of test subjects’ age

The evaluation included ten volunteer test subjects, all non-familiar with the system. All

test subjects were students. The age span of test subjects is illustrated in Figure 6.5. Ages

ranged from 21 years to 31 years, with an average of 25. Four of the test subjects were

women, while six were men.

In total with information, conducting tasks and filling out reply forms, the usability

testing lasted for an average of twelve minutes per user.

Results

In general, the test subjects understood the tasks and had few problems understanding what

to do and how to do it. All test subjects were able to complete all three tasks except one,

which did not understand how to add the new recipe to the database.
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Figure 6.6: Issues detected during usability testing

One problem was repeating. Six out of ten people used a disquieting amount of time

finding the add to database, illustrated as issue 1 in Figure 6.6. The test subjects were

looking for a button, save symbol or heart next to the recipe. Out of these six, three people

also commented a confusion on whether the case was added to their private page or the

database of the system.

Other than this, one test subject could not understand why Tortilla chips was added

during the execution of task 2. Five people understood by themselves that the new ingredient

suits the other ingredients in the recipe, while the four remaining test subjects read the

explanation by hovering the question mark next to the ingredient. One test subject suggested

enlarging the question mark symbol, as they found it quite small and hard to spot. The

problem is is illustrated as issue 2 in Figure 6.6.

As for positive feedback, six test subjects actively stated that the ingredient substitu-

tions and additions made clear sense. For example, substituting Pain de mie with Tortilla

seemed completely feasible. All test subjects easily identified which ingredients the adapta-

tion embraced and whether it was added, removed, or substituted with another.

Appendix Table A.8 represent the SUS responses and results. The average SUS score

from the usability testing is calculated to be 93.25. Research states that any SUS score

above 68 is considered above average, while a score above 90 can be graded A (Bangor,

Kortum, and Miller 2009).

Appendix Table A.7 shows the raw results from the pre usability testing reply form,

while results from the reply form for post usability testing can be found in Appendix Table

A.9. Finding patterns in the test subjects replies was challenging, as the usability testing only
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involved ten people. However, a few was uncovered. When asking the test subjects whether

they feel the state-of-art recipe search engines can help improve their cooking abilities, the

average response was 3.38 out of 5. When asked if they think a system such as IntelliMeal

could do the same, the response averaged at 4.15 out of 5. Also, with an average of 4.40 out

of 5, the test subjects stated that they would prefer using an adapting recipe search engine

over a non-adapting recipe search engine.

As the primary focus of this project is CC and CBR, only one iteration of usability

testing with a set of ten people was conducted. Although ten test subjects are the advised

amount per iteration, the system could presumably benefit from numerous iterations of

usability testing to reveal possible drawbacks of the UI.
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Chapter 7: Discussion

The goal of this chapter is to target the research questions elicited in Section 1.2 by discussing

our results and provide a summary of our findings. Section 7.1 discusses previous research

within CBR and recipe recommendation, including their advantages and drawbacks. Section

7.2 consider CBR as an approach for recipe recommender systems, and how CBR can provide

us with opportunities to being creative. Further, Section 7.3 considers the approaches that

have been implemented to make the system creative, and Section 7.4 follows up with how

the implemented functionality affect the system output. Section 7.5 presents the results

from the usability testing and discusses the general impression of the system from a user’s

perspective.

7.1 State of the art research

This section considers the following research questions

RQ1: What are features previously showcased in recipe recommender systems?

RQ2: What are approaches typically used in recipe recommender systems?

In Chapter 3, we targeted previous approaches to recipe recommender systems. The chapter

discusses two types of applications: research systems which aim to adapt recipes, and four

commercial systems using various approaches to recommend recipes to users.

During research on related work, we discovered that CBR is a rarely used method for

commercial recipe recommender systems (as a disclaimer we want to specify that there may

exist commercial applications utilizing CBR without having published a research paper or

stating this on their website). The commercial systems base their recommendations on a

particular user query or tailor them to a specific user given their personalized profile or

previous feedback on the proposals presented to them. Further, the systems provide various

features. AllRecipes is a community for recipe sharing across the world. The website

provides functionality for searching both desired and undesired ingredients, in addition to

regular text search. Yummly lets the user search by generalized categories like gluten allergy,

vegetarian dishes, and so forth, with the goal to learn what each particular user tends to

enjoy. Chef Watson is the most advanced of the commercial systems. The system does not
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suggest already existing recipes, but creates them based on knowledge on co-occurrences of

ingredients.

The CCC competitors described in Section 3.1, on the other hand, have all utilized

CBR within their systems. Besides, all systems have incorporated some cooking ontol-

ogy. The four systems all have a taxonomy of ingredients in hierarchical form. CookIIS is

the only system that allows for specific similarity measures between ingredients. Taaable,

CookingCAKE, and JaDaWeb calculate the similarity simply by measuring the nearness of

ingredients in the hierarchy. Beyond this, three of the competitors have chosen different

focus areas for the CCC open challenge. JaDaWeb focuses on natural language processing

for the user’s query, while Taaable and CookingCAKE target preparation step adaptation.

7.2 CBR and its opportunities for creativity

This section considers the following research questions

RQ3: Is CBR a suitable approach for developing a recipe recommender system?

RQ4: How can CBR provide opportunities to being creative?

In Chapter 2, CBR was introduced and compared to other recommender system approaches.

Cooking was found to be a safe domain to practice AI and CBR. Also, CBR does not

require an in-depth knowledge of the field, like other recommender systems. While other

recommender systems need accurate and detailed decision rules in advance, CBR can take

advantage of already existing recipes and examine these when solving new problems. CBR

is also time efficient as it reuses prior solutions, and hence, avoids repetition of earlier effort.

As explained in Subsection 2.2.1, CBR does not set many restrictions. The CBR cycle

is a methodology on how to solve a new problem. The definition of similarities is domain-

dependent, and the reuse step has no determined plan on how the customization should

happen. Accordingly, CBR may be used to replicate old knowledge, but it can also be used

to provide creative solutions by finding new ways of employing the available knowledge.

Hence, CBR is an excellent basis for enhancing creativity.

7.3 Implemented adaptation process

This section considers the following research question

RQ5: If there exist opportunities, how can creativity be incorporated?

Creativity can be incorporated in a CBR system in multiple ways because CBR is

such a general methodology. Typically, learning systems are either data driven or focus

on preliminary knowledge engineering. A system called Q-chef combines CBR and deep

learning to generate surprising recipe designs (Grace et al. 2016). The system acquires
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knowledge by generalizing ingredient compositions, and further use these concepts to adapt

recipes. Another example is CookIIS which aims for a community driven approach. The

system expands its knowledge base by mining cooking communities and generalizes the

acquired knowledge into rules.

IntelliMeal, on the other hand, is a knowledge engineering heavy system. Twenty-one

recipes form the basis for the system, as well as knowledge about relationships within a

limited set of ingredients. The latter involves taxonomies of ingredients modeled in myCBR

and manually written rules.

The system learns by adding new cases to its case base. The expansion increases

possibilities to match the query, but the system does not exploit the ingredient compositions

within recipes further for adaptation. Taxonomies and rules are the model components

used for adaptation. However, none of these are modified or expanded without manual

intervention. Therefore, it is a necessity that this underlying data form a good starting

point. As stated in Subsection 2.3.4, it is challenging to improve system performance if the

system is initially poorly designed. The taxonomies need to be logical, clean and structured

and all model components must agree on values to be able to work together. Taking basis

in a clear starting point, we have further focused on finding creative ways to exploit the

limited available knowledge.

The taxonomies in the myCBR model are taken advantage of by being employed in

multiple parts of our system. While preparing for adaptation, they are used to generate rules

and to expand the undesired query by fetching the children nodes of undesired ingredients.

In the reuse step, they are used for general checks, making the UI self-explanatory, and in

similarity substitutions. After that, they are used to filtrate undesired cases.

During research on related work in Section 3.1, four earlier CCC systems were presented.

All four systems involve a hierarchical taxonomy. Some systems generate substitution rules

from their taxonomy or cooking communities, while JaDaWeb has a table of ingredients that

can substitute each other across categories. However, none explicitly define removal, addition

or suitable rules like implemented in IntelliMeal. The rules and the similarity substitutions

complement each other’s weaknesses. Together, the components result in comprehensive

adaptation of recipes.

The implemented rule engine is innovative for three reasons. First, the system employs

a set of rules in its adaptation process: Addition rules, deletion rules, substitution rules,

suitable rules and title rules. These are all created using two different formats, making

the rules easy to understand. All rule types have their purpose, advancing the adaptation

process.

Second, the rules employed in IntelliMeal have the ability to serve both specific and

general purposes. Incorporating taxonomies into the rule engine has enabled this. The rule

engine recognizes children of all ingredients involved in a rule, and if desired, considered at

the same rate as the given ingredient. The opportunity to decide for how many ingredients

a rule should apply makes our rules flexible. Besides, the rule engine is easier and much less

time-consuming to create.
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Third, rules may be specified for ingredients across attributes. The result is more radical

modifications of recipes, where the general style of a recipe may change completely.

To further fulfill the change of style, an additional round of adaptation called suitable

adaptation is employed. Before this adaptation, modifications ar made purely based on the

user query. The suitable adaptation considers these amendments to discover opportunities

for improving the solution as a whole by customizing it even further towards the initiated

style.

In the adaptation process, the system makes some random choices. The choices with

the most considerable impact are when finding several substitution offers and when finding

several suitable ingredients. In these cases, the system chooses a random among them.

Consequently, equal user queries might end up with different resulting recipes.

Another creative solution in IntelliMeal is the retrieval method. The retrieval method

was implemented when discovering that retrieval in myCBR resulted in undesired behavior

when used for the purpose of our system. In myCBR, undefined attributes in the user query

had an adverse influence on the total similarity score of a case. Consequently, the result-

ing order of recommendations was not as expected. The new functionality of our retrieval

method is to calculate the total similarity score of a case only based on the attributes defined

in the user query. Implementing this method solved all problems that we discovered regard-

ing similarity scores. The retrieval method is utilized for multiple purposes. In addition to

being employed in two different retrieval processes, it is used to punish adapted instances

based on how radical modifications were done to the instance.

7.4 System behaviour

This section considers the following research question

RQ6: How do the creative adjustments affect the system output?

IntelliMeal consists of many different features. Several evaluation methods were there-

fore assessed to conduct the evaluation. With the evaluation as a whole, we aimed to

evaluate both the outcome of the adaptation process and the calculated similarity. The

following questions were used as basis when assessing these aspects

1. Can a human distinguish between an original recipe and a computer adapted recipe?

2. Does adaptation of recipes increase the average similarity score for the search results?

3. Does the ranking of recipes (as a product of similarity calculations) make sense to a

human?

For the first question, results showed that people guessed that a human had created the

computer adapted recipes in 53.43% of the cases. Also, people recognized the original cases

as created by a human in 49.91% of the cases. This result reveals that most users are not

able to distinguish the recipes from one another.
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As for the second question, the evaluation results showed that the average similarity

score increase for all the test queries. On average, the mean similarity score for the top five

recipes suggested per query increased with 0.32.

For the third measurement, we compared the top five results from the user and the

system. On average, the result of this process showed that the offset in ranking between the

test subject’s and the system was 5.52 out of 25. Also, the test subject’s and the system

shared 3.57 out of 5 recipes as their top 5.

Of course, collecting evaluation data may produce some faulty results. For example,

during the ranking of recipes process described in Section 6.2, the test subjects resembled

somehow uncomfortable and declared that they felt that they used much time to solve the

task. Consequently, they sometimes rushed to give us their result. In retrospect, since the

evaluation process still produced good results, we chose not to see the rankings as slipshod

work, and hence, interpret the results as valid.

The system consists of several components working together. Hence, pointing out the

specific parts that affect the system output is challenging. However, using such a small set

of recipes as our starting point, the choice to implement a knowledge engineering approach

is seen as vital to producing good results. The modeling of taxonomies is an essential aspect

of the system. The taxonomies include a total of 1228 ingredients divided into 12 categories.

For the system to be able to find a substitution for a recipe ingredient, it is crucial that the

ingredient is present in the model and that ingredients are spelled equally across components.

Consequently, the model and the cases were in need of thorough preliminary work. The

adding of any missing ingredients and cross-reference checking of ingredient spelling have

ensured that all ingredients are considered when doing retrieval and adaptation.

Further, the implemented rule engine opens for a more creative adaptation process

by, among more, being able to substitute ingredients across categories. Cross-category

substitutions increase the possibilities to adapt towards a user query, and hence, satisfy the

user.

In the system, thresholds define how similar ingredients must be to consider them

substitutes. The thresholds ensure that the system does not go crazy then adapting, which

can lead to weird compositions and non-tasty recipes. This aspect is proven by users not

being able to distinguish human and computer created recipes.

With the evaluation set aside, some drawbacks have been discovered by us as researchers

during implementation. The following subsections will discuss these.
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7.4.1 Drawbacks

Rules that result in poor substitutions

An observed effect with the system output is that some of the substitutions made based

on rules are a bit too radical. In retrospective, we think there are two reasons for this.

First, the currently included rules were written manually. The quality of these can not be

guaranteed, as they were not revised by a domain expert. As explained in Subsection 4.6.1,

the rule engine allows for creating general rules. We were probably not cautious enough

when writing some of the rules, not considering possible cases where the rule could fire and

result in an unfortunate substitution.

Secondly, in some cases, rules are written too generally because of limited functionality

in the rule engine. The main drawback in the engine is the requirements for a rule to fire.

These requirements refer to ingredients that are required to be in the recipe for the rule to

fire. However, there is no functionality to set requirements on what ingredients must not be

in the recipe for the rule to fire. This limits how specific a rule can be.

Orders in the adaptation process

IntelliMeal considers ingredients from the user query one by one and attempts adapting

recipes to match these. The order of these ingredients is not known because it depends on

the user query. Also, the order is not manipulated by the system in any way. Consequently,

we have no control of in which order the substitution methods consider the ingredients.

The first successful substitution method considered for an ingredient is chosen. Hence,

if there exist several solutions, the order of substitution methods decides which one should

come into effect. In contrast to the ingredient order, the order of substitution methods is

predefined, and the system is adjusted to it. Hence, the adaptation process should make sure

that the optimal substitution is found for one isolated ingredient. However, the problem

arises when one substitution destroys substitution opportunities for following ingredients

that have not yet been considered. Accordingly, even if the system finds the optimal sub-

stitution for ingredients one by one, it does not necessarily find the optimal substitutions

overall. In other words, it does not necessarily adapt an original case in the best possible

way.

To recognize the importance of the ingredients order, consider an example where the

user wants both cucumber and avocado. The recipe considered for the adaptation process

contains tomato and mayonnaise, among other ingredients. Lets say that according to the

substitution rules, avocado can be substituted in favor for mayonnaise and according to

similarity substitutions, it can be substituted with tomato. In the meantime, cucumber

can only be substituted with tomato. Further, lets say avocado is considered first and for

substitution methods, the similarity substitutions are considered first. Then, avocado will

be substituted with tomato. This will ruin the substitution possibilities for cucumber.
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As this example shows, both the choice of substitution method and the order of the

ingredients considered causing the unfortunate adaptation. If cucumber was considered

first, the system could have safely substituted both desired ingredients into the recipe.

Considering the substitution rule method before the similarity substitution would also result

in this desired behavior.

Revise and retain

When conducting usability testing, one issue was re-occurring: adding new cases to the case

base. In retrospect, we realize that hiding this functionality as a textual link which again

is a part of a longer sentence is not very user-friendly. The test subjects repeatedly stated

that they were looking for some button, star or heart symbol, or traditional save icon.

The usability testing also revealed that the phrasing ”add it to our database” appeared

too technical and confusing for some test subjects. The discovered issue may not seem

crucial, but having users not understand why or how to add new and tasty recipes can have

significant consequences over time. CBR is the fundamental of IntelliMeal, and not evolving

the system by adding new cases over time means having a system that does not utilize the

revise and retain step of the CBR cycle.

7.5 Demonstrating the system

This section considers the following research question

RQ7: How can the system be demonstrated in a suitable manner to a broad range of people?

As mentioned in Section 2.1, we want to use the CCC as a tool to showcase our CBR

system. The implemented system and a technical paper was submitted to the CCC board.

The conference and competition itself is held at the end of June, 2017.

When discussing research on related work in Section 3.3, we stated that the more

successful commercial recommender systems had put great effort into usability while earlier

CCC participants have only used UIs for practical reasons, like not having to specify desired

ingredients in a terminal. Because of this, we have focused on creating a user-friendly and

self-explanatory UI with the ambition to stand out in the CCC and appeal to the biggest

target group possible.

In general, results from the usability testing presented in Subsection 6.4 is satisfying,

with the SUS result having an average of 93.25 out of 100. Test subjects easily understood

all functionality and representation of data. As anticipated, the actions taken to provide

explanations for the computer’s train of thought helped with understanding and acceptance

of the adaptations.
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As a side comment: On March 8th, the Telenor-NTNU AI-Lab1 was opened at the

Norwegian University of Science and Technology (NTNU). The Norwegian Minister of Trade

and Industry Monica Mæland, Norwegian Minister of Culture Linda Hofstad Helleland, CEO

Sigve Brekke (Telenor), Rector Gunnar Bovim (NTNU), and CEO Alexandra Bech Gjørv

(SINTEF) were among the people attending the opening ceremony. The press covered the

event, among others Teknisk Ukeblad, Aftenposten and NRK. The IntelliMeal system was

selected as one of four student projects to be presented at the opening. We were interviewed

about our project on national television and were mentioned in some articles on the web2.

Telenor also created a video, where we and a couple of other students at NTNU talked

about our theses and AI in general. The video was shared on Telenor’s Facebook page and

at Twitter by Sigve Brekke3. Afterward, we were asked to write a blog post about out

thesis. This was displayed on the web page of ntnu techzone4.

May, 19th another event took place at the lab. This time, the main guest was Minister

of Local Government and Modernisation, Jan Tore Sanner5. Again, we got the opportunity

to present our project and have a discussion with Sanner himself.

In general, people see the value in the system. When presenting our thesis to none-

technical people, the focus has been on everyday problems that our system can help solve.

Mainly, this involves avoiding wasting food and making it easier to take allergies, diets and

other restrictions on foods into consideration. People were also interested in the system as

a tool to get rid of unnecessary food in their fridge, both for environmental and economical

reasons.

1www.ntnu.edu/ailab
2www.nrk.no/opna-lab-for-kunstig-intelligens-pa-ntnu
3www.twitter.com/sigve telenor
4www.ntnutechzone.no/onsker-du-a-utnytte-maten-du-allerede-har-i-kjoleskapet
5www.regjeringen.no/statsrad-sanner-vitjar-trondheim
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Chapter 8: Conclusion

Section 8.1 presents the conclusions drawn from the results presented in Chapter 6 and

discussed in Chapter 7. Throughout the implementation and evaluation phase, ideas on

possible improvements that could lead to better resolves have emerged, and these will be

presented in Section 8.2.

8.1 Conclusion

As a result of our research, we found that CBR is indeed a proper approach for implementing

a recipe recommender system due to the low rate of required expert domain knowledge and

that the reuse part of the cycle provides adequate freedom to be inventive when adapting

the recipes.

To further exam the effects Case-Based Reasoning and Computational Creativity can

have in recipe recommender systems, we developed a knowledge engineering heavy system

that utilizes the cooking domain by retrieving, comparing, adapting and suggesting recipes

given a particular query. Modeling logical, clean and structured knowledge models was a

focal point for the project. To improve the state of art recipe recommender systems, we

incorporated the CBR cycle, developed a complex rule engine, and implemented a user-

friendly and self-explanatory UI.

The system is creative in the way domain knowledge is exploited. The taxonomy knowl-

edge is used to calculate similarities and to expand the rules. This contributed to overall

satisfying results with the limited case base. As for system vulnerabilities, we learned that

having a given order for adaptation is a significant drawback which can cause the system

to miss out on potential adaptation branches. However, the measurable outcome of this

project presented in Chapter 6 is exceedingly satisfying. Adaptation of cases increased sim-

ilarity scores for a given user query in all test cases, and humans had difficulties distinguish

computer and human created recipes from one another. Also, usability testing achieved a

SUS score with an average of 93.25 out of 100.

The system was implemented as a prototype which apparently works excellent with a

limited set of sandwich recipes. The incorporated adaptation and title rules were manually
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written to target sandwich ingredients specifically. Achieving satisfying results with an

extended case base including several types of dishes can not be guaranteed.

The system idea itself has a very clear utility value. It is a web application where

users can search for recipes for given ingredients. Also, the system can assure people with

allergies, intolerances and other preferences that any undesired ingredients are not present

in the suggested recipes.

8.2 Future work

8.2.1 Data modeling

One possible weakness of the system is the knowledge model. Non-experts created the

hierarchy, categorizations, and similarity measures within the taxonomy. Consequently, the

hierarchy may have incoherently placed ingredients or ingredients are not necessarily seen

as similar by the system even though they can perfectly substitute each other in reality.

Having well-organized hierarchies are crucial for several parts of the system to behave

properly. For example, when excluding ingredients the children of the undesired ingredients

are also considered undesired. This extension means that defining meat as undesired will

exclude both chicken and ham. However, if for example parma ham is not located in its

proper spot, below meat, the exclusion process will not consider the misplaced ingredient

as undesired. For future work, the idea is to have a domain expert revise the hierarchy and

local similarity measures.

Also, the rules included are manually written by non-experts. Future work would benefit

from automating this process. For future work, the idea is to do a similar data collection as

the AllRecipes research team described in Subsection 3.2.1. Crawling comments on recipe

websites or forums can gather valuable data, and for this, domain expertise is not necessary.

8.2.2 System improvements

Consider several instances per original case

As explained in Section 7.4, the order of ingredients and substitution methods considered

are a risk in the system. Even if the system finds the optimal substitution for ingredients

one by one, it does not necessarily find the optimal substitutions overall. With other words,

cases are not necessarily adapted in the best possible way.
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Figure 8.1: Possible substitutions for the desired ingredients cucumber and avocado consid-

ering a given recipe instance

Consider the example in Figure 8.1. In the example, the desired ingredients are cu-

cumber and avocado. All substitution methods suggest different substitution offers for the

desired ingredient cucumber. For the desired ingredient avocado, there is only one substitu-

tion alternative. Whether both substitutions can be carried out, depends on the order in

which the desired ingredients are considered.

Figure 8.2: The example in Figure 8.1 results in 6 recipe alternatives when considering both

possible orders and their possible substitution choices given the order
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Figure 8.2 illustrates alternative recipes resulting from considering various orders. The

order cucumber, avocado is considered at the top. Having three possible substitutions for

cucumber and one possible substitution for avocado, results in 3 ∗ 1 = 3 alternative recipes

for this order. The same applies to the second order, avocado, cucumber, illustrated at the

bottom of the figure. Considering every order possibility and the order of substitution meth-

ods results in six recipe alternatives. As the system was implemented, only one alternative

is created. It can not be guaranteed that the proposed alternative is always the best choice.

Considering all orders open for the opportunity to find the most satisfying recipe result.

Creating several instances per original case is an idea worth exploring for the random

choices made in the system as well. Instead of choosing randomly among several valid alter-

natives, an idea is to create one new instance per alternative. This would be an interesting

approach, especially for when several suitable ingredients are found. That means the style

of a recipe evolves in several directions. Implementing this can result in increased variation

among the recipe recommendations.

However, this brute force method is expensive. Considering n ingredients in the user

query results in n! different orders to consider. In worst case scenario, all n ingredients

have three substitution alternatives. This means there are 3 ∗ 3 = 9 different substitution

method orders to consider. Consequently, there are 9 ∗ n! recipes to consider per original

case. When retrieving 20 of the best matching cases for adaptation, a user query containing

five ingredients would result in 20 ∗ 9 ∗ 5! = 21600 recipes to consider. With such a heavy

adaptation process, an idea is to decrease the number of retrieved cases. Then again, less

retrieved cases increase the chances of leaving good cases behind.

If the ephemeral case base retrieval includes every alternative, a significant risk is that

some of the recommended recipes look extremely similar. This would probably be very con-

fusing to the user. One idea is to advance the filtering process when creating the ephemeral

case base. The system already discards duplicates. Hence, the system discards alternative

four and six in this example. For further work with the idea presented, the easiest and safest

filtration to do would be to discard alternatives that contain fewer desired ingredients.

Figure 8.3: Filtering of alternative recipes
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Figure 8.3 shows an example of the different resulting alternative substitutions. In the

example, option two and option four are not as good because they only include one of the

desired ingredients. Further, alternative five and six produced the same result as alternative

one and three. For final filtration, one of the two remaining alternatives can be chosen. If

the idea presented in this section is implemented in the future, searching for an optimal

filtration method will be a crucial part of the work.

Advance the rule engine

The implemented rule engine is flexible in the way that one single rule can apply to one, ten

or even hundreds of ingredients. The rule engine employs two specific rule types which are

used in various contexts. For both types, requirements for the rule to fire can be specified.

However, the requirements in rules only refer to ingredients that are in the recipe. It is not

possible to require that an ingredient is not in the recipe for a rule to fire. The idea is to

differ between these two types of requirements. To set the record, this functionality is called

+ - functionality. Further, two main advantages are presented.

-meat; fish

First, this functionality prevents the system from adding ingredients to a recipe where

it will be a mismatch with other ingredients. Above is an example of an addition rule, saying

”if meat is not in the recipe, fish may be added.”

-meat, -fish, +mozzarella, +tomato; mozzarella tomato sandwich

Second, the functionality enables the creation of much more accurate rules, which Sec-

tion 7.4 discussed as a drawback. Consider a rule saying ”if mozzarella and tomato are

on the recipe, the title tomato mozzarella sandwich can be generated.” Whenever a recipe

contains both mozzarella and tomato, this title will be generated. The problem is that other

possible important ingredients in the recipe are ignored, for example, fish and meat, which

are typically considered main ingredients. The rule illustrated above is an example of a rule

which could prevent this behavior. In the example, the rule says ”if meat or fish is not

in the recipe, but mozzarella and tomato are, the title mozzarella tomato sandwich can be

generated.”

Scoring system for revision of cases

As mentioned in Section 7.5, the test subjects in the usability testing described in Section

6.4 had troubles finding the ”add to database” link when asked to add one of the suggested

cases to the database. Besides, some test subjects expressed confusion on who’s database

the case was being added. This section proposes a solution to the presented problem.

When revisiting recipe websites and recommender systems, a clear pattern reveals itself

when it comes to the revision of suggestions. For application with personalized user profiles,

recipes typically have a heart or traditional save symbol beside them which lets the user
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save the recipe to a personal favorites list. Another commonly used approach is a star rating

system. During general feedback on IntelliMeal, some test subjects mentioned that they

were looking for something like this. Across the web, the approach is familiar and widely

used.

The idea to improve the revise and retain part of the CBR cycle incorporated in In-

telliMeal is to implement a star rating system. With this, the end user would be given the

opportunity to give all suggested recipes (both adapted and not adapted) a score from one

to five. Then, if an adapted recipe receives a rating higher than for example two stars, it is

automatically added to the case base.

In addition to being more user-friendly, this ensures a safer revise and retain approach

in the long term. With the currently implemented revise and retain approach, one single

user can corrupt the quality of the case base by adding poorly adapted recipes. When

doing further retrievals, these recipes are treated as complete and will be suggested, with or

without adaptations, as normal.

With a rating system, however, several users influence the score of all cases. If poorly

adapted recipes are added to the case base and at a later point suggested for a different

user, this user gets the chance to lower the rating of this recipe by giving it zero or few stars.

If a recipe over time achieves a really bad score, say less than two stars, it can either be

automatically removed from the case base or manually eliminated in a regularly conducted

maintenance routine.

Besides, by rating both adapted and original recipes, the system can point out which

recipes are usually well received by the users. If two recipes receive the same score, it is

probably preferable to display the one with the higher rating first.

Functionality expansion

In addition to the core functionality improvement suggestions, some commercially related

ideas have evolved. The more obvious idea is expanding the query functionality to exclude

groups of food for a set of diets. For example, by having checkboxes for diets like vegetarism,

dairy-free, low-carb, and so forth. Another idea is letting users have private profiles. In the

profile, the user could explicitly define ingredients or groups of them that they do not want

recipes to contain.

Having user profiles would also give the opportunity for more personalized suggestions;

if a user tends always to search for healthy ingredients and upvote healthy dishes, it is

probably inadequate to suggest a dish in the complete opposite direction.

The more extreme idea is to extend the system with hardware. If a user could check

in and out groceries in the fridge and kitchen cabinets, the system could automatically

utilize these ingredients when suggesting a dish. If the system has knowledge of all available

ingredients, it could even propose a complete meal plan for users.
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Appendix A: Evaluation and

results

This appendix contains documents and papers used during the evaluation of IntelliMeal, as

well as the raw results from the evaluation.

A.1 Results from evaluation of similarity scores

Query

Adaptation 1 2 3 4 5 6 7 8 9 10 Avg.

FALSE 0.35 0.81 0.62 0.45 0.53 0.42 0.34 0.36 0.73 0.74 0.56

TRUE 1 1 0.74 0.83 0.68 0.67 0.76 0.78 1 0.91 0.84

Improvement 0.65 0.19 0.12 0.38 0.15 0.25 0.42 0.42 0.27 0.17 0.30

Table A.1: The average score for the top five results with and without adaptation

A.2 Ranking of recipes

System ranking Equal ranking Offset Opposite ranking Offset

1 1 1 - 1 = 0 10 10 - 1 = 9

2 2 2 - 2 = 0 9 9 - 2 = 7

3 3 3 - 3 = 0 8 8 - 3 = 5

4 4 4 - 4 = 0 7 7 - 4 = 3

5 5 5 - 5 = 0 6 6 - 5 = 1

...

10

Sum 0 25

Table A.2: Ranking measure for evaluation of ranking of recipes test. This gives 0 being

the best possible score (no offset between ranked recipes from system to test subject) and

25 the worst possible score.
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A.3 Results from ranking of recipes

Task CaseName System ranking

1

Cookery16 1

Cookery11-1 2, 3, 4

Cookery11 2, 3, 4

Cookery11-2 2, 3, 4

Cookery19 5

Cookery14-1 6, 7, 8

Cookery13 6, 7, 8

Cookery14 6, 7, 8

Cookery4 9, 10

Cookery17 9, 10

2

Cookery2 1

Cookery2-1 2

Cookery10 3, 4

Cookery4 3, 4

Cookery12 5

Cookery8-1 6, 7

Cookery8 6, 7

Cookery1 8, 9

Cookery15-1 8, 9

Cookery3 10

3

Cookery 11-1 1

Cookery15 2

Cookery13 3

Cookery6 4, 5

Cookery20 4, 5

Cookery10 6, 7

Cookery19 6, 7

Cookery16 8

Cookery5 9

Cookery13-1 10

Table A.3: The system’s ranking of recipes per query. Some recipes have several rankings

because their share the exact same similarity score with other recipes.
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Task 1 Task 2 Task 3

Rank Case Offset Case Offset Case Offset Avg.

1 Cookery16 0 Cookery2 0 Cookery 11-1 0

2 Cookery11 0 Cookery2-1 0 Cookery13 1

3 Cookery11-1 0 Cookery4 0 Cookery6 1

4 Cookery11-2 0 Cookery10 0 Cookery15 2

5 Cookery13 1 Cookery8-1 1 Cookery19 1

Sum 1 1 5 2.33

1 Cookery16 0 Cookery2 0 Cookery 11-1 0

2 Cookery11 0 Cookery2-1 0 Cookery15 0

3 Cookery13 3 Cookery10 0 Cookery20 1

4 Cookery14 2 Cookery4 0 Cookery6 0

5 Cookery14-1 1 Cookery8 1 Cookery13 2

Sum 6 1 3 3.33

1 Cookery19 4 Cookery2 0 Cookery 11-1 0

2 Cookery16 1 Cookery10 1 Cookery13 1

3 Cookery11 0 Cookery2-1 1 Cookery13-1 7

4 Cookery11-1 0 Cookery4 0 Cookery15 2

5 Cookery17 4 Cookery8 1 Cookery19 1

Sum 9 3 11 7.67

1 Cookery16 0 Cookery2 0 Cookery 11-1 0

2 Cookery19 3 Cookery10 1 Cookery15 0

3 Cookery14 3 Cookery4 0 Cookery13 0

4 Cookery13 2 Cookery2-1 2 Cookery13-1 6

5 Cookery11-2 1 Cookery8 1 Cookery19 1

Sum 9 4 7 6.67

1 Cookery16 0 Cookery2 0 Cookery 11-1 0

2 Cookery11 0 Cookery10 1 Cookery15 0

3 Cookery13 3 Cookery4 0 Cookery13 0

4 Cookery11-1 0 Cookery2-1 2 Cookery13-1 6

5 Cookery14-1 1 Cookery8 1 Cookery16 3

Sum 4 4 9 5.67

1 Cookery16 0 Cookery2 0 Cookery 11-1 0

2 Cookery17 7 Cookery10 1 Cookery15 0

3 Cookery4 6 Cookery4 0 Cookery20 1

4 Cookery13 2 Cookery2-1 2 Cookery6 0

5 Cookery14-1 1 Cookery8 1 Cookery13 2

Sum 16 4 3 7.67

1 Cookery14 5 Cookery2 0 Cookery 11-1 0

2 Cookery16 1 Cookery2-1 0 Cookery15 0

3 Cookery11-1 0 Cookery10 0 Cookery13 0

4 Cookery19 1 Cookery4 0 Cookery13-1 6

5 Cookery11 1 Cookery8 1 Cookery19 1

Sum 8 1 7 5.33

Avg. 7.57 2.57 6.43 5.52

Table A.4: The offset of recipe ranks between the system and each test subject. The average

number of correct recipes per user can be seen at the rightmost column, while the average

of correct recipes per query is shown in the bottom row.
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A.4 Queries used and cases added to quiz case base

Desired ingredients Undesired ingredients Added recipe

1 tuna - Tuna Cucumber Sandwich

Tuna and Avocado Sandwich

2 pain de mie, beans, avocado hummus, mint, radish Baked Bean

3 baguette, pork, barbeque sauce parma ham BBQ Sandwich

4 egg, cheese, pepper, tomato, lettuce parsley, chive Breakfast Pita

5 roast beef, cheese, pickled cucumber, tomato - Bauru Sandwich

6 avocado, bacon, mozzarella, pesto, tomato - California Club

7 tuna, onion, chick pea - Tuna Chick Pea Sandwich

8 peanut butter, banana, bacon - Elvis sandwich

9 mozzarella, tomato - Mozzarella Tomato Sandwich

Tuna Tomato Sandwich

10 pita bread, lamb - Lamb Sandwich

11
baguette, minced meat, cheese, cumin, garlic

powder, salt, chili powder, ketchup, oregano
- Taco Baguette

12 salmon, tomato - Salmon Tzatziki Bagel

Salmon Tomato Sandwich

13 tortilla, cheddar - Taco Tortilla

Nacho Cheddar Sandwich

14 tortilla, cream cheese, salmon - Salmon Roll

15 roast beef - Roast Beef Sandwich

16 parma ham, cheese - Creamy Parma Sandwich

17 parma ham, avocado curry powder Exotic Baguette

Table A.5: Queries used to create the cases added to the ”Bot or Not?” case base. The right

column shows the name of the added recipes.
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A.5 Results from quiz

Responses

CaseName Adapted Correct Incorrect Total Correct in % Incorrect in %

Cookery12 FALSE 47 25 72 65,28% 34,72%

Cookery4 FALSE 43 27 70 61,43% 38,57%

Cookery10 FALSE 44 28 72 61,11% 38,89%

Cookery11 FALSE 40 29 69 57,97% 42,03%

Cookery13 FALSE 40 32 72 55,56% 44,44%

Cookery6 FALSE 32 26 58 55,17% 44,83%

Cookery19 FALSE 38 31 69 55,07% 44,93%

Cookery1 FALSE 39 33 72 54,17% 45,83%

Cookery8 FALSE 32 30 62 51,61% 48,39%

Cookery14 FALSE 39 37 76 51,32% 48,68%

Cookery7 FALSE 34 35 69 49,28% 50,72%

Cookery5 FALSE 34 35 69 49,28% 50,72%

Cookery20 FALSE 36 40 76 47,37% 52,63%

Cookery3 FALSE 28 32 60 46,67% 53,33%

Cookery16 FALSE 34 40 74 45,95% 54,05%

Cookery17 FALSE 30 37 67 44,78% 55,22%

Cookery15 FALSE 28 37 65 43,08% 56,92%

Cookery2 FALSE 28 38 66 42,42% 57,58%

Cookery0 FALSE 29 41 70 41,43% 58,57%

Cookery9 FALSE 28 44 72 38,89% 61,11%

Cookery18 FALSE 20 34 54 37,04% 62,96%

Cookery3-1 TRUE 40 21 61 65,57% 34,43%

Cookery14-3 TRUE 41 26 67 61,19% 38,81%

Cookery16-1 TRUE 39 31 70 55,71% 44,29%

Cookery4-1-2 TRUE 36 29 65 55,38% 44,62%

Cookery2-3 TRUE 38 31 69 55,07% 44,93%

Cookery8-2 TRUE 30 30 60 50,00% 50,00%

Cookery6-1 TRUE 30 31 61 49,18% 50,82%

Cookery5-2 TRUE 28 30 58 48,28% 51,72%

Cookery5-6-1-1 TRUE 31 34 65 47,69% 52,31%

Cookery5-5 TRUE 31 37 68 45,59% 54,41%

Cookery0-3 TRUE 35 42 77 45,45% 54,55%

Cookery4-3 TRUE 29 35 64 45,31% 54,69%

Cookery4-1-1 TRUE 31 38 69 44,93% 55,07%

Cookery2-3-1 TRUE 31 43 74 41,89% 58,11%

Cookery9-1 TRUE 27 40 67 40,30% 59,70%

Cookery12-2-1 TRUE 28 42 70 40,00% 60,00%

Cookery12-2 TRUE 27 42 69 39,13% 60,87%

Cookery5-6-1 TRUE 27 43 70 38,57% 61,43%

Cookery5-5-1 TRUE 27 44 71 38,03% 61,97%

Cookery5-6 TRUE 26 44 70 37,14% 62,86%

Cookery4-1 TRUE 20 48 68 29,41% 70,59%

1375 1472 2847 48,30% 51,70%

Table A.6: Guessing results per recipe for the ”Bot or not?” quiz
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A.6 Usability testing  

Tasks 

1.  

a. Search for a sandwich recipe containing “egg”, “avocado”, “cherry 

tomato” and “tuna”. 

i. Does any of the recipes proposed fulfill all your wishes? 

b. You realize you do not want the recipe to contain “tabasco sauce”. Add 

this to your search. 

i. Does any of the recipes proposed fulfill all your wishes? 

 

2.  

a. Search for a sandwich recipe containing “tortilla” “chicken” and 

“avocado”. 

b. Look at the top 1 result. Identify whether the recipe is adapted, and if so, 

identify which ingredients this may concern. 

3.  

a. Search for a sandwich recipe containing “tortilla” and “cheddar”, but no 

“lettuce”. 

b. Look at the top 1 result. Identify whether the recipe is adapted, and if so, 

identify which ingredients this may concern. 

c. Add the top 1 recipe to the database and confirm the operation was 

successful.  

 

   

Figure A.1: Tasks for usability testing
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Prior to user testing 

A.1  I enjoy making food 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

A.2  I see myself as a clever cook 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

A.3  I use online recipe search engines 
regularly (“matprat.no” etc.) 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

   

  The following three questions is to be answered only if you indeed use recipe search engines 
regularily: 

A.4  I am usually satisfied with the recipes 
search engines propose to me 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

A.5 
I feel that using recipe search 
engines help me learn about cooking 
and recipe composition 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

A.6 
I often feel that online recipe search 
engines do not take all my desires 
into consideration 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

     

A.7 
If you do not search for recipes on  
online recipe pages - where do you 
find recipes? 

 

A.8 
If you find recipes other places than 
online recipe pages - why do you 
prefer this? 

 

Figure A.2: Reply form to be filled out by the test subject prior to the usability test
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System Usability Scale 

B.1  I think that I would like to use this 
system frequently  

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

B.2  I found the system unnecessarily 
complex 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

B.3  I thought the system was easy to 
use 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

B.4 
I think that I would need the support 
of a technical person to be able to 
use this system 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

B.5  I found the various functions in this 
system were well integrated 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

B.6  I thought there was too much 
inconsistency in this system 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

B.7 
I would imagine that most people 
would learn to use this system very 
quickly 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

B.8  I found the system very 
cumbersome to use 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

B.9  I felt very confident using the 
system 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

B.10 
I needed to learn a lot of things 
before I could get going with this 
system 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 

Figure A.3: System Usability Scale Form to be filled out by the test subject after the

usability test
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Subsequent to user testing 

C.1 

I believe that such a system could 
improve my knowledge about 
ingredient similarity/recipe 
composition 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

C.2 
I believe that such a system could, 
over time, enhance my cooking 
abilities 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

C.3 
I believe that such a system could 
help me throw away less food and 
ingredient remains 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

C.4  I would recommend such a system 
to my friends or family 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

C.5 
I believe I would prefer using an 
adapting recipe search engine over a 
non-adapting recipe search engine 

 
Strongly disagree    Strongly agree 

         

1  2  3  4  5 
 

 

 

 

Age:   

Any additional 
comments: 

 

 

Figure A.4: Reply form to be filled out by the test subject after the usability test
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APPENDIX A. EVALUATION AND RESULTS

A.7 Results from usability testing

Question Answers per test subject Average

A.1 5 5 5 5 3 4 3 5 4 3 4.20

A.2 4 4 5 5 2 4 2 3 4 3 3.60

A.3 1 5 5 2 3 3 1 4 2 4 3.00

A.4 4 4 3 4 4 4 4 5 4.00

A.5 2 5 4 3 3 4 4 2 3.38

A.6 4 3 4 3 3 2 3 3 3.13

Table A.7: Replies to pre usability testing form. The rightmost column represent the average

score per question.

Question Answers per test subject Score

B.1 5 5 5 5 3 5 5 4 3 5 87.50

B.2 1 1 1 1 2 1 1 1 1 1 97.50

B.3 5 5 5 5 4 4 4 5 5 4 90.00

B.4 1 1 1 1 1 2 1 1 1 1 97.50

B.5 5 5 5 5 4 4 5 4 5 5 92.50

B.6 1 2 1 1 2 1 1 1 2 1 92.50

B.7 5 5 5 5 3 4 4 5 5 5 90.00

B.8 1 1 1 1 1 2 1 1 1 1 97.50

B.9 5 4 5 5 4 4 5 4 5 5 90.00

B.10 1 1 1 1 2 1 1 1 1 1 97.50

Score 100 95 100 100 75 85 95 92.5 92.5 97.5 93.25

Table A.8: Replies to SUS form. The score per questions can be seen in the rightmost

column, while the score per user can be seen at the bottom row.

Question Answers per test subject Average

C.1 5 2 5 5 4 5 4 4 4 3 4.10

C.2 5 3 5 4 4 4 5 4 4 4 4.20

C.3 3 4 5 5 3 5 5 4 5 5 4.40

C.4 4 5 5 5 3 4 5 5 5 5 4.60

C.5 3 4 5 5 4 4 4 5 5 5 4.40

Average 4 3.6 5 4.8 3.6 4.4 4.6 4.4 4.6 4.4 4.34

Table A.9: Replies to post usability testing form. The average score per question can be

seen in the rightmost column, while the average score per test subject is represented by the

bottom row.
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Acronyms

AI Artificial Intelligence. 1–3, 5, 6, 8, 9, 21, 23, 74, 80

API Application Programming Interface. 22, 52, 55–57, 60

CBR Case-Based Reasoning. 1, 3, 5–9, 11–16, 20, 23, 25, 29, 30, 49, 54, 55, 63, 72–74, 79,

81, 86

CC Computational Creativity. 2, 72, 81

CCC Computer Cooking Contest. 5, 13–16, 18, 19, 23, 24, 26, 51, 74, 75, 79

ICCBR International Conference on Case Based Reasoning. 5

SUS System Usability Scale. 69, 71, 79, 81

UI User Interface. 18, 19, 24, 52, 54–57, 59–61, 72, 75, 79, 81
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Glossary

CSV In computing, a comma-separated values (CSV) file stores tabular data, both numbers

and text, in plain text. 27, 52, 53

framework A reusable set of libraries or classes for a software system. 19

JSON A simple, text based standard for exchange of data on the web. 52–54, 57

myCBR An open-source similarity-based retrieval tool and software development kit

(SDK). 26, 27, 31–36, 39, 51–55, 75, 76

ontology The formal naming and definition of the types, properties, and interrelationships

of the entities that fundamentally exist for a particular domain. 15, 18, 19, 23

Spring An application framework used for building web applications on top of the Java EE

platform. 55

Swagger An open source framework that helps design, build, document, and consume

RESTful APIs. 55

taxonomy The classification and naming of concepts in an ordered system that is intended

to indicate natural relationships. 15–20, 24, 26, 28, 31, 35, 36, 39, 52–55, 74, 75, 77,

81, 82

TypeScript An open-source programming language - a superset of JavaScript which adds

optional static typing and class-based object-oriented programming to JavaScript. 56

wiki A website that provides collaborative modification of content directly in the browser.

15, 23

XML In computing, Extensible Markup Language (XML) is a markup language that defines

a set of rules for encoding documents in a format that is both human-readable and

machine-readable. 16, 18, 20, 26, 27, 51, 52, 54
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