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Abstract

A submarine navigator have to keep track of surrounding ships in order to avoid
collision and to gain a tactical advantage. This is currently done manually by
a sonar operator, trained to listen through the water and identify ship-types by
the sound they emit.

This project presents a review and implementation of different solutions to
the problem of audio classification. The goal of this work was to build a system
capable of helping submarine navigators identify surrounding obstacles and ships
based on the sound recorded by the sonar on board the submerged submarine.

The research aims to uncover the best combination of techniques that can be
used for this classification task. This project concerns both the field of signal
analysis and artificial intelligence as the system comprises of two parts. The
first being a method of extracting informative features from sonar data captured
by the submarine. The second part is to feed the processed data into a neural
network (NN) and provide a classification of the ship’s type.

In this project a system have been developed in order to experiment with
a variety of feature extraction techniques and neural network structures to find
a solution suitable for the submarine sonar classification problem. The system
have been able to place 97.3% of the ships in the correct category when using the
highest scoring combination of a feature extraction technique and a neural net-
work. The best found combination was the Mel Frequency Cepstral Coefficients
feature extraction technique and a standard feed-forward neural network.
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Sammendrag

En ub̊at m̊a alltid ha oversikt over alle skip i nærheten for å unng̊a kollisjon og
for å holde en taktisk fordel fra dypet. Dette er n̊a gjort manuelt av en sonar
operatør som er trent opp til å lytte etter lyder i vannet og identifisere forskjellige
typer fartøy basert p̊a lyden de lager.

I dette prosjektet presenters forskjellige metoder for klassifisering av lyd-data.
Målet med dette arbeidet er å lage et system som kan assistere navigatøren om
bord p̊a en ub̊at med å identifisere omringende hindringer og skip basert p̊a sonar
data.

Forskningen tar sikte p̊a å avdekke den beste kombinasjonen av teknikker
som kan løse denne klassifiseringsoppgaven. Prosjektet omhandler b̊ade fagfeltet
signal-analyse og kunstig intelligens da systemet er bygget opp av to deler. Den
første, en metode for å hente ut informative attributter fra r̊adata fra sonaren
p̊a ub̊aten. Den andre delen i systemet er et nevralt netverk som mates med
attributtene funnet i den første delen. Dette netverket kan etter at det er trent
opp brukes til klassifisering av ulike skipstyper.

Systemet er designet for å kunne teste en rekke forskjellige kombinasjoner av
preprosessering og nevrale netverk for å finne en løsning som passer til å klassifis-
ere sonar-data til skipstyper. Systemet kan klassifisere riktig lyd til riktig fartøy i
97.3% av tilfellene n̊ar det kjøres med den konfigurasjonen som har oppn̊add den
høyeste klassifiserings-treffsikkerheten. Den beste kombinasjonen funnet var en
preprosesseringsteknikk kalt Mel Frequency Cepstral Coefficients og et standard
nevralt netverk
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Preface
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Chapter 1

Introduction

This work explores how to use artificial intelligence to recognize patterns in sound.
The goal was to create a prototype of a system that could be used on board a
submarine to assist the sonar operator. In order to build such system both the
field of artificial intelligence and the field of signal processing will be studied, as
the system will have to use state-of-the-art techniques from both fields. In this
chapter the background and motivation for doing this will be discussed, followed
by a presentation of the goals of this project with a brief introduction to the
scientific approach taken. Finally the structure of the remaining project will be
outlined.

1.1 Background and Motivation

A submerged submarine is highly dependent on information about surrounding
ships to have a tactical advantage. It has to remain silent, so it can not send
out an active sonar signal to search for nearby ships. It has to stay submerged
and passively listen for the other ship’s acoustic signature. This signature is
mostly created by the cavitation sound from the propellers of the ship. This
sound travels through water and is intercepted by the submarine. It is essential
to know what kind of ship the signal comes from. A fishing boat using a trawl net
would for example be crucial to avoid. Interpreting sound signals into classes is
a task well suited for a neural network as the signals are very fuzzy and contains
a lot of noise. A neural network would be able to provide support to the manual
operator in this very crucial task.

The system developed in this project will work as a real time support system to
the sonar operator. The system will receive the raw acoustic data from the sonar
and be able to suggest classes of surrounding ships. A manual sonar operator will

1
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only be able to listen in one direction at the time, where the proposed system
could observe every angle at once. It will also be able to alert the operator when
it believes it has classified a nearby ship correctly. The operator could then either
confirm or refute this classification, and the system could use this to learn the
different classes further.

The solution to this problem is a system that is using raw acoustic data as
input, followed by processing and feature extraction and finally returning a class.
This ideal solution can be divided into two sub-systems, where the output of
the first is the input of the second. This is illustrated in Figure 1.1. This is a
more modular approach. A solution to one of the problems can be implemented
independently of the solution used in the other and they can still work together.

Figure 1.1: A figure showing how the problem can be divided into two sub-
problems

The first problem, the preprocessing and feature extraction from raw audio
data aims to find a more informative representation of the data, either by extract-
ing key elements in the data or finding new information by analysis. Often the
main goal of this task is to find a smaller data set to consider during classification.
This will decrease the complexity of the classification task severely.

There is a large community devoted to this field, and countless papers pub-
lished on the subject. The data this project addresses is different than what most
studies about sound processing tend to use. The most obvious difference being
that sound travels at a different rate in water than in air. This study aims to
answer whether the same techniques used to extract features from environmental
sound on land can be used on data sampled under water.

The preprocessing techniques also have to be robust to noise. The ocean con-
tains an abundance of biological noise from whales, dolphins and lesser life forms.
It is also a known issue that the ocean between the sound emitting ship, and the
submarine often contain different layers of water with different salt concentration,
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or temperature. The sound passing through will be disrupted and changed by
this.

The second problem regards the classification of the features produced in
the first module. The complexity of the neural classifier have to match the
complexity of the data to be classified. If the data has features that always
lead to a certain classification, this task would be easy, but it is likely that the
data has features behaving differently in every data sample. This is a common
problem that often renders other traditional algorithms for classification useless.
However deep neural networks have proven that they can be able to identify
advanced patterns, even in noisy data sets.

1.2 Goals and Research Questions

An unambiguous definition of the problem is given as follows; a manual sonar-
operator is not able to accurately and quickly classify all surrounding marine
vessels. How can this be improved? A solution to this problem will be of great
interest to the navigators of the submarine. The system developed in this project
aims to answer whether this problem can be solved with the use of a neural
network, and if it can, then what kind of preprocessing techniques and network
configurations would be optimal.

The stated goal is defined as follows:

Goal Develop a system where a signal preprocessor and a neural network can
work together to classify marine vessels based on their acoustic signature.

The goal is to implement state-of-the-art techniques in each of these fields
suitable for the task at hand. The end result will be a system suited for experi-
mentation in order to uncover the potential of such a system. This goal will be
approached by researching these fields using a structured literature review, then
to implement the techniques according to the state-of-the-art research found in
the literature review. The following four research questions are defined as follows:

RQ1 What are the existing solutions for classification of continuous audio-data
using neural networks?

RQ2 How are the solutions found in RQ1 processing the data before feeding it
to the neural network?

RQ3 How can the findings be used when creating a classification-system in a
new environment?

RQ4 How will different solutions, or combinations of solutions, affect the overall
performance of the system?
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1.3 Research Method

The approach that will be used to achieve this goal is to use the thorough scientific
literature review conducted in the specialization project by the author of this
thesis, Gimse [2016]. The review contains an systematic overview of relevant
research to the project and is a study and preparation of this project. The focus
here is researching the theoretical state-of-the-art in the two fields, to ensure
that the techniques found are of high quality in their respective fields. The
most promising techniques will be implemented and tested in order to answer
the research questions. The bibliography used here will be highly relevant to this
project, but left out as it is referenced in the specialization project.

1.4 Thesis Structure

The rest of the report is organized as follows. In Chapter 2 an introduction to the
field will be given, covering the theory needed to understand the how and why
of the found solutions. Then there is a chapter on how solutions to this problem
have been implemented followed by Chapter 4 where the solutions implemented
are tested and results are presented. Finally a conclusion is presented in Chapter
5. This chapter also includes the recommendations for further work. The goal of
this project is ultimately to build a system where feature extraction and neural
network techniques can be tested in combination, and to prove that the task at
hand can be solved by such a system.



Chapter 2

Background Theory

This chapter provides insight into the field of audio analysis and neural networks,
and the techniques this project is concerning. This chapter also contains a more
technical description of the sonar system, the data sampled and the domain this
project will focus on, namely underwater environmental sounds.

2.1 Sonar Data

Sonar was originally an acronym for Sound Navigation and Ranging. This is
a technique where sound propagation is used to retrieve information about the
surrounding area. It is most commonly used with submerged submarines, either
as a means of communication, navigation or listening for other vessels on or under
the surface of the water.

Sonar systems are divided into two groups, passive sonar and active sonar. An
active sonar is a system that actively tries to find objects by emitting a strong
pulse into the water and gathering information from the echo signal bouncing
back from said objects. This is a commonly used method of finding hidden
submerged submarines. The searching ship is looking for areas where the echo
signal is returning too fast to have met the bottom of the ocean, and assumes
this to be because the signals are bouncing back off a submarine. Before the
introduction of radar, acoustic echolocation was used in air as well.

A passive sonar on the other hand is a system that listens without emitting a
signal. It is dependant on other vessels making noise in the water. Typically this
is used by hiding submarines, as emitting an active sonar signal will surely give
away the location of the source of such sound. By using a passive sonar system
the submarine can get an overview of surrounding vessels without giving away its
location. The most informative sounds captured by the passive sonar is typically

5
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the cavitation frequency of a nearby vessel. This is unique for most ships and
can yield information about the size, speed and type of the ship. Intermittent
sound sources can also be heard, e.g. a flushing toilet or a wrench hitting the
hull of the ship. A passive sonar will be used in this project, as this is the type
the Norwegian Navy is using.

There are several performance factors to take into account when using a sonar
for navigation. The speed of sound is the most important as this approach is
based on the propagation of the sound. Sound travels more slowly in freshwater
than in saltwater, and even in saltwater there is great differences determined
by the water’s bulk modulus and mass density. Bulk modulus is a measure of
a substance’s resistance to uniform compression, here this is determined by the
temperature, pressure and salinity. Salinity is the saltiness of a body of water.
The affect given by the mass density of water is relatively small compared to that
of the bulk modulus. The speed of sound in the air is approximately 340 m/s,
while in saltwater it is approximately 1500 m/s. The formula used to calculate the
precise speed of sound in water is presented by The National Physical Laboratory
[2005] in Equation 2.1 where D is the depth given in kilometers, S is salinity in
parts per thousand and t = T/10 where T = temperature in degrees Celsius.
c(D,S, t) is the speed of sound at depth D, and c(0, S, t) is the speed of sound
on the surface, given by Equation 2.2.

c(D,S, t) = c(0, S, t) + (16.23 + 0.253t)D + (0.213 − 0.1t)D2+

[0.016 + 0.0002(S − 35)] ∗ (S − 35)tD
(2.1)

c(0, S, t) = 1449.05 + 45.7t− 5.21t2 + 0.23t3+

(1.333 − 0.126t + 0.009t2)(S − 35)
(2.2)

In order to determine the direction of a sound source, a sonar is built using
a circular array of hydrophones. These are microphones designed to work under
water. Each of these captures the environmental sounds in the water, and the
direction of a sound source is determined based on the position in the circle of
the hydrophones capturing the strongest signal.

2.1.1 Cavitation

A propeller absorbs the torque from the ships motor at given revolutions. In
turn the propeller converts this to thrust, driving the ship through the water.
The International Institute of Marine Surveying [2015] states that according to
Bernoulli’s law the passage of a hydrofoil (propeller blade section) through the
water causes a positive pressure on the face of the blade and a negative pressure on
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its back. It is the resolution of the pressures that results in the torque requirement
and the thrust development of the propeller. The negative pressure causes any
gas in solution in the water to evolve into bubbles and when these collapse a sound
is emitted. The repetition of such sound create an acoustic signature unique to
most ships.

2.2 Signal Processing

A sound is an interpretation done by the brain of waves of pressure traveling
through a medium. These waves are produced by any vibrating object, like the
vocal cords of a human, or the cavitation from a ship. Waves come in different
frequencies, determined by the frequency of the vibrating object and the medium
the sound travels through. The human ear can only perceive frequencies between
20 and 20000 Hz. Even when the human ear can not hear a sound, we can use a
microphone to record it, digitize it and then analyse it.

A microphone is simply a device that records pressure variations and trans-
form this into a voltage signal. To be able to use this data in analysis, we have
to transform this analogue data into discrete data. This is done by a technique
called sampling. This is done by measuring and storing certain values in the
analogue data at specific points in time. The frequency of such points is deter-
mined by the sampling rate. The highers sampling rate, the more data points
is gathered, and the resulting data curve becomes a closer approximation of the
original analogue signal. An illustration of this is shown in Figure 2.1. Note how
variations in the original signal is lost between each sampling point. When the
signal to be recorded has higher frequencies, even more information is lost when
the sample rate is low.

A theorem describing the relationship between the sample rate and the fre-
quency measured is described by National Instruments [2015]. This theorem is
called the Nyquist Sampling Theorem, and states that the sampling rate fs must
be greater than twice the highest frequency component of interest in the mea-
sured signal. This frequency is often referred to as the Nyquist frequency, fN .
This is shown mathematically in Equation 2.3 and the reason why this theorem is
needed is illustrated in Figure 2.2. The figure demonstrates how a sampling rate
of twice the frequency of interest guarantees that the main shape of the signal is
accurately reconstructed. Usually the sampling rate is much higher to achieve a
smoother digital signal. When these discrete data values are gathered, analysis
can be computerized.

fs > 2 ∗ fn (2.3)

We use signal processing to manipulate a signal to change its characteristics
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Figure 2.1: Sampling an analogue signal into a digital signal.

or to extract additional information. The problems signal processing typically
aims to solve is; noise reduction, correcting distortion and extraction of indirect
quantities in measured signals. It is this last one that is most relevant to this
project as a sonar is used to capture data, and from this data information about a
ship is extracted. The type, distance and speed of a ship are examples of indirect
quantities in this signal.

2.2.1 Time-frequency domain

A sound signal is generally plotted in the time domain. This way it is easy to
study how the signals amplitude is changing over time. However, many signals
of interest have changing frequency characteristics, e.g. speech. To capture this
trait it is helpful to study a signal, plotted in the frequency domain. This is a rep-
resentation of the signal that shows how much of the signal lies within each given
frequency. These two representations are presented in Figure 2.3. A methodology
called time-frequency analysis is commonly used in signal processing. This is a
group of methods where the signal is studied both in the time domain and in
the frequency domain simultaneously. To find a representation of a signal in the
frequency domain a Fourier transform is typically used. The most basic version
of this is the short-time Fourier transform, but more sophisticated methods like
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Figure 2.2: National Instruments [2015] demonstrates how a low sampling rate
will lead to an inaccurate digital approximation of a signal.
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wavelets are also commonly used.

Figure 2.3: An illustration of how a signal is represented in the time domain
(right) and the frequency domain (left). Each yielding different information.

2.2.2 Short-time Fourier Transform

All signals can be represented as the sum of sinusoidal signals. By identifying
the key sinusoidal signals one can selectively remove or keep those desired, i.e.
if a noise source is known with its sinusoidal, it can be isolated and removed.
The short-time Fourier transform (STFT) is a way of identifying such sinusoidal
signals as the signal’s parameters change over time. This is done by dividing a
signal into short time segments and doing a Fourier transform on each of these.
Doing this results in coefficients for each segment. These coefficients are used
as a frequency domain representation of each of these short time segments. By
piecing these representations back together in the time domain it is possible to
study the signal both in time and in frequency.

2.2.3 Wavelet Transform

Wavelet transform is as mentioned a more sophisticated way of analysing a sig-
nal in both domains. The main difference between the two approaches is that
wavelet transform approximates a signal using short waves called wavelets in-
stead of sinusoidal signals. Where the Fourier transform returns coefficients for
each sinusoidal signal found, the wavelet transform returns two values for each
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wavelet found, namely the scale and the translation of the wavelet. The transla-
tion decides the timing of how the wavelet translates through the signal and the
scale decides the amplitude of the wavelet. The advantage of using wavelets over
sinusoidal functions is that they are short, and therefore more suitable when a
longer signal is divided into short segments as more wavelets can be used each
segment. The Fourier transformation using continuous sinusoidal signals always
have to cut these short at the cost of resolution in the approximation.

2.2.4 Mel-frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCC) is a another advanced time-frequency
analysis technique where the resulting features are the coefficients of amplitudes
in a transformed spectrum. This is commonly known as the most popular tech-
nique in the field of speech recognition. Why that is will become apparent, when
the steps are described in the following paragraph. The steps for finding the
MFCC is as follows

1. Transform the signal into the frequency domain. This is typically done with
Fourier transform on segmented data like in STFT

2. Map the frequency domain representation found in the first step into the
mel scale described below.

3. The logarithmic value of each of these mel frequencies are calculated.

4. The logarithmic values found in step 3 is interpreted as a signal and the
discrete cosine transform is done on this signal. This transform is practically
a Fourier transform, but only using cosine functions to approximate the
signal.

5. A spectrum of the transformed signal is produced named a mel-frequency
cepstrum. The coefficients extracted are the values of the amplitudes in
this spectrum.

The mel scale is a scale created to measure the perceived pitch instead of
the actual pitch. This was a solution to the human ear’s inability to differentiate
correctly between pitches in the highest bands of hearing. The mel scale describes
the human auditory system on a linear scale and here we can express the difference
in pitches we perceive. The relationship between the mel scale and the frequency
scale is shown in Figure 2.5.

A spectrogram is a visualization of the spectrum of frequencies in a signal as
they vary over time. An example of this is given in Figure 2.4.
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Figure 2.4: A spectrogram showing the vocalizations of a dolphin. This figure
also show the power of the sound as a heat map.

Figure 2.5: The mel scale. A scale based on the perceived pitch.
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2.2.5 Spectral Density Estimation

Here a statistical approach is taken to estimate the spectral density of an unsteady
signal. The spectral density describes the distribution of power in a signal. Doing
this is also a feature extraction technique, where it is possible to learn patterns
like periodicity in the data. This alone can be a very informative feature in
seemingly random data.

2.3 Artificial Neural Networks

A neural network is a computational model used to approximate functions that
depend on a large number of inputs. It is inspired by the central nervous system
in the human brain where neurons are connected by synapses to form a network.
Information is flowing through the brain by electrical impulses. Each neuron does
some kind of processing on the signal flowing through the network, resulting in
a different output than input to the network. This network is trained over time
to do the desired computation. In artificial neural networks this is mimicked
by connecting a large amount of nodes together to form a network. Each node
has a function in order to change the incoming signal. The nodes are grouped
together to form layers. A neural Network has one input layer, one output layer
and at least one hidden layer. The hidden layers are the nodes doing the actual
computation how this is done is described in the next Section 2.3.1. The weight
of each connection is changed in order to train the network to approximate a
target function.

A neural network is trained using supervised learning. Typically this is done
by feeding the network with training data labeled with the correct class, than the
network does the classification and adjusts its configuration based on the error
in the classification. With enough training data the network becomes able to
generalize beyond the training data and learn to classify data never seen in the
training set. Exactly how this training is done will be explained in Section 2.3.2.

2.3.1 Activation Functions

The activation function is the function deciding the output from each node in
a neural network given the input. This can be a simple function like an AND
function, only passing a activation signal on if all the incoming signals are high,
or it can be more complex. Some of the popular activation functions suggested
by Nielsen [2015] are shown in Table 2.1. A widely used input composition for
activation functions is the nonlinear weighted sum of signals and weights. This
is given by the Formula 2.4 where w is connected weights and x is the output
value of the node connected by weight w. These values are often represented as a
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weight matrix and an input matrix for a speed advantage as matrix multiplication
can be computationally inexpensive.

yi =
∑
i

wixi (2.4)

Name Equation

TanH f(x) =
2

1 + e−2x
− 1

Sigmoid a.k.a logistic or soft step f(x) =
1

1 + e−x

Rectified Linear Unit (ReLU) f(x) =

{
0, for x < 0

x, for x ≥ 0

Sinusoid f(x) = sin(x)

Table 2.1: A selection of activation functions and their equation.

2.3.2 Training

To be able to learn a concept the neural network has to be trained to do so.
Training a neural network means tweaking parameters until it yields the desired
results. The parameters that can be changed depends on the type of network,
but mostly we talk about changing the weights of the connections in a network.
To to so would change the influence one node has on the node on the other side
of the connection. The goal is to make a network so that it understands what
connections usually supplies it with information that corresponds with the class,
and prioritize these. This way the neural network is able to learn patterns the
programmer did not explicitly introduced.

An example of an algorithm for training a neural network is the backpropa-
gation algorithm. This algorithm calculates the error in the classification in each
training example by comparing the prediction given by the network and the label
of the example. Then a gradient of a loss function is calculated with respect to
the weights in the network. This error gradient is than propagated back through
the network and the weights are updated in order to minimize the loss.

2.3.3 Overfitting

Overfitting is a term used to describe a network when it becomes too specifically
fitted to the training data. The aim of a predicative model like a neural network
is to train on a diverse data set from each class in order to gain a general concept
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of each class. When this is done right the model can predict data it have never
seen before correctly even if it varies from the training data in the same class. If
the model fits too good to the training data to be able to generalize, it is called
overfitting.

2.3.4 Standard Feed-forward Neural Network

The feed-forward neural network is the most simple form of neural network. It is
a neural network wherein connections between two nodes does not form a cycle.
The data flows simply from the input layer, iteratively through the hidden layers
and ends up in the output layer. This is illustrated in Figure 2.6. Note how all
edges are directed in one direction, from the input to the output layer.

Figure 2.6: A standard feed-forward neural network

2.3.5 Convolutional Neural Networks

A convolutional neural network is a type of feed-forward network, but the layers
are not fully connected, that is every node in each layer is only connected to a
subset of the nodes in the next layer. Where a standard feed-forward network has
individual connections between the layers, the convolutional network has a set of
connections from one node in the incoming layer to n nodes in the next, where n
is a number between 1 and the total number of nodes in the next layer. This set
of connections are called a filter, and are reused throughout the layer from each
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node to the next layer. This filter is used iteratively through the incoming nodes,
by changing the start- and end-point of the connections, to create new signals.
This is shown in Figure 2.7 presented by Nielsen [2015]. The configuration of
these filters are being trained to capture new informative features.

It can also be useful to use several different filters between the same layers,
as more features can be identified. Using several layers and the sliding technique
often lead to a huge expansion in nodes in the following layer behind these fil-
ters. This is illustrated in Figure 2.8, where three different filters are used. Too
many nodes in a layer can be a problem, as the computational cost of training
increases. To solve this problem we use a technique called pooling to reduce the
dimensionality of the data. This is done by pooling together a number of nodes in
the incoming layer, hence the name, and extracting some single value from them
to pass on. A popular example is max-pooling. Here the highest activation value
in the pool is simply passed on and all the other values are disregarded. This is
illustrated by Britz [2015], here shown in Figure 2.9 where each number on the
left is the activation level of a node, and the number of corresponding color on
the right is the resulting activation after the pooling layer.

The convolutional network methodology has recently proved very useful for
complex classification task like image recognition. A testament to this is The
ImageNet Large Scale Visual Recognition Challenge held every year. It is a com-
petition in image recognition where several teams train their algorithms on 1.2
million images in 1,000 categories. An algorithm has to have the correct class
in the top five predictions to be correct. Russakovsky et al. [2015] is presenting
results where almost every high ranking algorithm used is based on convolutional
neural networks. They also show that the increase every year in the best al-
gorithm is very high (between 3 and 5 percent). This shows that this is a fast
moving field.

2.3.6 Recurrent Neural Networks

A recurrent neural network is contradictory to a feed-forward network, a network
where connections between nodes form a cycle. This allows the network to pass
information back through the network. Typically the information passed is the
state of the node, which is dependant on signal previously processed. This way
the recurrent network achieves a form of memory. This makes them useful when
classifying data that is sequential, that is when the order of the data matters.
An example of this is speech, where the first words could affect the probability
of what the next would be. A recurrent neural network is illustrated in Figure
2.10, where the red arrows denote the connection where the recurrence happens.
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Figure 2.7: A single matrix of weights, or filter, is used to map several input
nodes to a single hidden node. Here the filter is moved one step to the right. It
will continue using the same weights throughout the entire input layer.

Figure 2.8: The expansion of nodes becomes apparent when several filters are
used. Here three different filters are used on a layer with 28 input nodes.
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Figure 2.9: A layer where features are condensed based on the pooling function,
here max-pooling

Figure 2.10: A recurrent neural network. The connections that create the recur-
rence are denoted as red arrows.



Chapter 3

Architecture and
Implementation

In this chapter the architecture and implementation of the classification system
is presented. The system incorporates several techniques of learning with neural
networks, and several techniques concerning feature extraction. Each execution
of the system will combine a feature extraction technique and a neural network
configuration. The combination of the two is selected in a simple graphical user
interface.

The different components of the system will be discussed in detail in the fol-
lowing sections. This will mostly remain conceptual, and readers interested in the
source code can download the project from: https://github.com/hakon0601/

MastersProject.

3.1 Architecture

An illustration of the systems architecture is presented in Figure 3.1. The system
has a module-based architecture, where several independent modules form the
system. This architecture allows further work with the system as several different
techniques can be developed and used with the system without having to rewrite
any of the old modules.

3.2 Data loader

The first module in the system is the data loader. This is a module where data is
loaded into the system and organized in a specific manner, in order to be passed

19

https://github.com/hakon0601/MastersProject
https://github.com/hakon0601/MastersProject


20 CHAPTER 3. ARCHITECTURE AND IMPLEMENTATION

Figure 3.1: The module based architecture of the system developed in this work.
Arrows denote the data flow and require a specific format. A new module would
have to comply with this format for be used with the rest of the system.

to and used by the next module. The data loader module could easily be replaced
by a similar module where continuous audio data is used instead of sound files.
If the system deploys on board a submarine this would be more natural as sound
is recorded continuously.

3.2.1 Data

Raw audio files are the base form of the data used in this work. This data have
been gathered using a sonar simulation system developed by KDA. This acoustical
tool allowed creation of a variety of ships with customizable engine configurations.
Ships could be placed anywhere around the submarine and their relative sound
to the submarine were generated. A total number of 85 sound files of 10 seconds
duration each were gathered and used in this project. A full overview of the
different configurations used in the data set can be found here: http://folk.

ntnu.no/haakongi/Sonar_Data_TSUS_Public.xlsx. As seen here a number of
7 different ship classes were selected and generated in different scenarios.

http://folk.ntnu.no/haakongi/Sonar_Data_TSUS_Public.xlsx
http://folk.ntnu.no/haakongi/Sonar_Data_TSUS_Public.xlsx
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3.2.2 Data expansion

As discussed in Chapter 2 a neural networks ability to learn is highly dependant
on the size and quality of the data set used in training. To expand the data set
further the data was sampled into several shorter samples. A 10 second recording
could be sampled down to 100 unique recordings of 1 second each, where each
sample have some overlap from the previous and next sample. This is configurable
in the system created and options to set the number of samples per file and sample
length have been created. In addition to this the system has an option to create
samples with some random noise for each sample. This technique allows the data
set to be multiplied several times.

3.3 Feature extractor implementation

The main goal here is to process the raw data into a more efficient representa-
tion without loss of key information to the classification procedure. The system
developed in this project incorporates several feature extraction techniques. The
options available are listed in Table 3.1. Each is discussed individually in Chapter
2. One of these are selected for each run in the system. The first four produce a 1-
dimensional vector of features extracted from each sample. This is suitable for the
standard feed-forward neural network and the recurrent neural network as they
require a 1-dimensional vector as input. The last option, spectrogram, is different
and created specially in compliance with the requirements of the convolutional
neural network. This feature extraction technique creates a 2-dimensional plot
of the time-frequency domain and feeds it to the convolutional neural network as
an image.

All third party libraries used and mentioned here will be discussed in Section
3.5.

Feature Extraction Technique

Mel Frequency Cepstral Coefficients
Short-Time Fourier Transformation
Spectral Density Estimation
Wavelet Transformation
Spectrogram

Table 3.1: Available feature extraction techniques in the classification system.
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Mel Frequency Cepstral Coefficients

The implementation of the MFCC algorithm described in Chapter 2 is done by
using Librosa, a third party library for audio and music analysis. The magnitude
and phase of each frequency bin at each time frame is computed and returned to
the neural network. The number of coefficients computed can be selected by the
user during run-time of the system. An increase in the number of coefficients will
give a more accurate representation of the raw data in the same way that a higher
sampling rate will. Finding the ideal number of coefficients to use with a data
set can only be done by experimentation. This experimentation is presented in
Chapter 4. The next chapter presents experiments and findings about a variety
of feature extraction techniques and parameters.

Short-Time Fourier Transformation

The short-time Fourier transformation is similar to the MFCC technique. The
STFT method provided by Librosa accepts parameters and the window size in
the transformation have been exposed in the system and can be set by the user.
This allows the user to test configurations where the data resolution is higher.

Spectral Density Estimation

The spectral density estimation is done using the SciPy library discussed in Sec-
tion 3.5. This package offers an implementation of Welch’s Method presented by
Welch [1967], used to compute an estimate of the power spectral density by divid-
ing the data into overlapping segments, computing a modified periodogram for
each segment and averaging the periodograms. The result is a highly compressed
feature vector.

Wavelet Transformation

To compute the wavelet transformation of a signal, the library PyWavelets is
used. The Discrete Wavelet Transform is computed and the approximation and
detail coefficients for each sample is extracted as the resulting features.

Spectrogram

A spectrogram is presented on image form, or as a 2-dimensional vector. This
makes it suitable to use image recognition techniques as convolutional neural
networks often do. The spectrogram extractor produces an image using the 1-
dimensional data sample and this image is used by the neural network. The
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library Matplotlib is used to do the necessary computation. The system also in-
corporates an option to save spectrogram’s as image files. This was implemented
in order to see if humans were able to differ between the 7 classes, when given
only the spectrogram.

3.4 Neural Network implementation

This goal of this project is to find the most suitable neural network scheme for
the task at hand. Three neural network types have been implemented and each
of these facilitate experimentation with network configuration and parameters
such as network depth, bias, activation functions etc. Each individual network
implementation will be discussed further in this section.

The neural networks created in this project all have the same core functional-
ity. They all inherit an abstract base neural networking class and are all made to
implement the same three methods: construction of the neural network, training
of the neural network, and lastly testing the performance of the trained neural
network.

The neural networks have been implemented using Tensorflow described in
Section 3.5.

Standard Feed-forward Neural Network

The construction of the network structure is done by defining nodes and edges
in the Tensorflow data flow graph as discussed in Section 3.5. A node in the
graph is a variable, in Tensorflow called a Tensor, of a predefined size and type.
The first thing needed in a neural network data flow graph is a way of receiving
input data. This is done by creating a Tensor with the size and data type of
the output from the feature extractor. Therefore the neural network structure is
defined only after the feature extractor has processed the data and the input size
is known.

Every layer in the neural network is created by a Tensor and a mathematical
operation that happens in that particular layer. Tensorflow offers a variety of
activation functions that can be used for this and all the functions proposed in
Section 2.3.1 have been implemented and can be used in each layer. The GUI
allows the user to decide the number of hidden layers, the number of neurons in
each hidden layer and the activation function in each layer. This is possible in
each of the neural network types.

To prevent overfitting in the networks a dropout scheme have been imple-
mented. This is implemented using a Tensorflow component where each output
value from a layer has a probability, called the dropout rate, of being set to 0.
The dropout rate have been exposed to the user and can be changed before each
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run in the GUI. This ensures that the network is not entirely dependant on the
value of a few neurons to be able to classify. When each neuron has a chance
of being dropped out, the network has to adapt to use more neurons to classify
thereby making the system more robust. The dropout scheme is only used during
training and not when evaluating the accuracy of the system. This is done to
prevent overfitting while training, but when testing the system should perform
optimally for classification. The dropout rate is thus set to 0 when testing the
system.

A second technique implemented in all the networks is a bias option. When
calculating the output of a hidden layer, firstly the previous layers output values
are multiplied by the weights leading to the next hidden layer. Then the activa-
tion function is applied to the resulting matrix. Implementing a bias is done by
creating a matrix of constant values for each layer and adding these values to the
resulting matrix just before the activation function is applied. The values of the
bias matrix are not dynamically changed during training of the network. This
bias option allows the network to learn even more complex models.

Recurrent Neural Network

The main difference between the recurrent network and the standard network is
that the recurrent network has a concept of memory. The goal is to create a
system that takes into account how the data changes over time. A submarine’s
environment does not change quickly and this information can be utilized. If a
vessel is classified as a ferry at one point, it is reasonable to assume that the same
ferry can be heard for a while.

To implement this each layer have to keep some information about the pre-
ceding classifications. This is done by creating each layer as a Tensorflow Cell,
a structure created in order to build recurrent neural networks. The approach
implemented in this project is called a Long short-term memory (LSTM) cell.
This cell structure is using additional nodes to keep an internal state as a sort of
memory.

The recurrent network implemented in this project is using the sequence of the
training data instead of random samples from random ships in a random order.
To do this a single recording is divided into several samples and the user specifies
how many samples back in time that is relevant to the current classification.

Since the recurrent network is dependant on a sequence of data that is related
as input, it can not receive random unrelated samples as input. Therefore an
option to use whole files together have been developed, meaning that each 10
second recording is pieced into smaller samples and fed to the network in the
same order as the original recording. The user specifies how many samples back
in time that is relevant to the current classification and thereby decides the length
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of the memory. The total number of samples is less as there is no overlap in these
samples.

Convolutional Neural Network

The construction of a CNN has three steps for each layer. The first is to create
the Tensor containing the filter from the preceding layer. This filter is otherwise
known as the weights and has four dimensions. The filter size is specified by the
user and are used as the size of the first two dimensions of the filter matrix. The
number of attributes gathered from each patch, called channels, are also set by
the user beforehand and this becomes the third and forth dimension in the filter
as input and output channels.

The next step is to create a data flow node where the convolution can happen
and one for activation. This is where features are extracted from patches of the
picture using the filter.

The last piece of each hidden layer is the pooling operation. This is a com-
putation done on the output from the convolution operation. Much like the
convolution procedure it is a quadratic filter used stepwise on the convolution
data. The difference is that the goal of this operation is to reduce the input
stream instead of increasing it. Max pooling and average pooling have been im-
plemented in this project, and is available from the GUI. Max pooling reduces
the data where the pooling filter is applied to the maximum value in the patch.
The same applies to average pooling, but here the average is kept.

When the network is trained and activated it is crucial that the dimensionality
of the following layers match each other to avoid a system crash. The formula used
to calculate the resulting number of data points in each dimension is presented
in Equation 3.1. The first and second dimension, typically the width and the
height of the image, outputted from the first layer is found using this formula.
Using this result, the size of the output from the next layer can be calculated.
This is done through the entire network and the output size of the last network
can be found and used. The formula is also used to calculate how much the data
is reduced after the pooling procedure.

Wn = (Wn−1 − F + 2P )/S + 1 (3.1)

Where W is the dimension and F is the filter size set by the user. S is the stride
or the distance the filter moves and P represents the amount of padding that
is done in this dimension, The stride and padding is set as a constant in the
configuration file.

At the very end of the network a fully connected standard feed-forward layer
is used to reduce the dimensionality of the data before the final classification in
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the output layer. The size of this layer can be set in the GUI.
The network have been implemented to receive data in the form of images,

namely spectrograms as presented in Figure 3.2 and 3.3. The resolution of these
images have to be fixed in order to set the right size to each layer after convolution
and pooling as described in Chapter 2. The resolution used in this project was
set to 512 data points. This was suitable with a sampling rate of 1024 and sample
lengths of 1 second as the resulting spectrogram will be a 32 by 16 pixel image.
The system allows for some change as long as the resulting resolution stays the
same, e.g. a sampling rate of 512 with a 2 second long sample is also allowed.

Figure 3.2: A spectrogram image of a sample taken from a ferry. Only this
information is passed to the CNN.

3.4.1 Testing the networks

The same procedure have been used to test the classification accuracy of all the
different networks. Seven output values are measured after passing through each
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Figure 3.3: A spectrogram image of a sample taken from a destroyer. The de-
stroyer class usually have more activity in the lower frequency bounds than the
ferry class.
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sample. Each of these seven values correspond to a vessel class and if the correct
value has the highest value of the seven, the system has classified the sample
correctly. It is highly important to separate test data from training data in
order to prevent the system from being trained only to classify data used during
training correctly. The ratio of test data contra training data can be set in the
configuration file.

In this project a single sound recording of a specific vessel have been divided
into several samples. The samples derived from the same recording are unique,
but similar to the other samples from the same recording. To use samples very
similar to those trained on as test data could lead to a less robust system than
expected when confronted with new, less similar data. Three different approaches
of separating the entire data set into training and testing data have been imple-
mented. The first is to select random sound recordings and place all samples
related to this recording either in the training or the test set. The second ap-
proach is to use only the last samples from each recording as test data. When
using this approach, a test sample is never surrounded by similar training sam-
ples which is important to the quality of the test. The third and last approach
is simply to select random samples from random recordings and use these as the
test data. This last method have been abandoned in the experimentation in favor
of the second, as the data in the test set often have very similar samples in the
training set.

3.5 External libraries

Tensorflow

All neural networks have been implemented using Tensorflow, an open-source
software library for Machine Intelligence. This is a library where numerical com-
putation is done using data flow graphs. A data flow graph is a concept where
the programmer can prepare a system to process data in a predefined way. A
directed graph is created where every node is a mathematical procedure and ev-
ery edge between nodes is the data flow from one node to the next. Using this
predefined graph to represent all the computation, Tensorflow is able to organize
it in a more efficient way and perform it more efficiently. Another advantage is
that Tensorflow offers GPU support, which completes tedious computation in a
fraction of the time with a decent graphics card.

Librosa

Librosa is a Python library for audio and music analysis. This is the library
responsible for loading the raw audio data from memory and making it possible
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to process it as a variable.

SciPy, PyWavelets and Matplotlib

These three are all mathematical Python libraries used to perform the computa-
tion needed in order to perform the five different feature extraction techniques.
These are all open source libraries.
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Chapter 4

Experiments and Results

The goal of this research was to prove that the sonar classification problem could
be solved using a neural network, and improved by a preprocessing technique.
Since several techniques have been implemented, experimentation is needed in or-
der to find the highest performing solution. The experimentation in this project
aims to find an approximation to the optimal parameter configuration in the sys-
tem. In the first section in this chapter the experimental plan will be presented,
followed by the experimental setup and finally the results from the experimenta-
tion. A conclusion based on these results will be given in the next chapter.

4.1 Experimental Plan

The experimental plan have been created in order to systematically answer re-
search question 4 as presented in Chapter 1.

RQ4 How will different solutions, or combinations of solutions, affect the overall
performance of the system?

There are two types of experimentation that needs to be done in order to
answer this. The first is to combine different neural networks and feature extrac-
tion techniques. The second is tweaking the relevant parameters in search of the
optimal network structure. In order to measure how the change in configuration
affects the overall performance of the system, a benchmark, or a starting value,
for each combination have to be found. This will be done by running the system
with all combinations of FE and NN with a predefined set of default parameter
values. These default parameter values are presented in Table 4.1. The default
values have been selected as a result of experience with the system accumulated
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during development. The aim was to select values that generally worked well in
all the possible combinations.

When all the possible combinations here have been tested with the default
values and results have been recorded, it is time to start tweaking the param-
eters. The focus of this experimentation will be to uncover the best possible
network configuration, therefore only parameter 10 through 19 are tweaked in
the experiments as these will inflict this more than the excluded parameters.

The experimentation will be conducted by changing a single parameter value
at the time, first increasing the value than decreasing it. The results will suggest
whether the value should be increased or decreased further or stay in between
the tested values. This search for optimal values will continue until the posi-
tive change converges. The most promising value will be kept and used when
experimenting with the next parameter.

The downside of this parameter search is that all the parameters in a network
configuration affect each other. The optimal value of a parameter is only found in
relation to the others, meaning that the experimentation with the first parameter,
the learning rate, will yield an optimal value given the other default values. This
value will cascade through the remaining experimentation and all values found
will be affected by this. The sequence of the experimentation is important to be
able to reproduce the results. The experiments start with the parameter with ID
10 followed in order to 19.

All experiments conducted will be measured by the resulting classification
accuracy of the system. The accuracy will be measured two times for each ex-
periment, one for each of the different training-test data separations described
in Section 3.4.1. The parameter value yielding the highest score in combination
with any feature extraction technique will be kept and used in the remaining
experiments. The optimal parameter values found for each network type will
be summarized in the final section of this chapter. The final accuracy of each
combination will also be recorded when executed using these parameter values.

4.2 Experimental Setup

The question arises, how many times does the system need to be tested with
variation in these 10 parameters. The remaining experiments include 2 different
training-test separations, 11 FE-NN combinations, 10 parameters, each expected
to be changed at least 4 times, not including the initial experiment. This results
in a number of 1100 experiments. Some of the parameters are only available
when using specific networks, and thus some experiments are abandoned.

The execution of the experiments will be scripted to run sequentially with an
altered configuration file for each run, searching for a optimal parameter value.
The value leading to the highest accuracy score in any combination will be kept
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and used throughout the remaining experiments. All the results from this exper-
imentation will not be presented here, but the best configurations found for each
neural network and the results when using this configuration is presented in the
next section.

The experimentation environment used was a personal computer where the
GPU computations was done using a NVIDIA Gigabyte GTX 770 graphics card.
The following Table 4.1 presents the default parameters used in the experiments.



34 CHAPTER 4. EXPERIMENTS AND RESULTS

ID Parameter Default Related module

1 Test percentage 0.1 Data loading
2 Sample rate 1024 Data loading
3 Number of samples per file 100 Data loading
4 Length of each sample 1/0.1 sec Data loading
5 Fast Fourier transform window

size
2048 Short-time Fourier transform

6 Enable noise generation False Data loading
7 Number of noisy samples per

sample
2 Data loading

8 Batch size 10 Neural networks
9 Number of training epochs 100 Neural networks
10 Learning rate 0.001 Neural networks
11 Network depth 2 Neural networks
12 Number of neurons in each layer 256, 128 Standard feed-forward and re-

current neural network
13 Activation function in each layer Rectified

Linear Unit
Neural networks

14 Enable bias True Neural networks
15 Dropout keep rate 0.9 Neural networks
16 Time related steps 20 Recurrent neural network
17 Filter size used in between each

layer
5, 5 Convolutional neural network

18 Channels extracted from each
patch in each layer

32, 64 Convolutional neural network

19 Densely connected layer size 128 Convolutional neural network
20 Padding 2 Convolutional neural network
21 Pooling filter size 2 Convolutional neural network
22 Pooling stride 2 Convolutional neural network

Table 4.1: All configurable parameters and their default value. Parameter 4 have
been set to 0.1 for the recurrent network combinations only, as this require shorter
related samples.

4.3 Experimental Results

The first results presented here is the classification accuracy of all possible FE-
NN combinations when ran with default values. This is recorded in the crossing
cells of Table 4.2. Here the end of each file is used as test data for the feed-
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forward and convolutional network, and the entire file for the recurrent network.
This initial value is used to demonstrate how the system is improving as a better
configuration is found.

Feed-forward Recurrent Convolutional
No Feature Extraction 73.76 42.86 X
Short-time Fourier Transform 91.04 59.21 X
Wavelet Transform 74.94 45.71 X
Mel-frequency Cepstral Coefficients 95.29 71.43 X
Spectral Density Estimation 94.94 68.57 X
Spectrogram X X 45.14

Table 4.2: Initial test of classification accuracy with default parameters. X means
that the combination is incompatible and no experimentation have been done
here.

The results from the parameter search is presented in Table 4.3. Here only the
10 parameters experimented with are shown and the parameter ID correspond
to the ID given in Table 4.1. The results show that several of the parameters in
the final configuration are the same in all the network types. The results show
that the system is performing better when using a relative shallow 5 layer net-
work, including the input- and output-layer, than deeper more complex network
structures. This observation will be discussed further in the next chapter.

ID Feed-forward Recurrent Convolutional
10 0.0001 0.001 0.0001
11 3 3 3
12 512, 256, 256 512, 256, 256 X
13 Rectified Linear Unit Rectified Linear Unit Rectified Linear Unit
14 False False False
15 0.9 0.9 0.9
16 X 10 X
17 X X 5, 5, 5
18 X X 32, 64, 64
19 X X 1024

Table 4.3: In this table the best found configuration for each neural network is
shown. These configurations are used in combination with the FE techniques
and the accuracy of the combinations with this configuration can be reviewed in
Table 4.5.
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The concluding result in this project is the classification accuracy achieved by
the network in combination with feature extraction, when using the found optimal
configuration. These results are presented in two tables where the first, Table 4.4
contains the accuracy found when the testing is done on whole files. The second
and final summary of the results gathered in this project is presented in Table
4.5. The classification accuracy of the combinations running with the found
optimal configuration and the preferred training-test data separation, namely
using samples gathered from the end of the recordings as test data.

Feed-forward Recurrent Convolutional
No Feature Extraction 38.71 42.86 X
Short-time Fourier Transform 45.29 54.29 X
Wavelet Transform 34.14 48.57 X
Mel-frequency Cepstral Coefficients 53.43 77.14 X
Spectral Density Estimation 48.86 42.86 X
Spectrogram X X 46.29

Table 4.4: The results when the system is ran with optimal configuration. Entire
files are used as test data.

Feed-forward Recurrent Convolutional
No Feature Extraction 69.22 42.86 X
Short-time Fourier Transform 90.24 54.29 X
Wavelet Transform 65.65 48.57 X
Mel-frequency Cepstral Coefficients 97.29 77.14 X
Spectral Density Estimation 94.82 42.86 X
Spectrogram X X 85.17

Table 4.5: The classification accuracy of each combination ran with the best
found configuration for each network type. The highest scoring accuracy found
was with the use of MFCC and a standard feed-forward network at 97.29%. The
end of each file is used as test data.

The configuration found and used here achieved 97.29 % classification accu-
racy when combining a standard feed forward network and the MFCC feature
extraction technique. This is exactly 2 % better than the same combination
used with default parameters, showing the importance of the parameter search.
This configuration did not outperform the default configuration when used in all
FE-NN combinations, but achieved the highest classification accuracy in a single
combination.
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The recurrent neural network are only tested with the whole files as test data,
as the sequence of the samples are used for training. Testing on random samples
or only the end of the files would result in a system trained for sequential clas-
sification and tested without utilizing this information. The other two network
types have also been tested with this separation in order to compare the results
from the recurrent network.
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Chapter 5

Evaluation and Conclusion

This chapter presents an evaluation of the research and the system developed.
Then the conclusions drawn from the results presented in Chapter 4 are discussed
in Section 5.2. This is followed by a summary of the contributions given in this
thesis in Section 5.3. Lastly the recommendations for how to proceed with the
further work are given in Section 5.4.

5.1 Evaluation

In Chapter 1, the goal of this project was defined as follows:

Goal Develop a system where a signal preprocessor and a neural network can
work together to classify marine vessels based on their acoustic signature.

To achieve this goal a system was developed and is presented in detail in
Chapter 3. In this system a number of different techniques were implemented,
both related to neural networks and to feature extraction.

The preprocessing problem were more often than not solved by using a time-
frequency transformation to transform the data into the frequency-domain. This
yielded features about the frequency bands found in the data, and has proven to
be a powerful way to extract informative features from sound data. To confirm
this, all the networks were trained using raw unprocessed data, and the networks
ability to classify correctly were tested. It was found that the classification ac-
curacy improved greatly when a preprocessing technique was introduced. This
was the general case for all the implemented techniques, except in some cases
where the wavelet transformation was used. This proved to be the least efficient
technique tried in this project. Using the Mel-frequency Cepstral Coefficients

39
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technique with the best found network configuration improved the classification
accuracy by 28.07% in comparison with no feature extraction technique.

The solutions found to the classification problem were more diverse. They
differed in the complexity of the data to be classified and the computational cost
of training. The networks have been implemented to handle the output data
from the preprocessing techniques, without knowledge of how the data have been
processed. This is a great advantage with neural networks, it is possible to feed
them unstructured data from the feature extractor, and the network itself will
be able to recognize the identifying patterns.

To combine the two components have shown to be less problematic than
anticipated as the neural networks is found to be very flexible when it comes
to what kind of data they can process and recognize features in. The project
have been evaluated through experimentation presented in Chapter 4. The goal
was to find combinations suitable for a task, and the experimentation has shown
that the results vary widely between different combinations. The variation in
classification rate suggests that some combinations are better suited than others.
The combination yielding the highest classification accuracy was the combination
of a MFCC preprocessor and a standard feed-forward neural network with three
hidden layers. The final classification accuracy was 97.29%.

5.2 Discussion

As a result of the research done in this project a system have been developed,
able to differentiate between 7 different vessel-types based only on the sound they
emit in water. The system have been used to systematically search for the best
combinations between feature extraction technique and neural network config-
uration. This system was made as a prototype, in order to test the feasibility
of the techniques applied on sonar data. The purpose have been tested to the
extent where it is possible to identify techniques more suitable than others.

The combination found with the highest accuracy are not the most complex
one, using a standard feed-forward network with only three hidden layers. This
could be due to the complexity of the classification task. The complexity needed
in a network is typically lowered when preprocessing of the data is performed.
The aim of the preprocessing is to extract only the informative features from a
larger data set, and remove redundant information leaving the network with less
data to process.

The experimentation also show a great difference in accuracy when using
different training-test data separation schemes. When using entire files as test
samples, the accuracy drops significantly in all tests. This could indicate that
the data set is too small, and the difference in each recording is too large. When
given access to more raw sonar data the system would be able to use this for
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training and become more robust and capable of classification of further classes.

The feature extraction techniques implemented have been found to be state-
of-the-art solutions to environmental sound processing. The techniques were not
specialized to handle the sonar data recorded in deep water, but selected for their
ability to extract features from sound recorded in a variety of different scenarios.
The results presented in Chapter 3 points to the conclusion that the techniques
implemented are suitable to use with the sonar data as the results are improved
by 28.07% when using the best network configuration found.

The MFCC feature extraction technique was in the structured literature re-
view discovered mainly for it’s applications in speech recognition systems. It was
suitable for this task as it was developed as a technique specializing in extraction
of features from sound rich in modulation, like speech. The technique was kept
after reviewing Uzkent et al. [2012] and Cowling and Sitte [2003] where the tech-
nique were successfully used to analyze environmental sounds. The data used in
this project is similar to environmental sounds as continuous noise is present, but
the success of the MFCC method suggests that the identifying characteristic of
each vessel type lies in the modulation of the sound.

Of the three neural network types used in this project, the feed-forward net-
work were most commonly recommended in the literature review. This could
be because many of the studies found were studies not primarily in the field of
AI, but in the field of audio analysis. This network implementation is the least
advanced of the three, but it still achieves the highest scores in the experimen-
tation. The recurrent network achieved a classification accuracy of 77.14% at
it’s highest configuration. When files are divided into smaller sequenced samples
this is the highest score achieved, suggesting the potential of the recurrent neural
network. Interestingly this is also in combination with the MFCC method, once
again indicating that this is the most suitable feature extraction technique for
sonar data.

The most complex neural network model implemented was the convolutional
neural network. To utilize this kind of network the data fed into it have to have
a structure where there is a relation between data points close to each other. A
structure where this is typically the case is images. Using a spectrogram as the
input of this network showed successful with an achieved classification accuracy
of 85.17%. In an on board scenario, the spectrogram resolution could be set much
higher as continuous data is recorded and can be processed into a spectrogram
with the desired resolution in time. A spectrogram of higher resolution could
require a more complex convolutional network structure in order to be interpreted
more accurately.

The system developed was intended to assist the sonar operator by searching
every direction at once and quickly suggest the class of the surrounding vessels.
This has proven to be feasible as the system is able to suggest a class, given some
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input data, with a very high accuracy in a fraction of a second. The time used to
train the system is dependant of the size of the training data set used, but is only
required once before the system becomes capable of classification. The operative
system on board could then make classifications continuously in all directions.

5.3 Contributions

Based on our research goals and questions presented in Chapter 1, the contribu-
tions made in this project can summarized in the following way:

The main contribution is the system developed, able to classify 7 different
maritime vessels based on their emitted sound with an accuracy of 97.29%. This
system is also able to test a variety of configurations for research purposes. Three
different neural network types have been implemented along with five signal-
processing feature extraction techniques. Dropout, bias, noise and data loading
have are also made available in the system.

In order to develop a system specialized in underwater environmental sound
both the fields of signal processing and artificial intelligence is explored and the
background information collected is summarized in Chapter 2. The background
information have been gathered through a structured literature review performed
by the author of this thesis, Gimse [2016]. This research have been the second
contribution done in this project.

5.4 Future Work

This section propose possible improvements to the system and the project. The
system have been built mainly for research purposes, but the results and analysis
can be used in order to create a live system on board a submarine. As the project
has a modular architecture, it is possible to develop new components to handle
this with the existing system and even develop new feature extraction techniques
and networks that can be used with the same system.

5.4.1 Data size

Training with neural networks require a large data set to train with. The data set
used here were only a small number of recordings divided into shorter samples.
The number of samples were initially not large enough, but this was solved by
allowing each sample to have some overlap to another sample. The system would
greatly improve if this was not necessary as many similar samples can lead to
overfitting in the model.
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5.4.2 Recurrent network

The recurrent neural network is designed to perform best when the task requires
memory. To arrange this classification task in such a way, the recordings were
divided and used in sequence. This made every sample the recurrent network
received very small and classification thus became more inaccurate. This may
be the reason the recurrent neural network did not perform as good as the other
networks. In a more realistic continuous data scenario this would not have been
a problem. This improvement is recommended for future work.

5.4.3 Speed and Direction

The system implemented does not have a concept of the relative speed and di-
rection of the vessel it is trying to classify. This is a very important part of
submarine navigation and with some further work, and training data where this
is labeled, it would be possible to suggest this information as well without any
additional data than the sonar data recorded continuously on board.
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Appendix A

Acronyms

AI Artificial Intelligence

NN Neural Network

FE Feature Extraction

STFT Short-time Fourier Transformation

MFCC Mel-frequency Cepstral Coefficients

LSTM Long Short-term Memory
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