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Project Description
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Abstract

Ever since mass-market processors transitioned from single-core to multi-core archi-

tectures, software could no longer rely on an increase in sequential performance for

an increase in software performance. Now, developing high-performance software

on multi-core architectures requires to exploit the apparent parallelism. Concur-

rent programming is the main tool for developing such software, but programmers

struggle to create correct and scalable concurrent systems.

It is argued in this thesis Communicating Sequential Processes (CSP) is a great

model for creating correct and expressive concurrent systems. Further, it is argued

combining the parallel nature of CSP with a dynamic multithreaded runtime system

sets the foundation for creating high-performant and scalable software for multi-

core architectures.

This thesis details the development of ProXC++ – a CSP-influenced concurrency

library for modern C++, which is built around dynamic multithreading. Dynamic

multithreading is implemented as a collection of lightweight processes cooperatively

scheduled on multiple schedulers. The runtime system follows the hybrid threading

model, where processes are implemented as user-threads, and each runtime sched-

uler runs on its own kernel-thread. Runtime schedulers employ randomized work

stealing for load balancing ready processes to idle schedulers.

A detailed design and implementation of ProXC++ is presented, with focus

on dynamic multithreading. New and existing algorithms are described, mostly

for how process management, inter-process communication and synchronization

is administered by the runtime schedulers. A series of benchmarks with various

degrees of parallelism is performed. ProXC++ yields promising performance results,

however some issues with the work stealing algorithm are highlighted and discussed.

ProXC++ is concluded as a successful project, providing expressive and correct

abstractions for creating concurrent programs and is able to exploit the parallelism

in multi-core architectures. Some potential candidates for future work is outlined,

including implementing support for networking.

The ProXC++ library is publicly released as an open-source project with an

MIT license, available free of charge on GitHub.
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Sammendrag

Helt siden konsumerprosessorer gikk ifra enkjernet til flerkjernet prosessorarkitek-

turer kunne ikke lenger programvare være avhengig av økning i ytelse øke med den

sekvensielle ytelse for prosessorer. Høy ytelses programvare p̊a flerkjernet arkitek-

turer krever n̊a å utnytte den åpenbare parallelismen. Samtidig programmering er

hovedverktøyet for å utvikle slike programvarer, men programmerere sliter med å

skrive korrekt og skalerbart samtidighets-systemer.

Denne avhandlingen argumenterer at Communicating Sequential Processes (CSP)

er en bra model for å lage korrekte samtidighets-systemer som har kraftig ut-

trykkskraft. Videre s̊a argumenteres det at ved å kombinere den parallele naturen

i CSP med et dynamisk multitr̊adet kjøresystem kan lage et solid fundament for

høy ytelses og skalerbare programvare for flerkjernet arkitekturer.

I denne avhandlingen presenteres arbeidet som er gjort p̊a ProXC++ – en

CSP-insperert samtidighetsbibliotek for moderne C++, som bygges p̊a dynamisk

multitr̊ading. Dynamisk multitr̊ading implementeres med lettvektsprosesser som

bruker sammarbeidende kjøring planlagt av flere planleggere. Kjøresystemet følger

en hybrid tr̊admodel, hvor prosesser er implementert som brukertr̊ader, og hver

planlegger kjører p̊a sin egen kjernetr̊ad. Planleggerne bruker randomisert arbeid-

stjeling for å balansere arbeid mellom ledige planleggere.

Et detaljert design og implementasjon av ProXC++ er presentert, hvor fokuset

er p̊a dynamisk multitr̊ading. Nye og eksisterende algoritmer er forklart, hoved-

saklig p̊a hvordan prosesstyring, inter-prosesskommunikasjon og synkronisering er

forvaltet av planleggerne. En rekke tester med varierende grad av parallelisme er

utført. ProXC++ gir lovende resulterer, men en del problemer med arbeidsstjelings-

algoritmen er fremhevet og diskutert.

ProXC++ er konkludert med å være et vellykket prosjekt, basert p̊a dens uttryk-

skraft og korrekte abstraksjoner for å lage samtidighets-systemer og at den klarer

å utnytte parallelismen i flerkjernet arkitekturer.

Biblioteket ProXC++ er publisert some åpen kildekode med MIT lisens, og er

tilgjengelig gratis p̊a GitHub.
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Chapter 1

Introduction

Computers are for many the greatest engineering feat in the 20th century, taking

into consideration the vast complexity, precision, and knowledge it has required to

reach the state of computers we have today. Since its inception with the transistor

in the 40s, the computer has been subjected to numerous changes in different tech-

nology to further increase the performance. Such technology includes the decrease

in size of transistors down to nanometers, faster clock rates for processors, and

most notably the transition from single-core to multi-core architectures.

When entering the 21st century, the main drive behind increasing processor

performance was increasing the transistor count in the processor, following the

exponential growth described by Moore’s law for decades. However, since 2005 this

strategy was no longer sustainable. The physical limitations of the Dennard scaling

were starting to show, and a shift from single-core towards multi-core architectures

was a response to this limitation. This shift is, of course, an oversimplification of

the issue, but multi-core architectures are pretty much the norm among desktop

processors in this day and age.

With the transition to multi-core architectures, software can no longer näıvely

rely on increase in processor performance for an increase in software performance.

Software has to now exploit the parallelism in multi-core processors, which requires

concurrent programming. Concurrent programming has long existed before multi-

core processors, but is now the main tool for developers to write scalable software

1



CHAPTER 1. INTRODUCTION 2

which can utilize the parallel power in multi-core architectures.

Concurrent programming revolves around having multiple threads of execution

running concurrently (simultaneously) in a program. Such programs are called con-

current systems. Even though concurrent programming is a powerful and expressive

paradigm to write software in, it also is difficult to reason whether a concurrent

system behaves as specified by the programmer. What makes it hard to write

correct and well-behaved concurrent systems has to do with concurrency adding

significant complexity to the system. Additionally, it is an added mental overhead

for the programmer. Even the simplest and most subtle errors in a program can

explode into the most obscure and hard-to-track bugs. Being able to write expres-

sive concurrent systems, as well as being able to reason about the correctness of

the system, are probably the biggest challenges with concurrency.

Communicating Sequential Processes (CSP) was an effort by Hoare [1] to har-

ness the expressiveness of concurrent programming while being able to prove the

correctness of such models. CSP is by its own a formal language used to de-

scribe concurrent models. These models described by CSP is a parallel compo-

sition of sequential processes, which only communicates through mutually agreed

message-passing constructs. This inherently inhibits any types of race-conditions

with shared memory to ever occur. However, the real power of CSP comes from

the ability to reason about the correctness of these models, such as the absence of

deadlocks and livelocks.

Several programming languages has incorporated CSP formalism into the lan-

guage, such as occam-π [2], XC [3] and Go [4], but the mainstream popularity

has not been great; Go is an exception, which ranks as one of the most popular

languages to date. As a response, a collection of transpilers1 and libraries has been

created for more popular and well-established programming languages, such as C

[5], C++ [6, 7, 8], Python [9], and Java [10].

Concurrent systems written in CSP has a great potential for exploiting the

parallelism on multi-core architectures, as CSP is inherently parallel. CSP also has

the added benefit of providing a model which can be reasoned about the correctness

1Source-to-source compiler, compiling source code written in one language to source code in
another language
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of the behaviour. However, not many CSP-based frameworks takes advantage of

the potential parallelism in multi-core architectures. Existing libraries are either

outdated for modern use, or does not satisfy performance wise. Chapter 3 takes

this discussion further and argues there is a need for a modern solution.

With the lack of a modern CSP library for C, ProXC was developed as a result of

the work done by Pettersen [5]. ProXC aimed to show the possibilities such a library

could have. The focus of ProXC was however on the provided abstractions rather

on performance, and support for multi-core architectures was not implemented.

In this thesis, the work done on ProXC is continued with the aim to provide a

portable CSP library for multi-core architectures.

This thesis presents the work and results of ProXC++, a portable CSP library for

modern C++ with support for multi-core architectures. ProXC++ is a concurrency

library which uses dynamic multithreading combined with lightweight processes to

achieve proper parallel computing on multi-core architectures. The runtime system

employed by ProXC++ consists of a number of schedulers equal to the number of

available logical processor cores. Each scheduler is responsible for scheduling and

running these lightweight processes on a kernel-thread, and uses work stealing to

load balance work between schedulers.

1.1 Project Status of ProXC

As this thesis is a continuation of the work done in the project thesis by Pettersen

[5], a short status report of ProXC the project is presented.

As of writing this thesis, ProXC has not undergone any major development,

except for some bug fixes. The API has remained unchanged, as well as any of the

major issues pinpointed by the project thesis.

1.2 Thesis Structure

The thesis is structured into three parts. Part I discusses the theoretical basis of

this thesis, as well as arguing the motivation behind CSP with multi-core support:

Chapter 2 gives an introduction to concurrent programming, and details all relevant
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theoretical knowledge for which this thesis is based on. Chapter 3 argues there is

a motivation for a CSP library with multi-core support, and provides a summary

of existing solutions and how they work.

Part II details the work regarding ProXC++: Chapter 4 details the library

specification. Chapter 5 and Chapter 6 presents respectively the design and im-

plementation. Chapter 7 presents examples of how ProXC++ is used along with

code examples. Chapter 8 performs a benchmark of ProXC++ compared to exist-

ing solutions, both highlighting the difference between single-core and multi-core

implementations.

Part III discusses different aspects of CSP and multi-core, limitation and uses of

ProXC++, and concludes the thesis: Chapter 9 compares both projects, drawing the

differences and similarities between the multi-core and single-core library. Chap-

ter 10 explains the challenges with implementing a CSP framework with multi-core

support. Chapter 11 discusses the limitations and uses of ProXC++. Chapter 12

lists a set of potential future work. Chapter 13 draws a conclusion for the thesis.

Lastly, the appendices list the used acronyms (appendix A), and a complete

listing of all benchmarks tested in Chapter 8 (appendix B). The last section in the

thesis is the list of references.



Part I

Preliminaries

5



Chapter 2

Theoretical Background

This chapter gives a more in-depth explanation of different topics mentioned in

the introduction, as well as other topics relevant to the thesis. These topics cover

the required background knowledge, and each topic is presented on its own. The

reader is encouraged to skim over this chapter, and rather come back and read

more thoroughly when coming across a topic later in the thesis.

2.1 Concurrent Programming

Concurrent programming, or concurrent computing, is a form of computing to

express programs or systems which execute multiple sequential computations in

interleaving time periods, giving the impression of simultaneous execution. These

computations are said to be running concurrently, compared to sequentially (one

completing before the next start). These individual computations are often called

processes, tasks or threads, which indicate a separate execution point. Do not con-

fuse the term process in the context of concurrent programming with an individual

program running in the context of an operating system.

The notion of concurrency stems from the limitations of sequential programs

and how all programs, in the end, are translated to machine code. Given the

program is executed on a uniprocessor, only one machine code instruction will be

6
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executed at any given moment2. Since all computations in a sequential program

must be executed sequential, it can be unintuitive how to model and implement

systems which are inherently parallel. Concurrency aims to provide an abstraction

level to bridge this limitation. Concurrent systems are therefore much more ex-

pressive than sequential systems, since it does not matter whether the program is

executed in parallel or not, e.g. on a multiprocessor or uniprocessor.

It is important to note that concurrent programming is not the same as parallel

programming. Concurrency is a form of abstraction, disregarding how the actual

program execution is achieved. Parallelism refers to, in contrast to concurrency,

the condition of a program being executed on multiple processor cores at once.

One could therefore say that concurrency is possible on both uniprocessors and

multiprocessors, while parallelism is only possible on multiprocessors.

Concurrency is a great tool for programmers, allowing concurrent systems to be

expressed in a much more intuitive manner. It does however introduce an added

mental overhead for the programmer, and is much more error-prone compared to

other types of programming paradigms. As a result, many programmers resort to

other, less error-prone programming paradigms than concurrent programming [11].

2.1.1 Threading Models

Threading is the foundation of concurrency, which allows multiple computations

to be executed simultaneously. Some sort of threading mechanism must be imple-

mented on a platform to provide concurrency. On operating systems (OS), thread-

ing mechanisms falls mainly into three types of threading models: user-threads,

kernel-threads, or hybrid-threads, which is a combination of the two first models.

Brown [7, sec. 1] goes into further detail on the three models, and a short summary

is presented below.

2Machine code execution is vastly more complex than presented here, e.g. pipelining and
instruction-level parallelism (ILP), but the sequential nature of program execution still stands
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User-Threading

User-threads are a cooperative scheduling of threads executed in user space3, and is

called a M:1 threading model. M:1 means running M user-threads on a single kernel-

thread. These user-threads must cooperate on scheduling as the scheduling is non-

preemptive, meaning a running task is executed until completion or yields. Context

switching and scheduling between these user-threads is happening unbeknownst to

the OS, resulting in much faster context switch times. Consequently, the OS cannot

however help with scheduling, and system blocking calls in any user-thread blocks

all user-threads on the given kernel-thread. Only one user-thread can run on a

kernel-thread at any given moment.

Kernel-Threading

Kernel-threads are often directly supported in OS kernels and is called a 1:1 thread-

ing model. 1:1 means scheduling a kernel-thread onto an available processor core

of the system. Kernel-threads often use preemptive scheduling, meaning threads

are given a priority, and the running thread is interrupted and later resumed when-

ever a thread with higher priority is ready. The OS is responsible for scheduling

said threads. Kernel-threads has no problems with blocking calls, as the OS can

schedule any other kernel-thread during a blocking call. Since the OS has full con-

trol over the scheduling, it can much better utilize the available processor resources

and time usage for each thread, compared to user-threading. Context switching

is however much slower than user-threads because of overhead and kernel-space4

crossing.

Hybrid-Threading

Hybrid-threads is a combination of user-threads and kernel-threads, and is called

a M:N threading model. M:N means running M user-threads over N kernel-threads.

In other words, hybrid-threading runs multiple kernel-threads, with each kernel-

thread running multiple user-threads. Blocking calls can still cause issues with

3Regarding operating systems, user space is a set of locations where normal user processes
run

4Regarding operating systems, kernel space is the location where the code of the kernel is
stored and executed
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unnecessarily blocking other user-threads, but is possible to mitigate with running

the blocking user-thread on its own kernel-thread. Scheduling user-threads among

the kernel-threads can be much more difficult compared to user-threading, as the

OS cannot help with utilizing the available processor resources.

2.1.2 Concurrency Concepts and Primitives

Having multiple sequential executions running concurrently is not very useful if

they cannot cooperate. Some form of interaction or communication between the

computations must exist, which in turn requires coordination of access to shared

resources. This coordination is called concurrency control. Concurrency control

means ensuring the correct and intended result from interactions between concur-

rent processes are upheld.

To be able to manipulate shared resources safely requires introducing a cou-

ple of new primitives and concepts. Below is a non-exhaustive list of prevalent

concurrency primitives presented.

Atomic Operations

An operation is said to be atomic or linearizable if it appears to the rest of the

system as instantaneous. In concurrent systems, multiple processes can access the

same shared resource at the same time. If one of the processes are changing the

contents of a shared resource while another process is using the same resource,

it is possible the operation results in an invalid or undefined state. It is obvious

such situations requires atomic operations to force a linear sequence of well-defined

observable operations.

Atomic operations exist both as low-level and high-level primitives. At the bot-

tom we have processor instructions which are used to manipulate memory atomi-

cally. These usually include atomic read / write, atomic swap, test-and-set, fetch-

and-add, compare-and-swap, and load-link / store-conditional. Modern processors

usually support these types of instructions [12].

Further, these instructions are used to implement higher level primitives and

non-blocking algorithms. Examples of higher level primitive include semaphores,
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mutual exclusion locks, and monitors.

Critical Sections

Concurrent access to shared resources can result in an invalid or undefined state,

as stated above. Regions of code of which concurrent access by multiple processes

were to cause erroneous behaviour are called critical sections or critical regions.

These regions must therefore be protected by some sort of synchronization or lock

mechanism. Critical sections usually access shared resources such as a data struc-

tures, IO operations or network sockets, where multiple concurrent access would

result in incorrect behaviour [13].

Consider the following program: two processes, A and B, tries to respectively

increment and decrement the shared resource count by one, initial value of 0. See

Listing 2.1 for reference.

Process A

1 // Critical section

2 count = count + 1

Process B

1 // Critical section

2 count = count - 1

Listing 2.1: Example of a critical section causing a race condition.

If both process A and B are executing the critical section at the same time, it is

possible for the count resource to equal some whole number instead of the expected

result 0. This comes from the fact the incrementing and decrementing operations

are not atomic operations, but a three-stage operation of read-modify-write.

If process A starts executing the increment, but is preempted before the write

stage, process B can theoretically complete an arbitrary amount of decrement op-

erations before process A is resumed. When process A is resumed, the old modified

value of count is now written back instead of the updated value. This illustration

is a classic example of a race condition, meaning the order and timing of which the

operation is completed determines the outcome.

To achieve correct behaviour the critical section must be protected, usually done

through some form of mutual exclusion. Consequently, mutual exclusion makes the

critical section an atomic operation, as the read-modify-write operation is made



CHAPTER 2. THEORETICAL BACKGROUND 11

indivisible to other processes.

Semaphores

Semaphore is in software terms a data structure used to control access to a shared

resource between multiple processes and to synchronize between processes. In-

vented by Dijkstra [14], and is one the simplest concurrency primitives used to

build higher level concurrency control structures.

As described in Downey [15, chapter 2], a semaphore is like an integer with

three differences:

1. When you create the semaphore, you can initialize its value to any integer,

but after that the only operations you are allowed to perform are increment

(increase by one) and decrement (decrease by one). You cannot read the

current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the

thread blocks itself and cannot continue until another thread increments the

semaphore.

3. When a thread increments the semaphore, if there are other threads waiting,

one of the waiting threads gets unblocked.

Blocking in this sense means the scheduler will suspend the blocking thread until

a corresponding event or operation which causes the thread to be unblocked. Both

the increment and decrement operations are atomic, meaning multiple processes

can concurrently access a semaphore.

Semaphores usually comes in two flavours: counting and binary semaphore. A

counting semaphore allows an arbitrary resource count, while a binary semaphore

allows only a resource count of 0 and 1 (hence the name binary).

Semaphores are incredibly simple by definition, and are therefore often used to

create more complex concurrency synchronization and structures. This includes

structures such as locks, monitors and other synchronization patterns. See Downey

[15, chap. 3-7] for a more complete overview of such constructs.
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Mutual Exclusion (Mutex)

Mutual exclusion, mutex for short, is used for protecting critical regions from con-

current access and to prevent race conditions. One can view mutexes as binary

semaphores, with one important difference: mutexes has a notion of ownership;

only the process which was successful in acquiring the mutex can release it.

Looking back at the example in Listing 2.1, wrapping a mutex around the

critical section hinders process A and B of accessing the shared resource count

simultaneously, and effectively turns the increment and decrement operation into

an atomic operation. See Listing 2.2 for reference.

Process A

1 mutex.wait()

2 // Critical section

3 count = count + 1

4 mutex.signal ()

Process B

1 mutex.wait()

2 // Critical section

3 count = count - 1

4 mutex.signal ()

Listing 2.2: A critical section surrounded by mutual exclusion, removing the race
condition.

Note that using mutual exclusion is very error-prone. Mutual exclusion might

have unwanted side-effects and conditions such as deadlocks, starvation and priority

inversion, which are explained in further detail in Subsection 2.1.3.

2.1.3 Common Pitfalls

As a consequence of using concurrency control, common pitfalls and potential prob-

lems such as race conditions, deadlocks, livelocks, starvation, and priority inversion

must be taken into consideration. These are unwanted conditions or program states

which are caused by concurrent operations and interactions resulting in an erro-

neous state.

Race Condition

As shown in Listing 2.1, a race condition occurs when the output of an operation

is dependent on the timing and sequence of other processes. Race conditions is

never an intended behaviour of a program, as it is deemed undefined behaviour.
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Undefined behaviour comes from the fact that the result of a race condition is the

non-deterministic result of timing between threads.

Deadlock

Deadlock is a state in which a group of processes are each waiting for other members

of the same group to release a lock, effectively halting progression. A deadlock is

a direct consequence of enforcing mutual exclusion in critical sections.

As described in Silberschatz et al. [16, pp. 239], a deadlock can only occur in

a system if and only if all four of the Coffman conditions [17, pp. 70] are held

simultaneously. The conditions are as follows:

1. Mutual exclusion – the resources involved must be unshareable.

2. Hold and wait – a process holding at least one resource and requesting

additional resources.

3. No preemption – a resource can only be voluntarily released by the process

holding it.

4. Circular wait – each process must be waiting for a resource held by another

process, which in turn is waiting for the first process to release the resource.

There are several ways to handle deadlocks, but the three main approaches are

ignoring, detection and prevention. Ignoring is simply to assume a deadlock never

occurs. Detection allows deadlocks to occur. If a deadlock is detected, the deadlock

symmetry is broken by either terminating one or more of the deadlocked processes,

or involuntarily preempt one or more of the deadlocked resources. Prevention is to

simply prevent one of the four Coffman conditions from ever occurring.

The simplest example of a deadlock is the following scenario: two processes, A

and B, tries to acquire two mutexes, mutex A and mutex B. Both processes acquire

the mutexes in opposite order. A deadlock occurs when either process acquires

its first lock, e.g. process A acquires mutex A, and is subsequently preempted.

The other process is resumed and acquires its first mutex, e.g. process B acquires

mutex B. Now, when both processes attempts to acquire its second mutex, both

will promptly block forever, as both processes require each other to release the

mutex. A deadlock has now occurred. See Listing 2.3 for reference.
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Process A

1 mutex_A.wait()

2 mutex_B.wait()

3 // some work

4 mutex_B.signal ()

5 mutex_A.signal ()

Process B

1 mutex_B.wait()

2 mutex_A.wait()

3 // some work

4 mutex_A.signal ()

5 mutex_B.signal ()

Listing 2.3: Example of a simple deadlock between two processes.

Livelock

Livelock is similar to deadlock, as it is a state in which processes are not blocked,

but are refrained from making progression. A livelock can occur when e.g. processes

are too busy responding to each other to resume work.

Livelock is a rarer condition than deadlock, and can be harder to detect as the

processes are not blocked when livelocked.

Starvation

Starvation is a condition where a process is denied further progress by perpetually

being denied access to required resources or denied running time by higher priority

processes.

The absence of starvation in concurrent algorithms is called liveness, which is a

property guaranteeing all processes are able to make progress within a finite time.

Priority Inversion

Priority inversion is a situation in scheduling where a higher priority process is

indirectly preempted by a lower priority process, usually because of mutual exclu-

sion.

Consider the following example: process H, M and L has the priority ordering

p(H) > p(M) > p(L), and H and L both try to acquire the resource R. If L acquires

the resource and is promptly preempted by H, H becomes blocked until L releases

the resource. It is now possible for M to run over L, because of higher priority.

Effectively H cannot run as L cannot release the resource, since M is preempting L.

This is called priority inversion. See Figure 2.1 for reference.
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Figure 2.1: Example of priority inversion with three processes.

Bounded priority inversion is when it can be proven priority inversion only

occurs for a finite amount of time, while unbounded priority inversion cannot prove

this.

2.2 Communicating Sequential Processes

Communicating sequential processes (CSP) is a formal mathematical language used

in computer science to describe and model concurrent systems. First introduced

by Hoare [1], and was originally described as a parallel composition of sequential

disjoint processes with primitives for input and output, combined with guarded

commands [18]. Communication was solely through message-passing, which per-

mitted synchronized communication between named processes.

Since its inception, CSP has undergone numerous transformations. As Abdallah

et al. [19] explains, most of the subsequent research has focused on a process algebra

known as Theoretical CSP (TCSP), which suppresses the imperative aspect of CSP

[20].

The strong points of CSP and TCSP are the ability to reason about the cor-

rectness of the system being modelled. Since all communication between processes

are limited to message-passing, no primitive race conditions such as memory op-

erations cannot occur. Further on, properties of the CSP models can be reasoned

about, such as liveness, safety and deadlock.
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In the industry, CSP is used to specify and verify the correctness of concurrent

systems, especially communication and security protocols. The most prominent

tool used is the failure-divergence refinement (FDR) checker [21]. FDR can stat-

ically prove if a concurrent system refines a given specification, has the correct

liveness and safety properties, as well as the absence of deadlocks and divergence.

It is obvious such tools are powerful for systems that must prove its correctness

before being deployed.

The ideas and expressiveness of CSP models has influenced the creation of

concurrent programming languages, most notable occam [22], Ada [23], XC [3] and

Go [4]. CSP frameworks has also been developed for programming languages which

does not natively support CSP influenced concurrency, such as ProXC [5] for C,

C++CSP2 [7] and C++CSP [8] for C++, JCSP [10] for Java, PyCSP [9] for Python,

and much more.

It is understandable CSP is a great framework for concurrent systems. It pro-

vides an expressive and correct framework for modelling and implementing such

systems, and allows to prove the correctness of said implementation. This allevi-

ates some of the mental overhead, as well as reducing the error-prone nature of

concurrent programming.

2.3 Memory Ordering

Out of all CPU operations, memory accesses are among the slowest. Following

Moore’s law, CPU instruction performance has increased at a much greater rate

than memory performance. Multilevel caches has been used to a great extent

to bridge this gap in performance, however, utilization of said caches could be

improved. This is where memory reordering comes in. To increase the performance

of memory access further and properly utilize the hardware parallelism, memory

operations can complete out of order [24].

Several types of memory-consistency models exist. Sequential consistency is a

guarantee that all processes agree on the order memory operations occur, even if

they are completed out of order. The easiest configuration for sequential consis-

tency is running all processes on a uniprocessor. On multi-core architectures, how-
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ever, memory reordering can create inconsistencies between processes and proper

care must therefore be taken to enforce correct memory ordering.

There are different types of memory reordering, which usually falls into the

categories of compiler reordering and processor reordering. As the name implies,

compiler reordering is memory reordering done by the compiler at compile time,

while processor reordering is memory reordering done by the processor at runtime.

Compiler reordering is obviously different from compiler to compiler, as it is

implementation-defined for each compiler. Processor reordering is also surprisingly

different from CPU to CPU architecture. A memory model is therefore used to

describe what types of memory ordering to expect at runtime for a given processor

architecture, which again falls into the two categories weak and strong memory

models.

As Preshing [25] explains it, a weak memory model can expect all types of

memory reordering. This means any load or store operation can be reordered

with any other load or store operation, and can ne reordered by both the compiler

or processor. In contrast, a strong memory model limits the types of memory

reordering. More specifically, only store-load reordering is permitted.

To enforce correct memory ordering, some type of memory barrier must be used

[26, 27]. These exists as both software and hardware semantics, and are generally

implemented as some sort of acquire and release semantics [28].

Memory ordering is important to take into consideration when creating non-

blocking algorithms, as the memory operations in critical regions must have a

sequential consistency between processors. More of this explained in Section 2.4.

2.4 Non-Blocking Algorithms

To fully utilize multi-core processors, most programs are multiprogrammed. Pre-

emptive multiprocessor operating systems has the unfortunate effect of degrading

performance in synchronized parallel programs if the preemption is ill-timed, and

access to shared data structures is usually the root of the cause. As Michael and

Scott [29] explains, these data structures need to ensure concurrent access is consis-

tent and well-formed across processes, which is usually implemented by protecting
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critical sections with mutual exclusion. Mutual exclusion locks scales poorly in

performance on time-sliced multiprogrammed systems [30], due to preemption of

processes holding locks. The preempted process must be rescheduled and release

the lock before any waiting processes can progress.

One principal strategy to mitigate ill-timed preemptions are non-blocking al-

gorithms. Non-blocking algorithms have the property any process cannot cause

failure nor suspension of any other process, despite failures or suspension of itself.

Two types of guarantees are usually associated with nonblocking algorithms to

describe how strong this property is: lock-free and wait-free.

Lock-freedom guarantees system-wide progress, and can be defined as follows:

given a meaningful definition of progress, an algorithm is lock-free if at least one

process in a program makes progress if all processes are given sufficient running

time.

Wait-freedom guarantees process-wide progress, and can be defined as follows:

an algorithm is wait-free if every operation in the algorithm has an upper bound of

computational time before it completes. Wait-freedom implies lock-freedom, which

makes wait-freedom a stronger guarantee than lock-freedom.

Preshing [27] describes the lock part of non-blocking algorithms (or as lock-free

programming he refers it to) as “the possibility of ‘locking up’ the entire application

in some way, whether it’s deadlock, livelock – or even due to hypothetical thread

scheduling decisions made by your worst enemy”. This means code not containing

any locks, such as mutexes, may still not be lock-free.

It is rare a concurrent program is entirely lock-free or wait-free, which is why the

focus is on non-blocking algorithms rather than non-blocking programs. Generally,

a set of high contention operations between processes are set out to be non-blocking,

such as access and manipulation to shared data structures.

A handful of techniques are used to implement non-blocking algorithms, most

commonly a combination of atomic operations, memory barriers and general pat-

terns. While the atomic primitives read-modify-write and compare-and-swap

forms the basis of most non-blocking algorithms, memory models and memory or-

dering needs to be taken into consideration as well. Since different processors have

different memory models, it is not given processes agree on the order in which
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memory operations occur. Memory reordering can cause memory inconsistencies

between processes, which is why sequential consistency or memory barriers are

needed, especially on multi-core architectures [25, 26, 27, 28].

2.5 Dynamic Multithreading

Exploiting the potential parallelism on multi-core architectures requires fully uti-

lizing the available logical processor cores. Amdahl’s law [31] argues that the

maximum potential speedup in a program with infinite number of parallel proces-

sors is limited to 1/s , given the fraction of sequential work in the program is s.

Because of Ahmdal’s law, multiprogrammed concurrent programs needs to identify

the potential parallelism and convert sequential work into parallel work to exploit

the parallelism on multi-core architectures. This responsibility is mostly up to the

programmer to identify, and in most cases is easier said than done. Simple con-

structs such as loops and loosely coupled sections are easy to detect and convert

[32, 33], but a program-wide parallelism is far from intuitive to detect and how to

schedule such parallelism effectively on multi-core architectures.

Dynamic multithreading is a strategy to abstract away the scheduling and in-

stead focus on detecting the units of parallel work in the program. The idea is

letting the program spawn and synchronize new processes or tasks which execute

some kind of computation, and some sort of runtime takes care of the scheduling.

Based on the threading models (see Subsection 2.1.1) the näıve approach would

be spawning kernel-threads for each process. The operating system is responsible

for creating, scheduling and destroying the processes, as well as scheduling the

processes among the available processor cores. However, kernel-threads are expen-

sive to create, context switching between kernel-threads are relatively slow, and

scales very badly in performance with an increase in kernel-threads running simul-

taneously. This severely limits the use of processes, and makes it very unintuitive

on how to distribute the parallel work efficiently.

Using hybrid-threads, a combination of user-threads running on multiple kernel-

threads, is an improvement on only kernel-threads. Each spawned process is a

user-thread, scheduled on a static number of kernel-threads equal to the number
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of available cores. User-threads are much cheaper to create, context switching is

relatively much faster, and scales much better performance-wise. The problem is

how to efficiently schedule and distribute said user-threads between the available

kernel-threads, since an intermediate runtime environment has to exist between the

user-threads and the OS.

Two principal scheduling strategies exist to efficiently distribute and schedule

processes among a static number of kernel-threads, namely work stealing and work

sharing.

2.5.1 Work Stealing

Given a processor with P logical cores, P kernel-threads are created with each

running a scheduler. Each scheduler has a pool of ready work. Whenever a schedule

runs out of ready work, it selects another scheduler (called victim) and tries to steal

work. If the steal was successful, it continues the stolen work. Spawning a process

simply pushes the spawned process to the ready pool [34].

Different types of work stealing algorithms exist, but the main emphasis is on

the victim selection and stealing procedure. The most popular algorithm is the

randomized work stealing algorithm first detailed in Blumofe and Leiserson [34].

Whenever a scheduler is empty for ready work, a victim is chosen uniformly at

random. If the victims ready pool is not empty, try to steal work. If successful,

resume said work, else start over the selection procedure.

The most common way to represent ready work is by using a double-ended

queue, or deque for short, where the ends of the deque are called top and bottom.

The scheduler owning the deque has access to the bottom of the deque, where it

can push and pop ready work. Any other schedulers can try to steal from the top

of the deque if it is non-empty. Much research has gone into creating these deques

as efficient and low overhead as possible [35, 36], as they can be high contention

area between kernel-threads.

Many runtime frameworks for dynamic parallel computations has been created

with work stealing [37, 38], and with great success performance wise.
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2.5.2 Work Sharing

As the same setup as work stealing, P kernel-threads are created on a processor with

P logical cores with each running a scheduler. The big contrast to work stealing is

work sharing manually distributes each work among the schedulers whenever new

work is spawned.

Usually work stealing is preferred over work sharing, as work stealing causes

less process migration between schedulers. As Blumofe and Leiserson [34, pp.

721] argues, “Intuitively, the migration of threads occurs less frequently with work

stealing than with work sharing, since when all processors have work to do, no

threads are migrated by a work stealing scheduler, but threads are always migrated

by a work sharing scheduler”.



Chapter 3

CSP + Multi-Core = True ?

The motivation described in the introduction is further elaborated in this chapter

on why a CSP framework with multi-core support would be desirable. Further,

a review of existing solutions of CSP programming languages and libraries with

multi-core support is presented and how they work.

3.1 Motivation behind CSP and Multi-Core

As mentioned in the introduction, software can no longer rely on an increase in

processor performance for an increase in software performance. High-performance

software aiming to utilize the full potential of multi-core architectures needs to do

two things: identify the parallel units of work in a program, and efficiently run the

parallel work using the available processor resources.

Why is it important to identify parallel units of work in a program? The short

answer is Amdalh’s law [31]. Amdalh’s law argues the maximum speedup in a

program with infinite number of parallel processors is limited to 1/s , given the

fraction of sequential work in the program is s. If a program has a fraction of

50% sequential work the maximum speedup possible is 2, and a fraction of 25%

sequential work yields a maximum speedup possible of 4. There exists more refined

models of Amdalh’s law developed for different multi-core architectures [39], but

the point is the same; parallelism is key.

22
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If a programmer cannot reduce the fraction of sequential work, or in other

words cannot increase the fraction of parallel work, there is not much to gain from

multi-core architectures. Increasing the fraction of parallel work usually consists of

identifying parallelism in sequential work, and subsequently converting said work

to parallel units of work. Identifying parallelism is usually the easiest part, e.g.

loops and decoupled sections of code are easy to identify and argue whether it is

parallel or not. How to convert sequential work to parallel work is however another

matter, requiring details of scheduling and synchronization.

When parallel work has been identified, how do you efficiently schedule and

run the parallel work on the available processor resources? When you want the

program to be scalable for all multi-core architectures, simply hard coding for a

given architecture will not suffice. Dynamic multithreading is a solution, which has

strategies for dynamically distribute parallel work among available logical processor

cores. Strategies include work stealing and work sharing, but the core philosophy

is letting the dynamic multithreading take care of scheduling and synchroniza-

tion, while the programmer specifies what the parallel work is. Whether dynamic

multithreading is implemented with the program or as part of a runtime system

underneath, achieves the same goal.

This thesis argues CSP is a good candidate for creating high-performance soft-

ware for multi-core architectures. First of all, CSP provides expressive and correct

abstractions for creating concurrent systems, which also can be statically reasoned

whether certain specifications and safety properties are met. Secondly, CSP inher-

ently defines its parallel units of work, as all CSP models are a parallel composition

of sequential processes. This inherent parallel nature of CSP essentially identifies

all higher level units of parallel work in a program. Now, if a dynamic multithread-

ing scheme were to be employed together with a CSP framework, it would enable

exploiting parallelism in multi-core architectures.

3.2 Existing Solutions of CSP and Multi-Core

Combining CSP with dynamic multithreading is no new invention. Even though

dynamic multithreading has usually not been the focus with CSP frameworks,
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multiple frameworks do exist with dynamic multithreading, including program-

ming languages and programming libraries. These frameworks vary in availability

and age, ranging from proprietary programming languages to open-source libraries.

Below is a non-exhaustive list of dynamic multithreaded CSP frameworks summa-

rized.

3.2.1 Programming Languages

The minority of programming languages have made concurrency a native part of the

language design, yet alone CSP-based concurrency. For those languages with CSP

as a native influence, dynamic multithreading has usually not been the focus. The

first CSP-based languages were designed for microprocessor hardware, and with the

years transitioned to general-purpose programming languages. Below are the three

most influential CSP-based programming languages with dynamic multithreading

presented.

occam on the transputer

Occam, a concurrent programming language, was the first programming language

to build on the CSP process algebra. It was developed by INMOS [40] and first

appeared in 1983. The main motive behind occam was to develop a concurrent

language to run on the transputer microprocessor [41], also developed by INMOS.

The transputer microprocessor was the first general purpose microprocessor de-

signed for parallel computing, allowing multiple transputers to easily be connected

without the requirement for a complex communication bus. Running on a cluster

of transputer microprocessors, occam programs allowed for concurrent systems to

be running as true parallel computing.

Sadly, occam was initially only for proprietary use, as support for occam was

limited to the transputer microprocessor architecture. Multiple implementations

of later occam versions and dialects has been made for more general purpose com-

puters, but none has had support for true parallel computing in mind.
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XC on the XCore

XC is a concurrent programming language, developed for real-time embedded par-

allel computing [42]. XC targets the XCore processor architecture [43], both devel-

oped by XMOS. XC as a programming language is based on C with custom syntax

extensions and restrictions. Concurrency primitives are a native design of XC,

providing features which corresponds to the architectural resources on the XCore.

The XCore processor architecture is an embedded multi-core architecture, aimed

to be used for parallel computing. An XCore processor supports concurrent exe-

cution of up to eight threads, with native support for inter-thread and inter-pro-

cessor communication and thread scheduling. The main selling point of XCore is

the deterministic execution of parallel threads, allowing concurrent system to have

real-time constraints combined with true parallel computing.

However, just as occam, XC is only for proprietary use, only supporting the

XCore microprocessor architecture. No other implementations of the XC program-

ming language exists, making XC unavailable for the mainstream audience.

Go

Go, also called Golang, is a concurrent programming language, developed by Google

[44]. In contrary to occam and XC, Go was developed for the widespread platform

use rather than some proprietary hardware. Since its launch in 2009, Go has made

its way to platforms such as all desktop platforms, various microprocessors, as well

as mobile devices.

The Go language has built-in concurrency primitives as a part of the language,

including lightweight processes and channels. A major selling point of Go is the

use of dynamic multithreading, where concurrent programs written in Go will by

default utilize the available logical processor cores on the running processor archi-

tecture. This, together with native support for asynchronous IO, has made Go

very popular for high-performance networking and multiprocessing systems.
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3.2.2 Programming Libraries

Several CSP-based concurrency libraries have been developed for more popular

and established programming languages not supporting CSP natively. Below are

the most influential CSP-based concurrency libraries with dynamic multithreading

presented.

C++CSP2

C++CSP2 [7] is a concurrency library for C++, providing concurrency primitives

and abstractions based on CSP. C++CSP2, which is the successor of C++CSP [6],

focuses on extending the original work by implementing a many-to-many threading

model, essentially providing dynamic multithreading.

C++CSP2 achieves dynamic multithreading by allowing the programmer to de-

fine which processes run on which threads. The methodology is that the program-

mer must identify and define the course-grained parallelism between processes,

and lets the library take care of the fine-grained parallelism between processes on

a given thread.

C++CSP2 was the first major implementation of a concurrency library for C++

which offered CSP abstractions and dynamic multithreading. However, sine its

release in 2007, the library is not very compatible with modern C++. With lack of

modern C++ semantics, as well as in general being hard to develop with, has given

C++CSP2 not much widespread use among C++ programmers.

C++CSP

C++CSP [8], not to be mistaken by the precursor of C++CSP2, is a concurrency

library for C++. C++CSP aims to provide a CSP-based concurrency library for

modern C++ which utilizes dynamic multithreading.

C++CSP implements its dynamic multithreading with a kernel threading model,

where each process is a kernel-thread. Scheduling of the processes is therefore

the responsibility of the OS, rather than the runtime system of the library. The

runtime system design is very different from how C++CSP2 implements dynamic

multithreading.
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Since its release in 2016, C++CSP is a rather new programming library. Even

though it is much more suited for more modern development of concurrent C++

programs, the dynamic multithreading implementation can be argued to not be

suitable for high-performance and scalable concurrent systems.

Boost.Fiber

Boost.Fiber [45] is a concurrency library for C++, developed as a part of the C++

Boost libraries. From the project description, “Boost.Fiber provides a framework

for micro-/userland-threads (fibers) scheduled cooperatively”. A selection of con-

currency primitives which are based on CSP is provided by Boost.Fiber, such as

channels.

Boost.Fiber has support for dynamic multithreading to cooperatively schedule

fibers across multiple processor cores. Dynamic multithreading is implemented by

having multiple schedulers running on multiple kernel-threads, using work stealing

for distributing work among the schedulers.

Boost.Fiber is a fairly new library, and has great potential for widespread use as

its a part of the very popular and acknowledged Boost library collection. However,

very few of the abstractions provided by Boost.Fiber are based on CSP, and lacks

some very important abstractions such as alting on multiple channels. However, it

is as of writing this thesis in active development, and could in the future expand

the feature set with more well sought after CSP abstractions.
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ProXC++ – The Library
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Chapter 4

Library Specifications

This chapter introduces ProXC++, the library developed for this thesis. The spec-

ifications of ProXC++ includes a description of the feature set, the library API,

target platforms and external dependencies.

4.1 Library Description

ProXC++ (pronounced “proxy plus plus”) is a CSP-influenced concurrency library

for modern C++, specifically aimed at multiprogrammed parallel programs. Modern

C++ in this regard meaning support for C++14 standard and later. The central

ambition of ProXC++ is to provide expressive and safe concurrency to C++ programs

which fully and effectively utilizes available computational resources on multi-core

architectures.

ProXC++ is a runtime system using a hybrid threading model. Work stealing is

employed for load balancing between the schedulers, each running on an available

logical processor core.

Available concurrency primitives in ProXC++ are fork-and-join parallelism, strict

message-passing, simultaneous event handling, and soft real-time requirements.

The name “ProXC++” is a continuation of the original library ProXC [5], where

ProXC++ targets C++ in contrast to ProXC targeting C. Since ProXC++ aims

to be an improvement over ProXC, the “plus plus” could also be viewed as an
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“incremental better” version of thelibrary. This is of course only intended to be

humorous, as I personally like “plus plus” better than slapping a “2” at the end of

the name.

4.2 Library Features

The complete set of features in ProXC++ is as follows:

• Multi-core support by default

• Lightweight threads called processes

• Per process operations via a separate namespace

• Channels; synchronous, unidirectional, type-safe, one-to-one message-passing

between processes

• Parallelism; fork-and-join parallelism on a set of processes

• Replicators for parallel, generating dynamic number of parallel processes

• Alting; choice over multiple alternatives

• Alternatives of types channel read, channel write, and timeouts on timers

• Alternatives guarded on a boolean value

• Replicators for alting, generating dynamic number of choices

• Timers; types of relative, repeating, and absolute timeouts

• Soft real-time requirements for process suspension, channel operations, and

alternation operations

4.3 Library API

Including ProXC++ in code requires including the header file #include <proxc←↩

.hpp >. All API related types and methods resides in the proxc namespace.

Lightweight process has the type Process. The process constructor takes a

function pointer and the corresponding arguments for the given function pointer.

A process can be implicitly created with the proc function. Or, an arbitrary

number of processes can be implicitly created with the proc_for function, which

takes any pair of Process iterators of pre-allocated processes, or an integer range

and a function pointer and generates processes.
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Processes can be spawned in parallel with the parallel function. The parallel←↩

function takes one-or-more processes and runs them in a fork-join model, meaning

the calling processes will be suspended until all spawned processes has terminated.

Each process can be directly handled through a set of functions in the this_thread←↩

namespace, including process id, explicitly yielding, and explicit suspension for a

given duration.

Channels has the type Chan <T>. The two channel ends, sending and receiv-

ing, has the types Chan <T>::Tx and Chan <T>::Rx respectively. Arbitrary number

of channels can be created statically on the stack and dynamically on the heap.

Statically created channels has the type ChanArr <T,N>, and dynamically created

channels has the type ChanVec <T>. Both channel containers support indexing with

brackets.

Timers reside in the timer namespace, and exists as the three types of timers

Egg, Repeat and Date. All timers can be constructed with the std:: chrono time

points and durations.

Waiting on multiple channel operations simultaneously can be achieved with

alting. Alting has the type Alt, which takes zero-or-more alternatives. These

alternatives are created by function chaining appropriate methods on the alting

object. Lastly, the Alt:: select method is called which waits and chooses a ready

alternative.

4.4 Target Platforms

ProXC++ is targeted for desktop environments, especially multi-core architectures.

However, it should support all platforms that have access to a C++14 compliant

compiler and the Boost C++ libraries [46] as well as the Boost.Context library [45]

(as Boost is portable). “Should” is used here, because ProXC++ is only tested on

64-bit x86 Linux platform as of writing this thesis.
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4.5 Dependencies

ProXC++ uses a handful header-only libraries from the Boost C++ libraries [46], and

the compiled library Boost.Context [45] for portable and fast context switching be-

tween execution contexts. Boost.Context is used as a foundation of the user-thread

implementation. As of why not rolling with a handwritten implementation of con-

text switching, compared to ProXC, is with the simple reason of Boost Context

being portable out of the box and writing context switching library is not the focus

of this thesis.



Chapter 5

Design

First of all, ProXC++ is a concurrency library for C++. Only recently as of C++11

has the C++ programming language added concurrency primitives to the standard

library, such as threading and futures. However, C++ lacks any standard support

for concurrency in user space.

Designing a concurrency library for C++ with dynamic multithreading requires

some notion of threading mechanism in user space, which in turn requires a runtime

system. This runtime system acts as an invisible layer between the program and the

OS, handling resources and logistics of scheduling the different processes running

in the program.

All library functionality, such as channels, builds upon the framework provided

by the runtime system. Essentially, anything must be done via the runtime sys-

tem, which is why the limitations of the runtime system functionality limit the

potentiality of the library functionality.

This chapter contains a full design of ProXC++, and explains some of the design

choices. The runtime system is first designed, and subsequently the library features

are designed based on the runtime system functionality.
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5.1 Runtime System

Before discussing the design of the runtime system, the responsibilities of the run-

time system are first identified. A ProXC++ program contains a set of processes,

where each process represents some point of execution. The runtime system must

be able to spawn, schedule, and synchronize these processes, i.e. process manage-

ment. A scheduler could be responsible for process management.

For a single-core runtime system, only a single scheduler makes sense. However,

how many schedulers are optimal for a dynamic multithreaded runtime system?

Given the maximum number of parallel executions on a processor architecture is

equal to the number of available logical processor cores, the optimal number of

schedulers is the number of available logical processor cores, as each scheduler

runs on its own logical processor core. If more schedulers were online than logical

processor cores, situations would occur where multiple schedulers are struggling to

run on the same logical processor core, which would be unproductive.

Another important factor is how process management is shared among sched-

ulers. Two principal strategies exists, namely centralized or distributed manage-

ment. Given a centralized management, all schedulers share the same control

structures, including a shared process queue for which processes are to be sched-

uled from. All schedulers share the responsibility for all processes in a program.

Given a distributed management, all schedulers has a set of processes for which it

has the responsibility of managing. Schedulers share nothing, essentially meaning

all processes has a parent scheduler.

A centralized management is easy to implement, as the entire runtime system

such as control structures and processes are shared between schedulers. Schedulers

do not have to worry about distributing processes for scheduling, as all processes

are scheduled through the same queue. However, it does not scale as well with an

increase in processor cores, as it creates contention between the increase in sched-

ulers accessing the shared control structures. Distributed management is much

harder to implement, as now each scheduler has its own set of control structures

and processes. The main issue is how to efficiently distribute ready processes be-

tween schedulers. If done right, distributed management scales very well with an
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increase in logical processor cores.

Given that ProXC++ aims to be a high-performance concurrency library, dis-

tributed process management is necessary for catering to all multi-core architec-

tures.

To summarize, the runtime systems consists of a number of schedulers equal to

the number of available processor cores. Process management is distributed among

the schedulers, meaning each scheduler has responsibility for a set of processes.

5.1.1 Scheduler

The scheduler is the core of the runtime system, providing the logic and control

structures necessary for process management. Given a scheduler, a set of zero-

or-more unique processes are said to be under the schedulers management. This

scheduler is the parent scheduler of said processes, which are called work processes.

A scheduler is either running or idle. A running scheduler has one-or-more work

processes which are ready to be scheduled for execution, or simply called ready.

When the scheduler runs out of ready work processes, it becomes idle.

Ready work processes are stored in a process queue called the ready queue. The

scheduler uses the ready queue to determine whether it has ready work processes

or not, i.e. an idle scheduler has an empty ready queue. When a scheduler has

a non-empty ready queue, a work process is removed from the ready queue and

resumed execution. Scheduling and rescheduling a work process is equivalent to

adding the process to the ready queue.

As processes are scheduled in user space, the scheduler relies on cooperative

scheduling. Cooperative scheduling entails running processes voluntarily yielding

running time to the scheduler. If a process never yields to the scheduler, the process

will run forever.

The main challenge of the scheduler is how to distribute superfluous ready

work processes to schedulers which are idle. Two principal strategies exist: work

sharing and work stealing. Work sharing consists of manually distributing new

work processes among the schedulers. Work stealing consists of stealing ready

work from other schedulers when a scheduler runs out of ready work, i.e. becoming
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idle.

Work stealing is usually preferred over work sharing as it causes less process

migration. Process migration is when management responsibility of a process is

transferred between schedulers, or in other words the process changes its parent

scheduler. Work stealing is however more complex to implement than work sharing,

but scales much better on distributed multiprogrammed systems. Therefore, work

stealing is employed as the load distribution strategy for the schedulers.

5.1.2 Processes

Processes represent some point of execution. As stated above, all work processes

has a parent scheduler which corresponds to the scheduler running on a particular

processor core. A scheduler is also a process but differs from work processes, as a

work process represents meaningful work from the running program.

A work process with a corresponding parent scheduler may spawn new work

processes. These new processes are scheduled by the parent scheduler. A work

process may also synchronize or join on other work processes, meaning waiting for

the other work process to terminate.

Some work processes may suspend itself, waiting for other work processes to

reschedule the suspended process. The suspending work process simply yields to

the scheduler. Suspended processes are not stored in any queues, as other work

processes will reschedule the suspended process rather than the scheduler.

Work processes may also suspend, or sleep, until a given or derived time point.

These processes are added to the parent schedulers sleep queue. The parent sched-

uler will frequently examine the sleep queue and reschedule any work processes

with an expired time point. If a work process sleeps but is rescheduled by another

work process before the time point is expired, the scheduler will reschedule and

remove the waking process from the sleep queue.
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5.2 Feature Design

The feature set of ProXC++ is what the programmer uses to create his or hers

concurrent systems. The design of the feature set is important to provide the

necessary abstractions for the programmer, which is presented in this section.

5.2.1 Timers

Three types of timers are available: egg, repeat and date timer. Timers are used for

either explicit process suspension, or for timeout on channel or alting operations.

Egg timer is used for relative timeout. Just as an egg timer in real life, it is

used to countdown for a specified period. It is not a one-shot timer, meaning the

same timer can be reused multiple times. The countdown begins at the start of an

operation, effectively resetting the timer if already used.

Repeat (or loop) timer is used for a periodic repeating timeout. The repeat

timer will timeout in a periodic fashion, given a specified period. The timer only

resets after a timeout. Compared to the egg timer, the repeat timer is also not a

one-shot timer and can be reused, but the repeat timer does not reset the count-

down at the start of an operation.

Date timer is used for absolute timeout. It is a one-shot timer, and will always

be expired after a timeout. The date timer timeouts at a specified time point. The

timer can never be reset, and therefore survives multiple operations.

5.2.2 Parallel Statement

Processes can spawn new processes in parallel with the parallel statement. The

parallel statement takes one or more processes, either as single process state-

ments or process replicators, and spawns and runs these processes in parallel. The

spawned processes run concurrently with any other processes currently running in

the program. The parallel statement is the only way to spawn new processes with

ProXC++.

The parallel statement follows the fork-join model [47, pp. 88], where a se-

quential execution branches off at a designated point into parallel work, and subse-
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quently joins/merges at another designated point and resumes the original sequen-

tial execution. Figure 5.1 gives a simple illustration of the fork-join model.

Figure 5.1: A parent process spawns N parallel processes following the fork-join
model.

The process calling the parallel statement is the parent process. When calling

the parallel statement, the parent process is suspended until all processes within

the parallel statement have spawned, executed and terminated. When all parallel

processes have terminated, the parent process resumes execution.

Processes to be executed in parallel can be defined in two ways: either as a

single process or as a replicated process. See Subsection 5.1.2 for a more detailed

explanation of processes.

5.2.3 Channels

Channels forms the only means of communication as well as synchronization be-

tween work processes via message-passing. Given a channel, some type of message

can be transmitted between a sender and a receiver.

Hereafter, the term “Tx” denotes a channel end for which a work process is

sending on, and the term “Rx” denotes a channel end for which a work process is

receiving on. The term “participant” denotes either a Tx or Rx.
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An synchronous channel implies both a Tx and a Rx must be at a channel

to complete a channel operation, e.g. a Tx cannot transmit a message without

a Rx ready to receive. If only one of the two required participants is ready to

transmit, the participant must block (wait) until the other side is ready. This kind

of behaviour is called rendezvous. A synchronous channel is also unbuffered, given

that no messages are stored intermediately in the channel.

The opposite of a synchronous, unbuffered channels are asynchronous, buffered

channels, where messages are buffered if there are no receivers ready. Tx never

waits regardless of a ready Rx or not, while Rx must only wait if the buffer is

empty. See Figure 5.2 for an illustration of the difference between synchronous and

asynchronous channels.

Figure 5.2: Different configurations of synchronous and asynchronous channel com-
munication. It is given the asynchronous channel has an infinite buffer size.

Synchronous channels are usually preferred over asynchronous channels, as it

is more deterministic. When a channel operation is completed, both participants

know the opposite participant is in a particular state. This is not the case for

asynchronous channels. Regarding memory use, synchronous channels always re-
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quire constant memory while asynchronous channels has to allocate memory for its

buffer.

A unidirectional channel only allows messages to be transmitted in one direc-

tion. In contrast, a bidirectional channel allows messages to be transmitted in both

directions. Unidirectional channels are more restrictive than bidirectional channels.

The argument for unidirectional channels is a follows: given a bidirectional channel,

it is possible for both participants to disagree which direction a channel transmis-

sion is for a given moment, i.e. both are participant are trying to send or receive,

causing a deadlock. The direction of a channel transmission for a unidirectional

channel is always given, and can bever cause any deadlocks.

Some channel design has the concept of limiting how many unique processes

can access and use a channel. This concept is called disjointness rules in XC [3, pp.

32] and usage rules in occam [2, pp. 116]. In essence, these “rules” specify if either

end of a channel, sending and receiving, can only be used by a unique process or

any processes. Usually denoted by one/any(senders)-to-one/any(receivers), which

gives the four configurations: one-to-one, one-to-any, any-to-one, and any-to-any.

Both XC and occam follows the one-to-one design.

Ensuring both Tx and Rx agrees on the type of message being transmitted has

to do with type safety. If both participants of a channel operations disagrees in the

type of the transmitted message, a type error occurs. Type safety is therefore to

discourage or prevent type errors. It is obviously desirable for a type safe channel,

but it is highly dependent on support from the programming language and/or the

compiler to enforce type safety. A compromise is size safe channels, where both

participants agree on the size of the message rather than the type. Size safety is

not as desirable as type safety, but is much more doable to enforce.

Channels have a notion of being open or closed. An open channel operates as

normal, but a closed channel will deny any operations being completed. A channel

always starts as open, and can be closed in one of two ways: an explicit close

from either participant, or either channel end goes out of scope, i.e. is no longer

available. When a channel becomes closed it remains closed. A closed channel is

used to signal participants when no more values will be sent on the channel, which

is useful to communicate completion to the opposite channel end.
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Considering the different channel confifugrations above, channels in ProXC++

are synchronous and unbuffered, unidirectional, one-to-one and type safe.

5.2.4 Alting

Alting is a construct allowing to wait on multiple alternatives simultaneously, se-

lecting an alternative when one or more alternatives are ready. Alting is also

sometimes called selective choice. Each alternative has an optional correspond-

ing block of code (closure) which is executed if chosen. Alternatives can also be

guarded by a boolean value, enabling or disabling certain alternatives on certain

conditions. These boolean guards are evaluated at the initialization of the alting

procedure.

Three types of alternatives exists: channel operations, timers, and skip. Chan-

nel alternatives include both sending and receiving.

The alting procedure works as follows: at initialization, zero-or-more alter-

natives are enabled for selection. Each enabled alternative is checked if ready to

synchronize. If one or more alternatives are ready, one is selected. If none are ready,

the alting procedure suspends and waits for the first alternative to become ready.

This first ready alternative is automatically selected. When the alting procedure

has selected an alternative, the corresponding closure is executed if present.

The alternatives operates, when enabled, as follows:

1. Channel operation – specifies a channel send or receive. A channel send is

accompanied with the item to transmit, while a channel receive can optionally

capture the received item in the alternative closure. The alternative becomes

ready when the opposite participant of the channel is present.

2. Timeout – is a timer with a corresponding timeout. If the alting process has

not selected an alternative before timeout, the timer alternative is selected.

3. Skip – is an alternative which is always ready. It can be compared to the

default case in switch cases. If no alternatives are ready at the alting ini-

tialization, the skip alternative is selected.

Multiple channel alternatives can be enabled for an alting procedure. Multiple

timer alternatives can also be enabled for an alting procedure, however, only the
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timer with the shortest deadline will be registered. If multiple skip alternatives are

enabled, only the first skip alternative is registered.

An channel alternative can either be selected actively or passively. Actively

selecting involves the alting procedure performing the selection, while passively

selecting involves external events performing the selection. A channel alternative

can also only be selected after being entered. Entering a channel alternative is

essentially registering the interest of the alting procedure to perform the channel

operation. Leaving a channel alternative performs the opposite, unregistering this

interest.

5.3 Runtime Algorithms

A selection of new and existing algorithms are used for the different runtime and

library features, which are presented in more detail in this section.

5.3.1 Work Stealing Algorithm

As each scheduler has their unique set of work processes, work stealing is em-

ployed to distribute superfluous work processes from a running scheduler to an idle

scheduler.

The work stealing algorithm centers around the ready queue. As long as ready

queue contains ready processes, the scheduler will continue to resume work pro-

cesses from the queue. However, when the ready queue becomes empty, the sched-

uler resorts to work stealing. Randomized work stealing as described in Blumofe

and Leiserson [34] goes as follows:

1. Select victim – another scheduler, called a victim, is randomly chosen.
2. Try stealing – the current scheduler tries to steal some work processes from

the victim. If failed, restart procedure;
3. Resume work – else, the stolen work processes are stored in the ready

queue, and a work process is resumed.

As simple as the algorithm sounds, some details must be taken into considera-

tion. Is it feasible for an idle scheduler to repeatedly retrying to steal work until
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it succeeds? Stealing a process is the same as process migration, and process mi-

gration does cause some overhead. Consider the following programs which have a

few number of parallel processes or many dependent processes. An aggressive work

stealing scheme would cause many unnecessary process migrations, compared to

none for a single-core runtime system.

To mitigate unnecessary process migrations by overaggressive work stealing, an

idle scheduler can either wait for a short period of time before retrying, or it could

wait until signaled by a scheduler with superfluous work processes.

5.3.2 Channel End Algorithm

The channel algorithm is different whether the channel end is alting or not. A set

of observations are postulated in Lists 5.1 to 5.3 to form the basis of the channel

algorithm.

1. A channel operation consists of a single Tx and a single Rx arriving in either
sequential order, both of which can be alting or non-alting.

2. When a channel end has arrived for a channel operation, another channel end
of same type cannot arrive before that channel operation has completed.

3. Any channel end may at most suspend once during a channel operation.
4. The last channel end to arrive at a channel operation will always complete

the item transmission.
5. If a channel end is suspended during a non-timed channel operation, it is only

rescheduled if the channel operation completed or the channel closed.
6. During a timed channel operation, a suspended channel end may also be

rescheduled if a timeout occurs.

List 5.1: Observations for both non-alting and alting channel ends.

1. The non-alting channel end arriving first at an channel operation will always
suspend.

2. The channel end arriving last at an channel operation will never suspend.
3. A process holding both channel ends for a channel will always block indefi-

nitely if operating on the given channel.
4. A channel end never leaves the channel operation after arrival unless it com-

pletes, the channel closes, or times out, i.e. a channel end always commits to
a channel operation.

List 5.2: Observations for non-alting channel ends.
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1. A channel end never explicitly suspends during a channel operation. This is
done indirectly by the alting procedure.

2. A channel end may leave the channel operation after arrival and return later,
i.e. a channel end may not commit to a channel operation.

List 5.3: Observations for alting channel ends.

A key observation to make from the observations in Lists 5.1 to 5.3 is the

symmetry of the channel operation; it is invariant whether Tx or Rx is completing

the operation. This makes the algorithm very similar for both sending and receiving

on a channel. Another observation to make is how non-alting channel ends commit,

while alting channel ends may not commit. This skew in committal channel ends

allows for important assumptions in the algorithm.

Non-Alting Channel End Algorithm

A non-alting channel end has two cases to consider: either the other channel end

is non-alting or alting. A channel operation for a non-alting channel end can be

considered to consists of three possible steps:

1. Check channel is open – return if the channel is closed, else continue.

2. Check for opposite channel end – if an opposite channel end is present

at the channel, try selecting the channel end. If successful, complete the

transmission, reschedule opposite channel end and return ok. Else, continue.

3. Wait for opposite channel end – register the channel end in the channel

and suspend. When rescheduled, check if the item was transmitted or not

and return appropriately.

Note that the entire procedure is surrounded by mutual exclusion using the

channel lock, because channel ends must arrive at the channel in a sequential

order.

To elaborate on Step 2, selecting the opposite channel end is necessary since

an alting opposite channel end is not committal to the channel operation, even

though it is present. Selecting a non-alting channel end is always successful since

it is always committal, while an alting channel end may fail. This selection process
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is further explained in Subsection 5.2.4.

Completing the transmission in Step 2 involves transmitting the item and set-

ting the consumed flag, and checking the transmission in Step 3 involves checking

and resetting the consumed flag.

The consumed flag is necessary to signal the suspended channel end if the item

was transmitted, even though the channel has been closed. Consider this situation:

Tx enters the channel and is suspended, waiting for Rx. Rx enters the channel,

completes the transmission, and reschedules Tx. Before Tx resumes execution,

Rx closes the channel. Now, when Tx resumes it is impossible to tell if Tx was

rescheduled because of completed operation or channel closing. The consumed flag

is here to signal the rescheduled channel end was rescheduled because of either

case.

Alting Channel End Algorithm

An alting channel end has the same two cases to consider: either the other channel

end is non-alting or alting. The non-alting case is trivial, with reasoning that if the

opposite end is present then simply complete the transmission. The alting case is

however more complicated.

Before describing the algorithm, first consider this situation: Two processes

both alting on the same two channels, however, each process has the Tx of one

channel and Rx of the other, making a cycle. See Figure 5.3 for illustration. Both

of these alting processes must somehow agree on which case they both select. Some

synchronization between two alting channel ends must therefore exist. Note that

this alt-to-alt synchronization must be asymmetrical to avoid deadlocks.

Figure 5.3: Illustration of the cyclic alting problem.
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A value with three possible states is used for alt-to-alt synchronization. The

three states are none, offered, and accepted. Given all alting channel ends have a

well defined static ordering, the alt-to-alt synchronization protocol says the lower

ranked channel end is to offer synchronization, while the higher ranked channel end

is to accept. Note that for this to not be symmetric, the ordering must be invariant

of the channel end type.

Given this alt-to-alt synchronization, the alting channel end algorithm is as

follows:

1. Check alt-to-alt synchronization – if an opposite channel end is present

and is alting, check synchronization state. Else, continue. If offered, accept

and complete the alt-to-alt transmission. Else, return and try later.

2. Check channel is open – return if the channel is closed, else continue.

3. Check for opposite channel end – return if there is no opposite channel

end present, else continue.

4. Check if opposite channel end is non-alting – if the opposite channel is

non-alting, complete the transmission, reschedule opposite channel end and

return ok. Else, continue.

5. Check rank of opposite channel end – compare the rank of the opposite

channel end with self.

6. Self has lower rank – offer synchronization and wait until response. If the

sync was accepted, return ok. Else, return appropriately.

7. Self has higher rank – check synchronization state. If offered, complete

transmission and accept synchronization. Else, return appropriately.

The reason for checking the alt-to-alt synchronization in Step 1 before checking

the channel is open has to do with acquiring the channel lock. Since the lock is

held by the opposite channel end while offering synchronization, an offered syn-

chronization must be resolved before acquiring the channel lock.

In Step 4, the alting channel end does not need to synchronize with the opposite

channel end if it is non-alting, due to selecting a non-alting channel end always

succeeds.

The synchronization procedure in Step 6 is a little more convoluted than stated,
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since the alt-to-alt synchronization is only needed if the opposite alting procedure

is checking. If it is waiting, normal selection is used.

The synchronization procedure in Step 7 is more straightforward. If synchro-

nization is offered, complete the transmission and accept. If it is not offered, check

the alting procedure state. If the alting procedure state is checking, try later. If

the state is waiting, try normal selection.

5.3.3 Alting Algorithm

The alting algorithm works in three phases: checking, waiting, and completing

phase. The waiting phase is only entered if the checking phase results in no selected

alternatives. Below are the three phases explained in more detail:

1. Checking phase – is the active phase of the procedure, where alternatives

can be actively selected. Each enabled channel alternative is entered. Next,

all channel alternatives are checked if ready. If one or more are ready, all

ready channel alternatives are actively selected in random order. When the

first alternative is successfully selected, the alting procedure continues to

the completing phase. If no channel alternatives are ready or all channel

alternatives results in a failed selection, the alting procedure continues to the

waiting phase.

2. Waiting phase – is the passive phase of the procedure, where alternatives

can be passively selected. If a skip alternative is enabled, the skip alternative

is now selected and the procedure continues to the completing phase. If

a timer alternative is enabled the procedure suspends itself until the timer

expires, else the procedure suspends itself indefinitely. When the procedure

is rescheduled, it is either because of a channel alternative passively selecting

or the timer alternative has expired, and the corresponding alternative is

selected.

3. Completing phase – each channel alternative which was entered are now

left, and the closure of the selected alternative is executed if present. This

completes the alting procedure.

Note that if any channel alternatives becomes ready after it has been checked
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by the alting procedure in the checking phase, that alternative has to wait until

the procedure enters the waiting phase to try passively select itself.

Given a number of channel alternatives are ready during the checking phase,

each alternative must be resolved before continuing to the waiting or completing

phase. Resolving a channel alternative involves trying to complete the channel

operation, which either results in a success or fail. The first channel alternative

which results in a success short-circuits the selection order and continues to the

completing phase. However, an alt-to-alt channel operation has a slightly larger

overhead because of alt-to-alt synchronization, which means trying to complete

the channel operation may result in a try-later result. A try-later result means the

alt-to-alt synchronization cannot be resolved right now, and must be tried later.

The selection order therefore skips the alternative and tries later. All channel

alternatives must be resolved with a failed result before continuing to the waiting

phase.



Chapter 6

Implementation

The library is written in C++, with standard C++14 dialect. The reader is expected

to have a fair understanding of C++, and being familiar with standard C++11 dialect

or newer is recommended. Detailed explanations of the C++ programming language

is not presented here. Refer to any C++ reference (e.g. Stroustrup [48]) for more

details.

6.1 Data Structures

A set of data structures is commonly used by the runtime system. Apart from

the C++ Standard Template Library (STL), the most notable data structures are

intrusive containers, concurrent queues, and mutual exclusion locks.

6.1.1 Intrusive Containers and Pointers

Equivalent to any other containers, intrusive containers store some kind of data in

some sort of way. The difference is how the container stores the necessary data

used to organize the data. A non-intrusive container is responsible for storing the

necessary data, while for an intrusive container the elements are responsible for

storing the necessary data. In other words, the element becomes “aware” of being

a part of the intrusive container. Usually, intrusive containers are implemented

with the elements having hooks as data members. These hooks contains all the

49
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necessary data used by the intrusive container to store the elements.

An intrusive pointer is the intrusive equivalent of a smart pointer with shared

ownership, releasing a dynamically allocated object when all owners have released

the pointer. The owner counter is stored in the object rather in the pointer.

Intrusive containers and pointers offer better performance compared to non-in-

trusive containers, as they minimize memory allocations and better memory local-

ity. Intrusive containers and pointers are however much less maintainable, and are

much harder to modularize.

Boost Intrusive containers and Boost Intrusive pointers are used as the imple-

mentation of intrusive containers and pointers.

6.1.2 Concurrent Queues

Concurrent queues are queues which are safe to use concurrently, often denoted as

thread safe. The most common approach is taking a non-thread safe queue and

enforcing mutual exclusion around the critical regions. This approach however is

not desirable, as it has very low throughput in multiprogrammed programs.

Concurrent queues often differentiate between single or multiple producers and

consumers. Producers are processes which insert elements into the queue, and

consumers are processes which remove elements from the queue. The runtime

system uses the variants single-producer-multiple-consumer (SPMC) queues and

multiple-producer-single-consumer (MPSC) queues.

A SPMC queue is used as a double-ended queue for work-stealing, implemented

with the Chase-Lev algorithm [35] combined with efficient work-stealing for weak

memory models [36].

An MPSC queue is used by schedulers to signal other schedulers a work process

is to be rescheduled on the corresponding scheduler, implemented with the design

presented by Vyukov [49].

6.1.3 Mutual Exclusion Locks

Creating a complete non-blocking system is usually impossible for a multipro-

grammed system, and sometimes resorting to mutual exclusion in critical regions
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are unavoidable. Different types of locks are suitable for different situations.

Whether the lock is often contested, meaning multiple kernel-threads are trying

to acquire the lock simultaneously, and if the lock is short-term held or not, will

affect the performance.

Brown [7, pp. 196–199] performs a case study on different mutexes, describing

various mutex algorithms and provides a benchmark and analysis of their perfor-

mance. The conclusion from the case study is that for low contested and short-term

held mutexes, spinlocks yields best performance regarding low latency.

For multi-core architectures, the test-and-test-and-set (TTAS) spinlock is gen-

erally favorable as it causes less memory contention than the standard spinlock.

Instead of constantly trying to test-and-set the lock, it waits until the lock appears

free. Different variants of the TTAS spinlock includes constant/exponential backoff

during contention and cache friendly atomic operations.

For most inter-process runtime procedures, a TTAS spinlock with exponential

backoff during contention is used. For idle schedulers waiting, the standard std←↩

::mutex lock is used.

6.2 Runtime System Implementation

The runtime systems consists of two major implementation parts: implementation

of lightweight processes, and implementation of a runtime scheduler.

Processes are implemented as user-threads, and are called contexts in the run-

time. Processes use contexts as its back end, meaning processes represent a mean-

ingful part of computation while contexts represent the actual processor state of the

computation. At runtime, the scheduler manipulates contexts when transferring

control of execution, or context switches, between processes.

The runtime differentiates between three types of contexts, and if a context

type is dynamic or static, i.e. a context can migrate between schedulers or not.

The context types are as follows:

1. Main context – context of a kernel-thread. When the main context returns,

the corresponding kernel-thread terminates. Main contexts are static; they



CHAPTER 6. IMPLEMENTATION 52

cannot migrate between schedulers.

2. Scheduler context – context of the scheduler. The scheduler context only

returns when the main program exits. Scheduler contexts are static; they

cannot migrate between schedulers.

3. Work context – context of a work process. Work contexts are dynamic;

they can migrate between schedulers.

The initialization procedure of the runtime system is invoked with the first call

to the scheduler. Given there are N online logical processor cores, the procedure

spawns N−1 additional kernel-threads, as the initial main kernel-thread is included.

A scheduler is initialized for each kernel-thread, representing the runtime environ-

ment for the corresponding thread. Schedulers are accessed via thread local static

methods, which point to the scheduler object.

The context of the main() function of a program, also called the initial main

context, is special. It is the only context which represents some productive work

of the running program, but cannot migrate between schedulers. All other main

contexts (from the other spawned kernel-threads) only joins the scheduler context,

and operates invisibly to the programmer. Main contexts cannot migrate because

they are calling the runtime constructors. When the main context returns, the

destructors are called for the corresponding runtime objects, such as the scheduler.

If the main context where to migrate and return on a kernel-thread other than its

origin, the runtime cleanup would result in erroneous behaviour.

When the initial main context returns, the cleanup procedure of the runtime

system is invoked if and only if the initialization procedure has been invoked pre-

viously.

Only the scheduler for which the initial main context resides on will begin as

running. All other initialized schedulers will begin as idle.

Figure 6.1 displays a rough outline of how the contexts, user-threads and ker-

nel-threads are organized relative to each other. Note that the number of work

contexts on each kernel-thread are zero-or-more, but the accumulative sum of all

work contexts on all kernel-threads equals M.
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Figure 6.1: Overview of the runtime system with M work contexts, given N online
processor cores.

6.2.1 Processes

Processes are a vital part of ProXC++. As stated many times before, processes

represent some computation of the total program, which in code translates to

running a function concurrently with the rest of the system. Constructing a process

requires supplying a function pointer and its corresponding arguments. The process

object constructs a context object out the function pointer and arguments, and

stores an intrusive pointer to the context object as a data member. In other words,

the process is no more than an opaque type to a context object. The programmer

implicitly creates new contexts through processes, while the scheduler under the

hood operates on the contexts. See Listing 6.1 for reference.

Listing 6.1: Minimal process type.

1 class Process {

2 private:

3 using CtxPtr = boost:: intrusive_ptr <proxc::Context >;

4 CtxPtr ctx_ptr_{nullptr };

5 public:

6 template <typename Fn , typename ... Args >

7 Process(Fn&& fn , Args &&... args);

8 };

The context object represents the execution state of the computation. Each

context object contains an execution context, which is the actual execution state

of the computation. The execution context is implemented by the Boost.Context
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library [45], which encapsulates context switching and manages the associated con-

text’ stack. Note that a context object refers to the context type defined by the

runtime system, and execution context refers to the Boost.Context object which

defines the actual processor state.

The context object does not implement much functionality, other than wrap-

ping the execution context state with additional control structure data and intru-

sive data members. The functionality is implemented in the scheduler, which is

explained in further detail in Subsection 6.2.2.

Execution contexts can either create a context of the current running execution

context, or takes a function pointer of the type void(void*). Transfer of control

flow between execution contexts is done by calling another execution context with

the overloaded void* operator ()(void*) method. Parameter passing is possible

through void pointer casting. When transferring control to another execution con-

text, an optional pointer can be passed. If this is the first transfer of control to

the execution context, the parameter will be passed as the void pointer argument

for the function. Else, the void pointer will be passed as the return value of the

transfer of control operator.

Listing 6.2 gives an example of how execution contexts work. An execution

context of the currently running context is made, as well as an execution context

of a lambda function. The output of the code snippet will print main and work

in that order. Refer to the Boost.Context documentation for a more thorough

explanation of the execution context implementation and API [45].

When creating a context object, an enclosing entry function of the type void←↩

(void*) is created, which calls the received function with its arguments. This entry

function, called trampoline, handles the void pointer argument from the execution

context, calls the process function, and calls the terminate procedure when the

process function returns. This way, all terminating processes can be gracefully

resolved by the trampoline function while remaining invisible to the programmer.

Entry functions are created with generic lambdas, allowing to create generic entry

function calling over any type of function pointer and arguments. This is explained

in further detail in Subsection 6.2.2.

The context object contains the type of the context, the execution context, the
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Listing 6.2: Transfer of control between execution contexts.

1 using ex_ctx = boost:: context :: execution_context;

2 ex_ctx main_ctx{ex_ctx :: current ()};

3 ex_ctx work_ctx {[& main_ctx ](void* vp){

4 std:: string* msg = static_cast <std:: string*>(vp);

5 std::cout << *msg << std::endl; // prints `main `
6 std:: string work_msg{"work"};

7 // transfer of control to main_ctx

8 main_ctx(static_cast <void*>(& work_msg));

9 // never returns

10 }};

11 std:: string main_msg{"main"};

12 // transfer of control to work_ctx

13 void* vp = work_ctx(static_cast <void*>(& main_msg));

14 std:: string* msg = static_cast <std:: string*>(vp);

15 std::cout << *msg << std::endl; // prints `work `

entry function for the particular process, and a pointer to the parent scheduler.

Each process also has its own spinlock, used for inter-process synchronization.

Additionally, control data used by the scheduler is stored in the context object,

such as intrusive hooks and time points for timed suspension. See Listing 6.3 for a

stripped down version of the context class definition.

Each context object also contains a wait queue, containing other contexts which

are waiting for the termination of the given context object. This queue, together

with the context object spinlock, is used to implement process joining.

Listing 6.3: Minimal context type.

1 class Context {

2 private:

3 using ExCtxT = boost:: context :: execution_context;

4 using EntryFn = delegate <void(void*) >;

5 using TimePointT = std:: chrono :: steady_clock :: time_point;

6 ExCtxT ex_ctx_;

7 EntryFn entry_fn_{nullptr };

8 proxc:: Scheduler * scheduler_ptr_{nullptr };

9 public:

10 TimePointT time_point_{TimePointT ::max()};

11 proxc::Alt * alt_{nullptr };

12 proxc:: Spinlock splk_;

13 /* impl defined */ wait_queue_ {};

14 /* intrusive data members */

15 };
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6.2.2 Scheduler

The scheduler is the corner piece of the runtime system. It has the sole respon-

sibility of managing the different processes, including creating, scheduling, and

synchronizing processes. The scheduler runs as its own context, invisible to the

programmer.

When the scheduler is initialized by the runtime initialization procedure, the

scheduler context enters the scheduler event loop. The scheduler event loop is

where the scheduler context resides during the lifetime of the entire program.

A scheduler is implemented as a class object, consisting of context queues and

process management logic. See Listing 6.4 for reference.

Listing 6.4: Minimal scheduler type.

1 class Scheduler {

2 private:

3 struct Initializer;

4 bool exit_{false };

5 proxc:: Context* running_ptr_{nullptr };

6 proxc:: Spinlock splk_;

7 /* impl defined */ policy_;

8 /* impl defined */ work_queue_ {};

9 /* impl defined */ sleep_queue_ {};

10 /* impl defined */ terminated_queue_ {};

11 /* impl defined */ remote_queue_ {};

12 public:

13 static proxc :: Scheduler* self();

14 static proxc :: Context* running ();

15 };

Scheduler Initialization

The scheduler has two static methods: self() and running (). The self()←↩

method returns a pointer to the scheduler object which is the parent scheduler

for the current running kernel-thread, and can be called from any context. The

running () method returns a pointer to the context object currently running on

the kernel-thread, and can be called from any context.

The self() method is the starting point of the runtime system, for which the

first call to will trigger the initialization procedure. The method contains a static

thread local variable of the scheduler initializer object, which is a Schwarz counter.
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A Schwarz counter, also known as a nifty counter, is a C++ idiom for ensuring a

non-local static object is initialized before its first use and destroyed only after last

use of the object, where the non-local static object in this case is the scheduler

object.

The first call to the scheduler initializer constructor on each kernel-thread will

initialize the scheduler object for the corresponding thread, and simultaneously set

its static thread local pointer member to the scheduler object. This static thread

local pointer is the pointer which is returned by self() method. Additionally, the

running () method returns the running_ptr_ member from the returned scheduler

object, which is retrieved by the self() method.

Listing 6.5: Static scheduler methods.

1 // Schwarz counter

2 struct Scheduler :: Initializer {

3 thread_local static Scheduler* self_{nullptr };

4 thread_local static std:: size_t counter_ {0};

5 Initializer () {

6 if (counter_ ++ == 0) {

7 /* initialize scheduler */

8 /* member self_ is set */

9 }

10 }

11 ~Initializer () {

12 if (--counter_ == 0) { /* destroy scheduler */ }

13 }

14 };

15 Scheduler* Scheduler ::self() {

16 thread_local static Initializer init;

17 return Initializer ::self_;

18 }

19 Context* Scheduler :: running () {

20 return Scheduler ::self()->running_;

21 }

Process Queues

From Listing 6.4 a total of five queues are used by the scheduler for process man-

agement: ready, work, sleep, terminated and remote queue.

The ready queue is called a scheduling policy, or just policy for short. The

scheduling policy is an abstraction for the scheduler, for which ready processes

are enqueued to and ready processes to resume are dequeued from. The scheduling
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policy is responsible for storing the ready processes, and how and in which order the

processes are enqueued and dequeued is up to the implementation of the scheduling

policy. As of writing this thesis, the default policy is hard coded with the work

stealing policy. However, any type of scheduling policy could be implemented,

such as round robin. Following the algorithm described in Subsection 5.3.1, the

queue is implemented as a combination of a double-ended queue, deque for short,

and a doubly linked list. The deque is used for dynamic processes and the doubly

linked list is used for static processes. This is to avoid static processes from being

stolen by other schedulers. The deque has two distinct ends called top and bottom.

Enqueueing and dequeueing a dynamic process to the dequeue pushes and pops the

process from the bottom end, respectively. The doubly linked list acts as a FIFO

queue. The work stealing commences when both the deque and the doubly linked

list are empty. A deque from another scheduler is chosen at random, and a process

is tried to be stolen from the top end. Pointers to all deques from all schedulers are

stored in a static list. Note that work stealing is happening unbeknownst to the

scheduler, as the scheduler only enqueues and dequeues processes to the scheduler

policy.

The work queue, which holds all processes the scheduler is the parent of, is

implemented as an intrusive doubly linked list. The sleep queue, which holds all

processes suspended until a time point, is implemented as an intrusive multiset5.

The terminated queue, which holds all process which has terminated and can be

destroyed, is implemented as an intrusive doubly linked list. Both work, sleep and

terminated queues are only manipulated by a single scheduler and are therefore

not thread safe, i.e. no other schedulers can access these queues safely.

The remote queue is a concurrent MPSC queue, where the managing scheduler

is the consumer while any other schedulers are the producers. Whenever a scheduler

reschedules a process and is not the parent scheduler, the context is placed in the

remote queue to the parent scheduler. The parent scheduler transitions processes

in the remote queue and enqueues them in the scheduling policy. In essence, the

remote queue is used to signal schedulers when their processes are to be rescheduled,

5A multiset is an associative container that contains a set of objects, which allows multiple
keys with the same values.
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since remote schedulers cannot safely enqueue processes to the scheduling policy.

Process States and Transitions

The scheduler imposes a set of states for a process and how a process transitions

between these states. An overview of the finite state machine of the states and

transitions are shown in Figure 6.2. The different process states imply the following:

• Ready – a newly created process always starts in the ready state. A ready

process is enqueued to a ready queue and is ready to be resumed by the

parent scheduler.

• Running – a process is currently executing on a kernel-thread.

• Ended – a process has terminated and is enlisted in the terminated queue.

An ended process can be destroyed by the parent scheduler.

• Suspend – a process is waiting indefinitely. Another process might resched-

ule the suspended process.

• Sleep – a process is waiting until a given time point. A sleeping process is

enlisted in the sleep queue and is rescheduled by the parent scheduler when

the time point has expired or is rescheduled by another process.

• Join – a process is waiting for another process to terminate. The joining

process is enlisted in the wait queue of the process, and will be rescheduled

when the process terminates.

• Remote – a process is rescheduled by an another process which does not

have the same parent scheduler. A remote ready process is enlisted in the

remote queue.

Some observations can be made by the transition diagram in Figure 6.2. A ready

process can only transition to running. Only a running process can terminate.

A transition to and from running is the same as a context switch between two

processes. The remote state can be seen as an intermediate ready state. When

a running process transitions from running to one of the states suspend, sleep or

join, the next transition must be ready state. A transition between the three states

suspend, sleep or join cannot occur.
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Figure 6.2: Finite state machine of states and transitions for a process.

Scheduler Functionality

The scheduler implements a set of methods for manipulating processes, such as

process management and inter-process synchronization. It is important the sched-

uler implement the necessary functionality, as this forms the basis of what library

features can be implemented. The following functionality is available for a process:

• Process attaching and detaching – allows a process to be attached and

detached to a scheduler, i.e. setting and removing a parent scheduler to a

process.

• Process rescheduling – allows a process to reschedule other processes.

• Process suspension – allows a process to suspend execution, either indefi-

nitely, for an another process, or until a given time point.

• Inter-process synchronization – allows a process to synchronize on other

processes, meaning the process waits for the other process to terminate.

• Context switch operations – allows a process to perform certain opera-

tions immediately after a context switch.

To further elaborate on the points above, attaching and detaching a process is

necessary when work stealing. As all schedulers have a set of processes of which it

is responsible for, attaching a process is to register this responsibility. Detaching

would unregister this responsibility. When a process migrates between two sched-

ulers, the process must detach of its previous parent scheduler and attach to its
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new parent scheduler.

A process rescheduling another process requires checking whether they have

the same parent scheduler or not. With the same parent scheduler, the process

is enlisted directly to the ready queue. If they have different parent schedulers,

the process is first enlisted to the remote queue, then enlisted to the ready queue

when the parent schedulers transitions the process. If a rescheduled process was

currently suspended with a timeout, the process is also removed from the sleep

queue when enlisted to the ready queue.

Process suspension falls into two categories: waiting until some time point, or

wait indefinitely. A process waiting until some time point enlists the process to the

sleep queue. However, it is possible for other processes to reschedule the waiting

process before the timeout occurs. A process waiting indefinitely may only be

rescheduled by other processes.

Inter-process synchronization, also called joining, allows for processes to wait

for other processes to terminate. Each process has its corresponding spinlock,

which is used to enforce mutual exclusion access to the process termination flag.

When a process terminates, the lock is acquired, and the wait queue is checked. All

processes enlisted to the wait queue is rescheduled, and lastly the lock is released.

When a process is joining on another process, the lock is first acquired, and the

termination flag is checked. If the termination flag is not set, the process enlists

itself on the wait queue of the joining process, and the process suspends itself with

releasing the lock. If the termination flag is set, the operation returns immediately.

Note that it is safe for processes to access the wait queue as its guarded with mutual

exclusion.

Context switch operations allow for processes to perform an action after the

context switch has occurred. This is necessary when a process can only perform

said action after itself has yielded execution. Currently, two operations can be

performed with a context switch operation: releasing a lock and rescheduling a

process. Releasing a lock after a context switch is necessary when a process re-

leasing a lock could result in the given process being rescheduled by an another

process. An example of this is inter-process synchronization. Rescheduling a pro-

cess after a context switch is necessary when a process want to reschedule itself,
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such as processor yielding.

Scheduler Event Loop

The scheduler event loop is the where the entirety of the scheduler process is

executing. The event loop consists of the following: check exit condition, process

cleanup, process transitions, and process scheduling. See Listing 6.6 for pseudo

code reference.

What is important to note is that whenever the scheduler context switches to

an another process, the scheduler process is enqueued to the ready queue before

context switching. This ensures the scheduler is always available to context switch

back to when running as a process.

Listing 6.6: Scheduler event loop pseudo code.

1 while ( true ) {

2 if (exit_condition ()) {

3 break;

4 }

5 // cleanup terminated contexts

6 cleanup_terminated ();

7 // transition contexts to ready

8 transition_remote (); // remote -> ready

9 wakeup_sleep (); // sleep -> ready

10 // schedule ready context if any. Else , wait

11 context = scheduling_policy.dequeue ();

12 if (context != nullptr) {

13 // scheduler must always be available

14 scheduling_policy.enqueue( scheduler_context );

15 // context switch to ready process

16 context.resume ();

17 // scheduler is now running

18 } else {

19 // sleep until first timeout or idle wakeup

20 scheduling_policy.suspend_until( next_wakeup () );

21 }

22 }

23 // scheduler is exiting , cleanup scheduler

24 scheduler_cleanup ();

25 // lastly , context switch to main

26 main_context.resume ();

27 // never returns
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6.3 Library Feature Implementations

Library features provide the framework for the library for which are visible for the

programmer. All features use the runtime system to implement its functionality,

and this section explains this in further detail.

6.3.1 Timers

The three types of timers described in Subsection 5.2.1 are represented through

a common abstract class interface, shown in Listing 6.7. Instances of an egg or

repeat timer convert the specified time duration to a time point, while the date

timer already specifies a time point. This time point is stored in the base interface

class. All timers support duration and time points from the standard library std←↩

:: chrono.

Listing 6.7: Timer abstract class interface.

1 class timer:: Interface {

2 protected:

3 using TimePointT = /* implementation defined */;

4 TimePointT time_point_;

5 public:

6 virtual void reset() = 0;

7 virtual bool expired () = 0;

8 bool operator <( Interface const& other) const

9 { return time_point_ < other.time_point_; }

10 TimePointT const& get() const { return time_point_; }

11 };

When a timer is supplied for a timed operation, the reset method is called. For

the egg timer, a reset results in calculating new time point. For the repeat timer,

the next periodic time point is calculated if expired, else the time point remains

the same.

Multiple timers can be supplied for some operations, such as alting. Since

timers have a static time point after a reset, the closest time point is chosen when

there are multiple timers.

An explicit process suspension with a given timer is simply enlisting the process

to the scheduler sleep queue with the corresponding time point. When the time

point is reached, the scheduler will transition the process from the sleep queue
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to the ready queue. The time points are checked by the scheduler process in the

scheduler event loop with the Scheduler::wakeup sleep() method. Suspending

a process with a timer will immediately return if the time point is already reached.

A timed operation differs slightly from a timed suspension. Whenever the

process waits for some event during the operation, the process is enlisted in the sleep

queue. Now, one of two things may happen: either the process is rescheduled by

some other process, or the operation times out and is rescheduled by the scheduler.

If the process was rescheduled by some other process, the scheduler removes the

process from the sleep queue and is enqueued in the ready queue. If the time point

expires, the scheduler transitions the process from the sleep queue to the ready

queue just as a timed suspension. Either way, the process is removed from the

sleep queue and enqueued in the ready queue.

Note that if the process is rescheduled by some other process which does not

share the same parent scheduler, the process is enlisted in the remote queue first,

but is not removed from the sleep queue. It is not until the scheduler transitions

the process from remote to ready during the Scheduler::transition remote()

procedure the process is removed from the sleep queue.

6.3.2 Parallel Statement

The parallel statement, following the design presented in Subsection 5.2.2, has two

obvious phases: the fork and join phase.

During the fork phase, each process to be executed in parallel is spawned by

the parent process, one by one. The parent process is in this context the process

calling the parallel statement. Spawning involves creating the process, attaching

the process to the current scheduler, and schedules the process. When all parallel

process has been spawned, the parent process enters the join phase.

The join phase consists of the parent process joining all parallel processes, one

by one. Joining a process involves waiting until the process has terminated. One

of two things happens when joining: either the process has not terminated and

is still executing, or it has terminated. If the process has terminated, the parent

process continues the join phase. If not, the parent process waits. When the process
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terminates, it will wake up the parent process.

Pseudo code for the parallel implementation is presented in Listing 6.8.

Listing 6.8: Parallel statement pseudo code.

1 /* fork phase */

2 for_each process in parallel_processes {

3 process.fork();

4 }

5 /* join phase */

6 for_each process in parallel_processes {

7 process.join();

8 }

The parallel statement is quite simplistic, as it only enqueues new processes

to the current scheduler and waits for their termination. Much of the simplicity

comes from the lack of a sequential statement, simplifying the design significantly.

6.3.3 Channels

Following the design in Subsection 5.2.3, channels exist in one flavour: synchronous

and unbuffered, unidirectional, one-to-one, and type safe.

Channel objects are of the type Chan <T>, which are composed of the two channel

end objects Chan <T>::Tx and Chan <T>::Rx. Tx and Rx can send and receive on a

channel, respectively. Creating a channel object allocates the two channel ends

with the channel ::create <T>() method. The two channel ends are accessible via

channel methods. The channel method Chan <T>:: ref_tx/rx() returns a reference

to either channel end, while the method Chan <T>:: move_tx/rx() returns a moved

channel end object. See Listing 6.9 for reference.

Listing 6.9: Channel object type.

1 template <typename T>

2 struct Chan : public std::tuple <Tx <T>,Rx <T>> {

3 using Tx = Tx<T>;

4 using Rx = Rx<T>;

5 using TplT = std::tuple <Tx<T>,Rx<T>>;

6 Chan() : TplT{ channel :: create () } {}

7 Tx & ref_tx (); Rx & ref_rf ();

8 Tx move_tx (); Rx move_rx ();

9 };
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Two channel containers are also supplied: ChanArr <T,N> for static allocation

on the stack, and ChanVec <T> for dynamic allocation on the heap. The underly-

ing container of ChanArr <T,N> is a std::array, and the underlying container of

ChanVec <T> is a std:: vector. All related methods and types associated with the

underlying container is accessible with the corresponding channel container. This

means channel containers support indexing with brackets, e.g. [i]. See Listing 6.10

for channel container type definitions.

Listing 6.10: Channel container types.

1 template <typename T, std:: size_t N>

2 struct ChanArr : public std::array <T,N> {

3 using ArrT = std::array <T,N>;

4 using ArrT::ArrT;

5 ChanArr () : ArrT() {}

6 };

7 template <typename T>

8 struct ChanVec : public std::vector <T> {

9 using VecT = std::vector <T>;

10 using VecT::VecT;

11 ChanVec(std:: size_t n) : VecT(n) {}

12 };

Both channel containers has the methods collect_tx/rx(), which returns a

container of all corresponding channel ends in the container. The returned con-

tainer type is the same as the underlying channel container.

Channel operations on a channel end, alting or not, can be timed with a timer.

Both sending and receiving channel ends can be used in alting, compared to occam

and XC which only permits receiving channel ends.

Channels can be closed. When a channel is closed, no more channel operations

can be completed on the given channel. Closing a channel cannot be undone. A

channel closes when either one of the channel ends goes out of scope, or one the

channel ends explicitly closes the channel.

Channel ends are movable but non-copyable, meaning channel ends must ex-

plicitly pass ownership between scopes. As each process in itself is an independent

running scope, channel ends being non-copyable ensures only one process holds and

owns a channel end at any given time. If a process were to pass a channel end to

another process, the ownership of the given channel end must be moved.
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Channel ends are no more than class object holding a shared pointer to the un-

derlying channel implementation. The channel implementation is of type ChannelImpl←↩

<T>, containing the entire channel functionality. Channel ends are therefore no

more than wrapping types, restricting the access to the channel implementation.

Whenever a channel is to be allocated, a channel implementation object is dynam-

ically allocated with the shared pointer std:: shared_ptr, and both channel ends

are constructed with the shared pointer of the channel implementation.

The channel implementation follows the algorithm detailed in Subsection 5.3.2.

Some important details regarding the channel implementation is that all channel

operations, such as closing, send, receive, etc. are enclosed with a spinlock that

belongs to the channel implementation object. The spinlock effectively serializes

all access to the channel implementation. However, some parts of the channel end

algorithm require the participant to wait. The lock is therefore released after the

process is suspended, using a context switch operation. If the lock were to be

released before suspending, the opposite channel end could theoretically complete

the channel operation and reschedule the current channel end before it suspended.

The alting channel end implementation is slightly more complicated than the

non-alting implementation, as it has a alt-to-alt synchronization procedure before

trying the acquire the channel implementation lock.

6.3.4 Alting

The alting procedure is implemented as a class object of type Alt, which is allocated

on the stack. The channel alternative is composed of two different channel alter-

native objects, each for the sending and receiving case. Both alternative objects

inherit from a common abstract class interface. The timer and skip alternatives

are both allocated as a data member in the alting object.

After creating an alting object, alternatives can be created by chaining function

calls to the alting object. The four functions send, recv, timeout and skip creates

a channel send, channel receive, timeout and skip alternative, respectively. The

channel alternative functions have a corresponding replicator function for creating

a dynamic number of channel alternatives over a dynamic number of channel ends
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These are called send for and recv for. All alternative creating functions also has

an corresponding guarded function, which is the function name with if appended,

e.g. send if. Lastly, the function call select performs the alting procedure and

consumes the alting object in the process. The select function call is always last.

See Listing 6.11 for a code example.

Listing 6.11: Code example of alting.

1 Alt() // creates alting object

2 .send(tx , item) // w/o guard , w/o closure

3 .recv_if(cond1 , rx) // w guard , w/o closure

4 .timeout(timer , []() {}) // w/o guard , w closure

5 .skip_if(cond2 , &some_func) // w guard , w closure

6 /* more alternatives can be inserted here */

7 .select (); // selects an alternative

An important observation to make is that all alternative functions simply gen-

erate and store alternatives in the alting object. However, some additional care has

to be taken into consideration. Multiple alternatives can be created on the same

channel end. If this is the case, then the alting object chooses one at random for

which is used during the alting procedure. If both ends of the same channel are

detected as alternatives, then all alternatives for that channel are discarded.

Timeout alternatives are stored as a single entry in the alting object. Whenever

a timeout alternative is created, the timeout period is checked against the current

timeout period, initialized to the maximum value. If the timeout period is lower

than the current one, the new timeout alternative is swapped in place.

Skip alternatives are stored as a single entry in the alting object. Compared

to the timeout alternative, only the first skip alternative is stored. All subsequent

skip alternatives are discarded.

The alting procedure follows the algorithm presented in Subsection 5.3.3. A

spinlock is used for mutual exclusion during the alting procedure to enforce active

and passive selection. An atomic flag and a pointer are used to set the “winner” of

the selection. Listings 6.12 and 6.13 shows an illustration of the active and passive

alting.

During the checking phase, the alting object holds the lock. If the alting pro-
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cedure actively selects an alternative, the atomic flag is set and the pointer is

set accordingly. The alting procedure lock is only released when the procedure

advances to the waiting or completing phase. Only after the alting procedure con-

tinues to the waiting or completing phase is the lock released. Any alternative that

becomes ready during the checking phase and tries to select passively must acquire

the alting lock first. This allows the alting procedure to enforce all alternatives

trying to passively select to wait until the waiting or completing phase.

If the alting procedure enters the waiting phase, the alting procedure suspends

itself and the lock is released. Note that the lock is released after the suspension,

using context switch operation. The first alternative to acquire the lock and set the

atomic flag is allowed to set the winner pointer. This alternative also reschedules

the alting procedure.

Listing 6.12: Active alting of the alting procedure.

8 lock = spinlock.aquire ();

9 ready_selected = checking_phase ();

10 winner = if ! ready_selected {

11 if skip { skip_alternative }

12 else {

13 // atomically suspend and release lock

14 timeout = scheduler.alt_wait( lock );

15 if timeout { timeout_alternative }

16 else { channel_alternative }

17 }

18 } else { ready_alternative };

19 completing_phase(winner);

Listing 6.13: Passive alting of a process.

1 lock = spinlock.aquire ();

2 if ! alt.atomic_flag.test_and_set () { return false; }

3 alt.winner = channel_alternative;

4 scheduler.reschedule(alt.context);

5 return true;

The alting procedure uses a uniform random distribution to randomly choose

an alternative if multiple alternatives are ready during the active phase. Using a

uniform random distribution makes the alting procedure fair and non-deterministic.

Whether an alting procedure prefers determinism over fairness or not is not up for
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this thesis to discuss, and for all practical reasons the alting procedure favours

fairness over determinism.



Chapter 7

Examples of Usage

This chapter introduces how ProXC++ is used in C++ programs. Only the basics

of ProXC++ are presented, introducing all necessary features for understanding the

library. First of all, ProXC++ must be installed on the work environment. ProXC++

is available for free as in speech on GitHub [50]. Following the install guide on the

readme should be sufficient. For more advanced examples, check out the examples

in the examples/ folder on the GitHub project.

All library related types and methods reside in the proxc namespace, which

will be omitted in all code examples. It is given the header file #include <proxc←↩

.hpp > is included in all code examples shown in this chapter, as well as in all C++

files programming with ProXC++. The linker flag -lproxc must also be passed

during compilation.

Programs using ProXC++ does not need to initialize or cleanup the library. This

is done automatically by the library. The first call to the library which invokes the

runtime system will initialize the library, and the cleanup procedure is invoked

when the program exits. No cleanup will be invoked unless the library has been

initialized.
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7.1 Processes

At the core of ProXC++ are lightweight processes. These processes are a separate

scope of execution which can run concurrently with the rest of the program. In

code, these processes are represented by a function and its corresponding argu-

ments. The main function of any C++ program is also implicitly a process. This

function must have a return type of void, but can have any type and number

of arguments. Listing 7.1 shows different function prototypes where some qualify

running as a process and some do not.

Listing 7.1: Different function prototypes which do and do not qualify as a process.

1 void good_func1 (); // ok

2 void good_func2(std:: string msg); // also ok

3 int bad_func1 (); // not ok, return type not void

4 std:: string bad_func2(int y); // also not ok

Processes are stored as process objects of the type Process. These process

objects can be created and stored freely in any container. A process object can

be created explicitly with the object constructor, which takes a function pointer

and its corresponding arguments. Alternatively, a process object can be created

implicitly with the library method proc. Listing 7.2 illustrates the difference.

Listing 7.2: Process creation.

1 Process my_process {&my_func , arg1 , arg2};

2 auto other_process = proc(&other_func , other_arg);

Process creation also has perfect forwarding of arguments, meaning any type of

arguments being expensive to copy or being non-copyable can correctly be moved

into processes.

A dynamic number of processes can also be created, which requires to either

explicitly allocate each process before hand in any container or to generate them

on the fly. The library method proc_for takes either a pair of input iterators to

any container of processes, or a pair of integers which defines the integer range

[start; end〉 and a function pointer which takes an integer as an argument. The
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method returns a process which runs the dynamic numbers of processes in parallel.

See Listing 7.3 for reference. Calling the proc_for method only creates the parallel

process, and does not run them.

Listing 7.3: Creating a dynamic number of processes.

1 std::vector <Process > procs;

2 for (int i = 0; i < N; ++i)

3 procs.emplace_back (&some_func , some_data[i]);

4 auto total_procs = proc_for(procs.begin(), procs.end());

5 // or

6 auto total_procs = proc_for(0, N,

7 [& some_data ](int i){ some_func(some_data[i]); });

Creating a process is not useful if it cannot be executed in parallel with the rest

of the system. The library function parallel takes one-or-more processes and runs

them in parallel, following the fork-join model. The calling process will suspend

until all parallel processes have terminated. See Listing 7.4 for reference.

Listing 7.4: Example of the parallel statement.

1 std::vector <Process > procs;

2 // ...

3 parallel(

4 proc(&my_func , 42),

5 proc ([](){ /* lambda function */ }),

6 proc_for(procs.begin (), procs.end()),

7 proc_for(0, N, &calculate_func)

8 );

Process objects are non-copyable but movable, meaning the ownership of pro-

cess objects must be moved between scopes. A process object is of one-time use.

After a process has executed and terminated, the process object cannot be run

again. The process object must be constructed once more to be executed again.

In any process context a set of operations are available for the current running

process, accessible in the this_proc namespace. The operations includes getting

the current process id, yielding, and suspending for a given duration or until a time

point. The suspension operations supports time types from the standard library

std:: chrono. See Listing 7.5 for reference.
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Listing 7.5: Per process operations for the current executing process.

1 auto id = this_proc :: get_id ();

2 this_proc ::yield ();

3 this_proc :: delay_for(/* duration */);

4 this_proc :: delay_until(/* time point */);

7.2 Timers

Three types of timers are available in ProXC++: egg, repeat and date timers.

Timers allow for soft real-time requirements on certain operations. All timers have

support for time period and duration declarations using the standard time library

std:: chrono.

All timer objects reside in the timer namespace. Timer objects are constructed

with a supplied appropriate duration or time point, and are both copyable and

movable. See Listing 7.6 for reference.

Listing 7.6: Constructing different timers.

1 timer::Egg egg{/* duration */};

2 timer:: Repeat rep{/* duration */};

3 timer::Date date{/* time point */};

Egg timers are used for relative timeout periods. Just as an egg timer in real

life, the timer starts when the operation starts, and expires when the period has

passed. The egg timer can be reused after expiration, as the countdown is reset

every time it is supplied for an operation. In a sense, the timer does not “survive”

between multiple operations, as it resets.

Repeat timers are used for periodic timeout periods. Given a time duration, the

repeat timer will expire every period equal to the time duration. When supplied

with an operation, the repeat timer does not reset. Only when it expires does it

reset, basically setting the next timeout point to the next period forward in time.

Repeat timers do “survive” between multiple operations, as time timer only resets

when it expires.

Date timers are used for absolute timeout periods. Given a time point, the

date timer will expire when current time point has surpassed the given time point.
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The date timer does “survive” between multiple operations, however, always stays

expired after a timeout.

7.3 Channels

Processes use message-passing to communicate, which is realized through channels.

The philosophy of CSP-based concurrency is processes should not share memory

directly, as this is a potent problem often leading to race conditions. Rather,

the processes should share memory by communicating, i.e. message-passing with

channels.

Channels in ProXC++ exist only in one flavour: synchronous and unbuffered,

unidirectional, one-to-one and type safe. Channel objects are of the type Chan←↩

<T>, and takes no additional arguments in its constructor. Channel objects are

non-copyble but movable.

A channel object is a named tuple, containing the two channel end objects

Chan <T>::Tx and Chan <T>::Rx, The channel ends Tx and Rx can respectively send

and receive on the channel. Channel end objects are also non-copyable but movable.

Channel ends can be access directly from the channel object via the class meth-

ods ref_tx and ref_rx, which returns a reference to the channel end objects.

Channel end objects can also be moved from the channel object with the class

methods move_tx and move_rx. See Listing 7.7 for reference.

Listing 7.7: Channel creation and channel end access.

1 Chan <std::string > channel;

2 /* channel end access */

3 channel.ref_tx (); /* and */ channel.ref_rx ();

4 /* channel end move */

5 channel.move_tx (); /* and */ channel.move_rx ();

Given a channel of type Chan <T>, the channel end objects Tx and Rx can send

data of the type T over the channel. Channel transmissions has perfect forwarding

of data.

The channel end object Tx can either send data with the class method send or

with the overloaded operator <<. The class method returns the explicit result of
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the operation, while the overloaded operator only returns a boolean of whether the

operation was a success or not. See Listing 7.8 for reference.

Listing 7.8: Sending on the Tx channel end object.

1 Chan <long > channel;

2 auto tx = channel.move_tx ();

3 auto op_result = tx.send(some_data);

4 /* or */

5 bool success = tx << some_data;

The channel end object Rx can either receive data with the class method recv

or with the overloaded operator >>. An important difference from the sending op-

erations is the receive data must be preallocated before calling the receive methods.

However, the return types resembles the return types of sending. See Listing 7.9

for reference.

Listing 7.9: Receiving on the Rx channel end object.

1 Chan <long > channel;

2 auto rx = channel.move_rx ();

3 long some_data; // received data must be preallocated!

4 auto op_result = rx.recv(some_data);

5 /* or */

6 bool success = tx >> some_data;

Both channel end objects overload operator () for inline sending and receiving.

However, inline channel operations does not return any indications whether the

channel operation was a success or not. See Listing 7.10 for reference.

Listing 7.10: Inline channel operations.

1 Chan <T>::Tx tx; Chan <T>::Rx rx;

2 tx(data); // returns void

3 rx(); // returns T

A channel has a notion of being open or closed. A channel always starts as being

open. When a channel is closed, no more channel transmission can be completed.

A closed channel forever remains closed until destroyed. A channel becomes closed

either by a channel end explicitly closing the channel with the class method close,
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or a channel end object goes out of scope and is deallocated. A channel end can

test whether the channel is closed or not with the class method is_closed, which

returns true for a closed channel and false otherwise.

The channel end object Rx supports for range-based for loops, retrieving data

as long as the channel is open. When the channel becomes closed, the for loop

automatically breaks. See Listing 7.11 for reference.

Listing 7.11: Range-based for loops with the receving channel end.

1 Chan <T>::Rx rx;

2 for (auto data : Rx) {

3 /* do some work */

4 }

5 /* here , channel is closed */

A receiving channel end can pipe its input into a sending channel end, meaning

all data received on the receiving channel end is forwarded as the output on a

sending channel end. The overloaded operator >> is used to pipe data between

a receiving and sending channel end, which returns a boolean indicating success

or not. A successful piping is only when data is successfully received and sent.

If either operation fails, the piping operation fails as well. See Listing 7.12 for

reference.

Listing 7.12: Piping from a receiving to sending channel end object.

1 Chan <T>::Tx tx; Chan <T>::Rx rx;

2 while (rx >> tx) { /* piping is successful */ }

3 /* piping failed */

Lastly, a channel send or receive operation can be timed. A time duration or

time point from the standard library std:: chrono can be supplied with a channel

operation. The channel operation will try to complete within the specified time,

and returns either if the operation completed or timed out. The return value of the

timed operation specifies the reason for why the reason channel operation returned.
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7.4 Alting

If a process were to wait on multiple channel ends simultaneously, normal channel

operations would not suffice. The alting construct however allows a process to

simultaneously wait on multiple channel operations and complete one when one

becomes ready. The channel operations, together with timeouts and skips, makes

up what is called alting alternatives.

The four alternatives are as follows: channel send and receive takes an appro-

priate channel end and data, and performs the given channel operation. A timeout

specifies a timer and wait until that timer has expired. A skip is always ready,

much like the default keyword in a switch construct.

The alting procedure allows a process to synchronously wait for multiple alter-

natives. The alting procedure block the calling process until one of the alternatives

can complete, and completes that alternative. A corresponding closure, which

can be anything callable, is then executed if present. When the alting procedure

finishes, including the executed closure has returned, the process resumes.

An alting procedure consists of zero-or-more alternatives, where the alting pro-

cedure waits for these alternatives to become “ready”. When one-or-more alter-

natives are ready, the alting procedure chooses one alternative and executes a

corresponding closure. Alternatives can be guarded by a boolean condition, which

enables or disables an alternative for the alting procedure depending on the condi-

tion.

An alting procedure starts with creating an alting object, which has the type

Alt. This alting object can create alternatives by function chaining multiple al-

ternative methods, and lastly, call a selection method which consumes the alting

object and resolves the alting procedure. See Listing 7.13 for reference.

The four alternative types channel send, channel receive, timeout and skip has

the corresponding alternative methods send, recv, timeout and skip, respectively.

Each alternative method can prepend a guard with a boolean condition by

calling the altered alternative method, which has an appended _if to the method

name, e.g. send_if. All alternative methods, both with and without a guard, can

have an optional closure. See Listing 7.13 for reference.
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Listing 7.13: Example of the alting construct.

1 Alt()

2 .send(tx , 42)

3 .recv_if(cond1 , rx)

4 .timeout(timer , &timeout_func)

5 .skip_if(cond2 , [](){

6 /* skip lambda */

7 })

8 .select ();

A dynamic number of channel send and receive alternatives can be generated.

The class methods send_for and recv_for takes a pair of iterators to any container

with the appropriate channel end object, and generates a corresponding alternative

for each channel end. The class methods can also be guarded, following the same

naming scheme as the single alternative methods.

The timer alternatives takes on of the three timer types presented in Section 7.2.
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Performance

Benchmarking performance of a concurrency library is not intuitive. Some might

even argue performance is not important, but rather the abstractions are correct.

However, some metrics of parallel programs can be tested.

For this benchmark, a set of concurrent programs are tested with various degrees

of parallelism. Metrics such as concurrent throughput, sequential speed, and load

balancing are factors which can influence performance.

To have some appropriately comparable benchmarks, entries from Section 3.2

are included. Occam and XC are however not included, as they require proprietary

hardware to run on multi-core architectures. C++CSP2 is not included because

of difficulties of implementing benchmark tests which did not result in spurious

segmentation faults by the library during execution. Boost.Fiber is not included

because the lack of the necessary CSP abstractions to create the benchmarks.

Additionally, single-core versions of ProXC++ and Go are included to observe

the potential speedup in performance compared to multi-core. ProXC++ imple-

ments a single-core runtime system with a round robin scheduling policy, while Go

implements single-core runtime system by setting the number of schedulers to one

with GOMAXPROCS. C++CSP has no support for a single-core runtime system, and

therefore only the multi-core version is included.

All code for the different benchmark tests can be found in appendix B.
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8.1 Benchmark Setup

All benchmarks performed in this chapter are computed on the same machine; a

desktop PC with an Intel® Core™ i7-4790 4GHz processor with a total of 8 logical

cores (4 physical cores with 2 logical cores per physical core), 16GiB DDR3 RAM,

running Ubuntu® 16.04 xenial, x86 64 Linux® 4.4.0 as operating system.

Intel Core is a registered trademark of Intel Corporation, Linux is the regis-

tered trademark of Linus Torvaldsen in the U.S. and other countries, Ubuntu is a

registered trademark of Canonical Ltd.

8.2 Benchmark Tests

Three type of benchmark tests are performed: extended commstime, concurrent

mandelbrot and concurrent prime sieve. These three tests have various degrees of

sequential and parallel characteristics, aiming to highlight the concurrency adap-

tation capabilities, the concurrent throughput, and how well each entry scales with

an increasing amount of parallel work load.

8.2.1 Extended Commstime

The extended commstime test is a custom derivation of the original commstime

test. The original commstime test [51] is a pseudo-standard benchmark for testing

sequential channel communication between processes. Three processes called prefix,

delta and successor creates a channel cycle, sending an integer in loops. Each loop

increments the integer. A fourth process, called consumer, receives the integer on

each loop cycle. The consumer receives an integer a number of times and calculates

the average time to receive the integer. The commstime test mostly gives a metric

for the overhead regarding channel communication.

Channel communication overhead is not that interesting of a metric with dy-

namic multithreading. Commstime is however a good metric for a programs adapt-

ability of sequential programs, as the four processes in commstime creates a sequen-

tial dependency. I therefore propose the extended commstime test. Instead of three

processes in a channel communication cycle, N processes are created in a chain of
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channel communications, creating a variable sized cycle.

The extended commstime varies the chain length from N = 1 to 1000. For each

chain length value of N , the time to receive 100 integers divided by the chain length

is averaged over 50 runs.

The results of the extended commstime test are presented in Figure 8.1.
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Figure 8.1: Results of extended commstime. The y-axis has a logarithmic scaling.
Lower values are better.

8.2.2 Concurrent Mandelbrot

Some problems are embarrassingly parallel [52], where little to no effort is needed

to separate the work load into parallel tasks. The Mandelbrot set is a perfect

example of an embarrassingly parallel problem, where each point in the set can be

calculated independently of each other.

Generating a Mandelbrot set is perfect for testing the parallel capabilities of

the entries, such as how good the load balancing is.

For this benchmark, the Mandelbrot set is computed in the domain x ∈ [−2.1; 1.0]

and y ∈ [−1.3; 1.3] with a resolution of a given dimension D. The set is split into D
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number of lines on the y-axis, where each line consists of D points evenly distributed

along the x-axis. Each line represents some parallel unit of work.

All lines are computed in a map-reduce manner, where some worker processes

each calculates a full line at a time. Two approaches will be tested: a hard coded

optimal distribution of work, and dynamic sub-optimal distribution of work.

Both approaches tests for the same; for a given dimension from D = 1 to 1000,

how long does it take to calculate all lines, averaged over 100 rounds.

The hard coded optimal distribution is implemented by having the number of

worker processes equal to the number of logical cores, 8 in this case. Each worker

process receives a line to calculate from a channel, where a producer process is

on the other end continuously sending new lines to calculate. A consumer process

receives finished calculated lines on a channel from the worker processes.

Note that for the single-core versions, only 1 worker process is spawned as only

a single core is available.

The results of the hard coded Mandelbrot test are presented in Figure 8.2.
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Figure 8.2: Results of concurrent Mandelbrot with hard coded number of workers.
Lower values are better.
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The dynamic sub-optimal distribution is implemented by having worker pro-

cesses each dedicated for calculating a single line, meaning a total of D worker

processes will be spawned for a dimension D. All worker processes will be spawned

simultaneously. A consumer process will receive finished calculated lines on a chan-

nel from the worker processes, just as the hard coded Mandelbrot test.

The results for the dynamic Mandelbrot test are presented in Figure 8.3.

0 200 400 600 800 1000
Dimension size D

0

25

50

75

100

125

150

175

200

m
illi

se
co

nd
s

Mandelbrot: Dynamic Workers
ProXC++ multi-core
ProXC++ single-core
Go multi-core
Go single-core
C++CSP

Figure 8.3: Results of concurrent Mandelbrot with dynamic number of workers.
Lower values are better.

8.2.3 Concurrent Prime Sieve

The last benchmark is the concurrent prime sieve, popularized by the famously el-

egant piece of concurrent code in Go [53]. A prime sieve is a fast type of algorithm

to find prime numbers, usually implemented as a sequential algorithm. A concur-

rent prime sieve is also an algorithm to find prime numbers, however daisy-chains

processes to determine whether a number is a prime or not.

At the start of the daisy-chain is the generator process, which generates all

numbers from 2 and above. Along the daisy-chain is filter processes, where each
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filter represents a prime number along the number line. When the filter receives a

number, the divisibility of that number is checked against the filters prime number.

A non-divisible number is passed along the daisy-chain, while a divisible number

is discarded. Given a daisy-chain of N filters, at the end of the daisy-chain is the

N th prime.

Note that the concurrent prime sieve algorithm is nowhere near as efficient

as the sequential counterpart. The interesting merit of the concurrent prime sieve

algorithm is the total concurrent throughput. As multiple integers can be pipelined

simultaneously in the daisy-chain, it is possible to sieve multiple integers in parallel.

This benchmark test generates N prime numbers, where N = 10 to 1000. Given

a N , the execution time per prime number is calculated over the average running

time of 10 runs.

The results of the concurrent prime sieve test are presented in Figure 8.4.
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8.3 Analysis

Starting with the extended commstime test, the results in Figure 8.1 shows both

multi-core and single-core versions ProXC++ and Go equals in execution time. A

small exception is ProXC++ being slightly faster than Go in the range n ∈ [1;∼ 300].

As the chain length increases, both ProXC++ and Go converges to a fixed execution

time per chain, showing a linear increase in total execution time.

The single-core versions of both entries were expected to yield best results, as

extended commstime is nothing but a long sequential dependent cycle of processes.

That both multi-core versions matches, and sometimes surpasses, the single-core

versions is a good result. C++CSP behaves very similar to ProXC++ and Go,

however at a very much worse execution time per chain.

The results of the hard coded Mandelbrot test in Figure 8.2 were interesting,

but expected. The multi-core and single-core versions of both ProXC++ and Go

respectively increase in execution time with the same exponential trend. The single-

core version was expected to perform worst, while the multi-core versions were

expected to have a much better execution time. What is surprising is C++CSP

being the best entry here. When thinking about it, C++CSP does have the most

optimal setup here. Since each worker process in C++CSP is a kernel-thread, each

thread can run independently of each other on each core. Considering C++CSP is

the best possible outcome, both multi-core version of C++CSP and ProXC++ yields

a decent result.

The results of the dynamic Mandelbrot test in Figure 8.3 however shows a dif-

ferent side. The same trends for the single-core versions can be observed. C++CSP

slightly doubles in execution time, while Go almost matches the results of the hard

coded Mandelbrot test for C++CSP. The big surprise is now multi-core ProXC++

equals single-core ProXC++. Further inspections of the running test processor uti-

lization reveals the runtime system only fully utilizes a single processor core. What

is happening is that when the worker processes are spawned, everyone is placed on

the same ready queue on the same parent scheduler. All other idle schedulers fail

to effectively steal work of the one parent scheduler, resulting in only one scheduler

having work to run. This test clearly highlights that ProXC++ has issues with
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effectively distributing a huge number of small work across the idle schedulers.

Lastly, the results of the concurrent prime sieve test in Figure 8.4 are probably

the most promising results. Fully utilizing the parallel nature in the concurrent

prime sieve algorithm is very unintuitive, and heavily relies on the runtime system

to detect ready work and effectively distribute said work among idle schedulers. The

results show that the single-core and multi-core versions of ProXC++ and Go both

follow the same trend, where the multi-core versions yields a much better result

than the single-core versions. C++CSP is a lot slower than the single-core versions

of ProXC++ and Go, showing the lack of concurrent throughput in C++CSP.

An interesting observation to make is between the prime range n ∈ [1;∼ 500]

ProXC++ is a great deal slower than Go until it suddenly drop to equal. A possible

explanation is not able to effectively distribute the ready work as the processes are

too short lived, sort of similar to the same issue withe the dynamic Mandelbrot

test. However, over a certain limit around ∼ 500 processes the schedulers are able

to steal the processes.
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Discussions
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Chapter 9

ProXC++ vs. ProXC

As ProXC++ is a continuation of the project ProXC [5], it is interesting to see the

different design choices and capabilities the two projects exhibits.

This chapter compares and discusses the differences between the two projects

ProXC++ and ProXC, which includes differences such as abstractions, library fea-

tures, usability, and performance. This comparison should provide an insightful

look into both libraries, as both cater to the same motivation; providing a CSP

abstraction for a programming language with no native support for CSP-based

concurrency.

9.1 Similarities and Differences

Table 9.1 gives a rough comparison between ProXC++ and ProXC. The main dif-

ference to take from the comparison is the more dynamic feature set ProXC++

provides compared to the feature set of ProXC. In ProXC++, a dynamic number of

processes can be spawned in parallel, a dynamic number of alternatives can be alted

on, etc. This dynamic approach allows to create more flexible and less hard coded

programs, and consequently creating more maintainable and expressive concurrent

systems.
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ProXC++ ProXC
Target
langauge

The C++ programming
language.

The C programming
language.

Lightweight
processes

Third party library, portable,
customizable stack types.

Handwritten, not portable,
hard coded stack types.

Process
spawning

Synchronous parallel
spawning of dynamic
number of processes.

Synchronous/asynchronous
nested parallel and sequential
process spawning of
fixed number of processes.

Channels
Synchronous and unbuffered,
unidirectional, one-to-one,
type safe.

Synchronous and unbuffered,
bidirectional, any-to-any,
size safe.

Alternation

Alting on dynamic number
of alternatives. Alternatives
include channel send and
receive, timeouts and skip.

Alting on fixed number
of alternatives. Alternatives
include channel receive,
timeouts and skip.

Threading
model

M:N, hybrid threading model.
Support for multi-core.

M:1, user threading model.
No support for multi-core.

Table 9.1: Comparison of library specification and features between ProXC++ and
ProXC

9.2 Various Capabilities

A big difference between the two is the threading model used, where ProXC++ uses

a hybrid threading model while ProXC uses a user threading model. The use of

threading models only affects the performance in concurrent programs. The same

concurrent program running on both ProXC++ and ProXC should behave just the

same. However, since the main development in processor architectures is in multi-

core, there is an incentive to use the available resources for a potential performance

gain.

Now, not everything is about performance. Some might argue correct and

expressive abstractions are more important than performance. The abstractions

available in ProXC++ and ProXC are both based on CSP. However, ProXC++ has

a greater expressive power than ProXC because of replicators for parallel spawning

and alternatives for alting. Due to this limitation, ProXC cannot express a dynamic

numbers of processes and alternatives for alting.



Chapter 10

Challenges with a

Multi-Core Library

Creating a dynamic multithreaded CSP library for multi-core architectures is mostly

motivated by the potential performance increase in concurrent systems by utilizing

the available cores. CSP is about creating a correct and expressive abstraction

over concurrent systems rather than performance, but it is tempting to exploit the

apparent parallelism in multi-core architectures because of the inherently parallel

nature of CSP. Therefore, the rhetorical question is as follows: is the difficulty of

implementing a dynamic multithreaded CSP library worth it?

10.1 Critical Sections

What separates a single-core vs. a multi-core implementation of a user-threaded

runtime system is the ability with single-core runtime systems to reason and con-

trol which states processes are in, when they are running, etc. This reasoning is

especially important in critical regions of the runtime system, being able to justify

certain states in algorithms based on process states.

For a single-core runtime system, any critical regions and side effects can be fully

reasoned about. Since only one process runs at any given moment, code running

between descheduling points essentially becomes a mutual exclusion. Multi-core
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runtime systems cannot follow the same reasoning, since it has much less control

whether a given process is currently running on another processor core not. Crit-

ical regions in the runtime system must most likely enforce some sort of mutual

exclusion.

10.2 Choice of Mutual Exclusion Locks

What kind of locks a multi-core runtime system uses to enforce mutual exclusion is

also important. Different locks and their variations, such as OS mutexes, spinlocks,

read-write locks, and so forth have a different impact on performance in different

situations. For instance, given a lock is held for are short-term held, then spinlocks

are preferred. For locks with high contention, meaning multiple actors are trying

to acquire the lock simultaneously, some type of non-linear back off procedure is

needed. Either way, choosing what kind of lock is suitable for a given situation

requires knowledge of different locks and the situation itself.

10.3 Non-Blocking vs Mutual Exclusion Design

Sometimes, it is desirable to design a non-blocking design rather than mutual ex-

clusion design. A non-blocking design is usually much more demanding to develop

than a mutual exclusion design, as it is harder to prove the design is correct. Non-

blocking design is often preferable over mutual exclusion, as it both scales better

with a number of processor cores and has a better throughput, but does have a

higher latency per operation wise compared to mutual exclusion.

10.4 Pinning Kernel-Threads to Processor Cores

Multi-core runtime systems must resort to some sort of schedulers, each running

on a kernel-thread. A factor to consider is whether to set thread affinity for each

kernel-thread, i.e. pinning each kernel-thread to a different processor core. The idea

is to avoid the operating system from migrating kernel-threads between processor

cores, which causes discrepancies in the runtime system. The counter argument is
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the operating system can help with load balancing kernel-threads, when for instance

a scheduler with a high work load runs on a less used processor core.



Chapter 11

Shortcomings and

Limitations

Much of the shortcomings and limitations present in ProXC has been improved

upon in ProXC++, which includes enforcing correct usage and the portability issues

with the user-thread implementation. However, some issues are present in the

current state of ProXC++.

11.1 Enforcing Correct Usage

ProXC++ goes to great lengths to enforce correct usage by using much of the se-

mantic facilities present in the C++ programming language. However, all problems

existing in C++ programs, such as null pointer dereferencing and memory leaks,

are possible in ProXC++ programs.

It is impossible to create a system which always generates and enforces correct

program behaviour, and somewhere does the line have to be drawn. For instance,

channels in ProXC++ are one-to-one, and if multiple processes where to operate

on the same channel end simultaneously, the result would be undefined behaviour.

Channel ends have therefore been made non-copyable to enforce the channel end

only having a single owner and user. It is however very easy to bypass this by

sending a reference of the channel end when spawning a new process, making
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multiple users still possible. Having shared memory between processes is also

entirely possible, but is highly discouraged.

ProXC++ is all about providing a safe framework for creating concurrent sys-

tems. Creating a complete safe framework is impossible, as the foundation of C++ is

inherently unsafe. Therefore, ProXC++ only enforces correct usage to some degree,

and let the rest be up to the programmer.

11.2 Inefficient Load Balancing

ProXC++ uses work stealing for load balancing work between schedulers. A sched-

uler continues to run work as long as it has ready work. However, when a scheduler

runs out of work and becomes idle, it tries to steal ready work from other sched-

ulers. How these idle schedulers decide when to steal, how much ready work to

steal, and so forth is not optimal nor efficient.

Currently, when a scheduler becomes idle it tries to steal once from a random

scheduler. If the steal is successful it resumes the stolen work. However, if the steal

fails the scheduler sleeps for 1 millisecond and tries again when it wakes up. There

is no coordination between the schedulers, as a scheduler with lots of ready work

has no way to indicate to other schedulers to steal from it.

This sort of brute-force approach to find ready work is of course not desirable,

as a concurrent program with few parallel tasks will generate lots of unnecessary

wake-ups of from idle scheduler trying to find work. This periodical wake-up can

also cause unnecessary migration of tasks between schedulers when few sequential

dependent tasks are running, which was highlighted in the concurrent Mandelbrot

test in Subsection 8.2.2.

The unnecessary migration of tasks and wasteful wake-ups becomes negligible

after an amount of parallel semi-independent tasks is surpassed in the program.

11.3 Wasteful use of Resources

The ProXC++ runtime system has to manage a great lot of resources, including

user-thread management and inter-process communication. Much of the resources
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used with user-thread management are one-time use, meaning nothing is reused

of stack or control data structures related to the user-threads. This one-time use

creates lots of unnecessary allocations of dynamic memory which could have been

reused for later use.

A smarter runtime system could detect these one-time use resources and reuse

the resource rather than deallocating them. This, of course, requires a much more

complex resource management by the runtime system, and could potentially intro-

duce a greater overhead.

11.4 Determinism and Real-Time Characteristics

An important selling point of CSP is the ability to reason how deterministic a CSP

model is, usually via refining the model against a specification model. The very

same attribute, determinism, is also important in real-time systems. A real-time

system is where the time it takes to complete an operation is just as important

as the result of the operation, and can have direct consequences of the system

functionality.

The question is whether ProXC++ qualifies to be used for any real-time require-

ments. The abstractions provided by ProXC++ are very much deterministic, except

for alting. Alting uses a pseudo-random distribution to choose an alternative when

multiple alternatives are ready. The reasoning behind using a pseudo-random dis-

tribution is it favours fairness over determinism.

Another factor of determinism in ProXC++, which is unrelated to CSP, is dy-

namic multithreading. As the runtime schedulers rely on work stealing for dis-

tributing parallel work, the deterministic characteristic of the runtime system is

affected. An idle scheduler chooses its victim by random, which consequently

makes a process being stolen or not random. If a time critical operation relies on

certain processes to be distributed among the schedulers to meet its deadline, it is

inherently non-deterministic whether the deadline is met or not.



Chapter 12

Future Work

There are some opportunities for future work for which ProXC++ could benefit

from. This chapter discusses the biggest potential contenders for future work,

which has been detected during the project development.

12.1 More Efficient Runtime System

The desire for an efficient runtime system is a matter of course. An optimal li-

brary would be as efficient as possible, but is rarely the case. There are however

some aspects of the current implementation of the runtime system that can be di-

rectly addressed as inefficient or sub-optimal, which could potentially increase the

performance and overall processor utilization.

First, the work stealing protocol used by the schedulers is not working properly.

Ready work is not properly being distributed if the type of work is short lived or

rarely deschedules. Schedulers are also inefficient at finding ready work if they

are idle. Currently, when a scheduler tries to steal work and fails, it sleeps for 1

millisecond and tries again. This is obviously not a good approach, as this generates

unnecessary CPU time. Therefore, the work stealing protocol between schedulers

has potential for improvement.

Regarding the stealing part, a potential improvement is to steal half the avail-

able work rather than one, which is what Go does. Given a runtime system with N
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schedulers, a scheduler with X work can effectively distribute the total work on all

schedulers with a minimum number of N − 1 steals. Compared to only stealing one

work at a time, a minimal amount of X (N − 1)/N steals must occur to effectively

distribute the total work. If X is large, it is obvious to see the first approach is

desirable.

Secondly, allocation of processes and process stacks could be improved. Cur-

rently, nothing is reused when destroying a process after returning. Stack alloca-

tions could be pooled, which is supported by the Boost.Context library.

Lastly, the alt-to-alt synchronization between an alting channel send and alting

channel receive is horribly inefficient. This has mostly to do with a poor design

of two alting processes selecting each other, where an alting channel end has to

inefficiently spin with the channel lock acquired.

12.2 C Wrapper API

ProXC++ is, first of all, a C++ library. It would however be interesting and poten-

tially useful be able to use ProXC++ for C code as well, which would require to

create a C wrapper API for ProXC++.

Now, why would it be desirable to use ProXC++ in C code when ProXC is readily

available for creating CSP programs in C? The main arguments are ProXC++ is

portable and has multi-core support, both of which would be much more challenging

to implement in ProXC.

The biggest hurdle of creating a C wrapper API would be translating C++

semantics to C. ProXC++ uses a lot of of templates and move semantics to enforce

both type safety, generalized processes, and unique ownership of channel ends.

Such semantics have no intuitive translation, and a more restrictive and generalized

wrapper API has to probably be created to fully work in C.

12.3 Improving on the Library Feature Set

The feature set provided by ProXC++ is a good foundation for creating any type of

concurrent program with CSP abstractions. However, some library features could
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potentially be a good extension to the current feature set.

Extended channel input or output [54], also called extended rendezvous, is

about extending the synchronization in a channel send and receive operation. An

extended rendezvous allows the sender or receiver to perform additional operations

after the channel transmission has occurred, but before both channel ends resumes

execution. One could see this as an “invisible” middle-man process performing

some operation without breaking the existing synchronization.

Class defined processes, same as in C++CSP2 [7], could be an useful addition.

Defining a process from a class point of view rather than a function allows for

a more rigid definition of processes. A well-defined constructor, destructor and

execution body can be specified, as well a more intuitive syntax can be used, i.e.

calling a class constructor rather than a process constructor or a function allocator.

Asynchronous I/O operations are not supported with ProXC++. Any call to a

blocking system call effectively blocks the entire kernel-thread, halting any progress

of processes residing on the same kernel-thread. Go has support for asynchronous

I/O operations, letting a scheduler with its processes continue on another kernel-

thread while the blocking process halts the current kernel-thread. Asynchronous

I/O could be used to implement support for networking and other blocking oper-

ations, but would require extensive development of the current implementation.
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Conclusion

Concurrent programming has long existed before multi-core architectures entered

the mainstream market. With the ever increasing use of multi-core architectures,

the demand for software which are scalable and fully utilize said processors are

becoming more evident, and concurrent programming is the tool to realize such

software.

For many programmers, it is hard to write correct concurrent systems with

concurrent programming, and especially fail to utilize the available multiple pro-

cessor cores. Communicating Sequential Processes (CSP) is a formal language for

describing concurrent systems, which provides a safer yet expressive abstraction

level by limiting all communication between processes to message-passing. CSP

also allows to reason about the correctness of the concurrent system, whether cer-

tain specifications are met, etc. CSP-influenced concurrency has long been proven

to serve as a powerful abstraction for creating concurrent systems.

This thesis argues that by combining the parallel nature of CSP with a dynamic

multithreaded runtime system, correct and expressive high-performance concurrent

programs can be created, which are able to fully utilize and scale with the increase

of required parallelism in multi-core architectures.

The work presented in this thesis is the development of a design and implemen-

tation of ProXC++: a CSP-inspired concurrency library for C++. ProXC++ uses

dynamic multithreading to effectively utilize all available logical cores on multi-core
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architectures. The dynamic multithreading is implemented by having a number of

runtime schedulers, equal to the available logical processor cores, each running

on its own kernel-thread. The runtime schedulers employs work stealing for load

balancing work dynamically.

ProXC++ and other CSP-influenced concurrency libraries with dynamic multi-

threading were benchmarked. The results from the benchmarks showed ProXC++

to be quite performant compared to the well-established programming language

Go. However, some results highlighted underlying issues with the runtime system,

especially how the current work stealing scheme for the runtime schedulers were

flawed in certain situations.

The work done on ProXC++ should prove useful for designing and implementing

runtime systems for dynamic multithreaded CSP-based concurrency frameworks.

Especially, the design and implementation of the runtime scheduler could in it-

self be useful for other dynamic multithreaded concurrency frameworks, and not

necessarily only for CSP-based concurrency frameworks.

A set of potential candidates for future work was identified and outlined for

ProXC++. Improving the runtime scheduler and the work stealing efficiency is

probably the most sought after improvement, which would only increase the multi-

core performance of the library. Another sought out feature is asynchronous IO

operations, which would open up implementing support for networking.

In conclusion, CSP has been proven to provide powerful abstractions for which

can be exploited by multi-core processors. There is no denying dynamic mul-

tithreaded frameworks are the future of high-performance systems on multi-core

architectures, and ProXC++ is one more example showing the potentiality CSP has

on such systems.

13.1 Availability

ProXC++ is available online, open-source and free as in speech, on GitHub [50].

Any contributions to the library are welcomed. Any inquiries regarding this thesis

or the library can contact the author via mail, edvard.pettersen@gmail.com, or

through the project page on GitHub.

mailto:edvard.pettersen@gmail.com
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Appendix A

Acronyms

API Application Programming Interface
CSP Communicating Sequential Processes
FIFO First In, First Out
ILP Instruction-Level Parallelism
MPMC Multiple-Producer-Multiple-Consumer
MPSC Multiple-Producer-Single-Consumer
OS Operating System
SPMC Single-Producer-Multiple-Consumer
SPSC Single-Producer-Single-Consumer
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Listing of Benchmark Code

Extended Commstime: ProXC++

1 #include <algorithm >

2 #include <chrono >

3 #include <iostream >

4 #include <proxc.hpp >

5

6 using namespace proxc;

7 using ItemT = std:: size_t;

8 using ChanT = Chan < ItemT >;

9

10 constexpr std:: size_t REPEAT = 100;

11 constexpr std:: size_t RUNS = 50;

12

13 void chainer( ChanT::Rx in , ChanT::Tx out ) {

14 for ( auto i : in ) {

15 out << i + 1;

16 }

17 }

18

19 void prefix( ChanT::Rx in, ChanT ::Tx out ) {

20 out << std:: size_t{ 0 };

21 for ( auto i : in ) {

22 out << i;
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23 }

24 }

25

26 void delta( ChanT::Rx in, ChanT ::Tx out , ChanT::Tx out_consume ) {

27 for ( auto i : in ) {

28 if ( out_consume << i ) {

29 out << i;

30 } else {

31 break;

32 }

33 }

34 }

35

36 void consumer( ChanT ::Rx in ) {

37 for ( std:: size_t i = 0; i < REPEAT; ++i ) {

38 in();

39 }

40 }

41

42 void commstime( std:: size_t chain ) {

43 std:: size_t sum = 0;

44 for ( std:: size_t run = 0; run < RUNS; ++run ) {

45 ChanT pre2del_ch , consume_ch;

46 ChanVec < ItemT > chain_chs{ chain + 1 };

47 std::vector < Process > chains;

48 chains.reserve( chain );

49 for ( std:: size_t i = 0; i < chain; ++i ) {

50 chains.emplace_back( chainer ,

51 chain_chs[i+1]. move_rx (),

52 chain_chs[i]. move_tx () );

53 }

54 auto start = std:: chrono :: system_clock ::now();

55 parallel(

56 proc( prefix , chain_chs [0]. move_rx (), pre2del_ch.move_tx←↩

() ),

57 proc( delta , pre2del_ch.move_rx (), chain_chs[chain].←↩

move_tx (), consume_ch.move_tx () ),

58 proc( consumer , consume_ch.move_rx () ),

59 proc_for( chains.begin(), chains.end() )

60 );
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61 auto end = std:: chrono :: system_clock ::now();

62 std:: chrono ::duration < std::size_t , std::nano > diff = end -←↩

start;

63 sum += diff.count();

64 }

65 std::cout << chain << "," << sum / RUNS << std::endl;

66 }

67

68 int main() {

69 for ( std:: size_t chain = 1; chain < 50; chain += 1 ) {

70 commstime( chain );

71 }

72 for ( std:: size_t chain = 50; chain < 500; chain += 5 ) {

73 commstime( chain );

74 }

75 for ( std:: size_t chain = 500; chain <= 1000; chain += 10 ) {

76 commstime( chain );

77 }

78 return 0;

79 }

Extended Commstime: Go

1 package main

2 import (

3 "fmt"

4 "time"

5 "sync"

6 )

7 const (

8 REPEAT = 100

9 RUNS = 50

10 )

11 func chainer(wg *sync.WaitGroup , in <-chan uint , out chan <- uint) {

12 for item := range in {

13 out <- item

14 }

15 close(out)
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16 wg.Done()

17 }

18

19 func prefix(wg *sync.WaitGroup , in <-chan uint , out chan <- uint) {

20 out <- 0

21 for item := range in {

22 out <- item + 1

23 }

24 close(out)

25 wg.Done()

26 }

27

28 func delta(wg *sync.WaitGroup , in <-chan uint , out , out_consume chan←↩

<- uint , ex chan bool) {

29 running := true

30 for running {

31 item := <-in

32 select {

33 case out_consume <- item:

34 out <- item

35 case <-ex:

36 close(out)

37 running = false

38 }

39 }

40 wg.Done()

41 }

42

43 func consumer(wg *sync.WaitGroup , in_consume <-chan uint , ex chan ←↩

bool) {

44 for i := 0; i < REPEAT; i++ {

45 <-in_consume

46 }

47 close(ex)

48 wg.Done()

49 }

50

51 func commstime(chain int) {

52 sum := int64 (0)

53 for run := 0; run < RUNS; run++ {
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54 var wg sync.WaitGroup

55 wg.Add(3 + chain)

56 del2pre_ch := make(chan uint)

57 consume_ch := make(chan uint)

58 chain_chs := make ([] chan uint , chain + 1)

59 for i := range chain_chs {

60 chain_chs[i] = make(chan uint)

61 }

62 ex_ch := make(chan bool)

63 start := time.Now()

64 go prefix (&wg, chain_chs [0], del2pre_ch)

65 go delta(&wg, del2pre_ch , chain_chs[chain], consume_ch ,←↩

ex_ch)

66 go consumer (&wg , consume_ch , ex_ch)

67 for i := 0; i < chain; i++ {

68 go chainer (&wg , chain_chs[i + 1], chain_chs[i])

69 }

70 wg.Wait()

71 sum += time.Since(start).Nanoseconds ()

72 }

73 fmt.Println(chain , ",", sum/RUNS)

74 }

75

76 func main() {

77 for chain := 1; chain < 50; chain += 1 {

78 commstime(chain)

79 }

80 for chain := 50; chain < 500; chain += 5 {

81 commstime(chain)

82 }

83 for chain := 500; chain <= 1000; chain += 10 {

84 commstime(chain)

85 }

86 }

Extended Commstime: C++CSP

1 #include <chrono >
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2 #include <functional >

3 #include <iostream >

4 #include <sstream >

5 #include <vector >

6 #include "csp.h"

7

8 using namespace csp;

9 using Chan = one2one_chan < std:: size_t >;

10 using Tx = chan_out < std:: size_t >;

11 using Rx = chan_in < std:: size_t >;

12

13 void chainer( Rx in, Tx out ) {

14 for ( ;; ) {

15 out( in() );

16 }

17 }

18

19 void prefix( Rx in , Tx out ) {

20 out( 0 );

21 for ( ;; ) {

22 out( 1 + in() );

23 }

24 }

25

26 void delta( Rx in , Tx out , Tx out_consume ) {

27 for ( ;; ) {

28 std:: size_t item = in();

29 out( item );

30 out_consume( item );

31 }

32 }

33

34 int main( int argc , char *argv[] ) {

35 if ( argc != 2 ) { return 1; }

36 std:: size_t chain;

37 std:: stringstream{ argv [1] } >> chain;

38 Chan consume_ch , pre2del_ch;

39 std::vector < Chan > chain_chs( chain + 1 );

40 std::vector < std::function < void() > > in_chain;

41 in_chain.reserve( chain );
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42 for ( std:: size_t i = 0; i < chain; ++i ) {

43 in_chain.push_back( make_proc( chainer ,

44 chain_chs[i+1], chain_chs[i] ) );

45 }

46 auto start = std:: chrono :: system_clock ::now();

47 par{

48 par{ in_chain },

49 make_proc( prefix , chain_chs [0], pre2del_ch ),

50 make_proc( delta , pre2del_ch , chain_chs[chain], ←↩

consume_ch ),

51 make_proc ([&]( Rx in_consume ){

52 constexpr std:: size_t repeat = 100;

53 for ( std:: size_t i = 0; i < repeat; ++i ) {

54 in_consume ();

55 }

56 auto end = std:: chrono :: system_clock ::now();

57 std:: chrono ::duration < std::size_t , std::nano > diff = ←↩

end - start;

58 std::cout << chain << "," << diff.count() << std::endl;

59 std::exit (0);

60 }, consume_ch)

61 }();

62 return 0;

63 }

Hard Coded Mandelbrot: ProXC++

1 #include <algorithm >

2 #include <array >

3 #include <chrono >

4 #include <iostream >

5 #include <vector >

6 #include <proxc.hpp >

7

8 using namespace proxc;

9

10 constexpr std:: size_t NUM_WORKERS = 8;

11 constexpr std:: size_t ROUNDS = 100;
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12 constexpr std:: size_t MAX_ITER = 255;

13 /* x in [ -2.1; 1.0] */

14 /* y in [ -1.3; 1.3] */

15 constexpr double XMIN = -2.1;

16 constexpr double XMAX = 1.0;

17 constexpr double YMIN = -1.3;

18 constexpr double YMAX = 1.3;

19

20 struct MandelbrotData {

21 std:: size_t line;

22 std::vector < double > values;

23 MandelbrotData () = default;

24 // make non -copyable

25 MandelbrotData( MandelbrotData const & ) = delete;

26 MandelbrotData & operator = ( MandelbrotData const & ) = delete;

27 // make moveable

28 MandelbrotData( MandelbrotData && ) = default;

29 MandelbrotData & operator = ( MandelbrotData && ) = default;

30 };

31

32 using LineChan = Chan < std:: size_t >;

33 using DataChan = Chan < MandelbrotData >;

34

35 inline bool point_predicate( const double x, const double y ) ←↩

noexcept {

36 return ( x * x + y * y ) < 4.;

37 }

38

39 void mandelbrot( const std:: size_t dim , LineChan ::Rx line_rx , ←↩

DataChan ::Tx data_tx ) {

40 const double integral_x = (XMAX - XMIN) / static_cast < double >(←↩

dim );

41 const double integral_y = (YMAX - YMIN) / static_cast < double >(←↩

dim );

42 for ( auto line : line_rx ) {

43 MandelbrotData data = { line , std::vector < double >( dim ) ←↩

};

44 double y = YMIN + line * integral_y;

45 double x = XMIN;

46 for ( std:: size_t x_coord = 0; x_coord < dim; ++ x_coord ) {
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47 double x1 = 0., y1 = 0.;

48 std:: size_t loop_count = 0;

49 while ( loop_count < MAX_ITER && point_predicate( x1 , y1←↩

) ) {

50 ++ loop_count;

51 double x1_new = x1 * x1 - y1 * y1 + x;

52 y1 = 2 * x1 * y1 + y;

53 x1 = x1_new;

54 }

55 double value = static_cast < double >( loop_count ) / ←↩

static_cast < double >( MAX_ITER );

56 data.values[ x_coord ] = value;

57 x += integral_x;

58 }

59 data_tx << std::move( data );

60 }

61 }

62

63 void producer( const std:: size_t dim , std::array < LineChan ::Tx, ←↩

NUM_WORKERS > line_txs ) {

64 for ( std:: size_t line = 0; line < dim; ++line ) {

65 Alt()

66 .send_for( line_txs.begin(), line_txs.end(), line )

67 .select ();

68 }

69 }

70

71 void consumer( const std:: size_t dim , std::array < DataChan ::Rx, ←↩

NUM_WORKERS > data_rxs ) {

72 std::vector < std::vector < double > > results( dim );

73 for ( std:: size_t i = 0; i < dim; ++i ) {

74 Alt()

75 .recv_for( data_rxs.begin(), data_rxs.end(),

76 [& results ]( MandelbrotData data ){

77 results[ data.line ] = std::move( data.values );

78 } )

79 .select ();

80 }

81 }

82
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83 void mandelbrot_program( std:: size_t dim ) {

84 std:: size_t sum = 0;

85 for ( std:: size_t round = 0; round < ROUNDS; ++ round ) {

86 ChanArr < std::size_t , NUM_WORKERS > line_chs;

87 ChanArr < MandelbrotData , NUM_WORKERS > data_chs;

88 std::vector < Process > workers;

89 workers.reserve( NUM_WORKERS );

90 for ( std:: size_t i = 0; i < NUM_WORKERS; ++i ) {

91 workers.emplace_back( mandelbrot , dim ,

92 line_chs[i]. move_rx (),

93 data_chs[i]. move_tx () );

94 }

95 auto start = std:: chrono :: system_clock ::now();

96 parallel(

97 proc_for( workers.begin (), workers.end() ),

98 proc( producer , dim , line_chs.collect_tx () ),

99 proc( consumer , dim , data_chs.collect_rx () )

100 );

101 auto stop = std:: chrono :: system_clock ::now();

102 std:: chrono ::duration < std::size_t , std::nano > diff = stop ←↩

- start;

103 sum += diff.count();

104 }

105 std::cout << dim << ", " << sum / ROUNDS << std::endl;

106 }

107

108 int main() {

109 for ( std:: size_t dim = 1; dim < 100; dim += 1 ) {

110 mandelbrot_program( dim );

111 }

112 for ( std:: size_t dim = 100; dim < 500; dim += 5 ) {

113 mandelbrot_program( dim );

114 }

115 for ( std:: size_t dim = 500; dim <= 1000; dim += 10 ) {

116 mandelbrot_program( dim );

117 }

118 return 0;

119 }
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Hard Coded Mandelbrot: Go

1 package main

2 import (

3 "fmt"

4 "sync"

5 "time"

6 )

7 const (

8 ROUNDS = 100

9 NUM_WORKERS = 8

10 MAX_ITER = 255

11 /* x in [ -2.1; 1.0] */

12 /* y in [ -1.3; 1.3] */

13 XMIN = -2.1

14 XMAX = 1.0

15 YMIN = -1.3

16 YMAX = 1.3

17 )

18 type MandelbrotData struct {

19 line uint

20 values [] float64

21 }

22 func point_predicate(x, y float64) bool {

23 return (x * x + y * y) < 4.0

24 }

25

26 func mandelbrot(wg *sync.WaitGroup , dim uint , lines_ch <-chan uint , ←↩

data_ch chan <- MandelbrotData) {

27 integral_x := (XMAX - XMIN) / float64(dim);

28 integral_y := (YMAX - YMIN) / float64(dim);

29 for line := range lines_ch {

30 data := MandelbrotData{ line , make ([] float64 , dim) }

31 y := YMIN + float64(line) * integral_y

32 x := XMIN

33 for x_coord := uint (0); x_coord < dim; x_coord ++ {

34 x1 := 0.0

35 y1 := 0.0

36 loop_count := 0
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37 for loop_count < MAX_ITER && point_predicate(x1, y1) {

38 loop_count += 1

39 x1_new := x1 * x1 - y1 * y1 + x

40 y1 = 2.0 * x1 * y1 + y

41 x1 = x1_new

42 }

43 value := float64(loop_count) / float64( MAX_ITER )

44 data.values[x_coord] = value

45 x += integral_x

46 }

47 data_ch <- data

48 }

49 wg.Done()

50 }

51

52 func producer(wg *sync.WaitGroup , dim uint , lines_ch chan <- uint) {

53 for line := uint (0); line < dim; line++ {

54 lines_ch <- line

55 }

56 close(lines_ch)

57 wg.Done()

58 }

59

60 func consumer(wg *sync.WaitGroup , dim uint , data_ch <-chan ←↩

MandelbrotData) {

61 results := make ([][] float64 , dim)

62 for i := uint (0); i< dim; i++ {

63 data := <-data_ch

64 results[data.line] = data.values

65 }

66 wg.Done()

67 }

68

69 func mandelbrot_program(dim uint) {

70 sum := int64 (0)

71 for round := 0; round < ROUNDS; round++ {

72 lines_ch := make(chan uint)

73 data_ch := make(chan MandelbrotData)

74 start := time.Now()

75 var wg sync.WaitGroup
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76 wg.Add( 2 + NUM_WORKERS )

77 go producer (&wg , dim , lines_ch)

78 go consumer (&wg , dim , data_ch)

79 for worker := 0; worker < NUM_WORKERS; worker ++ {

80 go mandelbrot (&wg, dim , lines_ch , data_ch)

81 }

82 wg.Wait()

83 elapsed := time.Since(start)

84 sum += elapsed.Nanoseconds ()

85 }

86 fmt.Println(dim , ",", sum/ROUNDS)

87 }

88

89 func main() {

90 for dim := uint (1); dim < 100; dim += 1 {

91 mandelbrot_program(dim)

92 }

93 for dim := uint (100); dim < 500; dim += 5 {

94 mandelbrot_program(dim)

95 }

96 for dim := uint (500); dim <= 1000; dim += 10 {

97 mandelbrot_program(dim)

98 }

99 }

Hard Coded Mandelbrot: C++CSP

1 #include <chrono >

2 #include <iostream >

3 #include <memory >

4 #include <string >

5 #include <vector >

6 #include "csp.h"

7

8 using namespace csp;

9

10 constexpr int NUM_WORKERS = 8;

11 constexpr std:: size_t MAX_ITERATIONS = 255;
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12 constexpr std:: size_t ROUNDS = 100;

13 /* x in [ -2.1; 1.0] */

14 /* y in [ -1.3; 1.3] */

15 constexpr double xmin = -2.1;

16 constexpr double xmax = 1.0;

17 constexpr double ymin = -1.3;

18 constexpr double ymax = 1.3;

19

20 template <typename T>

21 using mobile = std::unique_ptr <T>;

22

23 struct mandelbrot_packet {

24 int line = 0;

25 std::vector < double > data;

26 };

27

28 inline bool point_predicate( const double x, const double y ) ←↩

noexcept {

29 return ( x * x + y * y ) < 2.0;

30 }

31

32 void mandelbrot( std:: size_t dim , chan_in <int > in, chan_out < mobile <←↩

mandelbrot_packet > > out ) noexcept {

33 const double integral_x = (xmax - xmin) / static_cast < double >(←↩

dim);

34 const double integral_y = (ymax - ymin) / static_cast < double >(←↩

dim);

35 int line = in();

36 while (line != -1) {

37 double x, y, x1, y1, xx = 0.0;

38 std:: size_t loop_count = 0;

39 mobile <mandelbrot_packet > packet = mobile <mandelbrot_packet←↩

>(new mandelbrot_packet ());

40 packet ->line = line;

41 packet ->data = std::vector < double >( dim );

42 y = ymin + (line * integral_y);

43 x = xmin;

44 for ( std:: size_t x_coord = 0; x_coord < dim; ++ x_coord ) {

45 x1 = 0.0;

46 y1 = 0.0;
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47 loop_count = 0;

48 while ( loop_count < MAX_ITERATIONS && point_predicate( ←↩

x1, y1 ) ) {

49 ++ loop_count;

50 xx = x1 * x1 - y1 * y1 + x;

51 y1 = 2 * x1 * y1 + y;

52 x1 = xx;

53 }

54 auto val = static_cast < double >( loop_count ) / ←↩

static_cast < double >( MAX_ITERATIONS );

55 packet ->data[ x_coord ] = val;

56 x += integral_x;

57 }

58 out( move( packet ) );

59 line = in();

60 }

61 }

62

63 void producer(chan_out <int > out , int lines , int num_workers) ←↩

noexcept {

64 for ( int i = 0; i < lines; ++i ) {

65 out( i );

66 }

67 for ( int i = 0; i < num_workers; ++i ) {

68 out( -1 );

69 }

70 }

71

72 void consumer(chan_in <mobile <mandelbrot_packet >> in , int lines) ←↩

noexcept {

73 std::vector < std::vector < double > > results( lines );

74 for ( int i = 0; i < lines; ++i ) {

75 auto packet = in();

76 results[ packet ->line ] = std::move( packet ->data );

77 }

78 }

79

80 void mandelbrot_program( std:: size_t dim ) {

81 one2any_chan < int > lines;

82 any2one_chan < mobile < mandelbrot_packet > > data;
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83 std::vector < std::function < void() > > workers;

84 for (int i = 0; i < NUM_WORKERS; ++i) {

85 workers.push_back( make_proc( mandelbrot ,

86 dim , lines , data ) );

87 }

88 std:: size_t sum = 0;

89 for ( std:: size_t i = 0; i < ROUNDS; ++i) {

90 auto start = std:: chrono :: system_clock ::now();

91 par {

92 make_proc( producer , lines , dim , NUM_WORKERS ),

93 par( workers ),

94 make_proc( consumer , data , dim )

95 }();

96 auto stop = std:: chrono :: system_clock ::now();

97 std:: chrono ::duration < std::size_t , std::nano > diff = stop ←↩

- start;

98 sum += diff.count();

99 }

100 std::cout << dim << ", " << sum / ROUNDS << std::endl;

101 }

102

103 int main() {

104 for ( std:: size_t dim = 1; dim < 100; dim += 1 ) {

105 mandelbrot_program( dim );

106 }

107 for ( std:: size_t dim = 100; dim < 500; dim += 5 ) {

108 mandelbrot_program( dim );

109 }

110 for ( std:: size_t dim = 500; dim <= 1000; dim += 10 ) {

111 mandelbrot_program( dim );

112 }

113 return 0;

114 }

Dynamic Mandelbrot: ProXC++

1 #include <algorithm >

2 #include <array >
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3 #include <chrono >

4 #include <iostream >

5 #include <vector >

6 #include <proxc.hpp >

7

8 using namespace proxc;

9

10 constexpr std:: size_t ROUNDS = 100;

11 constexpr std:: size_t MAX_ITER = 255;

12 /* x in [ -2.1; 1.0] */

13 /* y in [ -1.3; 1.3] */

14 constexpr double XMIN = -2.1;

15 constexpr double XMAX = 1.0;

16 constexpr double YMIN = -1.3;

17 constexpr double YMAX = 1.3;

18

19 struct MandelbrotData {

20 std:: size_t line;

21 std::vector < double > values;

22 MandelbrotData () = default;

23 // make non -copyable

24 MandelbrotData( MandelbrotData const & ) = delete;

25 MandelbrotData & operator = ( MandelbrotData const & ) = delete;

26 // make moveable

27 MandelbrotData( MandelbrotData && ) = default;

28 MandelbrotData & operator = ( MandelbrotData && ) = default;

29 };

30

31 using DataChan = Chan < MandelbrotData >;

32

33 inline bool point_predicate( const double x, const double y ) ←↩

noexcept {

34 return ( x * x + y * y ) < 4.;

35 }

36

37 void mandelbrot( const std:: size_t line , const std:: size_t dim , ←↩

DataChan ::Tx out ) {

38 const double integral_x = (XMAX - XMIN) / static_cast < double >(←↩

dim );
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39 const double integral_y = (YMAX - YMIN) / static_cast < double >(←↩

dim );

40 MandelbrotData data = { line , std::vector < double >( dim ) };

41 double y = YMIN + line * integral_y;

42 double x = XMIN;

43 for ( std:: size_t x_coord = 0; x_coord < dim; ++ x_coord ) {

44 double x1 = 0., y1 = 0.;

45 std:: size_t loop_count = 0;

46 while ( loop_count < MAX_ITER && point_predicate( x1, y1 ) )←↩

{

47 ++ loop_count;

48 double x1_new = x1 * x1 - y1 * y1 + x;

49 y1 = 2 * x1 * y1 + y;

50 x1 = x1_new;

51 }

52 double value = static_cast < double >( loop_count ) / ←↩

static_cast < double >( MAX_ITER );

53 data.values[ x_coord ] = value;

54 x += integral_x;

55 }

56 out << std::move( data );

57 }

58

59 void consumer( const std:: size_t dim , std::vector < DataChan ::Rx > ←↩

ins ) {

60 std::vector < std::vector < double > > results( dim );

61 for ( auto& in : ins ) {

62 auto data = in();

63 results[ data.line ] = std::move( data.values );

64 }

65 }

66

67 void mandelbrot_program( std:: size_t dim ) {

68 std:: size_t sum = 0;

69 for ( std:: size_t round = 0; round < ROUNDS; ++ round ) {

70 ChanVec < MandelbrotData > data_chs{ dim };

71 std::vector < Process > workers;

72 workers.reserve( dim );

73 for ( std:: size_t i = 0; i < dim; ++i ) {
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74 workers.emplace_back( mandelbrot , i, dim , data_chs[i].←↩

move_tx () );

75 }

76 auto start = std:: chrono :: system_clock ::now();

77 parallel(

78 proc_for( workers.begin (), workers.end() ),

79 proc( consumer , dim , data_chs.collect_rx () )

80 );

81 auto stop = std:: chrono :: system_clock ::now();

82 std:: chrono ::duration < std::size_t , std::nano > diff = stop ←↩

- start;

83 sum += diff.count();

84 }

85 std::cout << dim << ", " << sum / ROUNDS << std::endl;

86 }

87

88 int main() {

89 for ( std:: size_t dim = 1; dim < 100; dim += 1 ) {

90 mandelbrot_program( dim );

91 }

92 for ( std:: size_t dim = 100; dim < 500; dim += 5 ) {

93 mandelbrot_program( dim );

94 }

95 for ( std:: size_t dim = 500; dim <= 1000; dim += 10 ) {

96 mandelbrot_program( dim );

97 }

98 return 0;

99 }

Dynamic Mandelbrot: Go

1 package main

2 import (

3 "fmt"

4 "sync"

5 "time"

6 )

7 const (
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8 ROUNDS = 100

9 MAX_ITER = 255

10 /* x in [ -2.1; 1.0] */

11 /* y in [ -1.3; 1.3] */

12 XMIN = -2.1

13 XMAX = 1.0

14 YMIN = -1.3

15 YMAX = 1.3

16 )

17

18 type MandelbrotData struct {

19 line uint

20 values [] float64

21 }

22

23 func point_predicate(x, y float64) bool {

24 return (x * x + y * y) < 4.0

25 }

26

27 func mandelbrot(wg *sync.WaitGroup , line , dim uint , data_ch chan <- ←↩

MandelbrotData) {

28 integral_x := (XMAX - XMIN) / float64(dim);

29 integral_y := (YMAX - YMIN) / float64(dim);

30 data := MandelbrotData{ line , make ([] float64 , dim) }

31 y := YMIN + float64(line) * integral_y

32 x := XMIN

33 for x_coord := uint (0); x_coord < dim; x_coord ++ {

34 x1 := 0.0

35 y1 := 0.0

36 loop_count := 0

37 for loop_count < MAX_ITER && point_predicate(x1, y1) {

38 loop_count += 1

39 x1_new := x1 * x1 - y1 * y1 + x

40 y1 = 2.0 * x1 * y1 + y

41 x1 = x1_new

42 }

43 value := float64(loop_count) / float64( MAX_ITER )

44 data.values[x_coord] = value

45 x += integral_x

46 }
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47 data_ch <- data

48 wg.Done()

49 }

50

51 func consumer(wg *sync.WaitGroup , dim uint , data_ch <-chan ←↩

MandelbrotData) {

52 results := make ([][] float64 , dim)

53 for i := uint (0); i < dim; i++ {

54 data := <-data_ch

55 results[data.line] = data.values

56 }

57 wg.Done()

58 }

59

60 func mandelbrot_program(dim uint) {

61 sum := int64 (0)

62 for round := 0; round < ROUNDS; round++ {

63 data_ch := make(chan MandelbrotData)

64 start := time.Now()

65 var wg sync.WaitGroup

66 wg.Add( 1 + int(dim) )

67 go consumer (&wg , dim , data_ch)

68 for line := uint (0); line < dim; line++ {

69 go mandelbrot (&wg, line , dim , data_ch)

70 }

71 wg.Wait()

72 elapsed := time.Since(start)

73 sum += elapsed.Nanoseconds ()

74 }

75 fmt.Println(dim , ",", sum/ROUNDS)

76 }

77

78 func main() {

79 for dim := uint (1); dim < 100; dim += 1 {

80 mandelbrot_program(dim)

81 }

82 for dim := uint (100); dim < 500; dim += 5 {

83 mandelbrot_program(dim)

84 }

85 for dim := uint (500); dim <= 1000; dim += 10 {
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86 mandelbrot_program(dim)

87 }

88 }

Dynamic Mandelbrot: C++CSP

1 #include <chrono >

2 #include <iostream >

3 #include <memory >

4 #include <string >

5 #include <vector >

6 #include "csp.h"

7

8 using namespace csp;

9

10 constexpr int NUM_WORKERS = 8;

11 constexpr std:: size_t MAX_ITERATIONS = 255;

12 constexpr std:: size_t ROUNDS = 100;

13 /* x in [ -2.1; 1.0] */

14 /* y in [ -1.3; 1.3] */

15 constexpr double xmin = -2.1;

16 constexpr double xmax = 1.0;

17 constexpr double ymin = -1.3;

18 constexpr double ymax = 1.3;

19

20 template <typename T>

21 using mobile = std::unique_ptr < T >;

22

23 struct mandelbrot_packet {

24 int line = 0;

25 std::vector < double > data;

26 };

27

28 inline bool point_predicate( const double x, const double y ) ←↩

noexcept {

29 return ( x * x + y * y ) < 2.0;

30 }

31
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32 void mandelbrot(int line , int dim , chan_out < mobile < ←↩

mandelbrot_packet > > out) noexcept {

33 double integral_x = (xmax - xmin) / static_cast <double >(dim);

34 double integral_y = (ymax - ymin) / static_cast <double >(dim);

35 double x, y, x1, y1, xx = 0.0;

36 std:: size_t loop_count = 0;

37 mobile < mandelbrot_packet > packet{ new mandelbrot_packet () };

38 packet ->line = line;

39 packet ->data = std::vector < double >( dim );

40 y = ymin + line * integral_y;

41 x = xmin;

42 for ( std:: size_t x_coord = 0; x_coord < dim; ++ x_coord ) {

43 x1 = 0.0;

44 y1 = 0.0;

45 loop_count = 0;

46 while ( loop_count < MAX_ITERATIONS && point_predicate( x1, ←↩

y1 ) ) {

47 ++ loop_count;

48 xx = x1 * x1 - y1 * y1 + x;

49 y1 = 2 * x1 * y1 + y;

50 x1 = xx;

51 }

52 auto val = static_cast < double >( loop_count ) / static_cast←↩

< double >( MAX_ITERATIONS );

53 packet ->data[ x_coord ] = val;

54 x += integral_x;

55 }

56 out( std::move( packet ) );

57 }

58

59 void consumer( chan_in < mobile < mandelbrot_packet > > in, int lines ←↩

) noexcept {

60 std::vector < std::vector < double > > results(lines);

61 for ( int i = 0; i < lines; ++i ) {

62 auto packet = in();

63 results[ packet ->line ] = std::move( packet ->data );

64 }

65 }

66

67 void mandelbrot_program( std:: size_t dim ) {
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68 any2one_chan < mobile < mandelbrot_packet > > data;

69 std::vector < std::function < void() > > workers;

70 for ( int i = 0; i < dim; ++i ) {

71 workers.push_back(make_proc(mandelbrot , i, dim , data));

72 }

73 std:: size_t sum = 0;

74 for ( std:: size_t i = 0; i < ROUNDS; ++i ) {

75 auto start = system_clock ::now();

76 par {

77 par(workers),

78 make_proc(consumer , data , dim)

79 }();

80 auto stop = system_clock ::now();

81 std:: chrono ::duration < std::size_t , std::nano > diff = stop ←↩

- start;

82 sum += diff.count();

83 }

84 std::cout << dim << ", " << sum / ROUNDS << std::endl;

85 }

86

87 int main() {

88 for ( std:: size_t dim = 1; dim < 100; dim += 1 ) {

89 mandelbrot_program( dim );

90 }

91 for ( std:: size_t dim = 100; dim < 500; dim += 5 ) {

92 mandelbrot_program( dim );

93 }

94 for ( std:: size_t dim = 500; dim <= 1000; dim += 10 ) {

95 mandelbrot_program( dim );

96 }

97 return 0;

98 }

Prime Sieve: ProXC++

1 #include <sstream >

2 #include <iostream >

3 #include <proxc.hpp >
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4

5 using namespace proxc;

6 using ItemT = std:: size_t;

7

8 void generate( Chan < ItemT >::Tx out , Chan < ItemT >::Rx ex ) {

9 ItemT i{ 2 };

10 while ( ex ) {

11 out << i++;

12 }

13 }

14

15 void filter( Chan < ItemT >::Rx in , Chan < ItemT >::Tx out ) {

16 ItemT prime = in();

17 for ( auto i : in ) {

18 if ( i % prime != 0 ) {

19 out << i;

20 }

21 }

22 }

23

24 int main( int argc , char *argv[] ) {

25 if ( argc != 2 ) { return -1; }

26 std:: size_t n;

27 std:: stringstream{ argv [1] } >> n;

28 Chan < ItemT > ex_ch;

29 ChanVec < ItemT > chs{ n };

30 std::vector < Process > filters;

31 filters.reserve( n - 1 );

32 for ( std:: size_t i = 0; i < n - 1; ++i ) {

33 filters.emplace_back( filter , chs[i]. move_rx (), chs[i+1].←↩

move_tx () );

34 }

35 this_proc ::yield ();

36 auto start = std:: chrono :: steady_clock ::now();

37 parallel(

38 proc( generate , chs [0]. move_tx (), ex_ch.move_rx () ),

39 proc_for( filters.begin (), filters.end() ),

40 proc( [start ,n]( Chan < ItemT >::Rx in , Chan < ItemT >::Tx ){

41 in();

42 auto end = std:: chrono :: steady_clock ::now();
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43 std:: chrono ::duration < std::size_t , std::nano > diff←↩

= end - start;

44 std::cout << n << "," << diff.count() / n << std::←↩

endl;

45 },

46 chs[n-1]. move_rx (), ex_ch.move_tx () )

47 );

48 return 0;

49 }

Prime Sieve: Go

1 package main

2 import (

3 "fmt"

4 "time"

5 "os"

6 "strconv"

7 )

8 func generate(ch chan <- int) {

9 for i := 2; ; i++ {

10 ch <- i

11 }

12 }

13

14 func filter(in <-chan int , out chan <- int , prime int) {

15 for i := range in {

16 if i % prime != 0 {

17 out <- i

18 }

19 }

20 }

21

22 func main() {

23 n := func() int64 {

24 tmp , _ := strconv.Atoi(os.Args [1])

25 return int64(tmp)

26 }()
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27 ch := make(chan int)

28 var prime int

29 start := time.Now()

30 go generate(ch)

31 for i := int64 (0); i < n; i++ {

32 prime = <-ch

33 ch1 := make(chan int)

34 go filter(ch, ch1 , prime)

35 ch = ch1

36 }

37 elapsed := time.Since(start).Nanoseconds ()

38 fmt.Println(n, ",", elapsed/n)

39 }

Prime Sieve: C++CSP

1 #include <chrono >

2 #include <iostream >

3 #include <functional >

4 #include <vector >

5 #include "csp.h"

6

7 using ClockT = std:: chrono :: steady_clock;

8 using TimePointT = typename ClockT :: time_point;

9 using Chan = csp:: one2one_chan < long >;

10

11 void generate( Chan out ) {

12 long i = 2;

13 for ( ;; ) {

14 out( i++ );

15 }

16 }

17

18 void filter( Chan in, Chan out ) {

19 long prime = in();

20 for ( ;; ) {

21 long i = in();

22 if ( i % prime != 0 ) {
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23 out( i );

24 }

25 }

26 }

27

28 void time_taker( std:: size_t n, TimePointT start , Chan in ) {

29 long prime = in();

30 auto end = ClockT ::now();

31 std:: chrono ::duration < std::size_t , std::nano > diff = end - ←↩

start;

32 std::cout << n << "," << diff.count () / n << std::endl;

33 std::exit (0);

34 }

35

36 int main( int argc , char *argv[] ) {

37 if ( argc != 2 ) { return 1; }

38 std:: size_t n;

39 std:: stringstream{ arg[1] } >> n;

40 std::vector < Chan > chans( n );

41 std::vector < std::function < void() > > procs;

42 procs.reserve( n - 1 );

43 for ( std:: size_t i = 0; i < n - 1; ++i ) {

44 procs.push_back( csp:: make_proc(

45 filter , chans[i], chans[i+1]

46 ) );

47 }

48 auto start = ClockT ::now();

49 csp::par{

50 make_proc( generate , chans [0] ),

51 csp::par( procs ),

52 make_proc( time_taker , n, start , chans[n-1] )

53 }();

54 }
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