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Abstract

Although usually negligible for natural materials for optical and lower frequen-
cies, spatial dispersion is a significant effect for metamaterials. In this thesis the
electromagnetics of such media are investigated using a second order in k approx-
imation for the polarisation and assuming centro-symmetric inclusions. Boundary
conditions derived by Lange and Raab to electric-octopole - magnetic quadrupole or-
der are taken a step further by also accounting for multipole surface effects. Yaghjian
and Silveirinha’s boundary conditions and Fresnel equations are taken a step fur-
ther by also accounting for dipolarisations for a medium with a non-zero electric
quadrupolarisation. Lastly, two attempts at modelling interface behaviour for a gen-
eral second order spatially dispersive medium are made. For one of the attempts,
Fresnel equations are obtained.
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1 Introduction

Electromagnetics is an important branch of physics, describing the vast number of phe-
nomena involving electromagnetic waves. In astronomy, the typical range of frequencies
practical for measurements are from around 1 kHz (generated in the interstellar medium
plasma) to gamma rays with frequencies higher than 1020Hz. There are a lot of instru-
ments and applications utilising waves within this massive spectrum, perhaps most im-
portantly in telecommunications. Together with weak nuclear force, strong nuclear force
and gravitation, the electromagnetic force is one of the four fundamental forces shap-
ing nature. In electromagnetics, one is concerned with charged particles and magnetic
moments. Charged particles at rest are usually described as an electric charge density,
whereas charged particles in motion are usually described as an electric current density.
Both of these generate electromagnetic fields, as is described by Maxwell’s equations and
are therefore called electromagnetic sources. However, they are also influenced by elec-
tromagnetic fields themselves, in a way that is described by the Lorentz force. Thus,
electromagnetic sources and their effects is a neatly coupled system compactly described
by Maxwell’s equations, which on the differential form using index notation are as follows;

∇iEi −
1

ε0
ρ = 0, (1)

εijk∇jEk + Ḃi = 0, (2)

∇iBi = 0, (3)

εijk∇jBk − µ0Ji − µ0ε0Ėi = 0. (4)

The induced electric current density Ji and the bound electric charge density ρ are given
as

Ji = Ṗi, (5)

ρ = −∇iPi, (6)

where Pi is the polarisation. Throughout this paper only dielectrics1 will be discussed, so
there are no free charge or current densities to account for. The Lorentz force is given as

F = q(E + v ×B).

1As can be understood from reading this paper, the name "dielectrics" for describing polarisable
media is a somewhat misleading name. It is due to the dipole approximation, which entails that only the
electric dipole moment is significant beyond the electric monopole (electric charge). While this is true in
most natural materials with negligible spatial dispersion, it is not so for materials with significant spatial
dispersion, which is seen in metamaterials. For such media, higher order moments become significant as
well, and a name like "multi-electrics" would be more suitable.
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Since the observations relating magnetism to electrical current, most notably by Hans
Christian Ørsted in 1820, the theory of electromagnetism flourished from the efforts of
numerous scientists. To mention some, there was André-Marie Ampère, with his descrip-
tion of the force interaction between two electrically conducting wires. His description
was later called Ampère’s law, and was motivated by the observation made by Ørsted.
Another contributor was Michael Faraday, who in 1821 put forth his description for the
generation of current in an electric circuit from a time varying magnetic field. It was
named "Faraday’s law of induction", and was later reformulated by Maxwell, to give one
of Maxwell’s four fundamental equations of electromagnetism. Maxwell’s equations, pub-
lished in "A Dynamical Theory of the Electromagnetic Field" in 1865, together with the
Lorentz force law, fully describe all classical phenomena of electromagnetism. Through
the separate work of these contributors, they laid the foundation of the electromagnetics
together.

In order to describe a whole medium (e.g. a gas, a metal or an insulating solid) using
the laws of electromagnetism, as opposed to a simple set of discrete charges, one needs a
homogenisation method. That is, rather than taking account of every single one of the
innumerable charges that constitute the medium of interest, one should find a way to
describe the response of the medium as a net or effective response. In order to do so, it is
common to seperate between the free charges ρf and the bound charges ρb. In this thesis
we only discuss dielectric media, so ρf is zero and ρb will simply be written ρ. The bound
charges are charges that are associated with a molecule (or an inclusion in metamaterial
arrays) and induced by an external electric field. Normally this induction is described
merely by a dipolarisation obeying the equations (6) and expressed as

Pi(r) =

∫
V

riρ(r)dv.

where rj is a position vector from some origin to the dipole at the infinitesimal volume dv
and ri is the induced separation vector within the dipole. The integral is taken over the
macroscopic, but small volume V which of the critical dimension is far smaller than the
wavelength used, so that the polarisation can be locally related to the electric field. From
the definitions (5) and (6) and Maxwell’s equations, it can be seen that the dipolarisation
is crucial in the description of the total electromagnetic response of polarisable media.
For all materials the degree of polarisation is dependent on the magnitude and direction
of this external electric field, and for many materials the relation is linear:

Pi = ε0χijEj,

where ε0 is the vacuum permittivity and χij is the electric susceptibility tensor.

However, the dipolarisation model assumes that there are only electric dipole moments
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worth considering in the medium, and this is not generally true. In fact, the electric dipole
moment is only the second term in a series expansion of the scalar potential from which
the fields are derived, the first term being the electric monopole (i.e. electric charge)
[5, section 1.1]. The dipole approximation holds well for most normal materials from the
combination of two reasons: firstly, the higher order multipoles contain increasing numbers
of separation vector factors. For example consider the following multipole moment

M =

∫
V

rirjrk . . . ρ(r)dv.

M is an electric multipole moment of arbitrary order, r is a position vector from some
origin to the volume element dv and ri, rj and so on are the induced separation distance
vectors within the multipole. The vector factors ri,rj, ... are on the length scale of the unit
cell or molecule. Secondly, for normal materials the unit cells are usually of dimensions
much smaller than the wavelength of the electromagnetic waves applied. This means
that increasing orders of multipoles are of decreasing importance. For larger unit cells,
or for shorter wavelengths, the higher order multipoles beyond the dipole become more
important [7]. A non rigorous motivation for the importance of this ratio of between the
unit cell and the wavelength, and the consequent higher order moments is the following:
for a higher ratio, more change in the electric field associated with the wave happens
over the distance of the unit cell or molecule. Therefore, spatial derivates of increasing
order of the electric field become important as the ratio becomes larger [5, section 2.12].
This effect is called spatial dispersion, and because of it we would expect a more complex
expression for our total polarisation. This is discussed in the next section.

As fabrication technology is evolving, more advanced materials can be fabricated than
before, and materials with structures not seen in nature are becoming feasible to make.
An example of such a material is the electromagnetic "cloak" made by Pendry et al
in 2006 [6], where they investigated the degree of electromagnetic "footprint" reduction
achieved by shielding an object with the cloak for a specific frequency band of radiation.
Although development in fabrication technology permits of creating arrays of smaller
and smaller inclusions, they will typically be much larger than the unit cell in a natural
material 2. Therefore, we expect the spatial dispersion in these to be significant, and for
a good description of the electromagnetic response of such metamaterials we therefore
need updated theory. The modern era of the field properly started off with a publication
by J.B. Pendry in 2000 [8], in which it was described how a metamaterial slab with
simultaneous negative permittivity and permeability would be a perfect lens [4]. Since
then, new interest was found in formulating such new theories for metamaterials, with

2An important point to make is that even if inclusions the size of natural material unit cells were
possible, such a metamaterial would not be very interesting as a certain spatial dispersion is needed for
the artificial magnetisation and higher order multipoles to contribute significantly, which is the whole
purpose of metamaterials.
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considerable contributions from Lange and Raab, A.D. Yaghjian and M. Silveirinha among
others.

Among the potential applications of metamaterials, there are materials leaving weaker
or no electromagnetic traces (given the fancy name of invisibility cloaks). Such an effect
is obtained from constructing a metamaterial from which scattering and shadow effects
are dramatically reduced as compared to normal materials. Other examples are gradient-
index lenses, negative refractive index superlenses with a resolution not limited by the
normal diffraction limit, flat lenses that produce highly collimated beams from an em-
bedded antenna or optical source, beam concentrators, polarization rotators and splitters,
metamaterials that perfectly absorb electromagnetic radiation and many more [9]. There-
fore, there is good reason to study electromagnetic metamaterials not only for the sake of
understanding the physics, but also for industrial applications.

In this work, the polarisation model and homogenisation method used are introduced and
described in section 2. These must both account for nonlocality as the aim is to model
a spatially dispersive medium. More specifically, we want to investigate the electromag-
netic behaviour at an interface between such a medium and another, and thus a half-space
model must be applied. In works by M. Silveirinha, the half-space model differs slightly
in its form from the one applied by Lange and Raab, but in section 3 these are shown to
be equivalent. Studying Maxwell’s equations for such an interface, boundary conditions
for the electric and magnetic fields can be obtained. Furthermore, from the combination
of these boundary conditions and an appropriate constitutive relation, the Fresnel equa-
tions that govern reflection and refraction can be derived. The method of obtaining the
boundary conditions is therefore important. Different methods are used and tested in the
sections that follow, and they are largely based on the approaches used by Lange and
Raab [10] and Yaghjian and Silveirinha [15]. In the first part of section 4, boundary con-
ditions for media with multipoles to the order of electric-octopole - magnetic-quadrupole
are derived in the fashion of Lange and Raab, but where the multipoles are allowed to
contain a δ-term to account for surface effects. In the second part, general boundary
conditions are derived for a medium with a general polarisation, i.e. for multipole contri-
butions up to an arbitrary order. This is of interest because all spatial dispersive effects
to a chosen order would be accounted for, with contributions from all potentially con-
tributing multipoles. In section 4.2 this is done for spatial dispersion to the second order
in k. This approximation is used for the sake of simplicity, but the results obtained would
be precise for weakly spatially dispersive media. In section 5, boundary conditions and
Fresnel equations are derived for a quadrupolar medium in the fashion of Yaghjian and
Silveirinha, but where in addition to the electric quadrupolarisation the medium also ex-
hibits electric and magnetic dipolarisation. Such a medium might be more realistic than
a purely quadrupolar medium. Contributions to the second order spatial dispersive effect
in that case come from both the magnetic dipolarisation and the electric quadrupolarisa-
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tion. In section 6, the attempt in section 4.2 at deriving boundary conditions and Fresnel
equations for a general second order spatially dispersive medium is repeated, this time
with inspiration from Yaghjian and Silveirinha, but still using the method of Lange and
Raab. The findings are then discussed and finally a conclusion is given.
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2 Polarisation and Homogenisation of Nonlocal Media

In order to efficiently describe the electromagnetic behaviour of macroscopic media con-
sisting of innumerable charges, one is dependent on a way of averaging out the microscopic
field variations that would not contribute significantly to the macroscopic fields. Doing
the average renders the macroscopic fields, and this procedure is called a homogensation
method. For normal media, the homogenisation procedure can be carried out as described
in Appendix A. As is described at the end of the appendix, the described procedure can
also be used for metamaterial media, replacing the normal media unit cell with the meta-
material unit cell. However, this is still only valid under a continuum criterium d/λ� 1,
where d is the unit cell dimension. This criterium is described by Yaghjian in [12]. Al-
though it is usually fulfilled for normal media, with unit cell dimensions typically around
d ≈ 0.1nm [8, chapter 10.2], for metamaterials the dimension would typically be much
larger, even comparable to the wavelength: d/λ ≈ 1 [12]. This causes spatial derivative
terms of the electric field to be significant contributions to the polarisation, and therefore
the homogenisation theory introduced in Appendix A is generally not adequate. In what
follows, we will briefly explain this difference between so-called locality for normal me-
dia and nonlocality for spatially dispersive media, and present a current homogenisation
theory for nonlocal media as described in [8]. Instead of using the notation of [8] where
a capital letter F is used for microscopic fields and 〈F〉 for macroscopic fields, we use
instead the notation of [3] where the microscopic fields are denoted by small letters, and
the macroscopic fields by capital letters.

For normal polarisable media that are linear, the induced (macroscopic) fields D and H
at a given point in the medium can be related directly to the macroscopically averaged
fields E and B (over small volumes of integration) at that same point:

D(r) = ε0ε̄r · E(r) +
√
ε0µ0ξ̄ ·H(r)

B(r) =
√
ε0µ0ζ̄ · E(r) + µ0µ̄r ·H(r).

where ε̄r and µ̄r are the relative permittivity and permeability tensors respectively and
ξ̄ and ζ̄ are the magnetoelectric coupling paramters [8]. If the medium of interest has
an inversion symmetri, then the magnetoelectric coupling parameters are zero. If the
medium is isotropic as well, then the above equations collapse down to the simpler and
often used constitutive relations
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D(r) = ε0εrE(r),

B(r) = µ0µrH(r).

This one-to-one spatial relation between the induced fields and the source fields is what
is meant by the term "local" in the context of homogenisation theory. The locality is
possible as for normal media the criterium mentioned above holds, and therefore the
spatial variation of the electromagnetic fields over the size of the unit cell is negligible.
However, as the ratio of the unit cell dimension to the radiation increases, the importance
of the spatial variation increases. A significant spatial variation means that the field
values in a neighbourhood around the observation point influence the field value at the
observation point, and the medium is said to be "nonlocal". For such a medium, instead
of the constitutive relations above, we can write

Di = ε0Ei + Pi, (7)

Hi =
1

µ0

Bi,

where
P = Pdip −∇×

1

iω
M̄ +

1

2
∇ · Q̄ + · · ·

In this formulation, all of the polarisation (both electric and magnetic) is included in the
definition of the electric response field Di, and the magnetic field constitutive relation is
simply that of vacuum. The first term of P is the electric dipolarisation, and the second
is the magnetic dipolarisation. The third term is the electric quadrupolarisation and the
next would be the magnetic quadrupolarisation.

The spatial dispersion of our nonlocal medium is clear from the following expression for
the electric response field

D(r) =

∫
V

εs(ω, r− r′) · E(r′)d3r′,

where r is a position vector to an observation point in the medium of interest, r′ is
a position vector to an infinitesimal volume within the medium and also the variable of
integration and εs is the space domain electric permittivity accounting for all polarisations.
As the Fourier transform of a convolution is simply a product, the equations become
simpler in the wave vector domain:
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D̃ = ε0Ẽ + P̃ = ε0ε(ω,k) · Ẽ, (8)

H̃ =
1

µ0

B̃,

where the wave vector domain permittivity is given by

εij(ω,k) = Iij +

∫ ∞
0

∫
fij(τ, r)ei(k·r−ωτ)d3rdτ. (9)

εij is a tensor dependent on both the angular frequency and the wave vector [2, chapter
12]. The effective volume of integration is determined by the function fik(τ, r), which
would typically only be nonzero in some neighbourhood around the observation point.
Consequently, the response field at the observation point is dependent on the value of the
electric field in this neighbourhood. For most natural materials, the spatial dispersion is a
very small effect, negligible compared to the temporal dispersion [2], and the permittivity
can be taken as independent of the wave vector. However, for a metamaterial with sizeable
inclusions (relative to the wavelength), the spatial dispersion can be significant. This is
reasonable as for such a case the electric field associated with the wave would have a
significant variation over the length scale of the metamaterial inclusion.

In order for the homogenisation method to be successful, we need to obtain the macro-
scopic Maxwell equations by some means from the microscopic ones. An efficient way
to do this is by Floquet theory. To start off, one can assume the standard microscopic
Maxwell equations (98) - (101) given in appendix A. transformed to the frequency-wave
vector regime. In order to obtain the macroscopic equations, these equations need to be
averaged, so that microscopic variations that do not contribute to the macroscopic scale
field variation vanish. As described in the appendix, the spatial and temporal derivatives
commute with the averaging integral, and therefore the following can be said to hold

∇ · E = −∇ ·P/ε0,
∇ ·B = 0,

∇× E = −iωB,

∇×B = −iωµ0P− iωε0µ0E.

In the above equations, (5) and (6) have also been used, and the capital letters of the fields
signify averaged field quantities. The next step is to find expressions for these averaged
fields and the general polarisation P. Firstly, it is assumed that the microscopic fields e,
b and j are such that f(r)e−ik·r is periodic, where f represents either of the microscopic
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fields. This means that the fields can be Fourier expanded in the following way

f(r) =
∑
J

fJe
ikJ·r, (10)

where kJ and fJ are given as

kJ = k + k0
J,

fJ =
1

Vcell

∫
cell

f(r)e−ikJ·rd3r,

where k0
J = j1b1 + j2b2 + j3b3.

The different bs are reciprocal unit lattice vectors and the js are integers. For a general
averaging integral over all space

F(r) =

∫
f(r− r′)f(r′)d3r′,

where f is a macroscopic field to be averaged and f is the weighting function. Its Fourier
transform is

F̃(k′) = f̃(k′)f̃(k′).

The˜ is meant to signify the Fourier transformed quantity. f̃ can be expressed by taking
the Fourier transform of (10),

(2π)3
∫

f(r)e−ik
′
d3r = (2π)3

∫ ∑
J

fJe
−i(kJ−k

′) · rd3r,

f̃(k′) = (2π)3
∑
J

∫
fJe
−i(kJ−k

′) · rd3r,

= (2π)3
∑
J

fJδ(k
′ − kJ),

where in the last equation the property∫
e−i(kJ−k

′)·rd3r = δ(k′ − kJ)

was used. This leads to the following equation for the averaged field in the wave vector
domain,

F̃(k′) = (2π)3
∑
J

fJδ(k
′ − kJ)f̃(kJ),
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where the argument of f̃ has turned into kJ as the right hand side only is non-zero for
k′ = kJ, as dictated by the δ-function. Now doing the inverse Fourier transform of the
equation above, we obtain

F(r) =
∑
J

(
FJf̃(kJ)e

ikJ·r
)
.

The weighting function f is the function that expresses the spatial dependency (or nonlo-
cality) of the fields. Typically the dependency only reaches out to the unit cell boundary
[8], so that f ≈ 0 for |r| > d, d being the unit cell dimension. The corresponding Fourier
transform f̃ is therefore approximately zero for |k| > π/d. This means that f̃(kJ) ≈ 0 for
J 6= 0, and provided that k is close to the Brillouin zone origin we also have f̃(kJ) ≈ 1 for
J = 0. In other words, only the zero order Floquet harmonic is significantly contributing
to the macroscopic field for a realistic choice of the weighting function. Using this, the
inverse Fourier transform above simplifies to

F ≈ F0e
ik·r,

where F0 is the zero order Floquet harmonic amplitude given by

F0 =
1

Vcell

∫
cell

F(r)e−ik·rd3r.

By the procedure described here, the macroscopic fields E, B and J are derived from
the microscopic fields e, b and j. The macroscopic current can be expressed in terms of
the general polarisation via the relation (5), and thus we have expressed the terms of the
macroscopic Maxwell equations above.

As shown above, k should be close to zero, and therefore a Taylor expansion of a general
permittivity ε(ω,k) with respect to k around k = 0 can be made. Doing so renders the
expression below [1, section 3.1.2]

ε0εij(ω,k) ≈ ε0δij + ε0χij + ζijkkk + ηijklkkkl.

Here the the factors ζ and η are derivatives of ε, and the expansion is written out to
the second order in k [14]. The reason for this choice is that it is a first approximation
to the spatial dispersive effects for all media (of any geometry), as for centro-symmetric
geometries, the first order term vanishes. This can be seen from the criterium for centro-
symmetry εij(k) = εij(−k)3.

3Centro-symmetry could be achieved in a metamaterial structure by e.g. using opposed split-ring
resonaters.
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Now using the definition for the response field (7), we can by comparison with (8) – with
εr inserted from (9) – express the polarisation for our linear, spatially dispersive media
(weak as such) as

Pi = ε0χijEj + ζijkkkEj + ηijklkkklEj.
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3 Halfspace Model for Analysis of Interface Behaviour
of Waves

An interface between two media can be illustrated as in figure 1. The transition layer is
the region of space from the surface of medium two to a distance l within the bulk of the
medium. In this region the electromagnetic behaviour changes from that characteristic
for the medium of incidence to that of the second medium.

z

x

y

Medium 1 Medium 2l

ki

kr

kt

θ1

θ1

θ2

Figure 1: Coordinate system used to model the electromagnetic response across an inter-
face between two media. ki and kr are the incident and reflected wave vectors respectively,
both with an angle θ1 to the normal. kt is the transmitted wave vector with the corre-
sponding refraction angle θ2. The transition layer l is the region of space in which the
electromagnetic behaviour changes from that characteristic for the medium of incidence
(Medium 1) to that of the second medium (Medium 2). For right hand side media with
higher order multipole contributions, there might exist additional modes. As is shown in
section 5, for a medium with electric quadrupole contribution, there exists an evanescent
wave. This mode is confined to the transition layer [12].

For an interface such as that illustrated in figure 1, we want a mathematical model for
how the electric fields change across the interface. We expect that for unlike media the
electric fields at the different sides of the transition layer are different. Furthermore, we
expect this change to be smooth, which is physically reasonable. Thus, demanding that
E1,j = E1,j|z=0 and E2,j = E2,j|z=l are constants in the transition layer (and otherwise
arbitrary functions of z), we can express the net field everywhere as

Ej(z) = a(z)E1,j + b(z)E2,j, (11)

where a(z) and b(z) are smooth functions. Furthermore, the equation must obey the
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following criteria,

Ej(z = 0) = E1,j,

Ej(z = l) = E2,j.

This formulation complies with the expression for Ej used in [10], as for the limit l → 0,
the criteria above imply that a(z) and b(z) must approach the step functions u(−z) and
u(z) respectively. The two field components in (11) are plotted for an arbitrary sine
squared form of a(z) and b(z) for illustration.

Writing instead
Ej(z) = E1,j + c(z)(E2,j − E1,j), (12)

the criteria above can also be met. c(z) is a smooth function obeying the conditions

c(z = 0) = 0,

c(z = l) = 1.

When the limit l → 0 is taken, c(z) approaches u(z), and thus equation (12) complies
with the formulation of Yaghjian and Silveirinha in [15]. As is seen in this section, the
two electric field formulations for the transition layer are equivalent, and the choice of
formulation should therefore not affect the expressions of boundary conditions derived
using them.

z
0

x

l

Figure 2: Example plot of the two field components in (11) for an arbitrary sine squared
form of a(z) and b(z) (with a π/2 phase shift between the two functions). The coordinate
system is the same as introduced in figure 1 and the same colours represent the same
regions of space, but here the transition layer is wider for the sake of illustration. The red
curve represents the magnitude of the incident electric field, and the blue the transmitted.
These curves are both representing functions that approach step functions (times the
factors E1,j|z=0 and E2,j|z=l, respectively) as the limit l→ 0 is taken. E1,j|z=0 and E2,j|z=l
represent the values of the electric field at the transition layer boundaries. Note that E1,j

is arbitrary (determined by the source and the nature of the medium of incidence) for
z ≤ 0 and similarly for E2,j for z ≥ 0 in Medium 2.
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4 Boundary Conditions for Media with Higher Order
Multipoles

4.1 Explicit Polarisation up to Electric Octopole - Magnetic
Quadrupole Order, with a δ-term in the Multipoles

Given the charge density ρ∞ on the form derived in [5],

ρ∞ = −∇i

(
Pi −

1

2
∇jQij +

1

6
∇j∇kQijk + · · ·

)
,

we have an expression for a charge density throughout all of space. However, as we
want analyse the electromagnetic behaviour at the boundary of an octopolar medium,
we need to modify this expression to be valid for a half-space medium. Rather than just
multiplying the multipole moments with the step function u(z), as is done in [10], we allow
for the multipole moments to have surface contributions expressed by delta functions to
first order. E.g. P → u(z)P + δ(z)P (1), where P (1) is a surface electric dipole. Writing
out the terms and grouping them according to the singular functions of increasing order,
we obtain for the half-space charge density

ρ∞/2 = u(z)ρ∞ − δ(z)
[
Pz +∇iP

(1)
i −∇iP

(1)
i −∇iQiz −

1

2
∇i∇jQ

(1)
ij +

1

2
∇i∇jQijz

+
1

6
∇i∇j∇kQ

(1)
ijk

]
+ δ′(z)

[
− P (1)

z +
1

2
Qzz −∇iQ

(1)
iz −

1

2

(
∇iQizz +∇i∇jQ

(1)
ijz

)]
− δ′′(z)

[
− 1

2
Q(1)
zz +

1

6
Qzzz +

1

2
∇iQ

(1)
izz

]
+ δ′′′(z)Q(1)

zzz. (13)

Equation (13) corresponds to and contains all the terms of equation (5) in [10]. The new
terms in the equation above are the surface terms marked by a superscript. Similarly, a
new expression for the current density J can be obtained, and its expression can be found
in Appendix B.

As multipoles of order up to the electric octopole - magnetic quadrupole is of concern
here, the following expressions for the electric and induction fields are used:

E = u(−z)E1 + u(z)E2 + δ(z)E(1) + δ(z)E(2) + δ′(z)E(3), (14)

B = u(−z)B1 + u(z)B2 + δ(z)B(1) + δ(z)B(2). (15)

The reason for this specific number of terms in the expressions for the fields is that
the δ and δ-derivatives terms should match the highest order δ-derivative terms in the
charge density ρ and current density J as dictated by the multipole order. For e.g. the
dipole order, a δ in E would entail an uncompensated δ-derivative term in Gauss’ law

15



and Faraday’s law [10], which is easily seen if the Maxwell equations are written out
explicitly. The B-field has one less term than the E field as otherwise there would been
an uncompensated B-field term in Ampère’s law.

Having thus all the expressions for E,B, ρ and J, we can express the left hand sides of
Maxwell’s equations ((1)-(4)). The left hand side of (1) becomes

δ(z)
[
E2z−E1z+∇iE

(1)
i +

1

ε0

(
Pz+∇iP

(1)
i −∇iQiz−

1

2
∇i∇jQ

(1)
ij +

1

2
∇i∇jQijz+

1

6
∇i∇j∇kQ

(1)
ijk

)]
+ δ′(z)

[
E(1)
z +∇iE

(2)
i −

1

ε0

(
− P (1)

z +
1

2
Qzz +∇iQ

(1)
iz −

1

2
[∇iQizz +∇i∇jQ

(1)
ijz]
)]

δ′′(z)
[
E(2)
z +

1

ε0

(
− 1

2
Q(1)
zz +

1

6
Qzzz +

1

2
∇iQ

(1)
izz

)]
− δ′′′(z) 1

ε0
Q(1)
zzz. (16)

The equivalent expressions for equations (2)-(4) can be found in Appendix C. With our
new expressions for the left hand sides of (1)-(4), we see that we have equations on the
form

δ(z)f(x, y, z, t) + δ′(z)g(x, y, z, t) + δ′′(z)h(x, y, z, t) + δ′′′(z)i(x, y, z, t) = 0. (17)

Taking the integral of equation (17) with respect to z results in the condition

f0 − (∇zg)0 + (∇2
zh)0 − (∇3

zi)0 = 0. (18)

Taking instead the second order derivative of the left hand side (LHS) of equation (17)
with respect to x, multiplied with z2, and taking the integral of this with respect to z
results in the constraint

∫
∇2
xLHS(17)z

2dz = (∇2
xh)0 + 2(∇z∇2

xi)0 = 0

so (∇2
xh)0 = −2(∇z∇2

xi)0. (19)

Subjecting (16) to the constraint (18), we obtain an expression for E2z − E1z in terms
of multipole and E-field terms. To arrive at an expression solely consisting of multipole
terms, consider equation (116) on the form of (17). For this Maxwell equation, the i-term
is zero, and taking the integral of the derivative of LHS(17) with respect to x, times z,
with respect to z gives the constraint∫

∇xLHS(17)zdz = (∇xg)0 − 2(∇z∇xh)0 = 0,

so (∇xg)0 = 2(∇z∇xh)0. (20)
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Subjecting (116) to (20), and inserting into the expression for E2z − E1z, there are only
two E-field terms left. These can be expressed in terms of multipoles by subjecting (16)
to the constraint (19), rendering our expression for E2z−E1z only in terms of multipoles.
Thus, the first boundary condition is obtained as

E2z − E1z = −
1

ε0

[
Pz +∇xP

(1)
x +∇yP

(1)
y −

(
∇xQxz +∇yQyz +

1

2
∇zQzz

)
1

2

(
∇2
xQ

(1)
zz +∇2

yQ
(1)
zz −∇2

xQ
(1)
xx −∇2

yQ
(1)
yy

)
−∇x∇yQ

(1)
xy

+
1

2

(
∇2
xQxxz+∇2

yQyyz−
1

3

(
∇2
x+∇2

y−∇2
z

)
Qzzz+2∇x∇yQxyz+∇x∇zQxzz+∇y∇zQyzz

)
+

1

6
∇i∇j∇kQ

(1)
ijk +

1

2

(
∇2
z∇iQ

(1)
izz −∇2

x∇iQ
(1)
izz −∇2

y∇iQ
(1)
izz −∇z∇i∇jQ

(1)
ijz

)
+ 2
(
∇z∇2

xQ
(1)
zzz +∇z∇2

yQ
(1)
zzz

)
+∇3

zQ
(1)
zzz

]
.

The other five boundary conditions are found by deriving constraints similar to (19) and
(20), and applying the constraints to the appropriate Maxwell equations on the form of
(17) (equations ((16), (116), (117) and (118))). The boundary conditions can be found
in Appendix D. Note that the terms in the boundary conditions (24)-(29) of [10] are also
found in the boundary conditions derived here, but that in here there are additional terms
due to the new delta term of the multipole expressions.
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4.2 General Polarisation

4.2.1 Derivation of Boundary Conditions

Assuming smooth electric field variation over a transition layer [0, l], in which the fields’
behaviour change from that of the incident medium to that of the other medium, we have
a case as that illustrated in figure 1 and 2. Assuming now that l→ 0, the fields’ variation
at the interface is described by step functions. As opposed to in the previous section, the
following set of definitions for P, E, B, J and ρ are used,

Pi = u(−z)P1,i + u(z)P2,i + δ(z)P
(1)
i + δ′(z)P

(2)
i , (21)

Ei = u(−z)E1,i + u(z)E2,i, (22)

Bi = u(−z)B1,i + u(z)B2,i + δ(z)B
(1)
i ,

Ji = Ṗi,

ρ = −∇iPi.

The motivation for using these definitions is that this way leads to cleaner and more
transparent calculations, and to let the general polarisation account for weak spatial dis-
persion. This is an effect due to the polarisation’s dependency on the second order spatial
derivative of the electric field as described in section 2, and contributions to this second
order effect may come from higher order multipoles in addition to the electric quadrupole
and magnetic dipole. Similarly to in the previous section, the reason for the different
number of orders in the singular functions of the expressions is due to the nature of the
Maxwell equations and that singular functions in the fields should be compensated by
singular terms of the same order in other fields or sources. Consequently, the polarisation
needs singular terms of one and two orders of differentiation higher than that of the elec-
tric field. Also, from (2) it can be seen that the induction field needs a term one order of
differentiation higher than the electric field. The model of [10] is used where two separate
step functions are used to describe the electric field on each side of the interface.

The left hand sides of Maxwell’s equations (1)-(4) thus become

∇ · E− 1

ε0
ρ = δ(z)

(
E2z − E1z +

1

ε0

[
P2z − P1z +∇iP

(1)
i

])
+ δ′(z)

1

ε0

(
P (1)
z +∇iP

(2)
i

)
+ δ′′(z)

1

ε0
P (2)
z , (23)
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∇× E + Ḃ = δ(z)
(
− E2y + E1y + Ḃ(1)

x ;E2x − E1x + Ḃ(1)
y ; Ḃ(1)

z

)
, (24)

∇ ·B = δ(z)
(
B2z −B1z +∇iB

(1)
i

)
+ δ′(z)B(1)

z , (25)

∇×B− µ0J− µ0ε0Ė = δ(z)
(
−B2y +B1y +∇yB

(1)
z −∇zB

(1)
y − µ0Ṗ

(1)
x ;

B2x −B1x +∇zB
(1)
x −∇xB

(1)
z − µ0Ṗ

(1)
y ;∇xB

(1)
y −∇yB

(1)
x − µ0Ṗ

(1)
z

)
+ δ′(z)

(
−B(1)

y − µ0Ṗ
(2)
x ;B(1)

x − µ0Ṗ
(2)
y ;−µ0Ṗ

(2)
z

)
. (26)

Using the same approach as that indicated in 4.1, boundary conditions can be derived
from Maxwell’s equations (1)-(4) with the left hand sides expressed as in (23)-(26) above,
rendering

E2x − E1x = µ0P̈
(2)
x ,

E2y − E1y = µ0P̈
(2)
y ,

E2z − E1z = −
1

ε0

(
P2z − P1z +∇xP

(1)
x +∇yP

(1)
y −∇z

[
∇xP

(2)
x +∇yP

(2)
y

])
,

B2x −B1x = µ0

(
Ṗ (1)
y −∇zṖ

(2)
y

)
B2y −B1y = −µ0

(
Ṗ (1)
x −∇zṖ

(2)
x

)
B2z −B1z = −µ0

(
∇× Ṗ

(2)
)
z
.

Assuming that our medium is linear and exhibits weak spatial dispersion, the general
polarisation can be expressed as

Pi = ε0χijEj + ζikjkkEj + ηikljkkklEj. (27)

This expression comes from a series expansion of the permittivity tensor as described in
section 2.

In order to isolate the second order contribution to the spatial dispersion, centro-symmetric
inclusions can be assumed in the bulk of the medium. This causes the first order term in
k of equation (27) to be zero, as the polarisation should not change for the transformation
P(k)→ P(−k). The new expression for the polarisation therefore becomes

Pi = ε0χijEj − ηiklj∇k∇lEj, (28)

where the property ∇i = iki of our plane wave electric field is used. In order to model our
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half-space medium, we insert our expression for the electric field (22) into this expression
and define χij = u(−z)θij + u(z)Oij and ηiklj = u(−z)γiklj + u(z)ζiklj. For the case where
the left hand side medium is vacuum, θij and γiklj would be zero, but that is not assumed
here for the sake of generality. Grouping the resulting terms in singular functions leads
to the expression

Pi = u(−z)
(
ε0θij − γiklj∇k∇l

)
E1,j + u(z)

(
ε0Oij − ζiklj∇k∇l

)
E2,j (29)

+ δ(z)u(−z)2γikzj∇k(E1,j − E2,j) + δ′(z)u(−z)γizzj(E1,j − E2,j).

+ δ(z)u(z)2ζikzj∇k(E1,j − E2,j) + δ′(z)u(z)ζizzj(E1,j − E2,j).

Comparing this expression with the one in (21), it is clear that P1,i and P2,i are as
given below in (34) and (35). Expressions for P (1)

i and P (2)
i can be found by equating the

integrals of (21) and (29) with respect to z over some range [−l, l] containing the interface
plane z = 0. As the two first terms in (29) are already identified as the two first terms
in (21), these terms can be left out. Doing this calculation, using the convention that
u(0) = 1/2, results in an equation

P
(1)
i −∇zP

(2)
i = (γikzj + ζikzj)∇k(E1,j − E2,j)−

∫
δ(z)

d

dz

[
u(−z)γizzj(E1,j − E2,j)

]
dz

−
∫
δ(z)

d

dz

[
u(z)γizzj(E1,j − E2,j)

]
dz (30)

=

∫
δ2(z)(γizzj − ζizzj)(E1,j − E2,j)dz + (γikzj + ζikzj)∇k(E1,j − E2,j)

− 1

2
(γizzj + ζizzj)∇z(E1,j − E2,j) (31)

=
[
(γixzj + ζixzj)∇x +

1

2
(γizzj + ζizzj)∇z

]
(E1,j − E2,j). (32)

In (30), the first term is obtained directly from the integrals in (29) with a δ-function in the
integrand, whereas the second and the last terms are obtained from a partial integration
of the terms in (29) with a δ′(z)-function. Evaluating the latter ones gives the first and
the last term of (31), and from the first term we must have that

(γizzj − ζizzj)(E2,j − E1,j) = 0, (33)

otherwise the integral would be infinite. Using the final form (32), we can define P (1)
i and

P
(2)
i as in the following set of definitions;
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P1,i =
(
ε0θij − γiklj∇k∇l

)
E1,j, (34)

P2,i =
(
ε0Oij − ζiklj∇k∇l

)
E2,j, (35)

P
(1)
i = −(γixzj + ζixzj)∇x(E2,j − E1,j), (36)

P
(2)
i =

1

2
(γizzj + ζizzj)(E2,j − E1,j). (37)

Using these expressions, the phase matching condition ∇x = ikx and the criterion (33)
from above the boundary conditions can be expressed as

E2x − E1x =
1

2
µ0(γxzzj − ζxzzj)(Ë2,j − Ë1,j) = 0, (38)

E2y − E1y =
1

2
µ0(γyzzj − ζyzzj)(Ë2,j − Ë1,j) = 0, (39)

E2z − E1z = −
1

ε0

([
ε0Ozj − ζzklj∇k∇l

]
E2,j −

[
ε0θzj − γzklj∇k∇l

]
E1,j (40)

−
[
(γxxzj + ζxxzj)∇2

x + (γyxzj + ζyxzj)∇x∇y

+
1

2
(γxzzj + ζxzzj)∇x∇z +

1

2
(γyzzj + ζyzzj)∇y∇z

]
(E2,j − E1,j)

)
,

B2x −B1x = −µ0

(
(γyxzj + ζyxzj)∇x +

1

2
(γyzzj + ζyzzj)∇z

)
(Ė2,j − Ė1,j), (41)

B2y −B1y = µ0

(
(γxxzj + ζxxzj)∇x +

1

2
(γxzzj + ζxzzj)∇z

)
(Ė2,j − Ė1,j), (42)

B2z −B1z =
1

2
µ0

(
(γxzzj + ζxzzj)∇y

)
(Ė2,j − Ė1,j). (43)

4.2.2 Comparison with the Boundary Conditions of Yaghjian and Silveirinha

In [15], Yaghjian and Silveirinha analyse the case of a purely quadrupolar half-space in
vacuum, with its interface being the plane z = 0 and the plane of incidence the xz-plane.
An incident plane wave of transverse magnetic polarisation is assumed, implying that the
induction field only has a nonzero y-component: B1 = [0, B1y, 0] and the electric field only
has nonzero x- and z-components: E1 = [E1x, 0, E1z]. Furthermore, there is no variation
in the y-direction, so spatial derivatives of the fields with respect to y are all zero. As the
medium of incidence is vacuum, θij = 0 and γiklj = 0 in (38)-(43), and the fact that there
are no electric dipoles in the quadrupolar medium means that Oij = 0. Using this, the
tangential boundary conditions (38)-(43) become
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E2x − E1x = −
1

2
ζxzzj(Ë2,j − Ë1,j) = 0, (44)

E2y − E1y = 0,

B2x −B1x = 0,

B2y −B1y = µ0

(
ζxxzz∇x(Ė2z − Ė1z) +

1

2
ζxzzx∇z(Ė2x − Ė1x)

)
. (45)

(44) becomes zero due to the criterium (33) (the temporal periodicity of the electric
fields means the temporal derivatives only amount to a linear scaling). Assuming that
E2z−E1z 6= 0, the same criterium gives ζizzz = 0. The corresponding tangential boundary
conditions derived in [15] are

E2x − E1x = 0, (46)

E2y − E1y = 0,

B2x −B1x = 0,

B2y −B1y = −
iωµ0

2
ẑ × (ẑ · Q̄2

) =
µ0

4
(∇xĖ2z +∇zĖ2x), (47)

where the right hand side (47) is obtained using the definition for Q̄ introduced in Sil-
veirinha and Yaghjian’s article (and motivated in [13]):

Q̄ = αQε0

[1
2
(∇E + E∇)− 1

3
(∇ · E)̄I

]
. (48)

The term E∇ is meant to signify the transpose of the tensor ∇E. As can be observed,
the general boundary condition (45) cannot express the specific boundary condition (47)
of Silveirinha and Yaghjian.
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5 Boundary Conditions and Fresnel Equations for a Re-
alistic Quadrupolar Medium

5.1 Fresnel Equations

In [15], Yaghjian and Silveirinha find boundary conditions for a hypothetical material ex-
hibiting only electric quadrupolarisation and no magnetisation, placed in vacuum. In this
section we apply their approach for finding the boundary conditions for a TM polarised
wave incident on a quadrupolar medium also exhibiting electric and magnetic dipolarisa-
tion. This means that instead of having a total polarisation P = −(∇ · Q̄)/2, we have a
total polarisation

P =
(
ε0χe +

(1− µ−1r )

ω2µ0

∇×∇×
)
E− 1

2
∇ · Q̄, (49)

where the dipolarisation is accounted for by the first term, the magnetisation by the
second and the quadrupolarisation is expressed in the third term as in [15] (the definition
of Q̄ can also be found in the previous section, equation (48)). With the magnetisation
accounted for in the polarisation, the magnetic field is given as for vacuum,

H =
B

µ0

.

The second term of the polarisation above comes from defining the total polarisation of the
medium as consisting of an electric and a magnetic part, as is done in [14], equation (17).
To arrive at the form above, one can use the definition M = (µr − 1)H = (1− µ−1r )B/µ0,
and substitute for B using the Maxwell equation (2). The polarisation above holds of
course only for the multipole medium, which is denoted by a superscript 2 in the rest
of this section. For the vacuum side, there is no polarisation as there are no polarisable
entities.The superscript 1 refers to the vacuum side.

Now combining the two Maxwell curl equations ((2) and (4)), one obtains

1

µr
∇×∇× E− k20

(
εrE−

1

2
∇ · Q̄/ε0

)
= 0. (50)

Substituting Q̄ with Q̄0 from [15] (which is simply defined as Q̄ multiplied with the step
function), εr with 1 + u(z)χe and µr with 1 + u(z)χm, we get instead the combined curl
equation for the whole system

1

1 + u(z)χm
∇×∇× E− k20

(
[1 + u(z)χe]E−

1

2
∇ · Q̄0/ε0

)
= 0. (51)
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The step functions associated with the permittivity and permeability terms in (51) are
here taken to be "normal" step functions, abruptly going from 0 to 1 at z = 0. This
is in contrast to the step function in Q̄0, defined to smoothly increase from 0 to 1 over
the transition layer. Using these normal step functions amounts to assuming that the
electric and magnetic dipole effects really can be said to change abruptly at the interface.
However, this assumption is not evidently valid as is discussed in section 7.

Taking the integral of the x-component of this equation times z over the transition layer,
we get the following

∫ l

0

LHS(51)xzdz = −k
2
0εr

∫ l

0

Exzdz −
1

µr

(∫ l

0

(∇2
zEx)zdz − ik0

∫ l

0

(∇zEz)zdz
)

+
1

2
ω2µ0

∫ l

0

(∇ · Q̄0)xzdz,

where the dipolarisation is accounted for in the first term. This integral is the same as
that in [15] (equation (40)), except for the factors εr and µr here. The first and the third
integrals above will contain the factor l when evaluated (using integration by parts), and
as l→ 0 they become zero. Only the second and the last integral survives, giving similarly
to what is obtained in [15] that

(1
8
k20αQ − µ−1r

)
(E2

x − E1
x) = 0. (52)

The second term in the first parentheses was 1 in [15], as there a magnetisation was not
considered. The equation above is implying the boundary condition

E2
x − E1

x = 0.

In the same fashion, it can be shown that also the additional boundary condition of [15],

Qzz = 0, (53)

does not change for our case.

On the other hand, the last boundary condition does change. In [15], the derivation of
the induction field boundary condition is carried out with Ampère’s law as the starting
point. We will now use their derivation for showing how the boundary condition becomes
for our case which includes dipolarisations. The form of Ampère’s law for our case is

∇×B + iωε0εrµ0E−
1

2
iωµ0∇ · Q̄0 +

i(1− µ−1r )

ω
∇×∇× E = 0. (54)
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In order for the calculation to be as simple as possible, the last term of the left hand side
above can be rewritten as

−(1− µ−1r )∇×B,

using (2). Equation (54) then becomes

1

µr
∇×B + iωε0εrµ0E−

1

2
iωµ0∇ · Q̄0 = 0.

By doing this, we have effectively moved the magnetic dipole contribution from the total
polarisation to a responsefield H = B/µ0µr. Now taking the integral of the x-component
of this equation with respect to z over the transition layer, we obtain almost the same
equation as in [15] (equation (45)), with the difference being the factor µr in the denom-
inator of the B(2)

y -term:

1

µ0

(B(2)
y

µr
−B(1)

y

)
= −1

2
iωε0αQ

(1
2
∇zE

(2)
x +

1

2
ik0xE

(2)
z −

1

6
ik0x(E

(2)
z − E(1)

z )
)
. (55)

Another expression for the difference
B

(2)
y

µr
−B(1)

y can be obtained from taking the difference

between the magnetic fields on each side of the transition layer, expressed using (2):

H(2)
y −H(1)

y =
1

µ0

(B(2)
y

µr
−B(1)

y

)
=

1

iωµ0

(
∇zE

(2)
x −∇zE

(1)
x − ik0x(E(2)

z − E(1)
z )
)
,

so that iω
(B(2)

y

µr
−B(1)

y

)
= ∇zE

(2)
x −∇zE

(1)
x − ik0x(E(2)

z − E(1)
z ). (56)

Inserting (55) into (56), the following equation can be obtained after some algebra

∇zE
(2)
x −∇zE

(1)
x − ik0x(E(2)

z −E(1)
z ) =

k20αQ
4

(
∇zE

(2)
x + ik0x

[
E(2)
z −

1

3
(E(2)

z −E(1)
z )
])
. (57)

The left hand side of this equation is now equal to the right hand side of (56), so by
substituting our left side for (56)’s left, we obtain the following boundary condition for
the induction field

B
(2)
y

µr
−B(1)

y = −ik
2
0αQ
4ω

(
∇zE

(2)
x + ik0x

[
E(2)
z −

1

3
(E(2)

z − E(1)
z )
])
. (58)

It is straight forward to show that neglecting the latter term of (57), as is done in [15],
we would instead have gotten the boundary condition
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B
(2)
y

µr
−B(1)

y = −iωµ0

2
z× (z · Q̄(2)

) · y,

which is identical to what is derived in [15], except for the factor µr in the denominator
of the B(2)

y -term.

Having obtained the boundary conditions, we can now proceed to derive the Fresnel
equations governing reflection and refraction. To do this, we need to know what kinds of
modes are present in the bulk of the multipole medium. In that region, εr = (1 + χe),
µr = (1 + χm) and instead of Q̄0 we can use Q̄ as defined in equation (48)(or equation
(9) of [15]). With these changes, and applying the identity

∇× (∇×A) = ∇(∇ ·A)−∇2A, (59)

where A is a general vector, to equation (51) and then taking the cross product of the
resulting equation with E, we get

1

µr

[
∇(∇ · E)× E− (∇2E)× E

]
− k20εrE× E +

1

2

k20
ε0
(∇ · Q̄)× E = 0. (60)

For phase matching along the x-axis of the waves on each side of the interface, we have
∇xE = ikxE. As we also have periodic variation of the electric field in the z-direction,
(∇2E) ‖ E, and we can write (∇2E) × E = 0. Furthermore, using the definition of the
quadrupole moment Q̄, we have that the last term can be rewritten in the following way

1

2

k20
ε0
(∇ · Q̄)× E =

1

2
αQk

2
0

(1
6
(∇ · E)(∇× E)

)
.

Using this, equation (60) becomes

1

µr
(∇× E)(∇ · E)− 1

µr
(∇ · ∇)(E× E)− k20εr(E× E) +

1

2
αQk

2
0

(1
6
(∇ · E)(∇× E)

)
= 0,

which can be simplified to

(µ−1r +
1

12
αQk

2
0)(k× E)(k · E) = 0.

This implies that

(k× E)(k · E) = 0.

In this implication we have assumed that
1

12
αQk

2
0 6= −µr, which is necessarily true for

lossless media as then αQ should be a positive number (for a material with a non-zero

26



quadrupolar effect) [12]. From the last equation above we have that in the medium, there
can be one mode for which (k × E) = 0 which implies that (k · E) 6= 0, and there can
be one where the opposite holds. For the first, k ‖ E, so this mode is longitudinal, and
for the second they are perpendicular, meaning a transverse mode. Both of these must
fulfil Maxwell’s equations separately. Looking at the longitudinal mode and giving it the
subscript e, the corresponding quadrupole moment becomes

Q̄e = αQε0i
[
Eeke −

1

3
(ke · Ee)̄I

]
,

as for (k×E) = 0, Ek = kE. For our model, with both a nonzero electric dipolarisation
given by ε0χeE and a nonzero quadrupolarisation given by −∇ · Q̄/2, the correct version
of Maxwell’s equation (1) becomes

∇ · E =
1

2ε0εr
∇ · (∇ · Q̄), (61)

which is obtained by inserting the ρ = −∇iPi into (1), with Pi as expressed in the
beginning of this section. For the longitudinal mode we get

∇ · Q̄e = −
2

3
αQε0(ke · Ee)ke,

as ke · (Eeke) = (ke · Ee)ke. Furthermore,

∇ · (∇ · Q̄e) = −
2

3
αQε0i(ke · Ee)(ke · ke),

as ∇[(ke · Ee)ke] = (ke · Ee)(ke · ke). Now inserting ∇ · (∇ · Q̄e) into equation (61), we
get that

ke · ke = −
3εr
αQ

, (62)

which means that kez must be imaginary as kx is real and αQ ≥ 0, and the longitudinal
wave is therefore evanescent.

For the transverse mode ∇ · E = 0 and ∇× E 6= 0. Applying (59) to equation (50) and
using k2i = ω2ε0µ0 (the incident wave is in vacuum), we obtain

− 1

µr
∇2Et = k20

(
εrEt −

1

2
∇ · Q̄t/ε0

)
, (63)

where Q̄t can be expressed as
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Q̄t =
1

2
αQε0

[
∇Et + Et∇

]
.

∇ · Q̄t then becomes

1

2
αQε0∇2Et.

Inserting into (63) and doing some algebra results in the following expression

kt · kt = ki · kiεr
( 1

µr
− 1

4
k20αQ

)−1
. (64)

Summarising the three boundary conditions from earlier in this section, choosing the
approximated version of the magnetic field boundary condition as in [15], we have

Etx + Eex − Eix − Erx = 0 (65)

Bt/µr −Bi −Br = −
iωµ0

2

[
z× (z · Q̄t + z · Q̄e)

]
· y (66)

z · (Q̄t + Q̄e) · z = 0, (67)

Writing out ke × Ee = 0 and kt · Et = 0 for the evanescent and transmitted waves
respectively, we get

kxEez = kezEex (68)

kxEtx = −ktzEtz. (69)

Inserting the expression for the electric quadrupole moment (48) into the additional
boundary condition (67), we get

ktzEtz +
2

3
kezEez −

1

3
kxEex = 0. (70)

From (62) we can rewrite to get

2k2ez − k2x = −
6

αQ

(
εr +

1

2
αQk

2
x

)
. (71)

Now inserting (68) and (69) into (70), and then using (71), we get

Eex = −
αQk

2
x

2εr + αQk2x
Etx. (72)

To translate equation (65) into an equation with the magnetic field instead of the electric,
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we need to find expressions for Etx, Erx and Eix (Eex is already expressed in terms of Etx)
in terms of the corresponding magnetic fields. Using kt × Et = ωBt, (69), recognising
k2tz+k

2
x as equal to kt·kt and substituting this latter expression with k2i εr(1/µr−αQk20/4)

−1

(from equation (64)), we get for the propagating wave

Etx =
ωktz
k2i εr

( 1

µr
− αQk

2
0

4

)
Bt. (73)

Now using ki × Ei = ωBi for the incident wave, and likewise for the reflected wave, and
k · E = 0 (both of these are transversal) we get the expressions

Eix =
ωk1z
k2i

Bi (74)

Erx = −
ωk1z
k2i

Br. (75)

Combining equations (72) and (73), and inserting (72)-(75) into (65), we get

Bi −Br =
ktz
k1z

(1/µr − αQk2i /4)
(εr + αQk2x/2)

Bt ≡ fBt (76)

From equation (66) we can derive another equation relating Bi, Br and Bt. The y-
component of the vector term in the square brackets of (66) becomes

z× [z · (Q̄t + Q̄e)] · y =
αQε0i

2
[ktzEtx + kxEtz + kezEex + kxEez]

=
αQε0i

2ktz

[
(k2t − 2k2x)−

αQk
2
xkezktz

εr + αQk2x/2

]
Etx,

where in the second equation (68), (69), k2t = k2tz + k2x and (72) have been used. Now
inserting the last equation above into (66), and using (73), we get

Bi +Br =
( 1

µr
− αQ

4εr
(
1

µr
− αQk2i /4)

[
k2t − 2k2x −

αQk
2
xkezktz

εr + αQk2x/2

])
Bt ≡ gBt. (77)

From equations (76) and (77), we have

Bi −Br = fBt,

Bi +Br = gBt,
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rendering the reflection and transmission coefficients

r ≡ Br

Bi

=
g − f
f + g

, (78)

t ≡ Bt

Bi

=
2

f + g
, (79)

respectively.

5.2 Energy Conservation

To evaluate further the validity of the expressions for the transmission and reflection coef-
ficients derived in the previous section, one can check for energy conservation of radiative
energy in the two media by investigating the normal component of Poynting’s vector on
both sides of the transition layer, assuming the evanescent mode is confined there [15].
These should equal each other, as we are considering a lossless material. Mathematically
expressed, Siz + Srz = Stz must be fulfilled, where S is Poynting’s vector,

Sk =
1

2µ0

Re{εijkE∗iBj} −
ω

4

∂εij
∂kk

E∗iEj, (80)

as defined by Landau and Lifshitz [2, equation 103.15]. The equation is here given in SI
units instead of CGS units. ε is the Levi Civita symbol, so that {εijkE∗iBj} = E∗ × B,
and εij is the permittivity. The second term comes from the spatial dispersion in the
quadrupolar medium: Di(k) = εij(k)Ej. Equating this expression for the response field
to the expression in (7) (where Pi is given as in (49)), we have

ε̄E = ε0ε̄rE +
(1− µ−1r )

ω2µ0

∇×∇× E− 1

2
∇ · Q̄.

Using the vector identity (59), the identities

∇ · (E∇) = ∇ · (∇E)T = ∇(∇ · E),

∇ · (∇E) = (∇ · ∇)E,

and writing out ∇ · Q̄, we obtain the following:

εijEj
ε0

= ε̄rEi −
(1− µ−1r

k20
+
αQ
4

)
∇2
lEi +

(1− µ−1r
k20

− αQ
12

)
∇i(∇jEj).

However, as the evanescent mode is left out, the property ∇ · E = 0 associated with the
propagating modes can be applied, and therefore the last term above is zero. Using that
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∇ · E = ik · E and dividing both sides by E, the equation above thus reduces to

εij
ε0

= ε̄r −
[1− µ−1r

k20
+
αQ
4

]
klkl.

Differentiating with respect to kk and using ∂kα/∂kβ = δαβ, this becomes

1

ε0

∂εij
∂kk

= −2
(1− µ−1r

k20
+
αQ
4

)
klδlk

= −2
(1− µ−1r

k20
+
αQ
4

)
kk.

For our transmitted propagating mode, the first term of (80) can be expressed as

1

2µ0ω
|Et|2kt,

as k⊥E⊥B and the direction of E × B is in the kt-direction. In the above (2) has also
been used.

Now inserting this into equation (80), we get for Poynting’s vector in the right hand side
medium

St =
1/µr − αQk2i /4

2µ0ω
|Et|2kt. (81)

From equation (80) we can also find the expressions for Si and Sr. The incident and
reflected waves are on the vacuum side of our two media space, and εij is simply equal
to ε0. This means that the second term in (80) is zero. Using again (2), k⊥E⊥B and
that E∗×B is in the direction of k, we can express Poynting’s vector for the incident and
reflected waves as

Si =
ω

2µ0k2i
B2
i ki

Sr =
ω

2µ0k2i
B2
rkr.

Equating the z-components of the above vectors with the z-component of (81), recalling
that krz = −kiz = −k1z, we get

ωk1z
2µ0k2i

(
B2
i −B2

r

)
=

1/µr − αQk2i /4
2µ0ω

E2
t ktz.

31



Expressing E2
t as E2

tx+E
2
tz, inserting the expressions derived earlier for E2

tx and E2
tz, using

(64) and dividing by Bi, we get after some simplifications that

1− |r|2 = a|t|2, (82)

where a =
ktz
k1zεr

(1/µr − αQk2i /4)2.

Plotting the difference between the left and right hand sides of equation 82 using the
script in appendix F, it can be verified that the difference is zero with deviations on the
order of the computer’s numerical uncertainty. The equation is therefore seen to hold,
and the energy is conserved.

5.3 Dipolar Behaviour for a Negligible Quadrupolarisation

For a negligible quadrupolarisation (αQ ≈ 0), the expressions for f and g become

f =
ktz
k1z

1

εrµr
,

g =
1

µr
.

Using the definitions of the reflection and transmission coefficients (78) and (79), we
obtain by some algebra that

r =
k1zεr − ktz
εrk1z + ktz

,

t =
2εrµrk1z
εrk1z + ktz

.

which are the normal Fresnel equations for the the reflection and transmission of a dipolar
medium in vacuum. Using the script in appendix F with a very small value for αQ, this can
be plotted. For an angle of incidence of 0°, the coefficients for an air-water interface are
plotted in figure 3 as a function of the incident wavenumber times the critical dimension
d of the hypothetical inclusions. In figure 4, the transmission and reflection coefficients
are plotted for the same interface, but this time at an incidence angle of 53°, which is the
Brewster angle for water.
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Figure 3: Absolute values of transmission and reflection coefficients (t and r respectively)
for air-water as a function of the incident wavenumber times the critical dimension d of
the hypothetical inclusions, for an incidence angle of 0°.

Figure 4: Absolute values of transmission and reflection coefficients (t and r respectively)
for air-water as a function of the incident wavenumber times the critical dimension d of
the hypothetical inclusions, at the Brewster angle (53°).
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Figure 5: The absolute values of the transmission and reflection coefficients are plotted
above as a function of the incident wavenumber times the critical dimension d of the
hypothetical inclusions. Both the angle of incidence and the quadrupolarisation density
αQ are set to be the same as that in [15], namely 80° and 0.27d2 respectively, for easy
comparison.

5.4 Purely Quadrupolar Medium

For a purely quadrupolar medium, the dipolar permittivity and permeability have to have
the value of one, and we obtain from the script in appendix F the plot seen in figure 5.
As can be observed from comparison with the plots above, the quadrupolarisation is the
only source of frequency dependence in the model used.

5.5 Evanescent Transmission Wave Vector

As can be observed from equation (64), the transmission wave vector kt becomes imaginary
for when ( 1

µr
− 1

4
k20αQ

)
< 0,

and is ill-defined for when the left hand side above equals zero. From the inequation
above, the following inequation can easily be derived using the definition of [15] for the
quadrupolarisation density (αQ = 0.27d2),

k0d >

√
4

0.27µr
.
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Figure 6: Plot of the absolute values of the reflection and transmission coefficients squared,
normalised with the use of Poynting’s vector (giving the scaling factor a), as a function
of the incident wavenumber times the critical dimension d of the hypothetical inclusions.
In this plot an incidence angle of 80° was used.

As an example, for the electric permittivity εr = 4 and magnetic permeability µr = 4.84,
it can be calculated from the last equation that the transmission wave vector is evanescent
for frequencies k0d > 1.75. The scaled and squared transmission and reflection coefficients
for this example are plotted in figure 6 using the script in appendix F.

5.6 Yaghjian and Silveirinha’s Exact Fresnel Equations

In order to arrive at the boundary condition (66) above, an approximation of (58) was
done as in [15]. There it is stated that "For a highly accurate continuum, k20αQ � 1 and,
thus, the k20αQ/12-term in (47) can be neglected". This assumption is not necessarily
valid, or at least might be a very rough approximation, as the comparable k20αQ/4-term
is kept. Expressing E(2)

x as Etx +Eex and E(1)
x as Eix +Erx, and going through the same

calculations as those following (65)-(67) for this exact B-field boundary condition instead
of the approximated (66), the exact Fresnel equations can be derived. This is possible as
the different electric field components are related to each other through (68), (69) and (72)
(with the incident and reflection waves being related in the same way as the transmitted
one, as they are all propagating modes) and these components can further be related
to the induction fields through equations (73), (74) and (75). Doing this, one obtains a
coefficient g that is different to the one in (78) and (79), and reads
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g =
1/µr −

αQk
2
0

4ω
A
[
(ktz + kx + k2tz/3) + (2kez/3 + kx)B

]
1− αQk2x/12

,

where A is the total factor in (73) so that Etx = ABt and B is the total factor in
(72) so that Eex = BEtx. Using this expression for g in our formulae for the reflection
and transmission coefficients, the exact Fresnel equations (according to the derivation of
Yaghjian and Silveirinha) are obtained. Applying these coefficients in the equation for
the energy conservation (82) and plotting the difference between the left and right hand
sides using the script in appendix F, we can obtain a plot such as that in figure 7. As can
be seen from the green curve in the plot, the difference is non-zero, so energy conservation
is violated.

Figure 7: Plot of the absolute value of the difference between the left and right hand sides
of equation (82) for the exact expressions for the reflection and transmission coefficients
(the green curve) and for the approximated expressions (the red curve). This plot was
obtained for an angle of incidence about 60°, with an electric permittivity of 3, a perme-
ability of 2 and a quadrupolarisation density of 0.27d2. The angle was chosen so that the
deviation from zero would be maximised (given the values of the other parameters used).
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6 Boundary Conditions and Fresnel Equations for a
Medium with an Asymmetric Quadrupole Moment

In section 5, a medium exhibiting both electric and magnetic dipolarisation and also
electric quadrupolarisation was analysed in order to investigate the weak spatial dispersion
of a hypothetical metamaterial. By weak spatial dispersion is meant contributions to the
total polarisation that are second order in k or lower, in reciprocal space. In the case of
section 5, the second order effect consists of contributions from the magnetic dipolarisation
and electric quadrupolarisation. However, there might also be second order contributions
from higher order multipoles, and these would be missed in the case of section 5. Defining
instead a general multipole Q̄ that is asymmetric, all second order effects can be included
in Q̄. Using the same reference system as in 5 (that described in section 3), the polarisation
of an infinite medium of such kind can therefore be expressed as

P∞i = P d
i −

1

2
∇jQij, (83)

where P d
i is the electric dipolarisation. In order to model an interface, the half-space

equivalent expression should be used, which is obtained simply by multiplying the mo-
ments with the step function u(z). Using (5) and (6), the source densities thus become

ρ = u(z)ρ∞ − δ(z)Pz +
1

2
δ(z)

(
∇iQiz +∇jQzj

)
+

1

2
δ′(z)Qzz.

Ji = u(z)J∞ − 1

2
δ(z)Q̇iz.

Just as argued in [10], it is reasonable to assume that the fields must have a form so that
in Maxwell’s equations, there are field terms in singular order that match those of the
sources above. Consequently, just as for the electric quadrupole - magnetic dipole order
we can write

E = u(−z)E1 + u(z)E2 + δ(z)E(1),

B = u(−z)B1 + u(z)B2.

The boundary conditions can be derived with the sources and fields as expressed above.
The first step to obtaining these is to insert the expressions for the fields and sources
into Maxwell’s equations (equations (1)-(4)). Doing this and grouping the resulting terms
in singular functions of increasing order, one can observe that the step functions are
associated with Maxwell’s equations for the bulk of the media, and these terms are zero.
The remaining terms are then terms in δ and its derivative, as shown below;
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δ(z)
[
E2z − E1z +∇ · E(1) +

1

ε0

(
Pz −

1

2
[∇iQiz +∇jQzj]

)]
+ δ′(z)

(
E(1)
z −

1

2ε0
Qzz

)
= 0, (84)

δ(z)
([
− E2y + E1y, E2x − E1x, 0

]
+∇× E(1)

)
+ δ′(z)

[
− E(1)

y , E(1)
x , 0

]
= 0, (85)

δ(z)(B2z −B1z) = 0, (86)

δ(z)
[
−B2y +B1y +

1

2
µ0Q̇xz − ε0µ0Ė

(1)
x , B2x −B1x +

1

2
µ0Q̇yz − ε0µ0Ė

(1)
y ,

1

2
µ0Q̇zz − ε0µ0Ė

(1)
z

]
= 0. (87)

These equations are on the form

δ(z)f(z) + δ′(z)g(z) = 0,

from which one can derive two criteria for f and g. The first is gotten from taking the
integral of (6) with respect to z over some range containing z = 0. The second is gotten
from multiplying (6) with z, and then doing the same procedure. The criteria are found
to be

f0 − (∇zg)0 = 0, (88)

g0 = 0, (89)

where the subscript means that the expressions are evaluated at zero. Applying (89) to
the two equations (84) and (85), it can be seen that the surface term of the electric field
can be expressed as

E(1) =
[
0, 0,

1

2ε0
Qzz

]
.

Using this, the fact that a TM wave is modelled (so that Ey is zero everywhere) and
applying the criterium (88) to all of the equations (84)-(87), the following boundary
conditions are obtained;
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E2x − E1x =
1

ε0
∇xQzz, (90)

E2y − E1y = 0,

E2z − E1z = −
1

ε0

(
Pz −

1

2

[
∇xQxz +∇xQzx +∇zQzz

])
,

B2x −B1x = 0,

B2y −B1y = −
iωµ0

2
Qxz, (91)

B2z −B1z = 0.

In [15], the additional boundary condition (53) (Qzz = 0) was derived. There, Q̄ was the
symmetric electric quadrupole moment, but here we are dealing with a general Q̄ with
also an antisymmetric part. By comparison between the expression for the polarisation
(83) and the general expression for polarisation of a centro-symmetric weakly dispersive
medium (equation (28)), we can express Q̄ as

Qik = −2iηikljklEj.

Having thus a relation between Q̄ and the electric field, the updated versions of the
boundary conditions (90), (91) and (67) from which the Fresnel equations will be derived
can now be written

Etx − Eix − Erx = 0, (92)

Bt −Bi −Br = −ωµ0ηxzljklEj, (93)

ηzzljklEj = 0, , (94)

respectively. The evanescent mode is neglected for simplicity, and the validity of the
expressions can be verified by carrying out the same derivation as in [15], but using
instead the Q̄ as defined above.

The expression for the polarisation of the medium of interest is

Pi = ε0χijEj + ηikljkkklEj,

and consequently the induced current density can be written

Ji = −iωε0χijEj − iωηikljkkklEj.
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In order to find an expression for the transmission wavenumber squared (kt · kt), the curl
equations for the bulk of the medium can be combined. Using the expression above for
the current density and the property for propagating modes ∇·E = 0, the equation below
is found,

k2t = k20εr +
k20
ε0
ηikljkkkl.

When the index l = k, the rightmost term can be grouped with the left hand side term
as kkkk = k2t . Also, the fact that the order in which the spatial derivatives ∇k and ∇l

of (28) appear is unimportant, means that ηiklj = ηilkj. Thus, the equation above can be
further manipulated to give the expression

k2t =
k20

(
εr +

2

ε0
ηixzjkxktz

)
(
1− k20

ε0
(ηixxl + ηizzl)

) . (95)

Proceeding now to express the terms of (92) in terms of the induction field B, a relation
between Bi −Br and Bt can be found. Just as in 5, we use Faraday’s law (equation (2))
and ∇ · E = 0 to express Etx, Eix and Erx in terms of Bt, Bi and Br and thus obtain

Etx =
ωktz
k2t

Bt, (96)

=
ωktz
k20

(
1− k20

ε0
(ηixxl + ηizzl)

)
(
εr +

2

ε0
ηixzjkxktz

) Bt, (97)

where in the second equation (95) was used. The expressions for Eix and Erx remain
identical to the expressions (74) and (75) of section 5. Now inserting into the boundary
condition (92) and applying the boundary condition (94), it is found that

f =
ktx
k1z

(
1− k20

ε0
(ηixxl + ηxzzl)

)
(
εr +

2

ε0
ηixzjkxktz

) ,

where f has the same role as in section 5 of being the factor relating Bi −Br to Bt.

A second factor g also relating Bt, Bi and Br can be found from the boundary condition
(93). Writing out ηxzljklEj yields

Bt −Bi −Br = −ωµ0

(
ηxzxxkxEtx + ηxzxzkxEtz + ηxzzxktzEtx + ηxzzzktzEtz

)
.
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Using ∇ · Et = 0, inserting for Etx using (96) and applying (94), the expression for g
becomes as follows,

g = 1 +

(
1− k20

ε0
(ηixxl + ηxzzl)

)
ε0

(
εr +

2

ε0
ηixzjkxktz

) ((ηxzxx − ηxzzz)kxktz + ηxzzxk
2
tz − ηxzxzk2x

)
.

From this, the reflection and transmission coefficients are found as the simple functions
of f and g in equations (78) and (79), just as in section 5.
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7 Discussion

Throughout this thesis, the permittivity, permeability and quadrupolarisation density
have been treated as frequency independent, which is why the reflection and transmission
coefficient curves in the plots of section 5.3 are constant. This is not true, but in order
to investigate the spatial dispersion it is a practical assumption as this effect is then the
only source of wavenumber dependency.

The derivation of the boundary conditions for the case of explicit polarisation up to
electric octopole - magnetic quadrupole order in section 4.1 is relatively straight forward
and interesting for two reasons. Firstly, the electric and magnetic moments are allowed
to have a δ-function term. This leads to more complex boundary conditions with the
capability of accounting for surface effects in case these exist. Secondly, a polarisation to
electric octopole - magnetic quadrupole order would account for weak spatial dispersion
quite well by its magnetic dipole and electric quadrupole contribution, as well as the
potential contribution from the electric octopole and magnetic quadrupole. However,
to obtain the Fresnel equations from these would be a quite cumbersome task and is
not attempted in section 4.1. A more appealing way to handle media with higher order
multipoles would be the model chosen in 4.2, where the different orders are not expressed
explicitly, but rather implicitly contributing to the general polarisation. Furthermore, this
general polarisation is in 4.2 taken as a second order approximation in k, and therefore
all second order contributions from all multipoles can be accounted for. Since in [15] the
polarisation consists solely of the electric quadrupolarisation, and this is a second order
effect, the general polarisation of 4.2 should be able to express the quadrupolarisation.
Consequently, also the boundary conditions of section 4.2 should be able to express those
of [15]. However, as is seen in that section, the y-direction boundary condition of the
induction field derived in [15] cannot be expressed by the corresponding general boundary
condition derived in 4.2. One obvious reason one might suspect is the cause of this is that
the general boundary conditions of section 4.2 were derived using the half-space model of
Lange and Raab [5] for the fields, whereas the boundary conditions derived in [15] relied
on another model. However, as reasoned in section 3, these half-space field models turn
out to be equivalent. This can also be seen from inserting the definition of the electric
field used in [15] into equation (28). This gives exactly the same four last terms as in
(29), and therefore the same general boundary conditions follow. Instead, the difference is
likely due to the location of the step functions in the expressions for the polarisations. In
[15], the polarisation can be expressed as proportional to ∇·

[
u(z)Q̄

]
, whereas in the term

ηiklj∇k∇lEj the corresponding step function is found in the η-factor and thus outside the
scope of the nabla operator.

In section 5, dipolarisations were added to Yaghjian’s quadupole medium, thus resulting in
the description of a more complex medium that might be closer to what a realistic medium
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would actually be like. In the derivation of the boundary condition for the x-component of
the electric field, an assumption was made concerning the step functions associated with
the permittivity and permeability. These were assumed to changed abruptly at z = 0.
Although this might hold for the permittivity, the permeability is associated with the mag-
netic dipolarisation, which is of second order in k just as the electric quadrupolarisation.
Thus, if the electric quadrupolarisation needs to be modelled using smooth step functions
over the transition layer, this must also be the case for the magnetic dipolarisation. In
order to do this properly, the permittivity and permeability step functions should also be
taken as smooth step functions. Multiplying the whole of equation (51) with (1+u(z)χm)

and z and integrating over the transition layer would then imply a contribution from an

integral term −1

2
ω2µ0

∫ l
0
u(z)(∇ · Q0)xzdz. This integral must be evaluated in order to

know whether the assumption used in section 5 is really valid. Most likely, this would
only lead to a somewhat different first factor of equation (52), and therefore the derived
boundary condition would still hold.

Although the analysis of the medium and the derivation of its Fresnel coefficients in
section 5 seem successful, contributions to the second order spatial dispersion only come
from the magnetisation and the electric quadrupolarisation. As higher order multipoles
beyond the electric quadrupole and magnetic dipole might also contribute towards the
second order spatial dispersion, these possible contributions are not accounted for in the
model of section 5 and this possible limitation should be kept in mind.

As can be seen from section 5.3, the expressions for the reflection and transmission coef-
ficients for our realistic quadrupolar medium collapse down to the normal dipolar coeffi-
cients for when the quadrupolarisation density is set to be of a negligible magnitude. The
normal TM reflection effects such as the Brewster angle (figure 4) and the zero reflection
at normal incidence for an impedence matched medium (εr = µr) can then be obtained
using the script in appendix F. Thus, in the limit where αQ → 0, dipolar behavior is
obtained as expected.

Assuming instead that the medium of interest is purely quadrupolar (εr = µr = 1), the
electromagnetic response exhibits a significant wavenumber dependency as can be seen
from figure 5. Comparing with the corresponding plot in [15], it can be observed that the
two plots are in agreement, disregarding the evanescent mode free curve and accounting
for the fact that it is a slab medium that is modeled in [15].

The validity of equation (82) for the case where exact expressions for the reflection and
transmission coefficients are used, can be discussed based on the green curve of figure
7. The red curve shows the difference for the case of the approximated expressions,
and plotting this separately it can be verified that the deviation from zero is about 15
orders of magnitude smaller than the values of the left and right hand sides. Thus, the
difference is only due to intrinsic numerical uncertainty and the energy is conserved from
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the first medium to the second along the normal over the frequency range of interest, as
needed4. The green curve, on the other hand, shows a different situation. At kid = 0.5,
the deviation is about 1% of the values of the left and right hand sides of (82), and it
increases proportionally to the incident wavenumber squared. At lower frequencies, the
deviation is negligible as stated in [15].

In section 5.6 the exact expression for g is derived, and it is found that using this g leads to
violation of energy conservation across the boundary condition. Inserting the expressions
for the reflection and transmission coefficients (equations (78) and (79)) into the energy
conservation criterium (82), it can be seen that the equality requires

a = gf.

As the expression for g for the exact case is different to the approximated case, but the
same expression for a is used in both calculations, it is not surprising that energy conser-
vation is violated for one of the two cases. However, it is not obvious how the expression
of a should change, or why it apparently results in energy conservation for the case that
after all is only an approximation. This apparent problem was not mentioned in [15],
but it was claimed that the energy conservation was demonstrated (for the approximated
case) in [11]. However, clarity on this matter has not been achieved by the author of this
thesis, and the issue remains unsolved.

In section 6, Fresnel coefficients for the case of a general second order polarisation were
derived. This is the same as what was attempted in section 4.2, but due to the fact that
the derived general boundary conditions could not be unified with the specific boundary
conditions of [10] and [15] it could not be carried through. In section 6 the second order
term of the polarisation is expressed as the divergence of a general moment Q̄ to which
the second order effect of all multipoles is attributed. Thus, the form ∇ ·

[
u(z)Q̄

]
can

be used in the fashion of [10] and [15] instead of the form ηiklj∇k∇lEj of section 4.2,
but for a Q̄ that accounts for all second order contributions and not only those from the
magnetic dipole and electric quadrupole. The motivation for this choice is based on the
difference between these two forms discussed earlier in this section. As shown in section
5 and in [15], for a non-negligible quadrupole contribution there will exist an additional
mode in the quadrupole medium. This means that an additional boundary condition was
needed in order to derive the Fresnel coefficients, and the derivation of that boundary
condition depended on the quadrupole moment’s expression in terms of the fields, i.e. on
the constitutive relation Q̄(E). For multipole orders beyond those of section 5 or [15],
there might be more modes present, implying the need for more additional boundary
conditions. However, as we want to limit ourselves to weakly spatial dispersive media, we
operate with the second order approximation in k and may assume that the number of

4The evanescent wave in the transition layer does not carry energy.
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modes remains the same. This way, one can go through with the derivation as done in
section 6. The reflection and transmission coefficients obtained are expressed in terms of
η-coefficients. These coefficients are defined as the factors that multiplied with the second
order spatial derivative of the electric field constitute the second order effect in k of the
polarisation.

As is described in section 2 and in [12], the criterium |k0|d � 1 must hold in order for
the fundamental Floquet mode approximation to the macroscopic Maxwell equations to
be valid, and thus for the medium to be considered a continuum. The problem with
this is that the approximation prevents us from modelling the case of sizeable inclusions
(d ≤ λ) precisely, which is the case for metamaterials and the reason for them exhibiting
significant spatial dispersion. However, the results obtained here and in [15] can still be
of importance for materials with a less strict frequency criterium. According to [12], the
criterium |k0|d < 1 can sometimes be permitted, and even |k0|d > 1 for special inclusion
arrays.

Another point worth mentioning concerning the plot domain is that depending on the
given values of µr and αQ, the transmission wave vector might become negative within
the plot domain, as described in 5.5. This means that there is no propagating mode in
the medium of interest, and therefore there is only reflection. This is seen in figure 6 for
k0d > 1.75.
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8 Conclusion

In [15], Yaghjian and Silveirinha modelled a purely electric quadrupolar medium in order
to look at the quadrupole response isolated. In section 5, the quadrupolarisation is mod-
elled together with electric and magnetic dipolarisation in order to describe a medium
closer to what would be the case for a realistic material. As the Fresnel equations derived
here are in agreement with the standard Fresnel equations for the dipole approximation,
and likewise in agreement with [15] for the purely quadrupolar case when the dipolar-
isations are negligible, it is likely that we have been successful in our derivation of the
Fresnel equations for a medium with both dipolarisations and electric quadrupolarisation.

A goal for this thesis was to derive Fresnel equations for weakly dispersive media, defined
as a second order approximation in k to the polarisation. In section 5, the magnetic dipo-
larisation and electric quadrupolarisation contribute to the second order effect. However,
as it might be that also higher order multipoles contribute significantly to the second
order effect, it was of interest to investigate whether it is possible to obtain Fresnel equa-
tions for a general second order approximation to the spatial dispersion of a hypothetical
multipole medium. This was successfully done in section 6 under the assumption that
higher order multipole contributions to the second order effect do not entail additional
modes. The evanescent mode was also neglected for simplicity.

For further development of the field that has been the topic of this thesis, it would be
productive to repeat the derivation of the tangential electric field boundary condition in
section 5 without using the assumption stated there. Furthermore, it would be profitable
to gain clarity in the issue concerning the energy conservation discussed above. A first
step in order to do so would be to more thoroughly go through the article by Silveirinha
[11] to see whether the normal component of the Poynting vector for the approximated
case is really shown to be continuous across the transition layer. However, the answer to
this question will not explain the lacking energy conservation for the exact case, so this
should also be investigated. A last point for further improvement would be to derive the
Fresnel equations in section 6 without neglecting the evanescent mode.
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Appendices

Appendix A: Homogenisation theory for local media [3,
section 6.6]

The microscopic Maxwell equations read

∇· e = ρ/ε0 (98)

∇·b = 0 (99)

∇× e = −∂b

∂t
(100)

∇× b− 1

c2
∂e

∂t
= µ0j, (101)

where ρ is the microscopic charge density, j is the microscopic current density and the
macroscopic equations (equations (111)-(114)) can be derived from these through an av-
eraging operation of the form

〈F (x, t)〉 =
∫
f(x∗)F (x− x∗, t)d3x∗, (102)

where f(x) is a test function and F (x, t) is the function to be averaged. From the equation
it can be seen that the averaging operation commutes with the spatial and temporal
derivatives, mathematically expressed as

∂

∂xi

〈
F (x, t)

〉
=
〈∂F
∂xi

〉
∂

∂t

〈
F (x, t)

〉
=
〈∂F
∂t

〉
.

Applying the averaging function to the microscopic Maxwell equations (98) - (101), we
get directly to the macroscopic ones for the homogenous equations (99) and (100). On
the other hand, the inhomogenous equations become

ε0∇·E = 〈ρ(x, t)〉 (103)
1

µ0

∇×B− ε0
∂E

∂t
= 〈j(x, t)〉. (104)

To continue, one will need to find expressions for 〈ρ(x, t)〉 and 〈j(x, t)〉. The microscopic
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charge density can be expressed as

ρ(x, t) =
∑
j

qjδ(x− xj) +
∑
n

ρn(x, t), (105)

where
ρn(x, t) =

∑
j(n)

qjδ(x− xj).

The first term in equation (105) is the contribution from the free charge carriers in the
medium, whereas the second term is the contribution from bound molecular charges.
Applying the averaging function to ρn(x, t) gives

〈ρn(x, t)〉 =
∫
f(x∗)ρn(x− x∗, t)d3x∗

=
∑
j(n)

qj

∫
f(x∗)δ(x− x∗ − xjn − xn)

=
∑
j(n)

qjf(x− xn − xjn), (106)

where xj = xn+xjn is the jth charge of the nth molecule. As f(x, t) changes significantly
for small deviations of the argument (x − xn − xjn) from (x − xn) (xjn on the atomic
scale), a valid Taylor expansion of 〈ρn(x, t)〉 around (x− xn) can be made;

〈ρn(x, t)〉 =
∑
j(n)

qj

[
f(x− xn)− x· ∇f(x− xn) +

1

2

∑
ij

(xjn)i(xjn)j
∂2

∂xi∂xj
f(x− xn) + · · ·

]
= qnf(x− xn)− pn· ∇f(x− xn) +

1

2

∑
ij

(Q∗n)ij
∂2f(x− xn)

∂xi∂xj
+ · · · , (107)

where the second equation is obtained by identifying the microscopic multipole moments
in the first;

qn =
∑
j(n)

qj

pn =
∑
j(n)

qjxjn

(Q∗n)ij =
∑
j(n)

qj(xjn)i(xjn)j. (108)
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Rewriting equation (107), we get

〈ρn(x, t)〉 = 〈qnδ(x− xn)〉 − ∇· 〈pnδ(x− xn)〉+
1

2

∑
ij

∂2

∂xi∂xj
〈(Q∗n)ijδ(x− xn)〉,

and it can be seen from this equation that we can interpret the averaged charge density as
a collection of point multipoles (located at the same point) in the place of the molecule.
Now summing up over all the molecules, and adding the average of the free and mobile
monopole charge carriers, we get the following expression

〈ρ(x, t)〉 = ρ(x, t)−∇·P(x, t) +
1

2

∑
ij

Q∗ij(x, t) + · · · (109)

with

ρ(x, t) =
〈∑

j

qjδ(x− xj) +
∑
n

qnδ(x− xn)
〉

P(x, t) =
〈∑

n

pnδ(x− xn)
〉

Q∗ij(x, t) =
〈∑

n

(Q∗n)ijδ(x− xn)
〉
,

being the first three macroscopic electric multipoles. The index j counts the free monopole
charges and n counts molecules. Note that the definition for the macroscopic quadrupole
moment in (108) used here is different to the one used by Jackson [3], by a factor 3. The
reason for this choice is to get the equations on the same form as those used by Lange
and Raab [5, 10] and Silveirinha and Yagjian [15].

Inserting equation (109) into equation (103), we get

∑
i

∂

∂xi

[
ε0Ei + Pi −

1

2

∑
j

∂

∂xj
Q∗ij + · · ·

]
= ρ

This is now the macroscopic Maxwell equation corresponding to (98),

∇·D = ρ,

with
Di = ε0Ei + Pi −

1

2

∑
j

∂Q∗ij
∂xj

+ · · · . (110)

The derivation for the macroscopic current density J(x, t) is done the same way, but is
more complicated due to its vector nature. The starting point is the expression for the
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microscopic current density

j(x, t) =
∑
j

qjvjδ(x− xj(t)).

Doing the average of this function (for the sum of the molecules and free charges), and
inserting that expression into equation (101), we get

∇×H− ∂D

∂t
= J,

with the response field H given through the relation( 1

µ0

B−H
)
i
=Mi +

〈∑
n

(p× vn)iδ(x− xn)
〉

−1

6

∑
jγδ

εijγ
∂

∂xδ

〈∑
n

(Q∗n)δj(vn)γδ(x− xn)
〉
+ · · ·

The last two terms are normally very small, as the velocities of the molecules vn are
low and fluctuate. However, if the whole medium moves (vn = v for all n), then the
expression for H is simplified to

H =
1

µ0

B−M− (D− ε0E)× v,

and if v = 0 we get the familiar relation

H =
1

µ0

B−M.

Thus, we’ve finally arrived at the macroscopic Maxwell equations:

∇·D = ρ (111)

∇·B = 0 (112)

∇× E +
∂B

∂t
= 0 (113)

∇×H− ∂D

∂t
= J, (114)

where ρ and J are the free monopole charge density (static ions included) and current
density respectively. Although the above derivation is done for a natural material, it also
holds for a metamaterial where the metamaterial unit cell replaces the molecules of the
natural material and the criterium d/λ � 1 still holds, where d is the dimension of the
metamaterial unit cell. [14, section 2].
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Appendix B

We use the definition of the current density J in [10] (equation (2)). Redefining the
multipoles as consisting of a step function term and a surfrace delta term, e.g. Qij →
u(z)Qij + δ(z)Q

(1)
ij , we can express the half-space current density as

J∞/2 = u(z)
[
Ṗi −

1

2
∇jQ̇

(1)
ij + εijk∇jMk +

1

6
∇j∇kQ̇ijk −

1

2
εijl∇j∇kMlk

]
− δ(z)

[
− P (1)

i +
1

2
(Q̇iz +∇jQ̇

(1)
ij )− (εizkMk + εijk∇jM

(1)
k )− 1

6
(2∇jQ̇ijz +∇j∇kQ̇

(1)
ijk)

+
1

2
(εijl∇jMlz + εizl∇kMlk + εijl∇j∇kM

(1)
lk )
]

+ δ′(z)
[
− 1

2
Q̇

(1)
iz + εizkM

(1)
k +

1

6
(Q̇izz + 2∇jQ̇

(1)
ijz)−

1

2
(εizlMlz + εijl∇jM

(1)
lz + εizl∇kM

(1)
lk )
]

− δ′′(z)
[
− 1

6
Q̇

(1)
izz +

1

2
εizlM

(1)
lz

]
. (115)

Appendix C

The expressions for the left hand sides of Maxwell’s equations (2)-(4) are given below.
Using (14) and (15), the following is obtained for (2):

δ(z)
([
E1y −E2y;E2x−E1x; 0

]
+∇×E(1) + Ḃ

(1)
)
+ δ′(z)

([
−E(1)

y ;E(1)
x ; 0

]
+∇×E(2)

)
+ δ′′(z)

([
− E(2)

y ;E(2)
x ; 0

])
. (116)

Equation (3) is obtained by simply taking the divergence of (15), and this gives

δ(z)
(
B2z −B1z +∇iB

(1)
i

)
+ δ′B(1)

z . (117)

Lastly, (14), (15) and (115) are used to express (4),
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δ(z)
[
B1y−B2y+(∇yB

(1)
z −∇zB

(1)
y )+µ0

(
−P (1)

x +
1

2
Q̇xz+∇jQ̇

(1)
xj +My−(∇yM

(1)
z −∇zM

(1)
y )

−1

3
∇jQ̇xjz−

1

6
∇j∇kQ̇

(1)
xjk+

1

2
(∇yMzz−∇zMyz−∇kMyk+∇y∇kM

(1)
zk −∇z∇kM

(1)
yk )−ε0Ė

(1)
x

)
;

B2x −B1x +∇zB
(1)
x −∇xB

(1)
z + µ0

(
− P (1)

y +
1

2
Q̇yz +∇jQ̇

(1)
yj −Mx −∇zM

(1)
x −∇xM

(1)
z

−1

3
∇jQ̇yjz−

1

6
∇j∇kQ̇

(1)
yjk+

1

2
(∇zMxz−∇xMzz+∇kMxk+∇z∇kM

(1)
xk −∇x∇kM

(1)
zk )−ε0Ė

(1)
y

)
;

∇xB
(1)
y −∇yB

(1)
x + µ0

(
− P (1)

z +
1

2
Q̇zz +∇jQ̇

(1)
zj −

1

3
∇jQ̇zjz −

1

6
∇j∇k

Q̇
(1)
zjk +

1

2
(∇xMyz −∇yMxz +∇x∇kM

(1)
yk −∇y∇kM

(1)
xk )− ε0Ė

(1)
z

)]
+ δ′(z)

[
−B(1)

y − µ0

(
− 1

2
Q̇(1)
xz −M (1)

y +
1

6
(Q̇xzz + 2∇jQ̇

(1)
xjz)

− 1

2
(−Myz +∇yM

(1)
zz −∇zM

(1)
yz −∇kM

(1)
yk ) + ε0Ė

(2)
x );

B(1)
x −µ0

(
−1

2
Q̇(1)
yz +M

(1)
x +

1

6
(Q̇yzz+2∇jQ̇

(1)
yjz)−

1

2
(Mxz+∇zM

(1)
xz −∇xM

(1)
zz +∇kM

(1)
xk )+ε0Ė

(2)
y

)
;

− µ0

(
− 1

2
Q̇(1)
zz +

1

6
(Q̇zzz + 2∇jQ̇

(1)
zjz)−

1

2
(∇xM

(1)
yz −∇yM

(1)
xz ) + ε0Ė

(2)
z

)]
+ δ′′(z)

[
µ0(−

1

6
Q̇(1)
xzz −

1

2
M (1)

yz );µ0(−
1

6
Q̇(1)
yzz +

1

2
M (1)

xz );−µ0
1

6
Q̇(1)
zzz

]
. (118)

Appendix D

E2x − E1x =
1

2ε0

(
∇xQzz −∇x

[
∇xQxzz +∇yQyzz +

1

3
∇zQzzz

])
+

1

ε0

(
−∇xP

(1)
z +∇2

xQ
(1)
xz +∇x∇yQ

(1)
yz −

1

2
∇x∇i∇jQ

(1)
ijz +∇z∇x∇iQ

(1)
izz + 3∇2

z∇xQ
(1)
zzz

)
+µ0

(1
6
Q̈xzz+

1

2
Ṁyz−

1

2
Q̇(1)
xz −Ṁ (1)

y +
1

3
∇jQ̈xjz

(1)+
1

2

[
∇xṀ

(1)
yx +∇yṀ

(1)
yy −∇zṀzz

(1)
])
.

E2y − E1y =
1

2ε0

(
∇yQzz −∇y

[
∇xQxzz +∇yQyzz +

1

3
∇zQzzz

])
+

1

ε0

(
−∇yP

(1)
z +∇y∇iQ

(1)
iz −

1

2
∇y∇i∇jQ

(1)
ijz −∇z∇yQ

(1)
zz +∇z∇y∇iQ

(1)
izz + 3∇2

z∇yQ
(1)
zzz

)
+µ0

(1
6
Q̈yzz−

1

2
Ṁxz−

1

2
Q̈(1)
yz +Ṁ

(1)
x +

1

3
∇jQ̈

(1)
yjz+

1

2

[
∇xṀzz

(1)−∇zṀxz
(1)−∇kṀ

(1)
xk

])
.
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B2z −B1z =
1

2
µ0

(1
3
∇yQ̇xzz −

1

3
∇xQ̇yzz +∇xMxz +∇yMyz

)
+ µ0

(1
3

[
∇z∇xQ̇

(1)
yzz −∇z∇yQ̇

(1)
xzz +∇y∇jQ̇

(1)
xjz −∇x∇jQ̇

(1)
yjz

]
+

1

2

[
∇xQ

(1)
yz −∇yQ̇

(1)
xz +∇2

x(M
(1)
xx −M (1)

zz )−∇2
yM

(1)
zz

]
−∇xM

(1)
x −∇yM

(1)
y −∇z∇xM

(1)
xz −∇z∇yM

(1)
yz −∇2

yM
(1)
yy

)
.

B2x −B1x = −µ0

[1
2
Q̇yz −Mx −

1

3

(
∇xQ̇xyz +∇yQ̇yyz +

1

2
∇zQ̇yzz −

1

2
∇yQ̇zzz

)
+

1

2

(
∇kMxk −∇xMzz

)
− P (1)

y +∇jQ̇
(1)
yj −∇xM

(1)
z + 2∇z∇yQ̇

(1)
zzz

− 1

2

(
∇2
xM

(1)
zx +∇x∇yM

(1)
zy +∇yQ̇

(1)
zz −∇y∇iQ̇

(1)
izz +∇zQ̇

(1)
yz

)
+

1

3
∇z∇iQ̇

(1)
yiz −

1

6

(
∇j∇kQ̇

(1)
yjk +∇

2
zQ̇

(1)
yzz

)]
.

B2y −B1y = µ0

[1
2
Q̇xz +My −

1

3

(
∇xQ̇xxz +∇yQ̇xyz +

1

2
∇zQ̇xzz −

1

2
∇xQ̇zzz

)
− 1

2

(
∇kMyk −∇yMzz

)
− P (1)

x +∇jQ̇
(1)
xj −∇yM

(1)
z + 2∇z∇xQ̇

(1)
zzz

+
1

2

(
∇y∇xM

(1)
zx +∇2

yM
(1)
zy −∇xQ̇

(1)
zz +∇x∇iQ̇

(1)
izz −∇zQ̇

(1)
xz

)
+

1

3
∇z∇iQ̇

(1)
xiz −

1

6

(
∇j∇kQ̇

(1)
xjk +∇

2
zQ̇

(1)
xzz

)]
.

Appendix E

∇×E+Ḃ = δ(z)
[
E1y−E2y+∇yE

(1)
z −∇zE

(1)
y +Ḃ(1)

x ;E2x−E1x+∇zE
(1)
x −∇xE

(1)
z +Ḃ(1)

y ;

∇xE
(1)
y −∇yE

(1)
x + Ḃ(1)

z

]
+δ′(z)

[
−E(1)

y +∇yE
(2)
z −∇zE

(2)
y ;E(1)

x +∇zE
(2)
x −∇xE

(2)
z ;∇xE

(2)
y −∇yE

(2)
x

]
+δ′′(z)

[
−E(2)

y ;E(2)
x ; 0

]
.

∇ ·B = δ(z)
(
B2z −B1z +∇iB

(1)
i

)
+ δ′(z)B(1)

z .
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∇×B− µ0J− µ0ε0Ė = δ(z)
[
−B2y +B1y +∇yB

(1)
z −∇zB

(1)
y − µ0Ṗ

(1)
x − µ0ε0Ė

(1)
x ;

B2x −B1x +∇zB
(1)
x −∇xB

(1)
z − µ0Ṗ

(1)
y − µ0ε0Ė

(1)
y ;∇xB

(1)
y −∇yB

(1)
x − µ0Ṗ

(1)
z − µ0ε0Ė

(1)
z

]
+ δ′(z)

[
−B(1)

y − µ0Ṗ
(2)
x − µ0ε0Ė

(2)
x ;B(1)

x − µ0Ṗ
(2)
y − µ0ε0E

(2)
y ;−µ0Ṗ

(2)
z − µ0ε0E

(2)
z

]
.

Appendix F

1 from numpy import pi, sin

2 import numpy as np

3 import math

4 import matplotlib.pyplot as plt

5 from matplotlib.widgets import Slider, Button, RadioButtons

6 from matplotlib import rc

7 from numpy.lib import scimath

8

9 # Constants and definitions

10

11 global mu_0, mu_r, epsilon_0, epsilon_r, B_i, d, alpha_Q #, k_e_dot_k_e

12

13 epsilon_r = 3 # relative permittivity

14 mu_0 = 4*pi*1e-7 # vacuum permeability

15 mu_r = 2 # relative permeability

16 epsilon_0 = 8.85418782*1e-12 # vacuum permittivity

17 #B_i = 1e-6

18 d = 100*1e-9 # dimension of inclusions

19 alpha_Q = 0.27*d**2 # quadrupolarisation density

20

21 def transmission(angle, k_i):

22 #allocating global variables

23 global k_e_dot_k_e, mu_r_, k_x, k_2x, k_ex, k_1z, k_t, k_tz, ...

k_ez, f, g, a,\

24 g_exact_no_evan, E_tx_B_t_ratio, E_ex_E_tx_ratio, g_exact

25 k_e_dot_k_e = -3*epsilon_r/alpha_Q

26 mu_r_ = 1/(1/mu_r-alpha_Q*k_i**2/4)

27 k_x = (math.sin(math.radians(angle)))*(k_i)

28 k_2x = k_x

29 k_ex = k_x

30 k_1z = (math.cos(math.radians(angle)))*(k_i)

31 k_t = scimath.sqrt((k_i)**2*epsilon_r*mu_r_)

32 k_tz = np.sqrt(k_t**2 - k_2x**2)

33 k_ez = 1j * np.sqrt(k_ex**2 - k_e_dot_k_e)
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34 f = (k_tz/k_1z)*(1/mu_r_)/(epsilon_r + alpha_Q*k_x**2/2)

35 g = (1/mu_r)-alpha_Q*(1/mu_r_)*(k_t**2-2*k_x**2-\

36 (alpha_Q*k_x**2*k_ez*k_tz)/(epsilon_r + ...

alpha_Q*k_x**2/2))/\

37 (4*epsilon_r)

38 g_exact_no_evan = (1/mu_r-(alpha_Q/4)*(k_i**2/3 + ...

k_tz*mu_r_/epsilon_r))/\

39 (1-k_x**2*alpha_Q/12)

40 E_tx_B_t_ratio = k_tz/(k_i**2*epsilon_r*mu_r_)

41 E_ex_E_tx_ratio = -alpha_Q*k_x**2/(2*epsilon_r + alpha_Q*k_x**2)

42 g_exact = (1/mu_r-E_tx_B_t_ratio*(k_i**2*alpha_Q/4)*\

43 ((k_tz+k_x+k_x**2/(3*k_tz))\

44 + (2*k_ez/3+k_x)*E_ex_E_tx_ratio))/\

45 (1-k_x**2*alpha_Q/12)

46 a = k_tz*(1/mu_r_)**2/(k_1z*epsilon_r)

47 return (2/(f+g))

48

49 def reflection(angle, k_i):

50 return ((g-f)/(f+g))

51

52 def transmission_exact_no_evan(angle, k_i):

53 return (2/(f+g_exact_no_evan))

54

55 def reflection_exact_no_evan(angle, k_i):

56 return ((g_exact_no_evan-f)/(f+g_exact_no_evan))

57

58 def transmission_exact(angle, k_i):

59 return (2/(f+g_exact))

60

61 def reflection_exact(angle, k_i):

62 return ((g_exact-f)/(f+g_exact))

63

64

65 axis_color = 'lightgoldenrodyellow'

66 fig = plt.figure()

67 plt.rc('font', family='serif')

68 plt.xlabel('$k_i d$')

69 fig2 = plt.figure()

70 plt.rc('font', family='serif')

71 plt.xlabel('$k_i d$')

72 fig3 = plt.figure()

73 plt.rc('font', family='serif')

74 plt.xlabel('$k_i d$')

75

76

77 # Draw the plot

78 ax = fig.add_subplot(111)
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79 ax.text(0.9, 0.9, '$\epsilon_r = $' + str(epsilon_r) + '\n' + \

80 '$\mu_r = $' + str(mu_r))

81

82 fig.subplots_adjust(left=0.25, bottom=0.25)

83 ax2 = fig2.add_subplot(111)

84 ax2.text(0.9, 0.8, '$\epsilon_r = $' + str(epsilon_r) + '\n' + \

85 '$\mu_r = $' + str(mu_r))

86 fig2.subplots_adjust(left=0.25, bottom=0.25)

87 ax3 = fig3.add_subplot(111)

88 ax3.text(0.9, 0.8, '$\epsilon_r = $' + str(epsilon_r) + '\n' + \

89 '$\mu_r = $' + str(mu_r))

90 fig3.subplots_adjust(left=0.25, bottom=0.25)

91 k_i = np.arange(0.01/d, 2/d, 0.01/d)

92 angle_0 = 80

93 [line] = ax.plot(k_i*d, abs(transmission(angle_0, k_i)), linewidth=2, ...

color='red', label="|t|")

94 [line2] = ax.plot(k_i*d, abs(reflection(angle_0, k_i)), linewidth=2, ...

color='blue', label="|r|")

95 [line3] = ax2.plot(k_i*d, abs(reflection(angle_0, k_i))**2, ...

linewidth=2, color='blue', label="|r|^2")

96 [line4] = ax2.plot(k_i*d, a*abs(transmission(angle_0, k_i))**2, ...

linewidth=2, color='red', label="a*|t|^2")

97 [line5] = ax3.plot(k_i*d, abs(reflection(angle_0, ...

k_i))**2+a*abs(transmission(angle_0, k_i))**2-1, linewidth=2, ...

color='red', label="approximated case") # label="diff"

98 #[line6] = ax.plot(k_i*d, abs(transmission_exact_no_evan(angle_0, ...

k_i)), linewidth=2, color='black', label="|t|")

99 #[line7] = ax.plot(k_i*d, abs(reflection_exact_no_evan(angle_0, ...

k_i)), linewidth=2, color='orange', label="|r|")

100 [line8] = ax.plot(k_i*d, abs(transmission_exact(angle_0, k_i)), ...

linewidth=2, color='green', label="|t| exact")

101 [line9] = ax.plot(k_i*d, abs(reflection_exact(angle_0, k_i)), ...

linewidth=2, color='purple', label="|r| exact")

102 [line10] = ax2.plot(k_i*d, abs(reflection_exact(angle_0, k_i))**2, ...

linewidth=2, color='purple', label="|r|^2 exact")

103 [line11] = ax2.plot(k_i*d, a*abs(transmission_exact(angle_0, ...

k_i))**2, linewidth=2, color='green', label="a*|t|^2 exact")

104 [line12] = ax3.plot(k_i*d, abs(abs(reflection_exact(angle_0, ...

k_i))**2+a*abs(transmission_exact(angle_0, k_i))**2-1), ...

linewidth=2, color='green', label="exact case")

105

106

107 ax.set_xlim([0, 2])

108 ax.set_ylim([0, 1.5])

109 ax2.set_xlim([0, 2])

110 ax2.set_ylim([0, 1.5])

111 ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
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112 ncol=2, mode="expand", borderaxespad=0.)

113 ax.grid()

114 ax2.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,

115 ncol=2, mode="expand", borderaxespad=0.)

116 ax2.grid()

117

118 plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,

119 ncol=2, mode="expand", borderaxespad=0.)

120 ax3.set_xlim([0, 2])

121 #plt.legend(bbox_to_anchor=(0.8, 0.95), loc=2, borderaxespad=0.)

122

123

124 # Add two sliders for tweaking the parameters

125 angle_slider_ax = fig.add_axes([0.25, 0.10, 0.65, 0.03], ...

facecolor=axis_color)

126 angle_slider = Slider(angle_slider_ax, 'angle', 0.0, 90.0, ...

valinit=angle_0)

127

128 def sliders_on_changed(val):

129 line.set_ydata(abs(transmission(angle_slider.val, k_i)))

130 line2.set_ydata(abs(reflection(angle_slider.val, k_i)))

131 line3.set_ydata(abs(reflection(angle_slider.val, k_i))**2)

132 line4.set_ydata(a*abs(transmission(angle_slider.val, k_i))**2)

133 line5.set_ydata(abs(reflection(angle_slider.val, ...

k_i))**2+a*abs(transmission(angle_slider.val, k_i))**2-1)

134 #line6.set_ydata(abs(transmission_exact_no_evan(angle_slider.val, ...

k_i)))

135 #line7.set_ydata(abs(reflection_exact_no_evan(angle_slider.val, ...

k_i)))

136 line8.set_ydata(abs(transmission_exact(angle_slider.val, k_i)))

137 line9.set_ydata(abs(reflection_exact(angle_slider.val, k_i)))

138 line10.set_ydata(abs(reflection_exact(angle_slider.val, k_i))**2)

139 line11.set_ydata(a*abs(transmission_exact(angle_slider.val, k_i))**2)

140 line12.set_ydata(abs(abs(reflection_exact(angle_slider.val, ...

k_i))**2+a*abs(transmission_exact(angle_slider.val, k_i))**2-1))

141 fig.canvas.draw_idle()

142 fig2.canvas.draw_idle()

143 fig3.canvas.draw_idle()

144 angle_slider.on_changed(sliders_on_changed)

145

146

147 # Add a button for resetting the parameters

148 reset_button_ax = fig.add_axes([0.8, 0.025, 0.1, 0.04])

149 reset_button = Button(reset_button_ax, 'Reset', color=axis_color, ...

hovercolor='0.975')

150 def reset_button_on_clicked(mouse_event):

151 #freq_slider.reset()
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152 angle_slider.reset()

153

154 reset_button.on_clicked(reset_button_on_clicked)

155 plt.grid()

156 plt.show()

60



References

[1] Vladimir M. Agranovich and V. Ginzburg. Crystal Optics with Spatial Dispersion,
and Excitons. 3rd ed. Springer Series in Solid-State Sciences. Springer-Verlag Berlin
Heidelberg, 1984. isbn: 978-3-662-02408-9.

[2] L.D. LANDAU and E.M. LIFSHITZ. Electrodynamics of Continuous Media (Second
Edition Revised and Enlarged). Second Edition Revised and Enlarged. Vol. 8. Course
of Theoretical Physics. Amsterdam: Pergamon, 1984. isbn: 978-0-08-030275-1. doi:
http://dx.doi.org/10.1016/B978-0-08-030275-1.50025-4. url: http:
//www.sciencedirect.com/science/article/pii/B9780080302751500254.

[3] John David Jackson. Classical electrodynamics. 3rd ed. New York, NY: Wiley, 1999.
isbn: 9780471309321. url: http://cdsweb.cern.ch/record/490457.

[4] J. B. Pendry. “Negative Refraction Makes a Perfect Lens”. In: Phys. Rev. Lett.
85 (18 Oct. 2000), pp. 3966–3969. doi: 10.1103/PhysRevLett.85.3966. url:
https://link.aps.org/doi/10.1103/PhysRevLett.85.3966.

[5] R. E. Raab and O. L. De Lange. Multipole theory in electromagnetism: classical,
quantum, and symmetry aspects, with applications. International series of mono-
graphs on physics. Oxford: Clarendon Press, 2005. url: https://cds.cern.ch/
record/859649.

[6] J. B. Pendry. “Metamaterial Electromagnetic Cloak at Microwave Frequencies”. In:
Science 340 (2006), pp. 977–980. doi: 10.1126/science.1133628.

[7] David J. Cho et al. “Contribution of the electric quadrupole resonance in optical
metamaterials”. In: Phys. Rev. B 78 (12 Sept. 2008), p. 121101. doi: 10.1103/
PhysRevB.78.121101. url: https://link.aps.org/doi/10.1103/PhysRevB.78.
121101.

[8] F. Capolino. Theory and Phenomena of Metamaterials. Metamaterials Handbook.
CRC Press, 2009. isbn: 9781420054262. url: https://books.google.it/books?
id=0PMnYo8hva8C.

[9] Do-Hoon Kwon and D. H. Werner. “Transformation Electromagnetics: An Overview
of the Theory and Applications”. In: Antennas and Propagation Magazine, IEEE
52.1 (Feb. 2010), pp. 24–46. issn: 1045-9243. doi: 10.1109/map.2010.5466396.
url: http://dx.doi.org/10.1109/map.2010.5466396.

[10] O. L. de Lange and R. E. Raab. “Electromagnetic boundary conditions in multipole
theory”. In: Journal of Mathematical Physics 54.9 (2013), p. 093513. doi: 10.1063/
1 . 4821642. eprint: http : / / dx . doi . org / 10 . 1063 / 1 . 4821642. url: http :
//dx.doi.org/10.1063/1.4821642.

61

http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-08-030275-1.50025-4
http://www.sciencedirect.com/science/article/pii/B9780080302751500254
http://www.sciencedirect.com/science/article/pii/B9780080302751500254
http://cdsweb.cern.ch/record/490457
http://dx.doi.org/10.1103/PhysRevLett.85.3966
https://link.aps.org/doi/10.1103/PhysRevLett.85.3966
https://cds.cern.ch/record/859649
https://cds.cern.ch/record/859649
http://dx.doi.org/10.1126/science.1133628
http://dx.doi.org/10.1103/PhysRevB.78.121101
http://dx.doi.org/10.1103/PhysRevB.78.121101
https://link.aps.org/doi/10.1103/PhysRevB.78.121101
https://link.aps.org/doi/10.1103/PhysRevB.78.121101
https://books.google.it/books?id=0PMnYo8hva8C
https://books.google.it/books?id=0PMnYo8hva8C
http://dx.doi.org/10.1109/map.2010.5466396
http://dx.doi.org/10.1109/map.2010.5466396
http://dx.doi.org/10.1063/1.4821642
http://dx.doi.org/10.1063/1.4821642
http://dx.doi.org/10.1063/1.4821642
http://dx.doi.org/10.1063/1.4821642
http://dx.doi.org/10.1063/1.4821642


[11] Mário G Silveirinha. “Boundary conditions for quadrupolar metamaterials”. In: New
Journal of Physics 16.8 (2014), p. 083042. url: http://stacks.iop.org/1367-
2630/16/i=8/a=083042.

[12] A. D. Yaghjian. “Boundary conditions for electric quadrupolar continua”. In: Radio
Science 49.12 (2014). 2014RS005530, pp. 1289–1299. issn: 1944-799X.

[13] A. D. Yaghjian et al. “Electric Quadrupolarizability of a Source-Driven Dielectric
Sphere”. In: Progress in Electromagnetics Research B - PIERB 63.- (July 2015),
pp. 95–106.

[14] C. A. Dirdal et al. “Higher Order Terms and Locality in Metamaterial Homogeniza-
tion”. Unpublished work. 2016.

[15] A. D. Yaghjian and M. G. Silveirinha. “Additional boundary condition for electric
quadrupolar continua derived from Maxwell’s differential equations”. In: Radio Sci-
ence 51.8 (2016). 2016RS006066, pp. 1312–1321. issn: 1944-799X. doi: 10.1002/
2016RS006066. url: http://dx.doi.org/10.1002/2016RS006066.

62

http://stacks.iop.org/1367-2630/16/i=8/a=083042
http://stacks.iop.org/1367-2630/16/i=8/a=083042
http://dx.doi.org/10.1002/2016RS006066
http://dx.doi.org/10.1002/2016RS006066
http://dx.doi.org/10.1002/2016RS006066

	Introduction
	Polarisation and Homogenisation of Nonlocal Media
	Halfspace Model for Analysis of Interface Behaviour of Waves
	Boundary Conditions for Media with Higher Order Multipoles
	Boundary Conditions and Fresnel Equations for a Realistic Quadrupolar Medium
	Boundary Conditions and Fresnel Equations for a Medium with an Asymmetric Quadrupole Moment
	Discussion
	Conclusion
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

