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Introduction

Roll motion is considered as one of the most difficult responses to
be mathematically treated, this is due to the importance of the
viscous effects. Several parameters may affect the roll motion
hydrodynamically, as shown by Ommani et al. (2015) among
others. Hence, tedious parameter study needs to be involved
when predicting the roll motion.

Model the problem with "full" Navier-Stokes methods are still
considered less effective when doing the design-loop, the
approaches carry large computational cost even for two-
dimensional case. For the conventional ship hull shape, potential-
flow solver with the semi-empirical formula correction that based
on the extensive investigations mainly by lkeda et al. (1976,
1977a,b) has been widely adopted by the industry. The
unconventional hull shape, on the other hand, one needs to rely
with the model test and/or numerical modeling.

Another candidate is to combine Potential and Navier-Stokes
methods, Potential Viscous Code (PVC) (see Kristiansen and
Faltinsen (2012)), which simplified the computation and reduce
the simulation time greatly. Tailor made of PVC for roll motion,
PVC2D-Roll, has been under the series of validation study of ship
roll motion (see Ommani et al. (2015, 2016b,a)) , and will be
continued in the present study by comparing with the model
tests.

Limitations and Objectives

The study is limited to the two-dimensional body in still water,
without forward speed, wind and current. The motivation of using
two-dimensional case is for having detailed and controlled
observation of physics and the possibility to extend the study into
three-dimensional case in the future.

The objectives of present study are:

1. Literature study for an overview of previous numerical and
experimental studies related to the ship roll motion, and the
relevant mathematical model

2. Construct and perform forced roll motion model test

3. Perform the numerical study using PVC2D-Roll

4. Numerical and experimental parameter study with the
emphasize on the effect of varying forcing amplitudes and periods,
and also bilge boxes length

5. Analyze the obtained forces experienced by the bilge boxes
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Fig. 1: Description of the model main particulars

Table 1: Non-dimensionalized particulars of the model that used in
the present study

Parameters (Non-dimensionalized) BB1 BB2 BB3
Breadth (B/B) 1.00
Draught (D/B) 0.32
Keel-to-centre of rotation (KR /B) 0.2912

Disk thickness (tp/B) 0.056

Disk diameter (Dp/B) 1.20 1.30 1.40
Section area (A/(BD)) 1.035 1.0525 1.07

Mathematical Model

The pure forced-roll motion in calm water can be represented by :

Iy + Aygtiy + Buy(rig) + Caqmy = Fy with  Byy(rjs) = Biris + Botja|nja| + Banis® + ...

The nonlinear damping term can be equivalently stated as:
8 3

B, = By + —wi.Ba + sw’nj, By
3 4

which is a function of roll amplitude and period.
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Experimental Setup
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Model tests took place in Ladertanken laboratory, Norwegian University of Science and Technology. Forced-roll oscillation
model tests are useful for quantification the hydrodynamic features of roll motion based on linear equation of motion.

Two accelerometers were used to measure the motion, and one strain gauges for acquiring the total force applied to make
the model rotates. In addition, eight strain gauges were installed in the bilge-boxes. Four wave gauges were placed 1.25 m
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Fig. 2: llustration of the forced-oscillation model test setup in Ladertanken

from the model to obtain the radiated waves from the oscillation.

Numerical Implementation
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Fig. 3: Overview of the physical assumptions that implemented in the numerical model

Results
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Fig. 4: Comparison of extracted hydrodynamic coefficients from both of model test and CFD.
(a),(b) and (c) are the damping coefficients of BB1, BB2 and BB3 with respect to amplitudes

and periods. On the other hand, (d), (e) and (f) are for the added-mass coefficients.

Fig. 5: Example of condition where the potential free-surface condition is not applicable to
model the case. Free-surface is attracted and disturbed by the present of sufficiently large

bilge-boxes.
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Preliminary Conclusions and Recommendations

1. Fig. 4 (a), (b) and (c) show damping coefficient dependency on roll amplitude, period and bilge-boxes length. Damping
coefficients with respect to roll amplitude for the smallest bilge-boxes BB1 tend to show quadratic behavior. When the

bilge-boxes length increases, the behavior is not quadratic anymore.

2. Fig 4 (d), (e) and (f) show that added-mass coefficients for BB1 are approximately independent of roll amplitude, while
this does not hold true especially for the largest bilge-boxes BB3. Some significant changes are visible on (e) but tend to be
independent of roll amplitude again on (f). The results suggest to use nonlinear mathematical model of added mass for

sufficiently long bilge-boxes.

3. Damping coefficients are in agreement with the PVC2D-Roll only for some extent. It is believed that for larger roll
amplitude, velocity and bilge boxes, the free-surface linear condition is not sufficient (see Fig. 5). Modeling the free-surface
with Volume of Fluid (VOF) method is preferred for the future study. The discrepancies on added-mass coefficients on fig. 4

(f) are still investigated.
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