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Abstract

Noise is introduced as a means to ensure security of encryption schemes
in general, and fully homomorphic encryption schemes in particular. Strate-
gies to control the growth of this and thereby guarantee correct decryption
are presented. These strategies are then applied in two similar fully ho-
momorphic encryption schemes, and the requirements of sufficient and
successful noise reductions are discussed in both. It is shown that this
forces the parameters of either scheme to satisfy certain bounds, which
compromises the security of one scheme, whilst it is of no great conse-
quence with regards to security of the other.

Sammendrag

Støy introduseres som et hjelpemiddel for å sørge for sikkerhet i krypter-
ingssystem generelt, og særlig i fullstendig homomorfe krypteringssystem.
Strategier for å kontrollere veksten av støyen og dermed garantere for kor-
rekt dekryptering presenteres. Disse strategiene anvendes dernest i to lig-
nende fullstendig homomorfe krypteringssystem, og kravene for tilstrekke-
lig og vellykket støyreduksjon diskuteres i begge systemene. Det vises at
dette krever at parametrene i systemene tilfredstiller visse skranker, som
svekker sikkerheten i det ene systemet, mens det ikke er av nevneverdig
konsekvens med hensyn til sikkerheten i det andre.
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1 Introduction

We all have secrets, and although they may range from trivial to vastly compli-
cated, in one sense they are all perfectly simple: if you do not want someone to
know it, do not tell anyone. Reality is rarely this simple though, as certain se-
crets must be shared, but importantly not with everyone. Is it possible to make
such a sharing of secrets safe from eavesdroppers? Stated somewhat differently:
is it possible to ensure that only the people you trust with a secret has access
to it?

This is of course not a new problem, and fortunately there is a solution:
encryption, scrambling the message in such a way that only those who know
how to read it may do so. For anyone else it will merely seem like gibberish.
Metaphorically, this means putting the message into a solid box that only the
receiver knows how to unlock and an adversary will have a hard time breaking
open. Although an untrusted messenger knows that something is being sent,
the shape of the box should tell him absolutely nothing about the content of it.

However, what if what you are sending is no longer a message to be read by
someone you trust, but something to be processed by an untrusted recipient?
Could you provide a way for someone to process it without gaining access to
it? Continuing the metaphor of locked boxes containing secrets, the solution of
this problem is creating a box only you know how to open with gloves leading
into it, so one may work on the contents, but not remove it from the box. If the
locked box only some know how to open corresponds to encryption, this box
allowing processing of, but denying access to, the box’s content corresponds to
fully homomorphic encryption (FHE).

1.1 Fully Homomorphic Encryption

The goal of fully homomorphic encryption is to allow computation to be per-
formed on encrypted data without decrypting it. This will make it possi-
ble to perform useful tasks on confidential data being stored in an untrusted
environment without breaching the confidentiality. Suppose we have two ci-
phertexts c1, c2 encrypting m1,m2 respectively. Any encryption scheme such
that Dec(c1 + c2) = m1 + m2 is said to be homomorphic with respect to
addition, and is similarly referred to as homomorphic wrt. multiplication if
Dec(c1c2) = m1m2. If the encryption scheme exhibits both these properties, it
is fully homomorphic. Informally this means that evaluating any ciphertext in
a function f and then decrypting it provides the same result as first decrypting
a ciphertext and then evaluating it in f . For a given ciphertext c we must in
other words have Dec(f(c))=f(Dec(c)).

However, seeing as we are evaluating bit-strings, i.e. m ∈ {0, 1}∗, any func-
tion may be expressed as a Boolean circuit using only AND and XOR-gates.
Using this circuit, we may evaluate the string(s) bit-wise, where a XOR-gate
corresponds to addition and an AND-gate corresponds to multiplication. Hence,
instead of saying a cipher- or plaintext is evaluated wrt. a function f , we may
refer to it as being evaluated in a Boolean circuit. This means that demanding
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that any function may be applied to an encrypted plaintext and its decryp-
tion still being correct is equivalent to it being possible to pass the ciphertext
through any Boolean circuit of arbitrary depth and it still giving the correct
decryption afterwards.

The possibilities of fully homomorphic encryption are many, ranging from
tailored personal advertising without the loss of privacy to the analysis of medi-
cal data without breaching of confidentiality, the latter has in fact already been
performed [3, 5]. However, there are certain problems regarding the current
schemes created, the main one being inefficiency. Because although all available
schemes run in polynomial time, this does not necessarily make them particu-
larly fast or practical. One of the reasons these schemes are rather slow is due
to the difficulty of handling noise, which is used to conceal the encrypted mes-
sages from adversaries. Informally, the more a ciphertext is processed, the more
noise is added to it. The risk is that if too much noise is added the ciphertext
will no longer be correctly decrypted, making it worthless. To reduce this risk
the scheme must continuously reduce the level of noise during the evaluation
of a circuit, without compromising the security or correctness of the scheme,
wherein the challenge lies.

1.2 Structure of Paper

This paper will study how two fully homomorphic encryption schemes handle the
generated noise, as well as the security of these schemes. First noise and what it
is, the necessity of it and the problems related to it will be discussed. Then two
different and widely used techniques for reducing noise in ciphertexts, modulus
switching and bootstrapping, are discussed. To make these discussions more
relatable, a fairly simple example of a fully homomorphic encryption scheme is
used throughout. As it merely serves as an example, properties not pertaining
to the processes described will not be discussed.

Following this, background regarding lattices, ideal lattices and problems
related to these structures are presented, as the two main encryption schemes
of the paper are based on the difficulties of solving these problems.

Next, the two main schemes are presented. The first follows the blueprint
of NTRU, but is based on slightly different assumptions to allow for homomor-
phic operations, which will be shown to render the scheme insecure. Seeing as
this makes the scheme practically unusable, the efficiency of this scheme will
not be discussed. The final encryption scheme is based on a fairly new mathe-
matical problem known as RLWE, and is considered one of the more promising
candidates for a practical implementation of FHE. The schemes are based on
articles [21] and [6] respectively, and have been chosen as they are two of rather
few fully homomorphic schemes that have actually been implemented [13, 3].
In addition, there are both key similarities and differences between them, as
will be discussed in the penultimate section on comparison before the thesis is
concluded.
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1.3 Notation

All vectors are row vectors and will be denoted with bold lower case letters:
v,w, meaning any column vectors are denoted vT ,wT , whilst matrices will be
denoted with upper case bold letters: A,B. Elements of either a vector, a
matrix or a ring (which in our case will most often be a polynomial ring) will
be denoted with a lower case letter in italics: a, b. Vectors will be written as
a = [a1, a2, . . . , an], whereas sets will be denoted by {0, 1, . . . }.

Multiplication of integers, or an integer and a vector or ring element is denoted
by simple juxtaposition: ab, av, af(x). Multiplication of a vector and a matrix
will be denoted by a single dot: v·A,A·wT and finally, the multiplication of two
polynomials will be denoted by an asterisk: f ∗g. Furthermore, this polynomial
multiplication always takes place in some polynomial ring R = Z[x]/(xn + 1),
and the main motivation of the multiplicative notation is to serve as a reminder
of this during computations. It should be clear from the context whether or not
a given element is a polynomial, and any polynomial f will therefore, with very
few exceptions, not be written f(x). Moreover, n, k, p and q will always denote
integers. Let v,w be vectors of the same length k over a polynomial ring R. We
may then define the dot product of these two vector as 〈v,w〉 =

∑k
i=1 vi∗wi ∈ R.

We will operate with the two following modular reductions: p = r mod q de-
notes reducing p modulo q to r ∈ (−q/2, q/2], whilst p = r mod q denotes the
modular reduction to r ∈ [0, q − 1]. Note that the only difference in the nota-
tion is the underlining of the first mod. In both cases, we may also write p ≡ r
mod q or p ≡ r mod q if we wish to stress that p is equivalent to r modulo q:
p = r + kq. This generalizes to vectors and polynomials.

‖ · ‖ denotes the Euclidean norm: ‖v‖ =
√
v2

1 + v2
2 + · · ·+ v2

n , whilst ‖ · ‖∞
denotes the infinity norm: ‖v‖∞ = max

i
{|vi|}. Supposing f is a polynomial,

‖f‖, ‖f‖∞ refers to calculating either norm of the coefficient vector f .

Any logarithm log will be base 2.

For any set S, x← S refers to drawing x from S uniformly at random. For any
probability distribution χ, x← χ refers to sampling x according to χ.
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2 Noise

Noise in encryption schemes may be viewed as a bounded element of randomness
in the scheme added to the message in some way, so that it is easy to remove and
unveil the original message for trusted parties holding some extra information,
and concealing the message from adversaries. However, if the randomness added
to the message were to exceed the given bound, decryption might not be correct.
Noise may be viewed as a somewhat brittle form of randomness: if too much
is used to cover a message, it might collapse and make it impossible to recover
said message.

If randomness or noise is applied in the encryption it is not deterministic,
but rather probabilistic when viewed as an algorithm, meaning a message m
may have several different encryptions. The necessity and advantages of this
property is best understood when it is lacking, and such a scheme, namely the
simplest form of RSA, will be presented. Next an encryption scheme using noise
in its encryption will be presented, and also the problems this may cause if the
scheme is to be fully homomorphic.

2.1 The Necessity of Noise

For the construction of an RSA encryption scheme one needs two primes, p and
q, as well as their product n = pq. Based on this, one computes the Euler
totient function φ(n) = (p− 1)(q− 1). Finally, we generate e and d by ensuring
ed = 1 + kφ(n), i.e. ed ≡ 1 mod φ(n) [23].

The public key of this system is the pair (n, e), whereas the secret key is
(n, d). Given these pairs, we may now define encryption and decryption of the
scheme. For a message m ∈ {2, . . . , n− 1} we have:

Enc(m) = me = c mod n Dec(c) = cd mod n,

which works because

cd = (me)d = med = mkφ(n)+1 = m mod n.

The security of RSA hinges on the hardness of factoring large numbers into
their prime factors. This means that, given n, it should be difficult to find its
prime factors p and q. If an adversary A is able to find this factorization of n,
she may easily calculate φ(n), making it possible to derive e−1 = d mod φ(n),
as she has access to the public key, and therefore e. If an adversary is able to
find d within reasonable time, the scheme is obviously not secure.

However, this is not the only way RSA may have its security compromised;
it is also highly susceptible to a chosen plaintext sttack (CPA), meaning that
if an adversary is presented with two messages m0,m1 and the encryption of
one these, cb, providing the adversary with encryptions of any message she
desires gives her a significant advantage in guessing the value of b. For a formal
definition of this security notion, see Definition 6.7 in Subsection 6.6. Suppose
for example that RSA is used as an encryption scheme over a very small message

4



space, e.g. {yes, no}. Seeing as RSA is a public key encryption scheme, A has
access to the public key (n, e) and may thus encrypt {yes, no} herself. This
allows her to know with full certainty what any ciphertext decrypts to without
needing to actually decrypt it, and certainly without factoring n.

The reason CPA is an effective attack, even when the message space has
much greater cardinality than 2, is because the ciphertext is entirely dependent
on the plaintext. In order to make the scheme secure against such attacks
this cannot be the case: we need the encryption algorithm to output different
ciphertexts even if we run it on the same plaintext. This is done by introducing
an element of randomness in the encryption. There are several examples of such
schemes, one of which being ElGamal [23]. This also has the property of being
homomorphic with respect to multiplication, but not addition, as is also the
case with RSA.

It is worth mentioning that these schemes typically do not need to impose
restrictions on the randomness used to encrypt to ensure correct decryption,
so there is no risk of incorrect decryption due to too much randomness being
added to the plaintext in these schemes. This is a stark contrast to the schemes
presented throughout this thesis, which have to rely on noise to ensure the
scheme is homomorphic with respect to both addition and multiplication.

2.2 The Problem with Noise

The following scheme [8] is an example of a scheme relying on noise to achieve
a probabilistic encryption algorithm. It should be noted that this property in
and of itself does not make the scheme secure, but it is a decent start.

KeyGen(µ): The key q is an odd integer chosen uniformly at random from
some interval q ∈ [2µ−1, 2µ), so that the binary representation of q
has length µ.

Enc(q,m): To encrypt the bit m ∈ {0, 1} set c = qe+ 2r+m where the integers
r and e are chosen at random in some prescribed intervals, such that
|2r| < | q2 |.

Dec(q,c): (c mod q) mod 2.

The reason we insist that |2r| < | q2 | in the encryption of m is that this
ensures c ∈ (qe− q

2 , qe+ q
2e and thus that (c mod q) = 2r+m. However, if the

term 2r grows large enough, this will no longer be the case, as this will result
in c mod q = 2r + m − kq for some k ≥ 1. When this happens, we have no
guarantee that the parity of c mod q equals the parity of m, and by extension
that Dec(q, Enc(q,m))= m. The noise of the ciphertext is in this case said to
have become unmanageable.

This is not a problem in and of itself when encrypting, simply restrict the
interval from which r is drawn to (−q/4, q/4) and we are ensured to have a
correct decryption. The problem arises with the realization that this simple
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scheme is fully homomorphic if the noise is kept manageable: for two ciphertexts
c1 and c2, we have

c1 + c2 = (qe1 + 2r1 +m1) + (qe2 + 2r2 +m2) = qe′ + 2r′ + (m1 +m2),

c1c2 = (qe1 + 2r1 +m1)(qe2 + 2r2 +m2) = qẽ+ 2r̃ +m1m2,

where the calculation of e′, r′, ẽ and r̃ are straightforward, but rather uninter-
esting.

What is interesting however, is the growth of r′ and r̃: r′ = r1 + r2, whereas
r̃ = 2r1r2 + r1m2 + r2m1. Unsurprisingly, the noise resulting from a multipli-
cation is typically much larger than the noise resulting from addition, which
also applies to other homomorphic encryption schemes. The problem is that
no matter how small a noise we choose to introduce in the encryption of a bit
m ∈ {0, 1}, the processing of this ciphertext will eventually cause the noise to
grow until it is no longer manageable if the circuit is deep enough. Thus, this
scheme is only somewhat homomorphic, meaning we may only evaluate Boolean
circuits of a certain (in this case rather shallow) depth, but it is impossible to
evaluate circuits of arbitrary depth. In order to make this scheme fully homo-
morphic, we need to find a way to reduce the noise in a ciphertext without
sacrificing the correctness of the scheme or its security.

2.3 Modulus Reduction and Switching

One way to allow for noise reduction in the scheme in question is to introduce
a ladder of moduli and reduce the noise of a ciphertext by gradually stepping
down this ladder. This requires altering the symmetric scheme of the previous
subsection, and the resulting scheme is also somewhat homomorphic encryption,
but allows for evaluation of deeper circuits, as well as being asymmetric.

KeyGen(µ, γ, ρ, τ): Let the sk = q be an odd µ-bit integer. For i = 0, 1, . . . , τ ,
draw ei ← [0, 2γ/q), ri ← (−2ρ, 2ρ), xi = qei + ri. Relabel so that x0

is the largest, but redraw unless x0 is odd and x0 mod q is even.
Finally, for i = 0, 1, . . . , γ generate the following integers: e′i ←
[2γ+i−1/q, 2γ+i/q), r′i ← (−2ρ, 2ρ), x′i = 2(qe′i + r′i). The public key
is the set consisting of all the elements with approximate gcd q:
pk = {x0, x1, . . . , xτ , x

′
0, x
′
1, . . . , x

′
γ}. Output: sk, pk.

Enc(pk,m): Select a random subset S of {x0, x1, . . . , xτ}, a random integer
r ← (−22ρ, 22ρ) and output c = (m+ 2r + 2

∑
xi∈S xi) mod x0.

Dec(sk, c): Output m′ = (c mod q) mod 2.

The parameters of the scheme are all functions of the security parameter λ:
µ : Bit-length of the secret key q, which is the approximate gcd of the

integers of the public key.
γ : Bit-length of the integers {x0, x1, . . . , xτ} in the public key.
ρ : Bit-length of the distance between any integer in the public key and an
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integer multiple of the secret key q.
τ : The number of integers in the subset {x0, x1, . . . , xτ} of the public key.

These parameters must be set to meet certain constraints to ensure both the
security of the scheme and its homomorphic properties. See [8] for details.

Note that the public key may be viewed as consisting of two subsets, namely
{x0, x1, . . . , xτ} and {x′0, x′1, . . . , x′γ}, where only the elements of the first set
are used during encryption. These elements all have bit-length γ, whereas the
elements of the latter subset all have bit-length greater than this, except x′0.
The bit-length of a ciphertext will at most double from any single operation,
hence any ciphertext after any operation cannot be larger than 2x′γ . Therefore,
whenever a ciphertext c grows larger than 2γ , we will set cγ+1 = c and perform
the following operation for i = γ, γ − 1, . . . , 1, 0:

ci = ci+1 mod x′i

and set c0 to be the new ciphertext c′, which will have bit-length no more than
γ. This is the gradual modular reduction and every modular operation involves
the subtraction of a small multiples of x′i. Thus, only a small multiple of 2r′i is
added to the ciphertext modulo q, meaning the modulus reduction only adds a
small amount of noise to the ciphertext.

Similar ideas of a gradual reduction using moduli is used in several fully ho-
momorphic schemes, including the two presented in this paper. The common
idea of all three schemes is that the encryption of a message consists of two
layers of noise: the outer layer in this scheme is being controlled by x0, and
thus indirectly q, while the inner layer is controlled by the plaintext modulus,
namely 2. The key is to ensure that these layers do not interfere with each
other: the inner layer must not grow so large that it is affected when removing
the outer layer of noise.

This is why we insist |2r| < q/2 in the original symmetric scheme. A con-
sequence of this is that it does not matter, with regards to correctness of the
scheme, how many multiples of q is added to the ciphertext, as this does not
interfere with the inner layer, and therefore does not affect the risk of incorrect
decryption. This is why we need not place any restrictions on e in the symmetric
encryption scheme presented in Subsection 2.2.

No matter how small the inner layer of noise is, though, it will eventually spill
into the outer layer for any circuit of a certain depth. It is therefore common
to set the modulus related to the outer layer much larger than the plaintext
modulus, to allow for some homomorphic operations to be performed before the
noise might grow unmanageable and must therefore be reduced somehow.

However, whilst this integer scheme uses modulus reduction to decrease the
outer layer of noise by stepping down a gradually decreasing modular ladder,
where the smallest ciphertext modulus is always x0, this is not the strategy of
the two other schemes presented in this paper. In these, modulus switching is
used to decrease the inner noise, at the expense of the size of the outer modulus.
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That is: as opposed to gradually reducing the outer layer down to a constant
smallest modulus, the ciphertext modulus is actually replaced, or switched, with
a smaller one. This is done, roughly, by selecting a gradually decreasing ladder of
moduli qk > · · · > q1 > q0, and performing a modulus switching on a ciphertext
c mod qi is simply setting c′ ≈ qi−1

qi
c.

The main difference between the two schemes is that qk is a composite in the
first scheme, so the decreasing ladder of moduli quite simply starts with qk, and
one step down the ladder is a division by a factor of qk equal to qi/qi−1. The
various moduli of the second scheme share no such relationship. In either case,
the procedure roughly divides the inner noise by a factor of qi/qi−1, but note
that the ratio between the noise level and the outer modulus is the same, or
might even be smaller than prior to the modulus switching. It might therefore
seem slightly counterintuitive how this helps manage the noise. It is important
to note that the absolute value of the noise is also important, as well as its ratio
to the ciphertext modulus, as this governs how rapidly the noise grows, which is
especially important during multiplication. Ensuring that the absolute value of
the noise is low allows for a stunted noise growth, allowing more multiplications
to be performed before the noise grows unmanageable.

By careful tuning of the modular ladder, one might actually achieve a leveled
fully homomorphic encryption scheme: a scheme in which any circuit of specified
depth may be evaluated by choosing a long enough ladder. However, such a
scheme is unable to evaluate any circuit of unspecified depth without additional
ways of reducing the noise. Also, the longer the ladder, the larger the initial
modulus has to be, which typically comes at the expense of having to increase
the other parameters as well to ensure the scheme is secure. This might have
a negative impact on the efficiency of the scheme as a whole. Thus, whilst
a leveled fully homomorphic encryption scheme may sound practical, it might
actually be less efficient than fully homomorphic schemes. All such schemes so
far rely on the rather expensive bootstrapping operation in order to be able to
evaluate any given circuit, without needing its depth specified in advance.
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3 Bootstrapping

The main idea of bootstrapping is to consider the decryption algorithm of any
somewhat or leveled homomorphic encryption scheme as a function with a ci-
phertext and the secret key as input, which outputs the original message. With
this perspective in mind, it is possible to evaluate the decryption circuit ho-
momorphically if one is provided with an encryption of the secret key. This
recrypts the ciphertext and will ideally result in an encryption of the same
message, only with less noise, to allow further homomorphic evaluation of the
ciphertext. Thus, any circuit of any depth may be evaluated: when the noise
is about to become unmanageable, simply recrypt the ciphertext to bring the
noise down and continue evaluation.

The standard way of showing that a scheme is bootstrappable is to de-
fine a set of circuits C the scheme is able to evaluate homomorphically (i.e.
Dec(sk, C(Enc(pk,m))) = C(m)) and ensure that the growth of the output of
the evaluated circuit C(c) is polynomial in the security parameter for any ci-
phertext c. These two requirements are known as correctness and compactness,
respectively, and a scheme is bootstrappable if the decryption circuit belongs to
this set.

The trouble is that this often requires changes to be made to the decryp-
tion circuit, as is the case of our example scheme, where the circuit has to be
”squashed”: extra information about the secret key is published in the public
key to allow for a shallower decryption circuit. It may then be shown that the
slightly augmented circuit is both correct and compact, hence allowing boot-
strapping to be performed [8].

However, this is not the only possibility as far as bootstrapping is concerned; as
noted in [2], to bootstrap a ciphertext may be reinterpreted as preserving the
meaningful coefficient of a ciphertext (according to some basis) and mapping
the others to zero. This is based on the idea that any ciphertext may be viewed
as consisting of one meaningful coefficient with the rest of the coefficients being
mere noise terms in the decryption basis, defined in [2]. The procedure, which
will be sketched here and applied later, isolates the message-encoding coefficient
by applying the trace function and performs a homomorphic rounding on this
coefficient to recover the message.

The following sketch applies to encryption schemes over the 2n′th cyclotomic
ring, where n is a power of two. This is isomorphic to the polynomial ring
R = Z[x]/(xn + 1) by identifying any abstract element ω of order 2n over Q
with x. Just as with the example scheme, we have two layers of noise controlled
by two moduli: the ciphertext modulus q and the plaintext modulus p. However,
unlike the example scheme, we will allow the ciphertext to lie in an extension
ring of the message space Zp, namely Rq = Zq/(xn + 1). This is an extension
of degree n, meaning there are n automorphisms ϕi on R that fix Z pointwise,
defined by ϕi(ω) = ωi for i ∈ Z∗2n. In the ring R, this corresponds to evaluating
the polynomial a(x) = a0 + a1x+ · · ·+ an−1x

n−1 at xi: ϕi(a(x)) = a(xi). The
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trace function Tr = TrR/Z : R→ Z is defined as the sum of these automorphisms:

TrR/Z(a) =
∑
i

ϕi(a) ∈ Z.

Note: if a ∈ Z, then TrR/Z(a) = na.
Suppose the input of the bootstrapping procedure is a ciphertext c ∈ Rq

encrypting a message m ∈ Zp under a secret key sk such that

Dec(sk, c) =
q

p
m+ e mod q = v

for moduli p � q, gcd(q, p) = 1 and some manageable error term e ∈ Rq,
meaning b qpm + eep = bpq ( qpm + e)e = m. The bootstrapping consists of the
following steps:

1. Convert the ciphertext c to a ciphertext c′ over a larger ring R′Q encrypting
a plaintext u′ ∈ Rq′ for q′ = nq such that u′ ≡ v mod q. This procedure
works in the following substeps:

(a) Reinterpret c as a noiseless encryption of v = q
pm + e ∈ Rq, i.e.

regarding v as a plaintext: this requires both the plaintext and ci-
phertext ring to be Rq.

(b) Change both the moduli to q′ = nq, which will yield a noiseless
encryption of some u′ ∈ Rq′ such that u′ ≡ v mod q.

(c) Convert to a noiseless ciphertext c′ that still encrypts u′ ∈ Rq′ , but
using a larger ciphertext ring R′Q for R′ = Z/(xN + 1) and modulus
Q � q′. This simply involves embedding the ring R into R′ and
scaling the ciphertext by a factor of Q/q′.

2. Homomorphically apply the scaled trace function 1
nTrR/Z to the encryp-

tion of the ”new” plaintext u′ ∈ Rq′ to obtain an encryption of the plain-
text

u =
1

n
TrR/Z(u′) =

q

p
m+ ē ∈ Zq,

where the error term ē now lies in Z. Note that this changes the plaintext
ring from Rq′ to Zq.

3. Homomorphically apply a ring rounding function from b·ep : Zq → Zp,
which will yield an encryption of buep = bu(p/q)e = m. This changes
the plaintext ring from Zq to Zp, and hence concludes the bootstrapping
procedure.

Note that the two final steps are described only in terms of the plaintext,
as the ciphertext ring R′ and modulus Q may be made smaller as is secure
and convenient. They are introduced as a security measure: Q is needed to
prevent the growth of the noise to warp the message during the homomorphic
operations. This necessitates the introduction of N as the new ring dimension,

10



as increasing the ciphertext modulus typically lowers the security of the scheme,
whereas increasing the ring dimension increases the security. Embedding R into
R′ should therefore balance the security of the scheme.

Correctness of the procedure needs to be shown, namely showing the result-
ing ciphertext will decrypt correctly. This will also merely be sketched, for a
full discussion, see [2].

The first step is showing that the ciphertext actually decrypts, which might
not be obvious seeing as we are applying a function to it. Assume the decryption
algorithm is based on Dec(c, sk) = sk∗c, and that c is an encryption of m. Then,
for any automorphism ϕ described above, we have ϕ(sk) ∗ ϕ(c) = ϕ(sk ∗ c), as
any automorphism is a homomorphism. This means that ϕ(c) is an encryption
of ϕ(m) under the secret key ϕ(sk). If we can switch keys such that all ϕi(c)
are encrypted under the same secret key sk′, the ciphertext TrR/Z(c′) therefore
encrypts u under the secret key sk′.

It also needs to be shown that ē is a tolerable error for the encryption scheme
under the assumption that e is, as u′ ≡ v mod q. The trace function applied
to u′ will therefore result in

TrR/Z(
q

p
m+ e) = TrR/Z(

q

p
m) + TrR/Z(e) = n

q

p
m+ TrR/Z(e) ∈ Zq,

seeing as q, p,m ∈ Zp. According to Corollary 2.2 of [11], ‖TrR/Z(a)‖ ≤ ‖a‖
√
n ,

and it follows that ‖ 1
nTr(e)‖ ≤ 1√

n
‖e‖. Furthermore, the authors of [2] argue

that ē in fact is a subvector of e according to the decryption basis, and it thus
follows that ē is a manageable error, assuming e is.
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4 Lattices and Short Vector Problems,
Ideal Lattices and Learning with Errors over
Rings

A vector space V is a set of vectors {vi} which is closed under addition and
multiplication by a scalar from any field. A lattice L is very similar to a vector
space, only here we are restricted to multiplying only with integers.

Definition 4.1. Let {v1,v2, . . . ,vη} be a set of linearly independent vectors,
with vi ∈ Rm ∀i ∈ {1, . . . , η}. The lattice L generated by v1,v2, . . . ,vη is the
set of linear combinations of these vectors with coefficients in Z:

L = {a1v1 + a2v2 + · · ·+ aηvη : a1, a2, . . . , aη ∈ Z}.

A basis for the lattice L is any set of independent vectors that generates L.
As is the case with vector spaces, any two such sets will have the same number
of elements - the same dimension. Another feature of vector spaces that applies
to lattices is that for any L ⊂ Rm of dimension η, the basis may be represented
as an η×m-matrix B, where the basis vectors of L form the rows of the matrix.

Suppose m = η, then the aforementioned matrix of basis vectors will be
square, and so we may calculate the determinant of it. There are of course
many possible bases of a lattice L; suppose one basis consists of the vectors
B = {v1,v2, . . . ,vη}, the other B′ = {w1,w2, . . . ,wη}. Because they are both
bases, each vector in either basis may be expressed as a linear combination of
the vectors in the other:

wi = ai1v1 + ai2v2 + · · ·+ aiηviη.

We may thus form a new matrix, to change from basis B to B′, with B′ = A ·B:

A =


a11 a12 . . . a1η

a21 a22 . . . a2η

...
...

. . .
...

aη1 aη2 . . . aηη

 .
However, seeing as B′ is a basis as well, we might just as well express any
vi ∈ B as a linear combination of the vectors in B′: B = A′ ·B′. Obviously, we
must have A′ = A−1, and furthermore that all the entries of either matrix are
integers. It follows that the determinants of A and A−1 are either both 1 or -1,
and so that |det(B)| = |det(B′)|. Finally, we have the following definition of a
lattice invariant:

Definition 4.2. Let L be a lattice of dimension η with basis B = {v1,v2, . . . ,vη},
where vi ∈ Rη ∀i ∈ {1, 2, . . . , η}. The determinant of L is defined as

det(L) = |det(B)|.

12



Just as we might refer to the length of a vector in a vector space, we may
refer to the length of a vector in a lattice L over Rm by defining

‖v‖ =
√
v2

1 + v2
2 + · · ·+ v2

m ,

where vi is the i’th component of v.
Based on this, we have the following problem: find the shortest vector of a

lattice L. More formally [15]:

The shortest vector problem (SVP): Find a shortest nonzero vector in a lattice
L, i.e. find a nonzero vector v ∈ L that minimizes ‖v‖.

Note that the problem does not ask for the such vector, as we have no reason
to believe that a vector satisfying these conditions will be unique; at the very
least, if u is a solution, so is −u. It may be shown that solving SVP is NP-hard
under the randomized reduction hypothesis [15].

Due to this proven hardness of the problem, SVP is used in cryptographic
settings, so that breaking an encryption scheme requires solving SVP for a
certain instance. However, in such cases, solving SVP precisely is not always
necessary; in some settings it may suffice to compute merely an approximation of
the vectors in question. This is known as approximate-SVP, with the following
formal definition [15]:

Approximate-SVP: Let ψ(η) be a function of the lattice dimension η of a lattice
L, with a shortest vector v0. Find a vector v ∈ L such that

‖v‖ ≤ ψ(η)‖v0‖.

Of course, the length of the shortest vector v0 ∈ L is not always given, but
an upper bound on ‖v0‖ is always given by the following theorem:

Theorem 4.3 (Hermite’s Theorem (Theorem 7.25 [15])). Every lattice L of
dimension η has at least one vector v ∈ L satisfying ‖v‖ ≤ √η det(L)1/η.

Another result by Hermite is that for every lattice L there exists a constant,
γη, known as the Hermite constant, such that ‖v0‖ ≤

√
γη det(L)1/η. This

constant is only known for 1 ≤ η ≤ 8 and 24. This gives rise to another, related,
lattice problem, the Hermite shortest vector problem [9]:

HSVP: Given a lattice L and an approximation factor α > 0, find a non-zero
vector v ∈ L such that ‖v‖ ≤ αdet(L)1/η

Often α may be expressed as δη, in which case δ is known as the Hermite
root factor.

Ideal lattices are lattices with additional algebraic structure. Whereas lattices
may be regarded as groups, ideal lattices may be viewed as ideals, meaning
that we must regard it as a subset of some ring for this to make sense. More
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precisely: given a ring R with an ideal I, there must be an embedding of this
ideal into a lattice. For a concrete example, suppose n = 2k for some k ∈ N,
and let R be the ring R = Z[x]/(xn+ 1). Then any element in this ring is of the
form a(x) = a0 + a1x + · · · + an−1x

n−1, with ai ∈ Z ∀i ∈ {0, 1, . . . , n − 1}.
This may be embedded into Cn with the canonical embedding, defined by
σ(a(x)) = (a(ω), a(ω3), . . . , a(ω2n−1)), where ω is defined as exp(2πi/2n). Due
to the fact that an embedding in particular is a homomorphism, and that ideals
are closed under addition (i.e. a+ b ∈ I ∀a, b ∈ I), it follows that for any I ∈ R,
σ(I) is a lattice in Cn [17]. This is an example of an ideal lattice.

Just as there are problems related to regular lattices, there are problems re-
lated to ideal lattices, one of them being the learning with errors over rings
(RLWE). However, whilst for example SVP is defined over the lattice itself, this
is not the case for RLWE, as this problem is defined over the ring in which an
ideal corresponds to an ideal lattice. Although RLWE is a general problem, it
will only be discussed for a certain class of rings here, see [17] for more details.

Taking R to be the ring in the previous paragraph, we may define the quo-
tient ring Rq = R/qR = Zq[x]/(xn+ 1), where q is an integer larger than 2. For
this ring, RLWE is: let s = s(x) ∈ Rq be chosen uniformly at random from Rq
and be kept secret. We then draw several random elements {ai} from Rq such
that i < poly(n) and compute bi = ai ∗s+ei ∈ Rq for some noise term ei drawn
at random from a certain error distribution, typically a Gaussian of some kind,
and is considered small in some way (this will not be specified further). There
are two versions of the RLWE problem: the search and the decision problem.

The search problem: given [ai, bi] ∈ Rq ×Rq for i < poly(n), find s.

The decision problem: given [ai, bi] and [ai, a
′
i] ∈ Rq×Rq where all a′i are drawn

uniformly at random from Rq, distinguish with noticeable advantage the
set calculated using s and ei and set chosen uniformly at random.

There are reductions amongst these and the approximate-SVP for ideal lattices.
More precisely, there is a quantum reduction from the worst case approximate-
SVP on ideal lattices in R to the search problem in Rq, meaning that if one is
able to find an algorithm which is able to decide s given [ai, bi], one may use
this to construct a quantum algorithm solving approximate-SVP in any ideal
lattice. Furthermore, there is a classical reduction from the search to the de-
cision problem in Rq, assuming q is a prime such that q ≡ 1 mod 2n, which
translates to: being able to distinguish [ai, bi] from [ai, a

′
i] makes one able to

calculate s. This also means that if it is not feasible to solve the search problem
in RLWE, then the same RLWE distribution is in fact pseudorandom. This fact
may be exploited in a cryptographic setting [17].

Throughout the rest of this paper, we have the following: for n a power of
two, the ring R is R = Z[x]/(xn + 1). For a positive integer q, we have the quo-
tient ring Rq = R/qR, as explained above. Finally, the following lemmas will
be used throughout, for any two elements a =

∑n
i=0 aix

i, b =
∑n
i=0 bix

i ∈ R.
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The lemmas both view these elements and their product as coefficient vectors,
where

a ∗ b = (a0 + · · ·+ an−1x
n−1) ∗ (b0 + · · ·+ bn−1x

n−1)

= (a0b0 − a1bn−1 − · · · − an−1b1)

+ (a0b1 + a1b0 − · · · − an−1b2)x+ . . .

. . .+ (a0bn−1 + a1bn−2 + · · ·+ an−1b0)xn−1.

Thus, the coefficients of a ∗ b are the inner products of the coefficient vector of
a and some rotation of the coefficient vector of b.

Lemma 4.4. The following bound holds for any two elements a, b ∈ R:

‖a ∗ b‖ ≤
√
n ‖a‖‖b‖.

Proof. Using the fact that every coefficient of a ∗ b is the inner product of
the coefficient vectors of a and a rotation of b, by Cauchy-Schwarz each such
coefficient will be ≤ ‖a‖‖b‖. The bound ‖a ∗ b‖ ≤

√
n ‖a‖‖b‖ immediately

follows.

Lemma 4.5. The following bound holds for any two elements a, b ∈ R:

‖a ∗ b‖∞ ≤ n‖a‖∞‖b‖∞.

Proof. Seeing as ai ≤ ‖a‖∞, bi ≤ ‖b‖∞ ∀i ∈ {0, 1, . . . , n − 1}, it follows that
aibj ≤ ‖a‖∞‖b‖∞, and thus that every coefficient of a ∗ b ≤ n‖a‖∞‖b‖∞.
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5 An implementation of FHE built on NTRU

The following encryption scheme is built on the lattice-based encryption scheme
NTRU [14] with additional procedures presented in Subsections 5.2, 5.3 and 5.4
that provide sufficient noise reduction to make the scheme fully homomorphic
when combined with the bootstrapping sketched in Section 3. It will be shown
in Subsection 5.7 that for these procedures to be correct, the parameters q and
n have to be so big that the scheme is susceptible to a sub-field lattice attack,
which will be described in the same subsection.

Due to this, the scheme should for all intents and purposes be considered in-
secure. The efficiency and performance of the scheme is therefore not presented,
as it is of little interest. Nor will the bootstrapping procedure be presented in
any detail; it is presented for completeness, as it is a necessity for the scheme
to be fully homomorphic, not merely somewhat homomorphic. As the sketch in
Section 3 shows, the bootstrapping does not impose any particular bounds on
the parameters q and n, nor does it require publishing any extra information
regarding the scheme. The conclusion that the scheme is insecure may therefore
be drawn without the details of the bootstrapping procedure, which is why they
are not presented.

5.1 The Homomorphic Encryption Scheme

The message space of the scheme is Rp for some integer p ≥ 2, whilst most
arithmetic operations are performed modulo q chosen such that q � p and
gcd(p, q) = 1. The scheme consists of the following operations:

KeyGen: Choose a short f ∈ R such that f ≡ 1 mod p and ∃f−1 mod q, i.e.
f ∗ f−1 = f−1 ∗ f = 1 mod q. Choose a short g ∈ R as well, and output
pk = h = g ∗ f−1 mod q and sk = f .

Enc(pk = h,m ∈ Rp): Choose a short e ∈ R such that e ≡ m mod p and a
short r ∈ R. Output c = pr ∗ h+ e mod q, d = 1.

Dec(sk = f, c ∈ Rq, d): Compute b̄ = fd ∗ c mod q and lift this to the integer
polynomial b ∈ R with coefficients in (−q/2, q/2]. Output m = b mod p.

EvalAdd(c0, c1, d0, d1): Output: c = c0 + c1 mod q, d = max(d0, d1).

EvalMult(c0, c1, d0, d1): Output: c = c0 ∗ c1 mod q, d = d0 + d1.

The polynomials f, g, r and e will typically be chosen according to some discrete
Gaussian and the requirement of these polynomials being short in order to
ensure correct decryption. What precisely this entails will be discussed at some
length thoughout this section.

The two last operations are the homomorphic operations, and it is also these
that necessitate the notion of the degree d of a ciphertext, which denotes the
power of f−1 in the ciphertext. Note that fk ∗ b = m mod p for any power
k ≥ 0, whilst this is not necessarily the case for f−1, as there is no guarantee

16



that f−1 = 1 mod p. Therefore, the decryption procedure will decrypt any
ciphertext of degree at most the given d, assuming fd ∗ c = fk ∗ b mod q, which
is the reason d = max(d0, d1) in EvalAdd.

It should come as no surprise that the main challenge of this scheme is keep-
ing the noise of the ciphertext manageable as long as it is being processed; that
is, keeping it low enough so that the decryption will be valid. The scheme has
several procedures to handle the growth of this noise, which may be combined
to reduce the noise of a ciphertext as much as possible before bootstrapping is
necessary.

Proposition 5.1. The above encryption scheme decrypts freshly generated ci-
phertexts correctly, under certain assumptions.

Proof. Suppose f, g, r and e are all chosen according to the stated scheme and
let c = pr ∗ h+ e mod q. The decryption of c proceeds as follows, when viewed
as an operation in R, as opposed to Rq:

b̄ = f ∗ c = f ∗ (pr ∗ h+ e)

= pf ∗ r ∗ g ∗ f−1 + f ∗ e
= pq ∗ r ∗ g ∗ f ′ + pr ∗ g + f ∗ e,

where f ∗f−1 = qf ′+1. The first step of the decryption procedure is completed
by reducing the given polynomial modulo q. Consider the polynomial pr∗g+f∗e
as a member of R. To ensure correct decryption, we need every coefficient of
this polynomial to be of absolute value less than q/2, that is: pr ∗ g+ f ∗ e must
equal b, as defined in the decryption procedure. If this is not the case, we get

b = pr ∗ g + f ∗ e− q
n−1∑
i=0

aix
i ∃ai 6= 0

and hence, b mod p need not equal m. The limitations we place on f, g, r and
e are the following: any coefficient of the polynomial pr ∗ g + f ∗ e must lie in
the interval (−q/2, q/2). In other words, we require:

‖pr ∗ g + f ∗ e‖∞ < q/2.

Using the triangle inequality and Lemma 4.5, we may compute:

‖pr ∗ g + f ∗ e‖∞ ≤ ‖pr ∗ g‖∞ + ‖f ∗ e‖∞ (1)

≤ pn‖r‖∞‖g‖∞ + n‖f‖∞‖e‖∞
≤ pn‖r‖∞‖g‖∞ + pn‖f‖∞‖e‖∞
≤ 2pnB2, (2)

for B a bound on the largest coefficient of r, g, f and e. If we assume (1) is
less than q/2, then any fresh ciphertext will decrypt correctly. This requires the
polynomials r, g, f and e to be sampled from a distribution which ensures that

any coefficient is strictly less than
√

q
4pn .
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5.2 Key Switching

Key switching converts a ciphertext of degree at most d encrypted under f1

into a ciphertext of degree 1 encrypted under the secret key f2, not necessarily
different from f1. This procedure requires a hint, namely

a1→2 = ā ∗ fd1 ∗ f−1
2 mod q,

where R 3 ā ≡ 1 mod p is short. Based on this hint, the actual key switching
is the procedure

KeySwitch(c1, a1→2): Output: c2 = a1→2 ∗ c1 mod q.

Proposition 5.2. Suppose c1 is an encryption of m and decrypts correctly:
Dec(f1, c1, d) = m. Then, for a1→2 and c2 generated according to the described
procedure, Dec(f2, c2, 1) = m, assuming manageable noise.

Proof.

b̄2 = f2 ∗ c2 = f2 ∗ a1→2 ∗ c1 = f2 ∗ ā ∗ fd1 ∗ f−1
2 ∗ c1.

≡ ā ∗ fd1 ∗ c1 ≡ ā ∗ b̄1 mod q.

Assuming ‖ā ∗ b̄1‖∞ < q/2, we get:

b2 = ā ∗ b1 = ā ∗m = m mod p.

Seeing as c1 is a ciphertext of degree d, it must be the case that it is the result
of d − 1 multiplications, wlog let b̄1 = fd1 ∗ (pr ∗ g ∗ f−1

1 + e)d mod q. For the
assumption ‖ā ∗ b̄1‖∞ < q/2 to hold, we must therefore have:

‖ā ∗ fd1 ∗ (pr ∗ g ∗ f−1
1 + e)d‖∞ = ‖ā ∗ fd1 ∗

d∑
i=0

(
d

i

)
piri ∗ gi ∗ f−i1 ∗ ed−i‖∞

= ‖ā ∗
d∑
i=0

(
d

i

)
piri ∗ gi ∗ fd−i1 ∗ ed−i‖∞

≤ n2d‖ā‖∞
d∑
i=0

(
d

i

)
pi‖r‖i∞‖g‖i∞‖f‖d−i∞ ‖e‖d−i∞

≤ pdn2dB2d+1
d∑
i=0

(
d

i

)
≤ 2dpdn2dB2d+1 < q/2.

Again, B is a bound on the largest coefficient in ā, r, g, f and e. In the cases
d = 1 and d = 2, we have:

B3 <
q

4pn2
and B5 <

q

8p2n4
. (3)
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5.3 Ring Reduction

Ring reduction maps a ciphertext from a ring of dimension n to a ring of smaller
dimension n′; typically n′ = n/2, although n may be divided by higher powers
of 2. The ring reduction procedure uses a decomposition algorithm which essen-
tially chooses certain coordinates of c = [c0, c1, . . . , cn−1] wrt. the power basis.
To ensure that data is not lost during the ring reduction, we first employ a key
switching procedure on c to ensure that it is on the appropriate form. The ring
reduction requires the following decomposition procedure:

1. Express c as the coefficient vector, c = [c0, c1, . . . , cn−1], and let w = n/n′.

2. Output the ciphertexts c′i for each i = 0, . . . , w − 1 where

c′i = [ci, cw+i, c2w+i, . . . , c(n′−1)w+i].

So: c′i simply consists of the entries of c whose indices are i mod w. In the typ-
ical case of n/n′ = 2, the decomposition process outputs c′0 = [c0, c2, . . . , cn−2]
and c′1 = [c1, c3, . . . , cn−1]. In order to perform the reduction, the plaintext
data has to be fully contained in one of these vectors to avoid any loss of this
information.

The actual procedure of reducing the ring Z/(xn + 1) to Z/(xn′ + 1) is the
following, assuming the input ciphertext c0 only has plaintext data in its indices
0 mod w:

1. Choose a sparse secret key f with nonzero coefficients wrt. the power
basis only in indices 0 mod w.

2. Obtain a new ciphertext c by switching the keys so that f is the secret
key.

3. Decompose c and f and output c′0 as the new ciphertext encrypted under
f ′0 = [f0, fw, f2w, . . . , f(n′−1)w].

Proposition 5.3. Suppose a ciphertext c1 of degree d which is encrypted un-
der f1 only has plaintext data in coefficients of indices i ≡ 0 mod w, and
furthermore that w = 2. Suppose further that there exists a secret key f2

which may be expressed as [f20 , 0, f22 , 0, . . . , f2n−2 , 0] in the power basis such
that Dec(f1, c1, d) = Dec(f2, c2 = a1→2 ∗ c1, 1). Then

Dec(f1, c1, d) = Dec(f ′2, c
′
2, 1),

for f ′2 = [f20
, f22

, . . . , f2n−2
] and c′2 = [c20

, c22
, . . . , c2n−2

].

Proof. Seeing as c1 only has plaintext data in the indices 0, 2, n − 2, it follows
that the encrypted message m may be expressed as [m0, 0,m2, 0, . . . ,mn−2, 0]
in the power basis. As c1 is encrypted under f1, it must be the case that

fd1 ∗ c1 = m+ pr′ mod q
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for some r′ ∈ R. It follows that, as c2 = ā ∗ fd1 ∗ f−1
2 ∗ c1 mod q,

c2 = ā ∗ f−1
2 ∗ (m+ pr′) = f−1

2 ∗m+ ps mod q,

for some s ∈ R, where the second equality follows from ā = 1 mod p.
We have, with a slight abuse of notation:

f2 ∗ c2 = [f20
, 0, f22

, 0, . . . , f2n−2
, 0] ∗ [c20

, c21
, . . . , c2n−2

, c2n−1
]

= f20
[c20

, c21
, . . . , c2n−2

, c2n−1
]

+ f22
[−c2n−2

,−c2n−1
, . . . , c2n−4

, c2n−3
] + . . .

. . .+ f2n−2
[−c22

,−c23
, . . . , c20

, c21
]

= [m0 + pt0, pt1, . . . ,mn−2 + ptn−2, ptn−1] mod q,

again, for some t ∈ R. This equality follows from the assumption that

Dec(f2, c2, 1) = (f2 ∗ c2 mod q) mod p = m = [m0, 0,m2, . . . , 0,mn−2, 0].

Finally, with a similar abuse of notation as previously:

f ′2 ∗ c′2 = [f20 , f22 , . . . , f2n−2 ] ∗ [c20 , c22 , . . . , c2n−2 ]

= f20 [c20 , c22 , . . . , c2n−2 ]

+ f22 [−c2n−2 , c20 , . . . , c2n−4 ] + . . .

. . .+ f2n−2 [−c22 ,−c24 , . . . , c20 ]

= [m0 + pt0,m2 + pt2, . . . ,mn−2 + ptn−2] mod q.

We conclude that Dec(f ′2, c
′
2, 1) = [m0,m2, . . . ,mn−2]. Thus, the ciphertext

decrypts correctly and the plaintext is preserved.

5.4 Modulus Switching

Modulus switching converts a ciphertext from modulus q to a smaller modulus,
q̄ = q/q′ for some factor q′ of q, whilst also reducing the underlying noise by
a factor of approximately q′. This works by adding a small multiple of p, ∆,
to c which is equivalent to −c modulo q′, so that c+ ∆ is divisible by q′. This
should only cause a slight increase in the noise of the ciphertext, and thus ensure
that the underlying message is preserved. Here q′ divides q, so it follows that
gcd(q′, p) = 1, thus there exists an inverse of q′ modulo p: v = (q′)−1 mod p.
The procedure ModSwitch(c, q, q′) is performed as follows:

1. Compute a short d ∈ R such that d = c mod q′.

2. Compute a short ∆ ∈ R such that ∆ = (q′v − 1)d mod (pq′).
This ensures that all the coefficients of ∆ lie in the interval (−pq′/2, pq′/2].

3. Let d′ = c+ ∆ mod q. Note that q′ divides d′ by construction.

4. Output c′ = (d′/q′) ∈ Rq̄.
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Note that the final step indirectly multiplies d with v, which may easily be
compensated for by either multiplying with q′ in the final step of the decryption
procedure, or ensuring that q′ ≡ 1 mod p. This will be the case if p = 2, seeing
as this requires any factor of q to be odd.

The procedure is easiest and most efficiently implemented when q = q1 . . . qt
is a product of several small and pairwise relatively prime moduli, and q′ is one
of these.

Proposition 5.4. Suppose c is an encryption of degree 1 of the message m
under the secret key f . Let c′ = ModSwitch(c, q, q′), then

vDec(f, c, 1) = Dec(f, c′, 1),

assuming the noise is manageable.

Proof. Let q̄ = q/q′. As d = c mod q′ and v = (q′)−1 mod p, we may write

d = c− q′l for l ∈ R,
q′v = 1 + pk for k ∈ Z.

Following the procedure, we have1:

(q′v − 1)d = (pk + 1− 1)(c− q′l) = pk(c− q′l) = pkc− pq′kl.
⇒ ∆ = pkc− pq′s for s ∈ R, as R 3 ∆ = (q′v − 1)d ≡ pkc mod pq′.

d′ = c+ ∆ mod q

= c+ pkc− pq′s = (1 + pk)c− pq′s
≡ q′vc− pq′s mod q.

c′ = d′/q′ ≡ vc− ps mod q̄.

If we assume we have equality rather than equivalence in the final equation,
that is ‖vc− ps‖∞ < q̄/2, we will have the following:

f ∗ c′ = vf ∗ c− pf ∗ s = v(pr ∗ g(qf ′ + 1) + f ∗ e)− pf ∗ s ∈ R
≡ vpg ∗ r + vf ∗ e− pf ∗ s mod q̄

Assuming we have manageable noise, ‖vf ∗ e+ vpg ∗ r− pf ∗ s‖∞ < q̄/2, we will
have equality rather than equivalence, and finally:

(f ∗ c′ mod q̄) mod p = vm

It follows that the slightly altered decryption algorithm described prior to this
proposition will output m.

1Throughout this proof, pk denotes multiplication of the integers p and k, not the public
key.

21



Thus, for the decryption of c′ to be successful, we need to have the following:

‖f ∗ c′‖∞ = ‖f ∗ (c+ ∆)/q′‖∞ ≤
1

q′
(‖f ∗ c)‖∞ + ‖f ∗∆‖∞)

⇒ 1

q′
(‖pg ∗ r + f ∗ e‖∞ + ‖f ∗∆‖∞) ≤ 1

q′
(2pnB2 + nB‖∆‖∞)

≤ 1

q′
(2pnB2 + nB

pq′

2
) < q̄/2 = q/2q′.

(4)

Where, as usual, B is the bound on the biggest coefficient of the polynomials
r, g, e and f .

5.5 ComposedEvalMult

The procedure ComposedEvalMult is quite simply the sequential execution of
the operations Evalmult, key switching, ring reduction and modulus switching.
This reduces the noise of the ciphertext in question, and hence enables more
computations to be performed before calling on bootstrapping to refresh the
ciphertext. The growth of noise is usually much less severe during addition
compared to multiplication, meaning measures such as modulus switching are
typically not necessary, and therefore not performed after addition.

However, the operations constituting ComposedEvalMult also alter how se-
cure the scheme is, as is to be expected when reducing the dimension of the ring
and/or the ciphertext modulus. In particular, performing a modulus switching
results in a more secure scheme, whereas reducing the ring dimension yields a
less secure scheme. The reasons for this will be explained in Subsection 5.7.

A consequence of this is that ring reduction may not be performed in every
call of ComposedEvalMult, but rather when the resulting scheme is sufficiently
secure. This is of little consequence as far as noise reduction is concerned, as
the operation does not actually reduce the noise of the scheme, as the proof of
Proposition 5.3 shows. However, reducing the ring dimension removes ”mean-
ingless” coefficients, i.e. coefficients that are not needed to perform a correct
decryption. This might lower the probability of decryption error if the cipher-
text is processed further, as any resulting coefficients will be the sum of fewer
summands. Still, the main advantage of the procedure is the fact that lower
dimensionial rings are easier to work with, hence reducing the time of compu-
tation.

As a result of this, only the sequential execution of key switching and mod-
ulus switching will be considered in the following proof of correctness for Com-
posedEvalMult:

Proposition 5.5. Suppose c0, c1 are two ciphertexts encrypted under the public
key h = g ∗ f−1

1 , both of degree 1. Then

Dec(f2,ComposedEvalMult(c0, c1), 1) = Dec(f1, c0, 1) ∗Dec(f1, c1, 1),
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where f2 is the new secret key after KeySwitch has been performed in Com-
posedEvalMult, under the assumption that the noise is manageable.

Proof. Based on the proofs of propositions 5.2 and 5.4, it follows that

f2 ∗ ComposedEvalMult(c0, c1) ≡ b̄ mod q̄,

where b̄ = m0 ∗ m1 mod p. What needs to be shown is that the noise added
during multiplication and switching keys is sufficiently lowered by switching the
modulus, in other words: the noise of the procedure does not warp the decryp-
tion of ComposedEvalMult(c0, c1). The ciphertext ComposedEvalMult(c0, c1)
outputs is on the form c = 1

q′ (a1→2 ∗ c0 ∗ c1 + ∆) for a factor q′ of q. We have
the following:

f2 ∗ c = f2 ∗
1

q′
(a1→2 ∗ c0 ∗ c1 + ∆)

=
1

q′
f2 ∗ (ā ∗ f−1

2 ∗ f2
1 ∗ (pr0 ∗ g ∗ f−1

1 + e0)(pr1 ∗ g ∗ f−1
1 + e1) + ∆)

= . . . ≡ 1

q′
(p2ā ∗ r0 ∗ r1 ∗ g2 + pā ∗ r0 ∗ g ∗ f1 ∗ e1

+ pā ∗ r1 ∗ g ∗ f1 ∗ e0 + ā ∗ f2
1 ∗ e0 ∗ e1 + f2 ∗∆) = b′ ≡ b̄ mod q̄.

What we need is ‖b′‖∞ < q̄/2, so that b′ = b̄. Using Lemma 4.5 and setting

‖ā‖∞ = ‖r0‖∞ = ‖r1‖∞ = ‖g‖∞ = ‖f1‖∞ = ‖f2‖∞ = ‖e0‖∞ = ‖e1‖∞ = B,

we have:

‖b′‖∞ ≤
1

q′
(p2n4B5 + 2pn4B5 + n4B5 + nB‖∆‖∞)

≤ 1

q′
(4p2n4B5 + nB

pq′

2
). (5)

Assuming it is possible to set the parameters B, q′ and q̄ so that ‖b′‖∞ < q̄/2
and thus b′ = b̄, it follows that ComposedEvalMult indeed is correct. For a
satisfying choice of such parameters, see Subsection 5.7.

5.6 Bootstrapping

There is, however, a limit to how many times the ComposedEvalMult procedure
may be performed, as q consists of a finite (and, for security reasons, relatively
low) number of factors, and hence there are only so many modulus switchings
that may be performed. When this limit is reached, or if the modulus switch-
ing does not sufficiently reduce the noise of the ciphertext, bootstrapping is
performed.

The bootstrapping itself is essentially the procedure presented in Section 3
adapted to fit the scheme. It is worth repeating that the bootstrapping proce-
dure requires m ∈ Zp, even though the scheme itself supports messages in Rp.
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The procedure applied here is somewhat simplified compared to the earlier gen-
eral presentation due to the structure of the scheme. In particular: converting
the plaintext modulus from p to q as well as lifting both moduli to q′ are no-ops.

The fact that the schemes supports key switching ensures that the ciphertext
outputted by the trace function is decryptable, by the argument in Section 3.
For further details on the bootstrapping procedure adapted to this scheme, see
Section 3.6 of [21].

5.7 Security and Selection of Parameters

In order to discuss the security of the given encryption scheme and possible
attacks it will be helpful to first discuss how the scheme is related to lattices,
which might not be obvious at first glance. Following the description in Section
4, the following matrix defines the lattice LNTRU, where the row vectors are
taken to be the basis vectors of the lattice, and the public key h is written as
h = h0 + h1x+ . . . hn−1x

n−1:

BNTRU =



1 0 . . . 0 h0 h1 . . . hn−1

0 1 . . . 0 −hn−1 h0 . . . hn−2

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 −h1 −h2 . . . h0

0 0 . . . 0 q 0 . . . 0
0 0 . . . 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q


.

This 2n × 2n matrix may be viewed as the following 2 × 2 matrix instead:

BNTRU =

[
I H
0 qI

]
where H is the matrix consisting of the cyclical permu-

tations of the coefficients of h and I is the n × n identity matrix. Recall that
h = g ∗ f−1 and f ∗ f−1 = 1 + qf ′, so we must have f ∗ h = g + qu for some
polynomial u = g ∗ f ′.

Proposition 5.6. For any two polynomials a =
∑n−1
i=0 aix

i, b =
∑n−1
i=0 bix

i, let
[a, b] denote the vector [a0, . . . , an−1, b0, . . . , bn−1]. For the polynomials f, g and
u described above, we have: [f,−u] · BNTRU = [f, g], meaning the vector [f, g]
belongs to to the lattice LNTRU.

Proof. It is fairly obvious that the n first coefficients of the resulting vector of
[f,−u] · BNTRU is f , as the upper left n × n corner of BNTRU is the identity
matrix and the lower n×n left corner is zero. The following n+1+k coefficients,
for k ∈ {0, 1, . . . n− 1} are expressed as:

n−1∑
i,j=0
i+j=k

fihj −
n−1∑
i,j=0

i+j=k+n

fihj − quk = gk + quk − quk = gk.
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Hence, [f,−u] ·BNTRU = [f, g], meaning [f, g] belongs to LNTRU, as the vector
may be expressed as a linear combination of the basis vectors of LNTRU using
only integers.

Proposition 5.7. With overwhelming probability, the vector [f, g] is one of the
shortest vectors in the lattice LNTRU.

Proof. Recall the result of Theorem 4.3, namely that the length of the shortest
vector in any lattice L is at most

√
η det(L)1/η, with η being the dimension of

the lattice. In the case of LNTRU, this bound is

‖v0‖ ≤
√

2n (qn)1/2n =
√

2nq .

We may in addition calculate a bound on ‖[f, g]‖, using the upper bound

‖f‖∞, ‖g‖∞ <
√

q
4pn , derived in the proof of Proposition 5.1:

‖[f, g]‖ =
√
f2

0 + f2
1 + . . . f2

n−1 + g2
0 + g2

1 + · · ·+ g2
n−1

≤

√
2n
(√ q

4pn

)2

=

√
q

2p
.

Comparing the two bounds, we have:√
q

2p

/√
2nq =

√
1

4pn
� 1.

Thus, seeing as the bound on ‖[f, g]‖ is substantially smaller than the Hermite
bound, it is overwhelmingly probable that [f, g] is one of the vectors of shortest
length in LNTRU.

It follows that if an adversary is able to solve SVP in LNTRU, she is able to
compute f based solely on information made public by the scheme, and thus
break the scheme. It should also be mentioned that the adversary does not
need to find precisely [f, g], as any permutation of these polynomials will suffice
to perform a decryption. Furthermore, any pair of polynomials [f ′, g′] with
sufficiently small coefficients satisfying the relation f ′ ∗ h = g′ mod q will also
suffice, as will probably any solution to approximate-SVP for an approximation
factor smaller than

√
n [15]. Thus, recovering the secret key f of the encryption

scheme reduces to solving approximate-SVP for the lattice LNTRU.
Such a solution is not apparent given the basis matrix BNTRU, and the most

efficient way of solving either SVP, approximate-SVP or HSVP is to find a basis
which is easier to work with, for instance one which contains the solution of
either stated problem. This is known as basis reduction, and whilst there are
several algorithms that achieve this, the main one is LLL and a generalization
of it, BZK. Both of these algorithms are HSVP-algorithms, and achieve Hermite
root factors δ = (1 + ε) for some ε > 0 [9]; for an explanation of HSVP or δ, see
Section 4. LLL works by swapping two vectors in the basis and performing a
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reduction, whereas BKZ works similarly, only with more than two vectors. The
number of vectors BKZ works with is known as the block size, denoted by β;
the larger β is, the more exact the output of the algorithm will be.

LLL runs in polynomial time and outputs a basis with a vector with norm
less than (4/3)(η−1)/4det(L)1/η, where η is the dimension of the lattice [9].
Obviously, this bound is not very impressive as η grows large, in which case BKZ
may be better suited. BKZ also outputs a reduced basis, containing a vector of
length at most

√
γβ

1+(η−1)/(β−1)det(L)1/η [9], where γβ is the Hermite constant
mentioned in Section 4. The downside of this improved bound is that BKZ does
not run in polynomial time, but exponential in β [15], and furthermore: there
exists no good upper bound for its running time complexity.

Seeing as the time complexity of the algorithms best suited for attacking the
system is not clearly understood, estimating the security of the scheme is not as
straight forward as choosing a security parameter λ so that a successful attack
takes roughly time 2λ and choosing n, q and p based on λ such that 2λ seems
infeasible. Furthermore, both LLL and BKZ tend to perform better in practice
than any theoretical bound suggests. Therefore, instead of relying on theory,
the security of the scheme is determined experimentally by running BKZ on
lattices of relatively low dimensions and block sizes until a short vector is found
and then extrapolating the run-time [15, 7]. It is also possible to construct
a simulation of BKZ to estimate the precision of the algorithm, that is: the
expected Hermite root factor δ of the shortest vector in the resulting reduced
basis [7].

The way to construct a secure system is then to choose parameters n, q and
p and estimate the level of security these produce by computing an estimate
of δ which would be needed to break the system using BKZ. One then runs
simulations of BKZ for the given set of parameters to estimate how long it
would take BKZ to reduce the given basis with sufficient precision. The length
of the shortest vector in LNTRU which may be used for decryption may often be
expressed as a function of q : ψ(q). Meanwhile, BKZ and LLL both find vectors
of length expressible as δ2ndet(LNTRU)2n = δ2n√q , where n is the dimension of
the ring R. Reducing the given basis with sufficient precision therefore requires
obtaining a Hermite root factor δ so that δ2n√q ≤ ψ(q).

This is why performing a ring reduction lowers the security of the scheme and
a modulus switching makes the scheme more secure. Suppose that for a certain
set of parameters a vector of length δ2n√q which may be used to decrypt a given
ciphertext c may be found by either algorithm in reasonable time. Suppose then
that ring reduction is applied to c, resulting in a new ciphertext c′ in the ring
of dimension n′ ≤ n/2. Due to the new lattice dimension 2n′, a larger Hermite
root factor δ′ > δ suffices to approximate a vector such that (δ′)2n′√q < ψ(q),
meaning both LLL and BKZ will compute this approximation in less time, and
the scheme is therefore less secure than before. Suppose, instead, that a modulus
switching is performed on c, resulting in a new ciphertext modulus q̄ < q. Now,
a smaller Hermite root factor δ′′ < δ is required to find a suitable vector, as we
require (δ′′)2n√q̄ ≤ ψ(q̄) < ψ(q), meaning the scheme is now more secure than
before the modulus switching was performed.
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However, security is not the only important notion when it comes to choosing
parameters, there are several other aspects that need to be taken into account:

• The moduli q1, . . . , qt should be sufficiently large to enable sufficient noise
reduction via modulus switching.

• The ring dimension n is not too large; it should not be overly timecon-
suming and/or memory-intensive to manipulate the ciphertexts.

• The plaintext modulus p and any noise added to the ciphertext during
encryption should be sufficiently small as to allow evaluation of reasonably
sized circuits with correct decryption.

With regards to the last bullet point, ”noise added to the ciphertext during
encryption” refers, in essence, to the polynomials f, g, r and e in the encryption
scheme, all of which should be short2, f = 1 mod p and invertible modulo
q, and e = m mod p as well. There are several ways these polynomials may
be chosen, the naive one being from discrete Gaussians for g, r, f ′ and e′, and
setting f = pf ′ + 1, e = pe′ +m. The downside of this is that it will cause f to
have mean 1 and e to have mean m, however it does simplify the dependence
of the various parameters.

Suppose any of the polynomials affecting the noise level are drawn from a
discrete Gaussian distribution of parameter r, and set w as an assurance mea-
sure, meaning it will be highly unlikely for a normally distributed polynomial
to have length more than

√
2π w times the standard deviation r/

√
2π . As such

it should be practically impossible for any polynomial drawn from this distri-
bution to have Euclidean length greater than rw. It follows that we may set a
bound on the infinity norm of any such distributed polynomial as rw√

n
, where n

is the degree of the polynomial.
Using this bound and expression (5) in Subsection 5.5, we need

1

q′
(4p2n4(

rw√
n

)5 + n
rw√
n

pq′

2
) =

1

q′
(4p2n1.5r5w5 +

1

2
pq′
√
n rw) < q/2q′

for decryption to still be correct after a call to ComposedEvalMult. Suppose
4p2n1.5r5w5 < q′, we then have

1 +
1

2
p
√
n rw < q/2q′, (6)

where the value q/q′ ≥ q1, a single factor of q, and thus the smallest possible
ciphertext modulus. The authors of [21] suggest setting q1 > 4prw

√
n as the

theoretical lower bound, which certainly satisfies bound (6). However, if we in
addition require q1 to be sufficiently large as to guarantee correct decryption of
a freshly generated ciphertext assuming q = q1, we must also have rw >

√
n in

order to satisfy

4pn(
rw√
n

)2 = 4pr2w2 < q1, (7)

2Meaning the infinity norm of either polynomial should satisfy certain bounds to guarantee
correct decryption.
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according to expression (1). Alternatively, we could set a somewhat higher
lower bound for q1, such as 4pr2w2

√
n , which satisfies both (6) and (7), or do

as the authors of [21] (motivated by implementation simplicity), and simply set
a universal bound for any factor of q, namely

qi > 4p2r5w5n1.5 (8)

for any i ∈ {1, 2, . . . , t}.
As a quick aside: this bound clearly satisfies the first part of bound (3), so

performing KeySwitch on a ciphertext of degree 1 will not result in unmanage-
able noise. It might seem to contradict the second part, though, which would
require any ciphertext modulus to be greater than 8p2r5w5n1.5. However, this
would only be the case if one were to perform a KeySwitch on a ciphertext of
degree 2 without subsequently performing a modulus switching, which by the
construction of ComposedEvalMult cannot happen.

We may therefore conclude that ensuring any factor of q satisfies bound (8)
results in an encryption scheme which reduces the noise sufficiently to guaran-
tee correct decryption of any freshly generated ciphertext and output of Com-
posedEvalMult, given that the input ciphertexts has at most the same noise
level as any freshly generated ciphertexts for the current ciphertext modulus q̄.
If this is not the case, bootstrapping may be performed.

However, ensuring that the factors of q provide sufficient noise reduction,
and thus correct decryption, is not the only aspect one has to take into account
during the selection of q. One must also consider the depth of computation,
D = t − 1: how many times modulus switching may be performed. The more
such operations are required, the more factors of q is needed, and the less secure
the scheme is, unless the dimension of the ring is increased, which would make
computation more time-consuming. What is more, we have the following lower
bound on n, dependent on both q and δ:

n ≥ log(q)/(4 log(δ))

to prevent the lattice LNTRU from being too sparse to contain sufficiently short
vectors [20]. Thus, D (or rather, t) should be kept as low as practically possi-
ble to avoid a cumbersome ring and minimize the amount of calls to the time
consuming bootstrapping procedure.

Of more importance is the effect the size of q and its polynomial dependence on
n has on the security of the scheme, which is quite severe: unlike the original
NTRU encryption scheme, or provably secure variants of it, q will not be of
the same order of magnitude as n [16, 22]. This is a problem, as it turns out
that this may be exploited in an attack on the lattice LNTRU [1]. The attack
maps the given instance to a lattice of smaller dimension, which is less labour
intensive to perform a basis reduction in, and finally the solution obtained in
the smaller lattice is lifted to the original lattice.

The attack utilizes the algebraic structure of the ring in a similar fashion
as the bootstrapping does, namely the isomorphism of R = Z[x]/(xn + 1) and
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Z[ω], which is the ring of integers of the field Q[ω] = K, for ω some root of unity
of order 2n. Let L be a subfield of K such that L = Q[ω′] for some root of unity
ω′ of order 2n′, L will then have a ring of integers R′ = Z[x]/(xn

′
+ 1). Just

as described in Section 3, there are automorphisms ϕi on K fixing L pointwise,
corresponding to ϕi(a(x)) = a(xi) ∀i ∈ Z∗2n ∧ i ≡ 1 mod 2n′ in the rings of
integers 3. Given these, we may define the norm function, NK/L : K→ L, as

NK/L(a) =
∏
i

ϕi(a).

Given f, g and h for a given implementation of the encryption scheme, we
define f ′ = NK/L(f), g′ = NK/L(g), h′ = NK/L(h) and let r = n/n′. The attack
follows from the observation that [f ′, g′] is a vector in the lattice L′NTRU spanned

by the basis B′NTRU =

[
I H′

0 qI

]
and the following heuristic:

Heuristic 5.8 (Heuristic 1 [1]). For any n, f, g ∈ R with reasonable isotropic
distribution of variance σ2 and any constant c > 0, there exists a constant C
such that ‖f ′‖ ≤ (σnC)r and ‖g′‖ ≤ (σnC)r, except with probability O(n−c).

The authors of [1] note that the (spherical) discrete Gaussian distributions
used for drawing secrets and errors are isotropic, and thus the heuristic applies
to the scheme presented here.

Of course this is also the case for any version of the NTRU scheme, the
reason this attack is effective against this particular scheme is the following:
Theorem 1 of [1] assures us of the existence of a lattice reduction algorithm
with block-size β able to find a vector [x′, y′] ∈ R′ such that

‖[x′, y′]‖ ≤ βΘ(2n′/β)‖v0‖ ≤ βΘ(n/βr)‖[f ′, g′]‖ ≤ βΘ(n/βr)(nσ)Θ(r),

when applied to the basis B′NTRU, where ‖v0‖ is the length of the shortest vector
in L′NTRU.

Theorem 5.9 (Theorem 2 [1]). Let f ′, g′ ∈ R′ be such that 〈f ′〉 and 〈g′〉 are
ideals such that 〈f ′〉+ 〈g′〉 = R′ (i.e. coprime ideals) and h′ ∗ f ′ = g′ mod q for
some h′ ∈ R′. If [x′, y′] ∈ L′NTRU has length satisfying

‖[x′, y′]‖ < q

‖[f ′, g′]‖
,

then [x′, y′] = v[f ′, g′] for some v ∈ R′.

The authors of [1] note that the probability of 〈f ′〉 and 〈g′〉 being coprime is
roughly 3/4, and furthermore that it does not seem strictly necessary in practice
for the attack to be successful.

3The requirement i ≡ 1 mod 2n′ is not included in Section 3 as in the case described there
n′ = 1, and so this automatically holds for any i ∈ Z∗2n.
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Thus, if βΘ(n/βr)(nσ)Θ(r) ≤ q, this bound may be satisfied. This is ob-
viously more likely as q grows larger in relation to n, as is the case for our
encryption scheme: the more ComposedEvalMult operations the scheme allows
to be performed, the larger q grows, roughly by a factor of n1.5.

The final step of the attack is to lift the vectors x′, y′ ∈ R′ to R. This is
simply done by using the canonical inclusion map L : L→ K:

x = L(x′) = L(v) ∗ L(f ′),

y = L(y′) ∗ h/L(h′) mod q = L(v) ∗ L(g′) ∗ h/L(h′) mod q,

where v is as in Theorem 5.9. For simplicity, we set f̃ = L(f ′)/f, g̃ = L(g′)/g
and h̃ = L(h′)/h; we then have

x = L(v) ∗ f̃ ∗ f mod q

y = L(v) ∗ L(g′)/h̃ = L(v) ∗ g ∗ g̃/h̃ = L(v) ∗ f̃ ∗ g mod q

⇒ [x, y] = u ∗ [f, g] ∈ LNTRU with u = L(v) ∗ f̃ ∈ R.

In other words: the subfield attack yields a (small) multiplicative of [f, g] under
certain reasonable assumptions. The attack is most efficient for cases in which
q is super-polynomial in n, as opposed to the encryption scheme at hand, in
which case the growth is merely polynomial.

However, as the experimental reports of [1] show, the attack would still be
effective. As an example: a successful attack was carried out in 3.5 hours for
n = 211 when log(q) ≥ 165. Setting q = (4p2r5w5n1.5)D+1, we may conclude
that this attack would be successful for any computational depth greater than 3
in the encryption scheme presented here, assuming p = 2, r = w = 6, which are
the parameter values the authors of [21] suggest. In a full field, this corresponds
to running BKZ with block size 27 to achieve δ = 1.0141. The highest dimension
the attack was carried out in was n = 212, with success for log(q) as low as 190,
yet again corresponding to a computational depth of just 3, with the same
parameter values as previously. This attack took 120 hours; an attack of the
full lattice would require running BKZ with block size 131 to achieve δ = 1.0081,
an attack that seems unfeasible at this point in time. Note also that the subfield
attacks used LLL, it therefore seems reasonable to expect better attacks if, for
example, BKZ was used instead.

Based on these findings, the scheme must be considered insecure except for
very large values of n combined with low computational depth at this point in
time. This is far from an ideal property, as it either results in a scheme only
capable of evaluating very shallow circuits, or one overly dependent on the costly
bootstrapping procedure, making it very inefficient. In addition, there are no
guarantees of this being the most effective attack, and further progress in the
field might lead to a full breaking of the scheme. It is, however, important to
note that this does not affect the security of the original NTRU scheme, as its
choice of q is typically much too small for the attack to be successful.
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6 Leveled FHE without Bootstrapping

The scheme presented in this section is a leveled fully homomorphic encryption
scheme, meaning it is able to evaluate any circuit as long as its depth is specified,
alongside the security parameter, before an instance of the scheme is created.
To achieve this, it uses the procedures described in Subsections 6.2 and 6.3 in
combination with the basic encryption scheme in Subsection 6.1. The correct-
ness of the homomorphic encryption scheme is proved in Subsection 6.5 and the
parameters required for the scheme to be secure is discussed in Subsection 6.6,
where it is also proven that the scheme satisfies the IND-CPA security notion.
Finally, the theoretical and practical efficiency of the scheme is presented in
Subsection 6.7.

6.1 The Basic Encryption Scheme

The following encryption scheme is based on RLWE presented in section 4, and
we therefore require the following procedure:

DrawRLWE(q, n,N, χ, s ∈ Rq): Generate the row vector a← RNq uniformly at

random as well as the vector e ← χN , then let bT = aT s + 2eT . Finally set
A as the N × 2 matrix consisting of bT followed by the column vector −aT .
Output: A.

Note that this is simply drawing an instance of the set {[ai ∗ s + ei, ai]} used
for the RLWE problems presented in Section 4, just expressed as a matrix. The
reason we introduce this as a separate procedure and not just part of the key
generation is because some of the subroutines of the leveled fully homomorphic
encryption scheme presented later requires this particular procedure as well.

We now present the basic encryption scheme, upon which the leveled fully
homomorphic encryption scheme will be based:

ESetup(1λ): Choose a modulus q = q(λ) and choose the other parameters n and
N = polylog(q) as well as the noise distribution χ to ensure 2λ security
against known attacks. Output params = {q, n,N, χ}.

EKeyGen(params): Draw s ← χ, run DrawRLWE(params, s) = A and set
s = [1, s]. Output: sk = s, pk = A.

EEnc(params, pk,m): To encrypt the message m ∈ R2, set m = [m, 0] ∈ R2
2,

draw r← RN2 and output the ciphertext

c = m + r ·A mod q.

EDec(params, sk = s, c): Output

m = (〈c, s〉 mod q) mod 2.
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Correctness of this basic encryption scheme is easily observed, assuming the
noise is kept manageable:

EEnc(m) = c = m + r ·A

=

[
m+

N∑
i=1

(ai ∗ s+ 2ei) ∗ ri, −
N∑
i=1

ai ∗ ri

]
mod q

⇒ EDec(c) = (〈c, s〉 mod q) mod 2

= (m+ 2

N∑
i=1

ei ∗ ri mod q) mod 2 = m.

6.2 Key Switching

Just as with the key switching procedure in the previous scheme, the idea is to
take a ciphertext c1 encrypted under a secret key s1 and convert it into a cipher-
text c2 encrypted under a different secret key s2 such that EDec(params, s1, c1) =
EDec(params, s2, c2). The main reason for wanting to change the keys in this
scheme however, is to reduce the Euclidean length of the components of the
secret key, which will be shown to grow exponentially during multiplication and
be of great importance to the success of modulus switching in particular. The
procedure itself is dependent on the two following subroutines:

BitDecomp(a ∈ Rq, q): a =
∑n−1
i=0 aix

i with ai ∈ [0, . . . , q − 1], a is decom-
posed by decomposing all the coefficients into their bit representations:

a =
∑blog qc
i=0 2iui for ui ∈ R2 ∀i. Output: [u0, u1, . . . , ublog qc] ∈ R

blog qc+1
2 .

Powersof2(a ∈ Rq, q): Output: [a, 2a, . . . , 2blog qca] ∈ Rblog qc+1
q .

Note that we have the following for any ring elements c, s:

〈BitDecomp(c, q),Powersof2(s, q)〉 =

blog qc∑
i=0

〈ui, 2is〉 =

blog qc∑
i=0

〈2iui, s〉

=

〈 blog qc∑
i=0

2iui, s

〉
= 〈c, s〉.

Here, 〈c, s〉 denotes the regular polynomial multiplication obtained by viewing
c and s as vectors of length 1.

Both the operations BitDecomp and Powersof2 are applicable to any vector
v ∈ Rkq by obvious generalisations, which in both cases will result in output
of dimension k(blog(q)c + 1). The derived result therefore also applies to any
vectors c, s of the same length k.

Switching from key s1 to s2 requires hint, which is calculated as follows:

SwitchKeyGen(s1 ∈ Rk1q , s2 ∈ R2
q): Here s1 = [1, s1], s1 ← χk1−1 for k1 > 1 and

s2 = [1, s2], s2 ← χ. Set N = k1(blog(q)c + 1) and generate the matrix
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A = DrawRLWE(q, n,N, χ, s2). Set a1→2 = A + [Powersof2(s1)T , 0T ], i.e.
A with Powersof2(s1)T added to its first column. Output a1→2.

Once this hint has been generated, the actual key switching procedure is:

KeySwitch(a1→2, c1): Output: c2 = BitDecomp(c1) · a1→2.

Proposition 6.1 (Lemma 4.2 [6]). Let s1, s2 and a1→2 be as in SwitchKeyGen.
Then

〈c2, s2〉 = 2〈BitDecomp(c1), e〉+ 〈c1, s1〉

Proof.

〈c2, s2〉 = BitDecomp(c1) · a1→2 · sT2
= BitDecomp(c1) · [aT s2 + 2eT + Powersof2(s1)T ,−aT ] · sT2
= BitDecomp(c1) · [2eT + Powersof2(s1)T ]

= 2〈BitDecomp(c1), e〉+ 〈BitDecomp(c1),Powersof2(s1)〉
= 2〈BitDecomp(c1), e〉+ 〈c1, s1〉.

Note that 〈BitDecomp(c1), e〉 is fairly small, as BitDecomp(c1) ∈ Rk(blog(q)c+1)
2

for c1 ∈ Rkq , but it still increases the noise of the new ciphertext c2 slightly
when compared to c1.

An important property of the hints and public keys published is: any ad-
versary A given a pair of matrices (A, a1→2) she knows is either a public key
matrix and a key switching matrix of the stated encryption scheme, or two ma-
trices generated completely at random is unable to guess which distribution her
sample is drawn from with any significant advantage. More formally:

Lemma 6.2 (Lemma 4.2 [6]). For every valid secret key s1 ∈ Rk1q , s2 = [1, s2]
such that s2 ← χ and any polynomial-time adversary A described above, there
exists a negligible function ε such that:

Adv(A) = |Pr[A0 ← DrawRLWE(q, n,N, χ, s2); a1→20
← SwitchKeyGen(s1, s2);

A1 ← RN×2
q ; a1→21 ← RN×2

q : A(A0, a1←20) = 0]

− Pr[A0 ← DrawRLWE(q, n,N, χ, s2); a1→20
← SwitchKeyGen(s1, s2);

A1 ← RN×2
q ; a1→21

← RN×2
q : A(A0, a1←20

) = 1]| ≤ ε.

That is: the distributions (A0, a1←20
), (A1, a1←21

) are computationally indis-
tinguishable, even for a distinguisher who knows s1.

Proof. This follows from the assumption that the decision problem for RLWE
is hard in the ring Rq, that is: it is impossible to distinguish between the
matrices A0 and A1, as one is generated according to RLWE, and the other is
generated uniformly at random. Assume for the sake of contradiction that there
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does exist an adversary A able to distinguish between the pairs (A0, a1→20) and
(A1, a1→21). We may then construct an adversary B able to solve the decision
problem for RLWE in the following way: B is presented with a challenge matrix
A of dimension N × 2 for some N . B may then choose any vector s1 of length
k1 = N/(blog(q)c+1) where the first coordinate is 1, compute Powersof2(s1) and
add its transpose to A’s first column. This results in the matrix a1→2, which
will be a valid key switching matrix from s1 to s2, assuming A is a public key
generated by s2. Finally B may send (A, a1→2) as well as s1 to A. If A outputs
0, B guesses that A has been generated according to RLWE, if A outputs 1,
B guesses A has been generated at random. It is easy to see that B is able to
solve the decision problem of RLWE with the same advantage of A, and it must
thus follow, under the assumption that this problem is hard, that the advantage
of A must be negligible.

6.3 Modulus Switching

Seeing as switching keys increases the noise, we need something that will reduce
it as well, which we get by switching the ciphertext modulus of the system.
Suppose c is an encryption of a message m under a short secret key s. Then,
for q′ < q and c′ the ciphertext closest to (q′/q)c in the Euclidean norm when
both are viewed as coefficient vectors which also satisfies c′ ≡ c mod 2, c′ is
a valid encryption of the same m under the same secret key s; at least under
some specifications.

Definition 6.3 (Definition 4.4 [6]). For an integer vector v and the integers
2 < q′ < q, define the integer vector v′ = Scale(v, q, q′, 2) to be the R-vector
closest to (q′/q)v in the Euclidean norm such that v′ ≡ v mod 2.

Definition 6.4 (Definition 4.5 [6]). The R-norm of a vector v in Rk is defined

as `
(R)
1 (v) =

∑k
i=1 ‖vi‖.

The procedure of switching moduli in the encryption scheme is simply setting
the new ciphertext as c′ = Scale(c, q, q′, 2), where c is the original ciphertext, q
is the original ciphertext modulus and q′ is the new modulus.

Proposition 6.5 (Lemma 4.6 [6]). Let n be the degree of the ring R and let q
and q′ be positive integers satisfying: 2 < q′ < q and q′ ≡ q ≡ 1 mod 2. Let
c ∈ R2 and c′ = Scale(c, q, q′, 2). Then, for any s ∈ R2 such that

‖〈c, s〉 mod q‖ < q/2− (q/q′)n`
(R)
1 (s),

we have

〈c′, s〉 mod q′ = 〈c, s〉 mod q and

‖〈c′, s〉 mod q′‖ < (q′/q)‖〈c, s〉 mod q‖+ n`
(R)
1 (s).

Proof. For some l ∈ R we have

〈c, s〉 mod q = 〈c, s〉 − ql.
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For the same l, let

eq′ = 〈c′, s〉 − q′l ∈ R.

Note that eq′ ≡ 〈c′, s〉 mod q′, with equality if ‖eq′‖ < q′/2. This is what must
be proved.

‖eq′‖ = ‖ − q′l + 〈(q′/q)c, s〉+ 〈c′ − (q′/q)c, s〉‖
≤ ‖ − q′l + 〈(q′/q)c, s〉‖+ ‖〈c′ − (q′/q)c, s〉‖

≤ (q′/q)‖〈c, s〉 mod q‖+
√
n

2∑
i=1

‖c′i − (q′/q)ci‖‖si‖

≤ (q′/q)‖〈c, s〉 mod q‖+
√
n
√
n `

(R)
1 (s)

< (q′/q)(q/2− (q/q′)n`
(R)
1 (s)) + n`

(R)
1 (s) = q′/2.

This, hopefully, explains the necessity of switching keys: if the length of the

key s is too long, the inequality ‖〈c, s〉‖ < q/2 − (q/q′)n`
(R)
1 (s) will not hold,

and thus the ciphertext c′ might not decrypt correctly.
Furthermore, assuming the inequality does hold, we have an upper bound

on the noise of the new ciphertext c′, namely:

‖〈c′, s〉 mod q′‖ < (q′/q)‖〈c, s〉 mod q‖+ n`
(R)
1 (s).

Thus, assuming `
(R)
1 (s) is small in relation to q, switching the ciphertext mod-

ulus from q to q′ reduces the noise of the ciphertext. It is worth noting that
this reduction may be performed without explicit knowledge of the secret key s

apart from a bound on its R-norm `
(R)
1 (s).

6.4 The Homomorphic Encryption Scheme

Based on the basic encryption scheme as well as key switching and modulus
switching, we may form an encryption scheme which is fully homomorphic with-
out having to turn to bootstrapping, assuming the scheme allows for sufficiently
many modulus switchings to be performed.

FHESetup(1λ, 1L): Let µ = µ(λ, L) = θ(log(λ)+log(L)) be a parameter related
to the bit-length of the the modulo q. Just as in the algorithm ESetup
we generate a set of parameters params, only now we generate a ladder
of moduli qi and hence also of sets of parameters. Set paramsL = {qL =
qL(λ, (L+1)µ), n = n(λ, (L+1)µ), NL = polylog(qL), χ = χ(λ, (L+1)µ)}.
For i = L − 1, . . . , 0 set paramsi = {qi = qi(λ, (i + 1)µ), ni = n,Ni =
polylog(qi), χi = χ}. Thus we have a ladder of decreasing moduli, from
qL with (L+ 1)µ bits to q0 with µ bits.
Output params = {params0, params1, . . . , paramsL}
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FHEKeyGen(params): For i = L, . . . , 1, 0, do the following:

1. Draw si ← χ and set si = [1, si].
Generate Ai ← DrawRLWE(paramsi, si).

2. Set s′i = [1, si, s
2
i ] ∈ R3

qi .

3. Set as′i+1→si = SwitchKeyGen(s′i+1, si). This step is omitted when
i = L.

The secret key sk consists of the si’s and the public key pk consists of the
matrices Ai and as′i+1→si . Output sk, pk.

FHEEncrypt(params, pk,m): Run EEnc(paramsL,AL,m).

FHEDec(paramsi, sk, c): Run EDec(paramsi, si, c), supposing c is encrypted
under key si. A ciphertext may easily be modified to carry an index
indicating which level it belongs to.

FHEAdd(pk, c1, c2): The two ciphertexts have to be encrypted under the same
secret key si, use FHERefresh if needed. Set c3 = c1 + c2 mod qi. c3

may be interpreted as a ciphertext under the secret key s′i.
4 Output:

c4 = FHERefresh(c3, as′i→si−1
, qi, qi−1).

FHEMult(pk, c1, c2): The two ciphertexts have to be encrypted under the same
secret key si, use FHERefresh if needed. Set

c3 = [c11 ∗ c21 , c11 ∗ c22 + c12 ∗ c21 , c12 ∗ c22 ] mod qi,

where ck = [ck1 , ck2 ] for k = 1, 2. c3 is encrypted under the secret key s′i.
Ouput:

c4 = FHERefresh(c3, as′i→si−1
, qi, qi−1).

FHERefresh(c, as′i→si−1
, qi, qi−1): Do the following:

1. Set c1 = KeySwitch(as′i→si−1
, c, qi), a ciphertext encrypted under

the key si−1 for modulus qi.

2. Set c2 = Scale(c1, qi, qi−1, 2), a ciphertext encrypted under the key
si−1 for modulus qi−1. Ouput c2.

6.5 Correctness

This entire subsection will prove the following:

Proposition 6.6 (Theorem 5.6 [6]). The encryption scheme in Subsection 6.4
decrypts correctly, assuming the procedure FHERefresh is performed at most L
times.

4Seeing as c3 = [c31 , c32 ] ∈ R2
q wheras s′i = [1, si, s

2
i ] ∈ R3

q , it is strictly speaking necessary
to set c3 = [c31 , c32 , 0] for the inner-product 〈c3, s′i〉 to be mathematically valid.

36



To avoid having to state the assumption several times, 〈c, s〉 mod q will
throughout this subsection denote the modular reduction of the ciphertext so
that it may be expressed as m+ 2ẽ for some error polynomial ẽ. For example,
in the case of fresh ciphertexts, 〈c, sL〉 mod qL = m+ 2

∑NL

i=1 ri ∗ ei. This is the
reduced ciphertext which will result in correct decryption, and in general we
only have 〈c, s〉 ≡ m + 2

∑
r ∗ e mod q. Correctness of the scheme essentially

boils down to showing that

‖〈c, s〉 mod qi‖ < qi/2

for ciphertexts outputted by the scheme, either by FHEEncrypt, in which case
q = qL or by FHERefresh, in which case q ∈ {q0, . . . , qL−1}.

FHEEncrypt: The first step is to show the correct decryption of a fresh
ciphertext c = FHEEnc(paramsL, pk,m), that is: ‖〈c, sL〉 mod qL‖ < qL/2.

Recall that 〈c, s〉 mod qL = m+ 2
∑N
i=1 ei ∗ ri where m ∈ R2, ri ← R2, ei ← χ,

as shown in Subsection 6.1. Seeing as χ is a noise distribution, we let Bχ be a
bound such that with overwhelming probability ‖e‖ < Bχ for any e ← χ. We
may then, using Lemma 4.4, bound the noise of a freshly generated ciphertext
as:

‖〈c, sL〉 mod qL‖ = ‖m+ 2

NL∑
i=1

ri ∗ ei‖ ≤ ‖m‖+ 2
√
n

NL∑
i=1

‖ri‖‖ei‖

≤
√
n + 2nNLBχ = BL. (9)

Assuming BL < qL/2, we have:

FHEDec(paramsL, sk,FHEEncrypt(paramsL, pk,m)) = m.

FHEAdd: The correctness of the procedure per se depends on FHERefresh,
however, this requires that the ciphertext it receives as input will decrypt cor-
rectly. Hence, we need c3 = c1 + c2 mod qi to satisfy the inequality

‖〈c3, s
′
i〉 mod qi‖ < qi/2.

Let 〈ck, si〉mod qi = mk+2
∑Ni

j=1 ekj∗rkj , so that (〈ck, si〉mod qi) mod 2 = mk

for k = 1, 2. We then have:

‖〈c3, s
′
i〉 mod qi‖ = ‖m1 +m2 + 2

Ni∑
j=1

(e1j
∗ r1j

+ e2j
∗ r2j

)‖

≤ ‖m1‖+ ‖m2‖+ 2

Ni∑
j=1

(‖e1j
∗ r1j
‖+ ‖e2j

∗ r2j
‖)

≤ 2
√
n + 2

√
n

Ni∑
j=1

(‖e1j‖‖r1j‖+ ‖e2j‖‖r2j‖)
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≤ 2
√
n + 4nNiBχ = 2Bi. (10)

FHEMult: Just as with the FHEAdd procedure, we need to establish that
the ciphertext c3, which is used to calculate the output ciphertext of FHEMult
using FHERefresh, will decrypt correctly, meaning ‖〈c3, s

′
i〉 mod qi‖ < qi/2 for

all i ∈ {0, 1, . . . L}. Recall that c3 = [c11
∗ c21

, c11
∗ c22

+ c12
∗ c21

, c12
∗ c22

] and
s′i = [1, si, s

2
i ] for

ck = [ck1 , ck2 ] = [mk +

Ni∑
j=1

akj ∗ rkj ∗ si + 2ekj ∗ rkj , −
Ni∑
j=1

akj ∗ rkj ],

and assume (〈ck, sj〉 mod qi) mod 2 = mk for k = 1, 2. We thus have the
following bound on the noise of c3:

‖〈c3, s
′
i〉 mod qi‖ = ‖c11 ∗ c21 + (c11 ∗ c22 + c12 ∗ c21) ∗ si + c12 ∗ c22 ∗ s2

i mod qi‖

= ‖m1 ∗m2 + 2m1 ∗
Ni∑
j=1

e2j
∗ r2j

+ 2m2 ∗
Ni∑
j=1

e1j
∗ r1j

+
(

2

Ni∑
j=1

e1j
∗ r1j

)(
2

Ni∑
j=1

e2j
∗ r2j

)
‖

≤ ‖m1 ∗m2‖+ ‖2m1 ∗
Ni∑
j=1

e2j ∗ r2j‖+ ‖2m2 ∗
Ni∑
j=1

e1j ∗ r1j‖

+ ‖4
( Ni∑
j=1

e1j
∗ r1j

)( Ni∑
j=1

e2j
∗ r2j

)
‖

≤
√
n
(
‖m1‖‖m2‖+ 2‖m1‖

Ni∑
j=1

‖e2j
∗ r2j
‖

+ 2‖m2‖
Ni∑
j=1

‖e1j ∗ r1j‖+ 4

Ni∑
j=1

‖e1j ∗ r1j‖
Ni∑
j=1

‖e2j ∗ r2j‖
)

≤
√
n
(
n+ 2n

Ni∑
j=1

(‖e1j
‖‖r1j

‖+ ‖e2j
‖‖r2j

‖)

+ 4n

Ni∑
j=1

‖e1j
‖‖r1j

‖
Ni∑
j=1

‖e2j
‖‖r2j

‖
)

≤
√
n (n+ 4n3/2NiBχ + 4n2N2

i B
2
χ) =

√
n B2

i . (11)

FHERefresh: The first step of this procedure is to expand the ciphertext by
setting c1 = KeySwitch(as′i→si−1

, c). Seeing as c ∈ R3
q after either FHEAdd

or FHEMult, it must be the case that BitDecomp(c, qi) ∈ R
3blog(qi)c+3
2 . The
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following bound on the noise follows from the proof of correctness of the key
switching procedure, Proposition 6.1, and the assumption that 2Bi ≤

√
n B2

i :

‖〈c1, si−1〉 mod qi‖ ≤ ‖〈c, s′i〉 mod qi‖+ ‖2〈BitDecomp(c, qi), e〉‖
≤ ‖〈c, s′i〉 mod qi‖+ 2

√
n ‖BitDecomp(c, qi)‖‖e‖

≤
√
n B2

i + 6nBχ(blog(qi)c+ 1).

The final step is switching the modulus of the ciphertext by setting

c2 = Scale(c1, qi, qi−1, 2).

Recall that the secret key si−1 = [1, si−1], where Bχ ≥ si−1 ← χ. Based on this
and the proof of correctness for modulus switching, Proposition 6.5, we get the
following bound of the ciphertext:

‖〈c2, si−1〉 mod qi−1‖ ≤
qi−1

qi
‖〈c1, si−1〉 mod qi‖+ n`

(R)
1 (si−1)

≤ qi−1

qi
‖〈c1, si−1〉 mod qi‖+ 2nBχ.

Based on these two bounds, we get this final bound of an output ciphertext
from FHERefresh:

‖〈c2, si−1〉 mod qi−1‖ ≤
qi−1

qi
(
√
n B2

i + 6nBχ(blog(qi)c+ 1)) + 2nBχ (12)

=
qi−1

qi
(
√
n B2

i + νKeySwitchi
) + νModRedi .

In order to guarantee correct decryption, (12) must be strictly less than qi−1/2.
The last part of the proof of correctness is thus showing, among other things,
that this bound holds for all values of i.

The strategy is to find a universal bound B on the length of noise, showing
that any fresh ciphertext and any ciphertext outputted by FHERefresh will have
length less than this bound, and finally showing that any ciphertext satisfying
this bound will decrypt correctly for any ciphertext modulus qi.

For this to be the case, we need B < qL/2 to ensure correct decryption of
a fresh ciphertext, according to (9), and also 2B < qi/2,

√
n B2 < qi/2 ∀i ∈

{1, 2, . . . L} to prevent excessive noise before FHERefresh, as by (10) and (11),
respectively. Finally, the value of (12) needs to be less than B for all values of
1 ≤ i ≤ L and B < qi/2 to ensure proper decryption of a processed ciphertext,
for any possible value of i.

Setting B = Õ(BχnL) and qi = (2
√
n B)i+1 ensures this. It is easy to

see that B < qL/2 = 2L(
√
n B)L+1, meaning any fresh ciphertext will decrypt

correctly. Regarding (10) and (11), setting i = 1 results in:

q1/2 = (2B
√
n )2/2 = 2nB2 >

√
n B2 > 2B.

It follows that (10) and (11) are strictly less than qi/2, 1 ≤ i ≤ L. Furthermore,
we have the following properties for the same values of i:
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1. qi/qi−1 = 2
√
n B.

2. The noise added during the FHERefresh procedure due to the key switch-
ing and modulus switching,

qi−1

qi
6nBχ(blog(qic) + 1) + 2nBχ =

qi−1

qi
νKeySwitchi

+ νModSwitchi ,

is dominated by the last term, and it thus follows, in particular, that
2( qi−1

qi
νKeySwitchi

+ νModRedi
) ≤ B.

Based on these two properties, we may compute:

qi−1

qi
(
√
n B2 + νKeySwitchi

) + νModRedi
≤ 1

2
√
n B

√
n B2 +

1

2
B ≤ B.

Meaning: any ciphertext outputted by FHERefresh will have noise less than B
if the input ciphertext has noise at most

√
n B2.

Finally: B <
√
n B = q0/2 < q1/2 < · · · < qL/2, and it thus follows

that any ciphertext outputted by FHERefresh with a valid ciphertext as input
will decrypt correctly. Correctness of the leveled fully homomorphic encryption
scheme as such follows.

6.6 Selection of Parameters and Security

Setting B = Õ(BχnL) and qi = (2B
√
n )i+1 provides correctness of the scheme,

but this is not the only aspect to be taken into account when choosing parame-
ters, as the desired security level in particular affects the choice of n. The authors
of [6] state that to achieve hardness against 2λ time adversaries, it is required set-
ting n = Ω(log(qL/B)λ). It follows that n may be expressed as a polynomial of
λ, and thus that B

√
n also may be expressed as the product of a polynomial of λ

and a term Õ(L). Based on this, we have that log(qi) = iθ(log(λ)+log(L)) = iµ.
Thus, µ is a measure of how many bits is needed to represent a given modulus q
to ensure a correct decryption, even after a call to the FHERefresh procedure.
Furthermore, we may set n ≈ µλL to achieve 2λ security.

Intuitively, it is easy to se that the security of the scheme is based on RLWE,
presented in Section 4; after all, if an adversary given a public key matrix
A = [aT s+2e, −aT ] has a significant chance of finding the secret key s = [1, s],
that is, solving the search problem of RLWE, the scheme is obviously insecure.
Furthermore, the public key of the homomorphic scheme is a collection of both
encryption matrices and key switching matrices, and according to Lemma 6.2
any pair of public key matrices Ai and as′i+1→si will be indistinguishable from
two randomly generated matrices, under the assumption that the decision prob-
lem of RLWE is hard. In addition, by Miccianco’s regularity lemma, the vector
r ·A has negligible statistical distance from uniform5 when both A ∈ RN×2

q and

r ∈ RNq for N = polylog(q) [18, 6]. It follows that, under the assumption that

5I.e. it may for all intents and purposes be regarded as sampled from a uniform distribution.
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the decision problem of RLWE is hard, and thus that any public key matrix A
is indistinguishable from uniform for an adversary, an adversary has negligible
advantage in guessing the plaintext m, as the encryption procedure outputs
ciphertexts that are statistically independent of this plaintext.

How difficult are these two problems, though? It is easy to see that the
search problem is at least as difficult as the decision problem, and under certain
conditions they may be shown to be equal, as mentioned in Section 4. However,
no general reduction is known, but the conjecture is that the decision problem
is hard. The search problem is provably at least as hard as solving approximate-
SVP for any ideal lattice, as proven by [17]. The conjecture is that this is in
fact hard also, though there is strictly speaking no proof of this conjecture. It is
proven that approximate-SVP is NP-hard for lattices in general, to within any
constant factor less than

√
2 [19], but first of: the approximation factors suffi-

cient to solve RLWE may be greater than
√

2 , and second: the extra algebraic
structure of ideal lattices might make approximate-SVP easier to solve than in
general lattices, even though such an algorithm has not been found yet, de-
spite considerable effort [17]. Hence, the conjecture is believed to be reasonable,
making the RLWE problems hard.

Assuming the hardness of these problems, it is possible to prove the scheme
to be secure under the notion of indistinguishability under a chosen plaintext
attack (IND-CPA). Informally, IND-CPA means: an adversary A with access to
the encryption of any plaintext of her choosing is unable to distinguish between
the encryption of two randomly chosen messages m0 and m1 with significant
advantage.

This is fairly weak as far as security notions go, but this is an inherent weak-
ness in fully homomorphic encryption schemes in general. The reason for this is
that stronger security notions, such as IND-CCA (being unable to distinguish
between two randomly selected messages given access to both an encryption and
decryption oracle) may be proven to imply the ciphertexts of the scheme being
non-malleable (NM): given a ciphertext c, an adversary is unable to output a
ciphertext c′ such that the underlying messages m and m′ are related according
to some relation of the adversary’s own choosing [4]. This security goal ob-
viously cannot hold for any homomorphic encrytpion scheme, as an adversary
may ask for the encryption of any message m′, add the resulting ciphertext to
the challenge ciphertext and thus present an encryption of m+m′.

In order to prove the scheme to be IND-CPA secure, we need a more formal
definition of the security notion:

Definition 6.7 (Definition 2.3 [6]). An encryption scheme E={K, E ,D} with
key generation algorithm, encryption algorithm and decryption algorithm K, E ,D
respectively is IND-CPA secure if there is a negligible function ε for every
polynomial-time adversary A = (A,B) such that

Adv(A) = |Pr[pk ← K(λ); (m0,m1)← A(pk); c0 ← E(pk,m0) : B(pk, c0) = 1]

− Pr[pk ← K(λ); (m0,m1)← A(pk); c1 ← E(pk,m1) : B(pk, c1) = 1]|
≤ ε(λ).
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We may now prove the following:

Theorem 6.8 (Theorem 5.7 [6]). Let n = n(λ), q = q(λ) and χ = χ(λ) be
functions of the security parameter, and let N = polylog(q, λ). Then the scheme
FHE described in Subsection 6.4 is IND-CPA secure, under the assumption that
the RLWE decision problem is hard for parameters n, q and χ.

The proof is based on a hybrid argument, meaning we start with the original
scheme and the advantage an IND-CPA adversary has against it, and gradually
change the scheme in steps (the scheme of each step being a hybrid of the
original) until we find one which is provably IND-CPA secure. Expressing the
adversary’s advantage as a sum of the advantages in the hybrid will provide
proof that the original scheme is itself secure.

Proof. Throughout the proof, A is an IND-CPA adversary for the FHE scheme
in Subsection 6.4, and AdvH(A) denotes the probability of success of A in hybrid
H

• Hybrid H0: This is an IND-CPA game in the original scheme: A gets a
public key pk distributed according the distribution set by λ. Recall that
this key consists of the following:

– A matrix AL = [aTLsL + 2eTL, −aTL].

– L pairs (Al, as′l+1→sl) for l = L−1 to 0, where Al = [aTl sl+2eTl , −aTl ]

and as′l+1→sl = SwitchKeyGen([1, sl+1, s
2
l+1], [1, sl]).

Assume for the sake on contradiction that A has a non-negligible advan-
tage in winning the IND-CPA game, meaning: for every negligible function
ε, it is the case that:

AdvH0
(A) = |Pr[A(pk,FHEEnc(pk,m0)) = 1]

− Pr[A(pk,FHEEnc(pk,m1)) = 1]| > ε(λ), (13)

where m0,m1 are drawn at random from R2.

• Hybrid Hl for l = 1, . . . L−1: Hybrid Hl is identical to Hl−1 except for the
public key Al−1 and the hint as′l→sl−1

are drawn uniformly at random from
the appropriate domains. The claim is that the two hybrids Hl and Hl−1

are computationally indistinguishable, that is: no polynomial adversary
will be able to distinguish between the hybrids Hl and Hl−1. Assume for
the sake of contradiction that there does exist an adversary A′ able to
distinguish between the two hybrids with non-negligible advantage. We
may then construct an adversary B able to distinguish between a correctly
generated pair (Al, as′l+1→sl) and a pair of matrices of the same dimension
generated uniformly at random. This distinguisher B is constructed as
follows:

B is presented with a challenge consisting of two matrices, and should be
able to distinguish between a pair of matrices belonging to some public

42



key pk of FHE, (A0, a1→20), and a pair of randomly generated matrices,
(A1, a1→21). If B is going to employ the advantage of A′ in order to win
this challenge, the problem needs to be transformed into one A′ can solve.
Thus, B sets her own challenge input to be (Al−1, as′l→sl−1

), generates the
pair of matrices of index lower than l− 1 at random and the matrix pairs
of index l or higher, as well as AL, are generated as Ai = DrawRLWE(si),
as′i→si−1

= SwitchKeyGen(s′i, si−1) for si ← χ si−1 = [1, si−1] and s′i =

[1, si, s
2
i ]. The distinguisher B then feeds the L pairs of matrices and

the matrix AL to the adversary A′. If A′ outputs Hl−1, B guesses that
her own pair of matrices are generated according to RLWE and therefore
outputs 0, and outputs 1 if A′ guesses Hl.

Based on this construction, B will be able to distinguish between the two
cases (A0, a1→20) and (A1, a1→21) with the same non-negligible advantage
as A′ has of distinguishing two hybrids Hl−1 and Hl, contradicting Lemma
6.2. Thus, the two hybrids are computationally indistinguishable, and it
must follow that

|AdvHl
(A)−AdvHl−1

(A)| ≤ ε(λ)

for some negligible function ε. If this is not the case, meaning there is an
adversary A significantly better at winning the IND-CPA game in one of
the hybrids Hl or Hl−1, A′ may easily employ A to distinguish between the
two hybrids. Finally: note that in hybrid HL all the pairs (Al−1, as′l→sl−1

)
are uniformly random for every l ∈ {1, 2, . . . L}.

• Hybrid HL+1: The final hybrid is HL+1 and is equal to HL except that
in HL+1 the matrix AL is uniformly distributed as well, rather than as
a public key of the basic encryption scheme in Subsection 6.1. By an
argument essentially equal to the one above, it must be the case that

|AdvHL+1
(A)−AdvHL

(A)| < ε(λ).

Thus, in the final hybrid, all the elements of the public key are uniformly random
and completely independent of the message. Then, according to Micciancio’s
regularity lemma, any ciphertext generated by either public key matrix Ai is
statistically independent from the message it encrypts [6, 18]. It must therefore
follow that

AdvHL+1
< ε(λ),

that is, the scheme in hybrid HL is IND-CPA secure. Combining all these
findings, we have:

AdvH0
(A) ≤ AdvHL+1

(A) +

L∑
l=0

|AdvHl
−AdvHl+1

| ≤ ε(λ),

for some negligible function ε, and thus a contradiction to (13). It follows that
the leveled fully homomorphic encryption scheme of Subsection 6.4 is IND-CPA
secure.
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6.7 Efficiency

The main measure of efficiency in this scheme is the per-gate computation: the
ratio between the time it takes to evaluate a circuit (i.e. a function) homomor-
phically and the time it takes to evaluate it in the clear. Asymptotically this
per-gate computation is Õ(λL3), which follows from an asymptotic analysis of
FHEMult in particular, as it is the most time consuming operation.

First, the ciphertext c3 = [c11
∗c21

, c11
∗c22

+c12
∗c21

, c12
∗c22

] must be com-
puted, which requires Õ(n log(qi)). Next, as part of FHERefresh, the keys are
switched, which involves a multiplication of the transpose of BitDecomp(c3, qi)
with a key switching matrix. The length of the vector depends on log(qi), and
so it follows that the computation required for this step is Õ(n log(qi)

2). The
final step is switching the modulus, the computation of which is Õ(n log(qi)).
It follows that the computational cost of the entire operation is Õ(n log(qi)

2),
where log(qi) ≤ log(qL), which depends quasilinearly on L, and n depends quasi-
linearly on λL, so the per-gate computation of Õ(λL3) immediately follows.

This scheme can however be made more efficient, i.e. have a lower per-
gate computation, with several optimizations, one of which is bootstrapping,
which brings it down to Õ(λ2). This might seem slightly odd, seeing as scheme
is advertised as a fully homomorphic encryption scheme without bootstrapping.
However, note that this is an optimization, as opposed to a necessity. For shallow
circuits that require a small L, it might in fact be better to not implement
bootstrapping at all, as it is a somewhat costly operation: in [13], it took 320
seconds to bootstrap vectors of 1024 elements from GF(216) with a security level
of 76, and required 3.4 GB of space.

There have also been implementations of the encryption scheme without
bootstrapping, one of which homomorphically evaluated the AES-128 circuit,
which consists of ten application of one keyed rounding function, with different
keys. Three different implementations are presented in [10], varying in the
representation of the ciphertext and how packed it is. Several optimizations of
the scheme presented in Subsection 6.4 are added, among others not refreshing
the ciphertext after each addition or multiplication. Instead, each ciphertext has
an estimate of its noise level attached to it, and FHERefresh is only performed
when this estimate gets too high. For more details, see [10]. It should be
noted that for all of the implementations, the evaluation time for each AES-
round decreased as more round were performed, and that the implementation
based on the presented encryption scheme took the least amount of time. The
first round took 7 hours to evaluate, whereas the last one required ”merely” 30
minutes, and 36 hours to evaluate the entire AES circuit. This implementation
was run on one core of a supercomputer with 256 GB RAM.
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7 Comparison

Throughout this section, the schemes presented in Section 5 and 6 will be re-
ferred to as RC-NTRU and BGV, respectively.

At a high level, the two schemes are quite similar: they both work over

the ring R = Z[x]/(x2k

+ 1) and support encryption of messages in Rp, for
some modulus p, though BGV is only presented for the case p = 2, and the
bootstrapping procedure of RC-NTRU requires that the encrypted message lies
in Z2. They both use modulus switching to manage the noise, support ring
reduction [12] and employ key switching to aid other operations, which increases
the noise somewhat in both schemes. In the case of RC-NTRU, key switching is
used during bootstrapping and ring reduction, whilst BGV switches keys during
FHERefresh and ring reduction. The main motivation to reduce the dimension
of the polynomial ring in either scheme is to allow for easier computation. Care
must however be taken as to when this reduction is performed, as it results in
a less secure scheme in both cases [12].

They both encrypt messages using polynomials, and in both cases, the poly-
nomials employed are subject to certain bounds, which again subject the other
parameters of the schemes to bounds. These bounds are necessary due to an-
other key similarity: botch schemes use the same approach as the system in
Subsection 2.2: enveloping the message in two layers of noise, where the inner
layer must not be allowed to interfere with the outer layer, as this may result
in incorrect decryption.

The question of correct or incorrect decryption boils down to the same central
question in both schemes: whether or not the modular reduction of a polynomial
dependent on both the ciphertext and secret key equals a particular polynomial
v, which is equivalent to the plaintext modulo some modulus. These require-
ments result in the various bounds derived for the schemes, where the bounds
for RC-NTRU are derived with respect to the infinity norm of any polynomial
affecting the noise, whilst BGV uses Euclidean norm. The bounds of RC-NTRU
might therefore be viewed as stricter than those of BGV, as FHEDec(c, s) might

still be correct even though ‖m+2
∑Ni

j=1 rj ∗ej‖ > qi/2. Using Euclidean norms
during the derivation of bounds on B, and therefore also q, might thus result in
slightly larger parameters than strictly necessary.

Both schemes require sets of parameters in some sense to enable modulus
switching. BGV generates these sets directly in FHESetup, whilst this set is the
possible ciphertext moduli in the case of RC-NTRU. The fact that they both
use modulus switching results in another common factor: they may both be
calibrated to allow for a certain amount for modulus switchings to be performed,
referred to as both depth of computation D in RC-NTRU and level L in BGV6.
The larger this number is, the larger the initial ciphertext modulus q has to
be, as q is reduced during a modulus switching. Furthermore, the ciphertext
modulus depends on both the desired level of security as well as the depth of

6Strictly speaking, the number of modulus switchings which may be performed in BGV is
L− 1, meaning L corresponds to t in RC-NTRU: the number of factors in q.
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computation in both schemes. In addition, the dimension of the ring depends on
the logarithm of q and the chosen security level. Increasing the computational
depth therefore often comes at the cost of increasing the dimension of the ring
to ensure the desired level of security in both schemes.

A central difference is how this security level is estimated in the two schemes:
whereas BGV has a more traditional approach in choosing a parameter λ such
that any attack on the scheme takes more than time 2λ, the security level of
RC-NTRU is estimated through experimental approximations. This is because
RC-NTRU is based on a very particular problem: how hard is it to approximate
a certain vector in a specific lattice. Seeing as the time complexity of the best
attack is not clear the traditional approach is not the best one suited to estimate
the hardness of this problem. Instead, estimating the security requires first
calculating the constant δ so than if an adversary is able to find a vector of length
δ2n√q , she breaks the scheme. Next, the time required by various algorithms
to enable such an estimate must be approximated, based on experimental data,
before one may conclude whether the security level represented by δ actually is
secure. It should go without saying that any security estimate of the latter type
has to be continuously updated based on technical advances.

Another, perhaps more subtle difference is that even though both schemes
apply modulus switching, RC-NTRU requires the largest modulus to be a com-
posite which is gradually reduced by dividing out factors from both the modulus
and (the slightly altered) ciphertext. This subject the various factors qi to a
lower bound, which is the same for all factors. On the other hand, BGV uses
a ladder of ever decreasing moduli, where the relation of two adjacent moduli
is roughly the same, making this relation the subject of a lower bound. The
result is the same in one regard: the ratio between two adjacent moduli of
both schemes is proportional to n3/2, making the largest modulus proportional
to n3(D+1)/2, where D is the computational depth, and thus the number of
modulus switchings which may be performed.

Despite this similarity the consequences are very different, as this depen-
dency makes RC-NTRU susceptible to the attack described in Subsection 5.7
and [1], whereas it is of no consequence as far as security goes for BGV. This
is without a doubt the difference of most importance for the two schemes, and
stems from the different problems they base their security on. BGV is based
on the assumption that RLWE is hard, which is provably as least as difficult as
approximate-SVP in any ideal lattice. What is more: under this assumption,
BGV is provably IND-CPA secure. On the other hand, RC-NTRU assumes that
approximate-SVP is hard in the single lattice generated by the public key, an
assumption which does not hold for a large set of parameters. Although this
is believed to be hard for the original NTRU scheme (which is unaffected by
the attack), there is no proof of this hardness, nor is there is any guarantee
that this is transferable to RC-NTRU. Furthermore, it does not provide any
provable security, merely experience and the fact that no one has been able to
find a successful attack yet, despite not inconsiderable effort.

Of course, this last comment also applies to RLWE, as there is no concrete
proof that approximate-SVP is hard in ideal lattices. Nevertheless, this is an
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entire class of relatively well-studied lattices, not merely a set of very particular
lattices, as is the case for RC-NTRU. The conjecture that RLWE is hard is
therefore considered fairly strong.

It should be pointed out that there does exist a provably IND-CPA secure
version of NTRU which is based on RLWE with great similarities to RC-NTRU
[22]. The difference lies mainly in the choice of q, which is chosen to be prime
and congruent to 1 modulo 2n to enable basing the security on the classical
reduction from the search to decision problem of RLWE mentioned in Section
4. The fact that q of the provably secure scheme is set much lower than what
is the case of RC-NTRU, namely the same order of magnitude as n, also means
the attack described in Subsection 5.7 and [1] may not be applied to the scheme.

This also means the scheme presented in [22] is not homomorphic, as q is
much too small to be able to handle the growth of noise, seeing as it does not
satisfy the strict bounds derived in this thesis. The two properties, homomorphic
and secure, seem to be mutually exclusive for encryption schemes following the
NTRU blueprint, as the problem security relies on appears to be hard for a
rather too restricted set of parameters. This is a stark contrast to RLWE,
which admittedly also holds for a limited set of parameters, but this set is much
larger and versatile than what is the case for the secure NTRU setting.
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8 Conclusion

The thesis has presented two schemes with great similarities in both structure
and strategy of handling the inevitable growth of the noise the homomorphic op-
erations cause. Most importantly, both schemes are over the same ring, support
encryption of entire messages, as opposed to bit-wise encryption, and gradually
reduce the ciphertext modulus to keep the noise manageable. However, this
also imposes such large bounds on the parameters of one of the schemes that it
must be deemed insecure, as the hardness of the problem it is based on is not
transferable to the required parameters. Although the requirements for param-
eter size of the other encryption scheme are comparable to the first, these do
not affect the security of this scheme.

Great care must therefore be taken when constructing a homomorphic en-
cryption scheme, to ensure that the desired security may be combined with
an effective way of handling the generated noise. The safest strategy therefore
seems to be basing the scheme on problems proven to hold for a wide range
of parameters and with a proven hardness reduction, such as RLWE. Basing a
scheme on heuristics, such as NTRU is, might easily result in problems, not to
mention difficulties correctly estimating the level of security, as was the case for
the NTRU-based scheme presented here.

As far as efficiency goes, none of the currently developed fully homomorphic
encryption schemes may be called efficient, as mentioned in the introduction.
There have however been made great progress in the field in under 10 years,
so there does seem to be cause for hope. The most likely route to an efficient
scheme seems to be steering clear of the bootstrapping procedure, or greatly
improving upon it, as it is easily the most costly procedure in the schemes.

An alternative to this would be attempting to develop a fully homomorphic
encryption scheme which bases encryption on randomness instead of noise. This
is likely to greatly ease the bounds the various parameters of an encryption
scheme are subject to, and would probably result in a more efficient scheme
compared to the currently implemented schemes.

There are thus three factors to be weighed against each other: security,
homomorphism and efficiency, that ought to be prioritized in that order, as
an efficient homomorphic scheme is of little use if it is not secure. Further
investigation should be made into RLWE, to determine whether or not there
are certain cases that are easier than others, and whether or not any findings
affect the security of any (homomorphic) encryption schemes.
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