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Preface

This report presents the result of a master thesis in marine hydrodynamics for

Marine Technology, at the Norwegian University of Science and Technology. Two

models of a solar island are made and tested in current, and both regular and

irregular waves. In the experiment acceleration in vertical direction, forces in the

mooring lines and wave elevation were measured. The results obtained from the

experiment will be presented and compared with a numerical model.

The work done during the master is mainly experimental. The theory is used to

support the results obtained from the experiment.
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Røsten and Torgeir Whal for helping with the experimental work. Peng Li for the
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Summary

In this master thesis, the dynamical behavior of a �oating solar island in waves and

current has been investigated. The solar island consists of a torus were the inner

part is covered with a membrane. Underneath the membrane an overpressure is

applied to support the weight of the photovoltaics panels. A skirt is hanging from

the side to prevent leakage of the pressure. This thesis will not go into detail where

all the possible placements of the island are, but one alternative is at the coast

outside West Africa.

The investigation has been done through model testing. Two di�erent con�gu-

rations of the solar island were investigated; a model made with an elastic torus

and a model with a rigid torus. The other parts of the model were equal. The

models are compared in regular waves with height-to-wave length ratio 1/30 and

wave period between 0.6-1.6 s, regular waves and current and irregular waves.

A numerical model for the heave response has been developed based on the theory

for a �oating torus and a surface e�ect ship, by use of linear potential �ow theory.

The experimental results are in good agreement with the numerical result. The

membrane will lead to larger vertical motion for small wave frequencies and a re-

duction of the response for high wave frequencies. Another e�ect of the membrane

is that the vertical acceleration and force in the mooring lines gets increased. The

largest di�erence between the two models are the global behavior, since the elastic

model is able to follow the waves.

Out of water and over-topping of waves were observed. These non-linear phenom-

ena can lead to �ooding of the island. Flooding for both models were observed in;

regular waves with steepness 1/20 and period T = 12.1 s and irregular waves with

peak period Tp ≥ 12.0 s and signi�cant wave height, Hs > 5 m.

Further investigation of the solar island is needed to include the e�ect of the

membrane and skirt in the numerical model of the response in horizontal and

vertical direction.
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Sammendrag

Denne masteroppgaven, utført ved "Marine Technology, at the Norwegian Uni-

versity of Science and Technology", har undersøkt den dynamiske oppførselen til

en �ytende soløy utsatt for strøm og bølger. Soløyen består av et ringformet �y-

teelemt, torus, og en membran som dekker den indre ringen. Under membranen er

det et overtrykk som skal hjelpe til med å bære vekten av solcellepanelene. For å

hindre lekkasje henger det ned et skjørt fra siden av torusen. Denne oppgaven går

ikke i detalj for mulig plasseringer av soløyen, men et alternativ kan være utenfor

kysten av Vest-Afrika.

Undersøkelsen har blitt gjort gjennom modelltesting. To ulike versjoner av soløyen

har blitt undersøkt. En modell er laget med en elastisk torus og en modell med en

stiv torus. De andre delene av soløyene er identiske. Modellene er sammenlignet i

regulære bølger med høyde til lengde ratio 1/30 og bølgeperiode mellom T =0.6-

1.6 s, regulære bølger med strøm og irregulære bølger.

En numerisk modell for torusens hiv-bevegelse har blitt laget basert på teori for

hiv-bevegelsen til en �ytende torus og teorien for "Surface e�ect ships", ved hjelp

av lineær potensialteori. De eksperimentelle resultatene er i god overenstemmelse

med den numeriske modellen. Membranen vil føre til høyere vertikal bevegelse for

små bølgefrekvenser og en reduksjon for høye bølgefrekvenser. En annen e�ekt av

membranen er at den vertikale akselerasjonen og kraften i fortøyningslinene øker.

Den største forskjellen mellom modellene er den samlede oppførselen, fordi den

elastiske modellen kan følge bølgene.

"Ut-av-vann" og "overtopping" av soløyen på grunn av bølgene ble observert. Disse

ulineære fenomenene kan føre til overforsvømmelse av soløyen. Overforsvømmelse

ble observert for begge modellen for; regulære bølger med steilhet 1/20 og pe-

riode T = 12.1 s, irregulære bølger med topp-periode Tp ≥ 12.0 s og signi�kant

bølgehøyde Hs > 5 m.

Videre undersøkelse av soløyen er nødvendig for å inkludere e�ekten av membranen

og skjørtet i den numeriske modellen for responsen i horisontal og vertikal retning.
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Chapter 1

Introduction

Today modern mobility, aeronautics, shipping and long-haul automotive requires

high energy density liquid fuel, which is coming from fossil fuels. At this date,

there is no practical alternative to liquid carbon-based energy carries. An idea

proposed by Frode Mo, department of Physics NTNU, is to use solar energy to

the extraction of hydrogen and CO2 from seawater to create liquid methanol fuel

[Mo, Personal communication (2016)].

Due to limited available space on earth a �oating solar island able to operate

in open seas is proposed. Today there are approximately twenty di�erent types

of solar island that exists. These have all been in enclosed water bodies, such

as reservoirs, ponds and small lakes (Trapani & Redón Santafé, 2015). Floating

photovolatics (PV) system is found to have 11 % better e�ciency than overland

system (Choi, 2014). Developers are looking to expand the idea into open seas.

Concepts proposed are �exible thin structures able to undulate with the waves, or

conventional rigid PV arrays that can be submerged in rough water conditions.

The design proposed for the �oating solar island is an outer torus, e.q steel ring

or high-density polyethylene (HDPE) �oaters used in �sh farms. Where the inner

part is covered with a membrane that is carrying the PV panels. To support

the weight of the panels, an overpressure is applied below the membrane. Only
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1.1. LITERATURE REVIEW 1. INTRODUCTION

about 5 mbar overpressure is needed to carry a load of 50 kg/m. The novel design

is chosen due to low complexity and enables a simple turning of the platform

(CSEM, 2007). A skirt hanging from the side with weighted ballast is proposed

to prevent leakage of the pressure. Figure 1.1 shows an artist impression of the

�oating solar island.

Figure 1.1: Artistic impression of the �oating solar island in open sea (computer graphic).
The photo is taken from (CSEM, 2007).

A land based prototype of the solar island is built in the emirate Ras Al-Khaimah

(RAK) (CSEM, 2007). The prototype is made out of steel with a diameter of

86 m, cross-sectional diameter of 2 m and 6 mm thickness.

1.1 Literature Review

1.1.1 Air Cushions

The use of air cushions to support very large �oating structures has been known

for a long time in the o�shore industry. The applications have mainly been related

to a temporary increase in the buoyancy of large-bottom-founded structures for

the purpose of transit a shallow building dock to deeper water (Pinkster & Scholte,

2001). Air cushions is also used in Surface E�ects Ships (SES) in order reduce the

resistance in water (Odd M Faltinsen, 2005).

2



1.1. LITERATURE REVIEW 1. INTRODUCTION

Pinkster and Fauzi (1997) developed a computational method to determine the

e�ects of air cushions on a large �oating structure in waves. A simple circularly

shaped pontoon covered with an air cushion is study by use of a linear three-

dimensional potential theory with a linearized adiabatic law for the air pressure

in the cushion. The air cushion is passive and there is no air leakage or induction.

The results show that one of the main e�ects of the air cushion is very substantially

reduction of the static stability of the structure. Another e�ect of the air cushion

is that the heave motion at higher wave frequencies is considerably reduced. The

heave response is however increased for lower wave frequencies.

Lee and Newman (2000) study the possible importance of acoustic resonance for

the heave and pitch motion. The computational results indicated that the most

important resonant response does not occur at these frequencies. The resonant

response is explained by the balance between the body inertia force and the ap-

propriate sti�ness coe�cient for each mode. In heave, the sti�ness includes both

hydrostatic and aerostatic components, which are in comparable orders of mag-

nitude, whereas for pitch the hydrostatic restoring coe�cient is dominant. Thus,

the heave resonant frequency is substantially larger than for pitch.

1.1.2 Floating Torus

J. N. Newman (1977b) investigated the motions of a rigid �oating slender torus

in incident waves. The investigation was done by using slender-body theory. In

addition, the forces were investigated, the peaks in the hydrodynamic forces was

explained by standing waves within the tours.

When analyzing the wave loads on circular �oaters made by HDPE hydroelasticity

matters. Odd M. Faltinsen (2011) consider the hydroelasticity of the torus and

derived a slender-body theory based on a rigid free-surface condition of the wave

e�ects on the torus by neglecting current.

Dong, Hao, Zhao, Zong, and Gui (2010) proposed an analytically method to an-

alyze the elastic deformation of a circular ring subjected to water waves. The

3



1.1. LITERATURE REVIEW 1. INTRODUCTION

analytic solution is based on Euler's laws and curved beam theory do describe the

six-degree-of-freedom motion and elastic deformation. The wave force was evalu-

ated by use of Morrison formula. Experimental data are in agreement with the

analytic results.

Odd M. Faltinsen (2012) expand the solution in (Odd M. Faltinsen, 2011) to be

valid for a classical linear free-surface condition. Li and Faltinsen (2012) used the

results form (Odd M. Faltinsen, 2012) and a Haskind-type expression for the wave

excitation loads, to describe the wave-induced vertical response. They predicted

that the vertical motion of the �oater followed the beam equation. A higher order

version of WAMIT was used to verify the analytic solution. The results showed

that 3D frequency-dependent hydrodynamic interaction on the scale of the torus

diameter is signi�cant.

Li, Faltinsen, and Greco (2014) studied the wave-induced acceleration of an elastic

circular collar numerical and experimental. A model with a torus diameter at

1.5m, and a bending sti�ness equal to 0.464 Nm2 was tested in regular waves. The

�oater where moored with four nearly horizontal moorings with crow feet. The

experimental results where compared with the low-frequency slender-body theory.

Experimental results showed good agreement for the �rst harmonic component of

vertical acceleration, at front, aft and side of the �oater. The results also showed

that the higher-order harmonics of the accelerations matter.

Li, Faltinsen, and Lugni (2016) studied the nonlinear wave-induced vertical ac-

celerations of a �oating torus in regular waves. A model with a �oater diameter

at 1.5 m and a bending sti�ness equal to 23.74 Nm2, that is about 100 times the

bending sti�ness used in (Li et al., 2014), was tested in regular waves. In the

experiment, the �oater was attached with four nearly horizontal mooring lines, at

front, aft, left and right. For height-to-wave length ratio 1/120 reasonable agree-

ment is obtained with linear and partly second-order potential-�ow theory. The

experiment documented the importance of 3D �ow, hydroelasticity and strong

hydrodynamic frequency dependency when studying the torus in waves.
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1.2. SCOPE OF WORK 1. INTRODUCTION

1.2 Scope of Work

The main scope of this master thesis is experimental investigation of the dynamical

behavior for the described solar island in waves and current. The study is done to

�nd the physical e�ects so that the design can be used and developed to be able

to operate in open seas.

For the idea to be feasible the design of the structure needs to be inexpensive. Steel

is an expensive material and can lead to underside jerks and slamming in waves.

Using the technology in aquaculture an alternative is to use the cheaper material

HDPE �oaters. Use of HDPE �oaters requires moderate sea states. Moderate sea

states can be found by using existing wave data which can be found in Hogben,

Olliver, Dacunha, and British Maritime Technology (1986). Other limitations are

water depth, isolation rate and ice coverage during winter. The initial design

criteria for the signi�cant wave height is, Hs ≤ 5 m. This thesis will not go into

detail where the possible locations are, but one alternative is at the coast outside

West Africa.

Two separate models with di�erent bending sti�ness were made. The one model

was elastic like a HDPE �oater in full scale. The second model were rigid like a

steel pipe in full scale. The models will be compared in terms of vertical motion,

vertical acceleration, and mooring force. In addition, the models will be compared

with the elastic torus and the elastic torus covered with membrane without the

skirt. This is done to study the e�ect o� skirt and membrane on the response.

During the experiments, a special attention was made to non-linear e�ects such

as over-topping of waves, out of water and survivability. The results from the

experiment will be presented as �gures and as a movie from the experiment showing

the global behavior of the models. The focus will mainly be on the experimental

result from the regular wave test.

A theoretical model of the vertical response for the solar island is developed. The

theoretical model is based on the theory for wave-induced vertical motion for

5
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circular collar of a �oating �sh farm (Odd M. Faltinsen, 2012), and the vertical

motion for a SES (Odd M Faltinsen, 2005). The theoretical model is made to

support the experimental result.

1.3 Outline of the Present Study

This chapter �rst include the introduction and design of the solar island and then

give a review of previous work for �oating torus and use of air cushions in marine

structures. The objective and structure of the work are outlined afterwards. In

Chapter 2 the theory of the waves used in the experiment is presented. The

derivation of motion for the torus and vertical motion for the solar island are

presented in Chapter 3. Next the experimental set-up, test conditions and the

analyzing process is presented in Chapter 4. Then the experimental and numerical

results are presented and discussed in Chapter 5. The experimental result will also

be presented as a movie that is attached to the report. A conclusion is given in

Chapter 6. Finally, a recommendation for further work is given in Chapter 7.
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Chapter 2

Theory

From a hydrodynamical point of view it is su�cient to analyze a structure in

incident sinusoidal waves of small wave steepness (O. Faltinsen, 1993). The wave

steepness is a ratio of wave height divided by the wave length, where small values

means linear waves. It is possible to obtain result in irregular seas by linearly

superposition from steady state condition. In steady-state conditions the solution

oscillates with the incoming wave frequency ω, meaning that it is possible to avoid

the time dependence from the problem (Greco, 2016).

2.1 Regular Waves

Regular waves, means waves oscillating in time with period T = 2π/ω and os-

cillating in space with wavelength λ = 2π/k. The wave pro�le of regular waves

propagating along the x-axis can according to linear theory be written on the form

ζ = ζa sin(ωt− kx) (2.1)

The wave steepness used in this experiment is found by assuming a signi�cant

wave height, Hs = 5 m and varying peak period, Tp. By use of the wavenumber

7



2.1. REGULAR WAVES 2. THEORY

and dispersion relation for deep water the steepness can found by Equation (2.2),

the result are shown in Table 2.1.

H/λ =

(
Hs

1.56T 2
p

)−1
(2.2)

Hs [m] Tp [s] Steepness
5 8 20
5 9 25
5 10 30
5 11 40
5 12 45
5 13 50

Table 2.1: The steepness as a function of Hs and Tp.

Linear theory represents a �rst order approximation in satisfying the free surface

conditions. For waves of steepness H/λ = 10 the exact theory predicts 20 % higher

maximum wave elevation than the linear approximation (O. Faltinsen, 1993). The

approximation can be improved by a Stoke's expansion, this means introducing

higher order terms when satisfying the free surface condition. The second order

wave elevation in deep water can be written as (O. Faltinsen, 1993).

ζ2 = −1

2
ζ2ak cos[2(ωt− kx)] (2.3)

Combining Equation (2.1) and (2.3) gives the following surface elevation.

ζ = ζa sin(ωt− kx)− 1

2
ζ2ak cos[2(ωt− kx)] (2.4)

The second-order solution of the wave elevation sharpens the wave crests and

makes the through shallower.

8



2.2. IRREGULAR WAVES 2. THEORY

2.2 Irregular Waves

Irregular waves are intended to represent a realistic sea state and are therefore

used for studying the actual responses including non-linear phenomena as high

frequency and low frequency responses, impact loads and survivability in extreme

sea states (Steen, 2014). An irregular short-term sea state can be found by use of

superposition of di�erent regular waves with random phase angels. The process is

illustrated in Figure 2.1, mathematical it can be written as Equation (2.5).

Figure 2.1: Illustration of the superposition principle when creating an irregular sea state.
Illustration taken from (O. Faltinsen, 1993).

ζ =
N∑
j=1

Aj sin(ωjt+ εj) (2.5)

Here Aj is the wave amplitude, ωj is the angular frequency and εj is the random

phase angle of wave component number j. The random phase angle is uniformly

distributed between 0 and 2π and constant with time. The wave amplitude Aj

can be expressed by a wave spectrum, S(ω), as

9



2.2. IRREGULAR WAVES 2. THEORY

1

2
A2
j = S(ωj)∆ω (2.6)

An example of a wave spectrum is the JONSWAP spectrum. The JONSWAP

spectrum can be de�ned as (DNV, 2014)

S(ω) = Aγ
5

16
H2
sω

4
pω
−5exp

(
− 5

4

( ω
ωp

)−4)
γ
exp

(
−0.5
(
ω−ωp
σω

)2)
(2.7)

Here Hs is the signi�cant wave height. ωp is the angular spectral peak frequency

and is de�ned as

ωp =
2π

Tp
(2.8)

where Tp is peak period. γ is the non-dimensional peak shape parameter and if no

values are given for the peak shape parameter. The following value of γp can be

applied.

γp = 5 for
Tp√
Hs

≤ 3.6 (2.9)

γp = e
5.75−1.15 Tp√

Hs for 3.6 ≤ Tp√
Hs

< 5 (2.10)

γp = 1.0 for 5 ≤ Tp√
Hs

(2.11)

σ is the spectral width parameter and can be found as

σ =

σa for ω ≤ ωp

σb for ω > ωp
(2.12)

where typical values are σa = 0.07 and σb = 0.09. Aγ is a normalizing factor, and

is given by equation

10



2.2. IRREGULAR WAVES 2. THEORY

Aγ = 1− 0.0287 ln(γ) (2.13)

Typical sea state in West Africa with a return period of 100 years are given in

Table 2.2, the values are taken from (DNV, 2013). A signi�cant wave height and

wave period characterize each sea state. In West Africa and other areas where

wind-waves and swell are not collinear the use of double peaked spectrum shall

not be applied. Figure 2.2 shows the JONSWAP spectrum for the di�erent areas

in West Africa.

West Africa
Nigeria(swell) Hs 3.8 m

Tp 15.0 s
Nigeria (squalls) Hs 2.5 m

Tp 7.2 s
Gabon (wind generated) Hs 2.5 m

Tp 8.0 s
Gabon (swell) Hs 4.0 m

Tp 15.2 s
Ivory Coast (swell) Hs 6.0 m

Tp 13.0 s
Mauritania (swell) Hs 6.1 m

Tp 19.1 s
Angola (swell, shallow water) Hs 4.1 m

Tp 16.0 s

Table 2.2: Typical sea states at di�erent location in West Africa, with a return period
of 100 years (DNV, 2013).
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0 0.5 1 1.5 2

! [rad/s]

0

2

4

6

8

10

12

S
(!

) 
[m

2
 s

]

JONSWAP spectrum for the areas in West Africa

Nigeria (swell)
Nigeria (squalls)
Gabon (wind)
Gabon (swell)
Ivory Coast (swell)
Mauritanina (swell)
Angola (swell)

Figure 2.2: The JONSWAP spectrum for the di�erent areas in West Africa given in Table
2.2.

2.3 Wavemaker Theory

Generation of the waves used in the experiment are made by a �ap hinged wave-

maker that is attached in the student tank at NTNU. The relation between the

wave height and the coherent stroke of the wavemaker, H/S can be written as

(Dean & Dalrymple, 1991).

H

S
= f(T, h) (2.14)

Where f is the transfer function and is depending on the type of wavemaker, the

wave period and the water depth. This means that the desired stroke can be found

by.

S =
H

f
(2.15)
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2.4. SCALING LAWS 2. THEORY

Hughes (1993) has found the transfer function for a �ap hinged distance z from

the surface to be

f =
4 sinh(kh)

sinh(2kh) + 2kh
· sinh(kh) + cosh(kh− kz)− cosh(kh)

kz
(2.16)

Where h is the water depth, and k is the wave number. For the irregular sea state

the desired stroke can be written as the following sum

S(t) =
∞∑
j=1

2
√

2(S(ωj)∆ω

f(ωj)
sin(ωjt+ εj) (2.17)

2.4 Scaling Laws

To achieve similarity in forces between model scale and full scale, the following

conditions must be ful�lled; geometrical similarity, kinematic similarity, and dy-

namic similarity. Since the problem is hydroelastic, additional requirements are

needed. The additional requirements are; correctly scaled global structural sti�-

ness, structural damping must be like full scale values and the mass distribution

must be similar (Steen, 2014).

The incident waves are gravity driven and therefore Froude scaling must be used.

Equality in Froude number, geometrical and kinematic similarity will ensure simi-

larity between inertia and gravity forces. Using the geometrical similarity require-

ment gives the scaling ratio λ = LF/LM . Table 2.3 shows how to scale di�erent

physical parameters.

Since Froude scaling is used, Reynolds number scaling cannot be satis�ed. Equality

in Reynolds number will ensure that the viscous force is correctly scaled. Without

�ow separation viscous e�ects are associated with the boundary layer �ow and

negligible relative to potential-�ow e�ects (Li et al., 2014).
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2.4. SCALING LAWS 2. THEORY

Physical Parameter Unit Multiplication factor
Length [m] λ
Structural mass [kg] λ3ρF/ρM
Force [N] λ3ρF/ρM
Acceleration [m/s2] aF = aM
Time [s]

√
λ

Pressure [Pa] λρF/ρM
Velocity [m/s] λ
Bending sti�ness [Nm2] λ5

Table 2.3: Froude scaling table for di�erent physical parameters used in the experiment.
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Chapter 3

Theoretical Model of the Response

The theoretical vertical response of the solar island will be investigated in deep

water linear waves. The island is freely �oating without the presence of mooring

system and zero current. Any coupling between horizontal and vertical motion

will be neglected. Due to the assumption of linearity the superposition principle is

valid and the vertical motion of the �oater and air cushion can be solved separately.

A Cartesian coordinate system (x,y,z) is de�ned, were the z- axis is the torus axis

and upwards, with the mean free surface at z = 0. The incident wave velocity

potential for linear waves propagating along the x-axis is expressed as

φ0 =
gζa
ω

exp(νz + iνx− iωt) (3.1)

Here i is a complex number with the property
√
i = −1. ζa is the wave amplitude, g

is the acceleration of gravity and the wavenumber ν = ω2/g. A complex expression

is used to simplify the calculations, but it is only the real part that has physical

meaning. The considered incident wave length are assumed large relative to the

cross-sectional torus radius, which means that the wave scattering and radiation

by the torus can be neglected. The wave elevation can be found by using the
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3.1. HEAVE AIR CUSHION 3. THEORETICAL MODEL OF THE RESPONSE

dynamic Equation (3.2) (O. Faltinsen, 1993).

gζ +
∂φ

∂t
= 0 on z = 0 (3.2)

Hence the wave elevation ζ is

ζ = iζa exp(iνx− ωt) (3.3)

3.1 Heave Motion for the Air Cushion

The heave motion for the air cushion is based on the theory from the book given

in the References as Odd M Faltinsen (2005). During the derivation, the pressure

is assumed constant in the whole air cushion, and the pitch motion is neglected.

The continuity equation for the air mass inside the cushion can be written as

ρaQin − ρaQout =
d

dt
(ρcΩ) (3.4)

Here ρa is the air mass density at equilibrium pressure. ρaQin is the air mass �ow

per unit time through the fans. ρaQout is the air mass �ow per unit time due to

leakage. ρc is the dynamic air mass density of the pressurized air cushion. Ω is

the air cushion volume. Assuming that there is no in- and out-�ow Equation (3.4)

becomes.

d

dt
(ρcΩ) = 0 (3.5)

Equation (3.5) can be linearized as

d

dt
(ρcΩ) ∼ dρc

dt
Abhb + ρa

dΩ

dt
(3.6)

16



3.1. HEAVE AIR CUSHION 3. THEORETICAL MODEL OF THE RESPONSE

where Ab is the cushion area and hb is the cushion plenum height, see Figure 3.1.

Figure 3.1: Transverse cross-section of the solar island. Ab is the cushion area, hb is the
cushion plenum height, pa is the atmospheric pressure and p0 is the excess pressure.

The relationship between the pressure and mass density is based on the adiabatic

condition given in Equation (3.7).

p

p0 + pa
=
(ρc
ρa

)γ
(3.7)

Here γ is the ratio of speci�c heat for air, and is equal 1.4. p0 is the excess pressure

in the cushion and pa is the atmospheric pressure. The total pressure inside the

air cushion is given by Equation (3.8)

p = p0 + µ(t)p0 (3.8)

where p0µ(t) is the dynamic part of the pressure. The total pressure does not

include the atmospheric pressure since it is on both sides of the cushion. The

cushion plenum height can be found for a given pressure by

hb =
p0
ρg

(3.9)

Equation (3.7) can be linearized as

ρc
ρa
∼
(

1 +
1

γ
µ(t)

)
(3.10)

By use of Equation (3.10) dρc/dt can be expressed as
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3.1. HEAVE AIR CUSHION 3. THEORETICAL MODEL OF THE RESPONSE

dρc
dt

=
ρa
γ

dµ

dt
(3.11)

The volume of the air cushion will change due to heave and wave motions. The

change can be expressed as

dΩ

dt
= Ab

dη3
dt

+
dVW
dt

(3.12)

where dVw/dt is associated with the wave motion and is expressed as

dVw
dt

=

∫∫
R

dζ

dt
dxdy (3.13)

By di�erentiation of Equation (3.3) with respect to time, and converting the inte-

gral to polar coordinates Equation (3.13) becomes

dVw
dt

= −ωζae−iωt
∫ 2π

0

∫ R

0

eiνrcos(θ)rdrdθ (3.14)

The integral in Equation (3.14) are solved by numerical integration in Matlab.

q =

∫ 2π

0

∫ R

0

eiνrcos(θ)rdrdθ (3.15)

dVw
dt

= −ωζaqe−iωt (3.16)

Hence Vw can be written as

Vw = −iqζae−iωt (3.17)

Inserting Equation (3.11) and (3.12) into Equation (3.6) the following equation

arise
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3.2. HEAVE TORUS 3. THEORETICAL MODEL OF THE RESPONSE

ρa
γ

dµ

dt
Abhb + ρa(Ab

dη3
dt

+
dVW
dt

) = 0 (3.18)

µ can be eliminate from equation (3.18) by Newton's second law

M
d2η3
dt2

= p0µ(t)Ab (3.19)

Here M is the mass of the island. Equation (3.19) are only considering the forces

due to the dynamic excess pressure, this means that the hydrodynamic forces on

the torus are neglected. Equation (3.18) then becomes

ρa
γ

1

p0

M

hb

d3η3
dt

+ ρa(Ab
dη3
dt

+
dVW
dt

) = 0 (3.20)

This is a third-order di�erential equation in η3. Assuming a steady-state solution

the integration of equation (3.20) once with respect to time becomes

Mhb
γ(p0)

d2η3
dt2

+ Abη3 = −Vw (3.21)

By rearranging Equation (3.21), the di�erential equation for the heave motion

becomes

M
d2η3
dt2

+
Abγp0
hb

η3 = −γp0
hb

Vw (3.22)

3.2 Heave Motion for the Torus

The presented derivation for the vertical motion of the torus is taken from the

articles given in the References as Odd M. Faltinsen (2012) and Li (2017). The

vertical motion is found by matching asymptotic expansion with a far- and near-

�eld solution. The �oater is assumed to be semi-submerged in water of in�nite

19



3.2. HEAVE TORUS 3. THEORETICAL MODEL OF THE RESPONSE

depth and horizontal extent.

The problem is considered in the limiting case that the forcing frequency ω → 0,

which means that a rigid free-surface condition can be used (Odd M. Faltinsen,

2011). The rigid free surface condition can mathematical be written as Equation

(3.23), and means that no waves are generated i.e. zero damping.

∂φ

∂z
= 0 on z = 0 (3.23)

As mention in the literature review a theory valid for the classical linear free-

surface has been developed. A comparison between the frequency-dependent and

zero frequency theory for the response amplitude operator (RAO) is done by Peng

Li [Li, Personal communication (2017)]. The result for heave are shown in Figure

3.2, and pitch in Figure 3.3. The results shows that there are little di�erence in the

frequency of interest. Therefor the zero frequency theory is used due to simplicity.

Figure 3.2: Comparison between the RAO in heave for the frequency-dependent and zero
frequency theory. The results are plotted against the non dimensional wavenumber. The
calculations are done by Peng Li [Li, Personal communication (2017)].
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Figure 3.3: Comparison between the RAO in pitch for the frequency-dependent and zero
frequency theory. The results are plotted against the non dimensional wavenumber. The
calculations are done by Peng Li [Li, Personal communication (2017)].

3.2.1 Far-Field Flow Description

Figure 3.4: Far-�eld view of the torus with parameter and coordinate de�nitions.

Figure 3.4 is showing the far-�eld view of the torus. In the far-�eld the �ow will

appear as a line distribution of sources with constant density Q, along the center

line of the torus. This is because the details of the cross-dimension is not seen
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3.2. HEAVE TORUS 3. THEORETICAL MODEL OF THE RESPONSE

in the far-�eld. The velocity potential at any point P, due to a three-dimensional

point source, in a liquid at rest at in�nity is (O. Faltinsen, 1993).

φ =
Q

4πr
(3.24)

Here r is the radial distance from the point (x, y, z) to a point at the center line

of the torus (ξ, η, 0). Q is the source strength. The coordinates of the center line

can be expressed as in Equation (3.25), while the �eld point expression is shown

in Equation (3.26).

ξ = R cosα, η = R sinα, ζ = 0 (3.25)

x = ρ cos β, y = ρ sin β, z = 0 (3.26)

The radial distance can thus be written as

r =
√
x2 − 2xR cos(α) + y2 − 2yR sin(α) +R2 + z2 (3.27)

The far-�eld velocity potential is found by integrating the expression for a source

point around the �oater with respect to the angel α. The expression becomes the

following

φF =
QR

4π

∫ 2π

0

dα√
x2 − 2xR cos(α) + y2 − 2yR sin(α) +R2 + z2

(3.28)

The integral in Equation (3.28) can be simpli�ed by introducing the angle α1 = α−
β, and use the fact that the radial distance can be written as r =

√
(ρ−R)2 + z2.

The simpli�cation leads to the following.
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3.2. HEAVE TORUS 3. THEORETICAL MODEL OF THE RESPONSE

φF =
QR

4π

∫ 2π

0

dα1√
r2 + 2ρR(1− cos(α1))

=
QR

π
√
r2 + 4ρR

K

(
2

√
ρR

r2 + 4ρR

)
(3.29)

Here K() is the Elliptic K-function de�ned in Maple. A �rst-term inner expansion

of the far-�led expression is

φFI =
Q

2π
ln(

8R

r
) (3.30)

3.2.2 Near-Field Flow Description

Figure 3.5: Near-�eld view of the cross-section of a torus. With local coordinate system
and boundary conditions for the near �led solution of the velocity potential.

Figure 3.5 is showing the near-�eld view of the torus, with a local coordinate

system. The local coordinate system has origin in the center of the circle. The

following relationship is assumed y′ = c sin(θ), z′ = c cos(θ) with θ = 0 corre-

sponding to the negative z'-axis. The draught is assumed to be equal to the radius

of the cross section, c. The cross section is split into two semicircles de�ned by

−π/2 < 0 < π/2 and π/2 < 0 < 3π/2. In heave, the two semicircles are heaving

with opposite signs. A consequence of the formulation is that the �ow will be

symmetric about the y-axis, meaning no vertical �ow at z′ = 0, thus the rigid free
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3.2. HEAVE TORUS 3. THEORETICAL MODEL OF THE RESPONSE

surface condition is satis�ed. A complete near �eld solution of the velocity can

now be expressed as

φN = η̇3
(
C ln

( r
R

)
+ A0 +

∞∑
n=1

An
cos(nθ)

rn
)

(3.31)

Here η̇3 is the heave velocity. The constants C and An, n = 0, ..∞ are determined

by matching with the far-�eld solution and by the body-boundary conditions. The

body-boundary conditions are

∂φN

∂r
|r=c =

−η̇3 cos(θ) −π/2 < θ < π/2

η̇3 cos(θ) −π < θ < −π/2 and π/2 < θ < π
(3.32)

The constant C is found by integrating the boundary condition from θ = −π to π,

and it's found to be

C = −2c/π (3.33)

The An coe�cients can be found by multiplying the body-boundary condition with

cos(nθ) and integrating from θ = −π to π the equation becomes

−nAn
π

cn+1
= −

∫ π/2

−π/2
cos(θ) cos(nθ)dθ+

∫ π/2

3π/2

cos(θ) cos(nθ) =
3 cos

(
nπ
2

)
+ cos

(
3nπ
2

)
n2 − 1

(3.34)

The right-hand side is zero for odd numbers, the non-zero coe�cients are given by

A2m = −c2m+13 cos(mπ) + cos(3mπ)

π2m(4m2 − 1)
,m = 1, .. (3.35)

Equation (3.31) can now be expressed as

24



3.2. HEAVE TORUS 3. THEORETICAL MODEL OF THE RESPONSE

φN = η̇3

(
C ln

( r
R

)
+ A0 +

∞∑
m=1

A2m
cos(2mθ)

r2m

)
(3.36)

The last constant, A0, must be found by matching the outer expansion of the near-

�led velocity potential, Equation (3.36), with the inner expansion of the far-�eld

velocity potential, Equation (3.30). Mathematical this means

φFI = φNr→∞ (3.37)

− Q

2π
ln
( r
R

)
+
Q

2π
ln(8) = η̇3C ln

( r
R

)
+ η̇3A0 (3.38)

Solving Equation (3.38) gives the value for A0 to be

A0 = −C ln 8 (3.39)

− η̇3 =
Q

2π
(3.40)

3.2.3 Heave Added Mass

The added mass in heave is found by considering forced harmonic motion of the

structure. This will lead to a force on the structure, where the linear part is written

as

F3 = −A33η̈3 (3.41)

The force is obtained by integrate the linear dynamic pressure p = −ρ∂φN/∂t
multiplied with minus the z'-component cos(θ) over the submerged hull surface.

Hence it follows that added mass in heave A33 is.
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A33 = ρ2πRc

∫ π/2

−π/2

(
C ln

( c
R

)
+ A0 +

∞∑
m=1

A2m
cos(2mθ)

c2m

)
cos(θ)dθ

=
4M

π

[
2

π
ln(

8R

c
) +

∞∑
m=1

(3 cos(mπ) + cos(3mπ) cos(mπ)

π2m(4m2 − 1)2︸ ︷︷ ︸
0.07238725793

]
(3.42)

Here M = ρπ2Rc2 is the mass of the displaced water by the torus. The two-

dimensional added mass in heave can be found by

a33 =
A33

2πR
(3.43)

3.2.4 Vertical Excitation Force

Due to linearity, the superposition principle is valid and the velocity potential, φ,

can be decomposed in terms of the fundamental physical e�ects involved in the

�uid-body interaction (Greco, 2016). The vertical wave excitation is divided into

a Froude-Krilo� part and a di�raction part. The Froude-Krilo� force is due to

the undisturbed dynamic pressure from the incident waves. The expression for the

dynamic pressure is

pdyn = −ρ∂φ0

∂t
= iρgζa exp(νz + iνx− iωt) , where x = R cos(β) (3.44)

Using the identity found in Abramowitz and Stegun (1964) we can write.

exp(iνR cos(β)) = J0(νR) +
∞∑
m=1

2imJm(νR) cosmβ (3.45)

Here J0(νR) and Jn(νR) are Bessel functions of the �rst kind with order 0 and

n respectively. The Froude-Krilo� force are obtained by integrating the incident
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wave pressure along the mean wetted surface.

fFK3 = −
∫
S0,B

pdynη3dS = −
∫ π/2

−π/2
pdyn cos(θ)cdθ (3.46)

fFK3 = ρgζai[J0(νR) +
∞∑
m=1

2imJm(νR) cosmβ]bw exp(−iωt) (3.47)

Here bw = 2c. The presence of the body in the �uid results in di�raction of the

incident wave system (J. N. Newman, 1977a). The di�raction problem involves

solving a boundary value problem with forced oscillations with minus the incident

vertical velocity along the �oater. As a consequence the di�raction force per unit

length are

fD3 = aza33 + ub33 (3.48)

Here az and u are the vertical particle acceleration and velocity of the incident

waves. Due to the assumption that the wave length are large relative to the cross-

sectional radius means that the damping contribution b33 can be neglected. The

vertical particle acceleration can be found by Equation (3.49).

az =
∂2φ0

∂z∂t
= −iω2ζa exp(νzm + iνx− iωt) (3.49)

Here zm is a weighted z-coordinate of the �oater and will be set equal to zero. This

approximation holds for long waves since the variation of the vertical acceleration

with depth will be smaller the longer the waves are. The vertical di�raction force

per unit length then becomes

fD3 = −iω2ζa[J0(νR)a33 +
∞∑
m=1

2imJm(νR)am33 cos(mβ)] exp(−iωt) (3.50)

Here a33 is given by Equation (3.43). am33 is the 2D added mass for the di�erent
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modes.

3.2.5 Vertical Motions

The vertical motion of the torus is assumed to follow the beam equation

m
∂2w

∂t2
+ ρgbw + EI

∂4w

∂s4
= fadded mass3 + fwave excit3 (3.51)

Here m is the torus mass per unit length, EI is the bending sti�ness and the

di�erentiation ∂/∂s is along the torus. fadded mass3 is the vertical added mass force

per unit length of the torus, and fwave excit3 is the vertical wave excitation force on

the �oater per unit length. Further ρ is the mass density of water. The vertical

motion of the torus, w is expressed as the following Fourier series

w = a0(t) +
∞∑
n=1

an(t) cos(nβ) (3.52)

If rigid-body motion are considered, a0(t) and a1(t) represent heave and pitch. By

substitute Equation (3.52) into equation (3.51), and use that ∂/∂s = R−1∂/∂β.

The resulting equation are then multiplied successively by cos(nβ), n = 0,1,.. and

integrate from β = 0 to 2π. Utilization of the property of orthogonal functions,

shown in Equation (3.53), the modal di�erential equation for the �rst mode, (n =

0, heave), are shown in Equation (3.54).

∫ 2π

0

cosnβ cosmβdβ


= 0, n 6= m

= 2π, n = m = 0

= π, n = m = 1, 2, ..

(3.53)

(
m+ a33

)d2η3
dt2

+ ρgbwη3 =
(
ρgbw − ω2a33

)
ζaJ0(νR)ie−iωt (3.54)
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3.3 The Heave Equation for the Floating Solar Is-

land

Equation (3.54) is per unit length of the torus. So in order to add Equation (3.22)

and (3.54), the terms in Equation (3.54) must be multiplied with 2πR in order

to get the same dimensions. This leads to the following di�erential equation to

describe the heave motion for the solar island.

d2η3
dt2

(
2πR(m+ a33) +M

)
+
(

2πRρgbw +
Abγp0
hb

)
η3 =

γp0
hb

iζaqe
−iωt

+ 2πR
(
ρgbw − ω2a33

)
ζaJ0(νR)ie−iωt

(3.55)

In order to solve equation (3.55) the solution of η3 is assumed to be harmonic with

the same circular frequency ω as the incident waves i.e. steady state.

η3 = η3ae
−iωt (3.56)

Equation (3.56) are substituted into Equation (3.55) and solved with respect to

η3a. The expression becomes

η3a =
2πR

(
ρgbw − ω2a33

)
ζaJ0(νR)i+ γp0

hb
iζaq

−ω2
(

2πR(m+ a33) +M
)

+
(

2πRρgbw + Abγp0
hb

) (3.57)

The linear transfer function for the heave motion is obtained by taking the absolute

value of η3a/ζa. The transfer functions, giving the normalized response amplitude

for each wave circular frequency are

∣∣∣∣∣η3aζa
∣∣∣∣∣ =

∣∣∣∣∣ 2πR
(
ρgbw − ω2a

(0)
33

)
J0(νR)i+ γp0

hb
iq

−ω2
(

2πR(m+ a
(0)
33 ) +M

)
+
(

2πRρgbw + Abγp0
hb

)∣∣∣∣∣ (3.58)
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The linear transfer function for the torus can be found by substitute Equation

(3.56) into Equation (3.54). The equation is solved with respect to η3a and divided

by the wave amplitude. The transfer function in heave for the torus, giving the

normalized response amplitude for each wave circular frequency are

∣∣∣∣∣η3aζa
∣∣∣∣∣ =

∣∣∣∣∣
(
ρgbw − ω2a

(0)
33

)
J0(νR)i

−ω2
(
m+ a

(0)
33

)
+ ρgbw

∣∣∣∣∣ (3.59)

3.4 The Pitch Equation for the Torus

The pitch motion of the structure can be written as

a1 = η5R (3.60)

The model di�erential equation for the pitch motion are found by use of Equation

(3.51), with n = 1 pitch. Hence the equation becomes

(
m+ a

(1)
33

)d2a1
dt2

+ (ρgbw + n4EI

R4
)a1 =

(
ρgbw − ω2a

(1)
33

)
ζa2J1(νR)ie−iωt (3.61)

Here a
(1)
33 is the generalized added mass coe�cient for the pitch motion. The

generalized added mass coe�cient is found in a similar procedure as described for

the heave motion. The vertical velocity of the torus can be expressed as

ẇ = ȧ0 +
∞∑
n=1

ȧn cos(nβ) (3.62)

The general far �led velocity potential associated with the general mode cos(nβ)

can now be expressed as
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φFn =
QR

4π

∫ 2π

0

cos(nα)dα√
r2 + 2aR[1− cos(α− β)]

(3.63)

Introducing α1 = α− β the expression can be rewritten as the following,

φFn =
QR

4π
cos(nβ)

∫ 2π

0

cosnα1dα1√
r2 + 2aR[1− cos(α1)]

(3.64)

A �rst term inner expansion of φFI will lead to the following expression for di�erent

n-values.

φFI =
Q cos(nβ)

2π

[
−Kn + ln(

8R

r
)
]

(3.65)

Where Kn is de�ned for any n as

Kn =
1

2
√

2

∫ 2π

0

1− cos(nx)dx√
1− cos(x)

(3.66)

Then K1 = 2. The general near-�eld expression can now be written as

φN = ȧn cos(nβ)
(
C ln

( r
R

)
+ Cn + A0 +

∞∑
n=1

An
cos(nθ)

rn
)

(3.67)

Here ȧ3 cos(nβ) are the vertical velocity. The constants C and An, n = 0, ..∞
are determined by matching with the far-�eld solution and by the body-boundary

conditions. The body-boundary conditions are

∂φN

∂r
|r=c =

−ȧn cos(nβ) cos(θ) −π/2 < θ < π/2

ȧn cos(nβ) cos(θ) −π < θ < −π/2 and π/2 < θ < π
(3.68)

The constant A0 is found in Equation (3.39). C is the value in Equation (3.33)

and An is found in Equation (3.35). Cn is determined by matched asymptotic
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expansion of the general far- and near-�led velocity potential. Mathematical this

means

φFnI = φNnr→∞ (3.69)

Q

2π
cos(nβ)

[
ln 8− ln(

r

R
−Kn)

]
= ȧn cos(nβ)

[
Cn −

2c

π
ln(

r

R
)
]

(3.70)

Solving the equation with respect to ȧn and Cn, the general velocity becomes

ȧn = Q/4c and

Cn =
2c

π
(ln 8−Kn) (3.71)

The expression for the near �eld potential for a general vertical velocity ȧn cos(nβ)

on the surface of the torus becomes

φNn = ȧn cos(nβ)

{
2c

π

[
ln(

(8R)

c
)−Kn

]
−
∞∑
m=1

A2m
cos(2mθ)

c2m

}
(3.72)

The generalized added mass for the vertical mode can now be found in the same

way as described above

a
(n)
33 =− ρ

∫ π/2

−π/2

[
2c

π

{
ln(

8R

c
−Kn)

}
− c

∞∑
m=1

3 cos(mπ) + cos(3mπ)

2πm(4m2 − 1)
cos(2mθ)

]
cos(θ)cdθ

(3.73)

Solving the integral gives the following result
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a
(n)
33 = 2ρc2

{
2

π

[
ln(

8R

c
)−Kn

]
+ 0.07238725793

}
(3.74)

The linear transfer function for the pitch motion of the torus can be found by

substitute a1 = a1a exp(−iωt) into Equation (3.61). The equation is solved with

respect to a1 and divided by the wave amplitude.

∣∣∣∣∣a1aζa
∣∣∣∣∣ =

∣∣∣∣∣
(
ρgbw − ω2a

(1)
33

)
J1(νR)2i2

−ω2
(
m+ a

(1)
33

)
+ ρgbw + EI

R4

∣∣∣∣∣ (3.75)

The membrane covering the torus will give a contribution to the force. The force

contribution is calculated in the same manner as for heave. The di�erence is that

the integral in Equation (3.14) is multiplied with the arm r cos(θ)

dVw
dt

= −ωζae−iωt
∫ 2π

0

∫ R

0

eiνrcos(θ)r2 cos(θ)drdθ (3.76)

The linear transfer function for the pitch motion of the island can then be written

as

∣∣∣∣∣a1aζa
∣∣∣∣∣ =

∣∣∣∣∣
[(
ρgbw − ω2a

(1)
33

)
J1(νR)2i2

]
2πR + γp0

hb
Vw[

− ω2
(
m+ a

(1)
33

)
+ ρgbw + EI

R4

]
2πR

∣∣∣∣∣ (3.77)

3.5 Horizontal Motions of the Torus

The horizontal acceleration of the torus can be found by use of Newton's second

law

Mη̈1 = Fwave exc + Fmooring (3.78)

Here η̈1 is the acceleration in surge. Fwave exc is the lateral wave excitation loads
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on the �oater. Fmooring is the mooring force. The radial wave excitation force per

unit length on the �oater can found by

fwave exc1 = (ρA+ a11)aβ (3.79)

Here A = 0.5πc2, a11 is the two-dimensional added mass for the lateral motion.

Use of strip theory the two-dimensional added mass for lateral motions can be

expressed as (Odd M. Faltinsen, 2012)

a11 = ρ
π

2
c2 (3.80)

aβ is the radial incident wave acceleration in the radial direction of the �oater, and

can be found derivation of the incident wave potential given in Equation (3.1).

aβ =
∂2φ

∂t∂x
cos(β) = ω2ζa exp(iνx− iωt) cos(β) (3.81)

By use of the relation shown in Equation (3.45) the radial wave excitation force

per unit length can be written as

fwave exc1 =(ρA+ a11)ω
2ζa exp(−iωt)

·
[
J0(νR) cos(β) +

∞∑
m=1

imJm(νR){cos[(m− 1)β] + cos[(m+ 1)β]}
]

(3.82)

The lateral wave excitation force can then be found by

f1 =

∫ 2π

0

fwave exc1 cos(β)dβ (3.83)

Solving the integral leads to the following force per unit length of the torus
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f1 = π2a11ω
2ζa
[
(J2(νR)− J0(νR)

]
exp(−iωt) (3.84)

The force from the wave excitation are then found by multiplying Equation (3.84)

with 2πR. The mooring force will create a restoring term that is dependent on

the spring sti�ness for the mooring lines. The restoring term is proportional with

the surge motion. Equation (3.78) can now be written as

(M + A11)η̈1 − Cη1 = F1 (3.85)

Here C is the equivalent sti�ness, keq, in x-direction from all the of moorings used

in the experiment. The assumption of steady state leads to the �owing amplitude

of the surge motion

∣∣∣∣∣η1a
∣∣∣∣∣ =

∣∣∣∣∣ F1

ω2(M + A11) + C

∣∣∣∣∣ (3.86)

The force in the mooring lines can then be estimated by

F̂ = ksη1a (3.87)

Here ks is the spring sti�ness in x-direction used in the experiment. The natural

frequency in surge can be found by

ω0 =

√
k

m
=

√
keq

M + A11

(3.88)
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Chapter 4

Model Tests

Investigation of the behavior for the solar island in waves and current has been

done through model testing. One elastic and one rigid model were made of the

solar island with Froude scaling 1:50, the main dimensions for the model are given

in Table 4.1. In addition, regular wave test of the elastic torus with and without

skirt and membrane were performed.

The models were tested at the student model tank at NTNU. The tank is 25 m

long, 2.5 m wide and 1.2 m deep. It is equipped with a towing carriage, a �ap-

piston wave maker and a diagonal damping beach. The current was simulated by

towing the model with constant forward speed.

The sampling frequency was 100 Hz, all sensors were calibrated before measure-

ment.

Description Mod scale �exible F scale �exible Mod scale Rigid F scale rigid
Torus diameter 1 m 50 m 1 m 50 m
Cross-sectional diameter 31 mm 1.55 m 27 mm 1.35 m
Skirt length 7 cm 3.5 m 7 cm 3.5 m
Weighted ballast 6.2 g 794 kg 6.2 g 794 kg
PV 145 g 18578 kg 145 g 18578 kg
Spring sti�ness 17 N/m - 17 N/m -
Pre-tension 2 N - 2 N -

Table 4.1: Dimensions in the model tests. Froude scale 1:50.
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4.1 Experimental Set-up

The experimental set-up of the model are illustrated in Figure 4.1. The exact

same setup is used for both models. The model was attached to the carriage in

the middle of the tank by means of four identical nearly horizontal mooring lines,

at position 45, 135, 225 and 315 degrees from the center of the circle. Springs

with sti�ness ks = 17 N/m, with a pre-tension Tp = 2 N, were used to connect

the model to the carriage. Pre-tension is needed to avoid slack due to horizontal

motion when testing in waves and current.

Vertical accelerations were measured by accelerometers at eight di�erent positions

with an equal interval of 45 degrees. The accelerometers will be refereed from now

on by acc fore, acc aft, acc starboard, acc portside, acc 45, acc 135, acc 225 and

acc 315, correspond to the position 0, 90, 180, 270, 45, 135, 225 and 315 on the

torus.

The wave elevation was measured six di�erent places around the model. Three

were placed in front of the model, two on both sides of the model and the last were

placed behind the model. A snapshot of the experimental set-up for the model is

shown in Figure 4.2.

Figure 4.1: Experimental set-up from a top view.
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Figure 4.2: Snapshot of the experimental set-up from a top view. In the student model
tank at NTNU. The tank is 25m long, 2.5m wide and 1.2m deep. The model was
attached with four horizontal mooring lines. The vertical acceleration was measured by
accelerometers at eight di�erent positions. The wave elevation was measured six di�erent
places around the model.

4.2 Test Conditions

Waves used in the experiment were; incident regular waves with prescribed wave

steepness H/λ= 1/50, 1/40, 1/30 and 1/20 propagating along the x-axis. The

wave period T = 2π/ω varied within 4.2-11.4 s with a step of 0.35 s. Regular

waves with current equal to 1 m/s. Irregular wave with constant Tp = 12 s and Hs

varying from 1-8 m with a step of 1 m and irregular waves for the areas given in

Table 2.2. All the values are given in full scale and are scaled according to Table

2.3. Table 4.2 shows the test condition for the di�erent models.

38



4.3. PRESSURE MEASUREMENT 4. MODEL TESTS

Elastic
Model

Rigid
Model

Elastic Torus
w/membrane

Elastic
Torus

Reg wave = 1/30 x x x x
Reg wave = 1/50-1/20 x - - -
Current and wave x x - -
Irr West-Africa x x - -
Irr varying Hs x x - -

Table 4.2: Test matrix for the di�erent models.

4.3 Pressure Measurement

There was no measurement of the actual pressure inside the air cushion during the

experiment, and the exact pressure is therefore not known. When the pressure is

mention in the result it is referred to the output pressure from the compressor.

The pressure was read visual from a gauge meter shown in Figure 4.3. During

the test, the pressure was between the value 0.01-0.03 bar. The cushion plenum

height can be found for a given pressure by Equation (3.9). Using the pressure

values read from the gauge meter, will lead to a cushion plenum height between

0.1-0.3 m. This is not the case since this will mean that the hole model would be

out of water. The actual pressure inside the air cushion is therefore expected to

be lower than the output pressure.
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Figure 4.3: The output pressure from the compressor during the experiment.

4.4 Analysis of the Experimental Results

For the regular wave test the result are taken when steady state is reached. This

is done to analyze the results in the frequency domain. In transient conditions the

problem must be solved in time (Greco, 2016). Transient e�ects will exponentially

decay with the time (Li, 2017), an example of steady state is shown in Figure

4.4. The data in the steady state region is �ltered to remove noise from the

measurement and obtain the desired result.

The amplitude of �rst and second harmonics for the instrumentation are found

by a band-pass �ltering of the process, the lower and upper cut-o� frequencies

are 0.95/T and 1.05/T , 1, 95/T and 2.05/T . Where T is the wave period for the

regular wave. An example of the �ltering is shown in appendix C.

The vertical motion is found by integrating the measured accelerations twice in

time

w(t) =

∫ t

0

∫ t̃

0

ẅ(t′)dt′dt̃ (4.1)
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Bw
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=s
2
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Raw data taken from the experiment

Acc Fore
steady state

Figure 4.4: Raw data of the vertical acceleration at the front on the elastic model and
an example for a steady-state window.

4.4.1 Modal Theory

The coe�cient for heave and pitch, a0 and a1 are found experimental from a

modal analysis of the vertical response. For a linear system, the total periodic

response can be determined by superposition of the response from each single

component (Larsen & Norges teknisk-naturvitenskapelige universitet Institutt for

marin, 2012). This means that the motion can be described by the following

equation.

w(z, t) =
N∑
n=0

an(t)Ψn(z) (4.2)

Here Ψn(z) is the mode n, an the time varying scaling of Ψn(x). Using the as-

sumption made in Chapter 3, the mode can be written as cos(nβ). The vertical

motion around the �oater were measured at eight di�erent places, this will lead to
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the following equation.

w1(t) =
N∑
n=0

an(t) cos(nβ1)

...

w8(t) =
N∑
n=0

an(t) cos(nβ8)

(4.3)

Here wm is the measured vertical motion given from the experiment, βm corre-

sponds to the placement of the accelerometers. We are only interested in the �rst

two modes, n = 0 heave, and n = 1 pitch. The following equation system arises


1 1

1
√
2
2

...
...

1
√
2
2


︸ ︷︷ ︸

A

[
a0(t)

a1(t)

]
︸ ︷︷ ︸

a

=


w1(t)

w2(t)
...

w8(t)


︸ ︷︷ ︸

b

(4.4)

The solution to Equation (4.4) can be found by

a(t) = [(ATA)−1AT ]b(t) (4.5)
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4.4.2 Irregular Waves

The spectral analysis is done by use of Fast Fourier Transform. From the input

wave spectrum and measured response spectrum, the response amplitude operator

|H(ω)|, can be determined by (Steen, 2014)

|H(ω)|2 =
Syy(ω)

Sxx(ω)
(4.6)

Here Sxx(ω) is the input spectrum and Syy(ω) is the measured response spectrum.

Using Equation (4.6) no phase information between the input and response is

obtained.
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Chapter 5

Results and Discussion

The regular wave test for the elastic model were repeated eight times. For the rigid

model and the elastic torus, the test was only repeated three times due to limiting

time. Raw data for the elastic model in regular waves are shown in appendix B.

The result for the elastic torus covered with membrane are shown in appendix A.

5.1 Visual Observation from the Experiment

Together with the master thesis report a movie is attached. The movie contains;

� Comparison between the elastic and rigid model in current at 1 m/s and in

incident regular waves with steepness 1/50. Wave period 4.20 s, 5.95 s, 7.70 s

and 9.45 s.

� A front view of the elastic model in regular waves with steepness 1/20 and

wave period 10.00 s.

� A rear view of the elastic model in regular waves with steepness 1/20 and

wave period 12.10 s.

� A front view comparison between the elastic and rigid model in regular waves

with steepness 1/20 and wave period 12.10 s.
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� A rear view of the elastic model in irregular sea with Hs = 5.0 m and Tp =

12.0 s

The global behavior for the rigid and elastic model is di�erent. The elastic model

tends to follow the waves, while the rigid model moves as a single unit. Non-linear

phenomena such as out of water and over-topping of the waves is seen in the movie

in regular waves with steepness = 1/20 and period 12.10 s. For both models, the

phenomena lead to �ooding of the model. This problem needs to be addressed in

the design processes.

The �ooding takes longer time for the rigid model, this can be due to the pressure

underneath the membrane. For the elastic model, it is seen that the pressure is

exposing the skirt more than for the rigid model. The skirt exposure may be the

reason why the �ooding happens faster for the elastic model.

Over-topping of the waves is also happening in irregular waves for Hs = 5 m and

Tp = 12 s. In this case �ooding of the model didn't occurred since the elastic model

was able to drain of the water with the help of the overpressure.

Figure 5.1 and 5.2 shows that the applied overpressure has a signi�cant in�uence

on the static stability of the solar island in calm water. For zero output pressure

for the compressor (left picture) the model is symmetrical in the water line. The

pressure causes the model to be lifted and the skirt gets exposed. The lifting is not

happening symmetrical around the �oater. When the output pressure is 0.1 bar

almost the entire skirt is exposed. Figure 5.1 and 5.2 shows that the in�uence of

the pressure for the rigid and elastic model is quite di�erent, the elastic model

is more locally deformed. Without the pressure, the membrane for the elastic

model is not strong enough to carry the weight of the PV panels, and in waves the

membrane will stick to the waves.
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Figure 5.1: Picture of the elastic model in calm water with di�erent overpressure. From
left P = 0 bar, P = 0.01 bar and P = 0.1 bar. The value of the pressure is taken from the
output pressure to the compressor.

Figure 5.2: Picture of the rigid model in calm water with di�erent overpressure. From
left P 0 bar and P = 0.1 bar. The value of the pressure is taken from the output pressure
to the compressor.

Figure 5.3 shows snapshots of the elastic model in regular waves with steepness

= 1/20 and wave period 10.0 s, at a front view. The �gure shows that almost the

entire skirt is exposed to air. Out of water can be critical as it can lead to failure.

It can also lead to large local forces and should be considered when fatigue life of

the solar island is designed.

Figure 5.4 shows snapshot of the elastic model in regular waves with steepness =

1/20 and wave period T=12.1 s, at a rear view. In this wave condition, the aft of

the torus gets under water and the water starts to �ood the membrane. This is

critical since this process will lead to that the island will be completely �ooded.

Figure 5.5 shows the rear view of the �oater after the island has been �ooded.
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Figure 5.3: Snapshot from the �lm of the elastic model in regular waves with steepness
= 1/20 and a wave period at T = 10.0 s, front view.

Figure 5.4: Snapshot from the �lm of the elastic model in regular waves with steepness
= 1/20 and a wave period at T = 12.1 s, rear view.

47



5.2. RESPONSE AMPLITUDE OPERATOR IN HEAVE 5. RESULTS AND DISCUSSION

Figure 5.5: Rear view of the elastic model that has been �ooded. In regular waves with
steepness = 1/20 and a wave period at T = 12.1 s.

5.2 Response Amplitude Operator in Heave

Figure 5.6 shows the experimental results in heave for regular waves with steepness

1/30, compared with the numerical model. The experimental results are from the

elastic model with pressure, the rigid model with and without pressure and for the

elastic torus. The vertical motion is then divided by the wave amplitude measured

by the wave probes. The numerical models are calculated by use of Equation (3.58)

and (3.59). In the �gure, the experimental result is presented as error bares, where

the height of the bars is two times the estimated standard deviation.

Figure 5.6 shows satisfactory agreement between the experimental and numerical

results. The results show that the membrane is in�uencing the vertical response.

For low wave frequencies, the heave response is larger with the membrane, for

higher frequencies the response is considerably reduced. This is the same result

found in Pinkster and Fauzi (1997).

There are some di�erences in the vertical response for the models. The di�erence

can be due to bending sti�ness, but since the numerical model don't account for
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Figure 5.6: RAO in heave for the experimental result, for the rigid model with and with-
out overpressure, the elastic model and the elastic torus. The height of the experimental
error bars is two times the estimated standard deviation. Theory for the torus is from
Equation (3.59). The theory for the solar island is from Equation (3.58).

the sti�ness. It is more likely that the di�erence can be due to pressure underneath

the air cushion. Like a spring where the force is F = kx, the pressure will lead to

a sti�ness inside the air cushion. Larger pressure will lead to a higher sti�ness i.e.

more of the wave gets transmitted to the membrane.

In Figure 5.6 the pressure used in the numerical calculations is 20 Pa, this value

were taken since it was the best �t. Figure 5.7 shows a sensitive study on the

pressure used in the numerical model for the vertical response. The pressure is

varying from 0 Pa-25 000 Pa and p → ∞. 25 000 Pa = 0.025 bar which is the

middle value for the output pressure from the compressor. The numerical results

show that increasing the pressure will lead to a reduction in the response for high

wave frequencies. For low wave frequencies, the heave response gets larger. The

di�erence in the result for p = 148 Pa and p → ∞ is small, due to the terms
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involving the pressure becomes large compared with the other terms.

The rigid model with pressure is closer to the numerical result with pressure equal

148 Pa than 20 Pa. This can be an indication that the pressure for the rigid

model was higher compared with the pressure for the elastic model. The displaced

water inside the air cushion can be found by Equation (3.9). For pressure 148 Pa

the displaced water is 0.015 m. The displacement is close to the cross-sectional

diameter of the model and can be feasible.
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Figure 5.7: A sensitive study of the in�uence of the pressure used in the numerical model
compared with the experimental results for the rigid model with and without overpressure
and the elastic model.

5.3 Response Amplitude Operator in Pitch

Figure 5.8 shows the experimental result for the elastic torus in regular waves with

steepness 1/30, compared with the numerical model for the torus. The numerical
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model are calculated by use of Equation (3.75) with two di�erent sti�ness, EI =

0.46 Nm2 elastic and EI = 23.74 Nm2 rigid. In the �gure, the result is presented

as error bars, where the height of the bars is two times the estimated standard

deviation.
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Figure 5.8: RAO in pitch for the experimental result for the elastic torus. The result is
compared against Equation (3.75). The equation is calculated with a bending sti�ness,
EI = 0.46Nm2 elastic, and EI = 23.74Nm2 rigid. The height of the experimental error
bars is two times the estimated standard deviation.

Figure 5.8 shows that the experimental and numerical results has the same trend.

The experimental results are found to be a little lower than the numerical result

which indicate that the elastic torus has higher sti�ness than used in the numerical

model. For the highest wave frequency, the numerical model is lower than the

experimental result.

Figure 5.9 shows the experimental results in pitch for regular waves with steep-

ness 1/30, compared with the numerical model for the torus (solid lines) and the

numerical model for the island (dotted lines). The experimental results are from
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the elastic model, the rigid model with and without pressure and the elastic torus.

The numerical models are calculated by use of Equation (3.75) and (3.77) with

pressure equal to 5 Pa.
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Figure 5.9: RAO in pitch for the experimental result, for the rigid model with and without
overpressure, the �exible model and only �oater. The result is compared against the
theory for the torus(solid), Equation (3.75) and the theory including the e�ect of the air
cushion(dotted line), Equation (3.77). The equation is calculated with a bending sti�ness,
EI = 0.46Nm2 elastic, and EI = 23.74Nm2 rigid. The height of the experimental error
bars is two times the estimated standard deviation.

The experimental result in Figure 5.9 shows that the pitch motion for the elastic

and rigid model is similar. While the numerical result shows that there is a dif-

ference between the rigid and elastic model. The experimental result for the rigid

model without pressure are in agreement with the numerical result. The numerical

and experimental result shows that the membrane will increase the pitch motion.

The result for the rigid model with pressure does not have the same trend as the

two other results. This can be due to the pressure underneath the air cushion.
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5.4 Acceleration from the Regular Wave Test

In the �gures that follows the mean values of the steady state amplitude of the

accelerations are plotted against the non-dimensional wave number νc where ν =
ω2

g
and c is the cross-sectional radius. The harmonic acceleration is then made

non-dimensional by R/ζag, this is done in order to compare the magnitudes of the

harmonic terms.

5.4.1 First Harmonic Acceleration

Figure 5.10 and 5.11 shows the �rst harmonic of the vertical acceleration for the

elastic model. Figure 5.13 and 5.12 shows the �rst harmonic acceleration for the

rigid model without overpressure. Figure 5.14 and 5.15 shows the �rst harmonic

acceleration for the rigid model with pressure. Figure 5.16 shows the �rst harmonic

acceleration for the elastic torus.
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Figure 5.10: The elastic model non-dimensional amplitudes of �rst harmonic vertical
acceleration versus the non-dimensional wave number νc for regular waves with steepness
1/50, 1/40, 1/30 and 1/20. At front, left, right and aft position on the torus.
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Figure 5.11: The elastic model non-dimensional amplitudes of �rst harmonic vertical
acceleration versus non-dimensional wave number νc for regular waves with steepness
1/50, 1/40, 1/30 and 1/20. At the position 45 ,135, 225 and 315.
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Figure 5.12: The rigid model without pressure, non-dimensional amplitudes of �rst har-
monic vertical acceleration versus non-dimensional wave number νc for regular waves
with steepness 1/30. At front, left, right and aft position on the torus.
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Figure 5.13: The rigid model without pressure, non-dimensional amplitudes of �rst har-
monic vertical acceleration versus non-dimensional wave number νc for regular waves
with steepness 1/30. At the position 45, 135, 225 and 315.
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Figure 5.14: The rigid model with pressure, non-dimensional amplitudes of �rst har-
monic vertical acceleration versus non-dimensional wave number νc for regular waves
with steepness 1/30. At the position front, aft, right and left position on the torus.
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Figure 5.15: The rigid model with pressure, non-dimensional amplitudes of �rst har-
monic vertical acceleration versus non-dimensional wave number νc for regular waves
with steepness 1/30. At the position 45, 135, 225 and 315.
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Figure 5.16: The elastic torus, non-dimensional amplitudes of �rst harmonic vertical
acceleration versus non-dimensional wave number νc for wave steepnesses 1/30. At front
,left, right and aft position on the torus.

The amplitude of �rst harmonic vertical acceleration for the elastic torus, Figure

5.16, are in good agreement with the experimental results in Li et al. (2014). For

the lowest wave frequencies, the non-dimensional amplitude of the acceleration is

close to one for all accelerometers i.e. the model is following the wave. For higher

wave frequencies, the non-dimensional amplitude of the acceleration becomes larger

front and aft at the model. The results for the elastic torus shows symmetrical

behavior for the accelerations.

By comparing the experimental result for the vertical acceleration for the elastic

model and elastic torus, Figure 5.10 and 5.16. The experimental results show that

the membrane will increase the value of the non-dimensional amplitudes. The

acceleration is still largest front and aft at the model.

Figure 5.10 and 5.11 shows that the acceleration are linear dependent on the in-

coming regular waves. The �gure shows that the accelerations are not symmetrical

around the torus as found from the other experimental results. This is probably

due to the applied overpressure that makes the model unsymmetrical in the water

line, as illustrated in �gure 5.1, and the fact that the elastic model can follow the
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incoming waves.

Figure 5.13, 5.14, 5.12 and 5.15 shows the amplitude of the vertical acceleration

for the rigid model with and without pressure. The experimental results show that

the vertical acceleration is larger compared with the elastic torus. Comparison of

the experimental results shows that the amplitude of accelerations is larger for the

rigid model with pressure than without. The result indicates that the pressure will

increase the vertical acceleration. The amplitude for the rigid model with pressure

is higher than the amplitude for the elastic model, except for the highest wave

frequency. This can also be an indication that the pressure under the air cushion

for the rigid model was higher compared with the elastic model.

5.4.2 Second Harmonic Acceleration

Figure 5.17 and 5.18 shows the second harmonic of the vertical acceleration for

the elastic model. Figure 5.19 and 5.20 shows the second harmonic of vertical

acceleration for the rigid model, with and without pressure.
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Figure 5.17: The elastic model non-dimensional amplitudes of second harmonic vertical
acceleration versus non-dimensional wave number νc for regular waves with steepnesses
1/50, 1/40, 1/30 and 1/20. At front ,aft, right and left position on the torus.
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Figure 5.18: The elastic model non-dimensional amplitudes of second harmonic vertical
acceleration versus non-dimensional wave number νc for regular waves with steepnesses
1/50, 1/40, 1/30 and 1/20. At the position 45 ,135, 225 and 315.
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Figure 5.19: The rigid model with pressure, non-dimensional amplitudes of second har-
monic vertical acceleration versus non-dimensional wave number νc for regular waves
with steepness 1/30.
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Figure 5.20: The rigid model without pressure, non-dimensional amplitudes of second
harmonic vertical acceleration versus non-dimensional wave number νc for regular waves
with steepness 1/30.

From the �gures 5.20, 5.19, 5.18 and 5.17 it can be seen that the second harmonic

acceleration matter. The accelerations are higher for the elastic model compared

with the rigid model with and without pressure. Higher order harmonics of the

wave loads can be signi�cant when resonance oscillations are excited and should

be taken into account when fatigue life of the solar island is designed (Li, 2017).

5.5 Wave Probes

Figure 5.21 show the experimental results for the six wave probes used in the

experiment, the result are compared with the theoretical wave amplitude. The

wave amplitudes are calculated as the sum of �rst and second harmonic. The

results are plotted against the non-dimensional wave number.

Figure 5.21 is showing reasonable agreement between the theory and measured

wave amplitudes. The �gure shows that the wave generation of the structure is

small, since the measured wave elevation around the model is the same. This

is as expected since the cross-sectional is small compared to the incoming waves

λ/D > 5. Therefore, the waves generated by the wave-body interaction are small.
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Figure 5.21: Experimental result for the wave probes for the combined �rst and second
harmonic amplitude of the wave elevation for regular waves with steepness 1/30. The
result are plotted against the theoretical values for the wave amplitude.

Figure 5.22 compares the �rst and second harmonic compared to the theory de-

scribed in Chapter 2. The �gure is showing reasonable agreement between theory

and experimental result. In the second harmonic amplitude of the wave elevation

parasitic waves can been seen. These are not wanted and can pollute the result.

63



5.6. MOORING FORCE 5. RESULTS AND DISCUSSION

0.4 0.6 0.8 1 1.2 1.4 1.6
Wave period [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

W
av

e
el
ev

at
io

n
[m

]

Second order Stoke vs -rst and sceond wave harmonic, H=6 = 1=30

Stoke
First
Second
Wave elve
Wave first
Wave second

Figure 5.22: First and second harmonic amplitude of the wave elevation fro regular waves
with steepness = 1/30. The experimental results are plotted against the theoretical values
calculated from Equation (2.1) and (2.3).

5.6 Mooring Force from the Regular Wave Test

The mooring force were measured at four di�erent location on the torus, 45(front),

135(aft), 225(aft) and 315(front). The value of the force are plotted against the

non-dimensional wave number νc. Figure 5.23 shows the amplitude of the force

for the elastic model. Figure 5.25 shows the amplitude of the force for the rigid

model without pressure and Figure 5.24 for the rigid model with pressure. Figure

5.26 shows the amplitude of the force for the elastic torus and Figure 5.27 shows

the amplitude of the force for the elastic torus covered with a membrane.
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Figure 5.23: Amplitude of the force for the elastic model in the four moorings obtain
from the experiment for regular waves with di�erent wave steepness.
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Figure 5.24: Amplitude of the force for the rigid model with pressure in the four mooring
lines in regular waves with steepness 1/30.
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Figure 5.25: Amplitude of the force for the rigid model without pressure in the four
mooring lines in regular waves with steepness 1/30.
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Figure 5.26: Amplitude of the force for the elastic torus in the four mooring lines in
regular waves with steepness 1/30.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
8c

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
or

ce
[N

]

First Harmonic Force H=6 = 1=30 Elastic Torus with Membrane

F45 (front)
F135 (aft)
F225 (aft)
F315 (front)

Figure 5.27: Amplitude of the force for the elastic torus with membrane in the four
mooring lines in regular waves with steepness 1/30.
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Figure 5.28: The average amplitude of the force from the four mooring lines, for the rigid
model with and without overpressure, the elastic model, the elastic torus and the elastic
torus covered with membrane. For regular waves with steepness 1/30. The experimental
results are plotted against the estimated force in the mooring lines. The height of the
experimental error bars is two times the estimated standard deviation.

Figure 5.23 shows that the amplitude of the mooring force for the elastic model is

increasing with the wave steepness. The experimental result for the mooring force

for the rigid model without pressure and the elastic model, Figure 5.25 and 5.23,

are very similar. Both result show that the amplitude of the force is close to zero

for the non-dimensional wave number νc = 0.06 and νc = 0.15, which indicates

that there is a cancellation of the vertical motion around these wave frequencies.

The experimental result for the rigid model with pressure, Figure 5.24, shows

that the amplitude of the force is not zero for the non-dimensional wave number

νc = 0.06. The result can be explained by the pressure inside the torus. The

in�uence is shown in Figure 5.2 and will have a larger in�uence on the horizontal

result than the vertical, since the wave force on the skirt is di�erent than for the

torus.

Figure 5.28 is showing the average mooring force for the di�erent test and compared

with the estimated mooring force. In the �gure, the result is presented as error

bares, where the height of the bars is two times the estimated standard deviation.
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The experimental results show that the presence of the membrane leads to a higher

average force in the mooring line compared with the elastic torus. By comparing

the models with the torus covered with a membrane, it is shown that the skirt will

give a lower average force in the mooring lines for the lowest wave frequencies. This

is because the presence of the skirt will increase the added mass in surge. The

addition in added mass will give lower horizontal movement hence the mooring

force becomes less.

The estimated mooring force are calculated by Equation (3.87). When calculating

surge motion only the torus was considered, the calculation is also neglecting any

coupling between horizontal and vertical motion. The values of the estimated

mooring force are comparable with the experimental result for the elastic �oater.

The estimated mooring force is higher for high wave frequencies, and lower for

lower wave frequencies. The experimental result for the elastic torus indicates

that the cancellation is around νc = 0.067 and νc = 0.16 while the estimated

predicts νc = 0.058 and νc = 0.16. A reason for the di�erence can be due to the

neglecting of any coupling between the motions.

5.6.1 Dynamic Load Factor

The dynamic load factor (DLF) can be used to determine if the system response

is sti�ness or inertia dominated. Figure 5.29 shows the DLF plotted against the

frequency ratio β = ω/ω0. The DLF is not for the system as this would require

knowledge of the damping, but it is used as an illustration for the di�erent load

regions. The dots in the �gure are the frequency ratio between the incoming waves

in the experiment and the natural frequency of the elastic torus with mooring.

The natural frequencies are found by use of Equation (3.88), and it is equal to

ω0 = 3.27 rad/s. A more accurate way to �nd the natural frequency is through a

decay test. A decay test will give important information about natural frequencies,

added mass and damping of the system (Steen, 2014). No experimental decay test

was done in this study.
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Figure 5.29: Dynamical load factor plotted against the frequency ratio β. The points are
the experimental frequency ratio between the incoming waves and the natural period for
the surge motion for the elastic torus.

Figure 5.29 shows that the response given the load condition is inertia dominated.

This means that the inertia forces balance the external forces. The restoring force

is in fact increasing the response. Therefore, the moored platform has a larger dy-

namic motion in waves than what the same platform would have had if it was �oat-

ing freely without a mooring system (Larsen & Norges teknisk-naturvitenskapelige

universitet Institutt for marin, 2012). For the lowest wave frequencies, the response

is in the resonance region.

The natural frequency for the island will be lower since the skirt will increase the

added mass. A lower natural frequency will give higher β values meaning that the

islands also will be in the inertia dominated region.
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5.7 Waves and Current

Figure 5.30 show the raw data from the experiment in regular waves with current,

taken from the force ring F45 (front) of the rigid model. Figure 5.31 is comparing

the �rst harmonic vertical acceleration aft for the elastic and rigid model in reg-

ular waves with steepness 1/30 and current 1 m/s. Figure 5.32 is comparing the

�rst harmonic vertical acceleration at the front for the elastic and rigid model in

wave steepens 1/30 and current 1 m/s. Figure 5.33 is comparing the force in the

four mooring lines, in the same conditions. The non-dimensional wave number is

calculated form the encounter frequency to the model. The acceleration front and

aft are taken since they were the highest in the regular wave test.

0 2000 4000 6000 8000 10000 12000 14000 16000
Time [s]

-2

-1

0

1

2

3

F
or

ce
[N

]

Raw data of Force in waves and current

F45 (front)

Figure 5.30: Raw data of the mooring force measured at F45(front) for the rigid model
in regular waves with prescribed wave to height ratio 1/30 and current 1m/s.
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Figure 5.31: First harmonic acceleration of the rigid and elastic model in regular waves
with prescribed wave to height ratio 1/30, and current 1m/s. For the accelerometer
in the aft position. The non-dimensional wave number are taken from the encounter
frequency. The height of the experimental error bars is two times the estimated standard
deviation.
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Figure 5.32: First harmonic acceleration of the rigid and elastic in regular waves with
prescribed wave to height ratio 1/30, and current 1m/s. For the accelerometer in the front
position. The non-dimensional wave number are taken from the encounter frequency. The
height of the experimental error bars is two times the estimated standard deviation.
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Figure 5.33: Force in the mooring lines for the rigid and elastic model in waves with
prescribed wave to height ratio 1/30, and current 1m/s. The non-dimensional wave
number are taken from the encounter frequency. The height of the experimental error
bars is two times the estimated standard deviation.

Comparison of the vertical acceleration in Figure 5.31 and 5.32 shows that the

vertical acceleration for the rigid and elastic model is similar. The amplitude of

the vertical accelerations are found to be larger when current is present compared

with the experimental result for the regular wave test.

In Figure 5.33 it is seen that the current will lead to a higher mooring force

compared with regular waves only, for both models. This is expected since the

current will lead to a mean vertical force on the island. The amplitude of the

mooring force is similar for the rigid and elastic model. The trend however is

di�erent. For the elastic model the amplitude of the force has a similar shape

compared with the experimental results in regular waves. The trend for the rigid

model shows that there is a clear di�erent in the mooring front and aft.

5.8 Discussion of the Regular Results

Comparison of the results for the vertical acceleration for the rigid model with

and without pressure shows that the pressure has an in�uence on the result. The

regular wave test for the elastic model were repeated eight times over several days.
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Therefore, there may have been variation in the pressure out from the compressor,

which leads to uncertainties in the result. The other regular test was performed at

the same day and is therefore expected to have a smaller variation in the pressure

out from the compressor.

In the experiment, the pressure under the air cushion had an in�uence on the

static behavior of the model. The pressure lifts the model and expose the skirt.

Therefore, the model is no longer symmetrical in the water line and can lead to

unsymmetrical behavior for the vertical acceleration which is seen for the elastic

model. The experimental pressure correspond to a full scale pressure between

0.5 bar − 1.5 bar. The pressure is much higher than the pressure proposed in the

design. Therefore, the e�ect of the overpressure may not be so critical for the full

scale solar island.

To verify the analyzing process of the experimental result, the elastic torus is

compared with the result from (Li, 2017). The results for the vertical acceleration

and motion are found to be inn good agreement. Comparison of the experimental

results from the regular wave test shows that the membrane has an in�uence on

the dynamical behavior. The membrane will increase the amplitude of the �rst

harmonic acceleration and mooring force. The increase in the values needs to be

considered in the design process of the island.

The vertical response is found to be lower for high wave frequency when the mem-

brane is presence and higher for low wave frequency, this is the same result as

found in Pinkster and Fauzi (1997). The result can be used in the determination

of possible location where you want to �nd sea states that are in the region with

low response.

The experimental result shows that the pitch motion of the elastic and rigid model

is similar, while the numerical model shows that there is a di�erent. In the numeri-

cal model the contribution in bending sti�ness due to membrane is not considered.

The increase in bending sti�ness would lead to lower values of the pitch response.

The contribution in sti�ness can also be greater for the elastic model, and explain

why the experimental result is so similar. The numerical model used to compare
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the experimental result is to simple too drawn any conclusions.

Another explanation for the similar result between the rigid and elastic model can

be due to the pressure. From the experimental result of the vertical acceleration

for the elastic model it is shown that the accelerations are no longer symmetrical

around the tours. This will also a�ect the pitch result since the accelerations is

used in the calculations.

The largest di�erent for the elastic and rigid model is in the global behavior. The

rigid model is not able to undulate with the waves and is therefore more exposed to

jerks and slamming. This should be taken into consideration when further develop

the design as it can lead to fatigue.

The in�uence of the skirt in current is not known based on these two experiments

and needs to be investigated further to explain the di�erence in the result between

regular waves with current and without current. The interaction between cur-

rent and skirt may lead to �ow separation and viscous e�ects becomes important.

Figure 5.34 shows a sketch of the possible behavior if the skirt in current and

waves.

Figure 5.34: A sketch of the thought behavior of the skirt in waves and current.
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5.9 Irregular Wave Test

The experimental results for the irregular wave test will be presented as a power

spectral density of the measured time history signal.

5.9.1 Constant Tp and Varying Hs

Figure 5.35 shows the acceleration spectrum for the acceleration aft for the elastic

and rigid model. Figure 5.36 shows the force spectrum for the forces in mooring line

F45 for the elastic and rigid model. Figure 5.37 shows the power spectral density

for wave probe 5 compared with the theoretical JONSWAP input spectrum for

Hs = 5 m and Tp = 12 s. Figure 5.38 shows the acceleration spectrum for the eight

accelerometers used in the experiment for wave condition Hs = 5 m and Tp = 12 s.

The power spectral density to all the measurement for the elastic model is given

in appendix D.
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Figure 5.35: Power spectral density for the acceleration in the irregular sea states. Both
the models were �ooded when Hs > 5m.
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Figure 5.36: Power spectral density for the mooring force F45 in the irregular sea states.
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Figure 5.38: Power spectral density for the eight accelerometers in irregular sea states
condition Hs = 5m and Tp = 12 s, elastic model.

5.9.2 Results from the West Africa Region

Figure 5.39 shows the power spectral density of the wave probe 5 for the di�erent

region in West Africa compared with the input JONSWAP spectrum. Figure 5.40

shows the power spectral density for the elastic model acceleration fore. Figure

5.41 shows the power spectral density for the heave motion for the elastic and

rigid model in Angola(swell) conditions. Figure 5.42 shows the response amplitude

operator in heave calculated by Equation (4.6).
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Figure 5.39: Power spectral density for wave probe 5 compared with the JONSWAP
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79



5.9. IRREGULAR WAVE TEST 5. RESULTS AND DISCUSSION

0 2 4 6 8 10 12
!

0

1

2

3

4

5

6

H
ea

ve
M

ot
io

n
S
p
ec

tr
u
m

[(
m

2
=!

)]

#10-5 Psd Heave Motion Angola Hs = 4:1 Tp = 16s

Elastic
Rigid

Figure 5.41: Power spectral density for the heave motion for the elastic and rigid model,
in Angola (swell) wave condition.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
8c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

jH
(8

c)
j2

Response Function in Heave

Elastic
Rigid

Figure 5.42: Response amplitude operator for heave calculated from the irregular wave
test by use of Equation (4.6) for the rigid an elastic model. The input and measured
response function are from Angola.

80



5.10. ERROR SOURCES 5. RESULTS AND DISCUSSION

5.9.3 Discussion of the Irregular Results

Both the models was completely �ooded when the signi�cant wave height was

larger than, Hs > 5 m, and peak period, Tp = 12 s. Failure also occurred for the

elastic and rigid model in wave conditions for Ivory Coast. The power spectral

density in Figure 5.36 shows that the acceleration on the elastic model is little

higher. This can indicate that the pressure was higher for the elastic model during

the irregular wave test. In the elastic model the acceleration has a second peak

for wave frequencies ω = 10 rad/s. This can be due to the peak that is shown

in the response amplitude operator for the heave motion at ω = 10 rad/s. Figure

5.38 shows that all eight accelerometers has the same peak, but the value is larger

for the acceleration aft. The peak vanishes after �ooding of the structure has

occurred.

The comparison between the measured wave spectrum and the JONSWAP spec-

trum shown in Figure 5.39 and 5.37, shows that the experimental peak are less

than the input spectrum. This can be caused by wave breaking and viscous e�ects

that can be developed across the tank. The di�erence for Ivory Coast is probably

not due to wave breaking since H/λ is far from the breaking limit. The results

should therefore be investigated further.

The response amplitude operator in heave, Figure 5.42, which is calculated from

Equation (4.6) are in reasonable agreement with the RAO in heave found from the

regular wave test.

5.10 Error Sources

The largest uncertainty during the experiment is the pressure inside the air cushion.

The value of the output pressure would be unphysical inside the air cushion. In

addition the output pressure was read manually by eye and the accuracy of the

reading is ±0.01 bar, so the pressure during the di�erent wave test can be di�erent

for each run. As seen in the result the pressure has an in�uence on the experimental
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result.

A check of the wave generation without the model were not preformed, and this

leads to uncertainty in the analyses of the result. Since the wave amplitude from

the experiment are used in the analysis of the result. Therefore, a calibration of

the waves, before the model test should have been performed. Small steep waves

tend to be unstable and can change radically with the distance from the wave

maker, due to wave breaking and viscous e�ects. A consequence can be that there

are signi�cant deviations in wave amplitude across the tank (Steen, 2014). Other

possible reasons for the di�erence in the wave measurements are wave re�ection

from the beach, meniscus e�ect on the wave probe wire and calibration linearity

error.

The instruments can drift due to temperature, splashes etc. This will lead to

that the measurement will have a non-zero value. This is especially important for

the mooring force in waves and current. The drifting problem is normal for the

acceleration used in this experiment. The accelerometers used is body-�xed and

can only measure the acceleration in one direction. The round surface of the �oater

made it hard to attached the accelerometers perfect and a slight angle between

the horizontal axes will e�ect the result.

The mooring of the elastic tours can cause the torus to be deformed, and this will

a�ect the result. Another error source is that the pre-tension in the mooring lines

were too low. Too low pre-tension will lead to slack in the line and the weight

of the spring is measured and not the actual force. This was observed for the

irregular wave test for Hs = 6 m and Tp = 12 s.

The waiting time between each wave test were at least 3 min in order to damp out

the waves. The damping beach showed to be e�ective for damping out waves and

making the water surface calm after each test run. Still standing waves can have

occurred and in�uencing the result.
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Chapter 6

Conclusions

The dynamical behavior of a �oating solar island is studied through model tested

in current, and both regular and irregular waves. Two di�erent con�gurations of

the solar island were investigated; a model made with an elastic torus and a model

with a rigid torus. During the experiment, vertical acceleration was measured,

forces in the mooring lines and the wave elevation. A camera is used to capture

the global behavior of the model. To support the experimental result a numerical

model for the vertical response is made by combining theory for a �oating torus

and the vertical motion of a Surface E�ect Ship (SES).

The global behavior of the rigid and elastic model in waves is investigated and

found di�erent. The elastic model is more capable of following the waves. For

both models, non-linear phenomena such as out of water and over-topping of waves

were observed. Both models were �ooded in regular waves with period 12.1 s and

steepness = 1/20, and in irregular waves with Tp = 12 s and Hs > 5 m.

There is good agreement between the experimental result and the numerical model

for the heave response. The results show that the membrane covering the torus

will lead to a higher vertical response for low wave frequencies, and reduction for

high wave frequency. The use of elastic and rigid torus has little in�uence on the

vertical response for the solar island.
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The experimental results for the vertical acceleration is largest at front and aft.

The results show that the membrane and pressure is increasing the vertical acceler-

ation. The largest vertical accelerations are found for the rigid model with pressure

and the elastic model. Second harmonic accelerations were found to matter for

the elastic and rigid model.

The force in the mooring lines is also a�ected by the air cushion. The air cushion

is increasing the force in the mooring lines. The skirt that used to prevent the air

leakage is also reducing the horizontal motion due to the increasing in added mass

in surge.

A check of the wave generation without the present of the model should have

been executed. The result from the wave probes shows that the measured wave

spectrum has a lower peak than the input spectrum. From the regular test the

model is found to have little wave generation. The biggest error sources in the

experiment is the unknown pressure under the air cushion. The applied pressure

causes a static instability for both models. Due to pressure, the islands are no

longer symmetrical in the water line.
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Chapter 7

Recommendation for Further Work

� Further development of the numerical model to include the e�ect of mem-

brane and skirt in vertical and horizontal direction. Also include coupling

between the horizontal and vertical motion.

� Repetition of the experiment with a pressure measurement underneath the

membrane.

� Investigation of the skirt behavior in waves and current.

� Investigation of the experimental results from the irregular wave test.

� Development of the design to increase the survivability for the island in

waves, and a more thorough investigation for all the possible areas for the

solar island.

� Investigate other possibilities to support the weight of the PV panels, without

use of pressure.
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Appendix A

Results for the Elastic Torus with

Membrane
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Figure A.1: The elastic torus covered with membrane non-dimensional amplitude of �rst
harmonic vertical acceleration versus the non-dimensional wave number νc for regular
waves with steepness 1/30. At the position front and aft at the model. The height of the
experimental error bars is two times the estimated standard deviation.
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Figure A.2: The elastic torus covered with membrane non-dimensional amplitude of �rst
harmonic vertical acceleration versus the non-dimensional wave number νc for regular
waves with steepness 1/30. At the position left and right side at the model. The height
of the experimental error bars is two times the estimated standard deviation.
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Figure A.3: Amplitude of the force in the four mooring lines for the rigid model without
pressure for regular wave steepness 1/30, elastic torus covered with membrane. The
height of the experimental error bars is two times the estimated standard deviation.
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A. Results for the Elastic Torus with Membrane
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Figure A.4: RAO in heave for the experimental results for the elastic torus covered with
membrane for regular waves with steepness 1/30.. The result is compared with the theory
for the �oating solar island vertical response. The height of the experimental error bars
is two times the estimated standard deviation.
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Appendix B

Raw Data from the Experiment

B.1 Regular Waves for Elastic Model
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B.1. REGULAR WAVES FOR ELASTIC MODEL B. Raw Data from the Experiment
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Figure B.1: Raw data of the accelerometers 45, 135, 225 and 315.
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B.1. REGULAR WAVES FOR ELASTIC MODEL B. Raw Data from the Experiment
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Figure B.2: Raw data of the accelerometers fore, starboard, aft and port side.
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B.1. REGULAR WAVES FOR ELASTIC MODEL B. Raw Data from the Experiment
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Figure B.3: Raw data of the force.
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B.1. REGULAR WAVES FOR ELASTIC MODEL B. Raw Data from the Experiment
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Figure B.4: Raw data of the wave probes.
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B.2. IRREGULAR WAVES CONSTANT TP AND VARYING HSB. Raw Data from the Experiment

B.2 Irregular Waves Constant Tp and Varying Hs
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Figure B.5: Raw data for the irregular waves for wave probe 4.
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Figure B.6: Raw data for the irregular waves for wave probe 4.
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Appendix C

Filtering of data

Figure C.1 and C.2 shows the band-pass �ltering of the �rst and second harmonic.

The �lter (green line) is multiplied with the data (blue line) to only get the data

of interested (red line).

Figure C.1: Example of a band pass �lter, �ltering out the �rst harmonic.
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C. Filtering of data

Figure C.2: Example of a �lter, �ltering out the second harmonic.
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Appendix D

Psd for the Irregular Wave Test

Elastic Model
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Figure D.1: Power spectral density for the acceleration in irregular sea states, elastic
model.

A-12



D. Psd for the Irregular Wave Test Elastic Model
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Figure D.2: Power spectral density for the acceleration in irregular sea states, elastic
model.
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Figure D.3: Power spectral density for the acceleration in irregular sea states, elastic
model.
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D. Psd for the Irregular Wave Test Elastic Model
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Figure D.4: Power spectral density for the acceleration in irregular sea states, elastic
model.
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Figure D.5: Power spectral density for the acceleration in irregular sea states, elastic
model.
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D. Psd for the Irregular Wave Test Elastic Model
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Figure D.6: Power spectral density for the acceleration in irregular sea states, elastic
model.
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Figure D.7: Power spectral density for the acceleration in irregular sea states, elastic
model.
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D. Psd for the Irregular Wave Test Elastic Model
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Figure D.8: Power spectral density for the acceleration in irregular sea states, elastic
model.
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Figure D.9: Power spectral density for the force in irregular sea states, elastic model.
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D. Psd for the Irregular Wave Test Elastic Model
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Figure D.10: Power spectral density for the force in irregular sea states, elastic model.
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Figure D.11: Power spectral density for the force in irregular sea states, elastic model.
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D. Psd for the Irregular Wave Test Elastic Model
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Figure D.12: Power spectral density for the force in irregular sea states, elastic model.
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Figure D.13: Power spectral density for the wave probe in irregular sea states, elastic
model.
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D. Psd for the Irregular Wave Test Elastic Model
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Figure D.14: Power spectral density for the wave probe in irregular sea states, elastic
model.
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Figure D.15: Power spectral density for the wave probe in irregular sea states, elastic
model.
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D. Psd for the Irregular Wave Test Elastic Model
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Figure D.16: Power spectral density for the wave probe in irregular sea states, elastic
model.
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Figure D.17: Power spectral density for the wave probe in irregular sea states, elastic
model.
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D. Psd for the Irregular Wave Test Elastic Model
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Figure D.18: Power spectral density for the wave probe in irregular sea states, elastic
model.
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