
Implementation of Particle Swarm
Optimization Algorithm within FieldOpt
Optimization Framework
Application of the algorithm to well

placement optimization

Chingiz Panahli

Petroleum Engineering

Supervisor: Jon Kleppe, IGP
Co-supervisor: Mathias Bellout, IGP

Department of Geoscience and Petroleum

Submission date: July 2017

Norwegian University of Science and Technology



 



Abstract

In the present work, particle swarm optimization algorithm is applied in well placement
optimization problem using FieldOpt, a software framework that aims at being common
platform for field development optimization. Different types of particle swarm optimiza-
tion algorithm have been developed and integrated inside FieldOpt optimization frame-
work in order to increase the capabilities of the framework for field development opti-
mization problems. The algorithm that has been implemented in this work is simple and
flexible and it can be used easily as hybrid with other algorithms in the future. We have
applied particle swarm optimization algorithm to optimize the locations of vertical and
horizontal wells in simple and realistic reservoir models. A dynamic penalty function
was coupled inside the algorithm in order to treat the non-linear constraints, such as well
length, inter-well distance and reservoir boundary constraints.
We first apply the algorithm on a simple two dimensional five spot model that consists of
four vertical injectors and one horizontal producer. We run particle swarm optimization
in order to check the performance of the algorithm and determine optimal parameters by
performing a sensitivity analysis. Three cases are run on the simple model and the cases
vary in terms of the type of constraints implemented. In all the cases, we use fixed con-
trol parameters for injectors and producers. In the first case, we optimize the location of
one production well that is subject to the well length constraint only. In the second case,
we use both well length and reservoir boundary constraints. In the third case, we use all
the constraints in order to optimize the location of two horizontal producers. The results
suggest that the algorithm converged to an optimum solution with given constraints and
assumptions for the simple five spot model.
After getting satisfactory results on the simple reservoir model, we apply particle swarm
optimization on a new benchmark known as OLYMPUS. This is a new field development
challenge that is launched by TNO (Netherlands Organization for Applied Scientific Re-
search) within the context of the ISAPP (International Scientific Association for Probiotics
and Prebiotics) research program. The reservoir model is characterized with faults, hor-
izontal barriers across the different zones and high permeability channels, which makes
the optimization problem more complex than the simple five spot model. The reference
operating strategy of the field consists of six injectors and eight producers that are con-
trolled by a pressure constraint. We optimize the locations of first five production wells
while fixing the locations and operating parameters of the other wells as same as in the
reference case. Because of high computational demand and time limitations, we could not
use enough simulations to reach an optimum solution in this case. However, we compare
the optimization runs and give suggestions for future work for the well placement part of
the OLYMPUS field development plan.

i



ii



Preface

This thesis is written as part of the Master’s degree in Petroleum Engineering, at the De-
partment of Geoscience and Petroleum, NTNU. It was written during the spring semester
of 2017 under the supervision of Prof. Jon Kleppe and Postdoc Mathias Bellout.
This work is based on the application of several tools and concepts, such as C++ program-
ming language, numerical methods in petroleum, reservoir simulation and other relevant
terminology. Therefore, it is assumed that the reader is familiar with those concepts.
The algorithm developed during this thesis enhances the capabilities of the FieldOpt frame-
work. The main improvements and new functionalities have been made in the optimizer
interface of the FieldOpt. The most remarkable result of these improvements is that the
optimizer interface is now better organized and more robust. This will make the addition
of new algorithms easier in the future.

iii



iv



Acknowledgments

I would like to thank my supervisor, Professor Jon Kleppe, for his continuous support
and guidance, and my co-supervisor, Postdoc Mathias Bellout, for his help and advice on
almost every aspect of this thesis - without his expertise in optimization theory I would not
be able to complete this thesis.
I would also like to express my gratitude to Mansoureh Jesmani for the valuable insight that
she gave me. Lastly, thanks to Einar Baumann and Hilmar Magnusson for their continuous
help and advice on programming during this thesis.

v



vi



Table of Contents

Abstract i

Preface iii

Acknowledgments v

Table of Contents viii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Scope of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature review 5
2.1 Well placement optimization . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 PSO in well placement optimization . . . . . . . . . . . . . . . . . . . . 8

3 Optimization 13
3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Bound constraints . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Practical constraints . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Global Best PSO . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Local Best PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Neighborhood topologies . . . . . . . . . . . . . . . . . . . . . . 23
3.4.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



3.5 Constraint handling methods . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Penalty method . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Implementation 29
4.1 FieldOpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Driver file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Runner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Optimizer interface . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.4 Simulator interface . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.5 Case class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 PSO Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Particle class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 PSO class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Iterate method . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Initialize cases method . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.3 Apply penalty method . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.4 Update Global Best Case method . . . . . . . . . . . . . . . . . 37
4.4.5 Update Personal Best Cases method . . . . . . . . . . . . . . . . 38
4.4.6 Update Particles method . . . . . . . . . . . . . . . . . . . . . . 38

5 Case Study 39
5.1 Model descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 5 spot model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Olympus model . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Optimization results and discussion . . . . . . . . . . . . . . . . . . . . 43
5.2.1 5 spot results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Olympus results . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion and Recommendations for Further Work 63

Bibliography 64

Appendix 67

viii



List of Figures

3.1 Well trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Movement of a particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Global best PSO (maximization problem) . . . . . . . . . . . . . . . . . 22
3.4 Star or gbest neighborhood topology . . . . . . . . . . . . . . . . . . . . 24
3.5 Ring or lbest neighborhood topology . . . . . . . . . . . . . . . . . . . . 25

4.1 FieldOpt working principle. . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Class diagram for Case class . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Main classes and class relationship. . . . . . . . . . . . . . . . . . . . . 33
4.4 Particle class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 PSO class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 5 Spot Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Permeability and Porosity distribution . . . . . . . . . . . . . . . . . . . 40
5.3 Relative Permeabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Olympus model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Permeability distribution for the first realization. . . . . . . . . . . . . . . 42
5.6 Porosity distribution for the first realization . . . . . . . . . . . . . . . . 42
5.7 Sensitivity analysis for different swarm sizes and maximum number of

iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 Average NPV over five runs vs number of simulations for different tunings 44
5.9 Average NPV and NPV of five runs vs number of simulations for Tune 3. 45
5.10 Field total oil productions for the first case (scaled). . . . . . . . . . . . . 46
5.11 Field total water productions for the first case (scaled). . . . . . . . . . . 47
5.12 Oil saturations at 2920 day for different runs in Tune 3. . . . . . . . . . . 49
5.13 Average NPV and NPV of five runs vs number of simulations (Case 2). . 49
5.14 Field total oil productions for the second case (scaled). . . . . . . . . . . 50
5.15 Field total water productions for the second case (scaled). . . . . . . . . . 51
5.16 Oil saturations at 2920 day for different runs. . . . . . . . . . . . . . . . 53
5.17 Optimization results for the third case. . . . . . . . . . . . . . . . . . . . 54

ix



5.18 Field total oil productions for the third case. . . . . . . . . . . . . . . . . 54
5.19 Field total water productions for the third case. . . . . . . . . . . . . . . 55
5.20 Recovery factors for the third case. . . . . . . . . . . . . . . . . . . . . . 55
5.21 Oil saturations at 2920 day for different runs. . . . . . . . . . . . . . . . 57
5.22 Initial well locations (Top view). . . . . . . . . . . . . . . . . . . . . . . 58
5.23 Regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.24 Optimization results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.25 Comparison of field total oil and water productions. . . . . . . . . . . . . 60
5.26 Comparison of field water cut for different runs . . . . . . . . . . . . . . 60
5.27 Comparison of well locations for different runs. . . . . . . . . . . . . . . 62

6.1 A simple class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



Abbreviations

bGA = Binary Genetic algorithm
CAPEX = Capital expenditure
CF = Cash flow
cGA = Continuous Genetic algorithm
CP-PSO = Centered-Progressive Particle Swarm Optimization
DE = Differential evaluation
GA = Genetic algorithm
gbest PSO = Global best Particle Swarm Optimization
GenOpt = Genetic Optimization Program
GPS = Generalized Pattern Search
HJDS = Hooke-Jeeves direct search
HPSDE = Hybrid Particle Swarm Differential Evaluation
lbest PSO = Local best Particle Swarm Optimization
MADS = Mesh adaptive direct search
MPI = Message passing interface
MPSO = Modified Particle Swarm Optimization
NPV = Net present value
PSO = Particle Swarm Optimization
PUNQ-S3 = Production Forecasting with Uncertainty Quantification
QM = Quality map
SPSA = Simultaneous perturbation stochastic approximation
SPSO = Standart Particle Swarm Optimization

xi



xii



Chapter 1
Introduction

Development of efficient and robust optimization algorithms for generalized oil field de-
velopment problems has been an area of active research in recent years. The optimization
techniques have been applied to different areas of general oilfield problems.
Field development optimization is usually studied as two separate problems, such as well
placement optimization and well control optimization. The main goal of the optimiza-
tion is to maximize an economical indicator or some performance measure by finding
the optimal well configuration or operating parameters. Well placement optimization is
considered to be more complex than well control optimization because reservoir hetero-
geneities produce highly non-smooth objective functions containing multiple local opti-
mums. The computational demand is very high for these type of problems, since many
different simulations need to be run in reservoir simulators. In a real field development
project, simulation time and number of optimization variables may be substantial and
inclusion of geological uncertainty further increases the complexity of the optimization
problem. Therefore, the optimization algorithms applied to these type of problems need
to be efficient and robust in order to handle the complexity of the problem. Many opti-
mization algorithms have been applied to well placement optimization problem in recent
years. Most of these algorithms are categorized as either derivative free or gradient based
methods.
Gradient based methods have the disadvantage of getting stuck in local minimums and they
need extra calculations for the derivatives of the objective function. As a result, gradient
based methods have not found much applicability in well placement optimization. How-
ever, derivative free methods do not need the calculation of derivatives and they are less
susceptible to get stuck in local minimums. Among derivative free algorithms, evolution-
ary algorithms and swarm intelligence algorithms (particle swarm optimization) proved
to perform better than others. Genetic algorithms are one of the most used evolutionary
algorithms in well placement optimization [1, 2, 3]. However, some of the swarm intel-
ligence algorithms such as particle swarm optimization showed better results compared
with genetic algorithms in recent studies [4, 5].
Particle Swarm Optimization is a novel population based stochastic algorithm and it was

1



Chapter 1. Introduction

first introduced by Kennedy and Eberhart in 1995 [6]. Since then, it has been used as a
robust method to solve optimization problems in a wide variety of applications. Algorithm
also became very popular in well placement optimization due to its simplicity, effective-
ness and the ability to converge to a good solution in a reasonable amount of time.
In this thesis, we will develop and apply particle swarm optimization for well placement
optimization using FieldOpt, a software framework that aims at being common platform
for field development optimization (For more information see: https://github.com/
PetroleumCyberneticsGroup/FieldOpt).

1.1 Scope of the work
FieldOpt optimization framework is a general reservoir-simulation based framework that
is developed by Petroleum Cybernetics Group at NTNU. FieldOpt is developed to serve as
a common platform for those who want to apply different optimization techniques in field
development problems and also conduct research in these areas. The framework includes
a variety of derivative free optimization methods that can be applied to general petroleum
field development problems. Our overall goal entails the development and integration of
particle swarm optimization algorithm inside FieldOpt optimization framework for well
placement optimization.

1.2 Objectives
The PSO algorithm is developed based on the simulation of the social behavior of animals,
such as bird flocking, fish schooling in order to solve optimization problems. Each mem-
ber of the population is called a particle and the population is called a swarm. Initially,
all the particles are distributed randomly inside the search space. After initialization, each
particle updates their velocity and move through the search space by remembering the best
positions of themselves (personal best position) and the best position of the whole swarm
(global best position). In each iteration, particles find better positions by moving in the
stochastic average direction of the personal and global best positions. The procedure re-
peats until a stopping criteria such as maximum number of iterations is reached.
Different types of particle swarm optimization algorithm have been developed based on
the complexity and type of the optimization problem recently. We will focus on the im-
plementation of basic particle swarm optimization in this thesis. In addition, we will also
implement the two different types of basic particle swarm optimization that are known as
"local best" particle swarm optimization and "global best" particle swarm optimization.
These two versions use different kind of neighborhood topologies (grouping of particles
into small sub-groups), which affect the convergence speed and the performance of the
algorithm. Global best particle swarm optimization uses a "star" neighborhood topology
where all the particles communicate with each other. Local best particle swarm optimiza-
tion can be used with different neighborhood topologies with the "ring" topology being
the most common. We will implement "random" neighborhood topology in addition to the
"ring" neighborhood topology for local best particle swarm optimization.
In addition to the algorithm and neighborhood topologies, an efficient constraint handling

2

https://github.com/PetroleumCyberneticsGroup/FieldOpt
https://github.com/PetroleumCyberneticsGroup/FieldOpt


1.3 Thesis outline

method is also needed to treat the constraints, since particle swarm optimization algorithm
lacks this mechanism in its original design.
After mentioning the most important topics, the main objectives of this thesis can be sum-
marized as below:

• Developing different versions of particle swarm optimization algorithm

• Integrating the algorithm inside FieldOpt optimization framework

• Implementing an efficient constraint handling method to treat constraints

• Applying particle swarm optimization technique for well placement optimization

1.3 Thesis outline
This thesis is organized as follows:

In next section, we describe the main optimization algorithms applied in well placement
optimization. We then review the literature related to the application of particle swarm op-
timization in well placement optimization. Different forms of particle swarm optimization
that are applied in well placement optimization and joint optimization of well placement
and well controls are presented in this chapter.

In chapter 3, we describe the components of the optimization system, such as problem de-
scription, particle swarm optimization algorithm and different types of the algorithm that
are implemented in this thesis, constraints and constraint handling methods that are used
in our implementation. We also give brief information about the optimization framework
in this chapter, since it is one of the most important component of the optimization system.

In chapter 4, we give detailed information about optimization framework and describe the
implementation and integration of particle swarm optimization inside the framework.

In chapter 5, we describe the simple five spot model and OLYMPUS model. After describ-
ing the models, we present the optimization results for both models and discuss the results.

In chapter 6, we conclude this thesis and give recommendations for future work.

3



Chapter 1. Introduction

4



Chapter 2
Literature review

In this section, we will first briefly present the literature related to the optimization tech-
niques that are applied in field development optimization in general. After then, a more in
depth review of the literature related to the application of particle swarm optimization in
well placement optimization will be presented.
Particle swarm optimization is successfully applied in both well placement and joint op-
timization problems and it showed better results compared with other algorithms such as
genetic algorithms. In addition, many authors applied different modifications for improv-
ing the performance of the algorithm in well placement optimization. These modifications
include hybridization of the particle swarm optimization with other algorithms, application
of the meta-optimization routines to tune the parameters during optimization, incorpora-
tion of well pattern operators for large scale field development optimization, etc. We will
give more information about these techniques in the following sections.

2.1 Well placement optimization
Well placement optimization is a high dimensional, complex and constrained optimization
problem. In large scale applications, number of optimization variables may be substan-
tial and search space can contain multiple optimums depending on the reservoir hetero-
geneities. Therefore, a large number of function evaluations may be required for each run.
In addition, many runs may be required in order to get satisfactory results that represent
the optimal solution of the problem. Therefore, the optimization algorithms used for this
type of problems need to be efficient, robust and simple.
We can distinguish the optimization algorithms applied in well placement optimization
problem within two main categories known as derivative-free and gradient based algo-
rithms. Derivative-free methods are less prone to get stuck in local optimums compared
with gradient based methods. However, derivative-free methods may require more func-
tion evaluations to get a good solution. On the other hand, gradient based algorithms are
computationally fast because the gradient information at a particular point can be used to
move rapidly towards an optimum point, but they are more susceptible to get stuck in lo-

5



Chapter 2. Literature review

cal optimums, especially in heterogeneous reservoirs where the porosity and permeability
values vary throughout the reservoir. In addition, gradient based methods require precise
knowledge and access to the computations that are used to evaluate the objective function
values. Usually, it is difficult to obtain more than just the objective function value from
commercial reservoir simulators.

Derivative-free methods. Derivative-free methods are widely used in well placement
optimization, since they do not require gradient information as in gradient-based methods
and they are not invasive with respect to the reservoir simulators. We can distinguish the
main approaches to derivative-free optimization methods as:

• Stochastic methods

• Deterministic methods

Stochastic methods are very popular because they are effective in avoiding the local op-
timums. These methods use a randomized search to avoid local optimums. Note that,
randomized search does not mean unstructured search or search in random directions.
These methods include some random parameters in their formulation and these help them
to avoid getting stuck in local optimums.
The second approach refers to the pattern-search techniques. Pattern-search techniques
use stencils to explore the search space. For example, Generalized Pattern Search (GPS),
Mesh Adaptive Direct Search (MADS) and etc.

Stochastic methods. Stochastic or global search methods rely on the random compo-
nents in order to explore a larger amount of search space by reducing the chance of getting
stuck in local optimums. Although these algorithms are effective, it is difficult to analyze
them mathematically. Therefore, they are not supported by a solid convergence theory
compared with deterministic approaches. Many of the stochastic methods are population
based methods. This means that multiple function evaluations are carried out in each iter-
ation. The structure of these algorithms are very flexible, which allows easy modification
and coupling with other methods. However, these algorithms still need tuning of the pa-
rameters, which can influence their performance significantly. For example, there is still a
lack of theoretical knowledge about the optimal population size for these algorithms. It is
usually problem dependent and it can take a considerable amount of time and computation
to find the optimal population size for each problem. Usually, it can be expected that the
larger the population size, the more globally the search is done because the more area of
the search space is covered. Note that, although these methods are global in nature, they
may serve as a local search technique in cases where the population size is small compared
with the number of optimization variables.
Many stochastic methods have been developed in the last decades. We will only focus on
the genetic algorithms in this section, which are the most widely used algorithms in well
placement optimization [1, 2, 3].

6



2.1 Well placement optimization

Genetic algorithms. Genetic algorithms [7] are population-based stochastic search meth-
ods that work on the basis of the biological evolution principle. In genetic algorithms,
solutions are encoded in a special structure called "chromosome" and objective function
values are referred to as "fitness". In each iteration, "offspring" chromosomes are gener-
ated by applying special genetic operators (e.g., selection, crossover and mutation) to the
"parent" chromosomes, which are selected based on the fitness values. This procedure
repeats in each iteration until a convergence criteria is reached [7].
Genetic algorithms are categorized in two main groups known as binary genetic algorithms
(bGA) and continuous genetic algorithms (cGA). These two algorithms use different meth-
ods to encode and manipulate the solutions. In binary genetic algorithms, solutions are en-
coded as a sequence of zeros and ones, while in continuous genetic algorithms, encoding
and manipulating of the solutions are carried out in real space. Both of these algorithms
have been successfully applied in well placement optimization problem. For example, in
[8], both of them were applied in well placement optimization and their performance were
compared. Continuous genetic algorithms showed better results compared with binary ge-
netic algorithms in the paper.
Flexibility and simplicity of these algorithms allow easy coupling of them with other al-
gorithms. As a consequence, many of the studies are focused on the hybrid applications
of genetic algorithms in well placement optimization. For example, in the paper presented
by Bittencourt and Horne [9], genetic algorithm was hybridized with Polytope and Tabu
search algorithms and applied in a real field development project in order to optimize the
locations of wells. Another hybrid genetic algorithm was implemented in [10] to optimize
the locations of wells by considering uncertainties in well placement optimization.

Deterministic methods. Many of the deterministic methods are pattern search methods.
Unlike stochastic algorithms, these algorithms are supported by a mathematical solid con-
vergence theory [11]. Pattern search algorithms use stencils to explore the search space
and they work as follows. Firstly, objective function values are calculated for all points
and compared with the stencil center. If one points improves the objective function value
compared with the stencil center, the stencil is moved to that point and that point becomes
the new center. When all the points do not improve the objective function value, the stencil
size is decreased and the procedure repeats again until minimum stencil size is reached.
These algorithms naturally parallelize because function evaluations for all the points can
easily be calculated in parallel. Therefore, these algorithms can perform quite fast when
running in parallel. However, they can easily get trapped in local optimums which is one
of the biggest disadvantage of these algorithms. As a consequence, these algorithms are
usually used with a large stencil size at the beginning of the optimization and the stencil
size is decreased over time, in order to increase the global search abilities of these algo-
rithms. Popular pattern-search algorithms in well placement optimization, just to name
a few, are Generalized Pattern Search (GPS), Mesh Adaptive Direct Search (MADS) and
Hooke-Jeeves Direct Search (HJDS). Since these algorithms easily parallelize, they be-
come very popular in complex optimization problems where many function evaluations
are required such as joint optimization problems. For instance, in [12], some of these pop-
ular pattern search methods, such as Generalized Pattern Search (GPS) and Hooke-Jeeves
direct search are applied for joint optimization of well control and well location variables.

7



Chapter 2. Literature review

Pattern search methods are also hybridized with stochastic algorithms in order to take
advantage of both local search abilities of the pattern search methods and global search
abilities of stochastic methods. For example, in [13], Mesh Adaptive Direct Search was
hybridized with Particle Swarm Optimization (PSO) and applied in joint optimization of
well control and well location variables.

2.2 PSO in well placement optimization
Initial applications. Particle Swarm Optimization was first applied in well placement
optimization in the paper presented by Onwunalu and Durlofsky [4]. They found out that
on average, particle swarm optimization outperforms one of the most widely used algo-
rithm in well placement optimization known as genetic algorithms. They have used parti-
cle swarm optimization with random neighborhood topology, which is referred to as "local
best particle swarm optimization". The algorithm was used to optimize the locations of
vertical, deviated and multi-lateral wells by including the geological uncertainty in reser-
voir models considered in the paper. A penalty method was applied to treat the infeasible
cases during optimization, by assigning large negative values to their objective function
values. Net present value was considered as the objective function and objective function
evaluations were carried out in parallel using a cluster of 50 processors. They have used
"synchronous" method to update the personal best cases. In synchronous method, personal
best positions of all particles are updated after evaluating objective function values of all
particles in each iteration. In their paper, they have applied particle swarm optimization on
standard benchmark problems and suggested improvements on particle swarm optimiza-
tion as a further work in order to apply the algorithm for large scale field development
problems or real reservoirs.

PSO in large scale field development. Large scale field development includes a large
number of wells ranging from a few to several hundreds of wells. These wells can be
vertical, horizontal or non-conventional wells in a real life scenario and number of opti-
mization variables may be very large. This can decrease the performance of the particle
swarm optimization algorithm significantly. In addition, inclusion of realistic constraints
may decrease the performance of the algorithm even more. To overcome this issue many
methods have been considered in order to decrease the size of search space and optimiza-
tion variables. For example, many different feasible reservoir regions may be considered
instead of the whole reservoir in order to decrease the number of possible solutions or
search space. Another technique is considering the wells in patterns during optimization.
Incorporation of these techniques may increase the performance of particle swarm opti-
mization significantly in large scale field development problems.
Onwunalu et.al incorporated well pattern optimization procedure inside particle swarm
optimization algorithm in a further work and applied the new algorithm for large scale
field development optimization problem [5]. Results showed that the new algorithm gave
better results compared with standard particle swarm optimization. They have also im-
plemented a meta-optimization procedure. The procedure optimized the parameters of
particle swarm optimization during optimization process. The meta-optimization proce-
dure was implemented in two steps. In first step, the parameters of the algorithm were

8



2.2 PSO in well placement optimization

optimized and in second step, the algorithm was run with optimized parameters in order
to optimize the locations of wells. They concluded that the inclusion of well pattern op-
timization and meta-optimization procedure inside particle swarm optimization increased
the performance of the algorithm in large scale field development problems.

Constraint handling in PSO. Another important factor which can affect the perfor-
mance of particle swarm optimization in large scale field development problems is con-
straint handling method. The importance of constraint handling methods was studied by
Jesmani et.al in [14]. They incorporated realistic constraints such as well length, inter-well
distance, well orientation constraints inside particle swarm optimization and used penalty
and decoder constraint handling techniques to treat the constraints. The GenOpt optimiza-
tion framework was used in order to apply the particle swarm optimization. They have
used particle swarm optimization with Von-Neumann neighborhood topology and a linear
decreasing inertia weight strategy was also chosen. They run two cases using penalty and
decoder techniques. The first case included a 60x60 2D reservoir model with four injectors
located at the corner and a horizontal producer in the center of the model. In the second
case, they used a synthetic reservoir model with real reservoir properties from a North Sea
field. The decoder technique was observed to perform better than penalty method in the
paper. They concluded that the decoder technique can be used as a viable alternative to
widely used penalty method for particle swarm optimization in well placement optimiza-
tion.

Hybrid PSO. Nwankwor et al. applied a hybrid form of the particle swarm optimization
with an evolutionary algorithm known as the differential evaluation (DE) for well place-
ment optimization [15]. The new algorithm was called hybrid particle swarm differential
evolution (HPSDE) algorithm. They considered three cases and uncertainty was taken into
the account in two of these cases. For the first case, they used a 2D reservoir model and
incorporated the geological uncertainty by generating ten different permeability distribu-
tions. The system contained only oil and connate water and they optimized the placement
of a single production well. The MATLAB Reservoir Simulation Toolbox was used for
running the simulations and evaluating the objective function values. They also performed
a sensitivity analysis in order to determine the effects of parameters on the performance
of the algorithms. In the second case, they considered the placement of one injector and a
producer in water-flooding process. In the third case, they also optimized the location of
injectors and producers. But in that case they considered a 3D reservoir model and they
neglected the geological uncertainty. Vertical wells were considered in all cases and results
from multiple runs were averaged in order to make meaningful comparisons. The results
showed that the hybrid particle swarm differential evolution performed better than the par-
ticle swarm optimization and the differential evolution algorithms. However, they also
noted the importance of parameter tuning for hybrid particle swarm differential evolution
algorithm.

PSO in joint optimization. Well placement optimization and well control optimization
were traditionally considered as separate optimization problems. However, recent works

9



Chapter 2. Literature review

[12, 16] demonstrated that optimal locations of wells also depend on the operating pa-
rameters such as, well rates and bottomhole pressures. Some of these works focused on
the application of the particle swarm optimization for joint optimization of well control
and well location variables. In most of these methods, particle swarm optimization was
hybridized with other algorithms and applied in joint optimization.

Hybrid PSO in joint optimization. In [17] Particle swarm optimization was coupled
with Mesh Adaptive Direct Search (MADS) and applied in joint optimization of well con-
trol and well location variables. The new hybrid algorithm took the advantage of stochastic
nature of particle swarm optimization and Mesh Adaptive Direct search method, which is
a local optimization technique with a proven convergence theory. They used a filter-based
approach to treat the non-linear constraints during optimization. Filter based approach is
a bi-objective optimization technique, where two separate optimization problems are con-
sidered. The first objective is to maximize the net present value while the second objective
is to minimize the constraint violations during optimization. Geological uncertainty was
not considered in the work. They also introduced a new binary variable (drill/do not drill)
to determine the optimum number of wells in addition to the optimum locations. They
applied new hybrid algorithm and standalone PSO and MADS for sequential and joint
optimization. Results showed that new hybrid algorithm outperformed standalone PSO
and MADS, it was also shown that joint optimization gave better results compared with
sequential approach. A similar study was also conducted in [18].

Modified PSO applications. Ding et al. [19] used a modified form of particle swarm op-
timization in combination with the quality map method (MPSO+QM) for well placement
optimization and compared the performance of the algorithm with the standard particle
swarm optimization (SPSO), centered-progressive particle swarm optimization (CP-PSO)
and the modified particle swarm optimization (MPSO). The modification in particle swarm
optimization was applied to the inertia weight, the velocity and the position update equa-
tions and they introduced a flying time factor in their paper. The net present value (NPV)
was taken as the objective function and the ECLIPSE 100 reservoir simulator was used
for objective function evaluation. They considered four test cases and optimization was
applied to only vertical wells. In the first case, they optimized the location of a vertical
production well using all methods described above and they considered the reservoir un-
certainty by applying six different realizations of the permeability field. In the second
case, the location of six production wells were considered on a 2D reservoir model. In
the third case, the location of three producers and two injectors were optimized. In the
last case, they used a standard benchmark known as the PUNQ-S3 (Production Forecast-
ing with Uncertainty Quantification) model. The location of ten production wells were
optimized. For each case, multiple runs were performed due to the stochastic nature of
the particle swarm optimization and the average results were compared. They concluded
that the QM+MPSO method outperformed all methods and for the first case where a sin-
gle well location optimization was considered the quality map was not needed, since the
modified particle swarm optimization (MPSO) showed best results in that case.

10



2.2 PSO in well placement optimization

Modified PSO for non-conventional wells. In a further work, Ding et al. [20] used the
same modified particle swarm optimization (MPSO) for optimizing the well location, type
and geometry. They established an optimization model of the well trajectory, which could
be applied to the vertical, horizontal and deviated wells by changing the model parameters
according to the well type. They run three cases on the PUNQ-S3 model using modified
particle swarm optimization (MPSO) and standard particle swarm optimization (SPSO).
The parameters for the particle swarm optimization were kept same for all cases. In the
first case, the location of six vertical wells were optimized using both algorithms. In the
second case, the location and trajectory of six deviated wells were considered. And in the
third case, the location of one injection well and five production wells were optimized.
The results from multiple runs for both algorithms were averaged in each case and the
net present values (NPV) were plotted versus the number of iterations. Performance of
standard particle swarm optimization (SPSO) and modified particle swarm optimization
(MPSO) were compared for all cases. The modified particle swarm optimization showed
better results compared with standard particle swarm optimization. They also made com-
parisons of the highest net present values between cases. Firstly, the comparison between
the first and the second case was made. The second case showed lower value of the net
present value compared with the first case. Although the net present value was lower for
the second case, the oil production was higher compared with the first case. The reason
behind this phenomena was explained by the increasing cost of the horizontal wells in the
second case. The comparison between the second and the third case was also made. The
third case showed lower value of the net present value compared with the second case
but two cases had almost same liquid production. This phenomena was explained by the
increasing cost of early water injection in the third case and they concluded that the early
water injection was not reasonable for the development of the PUNQ-S3 model. However,
they suggested that one or two injection wells could be added in the later periods.

11



Chapter 2. Literature review

12



Chapter 3
Optimization

In this section, we first describe the well placement problem in general. We then describe
the components, such as constraints, objective function, optimization framework and opti-
mization algorithm that are used to solve the well placement problem.

3.1 Problem description

In this work, well trajectory will be handled as a straight line in three-dimensional space
(3D). The well trajectory will be defined by a starting point or heel, H, and an end point
or toe, T. Each point on a grid can be represented either by its real coordinates x, y, z in
real space, R, or its directional indices i, j and k in grid space, G. The parameters to be
optimized become the coordinates or the indices that define the heel and toe (H and T,
respectively) of the wellbore as shown in Figure 3.1.
However, our implementation of the optimization algorithm is based on the continuous

variables, which are the real coordinates of the heel and toe of the wellbore. Meanwhile,
most of the reservoir simulators require well locations to be defined in terms of discrete
grid blocks.
FieldOpt optimization framework uses a mapping function, m, to transform the grid to real
space or vice versa, as shown in Eq. (3.1).

m : G↔ R (3.1)

The heel and toe coordinates will be transformed from grid to real space or vice versa
during optimization, via the mapping function, m, as shown in Eq. (3.2).

H = R : H(x, y, z)
m←→ G : H(i, j, k)

T = R : T (x, y, z)
m←→ G : T (i, j, k)

(3.2)

13



Chapter 3. Optimization

2

4

6

8

10

1
2

3
4

5
6

7
8

9
10

2

4

6

8
I

J

K

heel ( i , j , k )

toe ( i1 , j1 , k1 )

Figure 3.1: Well trajectory.

The optimization problem can now be stated in the general form as in Eq. (3.3).

max
x∈X,u∈U

f(p, x, u) or min
x∈X,u∈U

−f(p, x, u)

subject to :

{
g(p, x,u) = 0,

c(p, x,u) ≤ 0,

(3.3)

where f represents objective function to be optimized (e.g., to maximize net present value,
f = NPV or cumulative oil production) and g represents flow equations for each grid
block in a certain time step. This constraint ensures that reservoir flow equations are sat-
isfied while running the simulation and it is used to evaluate objective function value and
constraints. Nonlinear constraints, such as well length, inter well distance, constraints on
well control variables and other constraints are represented by c function.
Dynamic state variables, such as pressure, saturation, compositions and others are repre-
sented by p vector while well location variables and well control variables are shown with
x and u vector, respectively.

In our implementation, we will not focus on the joint optimization of the well location and
well control variables. However, piecewise fixed values of well control variables in time
with Nt time intervals will be considered. Therefore, above equation (3.3) needs to be
simplified in order to exclude well control variables, u, and flow equations, g, since it is
enforced during simulation.

The optimization problem can now be presented more specifically in a simplified form as

14



3.2 Objective function

in Eq. (3.4).
max
x∈X

f(x) or min
x∈X
−f(x)

subject to :
{

c(x) ≤ 0,

(3.4)

The x vector contains both heel and toe vectors as defined in Eq. (3.2). The set X =
{x ∈ Xn; xl ≤ x ≤ xu} defines the allowable values for discrete well location variables
or reservoir boundaries. The dimension of x or the number of optimization variables, n,
depends on the trajectory, type and number of wells.
If we optimize the location of injectors and producers and the wells are assumed to be
vertical (i, j), there will be n = 2(NI + NP ) optimization variables. If we optimize
only horizontal production wells with fixed vertical injectors, then we have n = 6NP
optimization variables.

3.2 Objective function
We will consider the net present value (NPV) as the objective function. To calculate the
NPV, the cash flow (CF ) is first calculated based on the profit. The profit is calculated
as the difference between revenue (R) obtained by the sales of the hydrocarbons and the
operational expenses (E), such as water production and injection costs. The cash flow at
time t is calculated using the following formula given below:

CFt = Rt − Et (3.5)

Since the revenue and expenses at time t depend on the fluid volumes produced at time
t, a reservoir simulation has to be run in order to determine the fluid production. The
resulting fluid production profiles generated from the simulation run are used to calculate
the revenues and expenses as follows:

Rt = poQ
o
t + pgQ

g
t (3.6)

where po and pg represent the oil price ($/m3) and gas price ($/m3); Qot and Qgt represent
the total volume of the oil (m3) and gas (m3) produced at time t. The operating expenses
at time t is calculated as below:

Et = ppwQ
w,p
t + piwQ

w,i
t (3.7)

where ppw represents the water production costs ($/m3); piw represents the water injection
costs ($/m3); Qw,pt and Qw,it represent the total volumes of water produced (m3) and
injected (m3), respectively at time t. Cash flow is then divided by the discount factor
(1+r)t in order to get the discounted cash flow (present value). The cumulative discounted
cash flow is obtained as the sum of all discounted cash flows. Finally, the NPV is obtained
by subtracting the capital expenditures from cumulative discounted cash flow.

NPV =

T∑
t=1

CFt
(1 + r)t

− Ccapex (3.8)

15



Chapter 3. Optimization

where T is the total production time in years; r is the annual discount rate; Ccapex is the
total cost to drill and complete all of the wells.
The general formula presented above is modified to an equivalent form inside FieldOpt
framework because the framework can only receive the final total productions from reser-
voir simulators. Therefore, we will assume annual discount rate as zero (r = 0). Consid-
ering these limitations, FieldOpt uses the following formula to calculate NPV:

NPV = (poQ
o
T + pgQ

g
T − p

p
wQ

w,p
T − piwQ

w,i
T )− Ccapex (3.9)

where QoT , QgT , Qw,pT , Qw,iT represent the final total productions of oil, gas, produced
and injected water. Capital expenditure, Ccapex is assumed to be constant during opti-
mization.

3.3 Constraints

In well placement optimization, two kinds of constraints that are usually considered are
practical and bound constraints. Bound constraints are used to constrain the variable val-
ues to a specific range. These variables can be either well location variables or well control
variables. For example, all wells must be located in the feasible regions inside the reser-
voir. Practical constraints are identified during the field development phase and examples
include well length constraint, inter-well distance constraint, well orientation constraint
and others. All these constraints are imposed on the well placement optimization problem
and incorporation of these constraints increases the complexity of the optimization prob-
lem.
Different methods have been used for handling constraints. We will give detailed informa-
tion about these methods in constraint handling section. In the following sections, we will
describe the boundary and practical constraints used in our implementation.

3.3.1 Bound constraints

Well placement optimization problem is always subject to the bound constraints. Bound
constraints can be applied either to well control variables or well location variables. As
mentioned before, in this work, we will only consider well location variables, since the
heel and toe points should lie inside reservoir boundaries.
During optimization, particles positions are updated in each iteration and some of the
particles tend to leave the search space. To prevent this behavior, particles that violate the
bound constraints are projected back to the boundaries of the search space by modifying
their positions. In addition to the particle positions, the corresponding particle velocities
need to be altered in order to prevent particles moving out of the search space again in
next iteration. This technique is the most common way of dealing with bound constraints
in particle swarm optimization and it is referred to as "absorb" technique. This technique

16



3.3 Constraints

is applied as shown in Eq. (3.24).

xij(k + 1) =


if xij(k + 1) > uj

set xij(k + 1) = uj and vij(k + 1) = 0

if xij(k + 1) < lj

set xij(k + 1) = lj and vij(k + 1) = 0

(3.10)

In Eq. (3.24), index j shows component, while uj and lj represent upper and lower bounds
for the jth component of the search space. Absorb technique is useful for synthetic mod-
els with rectangular shape. However, real reservoirs have irregular shapes and different
regions, which are desirable to place the wells. Therefore, we first need to find a mathe-
matical formula that represents these type of reservoir boundary constraints.
Let us assume that hi vector contains heel coordinates and ti vector contains toe coordi-
nates of the ith well. Now, let us define feasible regions for heel and toe points of the
ith well as Rih and Rit, respectively. After defining feasible regions, reservoir boundary
constraint can be formulated as in Eq. (3.11).

cR :

{
hi ∈ Rhi
ti ∈ Rti, ∀i = 1, 2, ..., Nw

(3.11)

We can approximate the regions Rih and Rit by the set of polynomial functions, ph,nh

i and
pt,nt

i where nh and nt are the number of polynomials. We can rewrite Eq. (3.11) by
assuming ph,nh

i (hi) ≤ 0 or pt,nt

i (ti) ≤ 0 as in Eq. (3.12).

cR :


ph,nh

i (hi) ≤ 0, nh = 1, 2, ..., Nh,i

pt,nt

i (ti) ≤ 0, nt = 1, 2, ..., Nt,i

∀i = 1, 2, ..., Nw

(3.12)

After defining Eq. (3.12), we can apply different methods to deal with the constraints. In
this work, we have implemented penalty method to handle the constraint violations. We
will give more information about the penalty function that we have implemented in the
following sections.

3.3.2 Practical constraints
Well length constraint. The well length constraint is one of the most important con-
straints in well placement optimization. If the well length constraint is not provided, the
optimization will result in a too short or too long well that does not represent the real case
scenarios. Therefore, well length constraint needs to be incorporated in to the optimizer.
The length of the ith well is calculated by the following formula:

liw =
√

(hix − tix)2 + (hiy − tiy)2 + (hiz − tiz)2 (3.13)

Let us now define the minimum and maximum length of the ith well as limin and limax,
respectively. After defining the well length limits, well length constraint can be written as:

cL :

{
liw ≤ limax
liw ≥ limin

(3.14)

17



Chapter 3. Optimization

The above expression can be written in an equivalent form as below:

cL :

{
(liw)

2 ≤ (limax)
2

−(liw)2 ≤ −(limin)2
(3.15)

Let us substitute (liw)
2 with Li for convenience and rewrite the equation in the following

form:

cL :

{
Li − (limax)

2 ≤ 0

(limin)
2 − Li ≤ 0

(3.16)

As shown in the equation above, Li is a second degree polynomial and it means that cL is
a set of nonlinear constraints.

Inter-well distance constraint. It is important to take the well spacing limitations into
account while optimizing the locations of wells in a reservoir. If the wells are too close, a
phenomena known as "well interference" may occur in the reservoir which can has nega-
tive effects on the performance of the wells. To avoid such scenarios, we have implemented
inter-well distance constraint.
Let us now calculate the distance between two wells in three dimensional space. Note that,
the same formula can be applied to many wells by grouping them as pairs. Let us assume
well paths as two line segments and find the general formula for calculating the distance
between two line segments in three dimensional space. Let the endpoints of the first well
be ωt1 and ωh1 and the endpoints of the second well be ωt2 and ωh2 . Then the line segments
can be parameterized by the following formula:

ω1(λ1) = (1− λ1)ωt1 + λ1ω
h
1 , λ1 ∈ [0, 1]

ω2(λ2) = (1− λ2)ωt2 + λ2ω
h
2 , λ2 ∈ [0, 1]

(3.17)

The squared distance between two points on the line segments is calculated as below:

R(λ1, λ2) =|ω1(λ1)− ω2(λ2)|2

= aλ21 − 2bλ1λ2 + cλ22 + 2dλ1 − 2eλ2 + f
(3.18)

where

a = (ωh1 − ωt1)·(ωh1 − ωt1), b = (ωh1 − ωt1)·(ωh2 − ωt2), c = (ωh2 − ωt2)·(ωh2 − ωt2),
d = (ωh1 − ωt1)·(ωt1 − ωt2), e = (ωh2 − ωt2)·(ωt1 − ωt2), f = (ωt1 − ωt2)·(ωt1 − ωt2)

From the definitions above, one can easily observe that :

|(ωh1 − ωt1)× (ωh2 − ωt2)|2 = ac− b2 ≥ 0 (3.19)

Let us now define4 = ac− b2. Depending on the value of4, two conditions may exist:

4 =

{
ac− b2 > 0, Segments are non-parallel,
ac− b2 = 0, Segments are parallel.

(3.20)

18



3.4 Optimization algorithm

If the cross product of the vectors in Eq. (3.19) is zero, then the segments are parallel and
the graph of R(λ1, λ2) is a parabolic cylinder. In the second case, where4 > 0, segments
are non-parallel and the graph of R(λ1, λ2) is a paraboloid.
To find the minimum distance between two line segments, we need to minimize the func-
tion R(λ1, λ2) over the unit square [0, 1]2. Since R(λ1, λ2) is a continuous differentiable
function, the minimum point is located either at a point on the boundary of the square or
inside the square (only if4 > 0). In the latter case, the gradient defined by Eq. (3.21)

∇R(λ1, λ2) = 2(aλ1 − bλ2 + d,−bλ1 + cλ2 − e) (3.21)

becomes zero only when λ∗1 = (be− cd)/4 and λ∗2 = (ae− bd)/4. If (λ∗1, λ
∗
2) ∈ [0, 1]2,

then the minimum of R(λ1, λ2) is located at point (λ∗1, λ
∗
2). Otherwise, the minimum

is located at the boundary of the square. The boundary of the square is defined by four
corners (0, 0), (1, 0), (0, 1), (1, 1) and four edge points (λ01, 0), (λ

1
1, 0), (0, λ

0
2), (0, λ

1
2). If

we solve ∇R(λ1, λ2) = 0 for λ1 and λ2, we can find that λ01 = −d/a, λ11 = (b − d)/a,
λ02 = e/c and λ12 = (b+ e)/c.
FieldOpt framework uses a simple algorithm to calculate all 9 critical points, evaluate R
at that points and select the point that gives the minimum squared distance. The algorithm
also includes parallel segments. After finding the minimum distance between wells, inter-
well distance constraint can be formulated for any number of wells as below:

cD : { R(λ∗1,i, λ
∗
2,j) ≥ d2min, ∀i, j = 1, 2, ..., Nw. (i 6= j) (3.22)

or in another form:

cD : { d2min −R(λ∗1,i, λ∗2,j) ≤ 0, ∀i, j = 1, 2, ..., Nw. (i 6= j) (3.23)

where
dmin represents the minimum distance provided as a constraint and R(λ∗1,i, λ

∗
2,j) repre-

sents the minimum squared distance between ith and jth wells.

3.4 Optimization algorithm
Particle Swarm Optimization is introduced by Kennedy and Eberhart in 1995 [6]. The
algorithm uses a group of particles to search the solution space of an objective function.
Each particle represents a solution vector in this space and the algorithm updates this so-
lution vector in each iteration in order to find the optimal solution. In the beginning, each
particle is assigned a random velocity and position vector in the search space. Each parti-
cle has a memory of the previous best value of the objective function and corresponding
previous best position vector. In addition, every particle in the swarm knows the global
best value of the objective function among all the particles and corresponding global best
position vector. During optimization process, each particle moves stochastically towards
the previous and global best position of the particle (Figure 3.2). Particles tend to move
towards better positions in each iteration and the process repeats until all the particles con-
verge to an optimal solution.

19



Chapter 3. Optimization

Figure 3.2: Movement of a particle.

In recent years, different kinds of particle swarm optimization have been developed based
on the type of optimization problem. For example, Binary PSO for solving discrete prob-
lems, Multi-objective PSO for solving several optimization problems simultaneously and
other methods. We will only focus on basic particle swarm optimization in this thesis.
Basic particle swarm optimization has two main variants, known as global best particle
swarm optimization (gbest) and local best particle swarm optimization (lbest).
These methods use different neighborhood topologies, which have an effect on the per-
formance of the algorithm. Neighborhood topology is the grouping of particles into small
sub-groups. Particles only exchange information with the particles that are located in their
neighborhood. In global best particle swarm optimization, particles exchange information
with all the other particles in the swarm and this neighborhood topology is called "star"
topology. However, in local best particle swarm optimization, particles only know the
global best position inside their neighborhood instead of the whole swarm. Local best
particle swarm optimization can be used with different neighborhood topologies. We will
only focus on the "random" and "ring" neighborhood topologies that are used in our im-
plementation.

3.4.1 Global Best PSO

Global best version of particle swarm optimization has faster information transfer through
the search space due to the effective communication and large inter-connectivity between
all the particles in the swarm. Therefore, global best particle swarm optimization con-
verges faster compared with local best particle swarm optimization. However, global best
particle swarm optimization has the possibility to converge to a local optimum. Therefore,
global best version can sometimes give inaccurate solutions compared with local best par-
ticle swarm optimization.
In the global best particle swarm optimization, each particle i ∈ [1, 2, ..., n] is identified
by a position, xi(k) and a velocity vector, vi(k) at iteration k. Also at iteration k, each
particle i also remembers the best individual position, pbesti (k) that it has visited since the

20



3.4 Optimization algorithm

first iteration and the global best position among all particles, gbest(k).
In each iteration, the personal best position of each particle i is updated based on the
following formula (considering maximization problem):

pbesti (k + 1) =

{
pbesti (k) if f(xi(k + 1)) < f(pbesti (k))

xi(k + 1) if f(xi(k + 1)) > f(pbesti (k))
(3.24)

where
i shows the particle index and f(xi(k)) shows the objective function value of particle i at
position x and iteration k.
The global best position can be updated either on the basis of the individual best positions
or current positions of all particles in each iteration.

gbest(k) = argmax f(pbesti (k)) or gbest(k) = argmax f(xi(k)) (3.25)

During search process, each particle updates its velocity based on the individual and global
best positions. The velocity update equation for each particle is shown below:

vi(k + 1) = vi(k) + c1r1(k)(p
best
i (k)− xi(k)) + c2r2(k)(g

best(k)− xi(k)) (3.26)

The equation presented above is used in the standard version of particle swarm optimiza-
tion. This form lacks the mechanism to control the velocity, which determines the explo-
ration and exploitation abilities of the algorithm.
Shi and Eberhart [21] introduced a new concept called inertia weight(w) to overcome this
issue. The velocity update equation was modified as below in order to include the inertia
weight:

vi(k + 1) = ωvi(k) + c1r1(k)(p
best
i (k)− xi(k)) + c2r2(k)(g

best(k)− xi(k)) (3.27)

where
c1 and c2 are acceleration coefficients or trust parameters, r1(k) and r2(k) are random
numbers taken from uniform distribution between [0,1] at iteration k.
All the particles fly through the search space by adjusting their positions, which depend
on their velocities. The position of each particle at iteration k + 1 is calculated based on
the following formula:

xi(k + 1) = xi(k) + vi(k + 1) (3.28)

The formulas (3.27) and (3.28) are used to update the particle velocities and positions dur-
ing optimization process. However, one needs to use different formulas for initializing the
particle positions and corresponding velocities at first iteration. This is usually done by
setting all particle velocities to zero and by using a uniform distribution for particle posi-
tions. Initial particle positions can affect the performance of the algorithm significantly,
since they denote how much of the search space is covered. If the initial positions are
not distributed properly, the algorithm will have difficulties to find the optimal solution if
the solution is far away from the covered area. Therefore, the initial positions of particles
are distributed uniformly between the maximum and minimum ranges of the search space.
The initialization of each particle is given by the following formula:

xi(0) = xmini + ri(x
max
i − xmini ) (3.29)

21



Chapter 3. Optimization

where
xmini and xmaxi represent minimum and maximum ranges of the search space and ri is the
random number taken from uniform distribution between [0,1].
Note that, initial personal best positions are also set equal to the initial positions as shown
in the formula below:

pbesti (0) = xi(0) (3.30)

The flowchart in Figure 3.3 shows the algorithmic steps of global best particle swarm op-
timization. As shown in the flowchart, algorithm starts by setting the parameters, such as
inertia weight, acceleration coefficients and maximum number of iterations.

Figure 3.3: Global best PSO (maximization problem)

After setting the algorithm parameters, all the particles are distributed randomly inside the

22



3.4 Optimization algorithm

search space and the velocity of each particle is set to zero. Objective function values for
all particles are calculated based on the initial positions. Initial personal best positions
are set as same as initial positions and global best position is updated based on the objec-
tive function values. After calculating personal and global best positions for all particles,
velocity of each particle is calculated and particle positions are updated based on the ve-
locities. In next iterations, personal and global best cases are compared with the previous
values and updated accordingly. After updating personal and global best positions, the
process continues again with updating velocities and positions. This process repeats until
a convergence criteria such as maximum number of iterations is reached.

3.4.2 Local Best PSO
Local best particle swarm optimization uses the same procedure as global best particle
swarm optimization. The only difference is in the velocity update equation (Eq.3.27) with
different social components for each algorithm. The social component in global best par-
ticle swarm optimization represents the whole swarm and there is only one unique global
best position for each particle in the swarm. However, in local best particle swarm opti-
mization, local best positions are used for each sub-group instead of the global best posi-
tion. Therefore, each sub-group has their own global best position. The velocity update
equation for local best particle swarm optimization is modified as below:

vi(k + 1) = ωvi(k) + c1r1(k)(p
best
i (k)− xi(k)) + c2r2(k)(l

best
i (k)− xi(k)) (3.31)

where
lbesti (k) represents the local best position for the ith particle at iteration k.
In local best particle swarm optimization, neighborhoods overlap and the speed of infor-
mation exchange reduces. Therefore, local best particle swarm optimization converges
slowly. However, it is more diverse and less prone to get stuck in local optimums com-
pared with global best particle swarm optimization.
In next section, we describe the different neighborhood topologies that are used in our
implementation of local and global best particle swarm optimization.

3.4.3 Neighborhood topologies
In particle swarm optimization, each particle is assigned to some neighborhood, which is
a group of particles in the entire swarm. However, in global best version of the particle
swarm optimization, the whole swarm is considered as a group or neighborhood because
all the particles communicate with all the rest. The performance of the algorithm depends
on the topology used and the neighborhood size. In general, for large neighborhoods,
the algorithm converges faster but it does not guarantee an optimal solution. However,
small neighborhoods can take a while to converge to an optimal solution, but the quality
of solution is better because it is less prone to get stuck in local optimums.
Note that, neighborhood topologies are usually defined by the particle index, and not by
the particle location. For global best particle swarm optimization, the neighborhood of a
particle with index i ∈ {1, ..., np} consists of all the particles in the swarm:

Ni = {1, ..., np} (3.32)

23



Chapter 3. Optimization

For local best topology, considering a neighborhood size of l, with l > 1, the neighborhood
of a particle with index i ∈ {1, ..., np} consists of all the particles whose index are in the
set:

Ni = {i− l, ..., i, ..., i+ l} (3.33)

We assume that particle indices wrap around. For example, we replace −1 with np − 1 or
−3 with np − 3, etc.
We will now describe the most common topologies that are used in global and local ver-
sions of the particle swarm optimization. Global best particle swarm optimization uses so
called "star" topology, while local best version of the algorithm uses "ring" neighborhood
topology.

Star topology. In star neighborhood topology, each particle communicates with all the
other particles. Therefore, star neighborhood topology has greater connectivity and in-
teraction between particles compared with other topologies. Star neighborhood topology
enables fast convergence of the algorithm. However, the solution may not always show
the optimal solution because it can get stuck in the local optimums. The star neighborhood
topology for a group of six particles is illustrated in Figure 3.4.

Figure 3.4: Star or gbest neighborhood topology

The matrix on the right of the figure represents communication matrix. Communication
matrix represents the relationship between particles. If there is communication between
particle i and particle j, the relevant value is set to one in the communication matrix.
Otherwise, it is set to zero.

Ring topology. In ring topology, particles only communicate with their immediate neigh-
bors as shown in Figure 3.5.
For example, the particle with index i = 1 only communicates particles i = 2 and i = 6.
This is also illustrated in the communication matrix on the right of the figure where the
1st, 2nd and 6th columns of 1st row are set to one and others are set to zero.
In general, for ring topology, the neighborhood of the particle with index i can be found
based on the formula given below:

Ni = {i− 1mod(Np), i, i+ 1mod(Np)} (3.34)

24



3.4 Optimization algorithm

Figure 3.5: Ring or lbest neighborhood topology

where
Ni represents the neighbors for particle i and Np shows the number of particles.

3.4.4 Parameters

We now describe the parameters that are used in our implementation, which can have a
strong influence on the performance of particle swarm optimization. These parameters are
swarm size, number of iterations, acceleration coefficients and inertia weight. Note that,
depending on the problem, these parameters can have strong or no influence at all.

Swarm size. Swarm size S is the number of particles in the swarm. A big swarm size
covers more area inside search space and increases the exploration abilities of the algo-
rithm. Therefore, a good solution may be obtained in a reasonable amount of time with
less iterations compared with small swarm size. However, a large swarm size may increase
the computational time per iteration. There is still a lack of theoretical analysis about how
a good swarm size should be defined. In some versions of the algorithm, swarm size is
automatically calculated depending on the dimension D:

S = 10 + | 2
√
D | (3.35)

However, the formula presented above give results that is far from the optimal swarm size.
Therefore, the swarm size is usually set manually depending on the problem.

Number of iterations. The maximum number of iterations also depends on the com-
plexity of the optimization problem. A large number of iterations may guarantee an opti-
mal solution, but it may also lead to an additional computation if the algorithm has already
converged to an optimal solution. On the other hand, too few iterations may result in a
premature convergence.
In our implementation, we use the maximum number of iterations as stopping criteria,
since we do not know the optimal value. We set the maximum number of iterations high
in order to avoid the premature convergence and to ensure that a good solution is obtained.

25



Chapter 3. Optimization

Acceleration coefficients. Acceleration coefficients, c1 and c2 adjusts the stochastic in-
fluence of cognitive and social components, respectively. The cognitive component helps
particles to move towards their personal best positions achieved in previous iterations
while social component helps particles to move towards global best position for all parti-
cles. If c1 is set to high compared with c2, the particles will be strongly affected by their
personal best positions. On the other hand, if c2 is set to high compared with c1, all the par-
ticles will tend to move towards global best which may result in a premature convergence.
Accelaration coefficients are normally set manually such that :

c1 + c2 = 4 (3.36)

condition is satisfied. Setting c1 = c2 = 2 is normally considered as a good choice
because particles are attracted towards the average of their personal best positions and
global best position.

Inertia weight. Inertia weight was first applied by Shi and Eberhart [21] in order to
adjust the influence of previous velocities in the velocity update equation. If the particle
velocities are too high during optimization, particles will not be able to move back towards
an optimum point and swarm will diverge. On the other hand, if the velocities are too low
during optimization, the particles will only focus on some local regions (exploitation) and
they will not explore the search space efficiently. Inertia weight controls the exploration
and exploitation abilities of the algorithm by adjusting velocities. Inertia weight can be
implemented either as a fixed or dynamically changing parameter. Dynamic inertia weight
strategy was found to perform better than fixed inertia weight strategy. We have applied
both these strategies in our implementation. We have implemented a linear decreasing
inertia for dynamic inertia weight strategy. Linear decreasing inertia weight is calculated
based on the following formula:

ω(k) = ω0 −
(ω0 − ω1)k

K
(3.37)

where
k and K shows the current and maximum number of iterations, respectively, ω0 is the
initial inertia weight and ω1 is the final inertia weight, with 0 ≤ ω1 ≤ ω0.
Linear decreasing inertia weight increases the performance of the algorithm by maintain-
ing the balance between exploration and exploitation. High values of inertia weight helps
the swarm to explore the search space in the beginning and it is decreased over time which
changes the swarm behavior from exploration to exploitation.

3.5 Constraint handling methods
Particular Swarm Optimization algorithm is originally designed to solve unconstrained
optimization problems. Therefore, the original design lacks the mechanism to handle con-
straints which is similar to the evolutionary algorithms. Most of the constraint handling
techniques that are used in particle swarm optimization are adopted from evolutionary
algorithms.

26



3.6 Optimization Framework

3.5.1 Penalty method
Penalty method is one of the most popular approaches to deal with the constraints in par-
ticle swarm optimization. In general, a penalty function is formulated as in Eq. (3.38).

fp(x) = f(x) + P (x), x ∈ Rn (3.38)

where f(x) is the objective function and P (x) is the penalty factor. Note that, penalty
factor is only applied when the constraints are violated. If all the constraints are satisfied,
no penalty will be applied (Eq. (3.39)).

P (x) =

{
0, if x is feasible
p > 0, if x is infeasible

(3.39)

In our implementation, we will use the penalty function that is shown in Eq. (3.40). This
function was found to exhibit promising results with particle swarm optimization [22].
Note that, we have changed the plus sign in original function to minus, in order to apply it
to the maximization problem.

fp(x) = f(x)− c(k)H(x), x ∈ Rn (3.40)

where c(k) is dynamically modified penalty coefficient and k is the iteration number. H(x)
is penalty factor that is defined as in Eq. (3.41).

H(x) =

n∑
i=1

θ(qi(x))qi(x)
γ(qi(x)) (3.41)

where qi(x) = max{0, ci(x)}, i = 1, 2, ..., n, θ(qi(x)) is a multi-stage assignment func-
tion and γ(qi(x)) is the power of the penalty function. θ(qi(x)), γ(qi(x)) and c(k) depend
on the problem. We used the same functions as suggested in [22]. These functions apply
different penalties on the objective function based on the extent of the constraint violation
(Eq. (3.42)).

γ(qi(x)) =

{
1, if qi(x) < 1

2, otherwise

θ(x) =


10, if qi(x) < 0.001

20, if qi(x) < 0.1

100, if qi(x) < 1

300, otherwise

(3.42)

We have selected c(k) =
√
k for the penalty coefficient. Note that, penalty factor increases

in each iteration.

3.6 Optimization Framework
The optimization algorithm has been implemented using FieldOpt optimization frame-
work. The optimization framework includes a variety of optimization algorithms, such as

27



Chapter 3. Optimization

asynchronous parallel pattern search (APPS), generating set search (GSS) and compass
search algorithm. The framework also provides flexibility by allowing users to implement
their custom algorithms. Therefore, we have written an implementation of the PSO algo-
rithm that can be used as hybrid with other algorithms, and also run as a straightforward
PSO algorithm. ECLIPSE, the Automatic Differentiation General Purpose Research Sim-
ulator (AD-GPRS) and Flow can be used as reservoir simulator. The coupling is handled
by a simulator interface inside FieldOpt. FieldOpt’s MPI-based implementation also en-
ables to run simulations in parallel, by running the software on a computational cluster.
In next chapter, we will give more information about the structure of the optimization
framework.

28



Chapter 4
Implementation

In this section, we will first give detailed information about FieldOpt optimization frame-
work and then describe how we have implemented and integrated particle swarm optimiza-
tion algorithm inside FieldOpt optimization framework. We will use UML class diagrams
to explain important classes and methods. Note that, we will only show simplified dia-
grams with most important attributes, methods and inheritances. Also note that, in our
class diagrams when a class inherits from an abstract class, it implicitly implements all of
its virtual methods.

4.1 FieldOpt
In order to add new functionality to FieldOpt, it is important to understand the structure
and working principle of the program. The program runs on linux terminal and requires
full paths to the simulation data file, grid file, output folder, driver file and execution scripts
as input. Runner type is also specified by user. For example, if we want to use serial runner
with ECLIPSE reservoir simulator, we should run FieldOpt from terminal as:

./FieldOpt /path/to/the/driver file/ /path/to/the/output folder/ -r serial -g /path/-
to/the/grid file/ -e execution_scripts/csh_eclrun.sh -s /path/to/the/data file/

The program uses boost libraries to parse these inputs from terminal as strings and uses
them to run optimization and to read and write the files in specified paths. Driver file is the
most important input to the program, since the optimizer, optimizer parameters, simulator
type, optimization variables are all specified in this file. Driver file contents are read in the
settings section of the program, and model, optimization and simulation objects are created
according to the relevant sections specified in the driver file. These objects are required by
different classes inside the program. After reading driver file, the control is passed to the
user specified runner which implements abstract runner class. Therefore, abstract runner
class is called first inside runner. Abstract runner class includes methods to initialize the
settings, model, simulator, objective function, base case, optimizer, bookkeeper and logger

29



Chapter 4. Implementation

before starting optimization. The order in which abstract class initializes is important. For
example, base case should be initialized before optimizer because optimizer requires base
case for initialization. After initializing all the required sections, the control is passed to
the optimizer interface. Optimizer interface passes the control to the required optimizer.
Optimizer gets the required variables from model and creates new cases based on the spe-
cific algorithm used by that optimizer. These cases are then passed to the runner, and
runner passes the program control to the simulator interface in order to evaluate the cases.
The simulator interface calls the specified simulator class. The simulator class stores the
original simulation data file contents and overwrites new cases. After modifying data file,
simulator is called to evaluate the new model. Results from simulation is read and passed
to the runner. Runner updates the objective function values of the cases and passes the
evaluated cases to the optimizer interface. This process repeats until the end of the opti-
mization process. The optimization loop is illustrated in Figure 4.1.

FieldOpt

<<interface>>
Optimizer

<<interface>>
Simulator

RunnerDriver and
Data file Results

Figure 4.1: FieldOpt working principle.

FieldOpt uses bookkeeper class to avoid evaluating the same cases. This is done by spec-
ifying a bookkeeper tolerance parameter inside driver file. When the case is received by
the runner, runner calls this class in order to check the status of the case. The bookkeeper
class calculates the difference between current and previous cases. If the difference is less
than the specified tolerance, the case is said to be evaluated before, otherwise the case is
a new case and it will be passed to the simulator for evaluation. Finally, all the results are
logged by logger class during optimization and results are stored inside output folder.

4.1.1 Driver file
FieldOpt uses driver files in json format which is easy for users to edit and also easy for
machines to parse. Driver files contain four main parts, which are explained below:

• Global section: includes global definitions, such as the name of output file and
bookkeeper tolerance

• Optimizer section: Algorithm specific parameters such as maximum number of it-
erations, number of particles, etc. are defined in this section. Components for ob-
jective function evaluation and constraints are also defined in this section.

30



4.1 FieldOpt

• Simulator section: Reservoir simulator and the name of the script to run this simu-
lator is declared in this section.

• Model section: All the wells, well controls, well type, control times are specified
here. Optimization variables are declared by setting the IsVariable property to true.

All these sections are read in the settings section inside FieldOpt and relevant objects are
created.

4.1.2 Runner
Runner is the main driving engine in optimization process. FieldOpt uses different runners
such as serial runner, mpi runner, synchronous mpi runner and abstract runner. These
runners are defined by users in program options while running the software. Mpi runners
are used to run optimization in parallel such as in linux clusters. All the runners implement
abstract runner class, which initializes the most important sections that are needed by all
runners before starting optimization process.

4.1.3 Optimizer interface
All the optimizers inside FieldOpt, except APPS, implement optimizer interface. This
interface helps the algorithms to access constraints and other important classes and it holds
data members and functions that are important for all of the optimizers during optimization
process. The case handler class is one of the most important class for the interface, since
all the cases are handled by this class. The case handler class stores the list of recently
evaluated cases and all evaluated cases. Evaluated cases are counted in each iteration and
it can be used as a stopping criteria by specifying the maximum number of evaluations in
driver file. The case handler class also adds the new cases to the queue list. This cases are
dequeued one by one in order to be passed to the runner. The runner then calls simulator
interface to run simulations and evaluate objective function value.

4.1.4 Simulator interface
Simulator interface is responsible for running simulations and reading the results. The
inteface includes three classes for Flow, ADGPRS and ECLIPSE reservoir simulators.
These classes implement the abstract Simulator class. Different sections of simulation
data file contents are stored inside this interface. Modification to these sections during
optimization process is handled by driver file writers. After writing new simulation data
file, reservoir simulations are run by invoking a system call with the new data file as input
parameter to the simulators installed in the system. FieldOpt uses ert libraries to read the
results from finished simulations. After reading the results, the objective function value
for a particular case is calculated.

4.1.5 Case class
All the variables from perturbed model are hold inside Case class. Case class includes
methods to set the value of objective function and variable values for a particular case.

31



Chapter 4. Implementation

Case
- id : QUuid
- real_variables : QHash<QUuid, double>
- integer_variables : QHash<QUuid, double>
- binary_variables : QHash<QUuid, double>
- objective_value : double

+ Case ( bin_var : QHash<QUuid, bool>, real_var : QHash<QUuid, double>,
int_var : QHash<QUuid, int>) : void

+ set_real_variables (id : QUuid, value : double ) : void
+ set_integer_variables (id : QUuid, value : int) : void
+ set_binary_variables (id : QUuid, value : bool ) : void
+ set_objective_function_value ( value : double ) : void
+ real_variables ( ) : QHash<QUuid, double>
+ integer_variables ( ) : QHash<QUuid, int>
+ binary_variables ( ) : QHash<QUuid, bool>
+ objective_function_value ( ) : double

Figure 4.2: Class diagram for Case class

All the case objects and variables are assigned a unique id. The simple class diagram of
the case class is illustrated in Figure 4.2.
This class is assumed as a simplified form of the model class. It is simpler than model class,
since it only stores variable values in simple data structures and occupies less space in
memory. This enhancement makes the case class useful to work with the optimizers. This
class is one of the most important classes in FieldOpt, since all the optimizers work with
case objects. Although the case class is very simple and efficient, simulator interface only
uses model objects to run the simulations. Therefore, the model is updated by applying
new cases before running simulation.

4.2 PSO Integration

The main algorithm was implemented inside PSO class. PSO class is created as a sub-class
of the Optimizer class. Optimizer class includes important attributes and methods that
are needed for all optimization algorithms. These methods are defined as virtual methods
inside Optimizer class. Virtual methods need to have specific implementations for the
classes derived from Optimizer class. Therefore, we have reimplemented virtual meth-
ods iterate() and isFinished() for PSO class.

We have written a separate driver file for particle swarm optimization that specifies the al-
gorithm specific parameters. We have then modified optimizer class in the settings section
of the program in order to read these parameters. Another addition was made in abstract
runner class since all the optimizers are initialized inside this class. We have added PSO

32



4.3 Particle class

<<interface>>
Optimizer

+ tentative_best_case : Case*
- iterate ()
- isFinished ()

PSO
- particles: QList < Particle * >

- iterate ()
- isFinished()

Particle
- p_case : *Case
- p_velocity : QHash<QUuid, double>

+ Particle ( c : Case*, velocity :
QHash<QUuid, double>) : void

Figure 4.3: Main classes and class relationship.

to the list of optimizers inside initialize optimizer section of the abstract runner class. We
also implemented new constraint classes to use with PSO class. These classes are then
added to the list of constraints inside the constructor of constraint handler class. Since
the PSO class needs direct access to the constraint class, we have added a new method to
constraint handler class in order to get the constraints because optimizers can only access
to the constraint handler class.
While implementing particle swarm optimization algorithm inside FieldOpt, we also needed
to create an additional particle class, since the optimizers work with case objects and case
objects only hold the variable values. Therefore, we assigned velocities for each case by
creating a particle class that holds both the cases and associated velocities. Case variables
and velocities are in the vector format and each component is identified by a unique id.
We have assigned the same ids for both the cases and associated velocities, so the value of
each component can be updated according to the velocity value of that specific component.
The cases are decoupled from particles after updating case variables in order to apply it
to the model and run simulations because particle objects can not be applied to the model
object. After running simulation and updating objective function values, the cases and
corresponding velocities are coupled again in order to update the case variables.

4.3 Particle class

In particle swarm optimization, each particle holds variables and corresponding velocities.
As mentioned in previous section, variables are hold inside case class. During optimiza-
tion, FieldOpt instantiates objects of this class and applies it to the model. The model is
then passed to the simulator for objective function evaluation.
The particle class was created in order to keep variables values from case class and cor-
responding velocities. Note that, the velocities are only needed to update variable values.
After updating variables, cases and velocities are decoupled in order to apply the cases to

33



Chapter 4. Implementation

the model and run simulation.
Class diagram of the Particle class is shown in Figure 4.4.

Particle
- particle_case : *Case
- particle_velocity : QHash<QUuid, double>

+ Particle ( c : Case*, velocity : QHash<QUuid, double>) : void
+ get_case (): *Case
+ set_particle_velocity ( id : QUuid , value : double) : void
+ get_particle_velocity () : QHash<QUuid, double>

Figure 4.4: Particle class.

As shown in the diagram above, particle class includes three important methods which are
needed by PSO class:

• get_case(): Since the particle and assigned case point to the same place in mem-
ory, we can get corresponding cases from particle objects using this method

• set_particle_velocity(): This method is needed to set the corresponding ve-
locity value of the components to zero in case these components leave the search
space.

• get_particle_velocity(): This method returns the velocity of a particle object
in the vector format.

4.4 PSO class
The main algorithm is implemented inside PSO class. PSO class contains methods to ini-
tialize particles, to find global and personal best cases for all particles, methods to check
constraint violations and apply penalties on objective function values and also methods
for creating neighborhoods for each particle. PSO class needs to instantiate objects of
Particle class in order to create particles. We will give detailed information about
Particle class in the next section.
A simplified diagram of PSO class showing the most important methods and main attributes
is shown in Figure 4.5.

The main methods of PSO class are listed below:

• iterate(): This method calls the required methods in a stepwise manner during
optimization.

• initialize_cases(): This method is used to perturb initial cases and velocities
based on the number of particles.

• apply_penalty(): This method is used to check constraint violations and apply
penalties to the objective function if the constraints are violated.

34



4.4 PSO class

PSO
- id_list : QList<QUuid>
- real_max : QHash<QUuid,double>
- real_min : QHash<QUuid,double>
- max_iter : double
+ PSO ( *settings : Settings::Optimizer, *base_case : Case, *variables :

Model::Properties::VariablePropertyContainer, *grid : Reservoir::Grid::Grid ) :
void

- iterate () : void
- initialize_cases () : QList < Case *>
- perturb_real_variables ( base_variables : QHash < QUuid, double > ) :

QHash < QUuid, double >
- initialize_velocity ( size : int ) : QHash < QUuid, double >
- set_particles ( particles : QList < Particle * > ) : void
- get_particles () : QList < Particle * >
- find_case_velocity ( *c : Case ) : QHash < QUuid, double >
- update_global_best_case ( recent_cases : QList < Case * > ) : void
- set_personal_best_cases ( pbest_cases : QList < Case * > ) : void
- get_personal_best_cases () : QList < Case * >
- update_personal_best_cases () : void
- select_neighborhood_topology () : void
- set_local_best_cases ( lbest_cases : QList < Case * > ) : void
- create_global_best_case_list () : void
- create_ring_communication_matrix ( np : int ) : vector <vector< int > >
- update_local_best_cases_ring () : void
- create_random_communication_matrix ( np : int ) : vector <vector< int > >
- update_local_best_cases_random () : void
- update_particles () : QList< Case * >
- get_local_best_cases () : QList < Case *>
- apply_penalty ( cases : QList < Case * >) : void

Figure 4.5: PSO class.

• update_global_best_case(): This method is used to find the global best case
and update it in each iteration.

• update_personal_best_cases(): This method is used to find the personal best
case for each particle and update it in each iteration.

• update_particles(): This method is used to update the velocities and positions
of each particle during optimization.

All the other methods are called inside these main methods and brief description of them
will be given while describing these main methods. In the following sections, we will give
detailed information about these main methods.

35



Chapter 4. Implementation

4.4.1 Iterate method
The most important method for PSO class is iterate() method because all the critical
methods that are important for the optimization process are called inside this method. Al-
gorithm 1 shows the simple working principle of iterate method.

Algorithm 1 Iterate method

1: if ( iteration = 0 ) then
2: AddNewCases(initialize_cases())
3: else
4: apply_penalty(RecentlyEvaluatedCases())
5: update_personal_best_cases()
6: update_global_best_case(RecentlyEvaluatedCases())
7: AddNewCases(update_particles())
8: end if
9: ClearRecentlyEvaluatedCases()

10: iteration++

At first iteration, initialize_cases() method is called and generated cases are passed
to the runner for objective function evaluation. This method is only called at first itera-
tion. In next iteration, evaluated cases are passed to the apply_penalty() method for
checking constraint violations. Inside this method, the objective function values are up-
dated based on the constraint violations. After updating objective function values, per-
sonal and global best cases are updated by calling update_personal_best_cases()
and update_global_best_case() methods. Lastly, update_particles() method is
called in order to update the cases and associated velocities. New cases are passed to the
runner for objective function evaluation and the procedure repeats again until maximum
number of iterations is reached.

4.4.2 Initialize cases method
This method is only used at the beginning of the optimization. Inside this method, a list
of cases and particles are created based on the number of particles. Particle velocities
and variables are initialized by calling initialize_velocities() and perturb_real
_variables() methods. We set initial velocities to zero and apply uniform distribution
to all the components of real variables. The perturbed real variables values are assigned
to the cases and all of these cases are saved as a vector. Particle velocities and cases are
used to create particle objects by sending them to the constructor of Particle class. These
particles are put in a vector and saved using set_particles() method.

4.4.3 Apply penalty method
This method receives the list of recently evaluated cases and checks if the constraints are
satisfied. If the constraints are violated, penalty is applied to the objective function value.
Note that, by applying penalties, we reduce the chance of the infeasible particles to be
selected as best particle among others, since the penalized objective function value is less

36



4.4 PSO class

compared with other particles (maximization problem). We have implemented well length,
inter-well distance and reservoir boundary constraints inside this method.

4.4.4 Update Global Best Case method

This method receives the list of recently evaluated cases and saves the case that has the
best objective function value. This value is saved as tentative_best_case. In next
iterations, tentative_best_case is compared with new cases and updated if there is
improvement in objective function value compared with previous iteration. This method

Algorithm 2 Update global best case method

1: if ( iteration = 0 ) then
2: best_case=base_case
3: else
4: for ( Case c : RecentlyEvaluatedCases ) do
5: if ( mode=Maximize ) then
6: if ( c→obj.value > best_case→obj.value ) then
7: best_case=c
8: end if
9: else

10: if ( mode=Minimize ) then
11: if ( c→obj.value < best_case→obj.value ) then
12: best_case=c
13: end if
14: end if
15: end if
16: end for
17: end if

is designed to work both in maximization and minimization problems. This method only
works for gbest particle swarm optimization. In the case of lbest particle swarm optimiza-
tion, update_local_best_cases_ring() and update_local_best_cases_random()
methods are used. These methods and update_global_best_case() use the same prin-
ciple to update the global best case except that first one only compares the objective func-
tion values of the particles that are defined as neighbors. In lbest particle swarm optimiza-
tion, there are more than one global best case for each particle, since the particles only
communicate with their neighbors compared with whole swarm in gbest version. There-
fore, we have decided to make a vector of global best case that works for both versions.
We created a create_global_best_case_list() method to save the global best case
as a vector for gbest algorithm. This method creates a vector of global best case, based on
the number of particles in each iteration and assigns the same value for all of them. Note
that, these values will be different for lbest algorithm.

37



Chapter 4. Implementation

4.4.5 Update Personal Best Cases method
This method is called after evaluating objective function values of all particles in each
iteration. This method also works for both minimization and maximization problems. The
method compares the objective function values of each particle with previous iterations and
saves this as a vector for all particles. This method uses set_personal_best_cases()
method in order to save the personal best cases. Saved personal best cases are needed
inside update_particles() method and they also need to be updated in each iteration.
Therefore, we have implemented get_personal_best_cases() method to access this
personal best cases.

4.4.6 Update Particles method
This method is used to update the velocities and positions of particles that are saved in
previous iterations. Inside this method, select_neighborhood_topology() method is
called first. After then, based on the topology defined in driver file, communication matrix
is created using create_ring_communication_matrix() or create_random_commu
nication_matrix() and local best cases are updated on the basis of the communication
matrix by using update_local_best_cases_ring() or update_local_best_cases
_random().
After updating local best cases, the velocity of each case is found by calling find_case_ve
locity() method. Inside this method, get_particles() method is first called in order
to get the list of saved particles. Then, get_case() method is called for each particle and
ids are compared with the input case id. If the id is same, the velocity of that particle is
returned by calling get_particle_velocity(). After finding current velocities of each
evaluated case, velocity and position update equations are applied for all the components.

38



Chapter 5
Case Study

5.1 Model descriptions

5.1.1 5 spot model

We consider a simple 2D, two phase (oil and water) model. The model does not include
any faults or dipping as shown in Figure 5.1. The grid contains 3600 (60×60×1) grid
blocks with uniform size for each of them. The dimensions of the model are 1440 m long,
1440 m wide and 24 m thick. The top of the model is at 1700 m with 170 bar initial

Figure 5.1: 5 Spot Model.

39



Chapter 5. Case Study

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

1 200 400 600 800 1000

(a) Permeabilty distribution

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0 0.1 0.2 0.3 0.4 0.5

(b) Porosity distribution

Figure 5.2: Permeability and Porosity distribution

pressure at this point. Initially, the model is fully saturated with oil (no connate water).
The permeability and porosity distribution is a cut off layer 21 of the SPE 10 model which
are both shown in Figure 5.2. Residual water saturation was 0.15 and capillary pressure
was neglected. Relative permeabilities are shown in Figure 5.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Water Saturation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

la
ti
v
e

 P
e

rm
e

a
b

ili
ty

Figure 5.3: Relative Permeabilities.

40



5.1 Model descriptions

5.1.2 Olympus model
Olympus synthetic reservoir model was inspired by a virgin oilfield in the North sea and
was developed for the purpose of a benchmark study for field development optimization.
The reservoir thickness is 50 m and the entire thickness is modeled by 16 layers. The
reservoir consists of top and bottom parts which are separated by an impermeable shale
layer. The top part of the reservoir contains fluvial channel sands while the bottom part
contains alternating layers of coarse, medium and fine sands. Table 5.1 shows the summary
of facies properties for different parts of the reservoir.

Table 5.1: Facies properties.
Facies type Zone Porosity Permeability Net-to-Gross
Channel sand Top 0.2 - 0.35 400 - 1000 mD 0.8 - 1
Shale Top and barrier 0.03 1 mD 0
Coarse sand Bottom 0.2 - 0.3 150 - 400 mD 0.7 - 0.9
Sand Bottom 0.1 - 0.2 75 - 150 mD 0.75 - 0.95
Fine sand Bottom 0.05 - 0.1 10 - 50 mD 0.9 - 1

The field is 9 km by 3 km and it is modeled by 341,728 grid cells of which 192,750 are
active. The impermeable shale layer that separates the top and bottom parts of the reser-
voir contains mostly inactive cells. The reservoir is also separated by 6 minor faults into
different regions in horizontal direction and it is bounded on one side by a boundary fault
(Figure 5.4).

Figure 5.4: Olympus model

Uncertainty was taken into account by performing 50 realizations in which different poros-
ity, permeability, net-to-gross and initial water saturations are generated. The oil-water
contact (OWC) was determined to be 2090 m with a hydrostatic pressure of 206 bar and
it was considered the same for all realizations. Grid and faults are also kept same for all
realizations.
The relative permeability curves are different for each facies. Therefore, initial water
saturations are also different for each realization, since facies distribution varies in each

41



Chapter 5. Case Study

realization. We will only focus on the first realization in this thesis, since we do not con-
sider uncertainty because of high computational demand and time.

Figure 5.5: Permeability distribution for the first realization.

Figure 5.5 and 5.6 show the permeability and porosity distribution for first realization, re-
spectively.

Figure 5.6: Porosity distribution for the first realization

The reference operating strategy for the first realization consists of 10 producers and 6
injectors which are controlled by a pressure constraint.

42



5.2 Optimization results and discussion

5.2 Optimization results and discussion

5.2.1 5 spot results

Case 1. In this case, we place four injection wells at the corner of the model and optimize
the location of one horizontal well. All of the injectors are controlled with a constant rate
of 500 Sm3/day. The producer is controlled with a target liquid rate of 5000 Sm3/day
and a minimum BHP limit of 120 bara. We use only well length and reservoir boundary
constraints in this case, since we have only one well. The minimum and maximum well
lengths are set to be 200 m and 600 m, respectively. The production time is set for 8 years
(2920 days).

0 50 100 150 200

Number of Simulations

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

B
e
s
t 
s
o
lu

ti
o
n

10
6 N=20, K=10

0 200 400 600 800 1000

Number of Simulations

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

B
e

s
t 

s
o

lu
ti
o

n

10
6 N=20, K=50

0 100 200 300 400 500

Number of Simulations

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

B
e
s
t 
s
o
lu

ti
o
n

10
6 N=50, K=10

0 500 1000 1500 2000 2500

Number of Simulations

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

B
e

s
t 

s
o

lu
ti
o

n

10
6 N=50, K=50

Figure 5.7: Sensitivity analysis for different swarm sizes and maximum number of iterations.

We first perform sensitivity analysis to study the performance of PSO using different
swarm sizes and maximum number of iterations. We consider a combination of small
and big numbers for both swarm size (N ) and maximum number of iterations (K). For
this purpose, we use 20 and 50 particles for swarm size, 10 and 50 iterations for maximum

43



Chapter 5. Case Study

number of iterations. The results show the average of 5 runs for each combination of N
and K.
Figure 5.7 shows the comparison of NPV as a function of total number of simulations for
each combination. It is evident that increasing the number of iterations from K = 10 to
K = 50 for the same swarm sizes (N = 20 orN = 50) increases the performance of PSO.
More iterations increases the global exploration abilities of the algorithm by helping the
particles to update their locations more, therefore increases the chance of obtaining better
results. Increasing swarm size from N = 20 to N = 50 for the same number of iterations
(K = 10 orK = 50) also increases the performance of the algorithm. This may be related
to the better coverage area provided by big swarm sizes. We obtain the best results for a
swarm size of N = 50 and maximum iterations of K = 50.
After determining the optimal swarm size and maximum number of iterations, we perform
sensitivity analysis on cognitive and social components and also inertia weight strategy.
We use three different tunings for this purpose as shown in Table 5.2.

Table 5.2: PSO parameters for different tunings
Parameters ω1 ω0 c1 c2 Np K
Tune 1 1.2 0 2.8 1.2 50 50
Tune 2 0.721 0.721 1.193 1.193 50 50
Tune 3 1.2 0 1.193 1.193 50 50

0 500 1000 1500 2000 2500

Number of Simulations

2.36

2.38

2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56

B
e
s
t 
s
o
lu

ti
o
n

10 6 N=50, K=50 (Gbest PSO )

Tune 1

Tune 2

Tune 3

Figure 5.8: Average NPV over five runs vs number of simulations for different tunings

In the first and third tuning, we apply a dynamically changing inertia weight strategy that
starts from ω = 1.2 and decreases linearly to ω = 0, while in the second tuning we

44



5.2 Optimization results and discussion

apply a static inertia weight strategy with ω = 0.721. We also apply different acceleration
coefficients (social and cognitive coefficients) in Tune 1 and 3.
We first compare Tune 1 and 3 in order to determine the effect of social and cognitive
components. The results show only the effect of acceleration coefficients since the inertia
weight strategy, swarm size and maximum number of iterations are the same. In Tune 1,
we set a higher cognitive coefficient c1 = 2.8 than social coefficient c2 = 1.2 and in Tune
3, we set the same number for social and cognitive coefficients c1 = c2 = 1.193. Results
show that setting the social and cognitive components in Tune 3 as equal performs better
than Tune 1 (Figure 5.8) in which the social and cognitive components are different. This
may be related to particle trajectories in Tune 3. Because when the social and cognitive
components are the same, particles move stochastically towards the average of particles’
personal and global best positions. On the other hand, setting a higher coefficient for
cognitive component helps the particles to move stochastically towards their personal best
positions. Although this is true for this specific model, we are not sure for other reservoirs
since they have different properties and distribution that yields completely different objec-
tive function surfaces.

After comparing the effect of social and cognitive coefficients, we also compare the

0 500 1000 1500 2000 2500

Number of Simulations

2.3

2.35

2.4

2.45

2.5

2.55

2.6

B
e
s
t 
s
o
lu

ti
o
n

10 6 N=50, K=50 (Gbest PSO - Tune 3 )

Run 1

Run 2

Run 3

Run 4

Run 5

Average

Figure 5.9: Average NPV and NPV of five runs vs number of simulations for Tune 3.

inertia weight strategies. We have implemented a linear decreasing strategy in our imple-
mentation, but it can also be used as a static inertia weight strategy by setting the start and
end values as equal. We take the best results from the comparison of Tune 1 and 3, and
compare it with Tune 2. This shows that, linear decreasing inertia weight strategy in Tune
3 achieves better results compared with static inertia weight strategy in Tune 2 as shown in

45



Chapter 5. Case Study

Figure 5.8. This is explained by better global exploration abilities of the algorithm in Tune
3. Because, in Tune 3, higher initial values of inertia weight help the particles to update
their positions more compared with static inertia weight strategy. Therefore, it explores
the search space more efficiently at initial iterations and it is decreased gradually for each
iteration in order to increase the exploitation abilities of the algorithm.
In our comparisons discussed above, Tune 3 achieved the best results. Note that, all the
tunings show the average results over 5 optimization runs. We present 5 optimization runs
and their average for the third tuning in Figure 5.9.
As observed in Figure 5.9, all the runs give similar results with small differences suggest-

2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920

Time [Days]

2.71

2.715

2.72

2.725

2.73

2.735

2.74

2.745

2.75

F
O

P
T

 [
S

m
3

]

10
6 Field Oil Production Total

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 5.10: Field total oil productions for the first case (scaled).

ing that the algorithm converged to a optimum solution. Among the 5 optimization runs,
we have obtained the best results in Run 2 with third tuning. This is also confirmed by
total oil and water productions for each run. Total oil and water productions are almost
the same for all the runs with small differences. Therefore, we present the scaled results
of total oil and water productions to confirm the results.
Figure 5.10 and 5.11 show the scaled results for total oil and water production for 5 opti-
mization runs. These results confirm the results achieved by pso because Run 2 achieves
the highest total oil production and the smallest water production, suggesting that oil re-
covery factor is the highest for Run 2.
Figure 5.12 shows the final well locations and resulting final oil saturations for all 5 opti-

mization runs. The injectors are shown with red circles while the producer is shown with a
solid black line. Labels on the wells show their heel coordinates. We optimize the heel and
toe coordinates of one horizontal producer. Therefore, we have 6 optimization variables in

46



5.2 Optimization results and discussion

2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920

Time [Days]

9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

F
W

P
T

 [
S

m
3

]

10
5 Field Water Production Total

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 5.11: Field total water productions for the first case (scaled).

this case.
All the runs converged to the north-east part of the model in this case. This region is a
reasonable location, because it is located in low permeability region of the reservoir in
order to avoid early breakthrough of water coming from the injectors. Therefore, in low
permeability region, we can obtain the highest oil production for a given production time
(8 years).
All the final well configurations provide an efficient sweep by providing an equal displace-
ment of oil. Although the final well configurations provide an equal displacement of oil,
some of the oil is left in the corners of the reservoir. This may be related either to produc-
tion scenario (production time or well controls such as BHP or rate) used in this case or
reservoir properties. Especially the north, east and west regions where much of the oil is
left correspond to very low permeability regions. For the production scenario, we used an
upper liquid target limit and minimum bottomhole pressure limit for the producer in order
to avoid the early drainage of the oil within the given production time. However, this can
also be optimized along with the well location to provide more optimal results but well
control optimization is out of the scope of this thesis. Therefore, we have only focused on
the well placement optimization part.
In Figure 5.12, we can visually check the results. As can be seen from the figure, Run 2
shows better sweep efficiency both in heel and toe points. Run 1 and 4 show less sweep
efficiency near the toe points compared with Run 2, while Run 3 and 5 show less sweep
efficiency near the heel points.
Note that, we have implemented "absorb" technique to deal with reservoir boundary con-

47



Chapter 5. Case Study

straints and a dynamic penalty method to treat the well length constraints in this case. In
the absorb technique, when one of the heel or toe components (x, y, z) of the well leaves
the search space, they are set back to the boundaries and corresponding velocity compo-
nents are set to zero and particles move into the search space in next iterations.
In penalty method, depending on the extent of the constraint violations, penalties are ap-
plied to the objective function values in order to avoid that cases being selected as personal
and global best positions, which affect the performance of the algorithm.

10 20 30 40 50 60

Oil Saturation for Run1

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

(a) Run 1

10 20 30 40 50 60

Oil Saturation for Run 2

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

(b) Run 2

10 20 30 40 50 60

Oil Saturation for Run 3

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

(c) Run 3

10 20 30 40 50 60

Oil Saturation for Run 4

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

(d) Run 4

48



5.2 Optimization results and discussion

10 20 30 40 50 60

Oil Saturation for Run 5

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

(e) Run 5

Figure 5.12: Oil saturations at 2920 day for different runs in Tune 3.

Case 2. In this case, we optimize the location of one horizontal producer inside a spe-
cific region within the reservoir. This region may represent the constraints that are decided

0 500 1000 1500 2000 2500

Number of Simulations

2.3

2.32

2.34

2.36

2.38

2.4

2.42

2.44

2.46

2.48

2.5

B
e
s
t 
s
o
lu

ti
o
n

10 6 N=50, K=50

Run 1

Run 2

Run 3

Run 4

Run 5

Average

Figure 5.13: Average NPV and NPV of five runs vs number of simulations (Case 2).

49



Chapter 5. Case Study

during field development phase and imposed on well placement optimization problem. We
formulate this region as a constraint by using polynomials. This constraint can be used to
incorporate and apply reservoir engineering knowledge to the optimization problem. For
example, this region may represent the regions that are bounded by faults or regions with
good reservoir properties, which are desirable to place the wells.
The optimization problem in this case is to maximize the NPV by changing the heel and
toe coordinates of one horizontal production well, which is subject to reservoir boundary
and well length constraints. Although this is similar to the first case, the reservoir boundary
constraints in this case are different than box constraints (reservoir boundary) used in the
first case. We have used "absorb" technique for box constraints in the first case. However,
in this case, we formulate the reservoir boundary constraint using polynomials and penalty
method is more relevant for this kind of constraints. We also apply penalty method to treat
the well length constraints. The minimum and maximum well lengths are set the same as
in the first case. Production time and well controls for both injectors and producer are also
set the same as in the first case. For particle swarm optimization, we took the tuning of

2914 2915 2916 2917 2918 2919 2920

Time [Days]

2.687

2.6875

2.688

2.6885

2.689

2.6895

2.69

2.6905

2.691

2.6915

2.692

2.6925

F
O

P
T

 [
S

m
3

]

10
6 Field Oil Production Total

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 5.14: Field total oil productions for the second case (scaled).

parameters that gave the best results in the first case, which is Tune 3. Since the particle
swarm optimization is a stochastic method, it makes sense to run the algorithm multiple
times and take the average results in order to make meaningful comparisons. Therefore,
we also run the optimization 5 times and take the average of the runs.
Figure 5.13 shows the improvement of objective function versus number of simulations
for 5 optimization runs and their average. All the runs give similar results as we expect.
Among the runs, Run 3 gives the best results compared with the others. The average results

50



5.2 Optimization results and discussion

are shown with a blue solid line and the average results are very close to those obtained
by five runs. We compare the total oil and water productions for all 5 optimization runs
in Figure 5.14 and 5.15. It is evident that Run 3 gives the highest total oil production and
lowest total water production among other runs. Run 1 and 5 give almost the same total oil
production. However, the total water productions are different for two runs (Run 1 gives
more total water production than Run 5).
Final well configurations and reservoir boundary constraints are illustrated in Figure 5.16.

2914 2915 2916 2917 2918 2919 2920

Time [Days]

1.074

1.076

1.078

1.08

1.082

1.084

F
W

P
T

 [
S

m
3

]

10
6 Field Water Production Total

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 5.15: Field total water productions for the second case (scaled).

Production well is shown by a solid green line while reservoir boundaries are illustrated
by solid black lines. As shown in the Figure 5.16, all the runs converged to similar well
locations, which are in the north east part of the model. These results correspond with the
results in the first case. Because the optimal location for the model was found to be in the
north east part of the model in the first case. Since we use the same production scenario
and the same parameters for particle swarm optimization, the expected result should be
close to the north east part.
We observe that optimal locations are found to be close to the boundaries in north-east
direction. This region is low permeability region and provides the most efficient drainage
of reservoir oil such that the water breakthrough time is delayed. We also observe that in
this case more oil left at the end of production compared with the first case, especially in
the north part. This is related to the boundary constraints implemented in this case, since
we limit the search in a specific region, which may be far away from optimal case that pro-
vides the highest recovery of the oil. However, the results still represent the optimal case
with given constraints and for the specific control parameters. Also note that, in this case,

51



Chapter 5. Case Study

penalty function can also effect the results, since some of simulations are consumed for
infeasible cases, which in turn reduces the chance of the algorithm to converge to a better
solution within the given maximum number of iterations for the specific swarm size.

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

(a) Run 1

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

(b) Run 2

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

(c) Run 3

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ4 INJ3

PROD1

(d) Run 4

52



5.2 Optimization results and discussion

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

(e) Run 5

Figure 5.16: Oil saturations at 2920 day for different runs.

Case 3. In this case, we apply reservoir boundary, inter-well distance and well length
constraints to optimize the heel and toe coordinates of two horizontal production wells.
This case is computationally more demanding than the first and second cases because there
are twelve optimization variables. We applied inter-well distance constraint to keep a cer-
tain distance between wells in order to avoid interference between wells, which may affect
the performance negatively. We use a minimum distance of dmin = 200m for inter-well
distance constraint. Reservoir boundary constraints are similar to those used in the second
case. However, in this case, we have changed the boundaries in order to include two wells
inside the boundaries. The minimum and maximum well lengths are set as same as in the
first and second case. The penalty method is applied to treat all the constraints. We apply
the same well controls for producers with a liquid target limit rate of 5000 Sm3/day and
a minimum BHP limit of 120 bara.
Figure 5.17 shows the evolution of the NPV of the best solution versus number of the sim-
ulations. Each thin curve corresponds to a different optimization run, and the thick blue
line depicts the average of best solutions from five runs. In this case, there is a big devia-
tion between the runs and their average. This may be related to the number of constraints
used in this case. We observe that more constraints degrade the performance of the algo-
rithm. This might be related the ratio of infeasible and feasible cases because when more
constraints are used, this ratio increases and it affects the performance of the algorithm.
Note that, we use a constant capital expenditure in the objective function evaluation and it
is possible that the algorithm finds two optimal cases with different well lengths, but very
similar objective function values. However, in a real case scenario, a longer well costs
more than a shorter well with the same production. For example, we have obtained very
similar results for Run 1 and 3. These runs have quite similar total oil (Figure 5.18) and
water (Figure 5.19) productions, as well as, same recovery factors (Figure 5.20).

53



Chapter 5. Case Study

0 500 1000 1500 2000 2500

Number of Simulations

1.6

1.8

2

2.2

2.4

2.6

2.8

B
e
s
t 
s
o
lu

ti
o
n

10 6 N=50, K=50

Run 1

Run 2

Run 3

Run 4

Run 5

Average

Figure 5.17: Optimization results for the third case.

0 500 1000 1500 2000 2500 3000

Time [Days]

0

0.5

1

1.5

2

2.5

3

F
O

P
T

 [
S

m
3

]

10
6 Field Oil Production Total

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 5.18: Field total oil productions for the third case.

54



5.2 Optimization results and discussion

0 500 1000 1500 2000 2500 3000

Time [Days]

0

2

4

6

8

10

12

F
W

P
T

 [
S

m
3

]

10
5 Field Water Production Total

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 5.19: Field total water productions for the third case.

0 500 1000 1500 2000 2500 3000

Oil Recovery Factor [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

F
O

P
T

 [
S

m
3

]

Oil Recovery

Run 1

Run 2

Run 3

Run 4

Run 5

Figure 5.20: Recovery factors for the third case.

55



Chapter 5. Case Study

However, the final well configurations corresponding to Run 1 and 2 are different.
Figure 5.21 shows the final well configuration for different optimization runs. The result-
ing oil saturations are shown in the background. The producers are shown with solid green
lines. It can be seen from the figure that, in Run 1, the wells are relatively shorter than
Run 3 as we have discussed above. Because of the shorter well lengths in Run 1, the final
locations are also different than Run 3. Therefore, considering the cost of wells, Run 1
should be taken as optimal case. As in the first and second cases, the algorithm again finds
the optimal location in low permeability region in order to avoid early water breakthrough.

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

PROD2

(a) Run 1

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

PROD2

(b) Run 2

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

PROD2

(c) Run 3

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

PROD2

(d) Run 4

56



5.2 Optimization results and discussion

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INJ1 INJ2

INJ3INJ4

PROD1

PROD2

(e) Run 5

Figure 5.21: Oil saturations at 2920 day for different runs.

It can be visually (also from Figure 5.17) observed that relatively less oil is left at the end
of the production compared with the first and second cases. This is related to the number
of wells used in this case. Although very little oil is left in the reservoir at the end of
production, the effect of well controls need to be investigated further, since we are not sure
how the specific well control parameters affect the drainage of the wells.

57



Chapter 5. Case Study

5.2.2 Olympus results
Olympus synthetic model contains small faults which makes the regular well patterns sub-
optimal. Therefore, the location of individual wells need to be optimized. Figure 5.22
shows the initial locations of the wells. There are 10 producers and 6 injectors, initially.
All the producers and injectors are controlled by a BHP constraint of 175 and 235 bar,
respectively.

Figure 5.22: Initial well locations (Top view).

We optimize the locations of 5 production wells (PROD1, PROD2, PROD3, PROD4,
PROD5) for 5 years, while fixing the well controls and other well locations variables
constant during the optimization.

Figure 5.23: Regions.

We divide the reservoir into 4 regions in order to initialize and optimize the well locations
inside those regions as shown in Figure 5.23. The regions include both top and bottom

58



5.2 Optimization results and discussion

zones of the reservoir and cover most of the area that contains oil. We have used the i, j,
k cell indexes to define the regions. We use special functions inside FieldOpt optimiza-
tion framework to get the real x, y, z coordinates of cells for initializing particle swarm
optimization, since the algorithm we have implemented only works with continuous vari-
ables. We apply absorb technique when the well location variables are outside the defined
regions. For this purpose, we create a list of cells for each region and check it against new
well locations in each iteration. If the corresponding cell for new well location is not in
the list, we project that location to the nearest bound and set the corresponding velocity
component to zero.

0 10 20 30 40 50 60 70 80 90 100

Number of Simulations

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

B
e

s
t 

s
o

lu
ti
o

n

10 6 N=20, K=5

Run 1

Run 2

Run 3

Run 4

Average

Figure 5.24: Optimization results.

We have defined one region for each well, except the third one. The third region includes
wells, PROD3 and PROD 4, while the first, second and fourth regions include PROD1,
PROD2 and PROD5, respectively. Therefore, we only apply inter-well distance constraint
for the third region between the wells, PROD3 and PROD4. A minimum inter-well dis-
tance of 200 m is used in order to avoid the interference problems in the reservoir. Inactive
cells are treated such that heel or toe point of a well can not be located inside inactive
cells, but the well trajectory can cross the inactive cells. We have defined regions in active
cells. However, there is an impermeable shale layer (layer 8) associated with inactive cells,
which separates the top and bottom zones of the reservoir. We exclude these cells when
we define the regions to solve the inactive cell issues.
In this example, we use a swarm size of 20 and set the maximum number of simulations
to 100. Acceleration coefficients are set the same, c1 = c2 = 1.193, since these numbers

59



Chapter 5. Case Study

proved to perform better in previous examples. We perform 4 optimization runs and com-
pare them.

Figure 5.24 shows the evolution of the NPV of best solution versus number of simula-

0 200 400 600 800 1000 1200 1400 1600 1800

Time [Days]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
O

P
T

 (
F

W
P

T
) 

[S
m

3
]

10
6

Comparison of FOPT and FWPT for different runs

Run 1 - FOPT

Run 1 - FWPT

Run 2 - FOPT

Run 2 - FWPT

Run 3 - FOPT

Run 3 - FWPT

Run 4 - FOPT

Run 4 - FWPT

Figure 5.25: Comparison of field total oil and water productions.

0 200 400 600 800 1000 1200 1400 1600 1800

Time [Days]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F
W

C
T

 [
-]

Comparison of FWCT for different runs

Run 1

Run 2

Run 3

Run 4

Figure 5.26: Comparison of field water cut for different runs .

60



5.2 Optimization results and discussion

tions. Thin curves represent different optimization runs, while the thick blue line shows
the average of 4 optimization runs. We observe that Run 2 performs better than the others
and there is a high deviation between runs and their average. This means the algorithm
did not converge to an optimal solution with the given parameters. This is related to the
swarm size and maximum number of simulations used in this case.
We could not use a bigger number for swarm size and maximum number of iterations,
because of the limited time and some issues related to current version of the optimization
framework. However, in this case, we show that our implementation of the particle swarm
optimization algorithm can be applied to optimize the well locations in real reservoir mod-
els. This is also confirmed with optimization results. The optimization results seem to be
reasonable in this case.
To analyze the optimization results, we compare field total oil and water productions in
Figure 5.25. Although the total water production in Run 3 is less than Run 2, the higher
total oil production in Run 2 compensates this and yields the highest NPV. It can also be
observed that all the runs have an earlier water-breakthrough time compared with Run 2.

(a) Run 1

(b) Run 2

61



Chapter 5. Case Study

(c) Run 3

(d) Run 4

Figure 5.27: Comparison of well locations for different runs.

Figure 5.27 shows the optimized well locations for five production wells (PROD1, PROD2,
PROD3, PROD4, PROD5). The background shows the oil saturation at the end of five
years. It can be observed from the figure that some of the oil near the zones around the
injectors, INJ1 and INJ3, move towards aquifer. This is related to the high permeability
channels in the top zone of the reservoir. The presence of injectors in these zones enables
early water breakthrough in the producers that are located nearby. Therefore, either lo-
cations or well control parameters of these injectors need to be optimized. We could not
perform a full optimization because of the current software issues and time limitations.

62



Chapter 6
Conclusion and Recommendations
for Further Work

This thesis has dealt with the development and integration of particle swarm optimiza-
tion algorithm inside FieldOpt optimization framework. A main goal for this thesis has
been to increase the capabilities of FieldOpt optimization framework by adding a new
optimization algorithm that can be used to optimize the well locations on simple and real-
istic reservoir models. Furthermore, a standard description of the well placement problem
was formulated including realistic constraints such as well length, inter-well distance and
reservoir boundary constraints. A dynamic penalty function was also incorporated into
particle swarm optimization algorithm in order to handle these constraints. Optimization
runs have been performed using PSO with different parameters. PSO with dynamic in-
ertia weight strategy provided better performance than static inertia weight strategy. It is
also observed that setting the acceleration coefficients with the same values improved the
performance of the algorithm. Although it performed better in these specific cases, it is un-
certain for other models, since it depends on the objective function properties. In the case
of olympus model, we could not perform more simulations to find the optimal locations
because of higher computational demands and limited time. The framework also needs to
be improved in order to handle realistic cases. However, the main goal of this thesis was
to show the applicability of our algorithm to realistic cases.
Currently, our algorithm works only with continuous variables and it was applied only
for well placement optimization. However, it can be applied easily for well control opti-
mization and joint optimization, as well. The optimization type is not shown in FieldOpt
optimization framework and it needs to be defined in driver file and added into the relevant
parts inside FieldOpt in a future work. This is related to the different initializing strategies
in well control, joint and well placement optimization. In the case of well control opti-
mization, one needs to know only the maximum and minimum values of the well control
variables. On the other hand, in well placement optimization, the algorithm will use the
grid to take the maximum and minimum values of the well location variables. Therefore, if
the optimization type is included in FieldOpt, one can define different initializing methods

63



depending on the type of optimization. This is also true for other optimization algorithms,
such as Genetic algorithms.
One of the main challenges while developing the particle swarm optimization algorithm
have been initializing the algorithm (well placement) for real reservoir models, since it is
difficult to get the real coordinates of upper and lower bounds compared with rectangular
simple models where the upper and lower bounds have the same real values. Therefore, we
have changed the initialization of the algorithm to start with the random cells within de-
fined regions and used functions inside FieldOpt to get the real coordinates of these cells,
since the algorithm only works with real coordinates. This is a significant achievement,
because the user can manually define regions for each well in driver file for initializing the
algorithm and searching in a specific region for specific well. This can reduce the number
of iterations to achieve an optimal solution by not wasting time for searching through all
the regions that can be undesirable to locate the wells. For example, one can incorporate
engineering knowledge to the problem by defining regions which have high possibility of
being optimal locations. Although this is a significant achievement, we did not include the
base case (reference strategy) while initializing the algorithm since we were not sure the
effect of this on the performance of the algorithm. However, this can be investigated in
a future work. We believe that this can increase the performance of the algorithm when
a base case that is close to the optimal location is added. This case will act as a global
best case and change the trajectories of the particles towards optimal solution from the
beginning of the optimization. Therefore, it can converge to an optimal solution faster.
However, this strategy is closer to gradient based methods where a good initial guess can
achieve better results in a reasonable amount of time. To our knowledge, the effect of the
inclusion of a good initial guess on the performance of PSO has not been investigated in
previous works.
Although the algorithm that we have implemented is effective, there is still a high compu-
tational demand for realistic cases. This is mainly related to the optimization framework
itself and it needs to be improved in the future. Another improvement to the optimization
framework can be in the objective function part. The current objective function is sim-
ple and it can handle only one realization. Therefore, it needs to be improved in order to
include multiple realizations at the same time. Future work will consist of applying the
algorithm to more complex cases including geological uncertainty and non-conventional
well types with variable production strategies as part of the overall field development prob-
lem.

64



Bibliography

[1] Y. J. Túpac, M. M. B. Vellasco, and M. A. C. Pacheco, “Selection of alternatives for
oil field development by genetic algorithms,” Revista de Engenharia Térmica, vol. 1,
no. 2, 2002.

[2] G. Montes, P. Bartolome, A. L. Udias, et al., “The use of genetic algorithms in well
placement optimization,” in SPE Latin American and Caribbean Petroleum Engi-
neering Conference, Society of Petroleum Engineers, 2001.

[3] B. Yeten, L. J. Durlofsky, K. Aziz, et al., “Optimization of nonconventional well
type, location, and trajectory,” SPE Journal, vol. 8, no. 03, pp. 200–210, 2003.

[4] J. E. Onwunalu and L. J. Durlofsky, “Application of a particle swarm optimization
algorithm for determining optimum well location and type,” Computational Geo-
sciences, vol. 14, no. 1, pp. 183–198, 2010.

[5] J. E. Onwunalu, Optimization of field development using particle swarm optimization
and new well pattern descriptions. PhD thesis, Stanford University, 2010.

[6] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Micro
Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International
Symposium on, pp. 39–43, IEEE, 1995.

[7] D. Goldberg, “Genetic algotithms in search, optimization anf machine learning,”
1989.

[8] A. Y. Bukhamsin, M. M. Farshi, K. Aziz, et al., “Optimization of multilateral well
design and location in a real field using a continuous genetic algorithm,” in SPE/DGS
Saudi Arabia Section Technical Symposium and Exhibition, Society of Petroleum
Engineers, 2010.

[9] A. C. Bittencourt, R. N. Horne, et al., “Reservoir development and design optimiza-
tion,” in SPE Annual Technical Conference and Exhibition, Society of Petroleum
Engineers, 1997.

65



[10] B. Guyaguler, R. N. Horne, et al., “Uncertainty assessment of well placement opti-
mization,” in SPE annual technical conference and exhibition, Society of Petroleum
Engineers, 2001.

[11] V. Torczon, “On the convergence of pattern search algorithms,” SIAM Journal on
optimization, vol. 7, no. 1, pp. 1–25, 1997.

[12] M. C. Bellout, D. Echeverría Ciaurri, L. J. Durlofsky, B. Foss, and J. Kleppe, “Joint
optimization of oil well placement and controls,” Computational Geosciences, pp. 1–
19, 2012.

[13] T. D. Humphries and R. D. Haynes, “Joint optimization of well placement and con-
trol for nonconventional well types,” Journal of Petroleum Science and Engineering,
vol. 126, pp. 242–253, 2015.

[14] M. Jesmani, M. C. Bellout, R. Hanea, and B. Foss, “Well placement optimiza-
tion subject to realistic field development constraints,” Computational Geosciences,
vol. 20, no. 6, pp. 1185–1209, 2016.

[15] E. Nwankwor, A. K. Nagar, and D. Reid, “Hybrid differential evolution and particle
swarm optimization for optimal well placement,” Computational Geosciences, pp. 1–
20, 2013.

[16] M. Zandvliet, M. Handels, G. van Essen, R. Brouwer, J.-D. Jansen, et al., “Adjoint-
based well-placement optimization under production constraints,” SPE Journal,
vol. 13, no. 04, pp. 392–399, 2008.

[17] O. J. Isebor, L. J. Durlofsky, and D. Echeverría Ciaurri, “A derivative-free method-
ology with local and global search for the constrained joint optimization of well
locations and controls,” Computational Geosciences, vol. 18, no. 3, pp. 463–482,
2014.

[18] T. Humphries and R. Haynes, “Joint optimization of well placement and control
for nonconventional well types,” Journal of Petroleum Science and Engineering,
vol. 126, pp. 242 – 253, 2015.

[19] S. Ding, H. Jiang, J. Li, and G. Tang, “Optimization of well placement by combina-
tion of a modified particle swarm optimization algorithm and quality map method,”
Computational Geosciences, vol. 18, no. 5, pp. 747–762, 2014.

[20] S. Ding, H. Jiang, J. Li, G. Liu, and L. Mi, “Optimization of well location, type
and trajectory by a modified particle swarm optimization algorithm for the punq-s3
model,” 2016.

[21] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Evolutionary Com-
putation Proceedings, 1998. IEEE World Congress on Computational Intelligence.,
The 1998 IEEE International Conference on, pp. 69–73, IEEE, 1998.

[22] K. E. Parsopoulos, M. N. Vrahatis, et al., “Particle swarm optimization method for
constrained optimization problems,” Intelligent Technologies–Theory and Applica-
tion: New Trends in Intelligent Technologies, vol. 76, no. 1, pp. 214–220, 2002.

66



Appendix

Class Diagrams
This section provides basic information about the class diagrams used in this thesis.

ClassName
- privateAttribute : double
+ publicAttribute : vector<int>

- privateMethod (): void
+ publicMethod (param: vector<int>) : vector<int>

Figure 6.1: A simple class diagram

A simple class diagram is shown as in Figure 6.1.

• The name of the class is in bold on the first line

• Methods always have parentheses after the name.

• Private attributes and methods are prefixed with a ’-’ sign.

• Public attributes and methods are prefixed with a ’+’ sign.

• The type of an attribute and the return-type of a method is indicated after the last ’:’
sign.

• The type of a parameter is indicated after ’:’ sign inside the parentheses.

• When a data structure type such as ’vector’ is followed by angle brackets, the word
inside the brackets indicates the type of the elements which make up the data struc-
ture.

67



Program files

1 / /
2 / / C r e a t e d by c h i n g i z on 0 9 . 0 2 . 1 7 .
3 / /
4

5 # i n c l u d e < i o s t r e a m >
6 # i n c l u d e <iomanip >
7 # i n c l u d e < U t i l i t i e s / math . hpp >
8 # i n c l u d e "PSO . h "
9

10 # d e f i n e ZMAX( x ) ( ( ( x ) > 0) ? ( x ) : 0 . 0 )
11 # d e f i n e GAMMA( x ) ( ( x < 1) ? x : x∗x )
12 # d e f i n e THETA( x ) ( ( x < 0 . 0 0 1 ) ? 10 : ( ( x <= 0 . 1 ) ? 20 : ( ( x <= 1) ? 100 :

300) ) )
13

14 namespace O p t i m i z a t i o n {
15 namespace O p t i m i z e r s {
16

17 PSO : : PSO ( : : S e t t i n g s : : O p t i m i z e r ∗ s e t t i n g s , Case ∗ b a s e _ c a s e ,
18 : : Model : : P r o p e r t i e s : : V a r i a b l e P r o p e r t y C o n t a i n e r ∗ v a r i a b l e s

,
19 R e s e r v o i r : : Gr id : : Gr id ∗ g r i d , Logger ∗ l o g g e r )
20 : O p t i m i z e r ( s e t t i n g s , b a s e _ c a s e , v a r i a b l e s , g r i d , l o g g e r )
21 {
22 cons_ = c o n s t r a i n t _ h a n d l e r _ −>g e t _ c o n s t r a i n t s _ f r o m _ c a s e _ h a n d l e r

( ) ;
23 s e t t i n g s _ = s e t t i n g s ;
24 m a x _ i t e r _ =( s e t t i n g s −>p a r a m e t e r s ( ) . m a x _ e v a l u a t i o n s ) / ( s e t t i n g s −>

p a r a m e t e r s ( ) . n u m b e r _ o f _ p a r t i c l e s ) ;
25 i d _ l i s t _ = b a s e _ c a s e −> r e a l _ v a r i a b l e s ( ) . keys ( ) ;
26 gen_ = g e t _ r a n d o m _ g e n e r a t o r ( ) ;
27 g r i d _ = g r i d ;
28 }
29

30 vo id PSO : : i t e r a t e ( ) {
31 i f ( i t e r a t i o n _ ==0) {
32 u p d a t e _ b a s e _ c a s e _ p s o ( ) ;
33 c a s e _ h a n d l e r _ −>AddNewCases ( i n i t i a l i z e _ c a s e s ( ) ) ; }
34 e l s e
35 {
36 u p d a t e _ p e r s o n a l _ b e s t _ c a s e s ( ) ;
37 c a s e _ h a n d l e r _ −>AddNewCases ( u p d a t e _ p a r t i c l e s ( ) ) ;
38 }
39 c a s e _ h a n d l e r _ −>C l e a r R e c e n t l y E v a l u a t e d C a s e s ( ) ;
40 i t e r a t i o n _ ++;
41 }
42

43 O p t i m i z e r : : T e r m i n a t i o n C o n d i t i o n PSO : : I s F i n i s h e d ( ) {
44 i f ( c a s e _ h a n d l e r _ −>E v a l u a t e d C a s e s ( ) . s i z e ( )−1>=

m a x _ e v a l u a t i o n s _ )
45 r e t u r n MAX_EVALS_REACHED;
46 e l s e r e t u r n NOT_FINISHED ;
47 }
48

49 QList <Case ∗> PSO : : i n i t i a l i z e _ c a s e s ( ) {
50 a u t o c a s e s = QList <Case ∗ >() ;

68



51 a u t o p a r t i c l e s = QList < P a r t i c l e ∗ >() ;
52 s r a n d ( ( u n s i g n e d i n t ) t ime (NULL) ) ;
53 f o r ( i n t i = 0 ; i < s e t t i n g s _ −>p a r a m e t e r s ( ) .

n u m b e r _ o f _ p a r t i c l e s ; ++ i ) {
54 a u t o o n e _ c a s e =new Case ( G e t T e n t a t i v e B e s t C a s e ( ) ) ;
55 one_case−> s e t _ r e a l _ v a r i a b l e s ( p e r t u r b _ r e a l _ v a r i a b l e s (

one_case−> r e a l _ v a r i a b l e s ( ) ) ) ;
56 a u t o p a r t i c l e = new P a r t i c l e ( one_case ,

c r e a t e _ r a n d o m _ v e l o c i t y ( ( i n t ) one_case−>Ge tRea lVarVec to r ( ) . s i z e ( ) ) ) ;
57 p a r t i c l e s . append ( p a r t i c l e ) ;
58 c a s e s . append ( o n e _ c a s e ) ;
59 }
60 s e t _ p a r t i c l e s ( p a r t i c l e s ) ;
61 a b s o r b _ p a r t i c l e s ( c a s e s ) ;
62 r e t u r n c a s e s ;
63 }
64

65 QHash<QUuid , do ub l e > PSO : : p e r t u r b _ r e a l _ v a r i a b l e s ( QHash<QUuid ,
do ub l e > r e a l _ v a r i a b l e s ) {

66 QList < QSt r ing > names ;
67 names . append ( "PROD1" ) ;
68 names . append ( "PROD2" ) ;
69 names . append ( "PROD3" ) ;
70 names . append ( "PROD4" ) ;
71 names . append ( "PROD5" ) ;
72 names . append ( "PROD6" ) ;
73 names . append ( "PROD7" ) ;
74 names . append ( "PROD8" ) ;
75 names . append ( "PROD9" ) ;
76 names . append ( "PROD10" ) ;
77

78 f o r ( Q S t r i n g name : names ) {
79 s t d : : v e c t o r < i n t > u n i f o r m _ i , u n i f o r m _ j , un i fo rm_k ;
80 i f ( Q S t r i n g : : compare ( name , "PROD1" ) ==0 ) {
81 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 90 , 109 , 2 ) ;
82 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 74 , 82 , 2 ) ;
83 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 , 15 , 2 ) ;
84 }
85 e l s e i f ( Q S t r i n g : : compare ( name , "PROD2" ) ==0) {
86 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 77 , 114 , 2 ) ;
87 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 86 , 97 , 2 ) ;
88 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 , 15 , 2 ) ;
89 }
90 e l s e i f ( Q S t r i n g : : compare ( name , "PROD3" ) ==0) {
91 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 53 , 72 , 2 ) ;
92 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 99 , 102 , 2 ) ;
93 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 , 15 , 2 ) ;
94 }
95 e l s e i f ( Q S t r i n g : : compare ( name , "PROD4" ) ==0) {
96 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 83 , 101 , 2 ) ;
97 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 99 , 102 , 2 ) ;
98 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 , 15 , 2 ) ;
99 }

100 e l s e i f ( Q S t r i n g : : compare ( name , "PROD5" ) ==0 ) {
101 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 39 , 58 , 2 ) ;
102 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 109 , 120 , 2 ) ;
103 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 , 15 , 2 ) ;

69



104 }
105 e l s e i f ( Q S t r i n g : : compare ( name , "PROD6" ) ==0 ) {
106 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 85 , 111 , 2 ) ;
107 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 108 , 120 , 2 ) ;
108 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 , 15 , 2 ) ;
109 }
110 e l s e i f ( Q S t r i n g : : compare ( name , "PROD7" ) ==0 ) {
111 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 90 , 104 , 2 ) ;
112 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 129 , 139 , 2 ) ;
113 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 , 15 , 2 ) ;
114 }
115 e l s e i f ( Q S t r i n g : : compare ( name , "PROD8" ) ==0 ) {
116 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 9 3 , 1 0 7 , 2 ) ;
117 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 3 4 , 5 2 , 2 ) ;
118 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 ,15 , 2 ) ;
119 }
120 e l s e i f ( Q S t r i n g : : compare ( name , "PROD9" ) ==0 ) {
121 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 33 , 59 , 2 ) ;
122 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 74 , 83 , 2 ) ;
123 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 , 15 , 2 ) ;
124 }
125 e l s e i f ( Q S t r i n g : : compare ( name , "PROD10" ) ==0 ) {
126 u n i f o r m _ i = r a n d o m _ i n t e g e r s ( gen_ , 50 , 72 , 2 ) ;
127 u n i f o r m _ j = r a n d o m _ i n t e g e r s ( gen_ , 86 , 97 , 2 ) ;
128 un i fo rm_k = r a n d o m _ i n t e g e r s ( gen_ , 1 , 15 , 2 ) ;
129 }
130 r e a l _ v a r i a b l e s [ cons_−>g e t _ h e e l _ x _ i d ( name ) ]= g r i d _ −>G e t C e l l (

u n i f o r m _ i [ 0 ] , u n i f o r m _ j [ 0 ] , un i fo rm_k [ 0 ] ) . c e n t e r ( ) . x ( ) ;
131 r e a l _ v a r i a b l e s [ cons_−>g e t _ h e e l _ y _ i d ( name ) ]= g r i d _ −>G e t C e l l (

u n i f o r m _ i [ 0 ] , u n i f o r m _ j [ 0 ] , un i fo rm_k [ 0 ] ) . c e n t e r ( ) . y ( ) ;
132 r e a l _ v a r i a b l e s [ cons_−>g e t _ h e e l _ z _ i d ( name ) ]= g r i d _ −>G e t C e l l (

u n i f o r m _ i [ 0 ] , u n i f o r m _ j [ 0 ] , un i fo rm_k [ 0 ] ) . c e n t e r ( ) . z ( ) ;
133 r e a l _ v a r i a b l e s [ cons_−>g e t _ t o e _ x _ i d ( name ) ]= g r i d _ −>G e t C e l l (

u n i f o r m _ i [ 1 ] , u n i f o r m _ j [ 1 ] , un i fo rm_k [ 1 ] ) . c e n t e r ( ) . x ( ) ;
134 r e a l _ v a r i a b l e s [ cons_−>g e t _ t o e _ y _ i d ( name ) ]= g r i d _ −>G e t C e l l (

u n i f o r m _ i [ 1 ] , u n i f o r m _ j [ 1 ] , un i fo rm_k [ 1 ] ) . c e n t e r ( ) . y ( ) ;
135 r e a l _ v a r i a b l e s [ cons_−>g e t _ t o e _ z _ i d ( name ) ]= g r i d _ −>G e t C e l l (

u n i f o r m _ i [ 1 ] , u n i f o r m _ j [ 1 ] , un i fo rm_k [ 1 ] ) . c e n t e r ( ) . z ( ) ;
136 }
137 r e t u r n r e a l _ v a r i a b l e s ;
138 }
139

140 QHash<QUuid , double > PSO : : c r e a t e _ r a n d o m _ v e l o c i t y ( i n t s i z e ) {
141 QHash<QUuid , do ub l e > v e l o c i t i e s = QHash<QUuid , double > ( ) ;
142 v e l o c i t i e s . r e s e r v e ( s i z e ) ;
143 f o r ( QUuid i d : i d _ l i s t _ ) {
144 v e l o c i t i e s . i n s e r t ( id , 0 ) ;
145 }
146 r e t u r n v e l o c i t i e s ;
147 }
148

149 QHash<QUuid , double > PSO : : f i n d _ c a s e _ v e l o c i t y ( Case ∗c ) {
150 a u t o p a r t i c l e s = g e t _ p a r t i c l e s ( ) ;
151 f o r ( a u t o p a r t i c l e : p a r t i c l e s ) {
152 i f ( p a r t i c l e −>g e t _ c a s e ( )−>i d ( ) == c−>i d ( ) ) {
153 a u t o v e l o c i t y = p a r t i c l e −> g e t _ p a r t i c l e _ v e l o c i t y ( ) ;
154 r e t u r n v e l o c i t y ;

70



155 }}
156 }
157

158 vo id PSO : : u p d a t e _ g l o b a l _ b e s t _ c a s e ( Case ∗ c ) {
159 i f ( ( i s Improvemen t ( c ) ) )
160 {
161 u p d a t e T e n t a t i v e B e s t C a s e ( c ) ;
162 }
163 }
164

165 vo id PSO : : s e t _ p e r s o n a l _ b e s t _ c a s e s ( QList <Case ∗>
p e r s o n a l _ b e s t _ c a s e s ) {

166 p e r s o n a l _ b e s t _ c a s e s _ = p e r s o n a l _ b e s t _ c a s e s ;
167 }
168

169 QList <Case ∗> PSO : : g e t _ p e r s o n a l _ b e s t _ c a s e s ( ) {
170 r e t u r n p e r s o n a l _ b e s t _ c a s e s _ ;
171 }
172

173 vo id PSO : : u p d a t e _ p e r s o n a l _ b e s t _ c a s e s ( ) {
174 i f ( i t e r a t i o n _ ==1) {
175 s e t _ p e r s o n a l _ b e s t _ c a s e s ( c a s e _ h a n d l e r _ −>

R e c e n t l y E v a l u a t e d C a s e s ( ) ) ;
176 }
177 e l s e {
178 f o r ( i n t i =0 ; i < s e t t i n g s _ −>p a r a m e t e r s ( ) .

n u m b e r _ o f _ p a r t i c l e s ;++ i ) {
179 i f ( mode_ == S e t t i n g s : : O p t i m i z e r : : Opt imizerMode : :

Maximize ) {
180 i f ( g e t _ p e r s o n a l _ b e s t _ c a s e s ( ) [ i ]−>

o b j e c t i v e _ f u n c t i o n _ v a l u e ( ) < c a s e _ h a n d l e r _ −>R e c e n t l y E v a l u a t e d C a s e s ( ) [ i
]−> o b j e c t i v e _ f u n c t i o n _ v a l u e ( ) )

181 g e t _ p e r s o n a l _ b e s t _ c a s e s ( ) [ i ]= c a s e _ h a n d l e r _ −>
R e c e n t l y E v a l u a t e d C a s e s ( ) [ i ] ;

182 }
183 e l s e i f ( mode_ == S e t t i n g s : : O p t i m i z e r : : Opt imizerMode : :

Minimize ) {
184 i f ( g e t _ p e r s o n a l _ b e s t _ c a s e s ( ) [ i ]−>

o b j e c t i v e _ f u n c t i o n _ v a l u e ( ) > c a s e _ h a n d l e r _ −>R e c e n t l y E v a l u a t e d C a s e s ( ) [ i
]−> o b j e c t i v e _ f u n c t i o n _ v a l u e ( ) )

185 g e t _ p e r s o n a l _ b e s t _ c a s e s ( ) [ i ]= c a s e _ h a n d l e r _ −>
R e c e n t l y E v a l u a t e d C a s e s ( ) [ i ] ;

186 }}}
187 }
188

189 vo id PSO : : s e l e c t _ n e i g h b o r h o o d _ t o p o l o g y ( ) {
190 s w i t c h ( s e t t i n g s _ −>n e i g h b o r h o o d ( ) ) {
191 c a s e S e t t i n g s : : O p t i m i z e r : : PsoNeighborhoods : : G l ob a l :
192 c r e a t e _ g l o b a l _ b e s t _ c a s e _ l i s t ( ) ;
193 b r e a k ;
194 c a s e S e t t i n g s : : O p t i m i z e r : : PsoNeighborhoods : : Random :
195 u p d a t e _ l o c a l _ b e s t _ c a s e s _ r a n d o m ( ) ;
196 b r e a k ;
197 c a s e S e t t i n g s : : O p t i m i z e r : : PsoNeighborhoods : : Ring :
198 u p d a t e _ l o c a l _ b e s t _ c a s e s _ r i n g ( ) ;
199 b r e a k ;
200 d e f a u l t :

71



201 th row s t d : : r u n t i m e _ e r r o r ( " Unable t o i n i t i a l i z e
n e i g h b o r h o o d : n e i g h b o r h o o d t y p e s e t i n d r i v e r f i l e n o t r e c o g n i z e d . " ) ;

202 }
203 }
204

205 vo id PSO : : s e t _ l o c a l _ b e s t _ c a s e s ( QLis t <Case ∗> l o c a l _ b e s t _ c a s e s ) {
206 l o c a l _ b e s t _ c a s e s _ = l o c a l _ b e s t _ c a s e s ;
207 }
208

209 vo id PSO : : c r e a t e _ g l o b a l _ b e s t _ c a s e _ l i s t ( ) {
210 QList <Case ∗> g l o b a l _ b e s t _ c a s e s ;
211 g l o b a l _ b e s t _ c a s e s . r e s e r v e ( s e t t i n g s _ −>p a r a m e t e r s ( ) .

n u m b e r _ o f _ p a r t i c l e s ) ;
212 f o r ( i n t i = 0 ; i < s e t t i n g s _ −>p a r a m e t e r s ( ) . n u m b e r _ o f _ p a r t i c l e s

; ++ i ) {
213 g l o b a l _ b e s t _ c a s e s . append ( G e t T e n t a t i v e B e s t C a s e ( ) ) ;
214 }
215 s e t _ l o c a l _ b e s t _ c a s e s ( g l o b a l _ b e s t _ c a s e s ) ;
216 }
217

218 s t d : : v e c t o r < s t d : : v e c t o r < i n t >> PSO : :
c r e a t e _ r i n g _ c o m m u n i c a t i o n _ m a t r i x ( i n t s i z e ) {

219 s t d : : v e c t o r < s t d : : v e c t o r < i n t >> r i n g _ m a t r i x ( ( u n s i g n e d long )
s i z e , s t d : : v e c t o r < i n t > ( ( u n s i g n e d long ) s i z e ) ) ;

220 f o r ( i n t i = 0 ; i < s i z e ; ++ i ) {
221 i f ( i ==0) {
222 r i n g _ m a t r i x [ i ] [ i ] = 1 ;
223 r i n g _ m a t r i x [ i ] [ i +1 ]=1 ;
224 r i n g _ m a t r i x [ i ] [ s i z e − 1] = 1 ;
225 }
226 e l s e i f ( i == s i z e −1) {
227 r i n g _ m a t r i x [ i ] [ s i z e − 1 − i ] = 1 ;
228 r i n g _ m a t r i x [ i ] [ i ] = 1 ;
229 r i n g _ m a t r i x [ i ] [ i −1]=1;
230 }
231 e l s e {
232 r i n g _ m a t r i x [ i ] [ i ] = 1 ;
233 r i n g _ m a t r i x [ i ] [ i −1]=1;
234 r i n g _ m a t r i x [ i ] [ i +1 ]=1 ;
235 }}
236 r e t u r n r i n g _ m a t r i x ;
237 }
238

239 vo id PSO : : u p d a t e _ l o c a l _ b e s t _ c a s e s _ r i n g ( ) {
240 QList <Case ∗> l o c a l _ b e s t _ c a s e s _ r i n g ;
241 l o c a l _ b e s t _ c a s e s _ r i n g = p e r s o n a l _ b e s t _ c a s e s _ ;
242 a u t o r i n g _ m a t r i x = c r e a t e _ r i n g _ c o m m u n i c a t i o n _ m a t r i x ( s e t t i n g s _ −>

p a r a m e t e r s ( ) . n u m b e r _ o f _ p a r t i c l e s ) ;
243 f o r ( i n t i = 0 ; i < s e t t i n g s _ −>p a r a m e t e r s ( ) .

n u m b e r _ o f _ p a r t i c l e s ; ++ i ) {
244 i n t bn= i ;
245 f o r ( i n t j = 0 ; j < s e t t i n g s _ −>p a r a m e t e r s ( ) .

n u m b e r _ o f _ p a r t i c l e s ; ++ j ) {
246 i f ( r i n g _ m a t r i x [ i ] [ j ] && p e r s o n a l _ b e s t _ c a s e s _ [ j ]−>

o b j e c t i v e _ f u n c t i o n _ v a l u e ( ) < p e r s o n a l _ b e s t _ c a s e s _ [ bn]−>
o b j e c t i v e _ f u n c t i o n _ v a l u e ( ) ) {

247 bn= j ;

72



248 l o c a l _ b e s t _ c a s e s _ r i n g [ i ]= p e r s o n a l _ b e s t _ c a s e s _ [ bn ] ;
249 }}}
250 s e t _ l o c a l _ b e s t _ c a s e s ( l o c a l _ b e s t _ c a s e s _ r i n g ) ;
251 }
252

253 s t d : : v e c t o r < s t d : : v e c t o r < i n t >> PSO : :
c r e a t e _ r a n d o m _ c o m m u n i c a t i o n _ m a t r i x ( i n t s i z e ) {

254 s t d : : v e c t o r < s t d : : v e c t o r < i n t >> random_mat r ix ( ( u n s i g n e d long )
s i z e , s t d : : v e c t o r < i n t > ( ( u n s i g n e d long ) s i z e ) ) ;

255 v e c t o r < i n t > rn ( 5 ) ;
256 f o r ( i n t i = 0 ; i < s i z e ; ++ i ) {
257 r andom_mat r ix [ i ] [ i ] = 1 ;
258 f o r ( i n t j = 0 ; j < s i z e ; ++ j ) {
259 f o r ( i n t k =0; k <5;++ k ) {
260 rn [ k ]= rand ( ) %( s i z e −1) ;
261 r andom_mat r ix [ i ] [ rn [ k ] ] = 1 ;
262 }}
263 }
264 r e t u r n random_mat r ix ;
265 }
266

267 vo id PSO : : u p d a t e _ l o c a l _ b e s t _ c a s e s _ r a n d o m ( ) {
268 QList <Case ∗> l o c a l _ b e s t _ c a s e s _ r a n d o m ;
269 l o c a l _ b e s t _ c a s e s _ r a n d o m = p e r s o n a l _ b e s t _ c a s e s _ ;
270 a u t o random_mat r ix = c r e a t e _ r a n d o m _ c o m m u n i c a t i o n _ m a t r i x (

s e t t i n g s _ −>p a r a m e t e r s ( ) . n u m b e r _ o f _ p a r t i c l e s ) ;
271 f o r ( i n t i = 0 ; i < s e t t i n g s _ −>p a r a m e t e r s ( ) .

n u m b e r _ o f _ p a r t i c l e s ; ++ i ) {
272 i n t bn= i ;
273 f o r ( i n t j = 0 ; j < s e t t i n g s _ −>p a r a m e t e r s ( ) .

n u m b e r _ o f _ p a r t i c l e s ; ++ j ) {
274 i f ( r andom_mat r ix [ i ] [ j ] && p e r s o n a l _ b e s t _ c a s e s _ [ j ]−>

o b j e c t i v e _ f u n c t i o n _ v a l u e ( ) < p e r s o n a l _ b e s t _ c a s e s _ [ bn]−>
o b j e c t i v e _ f u n c t i o n _ v a l u e ( ) ) {

275 bn= j ;
276 l o c a l _ b e s t _ c a s e s _ r a n d o m [ i ]= p e r s o n a l _ b e s t _ c a s e s _ [ bn

] ;
277 }}}
278 s e t _ l o c a l _ b e s t _ c a s e s ( l o c a l _ b e s t _ c a s e s _ r a n d o m ) ;
279

280 }
281

282 QList <Case ∗> PSO : : u p d a t e _ p a r t i c l e s ( ) {
283 s e l e c t _ n e i g h b o r h o o d _ t o p o l o g y ( ) ;
284 QList <Case ∗> new_cases = QList <Case ∗ >() ;
285 QList < P a r t i c l e ∗> n e w _ p a r t i c l e s =QList < P a r t i c l e ∗ >() ;
286 do ub l e i w _ s t a r t = s e t t i n g s _ −>p a r a m e t e r s ( ) . i n e r t i a _ w e i g h t 1 ;
287 do ub l e iw_end= s e t t i n g s _ −>p a r a m e t e r s ( ) . i n e r t i a _ w e i g h t 2 ;
288 do ub l e iw=iw_end +( i w _ s t a r t −iw_end ) ∗ ( ( max_ i t e r_− i t e r a t i o n _ ) /

m a x _ i t e r _ ) ;
289 f o r ( i n t i = 0 ; i < s e t t i n g s _ −>p a r a m e t e r s ( ) .

n u m b e r _ o f _ p a r t i c l e s ; ++ i ) {
290 a u t o g b e s t _ p o s = g e t _ l o c a l _ b e s t _ c a s e s ( ) [ i ]−> r e a l _ v a r i a b l e s

( ) ;
291 a u t o new_case = new Case ( G e t T e n t a t i v e B e s t C a s e ( ) ) ;
292 a u t o new_vel= f i n d _ c a s e _ v e l o c i t y ( c a s e _ h a n d l e r _ −>

R e c e n t l y E v a l u a t e d C a s e s ( ) [ i ] ) ;

73



293 a u t o new_pos = c a s e _ h a n d l e r _ −>R e c e n t l y E v a l u a t e d C a s e s ( ) [ i
]−> r e a l _ v a r i a b l e s ( ) ;

294 a u t o p b e s t _ p o s = p e r s o n a l _ b e s t _ c a s e s _ [ i ]−> r e a l _ v a r i a b l e s ( )
;

295 a u t o c1= s e t t i n g s _ −>p a r a m e t e r s ( ) . c o e f f i c i e n t 1 ;
296 a u t o c2= s e t t i n g s _ −>p a r a m e t e r s ( ) . c o e f f i c i e n t 2 ;
297 a u t o rn1 = ( ( do ub l e ) r and ( ) /RAND_MAX) ;
298 a u t o rn2 = ( ( do ub l e ) r and ( ) /RAND_MAX) ;
299 f o r ( QUuid i d : i d _ l i s t _ ) {
300 new_vel [ i d ]= iw∗new_vel [ i d ]+ c1∗ rn1 ∗ ( p b e s t _ p o s [ i d ]−

new_pos [ i d ] ) +c2∗ rn2 ∗ ( g b e s t _ p o s [ i d ]−new_pos [ i d ] ) ;
301 new_pos [ i d ]= new_pos [ i d ]+ new_vel [ i d ] ;
302 }
303 new_case−> s e t _ r e a l _ v a r i a b l e s ( new_pos ) ;
304 a u t o p a r t i c l e =new P a r t i c l e ( new_case , new_vel ) ;
305 n e w _ p a r t i c l e s . append ( p a r t i c l e ) ;
306 new_cases . append ( new_case ) ;
307 }
308 s e t _ p a r t i c l e s ( n e w _ p a r t i c l e s ) ;
309 a b s o r b _ p a r t i c l e s ( new_cases ) ;
310 r e t u r n new_cases ;
311 }
312

313 QList <Case ∗> PSO : : g e t _ l o c a l _ b e s t _ c a s e s ( ) {
314 r e t u r n l o c a l _ b e s t _ c a s e s _ ;
315 }
316

317 vo id PSO : : a p p l y _ p e n a l t y ( Case ∗c ) {
318 QList < QSt r ing > names ;
319 names . append ( "PROD1" ) ;
320 names . append ( "PROD2" ) ;
321 names . append ( "PROD3" ) ;
322 names . append ( "PROD4" ) ;
323 names . append ( "PROD5" ) ;
324 names . append ( "PROD6" ) ;
325 names . append ( "PROD7" ) ;
326 names . append ( "PROD8" ) ;
327 names . append ( "PROD9" ) ;
328 names . append ( "PROD10" ) ;
329 do ub l e min=cons_−>g e t _ w e l l _ m i n _ l e n g t h ( ) ;
330 do ub l e max=cons_−>g e t _ w e l l _ m a x _ l e n g t h ( ) ;
331 do ub l e f =c−>o b j e c t i v e _ f u n c t i o n _ v a l u e ( ) ;
332 do ub l e d i s t a n c e 0 =cons_−>g e t _ s h o r t e s t _ d i s t a n c e _ 2 _ w e l l s ( c , "PROD1

" , "PROD9" ) ;
333 do ub l e d i s t a n c e 1 =cons_−>g e t _ s h o r t e s t _ d i s t a n c e _ 2 _ w e l l s ( c , "PROD2

" , "PROD10" ) ;
334 do ub l e d i s t a n c e 2 =cons_−>g e t _ s h o r t e s t _ d i s t a n c e _ 2 _ w e l l s ( c , "PROD3

" , "PROD4" ) ;
335 do ub l e d i s t a n c e 3 =cons_−>g e t _ s h o r t e s t _ d i s t a n c e _ 2 _ w e l l s ( c , "PROD5

" , "PROD6" ) ;
336 do ub l e l e n g t h 1 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD1" ) ;
337 do ub l e l e n g t h 2 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD2" ) ;
338 do ub l e l e n g t h 3 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD3" ) ;
339 do ub l e l e n g t h 4 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD4" ) ;
340 do ub l e l e n g t h 5 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD5" ) ;
341 do ub l e l e n g t h 6 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD6" ) ;
342 do ub l e l e n g t h 7 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD7" ) ;

74



343 do ub l e l e n g t h 8 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD8" ) ;
344 do ub l e l e n g t h 9 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD9" ) ;
345 do ub l e l e n g t h 1 0 =cons_−>g e t _ w e l l _ l e n g t h ( c , "PROD10" ) ;
346 s t d : : v e c t o r < d ou b l e > q ( 2 4 ) ;
347 do ub l e H= 0 . 0 ;
348 q [ 0 ] =ZMAX(200− d i s t a n c e 0 ) ;
349 q [ 1 ] =ZMAX(200− d i s t a n c e 1 ) ;
350 q [ 2 ] =ZMAX(200− d i s t a n c e 2 ) ;
351 q [ 3 ] =ZMAX(200− d i s t a n c e 3 ) ;
352 q [ 4 ] =ZMAX( min−l e n g t h 1 ) ;
353 q [ 5 ] =ZMAX( l e n g t h 1−max ) ;
354 q [ 6 ] =ZMAX( min−l e n g t h 2 ) ;
355 q [ 7 ] =ZMAX( l e n g t h 2−max ) ;
356 q [ 8 ] =ZMAX( min−l e n g t h 3 ) ;
357 q [ 9 ] =ZMAX( l e n g t h 3−max ) ;
358 q [ 1 0 ] =ZMAX( min−l e n g t h 4 ) ;
359 q [ 1 1 ] =ZMAX( l e n g t h 4−max ) ;
360 q [ 1 2 ] =ZMAX( min−l e n g t h 5 ) ;
361 q [ 1 3 ] =ZMAX( l e n g t h 5−max ) ;
362 q [ 1 4 ] =ZMAX( min−l e n g t h 5 ) ;
363 q [ 1 5 ] =ZMAX( l e n g t h 6−max ) ;
364 q [ 1 6 ] =ZMAX( min−l e n g t h 7 ) ;
365 q [ 1 7 ] =ZMAX( l e n g t h 7−max ) ;
366 q [ 1 8 ] =ZMAX( min−l e n g t h 8 ) ;
367 q [ 1 9 ] =ZMAX( l e n g t h 8−max ) ;
368 q [ 2 0 ] =ZMAX( min−l e n g t h 9 ) ;
369 q [ 2 1 ] =ZMAX( l e n g t h 9−max ) ;
370 q [ 2 2 ] =ZMAX( min−l e n g t h 1 0 ) ;
371 q [ 2 3 ] =ZMAX( l e n g t h 1 0−max ) ;
372

373 f o r ( i n t i = 0 ; i < 2 4 ; ++ i ) {
374 i f ( q [ i ] > 0 ) {
375 H += THETA ( q [ i ] ) ∗ GAMMA ( q [ i ] ) ;
376 }
377 }
378 do ub l e ck= i t e r a t i o n _ ∗ i t e r a t i o n _ ;
379 do ub l e n e w _ o b j e c t i v e _ v a l u e =f−ck∗H;
380 c a s e _ h a n d l e r _ −>U p d a t e C a s e O b j e c t i v e F u n c t i o n V a l u e ( c−>i d ( ) ,

n e w _ o b j e c t i v e _ v a l u e ) ;
381 }
382

383 vo id PSO : : h a n d l e E v a l u a t e d C a s e ( Case ∗c ) {
384 a p p l y _ p e n a l t y ( c ) ;
385 u p d a t e _ g l o b a l _ b e s t _ c a s e ( c ) ;
386 }
387

388 vo id PSO : : u p d a t e _ b a s e _ c a s e _ p s o ( ) {
389 i f ( mode_ == S e t t i n g s : : O p t i m i z e r : : OptimizerMode : : Maximize ) {
390 c a s e _ h a n d l e r _ −>U p d a t e C a s e O b j e c t i v e F u n c t i o n V a l u e (

G e t T e n t a t i v e B e s t C a s e ( )−>i d ( ) , s t d : : n u m e r i c _ l i m i t s < double > : : min ( ) ) ;
391 }
392 e l s e i f ( mode_ == S e t t i n g s : : O p t i m i z e r : : Opt imizerMode : : Minimize

) {
393 c a s e _ h a n d l e r _ −>U p d a t e C a s e O b j e c t i v e F u n c t i o n V a l u e (

G e t T e n t a t i v e B e s t C a s e ( )−>i d ( ) , s t d : : n u m e r i c _ l i m i t s < double > : : max ( ) ) ;
394 }
395

75



396 }
397

398 vo id PSO : : a b s o r b _ p a r t i c l e s ( QLis t <Case ∗> c a s e s ) {
399 QList < QSt r ing > names ;
400 names . append ( "PROD1" ) ;
401 names . append ( "PROD2" ) ;
402 names . append ( "PROD3" ) ;
403 names . append ( "PROD4" ) ;
404 names . append ( "PROD5" ) ;
405 names . append ( "PROD6" ) ;
406 names . append ( "PROD7" ) ;
407 names . append ( "PROD8" ) ;
408 names . append ( "PROD9" ) ;
409 names . append ( "PROD10" ) ;
410 f o r ( Case ∗c : c a s e s ) {
411 f o r ( Q S t r i n g name : names ) {
412 boo l h e e l _ f e a s i b l e = f a l s e ;
413 boo l t o e _ f e a s i b l e = f a l s e ;
414 a u t o h e e l x =c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ h e e l _ x _ i d (

name ) ] ;
415 a u t o h e e l y =c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ h e e l _ y _ i d (

name ) ] ;
416 a u t o h e e l z =c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ h e e l _ z _ i d (

name ) ] ;
417 a u t o t o e x =c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ t o e _ x _ i d ( name

) ] ;
418 a u t o t o e y =c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ t o e _ y _ i d ( name

) ] ;
419 a u t o t o e z =c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ t o e _ z _ i d ( name

) ] ;
420 i f ( Q S t r i n g : : compare ( name , "PROD1" ) ==0 ) {
421 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 6 9 , 1 1 7 , 7 3 , 8 4 , 1 , 1 5 ) ;
422 }
423 e l s e i f ( Q S t r i n g : : compare ( name , "PROD2" ) ==0) {
424 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 7 3 , 1 1 7 , 8 5 , 9 8 , 1 , 1 5 ) ;
425 }
426 e l s e i f ( Q S t r i n g : : compare ( name , "PROD3" ) ==0 ) {
427 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 5 3 , 8 2 , 9 9 , 1 0 2 , 1 , 1 5 ) ;
428 }
429 e l s e i f ( Q S t r i n g : : compare ( name , "PROD4" ) ==0) {
430 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 8 3 , 1 1 7 , 9 9 , 1 0 2 , 1 , 1 5 ) ;
431 }
432 e l s e i f ( Q S t r i n g : : compare ( name , "PROD5" ) ==0 ) {
433 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 3 7 , 6 8 , 1 0 3 , 1 2 2 , 1 , 1 5 ) ;
434 }
435 e l s e i f ( Q S t r i n g : : compare ( name , "PROD6" ) ==0 ) {
436 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 6 9 , 1 1 7 , 1 0 3 , 1 2 2 , 1 , 1 5 ) ;
437 }
438 e l s e i f ( Q S t r i n g : : compare ( name , "PROD7" ) ==0 ) {
439 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 5 7 , 1 1 7 , 1 2 3 , 1 5 3 , 1 , 1 5 ) ;

76



440 }
441 e l s e i f ( Q S t r i n g : : compare ( name , "PROD8" ) ==0 ) {
442 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 7 7 , 1 1 7 , 2 4 , 5 5 , 1 , 1 5 ) ;
443 }
444 e l s e i f ( Q S t r i n g : : compare ( name , "PROD9" ) ==0 ) {
445 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 2 9 , 6 8 , 7 3 , 8 4 , 1 , 1 5 ) ;
446 }
447 e l s e i f ( Q S t r i n g : : compare ( name , "PROD10" ) ==0 ) {
448 i n d e x _ l i s t _ = g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s

( 3 4 , 7 2 , 8 5 , 9 8 , 1 , 1 5 ) ;
449 }
450

451 f o r ( i n t i i =0 ; i i < i n d e x _ l i s t _ . l e n g t h ( ) ; i i ++) {
452 i f ( g r i d _ −>G e t C e l l ( i n d e x _ l i s t _ [ i i ] ) . E n v e l o p s P o i n t (
453 Eigen : : Vec to r3d ( hee lx , hee ly , h e e l z ) ) ) {
454 h e e l _ f e a s i b l e = t r u e ;
455 }
456 i f ( g r i d _ −>G e t C e l l ( i n d e x _ l i s t _ [ i i ] ) . E n v e l o p s P o i n t (
457 Eigen : : Vec to r3d ( toex , toey , t o e z ) ) ) {
458 t o e _ f e a s i b l e = t r u e ;
459 }
460 }
461 i f ( ! h e e l _ f e a s i b l e ) {
462 Eigen : : Vec to r3d p r o j e c t e d _ h e e l =

W e l l C o n s t r a i n t P r o j e c t i o n s : : w e l l _ d o m a i n _ c o n s t r a i n t _ i n d i c e s ( Eigen : :
Vec to r3d ( hee lx , hee ly , h e e l z ) , g r i d _ , i n d e x _ l i s t _ ) ;

463 i f ( ( c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ h e e l _ x _ i d ( name
) ] ) != p r o j e c t e d _ h e e l ( 0 ) ) {

464 c−> s e t _ r e a l _ v a r i a b l e _ v a l u e ( cons_−>
g e t _ h e e l _ x _ i d ( name ) , p r o j e c t e d _ h e e l ( 0 ) ) ;

465 c h a n g e _ v e l o c i t y ( c , cons_−>g e t _ h e e l _ x _ i d ( name ) )
;

466 }
467 i f ( ( c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ h e e l _ y _ i d ( name

) ] ) != p r o j e c t e d _ h e e l ( 1 ) ) {
468 c−> s e t _ r e a l _ v a r i a b l e _ v a l u e ( cons_−>

g e t _ h e e l _ y _ i d ( name ) , p r o j e c t e d _ h e e l ( 1 ) ) ;
469 c h a n g e _ v e l o c i t y ( c , cons_−>g e t _ h e e l _ y _ i d ( name ) ) ;
470 }
471 i f ( ( c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ h e e l _ z _ i d ( name

) ] ) != p r o j e c t e d _ h e e l ( 2 ) ) {
472 c−> s e t _ r e a l _ v a r i a b l e _ v a l u e ( cons_−>

g e t _ h e e l _ z _ i d ( name ) , p r o j e c t e d _ h e e l ( 2 ) ) ;
473 c h a n g e _ v e l o c i t y ( c , cons_−>g e t _ h e e l _ z _ i d ( name ) )

;
474 }
475 }
476 i f ( ! t o e _ f e a s i b l e ) {
477 Eigen : : Vec to r3d p r o j e c t e d _ t o e =

W e l l C o n s t r a i n t P r o j e c t i o n s : : w e l l _ d o m a i n _ c o n s t r a i n t _ i n d i c e s ( Eigen : :
Vec to r3d ( toex , toey , t o e z ) , g r i d _ , i n d e x _ l i s t _ ) ;

478 i f ( ( c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ t o e _ x _ i d ( name )
] ) != p r o j e c t e d _ t o e ( 0 ) ) {

479 c−> s e t _ r e a l _ v a r i a b l e _ v a l u e ( cons_−>g e t _ t o e _ x _ i d
( name ) , p r o j e c t e d _ t o e ( 0 ) ) ;

77



480 c h a n g e _ v e l o c i t y ( c , cons_−>g e t _ t o e _ x _ i d ( name ) ) ;
481 }
482 i f ( ( c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ t o e _ y _ i d ( name )

] ) != p r o j e c t e d _ t o e ( 1 ) ) {
483 c−> s e t _ r e a l _ v a r i a b l e _ v a l u e ( cons_−>g e t _ t o e _ y _ i d

( name ) , p r o j e c t e d _ t o e ( 1 ) ) ;
484 c h a n g e _ v e l o c i t y ( c , cons_−>g e t _ t o e _ y _ i d ( name ) ) ;
485 }
486 i f ( ( c−> r e a l _ v a r i a b l e s ( ) [ cons_−>g e t _ t o e _ z _ i d ( name )

] ) != p r o j e c t e d _ t o e ( 2 ) ) {
487 c−> s e t _ r e a l _ v a r i a b l e _ v a l u e ( cons_−>g e t _ t o e _ z _ i d

( name ) , p r o j e c t e d _ t o e ( 2 ) ) ;
488 c h a n g e _ v e l o c i t y ( c , cons_−>g e t _ t o e _ z _ i d ( name ) ) ;
489 }
490 }
491 }
492

493 }
494 }
495

496 vo id PSO : : c h a n g e _ v e l o c i t y ( Case ∗c , QUuid i d ) {
497 a u t o p a r t i c l e s = g e t _ p a r t i c l e s ( ) ;
498 f o r ( a u t o p a r t i c l e : p a r t i c l e s ) {
499 i f ( p a r t i c l e −>g e t _ c a s e ( )−>i d ( ) == c−>i d ( ) ) {
500 p a r t i c l e −> s e t _ p a r t i c l e _ v e l o c i t y ( id , 0 ) ;
501 }
502 }
503 }
504

505 QList < i n t > PSO : : g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s ( i n t imin , i n t imax ,
i n t jmin , i n t jmax , i n t kmin , i n t kmax ) {

506 QList < i n t > i n d e x _ l i s t ;
507 f o r ( i n t i = imin ; i <= imax ; i ++) {
508 f o r ( i n t j = jmin ; j <= jmax ; j ++) {
509 f o r ( i n t k = kmin ; k <= kmax ; k ++) {
510 i n d e x _ l i s t . append ( g r i d _ −>G e t C e l l ( i , j , k ) .

g l o b a l _ i n d e x ( ) ) ;
511 }
512 }
513 }
514 r e t u r n i n d e x _ l i s t ;
515 }
516 }}

Listing 6.1: PSO.cpp

78



1 / /
2 / / C r e a t e d by c h i n g i z on 0 9 . 0 2 . 1 7 .
3 / /
4

5 # i f n d e f FIELDOPT_PSO_H
6 # d e f i n e FIELDOPT_PSO_H
7

8 # i n c l u d e " o p t i m i z e r . h "
9 # i n c l u d e " P a r t i c l e . h "

10 # i n c l u d e < b o o s t / random . hpp >
11 # i n c l u d e " C o n s t r a i n t M a t h / w e l l _ c o n s t r a i n t _ p r o j e c t i o n s /

w e l l _ c o n s t r a i n t _ p r o j e c t i o n s . h "
12

13 namespace O p t i m i z a t i o n {
14 namespace O p t i m i z e r s {
15

16 /∗ !
17 ∗ @brief The PSO c l a s s implemen t s a m o d i f i e d form of t h e
18 ∗ o r i g i n a l P a r t i c l e Swarm O p t i m i z a t i o n as p r e s e n t e d by Shi and

E b e r h a r t
19 ∗ i n t h e 1998 p a p e r A Modi f i ed p a r t i c l e swarm o p t i m i z e r . The

modifed P a r t i c l e Swarm
20 ∗ O p t i m i z e r i n c l u d e s i n e r t i a w e ig h t i n v e l o c i t y u p d a t e e q u a t i o n .
21 ∗
22 ∗ Thi s i m p l e m e n t a t i o n a l s o bor rows some from t h e Maur ice C l e r c ’ s

book P a r t i c l e Swarm
23 ∗ O p t i m i z a t i o n .
24 ∗ @note Th i s a l g o r i t h m can on ly be a p p l i e d t o c o n t i n u o u s

v a r i a b l e s . The a l g o r i t h m
25 ∗ imp lemen t s two main t y p e s o f P a r t i c l e Swarm O p t i m i z a t i o n known

as g b e s t and l b e s t
26 ∗ P a r t i c l e Swarm O p t i m i z a t i o n . The r i n g and random n e i g h b o r h o o d

t o p o l o g i e s a r e
27 ∗ implemented f o r l b e s t P a r t i c l e Swarm O p t i m i z a t i o n .
28 ∗ /
29

30 c l a s s PSO : p u b l i c O p t i m i z e r {
31 p u b l i c :
32

33 /∗ !
34 ∗ @brief G e n e r a l c o n s t r u c t o r f o r PSO a l g o r i t h m t h a t c a l l s t h e

p r i m a r y
35 ∗ O p t i m i z e r c o n s t r u c t o r .
36 ∗ /
37 PSO ( : : S e t t i n g s : : O p t i m i z e r ∗ s e t t i n g s , Case ∗ b a s e _ c a s e ,
38 : : Model : : P r o p e r t i e s : : V a r i a b l e P r o p e r t y C o n t a i n e r ∗ v a r i a b l e s ,
39 R e s e r v o i r : : Gr id : : Gr id ∗ g r i d , Logger ∗ l o g g e r ) ;
40 p r i v a t e :
41 QList <QUuid> i d _ l i s t _ ;
42 QHash<QUuid , do ub l e > rea l_max_ ;
43 QHash<QUuid , do ub l e > r e a l _ m i n _ ;
44 do ub l e m a x _ i t e r _ ;
45 O p t i m i z a t i o n : : C o n s t r a i n t s : :

C o m b i n e d S p l i n e L e n g t h I n t e r w e l l D i s t a n c e R e s e r v o i r B o u n d a r y ∗ cons_ ;
46 S e t t i n g s : : O p t i m i z e r ∗ s e t t i n g s _ ;
47 QList < i n t > i n d e x _ l i s t _ ;
48 R e s e r v o i r : : Gr id : : Gr id ∗ g r i d _ ;

79



49 QList < P a r t i c l e ∗> p a r t i c l e s _ ; / / ! < L i s t o f p a r t i c l e s .
50 QList <Case ∗> p e r s o n a l _ b e s t _ c a s e s _ ; / / ! < L i s t o f p e r s o n a l b e s t

c a s e s .
51 QList <Case ∗> l o c a l _ b e s t _ c a s e s _ ; / / ! < L i s t o f l o c a l b e s t c a s e s

f o r each p a r t i c l e
52

53 v i r t u a l vo id i t e r a t e ( ) o v e r r i d e ; / / ! < C r e a t e c a s e s , f i n d
p e r s o n a l and g l o b a l b e s t c a s e s and u p d a t e c a s e s , c l e a r r e c e n t l y
e v a l u a t e d c a s e s .

54 /∗ !
55 ∗ \ b r i e f I s F i n i s h e d Check i f t h e o p t i m i z a t i o n i s f i n i s h e d .
56 ∗
57 ∗ Thi s a l g o r i t h m has one t e r m i n a t i o n c o n d i t i o n : max number o f

o b j e c t i v e f u n c t i o n e v a l u a t i o n s
58 ∗ \ r e t u r n True i f t h e a l g o r i t h m has f i n i s h e d , o t h e r w i s e f a l s e

.
59 ∗ /
60 v i r t u a l T e r m i n a t i o n C o n d i t i o n I s F i n i s h e d ( ) o v e r r i d e ;
61 QList <Case ∗> i n i t i a l i z e _ c a s e s ( ) ; / / ! < C r e a t e s a l i s t o f

d i f f e r e n t c a s e s based on base c a s e .
62 QHash<QUuid , do ub l e > p e r t u r b _ r e a l _ v a r i a b l e s ( QHash<QUuid , do ub l e

>) ; / / ! < P e r t u r b s t h e base c a s e v a r i a b l e s randomly .
63 QHash<QUuid , do ub l e > c r e a t e _ r a n d o m _ v e l o c i t y ( i n t ) ; / / ! < C r e a t e s

a random v e l o c i t y v e c t o r f o r each p a r t i c l e . Takes same IDs as r e a l
v a r i a b l e s .

64 vo id s e t _ p a r t i c l e s ( QLis t < P a r t i c l e ∗> p a r t i c l e s ) { p a r t i c l e s _ =
p a r t i c l e s ; } / / ! < Saves t h e l i s t o f p a r t i c l e s .

65 QList < P a r t i c l e ∗> g e t _ p a r t i c l e s ( ) { r e t u r n p a r t i c l e s _ ; } / / ! <
Gets t h e l i s t o f saved p a r t i c l e s .

66 QHash<QUuid , do ub l e > f i n d _ c a s e _ v e l o c i t y ( Case ∗c ) ; / / ! < F i n d s
t h e v e l o c i t y o f t h e p a r t i c l e a c c o r d i n g t o t h e s p e c i f i c c a s e .

67 vo id u p d a t e _ g l o b a l _ b e s t _ c a s e ( Case ∗c ) ; / / ! < F i n d s t h e b e s t
c a s e among a l l e v a l u a t e d c a s e s based on o b j e c t i v e f u n c t i o n v a l u e .

68 vo id s e t _ p e r s o n a l _ b e s t _ c a s e s ( QLis t <Case ∗>) ; / / ! < Saves t h e
p e r s o n a l b e s t c a s e f o r each p a r t i c l e .

69 QList <Case ∗> g e t _ p e r s o n a l _ b e s t _ c a s e s ( ) ; / / ! < Gets t h e l i s t o f
p e r s o n a l b e s t c a s e s .

70 vo id u p d a t e _ p e r s o n a l _ b e s t _ c a s e s ( ) ; / / ! < Upda tes t h e p e r s o n a l
b e s t c a s e s

71 vo id s e l e c t _ n e i g h b o r h o o d _ t o p o l o g y ( ) ; / / ! < S e l e c t s
n e i g h b o r h o o d s d e f i n e d i n s e t t i n g s

72 vo id s e t _ l o c a l _ b e s t _ c a s e s ( QList <Case ∗>) ; / / ! < S e t s t h e l o c a l
b e s t c a s e f o r each p a r t i c l e

73 vo id c r e a t e _ g l o b a l _ b e s t _ c a s e _ l i s t ( ) ; / / ! < C r e a t e s a l i s t o f
g l o b a l b e s t c a s e

74 s t d : : v e c t o r < s t d : : v e c t o r < i n t >>
c r e a t e _ r i n g _ c o m m u n i c a t i o n _ m a t r i x ( i n t ) ; / / ! < C r e a t e r i n g communica t ion
m a t r i x . Every p a r t i c l e communica tes wi th i t s e l f and two a d j a c e n t
p a r t i c l e s .

75 vo id u p d a t e _ l o c a l _ b e s t _ c a s e s _ r i n g ( ) ; / / ! < Upda tes t h e l o c a l
b e s t c a s e s f o r each p a r t i c l e based on r i n g t o p o l o g y

76 s t d : : v e c t o r < s t d : : v e c t o r < i n t >>
c r e a t e _ r a n d o m _ c o m m u n i c a t i o n _ m a t r i x ( i n t ) ; / / ! < C r e a t e random
communica t ion m a t r i x . Every p a r t i c l e communica tes wi th i t s e l f and
o t h e r p a r t i c l e s chosen randomly .

77 vo id u p d a t e _ l o c a l _ b e s t _ c a s e s _ r a n d o m ( ) ; / / ! < Upda tes t h e l o c a l
b e s t c a s e s f o r each p a r t i c l e based on random t o p o l o g y .

80



78 QList <Case ∗> u p d a t e _ p a r t i c l e s ( ) ; / / ! < Upda tes p a r t i c l e s (
c a s e s and v e l o c i t i e s ) and r e t u r n s l i s t o f u p d a t e d c a s e s .

79 QList <Case ∗> g e t _ l o c a l _ b e s t _ c a s e s ( ) ; / / ! < Get t h e l i s t o f
l o c a l b e s t c a s e s

80 vo id a p p l y _ p e n a l t y ( Case ∗c ) ;
81 vo id u p d a t e _ b a s e _ c a s e _ p s o ( ) ;
82 vo id a b s o r b _ p a r t i c l e s ( QLis t <Case ∗>) ;
83 vo id c h a n g e _ v e l o c i t y ( Case ∗c , QUuid i d ) ;
84 QList < i n t > g e t _ c e l l _ i n d i c e s _ o f _ r e g i o n s ( i n t imin , i n t imax , i n t

jmin , i n t jmax , i n t kmin , i n t kmax ) ;
85 p r o t e c t e d :
86 vo id h a n d l e E v a l u a t e d C a s e ( Case ∗c ) o v e r r i d e ;
87 b o o s t : : random : : mt19937 gen_ ; / / ! < Random number g e n e r a t o r wi th

t h e random f u n c t i o n s i n math . hpp
88 } ;
89 }
90 }
91

92

93

94 # e n d i f / / FIELDOPT_PSO_H

Listing 6.2: PSO.h

1 / /
2 / / C r e a t e d by c h i n g i z on 0 9 . 0 2 . 1 7 .
3 / /
4

5 # i n c l u d e " P a r t i c l e . h "
6 namespace O p t i m i z a t i o n {
7 namespace O p t i m i z e r s {
8

9 P a r t i c l e : : P a r t i c l e ( Case ∗c , c o n s t QHash<QUuid , double > &v e l o c i t y )
{

10 p a r t i c l e _ c a s e _ =c ;
11 p a r t i c l e _ v e l o c i t y _ = v e l o c i t y ;
12 v e l o c i t y _ i d _ i n d e x _ m a p _ = p a r t i c l e _ v e l o c i t y _ . keys ( ) ;
13 }
14 }
15 }

Listing 6.3: Particle.cpp

1 / /
2 / / C r e a t e d by c h i n g i z on 0 9 . 0 2 . 1 7 .
3 / /
4

5 # i f n d e f FIELDOPT_PARTICLE_H
6 # d e f i n e FIELDOPT_PARTICLE_H
7

8 # i n c l u d e " O p t i m i z a t i o n / c a s e . h "
9

10 namespace O p t i m i z a t i o n {
11 namespace O p t i m i z e r s {
12

13 /∗ !

81



14 ∗ @brief The P a r t i c l e c l a s s h o l d s t h e c a s e and a s s o c i a t e d
v e l o c i t i y .

15 ∗ The p u r p o s e o f t h e P a r t i l c e c l a s s i s t o a s s i g n a un i qu e
v e l o c i t y f o r each c a s e .

16 ∗ /
17

18 c l a s s P a r t i c l e {
19 p u b l i c :
20 /∗ !
21 ∗ @brief The P a r t i c l e c o n s t r u c t o r r e c e i v e s t h e c a s e and

v e l o c i t y and a s s i g n s them t o a P a r t i c l e o b j e c t .
22 ∗ /
23 P a r t i c l e ( Case∗ c , c o n s t QHash<QUuid , double > &v e l o c i t y ) ;
24 Case∗ g e t _ c a s e ( ) c o n s t { r e t u r n p a r t i c l e _ c a s e _ ; } / / ! Get c a s e

from p a r t i c l e o b j e c t
25 QHash<QUuid , do ub l e > g e t _ p a r t i c l e _ v e l o c i t y ( ) c o n s t { r e t u r n

p a r t i c l e _ v e l o c i t y _ ; } / / ! < Get p a r t i c l e v e l o c i t y
26 vo id s e t _ p a r t i c l e _ v e l o c i t y ( c o n s t QUuid id , c o n s t d ou b l e v a l ) {

p a r t i c l e _ v e l o c i t y _ [ i d ]= v a l ; } / / ! S e t p a r t i c l e v e l o c i t y
27 p r i v a t e :
28 QHash<QUuid , double > p a r t i c l e _ v e l o c i t y _ ;
29 QList <QUuid > v e l o c i t y _ i d _ i n d e x _ m a p _ ;
30 Case ∗ p a r t i c l e _ c a s e _ ;
31 } ;
32 }
33 }
34

35 # e n d i f / / FIELDOPT_PARTICLE_H

Listing 6.4: Particle.h

1 {
2 " G lo ba l " : {
3 "Name" : "OLYMPUS" ,
4 " B o o k k e e p e r T o l e r a n c e " : 2 . 0
5 } ,
6 " O p t i m i z e r " : {
7 " Type " : "PSO" ,
8 "Mode" : " Maximize " ,
9 " Neighborhood " : " G lo ba l " ,

10 " P a r a m e t e r s " : {
11 " MaxEva lua t i ons " : 1 0 0 ,
12 " N u m b e r O f P a r t i c l e s " : 2 0 . 0 ,
13 " C o e f f i c i e n t 1 " : 1 . 1 9 3 ,
14 " C o e f f i c i e n t 2 " : 1 . 1 9 3 ,
15 " I n e r t i a W e i g h t 1 " : 1 . 2 ,
16 " I n e r t i a W e i g h t 2 " : 0 . 2
17 } ,
18 " O b j e c t i v e " : {
19 " Type " : " WeightedSum " ,
20 " WeightedSumComponents " : [
21 {
22 " C o e f f i c i e n t " : 1 . 0 , " P r o p e r t y " : "

C u m u l a t i v e O i l P r o d u c t i o n " , " TimeStep " : −1,
23 " I s W e l l P r o p " : f a l s e
24 } ,
25 {

82



26 " C o e f f i c i e n t " : −0.2 , " P r o p e r t y " : "
C u m u l a t i v e W a t e r P r o d u c t i o n " , " TimeStep " : −1,

27 " I s W e l l P r o p " : f a l s e
28 }
29 ]
30 } ,
31 " C o n s t r a i n t s " : [
32 {
33 " Wel l s " : [ "PROD1" , "PROD2" , "PROD3" , "PROD4" , "PROD5" ] ,
34 " Type " : "

C o m b i n e d W e l l S p l i n e L e n g t h I n t e r w e l l D i s t a n c e R e s e r v o i r B o u n d a r y " ,
35 " MinLength " : 400 ,
36 " MaxLength " : 1100 ,
37 " MinDis t ance " : 2 0 0 ,
38 " M a x I t e r a t i o n s " : 5 ,
39 " BoxImin " : 0 ,
40 " BoxImax " : 117 ,
41 " BoxJmin " : 0 ,
42 " BoxJmax " : 180 ,
43 " BoxKmin " : 0 ,
44 "BoxKmax" : 15
45 }
46 ]
47 } ,
48 " S i m u l a t o r " : {
49 " Type " : " ECLIPSE " ,
50 " E x e c u t i o n S c r i p t " : " c s h _ e c l r u n "
51 } ,
52 " Model " : {
53 " C o n t r o l T i m e s " : [ 0 , 5 0 ] ,
54 " R e s e r v o i r " : {
55 " Type " : " ECLIPSE "
56 } ,
57 " Wel l s " : [
58 {
59 "Name" : "PROD1" ,
60 " Group " : "GROUP1" ,
61 " Type " : " P r o d u c e r " ,
62 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
63 " P r e f e r r e d P h a s e " : " O i l " ,
64 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
65 " S p l i n e P o i n t s " : {
66 " Heel " : {
67 " x " : 526275 ,
68 " y " : 6179700 ,
69 " z " : 2 0 5 3 . 2 7 ,
70 " I s V a r i a b l e " : t r u e
71 } ,
72 " Toe " : {
73 " x " : 525474 ,
74 " y " : 6180380 ,
75 " z " : 2 0 6 3 . 7 2 ,
76 " I s V a r i a b l e " : t r u e
77 }
78 } ,
79 " C o n t r o l s " : [
80 {

83



81 " TimeStep " : 0 ,
82 " S t a t e " : " Open " ,
83 "Mode" : "BHP" ,
84 "BHP" : 175 .0
85 }
86 ]
87 } ,
88 {
89 "Name" : "PROD2" ,
90 " Group " : "GROUP1" ,
91 " Type " : " P r o d u c e r " ,
92 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
93 " P r e f e r r e d P h a s e " : " O i l " ,
94 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
95 " S p l i n e P o i n t s " : {
96 " Heel " : {
97 " x " : 524288 ,
98 " y " : 6179780 ,
99 " z " : 2 0 3 5 . 1 6 ,

100 " I s V a r i a b l e " : t r u e
101 } ,
102 " Toe " : {
103 " x " : 523913 ,
104 " y " : 6180080 ,
105 " z " : 2046 ,
106 " I s V a r i a b l e " : t r u e
107 }
108 } ,
109 " C o n t r o l s " : [
110 {
111 " TimeStep " : 0 ,
112 " S t a t e " : " Open " ,
113 "Mode" : "BHP" ,
114 "BHP" : 175 .0
115 }
116 ]
117 } ,
118 {
119 "Name" : "PROD3" ,
120 " Group " : "GROUP1" ,
121 " Type " : " P r o d u c e r " ,
122 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
123 " P r e f e r r e d P h a s e " : " O i l " ,
124 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
125 " S p l i n e P o i n t s " : {
126 " Heel " : {
127 " x " : 523435 ,
128 " y " : 6179700 ,
129 " z " : 2 0 4 3 . 5 1 ,
130 " I s V a r i a b l e " : t r u e
131 } ,
132 " Toe " : {
133 " x " : 522760 ,
134 " y " : 6179990 ,
135 " z " : 2 0 6 6 . 2 ,
136 " I s V a r i a b l e " : t r u e
137 }

84



138 } ,
139 " C o n t r o l s " : [
140 {
141 " TimeStep " : 0 ,
142 " S t a t e " : " Open " ,
143 "Mode" : "BHP" ,
144 "BHP" : 175 .0
145 }
146 ]
147 } ,
148 {
149 "Name" : "PROD4" ,
150 " Group " : "GROUP1" ,
151 " Type " : " P r o d u c e r " ,
152 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
153 " P r e f e r r e d P h a s e " : " O i l " ,
154 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
155 " S p l i n e P o i n t s " : {
156 " Heel " : {
157 " x " : 524374 ,
158 " y " : 6179290 ,
159 " z " : 2 0 5 6 . 5 ,
160 " I s V a r i a b l e " : t r u e
161 } ,
162 " Toe " : {
163 " x " : 523648 ,
164 " y " : 6179720 ,
165 " z " : 2 0 7 6 . 3 ,
166 " I s V a r i a b l e " : t r u e
167 }
168 } ,
169 " C o n t r o l s " : [
170 {
171 " TimeStep " : 0 ,
172 " S t a t e " : " Open " ,
173 "Mode" : "BHP" ,
174 "BHP" : 175 .0
175 }
176 ]
177 } ,
178 {
179 "Name" : "PROD5" ,
180 " Group " : "GROUP1" ,
181 " Type " : " P r o d u c e r " ,
182 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
183 " P r e f e r r e d P h a s e " : " O i l " ,
184 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
185 " S p l i n e P o i n t s " : {
186 " Heel " : {
187 " x " : 523593 ,
188 " y " : 6179230 ,
189 " z " : 2 0 3 5 . 3 1 ,
190 " I s V a r i a b l e " : t r u e
191 } ,
192 " Toe " : {
193 " x " : 523500 ,
194 " y " : 6179270 ,

85



195 " z " : 2 0 5 5 . 7 4 ,
196 " I s V a r i a b l e " : t r u e
197 }
198 } ,
199 " C o n t r o l s " : [
200 {
201 " TimeStep " : 0 ,
202 " S t a t e " : " Open " ,
203 "Mode" : "BHP" ,
204 "BHP" : 175 .0
205 }
206 ]
207 } ,
208 {
209 "Name" : "PROD6" ,
210 " Group " : "GROUP1" ,
211 " Type " : " P r o d u c e r " ,
212 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
213 " P r e f e r r e d P h a s e " : " O i l " ,
214 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
215 " S p l i n e P o i n t s " : {
216 " Heel " : {
217 " x " : 522680 ,
218 " y " : 6179130 ,
219 " z " : 2 0 3 9 . 9 9 ,
220 " I s V a r i a b l e " : f a l s e
221 } ,
222 " Toe " : {
223 " x " : 522696 ,
224 " y " : 6179560 ,
225 " z " : 2 0 5 1 . 7 7 ,
226 " I s V a r i a b l e " : f a l s e
227 }
228 } ,
229 " C o n t r o l s " : [
230 {
231 " TimeStep " : 0 ,
232 " S t a t e " : " Open " ,
233 "Mode" : "BHP" ,
234 "BHP" : 175 .0
235 }
236 ]
237 } ,
238

239 {
240 "Name" : "PROD7" ,
241 " Group " : "GROUP1" ,
242 " Type " : " P r o d u c e r " ,
243 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
244 " P r e f e r r e d P h a s e " : " O i l " ,
245 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
246 " S p l i n e P o i n t s " : {
247 " Heel " : {
248 " x " : 521534 ,
249 " y " : 6178900 ,
250 " z " : 2 0 6 0 . 4 3 ,
251 " I s V a r i a b l e " : f a l s e

86



252 } ,
253 " Toe " : {
254 " x " : 521184 ,
255 " y " : 6179090 ,
256 " z " : 2 0 6 6 . 9 1 ,
257 " I s V a r i a b l e " : f a l s e
258 }
259 } ,
260 " C o n t r o l s " : [
261 {
262 " TimeStep " : 0 ,
263 " S t a t e " : " Open " ,
264 "Mode" : "BHP" ,
265 "BHP" : 175 .0
266 }
267 ]
268 } ,
269 {
270 "Name" : "PROD8" ,
271 " Group " : "GROUP1" ,
272 " Type " : " P r o d u c e r " ,
273 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
274 " P r e f e r r e d P h a s e " : " O i l " ,
275 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
276 " S p l i n e P o i n t s " : {
277 " Heel " : {
278 " x " : 526541 ,
279 " y " : 6180150 ,
280 " z " : 2 0 4 4 . 6 2 ,
281 " I s V a r i a b l e " : f a l s e
282 } ,
283 " Toe " : {
284 " x " : 526654 ,
285 " y " : 6180150 ,
286 " z " : 2 0 9 0 . 4 ,
287 " I s V a r i a b l e " : f a l s e
288 }
289 } ,
290 " C o n t r o l s " : [
291 {
292 " TimeStep " : 0 ,
293 " S t a t e " : " Open " ,
294 "Mode" : "BHP" ,
295 "BHP" : 175 .0
296 }
297 ]
298 } ,
299 {
300 "Name" : "PROD9" ,
301 " Group " : "GROUP1" ,
302 " Type " : " P r o d u c e r " ,
303 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
304 " P r e f e r r e d P h a s e " : " O i l " ,
305 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
306 " S p l i n e P o i n t s " : {
307 " Heel " : {
308 " x " : 524895 ,

87



309 " y " : 6180210 ,
310 " z " : 2 0 5 3 . 3 9 ,
311 " I s V a r i a b l e " : f a l s e
312 } ,
313 " Toe " : {
314 " x " : 524905 ,
315 " y " : 6180200 ,
316 " z " : 2 0 8 8 . 2 2 ,
317 " I s V a r i a b l e " : f a l s e
318 }
319 } ,
320 " C o n t r o l s " : [
321 {
322 " TimeStep " : 0 ,
323 " S t a t e " : " Open " ,
324 "Mode" : "BHP" ,
325 "BHP" : 175 .0
326 }
327 ]
328 } ,
329 {
330 "Name" : "PROD10" ,
331 " Group " : "GROUP1" ,
332 " Type " : " P r o d u c e r " ,
333 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
334 " P r e f e r r e d P h a s e " : " O i l " ,
335 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
336 " S p l i n e P o i n t s " : {
337 " Heel " : {
338 " x " : 522946 ,
339 " y " : 6180570 ,
340 " z " : 2 0 6 4 . 6 4 ,
341 " I s V a r i a b l e " : f a l s e
342 } ,
343 " Toe " : {
344 " x " : 522949 ,
345 " y " : 6180570 ,
346 " z " : 2 0 8 3 . 4 8 ,
347 " I s V a r i a b l e " : f a l s e
348 }
349 } ,
350 " C o n t r o l s " : [
351 {
352 " TimeStep " : 0 ,
353 " S t a t e " : " Open " ,
354 "Mode" : "BHP" ,
355 "BHP" : 175 .0
356 }
357 ]
358 } ,
359

360

361

362 {
363 "Name" : " INJ1 " ,
364 " Group " : "GROUP1" ,
365 " Type " : " I n j e c t o r " ,

88



366 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
367 " P r e f e r r e d P h a s e " : " Water " ,
368 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
369 " S p l i n e P o i n t s " : {
370 " Heel " : {
371 " x " : 525166 ,
372 " y " : 6180780 ,
373 " z " : 2 0 5 4 . 3 ,
374 " I s V a r i a b l e " : f a l s e
375 } ,
376 " Toe " : {
377 " x " : 525215 ,
378 " y " : 6180790 ,
379 " z " : 2 0 8 0 . 5 8 ,
380 " I s V a r i a b l e " : f a l s e
381 }
382 } ,
383 " C o n t r o l s " : [
384 {
385 " TimeStep " : 0 ,
386 " Type " : " Water " ,
387 " S t a t e " : " Open " ,
388 "Mode" : "BHP" ,
389 "BHP" : 235 .0
390 }
391 ]
392 } ,
393 {
394 "Name" : " INJ2 " ,
395 " Group " : "GROUP1" ,
396 " Type " : " I n j e c t o r " ,
397 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
398 " P r e f e r r e d P h a s e " : " Water " ,
399 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
400 " S p l i n e P o i n t s " : {
401 " Heel " : {
402 " x " : 523809 ,
403 " y " : 6180540 ,
404 " z " : 2 0 5 3 . 5 1 ,
405 " I s V a r i a b l e " : f a l s e
406 } ,
407 " Toe " : {
408 " x " : 523816 ,
409 " y " : 6180540 ,
410 " z " : 2 0 8 4 . 5 1 ,
411 " I s V a r i a b l e " : f a l s e
412 }
413 } ,
414 " C o n t r o l s " : [
415 {
416 " TimeStep " : 0 ,
417 " Type " : " Water " ,
418 " S t a t e " : " Open " ,
419 "Mode" : "BHP" ,
420 "BHP" : 235 .0
421 }
422 ]

89



423 } ,
424 {
425 "Name" : " INJ3 " ,
426 " Group " : "GROUP1" ,
427 " Type " : " I n j e c t o r " ,
428 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
429 " P r e f e r r e d P h a s e " : " Water " ,
430 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
431 " S p l i n e P o i n t s " : {
432 " Heel " : {
433 " x " : 522086 ,
434 " y " : 6180360 ,
435 " z " : 2 0 5 6 . 0 3 ,
436 " I s V a r i a b l e " : f a l s e
437 } ,
438 " Toe " : {
439 " x " : 522088 ,
440 " y " : 6180360 ,
441 " z " : 2 0 8 1 . 0 7 ,
442 " I s V a r i a b l e " : f a l s e
443 }
444 } ,
445 " C o n t r o l s " : [
446 {
447 " TimeStep " : 0 ,
448 " Type " : " Water " ,
449 " S t a t e " : " Open " ,
450 "Mode" : "BHP" ,
451 "BHP" : 235 .0
452 }
453 ]
454 } ,
455 {
456 "Name" : " INJ4 " ,
457 " Group " : "GROUP1" ,
458 " Type " : " I n j e c t o r " ,
459 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
460 " P r e f e r r e d P h a s e " : " Water " ,
461 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
462 " S p l i n e P o i n t s " : {
463 " Heel " : {
464 " x " : 521956 ,
465 " y " : 6179340 ,
466 " z " : 2 0 5 6 . 7 3 ,
467 " I s V a r i a b l e " : f a l s e
468 } ,
469 " Toe " : {
470 " x " : 522008 ,
471 " y " : 6179320 ,
472 " z " : 2 0 8 3 . 8 ,
473 " I s V a r i a b l e " : f a l s e
474 }
475 } ,
476 " C o n t r o l s " : [
477 {
478 " TimeStep " : 0 ,
479 " Type " : " Water " ,

90



480 " S t a t e " : " Open " ,
481 "Mode" : "BHP" ,
482 "BHP" : 235 .0
483 }
484 ]
485 } ,
486 {
487 "Name" : " INJ5 " ,
488 " Group " : "GROUP1" ,
489 " Type " : " I n j e c t o r " ,
490 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
491 " P r e f e r r e d P h a s e " : " Water " ,
492 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
493 " S p l i n e P o i n t s " : {
494 " Heel " : {
495 " x " : 520840 ,
496 " y " : 6178760 ,
497 " z " : 2 0 6 7 . 9 3 ,
498 " I s V a r i a b l e " : f a l s e
499 } ,
500 " Toe " : {
501 " x " : 520758 ,
502 " y " : 6178740 ,
503 " z " : 2 0 8 6 . 2 8 ,
504 " I s V a r i a b l e " : f a l s e
505 }
506 } ,
507 " C o n t r o l s " : [
508 {
509 " TimeStep " : 0 ,
510 " Type " : " Water " ,
511 " S t a t e " : " Open " ,
512 "Mode" : "BHP" ,
513 "BHP" : 235 .0
514 }
515 ]
516 } ,
517 {
518 "Name" : " INJ6 " ,
519 " Group " : "GROUP1" ,
520 " Type " : " I n j e c t o r " ,
521 " D e f i n i t i o n T y p e " : " W e l l S p l i n e " ,
522 " P r e f e r r e d P h a s e " : " Water " ,
523 " W e l l b o r e R a d i u s " : 0 . 1 9 0 5 ,
524 " S p l i n e P o i n t s " : {
525 " Heel " : {
526 " x " : 526782 ,
527 " y " : 6180700 ,
528 " z " : 2 0 6 4 . 8 4 ,
529 " I s V a r i a b l e " : f a l s e
530 } ,
531 " Toe " : {
532 " x " : 526784 ,
533 " y " : 6180700 ,
534 " z " : 2 0 8 0 . 4 5 ,
535 " I s V a r i a b l e " : f a l s e
536 }

91



537 } ,
538 " C o n t r o l s " : [
539 {
540 " TimeStep " : 0 ,
541 " Type " : " Water " ,
542 " S t a t e " : " Open " ,
543 "Mode" : "BHP" ,
544 "BHP" : 235 .0
545 }
546 ]
547 }
548

549 ]
550 }
551 }

Listing 6.5: PSO Driver file

92


	Abstract
	Preface
	Acknowledgments
	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	Scope of the work
	Objectives
	Thesis outline

	Literature review
	Well placement optimization
	PSO in well placement optimization

	Optimization
	Problem description
	Objective function
	Constraints
	Bound constraints
	Practical constraints

	Optimization algorithm
	Global Best PSO
	Local Best PSO
	Neighborhood topologies
	Parameters

	Constraint handling methods
	Penalty method

	Optimization Framework

	Implementation
	FieldOpt
	Driver file
	Runner
	Optimizer interface
	Simulator interface
	Case class

	PSO Integration
	Particle class
	PSO class
	Iterate method
	Initialize cases method
	Apply penalty method
	Update Global Best Case method
	Update Personal Best Cases method
	Update Particles method


	Case Study
	Model descriptions
	5 spot model
	Olympus model

	Optimization results and discussion
	5 spot results
	Olympus results


	Conclusion and Recommendations for Further Work
	Bibliography
	Appendix

