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Summary

Over the past few years, the half-Heusler materials have attracted attention for their
potential within thermoelectric applications. This is mainly due to the flexibility of
half-Heusler crystal structure. The half-Heuslers comprise three elements, XYZ, that
crystallize in the face-centered cubic structure F43m. Thus, materials that comprise
nontoxic, environmentally friendly, inexpensive and abundant elements are possible.
Moreover, many of these half-Heuslers are low band gap semiconductors with good
electrical properties, making them attractive for thermoelectric applications. On the
other hand, the half-Heuslers are associated with too high lattice thermal conductivity
to be applicable as thermoelectric materials. However, previous studies suggest that
the lattice thermal conductivity may be reduced through materials’ engineering, where
two of the most common methods proposed in literature are alloying on one of the
atomic sites, and nanostructuring.

Consequently, the present work investigates the effect of alloying on the X-position
relative to the Bi-position of XNiBi, X=(Sc, Y or La), based half-Heuslers using den-
sity functional theory together with the temperature dependent effective potential
method. The different half-Heusler alloys are described within the virtual crystal ap-
proximation, and the lattice thermal conductivity is calculated with the Boltzmann
transport equation within the relaxation time approximation. This enables indepen-
dent investigations of different contributions to the lattice thermal conductivity. In
the ScxYyLa1−x−yNiBi alloys, the minimum lattice thermal conductivity was calcu-
lated to 4.3 W/mK for Sc0.24La0.76NiBi even though the maximum mass-disorder
occurs for higher concentrations of Sc. This behaviour may be explained by the domi-
nance of the anharmonic contributions to the lattice thermal conductivity. Consistent
with the results from the specialization project, increasing the concentration of La
in ScxYyLa1−x−yNiBi was shown to increase the anharmonic scattering of the acous-
tic phonon modes. Since the mass-disorder in ScxYyLa1−x−yNiBi primarily targets
the optic phonon modes, which carry less heat than the acoustic, the alloying on
the X-position does not reduce the lattice thermal conductivity efficiently. Alloying
on the Bi-position of YNiBi with As or Sb, on the other hand, targets the acous-
tic phonon modes. Thus, the lattice thermal conductivity is reduced to 2.4 W/mK in
YNiBi0.36As0.64. The impact of the scattering of acoustic phonon modes on the lattice
thermal conductivity is further emphasized in the nanostructured materials. Through
a simple model for grain boundary scattering, nanoscaled grains were introduced to
the bulk materials such that the acoustic phonon modes were targeted. Consequently,
in the ScxLa1−xNiBi binary alloy with grains of 50 nm in diameter, the minimum
lattice thermal conductivity is reduced with more than 45% compared to the mini-
mum value of the bulk alloys; from 4.3 W/mK for Sc0.24La0.76NiBi to 2.4 W/mK for
Sc0.5La0.5NiBi.

The present work indicates that the lattice thermal conductivity of XNiBi, X=(Sc,
Y or La), based half-Heuslers may be reduced sufficiently through nanostructuring and
alloying to be competitive with state-of-the-art thermoelectric materials. Moreover,
the understanding of how different mechanisms influence the lattice thermal conduc-
tivity achieved in this work may aid the continued progress of the performance of
thermoelectric materials.
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Sammendrag

Halv-Heuslere har i løpet av de siste årene tiltrukket seg mye oppmerksomhet fordi
de egner seg som termoelektriske materialer. Det er den fleksible strukturen til halv-
Heuslerne gir disse ettertraktede egenskapene. Strukturen best̊ar av tre elementer,
XYZ, som krystallisereres i den flatesentrerte kubiske krystallstrukturen, F43m. Mange
ulike elementer kan inng̊a i denne strukturen. Følgelig finnes det flere halv-Heuslere
som er bygget opp av lite giftige, miljøvennlige og billige grunnstoffer. I tillegg er ofte
halv-Heuslere halvledere med smalt b̊andgap, og dermed gode elektriske egenskaper.
Derfor kan de egne seg for bruk i termoelektriske elementer. P̊a den andre siden har
de relativt høy termisk gitterledningsevne. Dette fører til at de er lite effektive som
termoelektriske materialer. Likevel viser tidligere studier at gitterledningsevnen kan
reduseres ved hjelp av m̊alrettet materialdesign, der de to mest brukte metodene i
litteraturen baserer seg p̊a substitusjon av et av elementene i halv-Heusleren med et
fremmedelement, og p̊a nanostrukturering av bulkmaterialet.

I denne masteroppgaven blir den relative effekten av substitusjon p̊a X-plassen kon-
tra Bi-plassen i halv-Heuslere basert p̊a XNiBi, X=(Sc, Y eller La), undersøkt ved hjelp
av temperatureavhengige ab initio simuleringer. De ulike halv-Heuslerlegeringene er
beskrevet innenfor en virtuell krystalltilnærming, og den termiske gitterledningsevnen
beregnet ved hjelp av Boltzmanns transportligning og relaksasjonstidtilnærmingen.
Dermed kan uavhengige undersøkelser av ulike bidrag til den termiske gitterledningsev-
nen gjennomføres. I ScxYyLa1−x−yNiBi ble den minste termiske gitterledningsevnen
p̊a 4.3 W/mK beregnet for Sc0.24La0.76NiBi til tross for at det er mer uorden p̊a X-
plassen ved høyere konsentrasjoner av Sc. Resultatene indikerer at fonon-fonon (uhar-
moniske) bidragene dominerer den termiske gitterledningsevnen. I tr̊ad med funnene i
prosjektoppgaven, fører en økning av La-konsentrasjonen i ScxYyLa1−x−yNiBi til økt
fonon-fonon spredning av de akustiske fononmodene. Masse-uordensspredningen, de-
rimot, retter seg i første rekke mot de optiske fononmodene, som leder mindre varme
enn de akustiske. Følgelig har substitusjon p̊a X-plassen av XNiBi, X=(Sc, Y eller
La), liten effekt p̊a den termiske gitterledningsevnen. Substitusjon av Bi med As eller
Sb, derimot, fører til spredning av de akustiske modene. Dermed kan den termiske
ledningsevnen effektivt reduseres til 2.4 W/mK i YNiBi0.36As0.64. Betydningen av å
spre de akustiske fononmodene er understreket i beregningene av den termiske git-
terledningsevnen til de nanostrukturerte materialene. Korn med diameter p̊a 50 nm
ble introdusert i materialene. Ved hjelp av en enkel modell for spredning av fononer
p̊a korngrenser, ble den p̊afølgende spredningen av de akustiske fononmodene inklud-
ert i beregningene slik at den minste termiske gitterledningsevnen i ScxLa1−xNiBi-
legeringen ble redusert med 45% i forhold til den minste termiske ledningsevnen til
bulklegeringen. Det vil si at en reduksjon fra 4.3 W/mK i Sc0.24La0.76NiBi til 2.4
W/mK i Sc0.55La0.45NiBi ble observert.

Resultatene i denne oppgaven indikerer at den termiske gitterledningsevnen til
XNiBi, X=(Sc, Y or La), baserte halv-Heuslere kan reduseres tilstrekkelig ved hjelp av
legering og nanostrukturering til at materialene er konkurransedyktige med kommer-
sialiserte termoelektriske materialer. I tillegg er en innsikt i hvordan ulike mekanismer
p̊avirker den termiske gitterledningsevnen oppn̊add. Denne innsikten kan bidra til den
forsatte utviklingen av egenskapene til termoelektriske materialer.
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Chapter 1

Introduction

1.1 Motivation

The demand for energy is increasing as more countries worldwide prosper. Simulta-
neously, the pollution of the environment from the extraction and use of the energy
continues, and the challenges arising from global warming increase in prevalence and
severity. To meet the energy demand in a sustainable way, a transition from fossil to
renewable energy sources is required. In addition, more efficient utilization of the en-
ergy may reduce the emission of greenhouse gasses significantly. The industrial sector
contributes to 21% of the global greenhouse gas emissions[1]. However, in the US, be-
tween 20% and 50% of the energy consumed by the industry is reported to be wasted
as heat[2]. Consequently, there is a call for efficient waste heat recovery systems.

Thermoelectric devices are promising for waste heat recovery applications due to
their ability to convert heat directly to electricity. As opposed to traditional waste heat
recovery systems utilizing, for example, the Kalina cycle[3], the thermoelectric devices
are not based on mechanically moving parts, and are therefore less space consuming
and associated with higher stability and reliability. On the other hand, the typical
energy conversion efficiency of thermoelectric devices is less than 15%[4], [5]. In some
niche markets, such as in space applications, where the access to heat is unlimited or
the cost is unimportant compared to the space consume and stability of the device,
thermoelectric devices are utilized. However, for general commercial purposes, the
conversion efficiency is too low to be competitive with traditional waste heat recovery
systems.

There are two factors that reduce the conversion efficiency of the thermoelectric
devices. Firstly, the design of the device introduces energy losses at junctions between
different constituents. Secondly, the thermoelectric materials are in themselves lim-
iting the conversion efficiency. As a result, improvements of this technology may be
achieved through better device designs, or through improved material performance.
Even though there are methods that improves the performance of the current thermo-
electric materials, such as nanostructuring, many of the state-of-the-art materials are
associated with rare, expensive, toxic or environmentally harmful elements[6]. Conse-
quently, thermoelectric materials that outperform the state-of-the-art thermoelectrica,
but at the same time are inexpensive, abundant, nontoxic and less harmful to the en-
vironment, are needed.
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3 1.2. PREVIOUS WORK

The half-Heusler materials have attracted attention for their potential as thermo-
electric materials that may comprise non-toxic, more abundant and less expensive
elements[6], [7]. Moreover, they are narrow band gap semiconductors with better elec-
trical properties than many of the best thermoelectric materials[8]. However, they
are associated with high thermal conductivity which reduces the energy conversion
efficiency. Since the thermal conductivity of half-Heuslers largely is dominated by the
lattice thermal conductivity[9], efforts are made to reduce the lattice thermal con-
ductivity. Thus, the good electrical properties of the half-Heuslers are maintained
while the thermal conductivity is reduced, resulting in an increased conversion effi-
ciency. Although several half-Heuslers meet the requirements of the new generation
of thermoelectric materials, only a few are well studied. Therefore, this thesis aims on
exploring new possible thermoelectrica within the half-Heusler segment

1.2 Previous work

This thesis is a continuation of the specialization project performed in the fall of 2016
by the author where the phonon dispersion relations and lattice thermal conductivity of
three pure half-Heuslers, XNiBi with X=(Sc, Y or La), was investigated using density
functional theory (DFT) calculations in combination with the temperature dependent
effective potential (TDEP) method. The lattice thermal conductivity was calculated to
12.3 W/mK, 8.9 W/mK and 5.8 W/mK for ScNiBi, YNiBi and LaNiBi, respectively.
The decrease in the thermal conductivity from ScNiBi to LaNiBi was found to be
caused by the decreasing acoustic-optic phonon band gap from ScNiBi to LaNiBi. This
caused an increase in the anharmonic scattering of the acoustic phonons in LaNiBi
compared to ScNiBi, resulting in the decrease in the lattice thermal conductivity. A
summary of the specialization project may be found in Appendix A.

1.3 Aim of the thesis

The objective of this thesis is to extend the study on the thermal properties of the
XNiBi, X=(Sc, Y or La), half-Heuslers to include scattering mechanisms beyond an-
harmonic scattering. The impact of mass disorder, both on the X- and the Bi-position
of XNiBi, X=(Sc, Y or La), will be studied. In addition, the effect of nanostructur-
ing of the half-Heuslers will be investigated. An understanding of how the different
mechanisms influence the thermal properties of the materials is sought through fi-
nite temperature ab initio simulations using DFT and the TDEP method. Moreover,
the simulation methods utilized in this thesis provide an unique opportunity to con-
trol different parameters, and, thus, enable further investigations into the mechanisms
governing the thermal properties.



Chapter 2

Background

This chapter is intended to give an introduction to the key concepts governing the
performance of a thermoelectric material. Moreover, it provides the reader with an
insight into the structure of the materials under investigation, and the impact of the
structure on the thermoelectric performance. In the last part of the chapter, special
attention will be given to the properties that determine the heat conduction of the
materials.

2.1 Thermoelectricity

2.1.1 Thermoelectric effect

(a) (b)

Figure 2.1: Illustrations of a) the Seebeck effect and b) the Peltier effect

4
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The thermoelectric effect describes two phenomena: the Seebeck effect and the Peltier
effect. The Seebeck effect involves direct conversion of a temperature gradient to an
electrical current as illustrated in figure 2.1a. Oppositely, the Peltier effect, shown in
figure 2.1b, converts a voltage difference directly to a temperature gradient.

2.1.2 Seebeck effect

The Seebeck effect was first discovered in 1821 by T. J. Seebeck[10]. As a temperature
gradient is imposed across the material, the charge carriers on the hot side are excited
to higher energy states. Thus, an imbalance in the occupation of the density of states
with higher energy at the hot compared to the cold side is created. This cause the
charge carriers to diffuse from the hot to the cold side of the material. The diffusion
of charge carriers creates an electric field opposing the temperature gradient. When
the diffusion caused by the electric field equals the thermal diffusion, the equilibrium
state is reached. The equilibrium voltage difference is proportional to the temperature
difference:

α = −∆V

∆T
(2.1)

where α is the Seebeck coefficient, V is the voltage and T is the temperature.
The Seebeck coefficient is a material dependent parameter. The sign and magni-

tude of the Seebeck coefficient is related to an asymmetry of the electron distribution
around the Fermi level. In metals, the asymmetry is small because the conduction
of electrons in one direction implies conduction of holes in the opposite. Thus, the
Seebeck voltage is cancelled out resulting in a small Seebeck coefficient. In semicon-
ductors, however, the conduction is either dominated by p- or n-type carriers. Hence,
the electron density around the Fermi level is asymmetric, and the Seebeck coefficient
larger.

2.1.3 Peltier effect

In 1834, the French physicist J. C. A. Peltier found that the ”opposite Seebeck effect”
takes place if a voltage difference is applied across thermoelectric materials; then a
temperature gradient is created. Unlike Joule heating, the Peltier effect does not
involve resistive heating, but transfer of heat carried by the major charge carriers.
The heat flow per unit time is given by:

Q̇ = ΠI (2.2)

where Π is the Peltier coefficient and I is the current.
Since the charge carriers inherently transfer heat, the Seebeck and Peltier effects

are coupled through the Thompson relation[11]:

Π = αT (2.3)

2.1.4 Thermoelectric figure of merit

The dimensionless figure of merit, zT, is often used to describe the performance of a
thermoelectric material. The figure of merit depends on the material’s properties, and
is a function of the Seebeck coefficient, α, the electrical conductivity, σ, the thermal
conductivity, κ and the temperature, T, as follows:
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zT =
α2σ

κ
T (2.4)

There are two independent contributions to the thermal conductivity, κ: κ =
κc + κl, where κc is the charge carrier thermal conductivity, and κl is the lattice
thermal conductivity. κc is coupled to the electrical conductivity, σ, through the
Wiedemann-Franz law[11]:

κc = σLT (2.5)

where L is the Lorentz number and T the temperature. In metals, where σ and thus
κc is large, κc dominates the thermal conductivity. Although equation 2.4 shows
that a high σ is desired, the corresponding high κc, and κ, of metals neutralizes the
temperature gradient that drives the generation of the current in the thermoelectric
materials. In addition, the Seebeck coefficient is inversely related to the charge carrier
concentration as shown in figure 2.2, and low for metals as discussed in section 2.1.2.
Consequently, metals are poor thermoelectric materials.

Figure 2.2: The figure of merit, zT, Seebeck coefficient, α, and the electrical and
thermal conductivity, σ and κ, as a function of the charge carrier concentration.
Figure from Snyder et al.[12]

Figure 2.2 shows that the optimum figure of merit is achieved for charge carrier
concentrations associated with narrow band gap semiconductors. Since the electrical
conductivity is lower, κc is reduced while the Seebeck coefficient is increased. Thus, the
semiconductors are better suited for thermoelectric applications than metals. More-
over, κ is determined by both κc and κl. Since the two contributions are independent
of each other, there are ways to further reduce the lattice thermal conductivity, and
thus the total thermal conductivity, without changing the electrical properties of the
semiconductor.
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Figure 2.3: The figure of merit as a function of temperature for state-of-the-art
thermoelectric materials. The dashed lines show the maximum zT values of the bulk
materials while the solid lines show the zT values of modified materials for example
by bulk nanostructuring. From Minnich et. al[13]

The figure of merit is a quantitative measure of the thermoelectric performance,
and is therefore convenient to use when multiple thermoelectric materials are com-
pared. However, it may give a false image of the applicability of the material. For
up-scaled industrial purposes, factors relating to the expense and complexity of the
material synthesis route, and the stability, durability, toxicity and environmental im-
pact of the material are also important. In figure 2.3, the figure of merit as a function
of temperature for the state-of-the-art thermoelectric materials is shown. Although
values of zT up to 2 is achieved, many of the materials are associated with high tox-
icity and environmental impact, and low material availability resulting in high cost.
Some examples of this are the bismuth and lead tellurides. Consequently, there is a
call for thermoelectric materials that are mechanically and thermally stable, inexpen-
sive and non-toxic, while the thermoelectric performance remains competitive with
the current state-of-the-art thermoelectrica. One of the promising alternatives is the
thermoelectric half-Heuslers.

2.2 Half-Heusler materials

2.2.1 Crystal structure

The arrangement of the atoms in a periodically ordered material is described by the
crystal structure. The smallest collection of atoms that is repeated throughout the
material, constitutes the unit cell. The unit cell is described by lattice vectors. The
vector between any two points in the lattice may be described by a linear combination
of the lattice vectors, r = aa1 + ba2 + ca3 where a, b and c are integers and a1, a2 a3

are the lattice vectors for the lattice.
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The half-Heusler materials crystallizes in a cubic crystal structure with space group
number 216. The space group number corresponds to F43m in the Hermann-Mauguin
notation.This structure comprises three joined fcc latices of three different elements,
X, Y and Z. The structure may also be illustrated as combination of the rock-salt,
XY, and the zinc blend, YZ, structure as shown in figure 2.4.

Figure 2.4: Illustration of the half-Heusler crystal structure F43m with space group
number 216

In the half-Heusler structure, the primitive cell (or unit cell) consists only of three
atoms, one of each element, as illustrated in figure 2.5. In the primitive cell, the lattice
vectors are not orthogonal, but 60 degrees on each other. Table 2.1 shows the lattice
vectors and the atomic positions relative to the Cartesian coordinates.

Figure 2.5: The primitive cell of the half-Heusler structure

Table 2.1: The coordinates of the primitive lattice vectors and atom positions
relative to Cartesian coordinates. a is the lattice parameter of the cubic half-Heusler
structure (F43m)

Cartesian coordinates Cartesian coordinates
Lattice vector x y z Atom x y z

a 0 a
2

a
2 X 0 0 0

b a
2 0 a

2 Y 1
4

1
4

1
4

c a
2

a
2 0 Z 1

2
1
2 0

While the half-Heusler structure loses some symmetry compared to the fcc struc-
ture of a single element, it is highly symmetric compared to most other thermoelec-
tric materials. Furthermore, the atomic packing factor remains close to that of the
(close-packed) fcc structure. These characteristics with the half-Heusler structure has
implications for the material’s properties as discussed in the next section.
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2.2.2 Material properties

The half-Heusler structure may comprise many different combinations of elements.
This flexibility is visualized in figure 2.6 where the colour coding of the elements
corresponds to the position of the atoms in figure 2.5. Many of these elements meet
the requirements of non-toxicity, abundance, and mechanical and thermal stability[6],
[7]. In addition, the half-Heuslers that comprise 18 valence electrons, are often narrow
band gap semiconductors. Consequently, they have high electrical conductivity and
high Seebeck coefficients[14].

Figure 2.6: The periodic table of elements illustrating the possible elements that
may comprise a half-Heusler structure. The colour coding corresponds to the atomic
positions of the half-Heusler shown in figure 2.5. Adapted from Graf et al.[14]

On the other hand, the high symmetry and close packing of the half-Heusler crystal
structure generally results in high thermal conductivity. Several half-Heusler materi-
als have thermal conductivity above 10 W/mK. This is almost five times the thermal
conductivity of commercial bismuth telluride[15], which crystallizes as a trigonal crys-
tal with lower symmetry than the half-Heusler structure. Despite the good electrical
properties of the half-Heuslers, the high thermal conductivity reduces the figure of
merit from equation 2.4 to the degree that the thermoelectric performance of the
half-Heuslers is not competitive with the bismuth tellurides.

Still, the thermal conductivity of many half-Heuslers is dominated by the lattice
contribution[9]. It may therefore be reduced without affecting the electrical properties
of the materials. One common approach to reduce the lattice thermal conductivity
is to dope the material with one or more specific element. This approach has been
successfully performed on the XNiSn (X = Ti, Zr, Hf) half-Heusler system where
the lattice thermal conductivity has been reduced by 45% at Hf-doping of TiNiSn
to Ti0.8Hf0.2NiSn[9]. Although some experimental studies indicate that this doping
results in phase-mixed materials, the reduction in thermal conductivity has also been
reproduced in computational studies by isoelectronic substitution of the X-position of
TiNiSn. This thesis will therefore explore the effect of isoelectronic substitution on
the lattice thermal conductivity.
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2.2.3 XNiBi, X=(Sc, Y or La), based half-Heuslers

Despite the amount of possible half-Heusler materials, only a few, such as the XNiSn
(X = Ti, Zr, Hf), is well studied. This study is a continuation of earlier work (see
Appendix A), where the lattice thermal conductivity of three half-Heuslers, XNiBi
(X = Sc, Y, La), was computed using atomistic simulation methods. The three half-
Heuslers were chosen based on a list of 75 thermodynaically stable structures developed
by Carrete and co-workers[7], and the requirements of lower material costs, higher
abundance and lower toxicity compared to the existing thermoelectric materials. While
the contribution from anharmonic scattering was investigated in the specialization
project, the goal of the present work is to extend the investigation of the XNiBi,
X=(Sc, Y or La), based half-Heuslers to include additional scattering mechanisms.
Consequently, the effect of the chemical composition of the half-Heuslers on the lattice
thermal conductivity is investigated through isoelectronic substitution. Moreover, the
effect of nanostructuring is explored.

2.3 Lattice dynamics

In this project, the mechanisms of heat conduction in XNiBi, X=(Sc, Y or La), based
materials are studied. Heat is conducted through materials by means of collective
atomic motions, or lattice vibrations. Mathematically, these lattice vibrations can be
described in terms of phonons. Phonons are wave packages that propagate through the
material with a certain velocity given by the frequency and direction of propagation,
and they can be described both by classical and quantum mechanical theory. In the
classical theory, the harmonic approximation is utilized. While the phonon dispersion
relation can be described this way, anharmonicity is not included in the theory. Thus,
properties requiring a finite phonon life time, such as the thermal conductivity, must be
accounted for using the quantum mechanical approach. This chapter therefore starts
out with an introduction to the classical approach before describing the quantum
mechanical theory underlying the thermal conductivity.

2.3.1 Potential energy and force constants

In section 2.2.1 the crystal structure was defined as a repetitive pattern with the
primitive cell being the smallest repeated unit. Each atom in a crystal structure has
a designated position, the equilibrium position. At 0K the atoms are resting in their
equilibrium positions. However, as the temperature is increased, and thermal energy
added to the system, the atoms start to deviate from their equilibrium positions with
a distance u. u is called the displacement, and contributes to the potential energy
of the system. The contribution from the displacements can be quantified by Taylor
expanding the potential energy as follows;

U = U0 +
1

2

∑
ij

∑
αβ

Φαβij u
α
i u

β
j +

1

3!

∑
ijk

∑
αβγ

Φαβγijk u
α
i u

β
j u

γ
k + · · · (2.6)

where U0 is the potential energy of the lattice at 0K, α, β, γ are indicies for the
Cartesian coordinates, uαi is the component in the α-direction of the displacement of

atom i (in the unit cell), and Φαβij = ∂2U

∂uαi ∂u
β
j

|u=0 and Φαβγijk = ∂3U

∂uαi ∂u
β
j ∂u

γ
k

|u=0 are the
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second and third order force constants, respectively. They describe the force on one
atom as other atoms are displaced from their equilibrium positions, as illustrated in
figure 2.7. Note that the first order force constant is not included in equation 2.6
because Φαi = ∂U

∂uαi
= 0

Figure 2.7: Illustration of the second and third order force constants. From N.
Shulumba [16]

The force constants determines the interactions between the atoms in the lattice,
and can describe the propagation of atomic vibrations. However, for each pair and
triplet of atom, there is a second and third order force constant matrix, Φij and Φijk,
each comprising nine and 27 elements, respectively. Consequently, there is, in theory,
an infinite amount of force constants. Fortunately, the amount of force constants can
be reduced by imposing a set of symmetry operations; Firstly, the periodicity of a
crystal lattice allows a shift of all atomic positions by a lattice vector without any
changes to the potential energy. Secondly, the derivatives of the potential energy are
commutative, and therefore the force constants are symmetric. Thirdly, the force
constants are invariant to the symmetry operations belonging to the space group of
the lattice. Lastly, translating all atoms in the lattice with an arbitrary displacement,
or rotating the lattice with an infinitesimal amount, effectively leaves the lattice, and
the potential energy, unchanged.

While the force constants describes the resulting force on one atom as one or
multiple other atoms in the lattice are displaced, the concept of phonons describes the
lattice vibrations through motion of plane waves. Although the two descriptions are
related to one another, the phonons are described in the reciprocal space rather than
the real space. Therefore, to understand the concept of phonons, the reciprocal space
must be introduced.

2.3.2 Reciprocal space

The conduction of heat through a material involves vibration of planes of atoms in the
crystal. While the crystal structure of an ordered material is conveniently described in
real space by the unit cell and the atomic coordinates, the reciprocal space is required
for a formal mathematical representation of the crystal planes[17].

The reciprocal space describes the orientation of the lattice planes. Therefore, the
lattice vectors of the real and reciprocal space are connected through a∗ = 2π

Vcell
b× c,

b∗ = 2π
Vcell

c×a and c∗ = 2π
Vcell

a×b where a, b and c are the real space lattice vectors,
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and a∗, b∗ and c∗ are the reciprocal lattice vectors. Similar to the real space lattice,
any point in a given reciprocal lattice can be described by the reciprocal lattice vector,
G = ha∗+ kb∗+ lc∗, where h, k, l are integers. Since the dimensions of the reciprocal
space are the inverse of length, the vectors describing the wavelength and direction of
propagating waves are well defined in reciprocal space:

u(r) = u0 e
iq·r (2.7)

where u0 is the amplitude, and q is the reciprocal wave vector. The magnitude of the
wave vector is related to the wavelength, λ, of the propagating wave by |q| = 2π

λ while
the direction of the wave vector corresponds the direction of propagation in the real
lattice. A consequence of this formalism is that any two vectors whose wave vectors
differ by one reciprocal lattice vector have the same effect on the real space lattice
point R = Ua + V b +Wc, as seen in the following;

q′ = q + G

G ·R = 2π(hU + kV + lW )

q′ ·R = k ·R + G ·R = q ·R + 2π(hU + kV + lW )

(2.8)

Since hU+kV+LW equals an integer, the waves with wave vector q and q’ are equiv-
alent.

uq′(R) = u0 e
iq′·R = u0 e

i(q·R+2π(hU+kV+lW )) = uq(R) (2.9)

Thus, all unique information is found in the space defined by the reciprocal lattice
vector, which is called the first Brillouin zone (1BZ).

2.3.3 Harmonic approximation

The wave description of the lattice vibrations is related to the force constants through
the vibrational Hamiltonian, Ĥ, and the equations of motion. The vibrational Hamil-
tonian is an expression of the total energy of the system, and includes the kinetic
energy and the potential energy of the vibrating lattice. In the harmonic approxima-
tion, the potential energy is truncated after the second order, such that the vibrational
Hamiltonian is written as:

Ĥ = U0 +
∑
i

∑
α

(pαi )2

2mi
+

1

2

∑
ij

∑
αβ

Φαβij u
α
i u

β
j (2.10)

where pαi is the component of the momentum in the α direction. Using the relations

u̇αi = ∂Ĥ
∂pαi

=
pαi
mi

and ṗαi = ∂Ĥ
∂uαi

= −
∑
j

∑
β Φαβij u

β
j , the equation of motion becomes

miü
α
i = −

∑
j

∑
β

Φαβij u
β
j (2.11)

The phonons may also be described as plane waves with wave vector q :

uαi =
1

mi

∑
q

Aqe
iq·r−ωt (2.12)
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Thus, inserting equation 2.12 back into equation 2.11 yields an expression relating the
frequency of the wave, ω, to the force constants, Φαβij :

miü
α
i = ω2uαi = −

∑
j

∑
β

Φαβij u
β
j (2.13)

(a)
(b)

Figure 2.8: Illustrations of a 1D diatomic lattice with a) acoustic phonon mode
where the atoms oscillate in-phase, and b) optic phonon mode where the atoms
oscillate out-of-phase

In a crystal with N atoms per unit cell, there are 3N solutions to equation 2.13
that all are functions of the wave vector. Therefore, the total solution, ω(q), which is
called the phonon dispersion relation, consists of 3N modes of vibration. Physically,
the different modes can be assigned to different patterns of vibration. For example,
the atoms can either vibrate in-phase or out-of-phase relative to each other as illus-
trated for a one-dimensional material comprising two different elements in figure 2.8a
and 2.8b. In a three-dimensional crystal, there are always three in-phase, or acous-
tic, modes, and 3N-3 out-of-phase, or optic, modes. Since the pattern of vibration
is different for the acoustic and the optic modes, they are associated with different
frequencies. The acoustic and optic modes can be clearly distinguished as the acoustic
modes goes to zero at the Brillouin zone center: ω → 0 as q → 0. Moreover, the
motion of the atoms can either be longitudinal (i.e. parallel to the propagation of the
phonon) or transverse (i.e. perpendicular to the propagation of the phonon). In some
cases, the symmetry of the lattice is broken such that the arrangements of the atoms
in the longitudinal and transverse direction are different. As a result, the energies and
frequencies associated with the longitudinal and transverse modes are different. This
is called longitudinal-transverse splitting. Note that the phonon dispersion relation
is positive. Negative values are indicative of instabilities in the crystal structure and
therefore a way to control whether the material is thermodynamically stable.

Since all unique information is contained within the 1BZ (as discussed in section
2.3.2), only wave vectors within the 1BZ are accounted for in the phonon dispersion
relation. Figure 2.9 shows the dispersion relation of the ScNiBi half-Heusler. There
are three atoms in the primitive cell, and therefore nine phonon modes. Three of
these are acoustic (showed as red in figure 2.9); one longitudinal and two transverse.
The remaining six modes are the longitudinal (in purple) and transverse (in blue)
optic modes. Due to different arrangements of the atoms in the transverse and lon-
gitudinal directions , the phonon dispersion relation of ScNiBi exhibits longitudinal
optic-transverse optic (LO-TO) splitting.

The colouring of the modes in figure 2.9 reflects the amount of heat that each mode
carries (i.e. red modes carry most heat and blue least). The amount of heat carried by
the mode λ is, amongst others, determined by the group velocity vλ = dωλ

dq . The group
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velocity is in turn related to the lattice thermal conductivity; κλ ∼ vλ, which will be
showed in the following section. As seen in figure 2.9, the slope of the acoustic modes
is steeper than that of the optic modes. Consequently, the acoustic modes contribute
more to the thermal conductivity than the optic.

Figure 2.9: The phonon dispersion relation, ω(q), of the ScNiBi half-Heusler. The
acoustic modes are coloured red, the longitudinal optic are purple and the transverse
optic are blue

In the harmonic approximation, the potential energy only includes the second or-
der force constants. Thus, the atoms in the lattice are treated as classical springs with
spring constant q. The spring constant represents the bond strength between pairs
of atoms, and is determined by the atom-atom interaction and the distance between
the atoms. While this approximation is convenient to find the phonon dispersion rela-
tion, it results in non-interacting phonons. Consequently, the phonons may propagate
through the material undisturbed, and properties such as the lattice thermal conduc-
tivity becomes infinite. In real materials, however, there are several mechanisms that
scatter the phonons and makes the lattice thermal conductivity finite. To account for
this anharmonicity, higher order terms must be included in the potential energy, and
the phonons must therefore be described by the theory of quantum mechanics rather
than by the classical approach.

2.3.4 Lattice thermal conductivity

The lattice thermal conductivity is found by solving the Boltzmann transport equation
(BTE) for phonons. The heat current in the α-direction, Jα, arising when a tempera-
ture gradient is applied in the same direction, ∇Tα, is determined by the group velocity
of the phonon modes λ, and the non-equilibrium distribution function, nλ:

Jα =
1

V

∑
λ

h̄ωλvλαnλα (2.14)

where vλα = dωλ
dq is the group velocity of the phonon mode λ, and ωλ is the phonon

dispersion relation. The non-equilibrium distribution function describes the number
of phonons of the mode λ. Assuming that the thermal gradient is small, the non-
equilibrium distribution function can be written as

nλα ≈ nλ − vλατλα
dnλ
dT

dT

dα
(2.15)
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where τλ is the relaxation time of the phonon mode λ. Since the equilibrium occupation
does not carry any heat, the heat current is given by Jα = 1

V

∑
λ h̄ωλvλαvλατλα

dnλ
dT

dT
dα .

Here, the heat capacity can be recognized as cλ = h̄ωλ
dnλ
dT . Fourier’s law, J = κ∇T ,

then relates the heat current to the thermal conductivity, κ:

καβ =
1

V

∑
λ

cλvαλvβλτβλ (2.16)

The temperature dependence of the thermal conductivity is determined by the
heat capacity, relaxation time and group velocity. At low temperatures, the tem-
perature dependence is dominated by the heat capacity, which is determined by the
Debye model[18]. Hence, κ varies as T3. At high temperatures, however, the lattice
vibrations become increasingly anharmonic, meaning that phonon-phonon scattering
events to an increasing degree determine the thermal properties of the material. This
phenomenon may be implicitly accounted for in the relaxation time, and causes the
thermal conductivity to decrease as 1

T .

2.3.5 Relaxation time

The relaxation time, ταλ, describes the time the phonon mode λ travels in the α-
direction before it is scattered, and depends on the mechanism of the scattering.
While there are several different scattering events that may occur in a lattice, this re-
port is mainly concerned with phonon-phonon (anharmonic), mass-disorder and grain
boundary scattering. In the relaxation time approximation, these scattering events
are considered independent of one another, and the total relaxation time, τtot, may be
expressed using Mathiesen’s rule:

1

τtot
=

1

τanh
+

1

τmd
+

1

τgb
(2.17)

where τanh, τmd and τgb are the anharmonic, mass-disorder and grain boundary relax-
ation times, respectively.

Anharmonic scattering

Anharmonic scattering occurs when phonon modes interact with each other. Even
though there is no limit to the order of the phonon interactions, the strength of four-
phonon interactions is, in general, two or three orders of magnitude weaker than
three-phonon interactions[19]. Consequently, only the three-phonon interactions are
considered, and the potential energy surfaces in equation 2.6 is truncated after the
third order force constant. The three-phonon interactions describe the creation of one
phonon from two other phonons, or the creation of two phonons from one. In figure
2.10, an example of the first case is shown. Although the phonons are not particles in
the classical sense, they are assigned a momentum, h̄ω, and must obey both energy
and momentum conservation.

q + q′ + q′′ = G

ω + ω′ + ω′′ = 0
(2.18)

On the other hand, the momentum is only conserved up to a reciprocal lattice vector,
G. In other words, since all unique information is found in the 1BZ, phonon interactions
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where the resulting phonons end up outside the 1BZ, are projected back into the 1BZ.
This is called Umklapp scattering and is illustrated in figure 2.10b for a three-phonon
interaction. Upon projection back to the 1BZ, the direction of the ohonon is reversed or
changed. Therefore, Umklapp scattering reduces the thermal conductivity as opposed
to normal phonon interaction, illustrated in figure 2.10a.

(a) (b)

Figure 2.10: Illustration of a) a normal three-phonon interaction, and b) an Umk-
lapp three-phonon interaction. The 1BZ is illustrated by the solid rectangle

Anharmonic relaxation time The anharmonic relaxation time is a complex func-
tion of the dispersion relation and the temperature. Considering only the three-phonon
interactions, the relaxation time is determined by the third order force constants
and the distribution functions of the interacting phonons λ, λ′ and λ′′ such that
τ−1
anh ∼

∑
ijk

∑
αβγ |Φ

αβγ
ijk |2 · f [nλ, nλ′ , nλ′′ ][20]. Here, f [nλ, nλ′ , nλ′′ ] is a functional of

the distribution functions which also accounts for the momentum conservation condi-
tions from equation 2.18.

Since optic phonons contribute less to the thermal conductivity than acoustic,
anharmonic scattering of the optic phonons does not reduce the thermal conductivity
significantly. However, the optic phonons may interact with the acoustic phonons
and increase the number of acoustic Umklapp scattering events. The degree of optic-
acoustic interaction is determined by the frequency gap between the acoustic and
optic phonons given by the phonon dispersion relation (see figure 2.9). Smaller gap
yields more optic-acoustic phonon interactions, and thus reduced acoustic phonon
relaxation time. In addition, the degree of anharmonicity depends on the temperature.
At medium and high temperatures, the phonons may access more phonon modes.
Hence, the amount of three-phonon scattering events increases, and the relaxation
time decreases.

Mass-disorder

Due to the high symmetry of the half-Heulsler crystal structure discussed in section
2.2.1, the lattice thermal conductivity is generally high. Alloying of the materials
introduces random variations in atomic mass and interatomic bond stiffness, and re-
duces the symmetry of the lattice. The alloying elements disturb the propagation
of the phonons and cause scattering as illustrated in figure 2.11. Consequently, the
thermal conductivity is reduced.
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Figure 2.11: Illustration of mass-disorder scattering. The red atom represents the
substitute in the 1D material. The substitute constitutes the scattering center.

Mass-disorder relaxation time The degree of disorder introduced in the crystal
structure upon alloying, may be described by the mass-disorder parameter, Mvar,
which is given by the deviation of the substituted element from the elemental average
of the crystal[19].

Mvar(i) =
∑
j

fj

(
1− mj(i)

m

)2

(2.19)

Here, mj(i) is the mass of element on the ith position, fj is fractional concentration
of the element on the ith position, and m =

∑
j fjmj the average mass of the lattice.

The mass-disorder relaxation time is then given by the phonon dispersion relation and
the mass-disorder parameter as

τ−1
md ∼ ω

2
∑
i

Mvar(i) (2.20)

While anharmonic scattering is highly temperature dependent, mass-disorder scat-
tering is less affected by the temperature. On the other hand, it also scatters the
phonons with the lowest frequencies less efficiently[21], [22].

Grain boundary scattering

Real materials are seldom monocrystalline, but are comprised of grains of different sizes
and orientations. At the boundaries between the grains, the phonons are scattered due
to the changing orientation of the crystal structure. In a way, the lattice symmetry
is broken across the boundary, causing the phonons to be scattered as illustrated in
figure 2.12. The grain boundary scattering is perhaps the most flexible scattering
mechanism considered in this thesis as it targets the phonons with mean free paths
comparable to the size of the grains. Thus, the grain sizes may be tuned through
material engineering to scatter the phonons carrying the most heat.
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Figure 2.12: Illustration of phonon scattering at a grain boundary, represented by
the black diagonal line.

Grain boundary relaxation time Although the description of the grain boundary
scattering is complex due to the variety of the boundaries that may exist, the scattering
may be estimated by assuming purely diffusive scattering across the boundaries. Then
the grain boundary scattering relaxation time is given by[23]:

1

τgb
=
vλ
L

(2.21)

where L is the grain size and vλ is the group velocity.





Chapter 3

Background for ab initio
simulations

Ab initio simulations based on density functional theory (DFT) utilize quantum me-
chanical laws and principles rather than empirical data to model thermodynamical
properties of materials. Thus, the methods may be applied to general cases where
experimental data is not available. However, DFT is a ground-state theory, and all
calculations are therefore performed at 0 K. The most crucial effects of thermal vibra-
tions may be included through the harmonic and quasiharmonic approximations, but
the effects of anharmonicity beyond the thermal expansion are still excluded[24]. In
the present work, the temperature dependent effective potential (TDEP) method is
utilized with DFT calculations to account for the anharmonicity of the system. This
chapter therefore introduces the fundamentals and application of the TDEP method.
In addition, an introduction to DFT and its application through the Vienna Ab initio
Simulation Package (VASP), is given.

3.1 Density functional theory

Density functional theory (DFT) is a quantum mechanical modelling method that
approximates the 0 K ground state electron density of many-body systems. Thus,
materials properties such as the lattice parameter and the electronic band gap may be
found. This section gives an overview of the fundamentals of DFT, but is not meant to
give a deep understanding of the theory. The reader is referred to the book ”Density
Functional Theory - A Practical Introduction” [25] for a more thorough introduction
to DFT.

3.1.1 Schrödinger Equation

The complete quantum state of a system is described by its wavefunction, ψ, which is
found by solving the Schrödinger equation. Although the Schrödinger equation may
be solved analytically for simple systems, such as the Hydrogen atom, the equation
becomes intractable for more complex many-body systems. In a crystalline solid, for
example, the interactions between nuclei and electrons, each individual nucleus and all
other nuclei, and each individual electron and all other electrons must be considered.

20



21 3.1. DENSITY FUNCTIONAL THEORY

The equation is simplified using the Born-Oppenheimer approximation, where the
motion of the electrons is assumed independent of the motion of the nuclei. The
time-independent Scgrödinger equation may then be written as− h̄2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri)

N∑
i=1

∑
j<i

U(ri, rj)

ψ = Eψ (3.1)

where ψ is the total electron wavefunction and E is the ground state energy. The three
terms in the bracket are, from left to right, the kinetic energy of each electron, the
interaction energy between each electron and the collection of (fixed) nuclei, and the
interaction energy between different electrons. Since the total electron wavefunction is
a superposition of the N individual wavefunctions, ψ = ψ1(r)ψ2(r)...ψN (r), equation
3.1 can be solved for each individual electron. Nevertheless, in a bulk material, the
system quickly becomes too complex and large to solve for the electron wavefunctions.

3.1.2 Hohenberg-Kohn theorems

While the many-body Schrödinger equation is too complicated to solve explicitly,
it may be solved implicitly by utilizing the Hohenberg-Kohn theorems. The first
Hohenberg-Kohn theorem states that the ground state energy from Schrödinger’s equa-
tion is a unique functional of the electron density. In other words, the ground state
energy, E, in equation 3.1, is related to the electron density, n(r).

E = E[n(r)] (3.2)

Moreover, the second Hohenberg-Kohn theorem says that the electron density that
minimizes the energy of the overall functional is the true electron density corresponding
to the full solution of the Schrödinger equation. Since the electron density is related
to the individual electron wavefunction, ψi, with

n(r) = 2
∑
i=1

ψ∗i (r)ψi(r) (3.3)

the N dimensional problem is in theory reduced to a ”simple” three dimensional op-
timization problem. Unfortunately, neither the first nor the second theorem reveals
the true form of the energy functional. Consequently, the energy functional must be
approximated. If equation 3.1 is rewritten for the individual electron wavefunctions,[

− h̄2

2m
∇2 + V (r) + VH(r) + VXC(r)

]
ψi(r) = εiψi(r) (3.4)

the two first terms in the bracket are the same as the two first in equation 3.1 (describ-
ing the electron kinetic energy and the interaction energy between electron and the
collection of nuclei). While the two first terms are known, the two last comprise the
unknown electron-electron interaction. However, the Hartree potential, VH , describing
the the repulsion between the electron in equation 3.4 and the electron density, may
be calculated:

VH(r) = e2

∫
n(r′)

|r− r′|
d3r′ (3.5)

The Hartree potential includes an electron self-interaction, which is corrected for by
the exchange-correlation potential, VXC .
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3.1.3 The Exchange-Correlation Functional

The self-interaction of the Hatree potential can be corrected for in several ways. The
local density approximation (LDA) takes advantage of the fact that the exchange-
correlation potential is precisely known for the uniform electron gas, where the electron
density is independent of the position, r. Thus, we assume that for every position, r,
the potential is equal to the known potential for constant electron density:

VXC = V electron gasXC [n(r)] (3.6)

Although the LDA is easily applied to many systems, it is not the most accurate
approximation. The general gradient approximation (GGA) takes the gradient of the
electron density into account. Several variations of the GGA have been developed.
In this project, the Perdew-Burke-Ernzerhof revised for solids (PBEsol) functional is
utilized. In PBEsol, empirical parameters are accounted for. Thus, the functional
may yield higher physical accuracies when properties such as the lattice parameter is
calculated[26].

3.1.4 Computational approaches to DFT

The electronic and ionic convergence loop

Since the Hartree potential (equation 3.5) is a function of the electron density, solving
the Schrödinger equation using the Hohenberg-Kohn theorems is an iterative process:

1. Guess an initial electron density

2. Calculate the Hartree potential from equation 3.5

3. Calculate the energy from the summed potentials given a specified exchange-
correlation functional

4. Solve for the single electron wavefunction in the Kohn-Sham equation (equation
3.4)

5. Using this single electron wavefunction and equation 3.3, find the electron density

6. Use the found electron density as the new ”guessed” density and go back to step
1

This loop is called the electronic convergence loop.
Once the minimum energy is reached, and the ground state electron density found,

the forces between the ions in the lattice can be calculated. The Hellmann-Feynman
force acting on an ion j, is given by:

FH−F
j = − δE

δRj
(3.7)

where E is the Kohn-Sham energy and Rj is the position of ion j.
When the equilibrium crystal structure is desired, the Hellmann-Feynman forces

are used to move the ions such that the net forces acting on the ions are minimized.
For every new configuration of the ions in the lattice, the electronic convergence loop
must be performed.
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Energy cutoff and k-point density

In crystalline solids, the single electron wavefunction from equation 3.4 is expressed
as a plane wave with the periodicity of the crystal lattice.

ψq(r) =
∑
G

cq+Ge
i(q+G)r (3.8)

where q is the wave vector, G is a reciprocal lattice vector and r is the position of the
ion in the unit cell.

Hence, to find the wavefunction for each q, the summation in equation 3.8 must
run over infinitely many G vectors. This would be computationally very costly. To
limit the summation, the total energy of the wavefunction is considered:

E =
h̄2

2m
|k + G|2 (3.9)

From thermodynamics, we know that the system seeks to minimize its energy. There-
fore, the lower energy states are more important than the higher. Thus, only the G
vectors up to a set maximum, Gcut, are considered. Then the cutoff energy is given by:

Ecut = h̄2

2mG
2
cut. The appropriate cutoff energy, Ecut, is found for each unique system,

and is determined by the convergence of the system with respect to the cutoff energy.
Higher Ecut yields better convergence, but requires more computational power.

Another numerical simplification is to discretize the 1BZ to avoid continuous inte-
gration over all possible wave vectors within the 1BZ. The integration space is replaced
by discrete mesh, and the density of the mesh points determines the accuracy of the
calculations. Higher k-point density yields more accurate calculations, but are also
more computationally costly. The minimum density for which the system converges
is therefore chosen as the k-point density used in the calculations on that system.

Pseudopotentionals

The computational cost of the DFT calculations may be further reduced freezing
the core electrons and the nucleus, and replacing them with a constant potential
that matches various physical properties[25]. This is called the pseudopotential. The
pseudopotential is given for isolated atoms, but there may be several variations for
one single element depending on the number of valence electrons. While potentials
with many valence electrons, so-called hard potentials, can be more accurate, they
require higher cutoff energies. Thus, they are more computationally exhausting, and
not appropriate for all calculations. The soft potentials, on the other hand, have fewer
valence electrons and require lower cutoff energies, but at the expense of the accuracy
of the calculations.

3.1.5 Accuracy and limitations of DFT calculations

The accuracy of the DFT calculations is affected in two ways. The numerical accuracy
describes the deviation of the calculated results from the true mathematical results,
and is determined by the convergence of the calculations. Consequently, the energy
cutoff, k-point density and pseudopotentials control the numerical accuracy. On the
other hand, completely converged calculations does not necessarily provide physically
accurate results. This is a consequence of the approximated exchange-correlation
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functional, which may yield inaccurate Hellmann-Feynmann forces (equation 3.7), and
reduce the physical accuracy of the calculations. Since the distance between the atoms
in a lattice affects the phonons of that lattice (as discussed in section 2.3.3), it is
important to achieve physically accurate lattice constants in this project. Therefore,
the PBEsol functional is utilized.

3.1.6 Vienna Ab initio Simulation Package

The Vienna Ab initio Simulation Package (VASP) is a computer simulation program
that uses DFT for atomic scale materials modelling. In the following, a brief introduc-
tion to the basic input files of VASP is given. More details about the input parameters
may, however, be found in Appendix B. In addition, the reader is referred to the ar-
ticles by Kresse and coworkers[27]–[30] for a better understanding of the theoretical
background of the simulation package. A practical introduction to VASP may also be
found in the VASP manual[31].

Input files

The four most basic and important input files in VASP are the INCAR, POSCAR,
POTCAR and KPOINTS files. All VASP calculations require (at least) these files to
perform the DFT calculations. While the files are described briefly in the following,
no specific examples are given. The reader is referred to B for examples of POSCAR,
KPOINTS and INCAR files.

INCAR The INCAR file defines what we want VASP to calculate. In addition,
it describes how the calculations are performed. In the following, the most impor-
tant INCAR tags/parameters for the calculations performed in the present work are
described.

POSCAR The POSCAR file gives information on the unit cell or supercell, i.e. the
position of each atom as well as the length and direction of the lattice vectors. A
supercell is an assembly of several unit cells, and is used in calculations where a larger
structure is required to obtain the desired accuracy.

POTCAR The POTCAR file defines the pseudopotentials to be used for each dif-
ferent atom in the system.

KPOINTS The KPOINT file defines the k-point density for the calculations. The
density is given as a number of k-points to be used in each direction. For the face-
centred cubic lattice, the k-mesh is given as a×a×a, where a is the number of k-points
on the mesh in the a lattice direction.

Output files

There are a number of output files from VASP. In this project, however, the following
files are the most important:
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OUTCAR The OUTCAR file is the most important output file in VASP. It contains
all the information from the performed calculation including total energies, forces,
pressures in the lattice and band gaps.

CONTCAR The CONTCAR file has valid POSCAR format, and is written after
every ionic step. it can therefore be used for ”continuing” jobs. For ab initio molecular
dynamics (discussed in section 3.2), the CONTCAR contains the actual coordinates
and velocities of the atoms in the supercell.

3.2 Ab initio molecular dynamics

Despite the fact that the system is assumed to be in its ground state (i.e. at 0 K) in
DFT calculations, ab initio molecular dynamics (AIMD) provides a way to simulate
real time evolution of the system at finite temperatures using DFT[16]. In the Born-
Oppenheimer approximation the motion of the electrons and the nuclei is considered
independent of one another (as discussed in section 3.1.1) because the nuclei move
slower than the electrons. Thus, the nuclei may be considered as classical particles
that obey the Newtonian mechanics, ṙi = pi

mi
and ṗi = fi, where ri is the position of,

pi is the momentum of, mi is the mass of and fi is the force action on atom i in lattice
with n atoms. The forces acting on the atoms at a given time are calculated using
DFT as described in the previous section. These forces are related to the velocity and
position of the atoms at the next time step, δt, through numerical integration of the
equations of motion. The integration is performed using a Verlet algorithm where the
position is expanded around t[31];

ri(t+ δt) = ri(t) + ṙi(t)δt+ r̈i(t)δt
2 (3.10)

In addition, the average velocity of the atoms in the lattice is controlled by the tem-
perature in the canonical ensemble:

1

2
m(ṙ2) =

kBT

2

⇒ 1

2

3n∑
i=1

miṙ
2
i =

kBT

2

(3.11)

Consequently, the velocity and position of the atoms at time, t, are controlled by the
set temperature, T, and the forces calculated using DFT.

Since the starting point of AIMD calculations is the lattice with all atoms in their
equilibrium position, an initial displacement of the atoms is required to perform the
numerical integration. Practically, this is done by assigning an initial velocity to each
individual atom such that the equilibration time is minimized.

AIMD is an integral part of VASP, and specifications about how to run AIMD
calculations in VASP is found in Appendix B.2.

3.3 Temperature dependent effective potential method

The temperature dependent effective potential (TDEP) method is a set of algorithms
and methods for finite temperature lattice dynamics. TDEP runs with VASP or any
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other software providing atomic displacement and force data. This could be DFT-
based software or software running molecular dynamics using empirical force fields.
The TDEP method accounts for anharmonic effects (beyond the thermal expansion)
by including terms beyond the second order in the Taylor expansion of equation 2.6.
Thus, finite temperature properties may be calculated directly.

In this project, the TDEP method is utilized with VASP to calculate the dispersion
relations and thermal conductivity of the half-Heusler alloys. The following section
is mostly based on the journal articles by Olle Hellman and coworkers[32]–[34], and
may be reviewed if a more thorough understanding of the TDEP method is desired.
In addition, the TDEP website[23] gives a practical overview of the background and
features of the TDEP method.

3.3.1 Ab initio molecular dynamics

In the TDEP method, the effects of finite temperatures are included in the forces acting
on the lattice through the AIMD described in section 3.2. The AIMD is performed
in the canonical ensemble[34]. Thus, the lattice is allowed to vibrate according to the
set temperature as described in equation 3.11. The forces acting on the atoms in the
lattice at a time given time, and thus at given atomic displacements, are calculated
using DFT. During one AIMD run, Ntdep pairs of forces, F ti , and displacements, uti,
for the atom in position i are sampled with time spacing tstep = ttot

Ntdep
. The collection

of forces acting on the lattice at the time, t, Ft
DFT is considered the ”true” forces, and

includes both harmonic and anharmonic contributions.

3.3.2 Model Hamiltonian

Although the forces calculated using DFT include anharmonicity, the force constants
are required to access the finite temperature properties (as discussed in the previous
chapter). A model Hamiltonian expanded to the third order force constant is therefore
created.

Ĥmodel = U0 +
∑
i

∑
α

(pαi )2

2mi
+

1

2

∑
ij

∑
αβ

Φ̃αβij u
α
i u

β
j +

1

3!

∑
ijk

∑
αβγ

Φ̃αβγijk u
α
i u

β
j u

γ
k (3.12)

where Φ̃αβij and Φ̃αβγijk are the symmetry irreducible model force constants, and uαi is
the actual displacement from the AIMD in section 3.3.1. The (model) forces acting
on the lattice is then given as

F̃αi =
∑
j

∑
β

Φ̃αβij u
β
j +

1

2

∑
jk

∑
βγ

Φ̃αβγijk u
β
j u

γ
k (3.13)

The model forces, F̃ can now be compared to the ”true” forces at each time step,
Ft

DFT, and the model force constants updated such that the difference between the
”true” and the model forces is minimized:

min
Φ

∆F =
1

Ntdep

Ntdep∑
t=1

|Ft
DFT − F̃t|2 (3.14)

As opposed to the force constants defined in equation 2.6, the model force constants
may be interpreted more as polynomial fitting parameters than derivatives of the
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potential. Therefore they implicitly include all orders of anharmonicity, which are
explicitly present in the ”true” forces from the AIMD. The second and third order
(model) force constants can now be used to calculate the harmonic and anharmonic
properties such as the phonon dispersion relation and lattice thermal conductivity as
described in section 2.3.3 and 2.3.4.

3.3.3 Computational cost

Even though the AIMD provides a route to directly extract the anharmonic properties
of the material, a large number of time steps is required for the force constants to
converge. Performing DFT force calculations with the required accuracy therefore
becomes a costly and time consuming procedure. The TDEP method solves this
problem by performing low precision AIMD force calculations yielding low accuracy
force constants. These force constants are then utilized together with a Monte Carlos
routine to generate n structures with different displacements (in accordance with the
force constants). Here, n << Ntdep, but still span the time space such that the
displacements of the different structures are independent of one another. The ”true”
forces acting on each structure are calculated with high accuracy using DFT, and high
accuracy force constants are found using the same procedure as described in section
3.3.2.

Size of the supercell

The AIMD described in section 3.2 is a real space method. Since the wavelengths
of the phonons may be larger than the size of the unit cell, the AIMD may have to
be performed on supercells comprising several unit cells[16]. Since the cost of the
DFT calculations scales with the cube of the system size, the convergence of the force
constants with respect to the size of the supercell should be tested to avoid extra cost.

3.3.4 Implementation of TDEP

Generally, the TDEP method involves the following steps:

1. Relaxation of the supercell using DFT

2. Performance of an Ntdep-step low-accuracy AIMD calculation on the relaxed
supercell

3. Extraction of the pairs of forces and displacements from the Ntdep steps of the
AIMD calculations

4. Calculation of the third and second order force constants

5. Generation of n displaced structures based on the force constants. Here n <<
Ntdep

6. Performance of high-accuracy static DFT force calculation on each of the n
structures

7. Extraction of the pairs of forces and displacements from the n structures

8. Calculation of the third and second order force constants
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9. Calculation of temperature dependent properties such as phonon dispersion re-
lation and lattice thermal conductivity

3.3.5 Simulation of alloys

This thesis aims on simulating the effect of partial substitutions on the X-position
of the XNiBi, X=(Sc, Y or La), half-Heuslers. As a substitute is introduced to the
lattice, the original symmetry of the lattice is broken, causing mass-disorder scatter-
ing of the phonons to occur as discussed in section 2.3.5. Accordingly, the number of
symmetry irreducible force constants increases. Thus, computations of the force con-
stants soon become intractable since fewer symmetry operations can be applied to the
calculations as described in section 2.3.1. Consequently, methods where the number
of symmetry irreducible force constants are reduced, must be utilized to calculate the
thermal properties of alloys.

Virtual crystal approximation

In the virtual crystal approximation (VCA), the full symmetry of the original lattice is
preserved upon alloying[35]. This is achieved by inserting an averaged element in the
position where the substitution occurs. Consider, for example, the A1−xBx alloy. In
the case of real alloying, the A and B elements are randomly distributed on the atomic
sites of the lattice such that the total concentration of A is 1−x and of B is x. In the
virtual crystal, on the other hand, a ”new” element C = (1−x)A + xB is created and
placed on all atomic sites. Consequently, the potential of the virtual crystal consists
of the real-space average of the individual components in the real alloy. This results
in a lattice where the full symmetry of the original material is retained, but at the
expense of the local environmental features of the real crystal[36]. In alloys where the
properties of the individual elements are very different, the local environment may
vary throughout the alloy, resulting in a breakdown of the VCA, and the failure of the
calculations of the alloy properties[36]–[38].

Special quasirandom structure

Another way to describe an alloy is through a special quasirandom structure (SQS)[39].
In the SQS, the substitutes are introduced in a random fashion resembling the real
alloy. Thus, variations in the local environment of the lattice may be accounted for.
However, not only the computation of the force constants become challenging, but
also the computation of a representative configuration of the alloy from the numerous
choices of possible configurations. In many cases, this representative configuration is
found by statistically sampling over the possible configurations, and thus finding the
most likely structure given the symmetry of the lattice and the elements it comprises.
As the number of elements in the lattice increases, it soon becomes computationally
infeasible to compute the statistically representative configuration this way. The SQS,
however, is based on matching of the correlation function of the alloy with that of the
infinite, random structure. Consider again the A1−xBx alloy. Any given arrangement
of A and B may be described by geometric figures f = (k,m) where f has k vertices
spanning the mth nearest neighbours as illustrated in figure 3.1. Each site in a figure
is assigned with a spin value, Ŝi, which is 1 for A- and -1 for B-occupied sites. The
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correlation between A- and B-occupied sites of figure f is then given by:〈
Πf

〉
=
∑
σ

Πf (σ)ρ(σ) (3.15)

where σ is the configuration of the alloy with N sites, Πf (σ) = 1
NDf

∑
l Πf (l, σ) is the

lattice average over all locations l of symmetry related figures f, Πf (l, σ) =
∏
Ŝi is the

product of spin variables for figure f , and Df is the number of figures per site. ρ(σ)
is the normalized configurational density matrix[39].

Figure 3.1: Illustration of a figure with three vertices spanning the second nearest
neighbours

The correlation functions,
〈
Πf

〉
, of an infinite, random alloy A1−xBx can be com-

puted explicitly. Thus, a representative configuration of the alloy may be found by
comparing the correlation functions of that configuration to those of the infinite, ran-
dom structure. The configuration for which the difference between the correlation
functions of the configuration and the infinite, random alloy is below a set value, is
chosen as the random alloy. In the cases where the correlation functions of the infinite,
random alloy cannot be computed explicitly, statistical sampling must be performed
to find an estimate for the correlations. While this is computationally exhausting,
the procedure can be performed only once for a given material. For example, the
”infinite, random” correlation functions of the AxByC1−x−yYZ half-Heusler are valid
for all combinations of A, B and C, as well as Y and Z. Consequently, computing the
random structure becomes much less computationally costly than standard, statistical
sampling of the random alloys, which must be performed for every concentration of a
specific alloy.

Once a representative alloy for a given concentration of the elements on the position
of the substitution is found, the TDEP method utilizes the AIMD of VASP to find pairs
of forces and displacements as described in section 3.3.1. Now, to reduce the number
of irreducible force constants such that the calculations of the force constants become
tractable, the symmetry of the original lattice is reinstated[16]. Consequently, the force
constants of randomly alloyed structures may be calculated without an unreasonable
computational cost.

Utilization of the SQS with the TDEP method largely follows the same steps
as described in section 3.3.4. The AIMD calculation is performed on the SQS, but
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with the geometry constraints from the original lattice imposed on the calculation of
the force constants. Utilization of the SQS may also impose different supercell size
requirements as a certain size also is required to achieve reliable SQS’s.





Chapter 4

Computational Approach

In this chapter the calculations performed in the present wok are described. While
few VASP simulations were performed here, the calculations are based upon VASP
simulations from the specialization project. Therefore, examples of VASP input files
and parameters are given in Appendix B. In addition, the procedure used in the
calculations utilizing the special quasirandom structure (SQS) are given in this chap-
ter. Even though the calculations were unsuccessful, experience from the calculations
performed in this thesis may be helpful in later attempts.

4.1 Implementation of SQS in the TDEP method

The implementation of SQSes in the TDEP method was investigated using 3x3x3
SQSes (i.e. three primitive cells in each lattice direction) of the binary half-Heusler
alloy ScxLa1−xNiBi. Note that while the 3x3x3 supercell gives converged results with
respect to the thermal conductivity, figure 4.1 shows that a 4x4x4 supercell is required
for converged 4th shell correlations functions of figures (1,1), (1,2) and (2,1). For
converged 4th shell correlation functions of figure (2,2) even larger SQSes may be nec-
essary. As the figure (2,2) in the 4th shell defines the correlation between neighbours
relatively far from one another, they are, however, generally not required not be fully
converged. Despite the convergence test of figure 4.1, 3x3x3 SQSes were explored in
this project due to the greatly increased cost of the DFT force calculations of the
larger supercells. Thus, calculations on 4x4x4 supercells were not feasible to perform
within the schedule of this project.

32
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Figure 4.1: Deviation of the fourth shell correlation functions of figure (k,m) from
the correlation function of the infinite random half-Heusler alloy. On the primary
axis, Π1,1, Π1,2 and Π2,1 are shown, while Π2,2 is shown on the secondary y-axis

The 3x3x3 SQSes were relaxed over three loops with ISIF=2, ISIF=7 and ISIF=2
for the first, second and third loop, respectively (see Addendix B for an explanation
of the VASP tag ISIF). The other INCAR tags were kept constant and as described
in Appendix B.1.1. Ab initio molecular dynamics was performed on the relaxed struc-
tures, and the forces and displacements successfully extracted. To reduce the number
of irreducible force constants to be calculated, the TDEP method reinstates the sym-
metry of the underlying lattice as described in section 3.3.5. However, due to a flawed
implementation of the symmetry operations imposed on the SQS in the version of
the TDEP method available to this project, the force constant calculations yielded
nonphysical results. Even though it is possible to correct the mistakes in the method,
the corrections were too time consuming to be performed before the conclusion of
this project. Consequently, this thesis is unable to present results from calculations
utilizing the SQS approach with the TDEP method.

4.2 Thermal properties of ScxYyLa1−x−yNiBi

In this part of the project, the thermal properties of the ScxYyLa1−x−yNiBi alloys
were investigated using the TDEP method implemented with the virtual crystal ap-
proximation (VCA). The following section describes the methods used to calculate the
thermal properties considering both anharmonic and mass-disorder scattering. There-
after, the calculations investigating different contributions to the thermal properties
are described.
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4.2.1 Lattice thermal conductivity

The calculations of the total thermal properties (i.e. considering both anharmonic and
mass-disorder scattering) utilized Vegard’s law. Thus, the lattice parameters and force
constants of the alloys were found by linearly interpolating the corresponding prop-
erties of the parent materials. For example, the lattice parameter of Sc0.25La0.75NiBi
would be aSc0.25La0.75 = 0.25 · aScNiBi + 0.75 · aLaNiBi. The validity of Vegard’s law
was tested for 2x2x2 SQSes of the binary compositions ScxLa1−xNiBi, ScxY1−xNiBi
and YxLa1−xNiBi as shown in figure 4.21. As the lattice parameters and force con-
stants of the alloys were interpolated from the parent materials, no DFT calculations
were required to calculate the thermal properties. In other word, the steps 1-8 in
the procedure in section 3.3.4 were omitted, and only the last step was performed.
However, the properties of the parent materials were calculated using the steps 1-8 in
the specialization project.

Figure 4.2: Lattice parameter of ScxLa1−xNiBi (in blue), ScxY1−xNiBi (in green)
and YxLa1−xNiBi (in red) as a function of the composition x. The crosses represent
the calculated values while the solid lines are linear interpolations

The thermal properties were calculated for the binary half-Heuslers ScxLa1−xNiBi,
ScxY1−xNiBi and YxLa1−xNiBi with x = (0.125, 0.25, 0.5, 0.75, 0.875), as well as the
ternary half-Heusler ScxYyLa1−x−yNiBi with x = (0.125, 0.25, 0.33, 0.5, 0.75) and
y = (0.125, 0.25, 0.33, 0.5, 0.75). The calculation of the thermal conductivity was
performed with the tetrahedron integration method for q-point meshes of 29, 31, 33
and 35 q-points in each lattice direction, and the thermal conductivity was interpolated
using a least square method and found for q-distance equal 0. Note that in these
calculations, both the anharmonic and the mass-disorder scattering are accounted for.

1Note that Vegard’s law first was tested using a part of VASP that utilizes VCA (not to be confused
with the VCA approach utilized in TDEP). However, the calculations failed. Thus, SQSes were used
for the testing
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4.2.2 Contributions to the thermal properties

Anharmonic vs mass-disorder scattering

In the relaxation time approximation, the two scattering mechanisms considered in
the calculations described in the previous section, are independent. Thus, the ther-
mal conductivity limited by the anharmonic scattering may be calculated separately
from that limited by the mass-disorder scattering. However, this separation is not
yet implemented in the TDEP method. Therefore, the anharmonic thermal conduc-
tivity, κanh, was calculated by linearly interpolating the lattice parameters and force
constants according to the composition of the alloy while the X-position mass was
allowed to remain that of the X-position element of the majority constituent. The
thermal properties were then calculated as described in the previous section for the
binary half-Heuslers ScxLa1−xNiBi, ScxY1−xNiBi and YxLa1−xNiBi with x = (0.125,
0.25, 0.5, 0.75, 0.875), as well as the ternary half-Heusler ScxYyLa1−x−yNiBi with x
= (0.125, 0.25, 0.33, 0.5, 0.75) and y = (0.125, 0.25, 0.33, 0.5, 0.75).

Impact of interpolation

Changes in the thermal properties may also arise from other properties of the alloys.
The impact of interpolation of the lattice parameter and the force constants on the
thermal properties was investigated through calculations where both, one or neither of
these properties were interpolated. In the cases where one or neither of the properties
were interpolated, the non-interpolated property was taken from the parent material
constituting the majority component of the alloy. In Sc0.25La0.75NiBi, for example,
the majority component would be LaNiBi, and any non-interpolated property would
be taken from LaNiBi.

An overview of the calculations performed on the bulk ScxYyLa1−x−yNiBi half-
Heusler alloys is shown in table 4.1. For simplicity, the calculations are divided into
five categories, where the two first include the calculations described in section 4.2.1
and 4.2.2. The three last include the calculations described in this section. In category
III, only the lattice parameter was interpolated from the parent materials, while the
force constants were taken from one of the parents. In category IV, only the force
constants were interpolated from the parents, and in category V neither the lattice
parameter nor the force constants were interpolated, but merely taken form one of the
parents. For all categories, except category II, mass substitution on the X-position
according to the composition of the material was performed. As mentioned, the mass-
substitution was omitted in category II to exclude the mass-disorder scattering. Note,
however, that isotope scattering from the parent material still is included here.
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Table 4.1: Overview of the calculations performed on ScxYyLa1−x−yNiBi using the
VCA approach

Category Force constants Lattice parameter
X-position element Composition x, y I II III IV V ΦSc ΦY ΦLa aSc aY aLa

ScxLa1−x 0.125, 0.25, 0.5, 0.75, 0.875 x x
ScxY1−x 0.125, 0.25, 0.5, 0.75, 0.875 x x
YxLa1−x 0.125, 0.25, 0.5, 0.75, 0.875 x x

ScxYyLa1−x−y 0.125, 0.25, 0.33, 0.5, 0.75, 0.875 x x
ScxLa1−x 0.25, 0.5, 0.75 x x
ScxLa1−x 0.25, 0.5, 0.75 x x
ScxY1−x 0.25, 0.5, 0.75 x x
ScxY1−x 0.25, 0.5, 0.75 x x
YxLa1−x 0.25, 0.5, 0.75 x x
YxLa1−x 0.25, 0.5, 0.75 x x
ScxLa1−x 0.25, 0.5, 0.75 x x
ScxLa1−x 0.25, 0.5, 0.75 x x
ScxY1−x 0.25, 0.5, 0.75 x x
ScxY1−x 0.25, 0.5, 0.75 x x
YxLa1−x 0.25, 0.5, 0.75 x x
YxLa1−x 0.25, 0.5, 0.75 x x
ScxLa1−x 0.25, 0.5, 0.75 x x x
ScxLa1−x 0.25, 0.5, 0.75 x x x
ScxY1−x 0.25, 0.5, 0.75 x x x
ScxY1−x 0.25, 0.5, 0.75 x x x
YxLa1−x 0.25, 0.5, 0.75 x x x
YxLa1−x 0.25, 0.5, 0.75 x x x

Category I: Both lattice parameter and force constants interpolated from parents. Including anharmonic and mass-disorder scattering

Category II: Both lattice parameter and force constants interpolated from parents. Excluding mass-disorder scattering

Category III: Only lattice parameter interpolated from parents. Including anharmonic and mass-disorder scattering

Category IV: Only force constants interpolated from parents. Including anharmonic and mass-disorder scattering

Category V: Neither lattice parameter nor force constants interpolated from parents. Including anharmonic and mass-disorder scattering
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Impact of strain During the course of the above calculations, the difference be-
tween the first and fourth category came out surprisingly small. The question of
whether the calculations accounted for the increase and decrease of the lattice param-
eter was therefore raised. To evaluate the effect of strain, the thermal conductivity
of pure ScNiBi (artificially) strained by -5%, -1%, 1% and 5% was calculated in two
ways. In the first approach, the supercell was (artificially) strained and the force con-
stants calculated for the strained structure using the TDEP method (i.e. following
the procedure described in section 3.3.4 from point 2). In the second approach, the
force constants from ScNiBi was used, and the thermal conductivity was calculated
using the strained structure (i.e. omitting step 1-8, and only performing step 9 in the
procedure in section 3.3.4)

4.3 Reducing the lattice thermal conductivity fur-
ther

As discussed later in this thesis, the effect of alloying on the X-position in the XNiBi,
X=(Sc, Y or La), is limited. Consequently, other methods to reduce the thermal
conductivity was investigated.

4.3.1 Grain boundary scattering

One way to reduce the lattice thermal conductivity is to introduce grains to the
bulk material, as discussed in section 2.3.5. The lattice thermal conductivity of the
ScxLa1−xNiBi half-Heusler alloy with x=(0, 0.25, 0.5, 0.75, 1) and grain size of 50 nm
in diameter was investigated using the VCA approach based on interpolation of the
lattice parameter and force constants from ScNiBi and LaNiBi as described in section
4.2.1. Thus, both anharmonic and mass-disorder scattering was accounted for. The
grain boundary scattering was included through the constant scattering term given in
equation 2.21.

4.3.2 Isoelectronic substitution on the Bi-position

The effect of alloying with As and Sb on the Bi-position of YNiBi was investigated as a
third way to reduce the lattice thermal conductivity. The calculations were performed
using the VCA approach (described in section 4.2.1) with the lattice parameter and
force constants from YNiBi. Thus, the lattice thermal conductivity of YNiBixAs1−x
and YNiBixSb1−x with x=(0, 0.25, 0.5, 0.75) was found.



Chapter 5

Results

The results presented in this chapter are all calculated using the VCA approach as
described in section 4.2. In the following section, both anharmonic and mass-disorder
contribution contribute to the thermal properties. In addition, the properties of the al-
loy are interpolated from the parent materials. Later, however, different contributions
will be considered alone, or in specified combinations.

5.1 Thermal properties of ScxYyLa1−x−yNiBi

The thermal properties in this section comprise both anharmonic and mass-disorder
contributions as well as the contributions from the interpolated lattice parameter and
force constants. In other words, the calculations belong to category I (see table 4.1).

5.1.1 Phonon density of states

The phonon density of states (DOS) of ScxLa1−xNiBi, ScxY1−xNiBi and YxLa1−xNiBi
with x=(0.25, 0.5, 0.75) is shown in figure 5.1. The acoustic, longitudinal optic and
transverse optic phonon modes are plotted in red, purple and blue, respectively. The
figure illustrates that as the average mass of the X-position element decreases (i.e.
x goes from 0 to 1), the acoustic-optic phonon band gap increases. In addition, the
DOS of the majority constituent is plotted. The phonon DOS of the ScxY1−xNiBi
and YxLa1−xNiBi binaries are more closely related to that of the majority constituent
than ScxLa1−xNiBi is. An exception from this general trend occurs for x=0.5 where,
naturally, the phonon DOS of the alloy is located somewhere in-between the two parent
half-Heuslers.
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Figure 5.1: Phonon DOS projected on the phonon modes at 300 K for, from left to
right, ScxLa1−xNiBi, ScxY1−xNiBi and YxLa1−xNiBi, and a-c) x=0.25, d-f) x=0.50,
and g-i) x=0.75. The colours in the phonon DOS corresponds to acoustic (red),
longitudinal optic (purple) and transverse optic (blue) phonon modes

While the the shape of the phonon DOS depends on the elements and concen-
trations of the elements on the X-position, the site projection of the elements within
each phonon mode is similar for all of the alloys. Figure 5.2, showing the site-projected
phonon modes for ScxLa1−xNiBi, ScxLa1−xNiBi and ScxLa1−xNiBi with x=(0.25, 0.5,
0.75), illustrates that the acoustic phonon modes are dominated by Bi while the optic
phonon modes are dominated by the X-position elements.
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Figure 5.2: Phonon DOS projected on the atomic sites at 300 K for, from left to
right, ScxLa1−xNiBi, ScxY1−xNiBi and YxLa1−xNiBi, and a-c) x=0.25, d-f) x=0.50,
and g-i) x=0.75

5.1.2 Lattice thermal conductivity

Figure 5.3 shows the lattice thermal conductivity for ScxLa1−xNiBi, ScxY1−xNiBi and
YxLa1−xNiBi as a function of the composition, x, at a fixed temperature, T = 300
K. While the crosses represent the calculated values, the solid lines are fourth degree
polynomial interpolations. The minimum value for ScxLa1−xNiBi, ScxY1−xNiBi and
YxLa1−xNiBi is 4.31 W/mKat 24% Sc, 7.13 W/mK at 25% Sc and 5.02 W/mK at
25% Y, respectively.
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Figure 5.3: Lattice thermal conductivity of ScxLa1−xNiBi, ScxY1−xNiBi and
YxLa1−xNiBi as a function of the composition, x, at 300 K. The minimum con-
ductivity of ScxLa1−xNiBi, ScxY1−xNiBi and YxLa1−xNiBi is shown in green, red
and blue, respectively. The crosses represent the calculated values, the solid lines are
fourth degree polynomial interpolations.

The cumulative lattice thermal conductivity at 300 K is given as a function of the
phonon mean free path in figure 5.4a, 5.4b and 5.4c for ScxLa1−xNiBi, ScxY1−xNiBi
and YxLa1−xNiBi, respectively.

Figure 5.4: Cumulative lattice thermal conductivity as a function of the mean
free path at 300 K of a) ScxLa1−xNiBi, b) ScxY1−xNiBi and c) YxLa1−xNiBi for
x=(0.25, 0.5, 0.75)

A ternary plot of the lattice thermal conductivity for ScxYyLa1−x−yNiBi at 300 K
is given in figure 5.5. The minimum thermal conductivity, 4.31 W/mK, is found for the
binary alloy ScxLa1−xNiBi around x=0.25. The maximum thermal conductivity occurs
at ScNiBi, but decreases rapidly as the concentration particularly of La increases.
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Figure 5.5: Ternary plot of the lattice thermal conductivity for ScxYyLa1−x−yNiBi
at 300 K. The lower left corner corresponds to LaNiBi, the lower right to ScNiBi and
the top corner to YNiBi

5.2 Contributions to the thermal properties

5.2.1 Anharmonic vs mass-disorder scattering

Figure 5.6: Ternary plot of the anharmonic lattice thermal conductivity of
ScxYyLa1−x−yNiBi at 300 K. The lower left corner corresponds to LaNiBi, the lower
right to ScNiBi and the top corner to YNiBi
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In this section, the results from the category II calculations (see definitions in table
4.1) are presented. Thus, both the lattice parameter and the force constants of the
alloys are linearly interpolated, but only the anharmonic contributions are considered.
The anharmonic lattice thermal conductivity of ScxYyLa1−xNiBi, κanh, at 300 K is
shown in figure 5.6. The minimum κanh is 5.77 W/mK and occurs for LaNiBi. Note
that the maximum κanh occurs not at ScNiBi, but Sc0.5Y0.25La0.25NiBi. Similarly, the
maximum κanh on the ScxLa1−xNiBi binary alloy occurs at Sc0.75La0.25NiBi rather
than ScNiBi. On the ScxY1−xNiBi and YxLa1−xNiBi, however, the maximum κanh
is found for ScNiBi and YNiBi, respectively. Note also that, in general, κanh is lower
on the YxLa1−xNiBi side than the ScxY1−xNiBi. However, the rapid decrease in the
thermal conductivity as ScNiBi is alloyed with Y and/or La seen in figure 5.5, is not
present in figure 5.6.

Figure 5.7: Phonon DOS at 300 K for Sc0.5Y0.25La0.25NiBi and
Sc0.75Y0.125La0.125NiBi with a) both anharmonicity and mass-disorder included,
and b) only anharmonicity included

To investigate the composition of the maximum κanh further, the phonon DOS
of Sc0.5Y0.25La0.25NiBi is compared to that of Sc0.75Y0.125La0.125NiBi in figure 5.7.
Figure 5.7a shows the phonon DOSes including contributions both from anharmonic
and mass-disorder scattering (i.e. showing category I calculations). Here, the longi-
tudinal optic-transverse optic phonon band gap increases from Sc0.5Y0.25La0.25NiBi
to Sc0.75Y0.125La0.125NiBi. Simultaneously, the total lattice thermal conductivity in-
creases from 5.19 W/mK to 6.63 W/mK. In figure 5.7b where only the anharmonic
contributions are considered, however, the longitudinal optic-transverse optic phonon
band gap decreases from Sc0.5Y0.25La0.25NiBi to Sc0.75Y0.125La0.125NiBi. This corre-
sponds to a decrease in the anharmonic thermal conductivity from 16.48 W/mK to
11.74 W/mK as illustrated in figure 5.6.

5.2.2 Impact of interpolation

In figure 5.8, the lattice thermal conductivity of ScxLa1−xNiBi for category I, III and
V calculations (defined in table 4.1) at 300 K are shown. The crosses in the figure
defines the calculations while the solid lines are 4th degree polynomical interpolations.
The category III calculations in figure 5.8a, κIII, utilize the force constants of ScNiBi,
whereas those of LaNiBi are used in figure 5.8b. Similarly, figure 5.8a and b show the
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results from the category V calculations, κV, using the lattice parameter and force
constants from ScNiBi and LaNiBi, respectively. The figures illustrate that κIII and
κV are similar both when properties from ScNiBi and from LaNiBi are used. κIII,La

and κV,La are also relatively similar to κI. κIII,Sc and κV,Sc, on the other hand, fail to
estimate the lattice thermal conductivity of ScxLa1−xNiBi when x<0.8.

Figure 5.8: Lattice thermal conductivity of ScxLa1−xNiBi at 300 K for category III
and IV calculations using lattice parameter and/or force constants from a) LaNiBi
and b) ScNiBi. For comparison, the total thermal conductivity, κI, is shown in both
a and b. The crosses in the figure defines the calculations while the solid lines are
4th degree polynomical interpolations.

The same trend is found for κIII compared to κI in ScxLa1−xNiBi and ScxLa1−xNiBi.
When the force constants of the least anharmonic parent half-Heusler is used, κIII of
the most anharmonic parent (i.e. the opposite end point) deviates from κI as illus-
trated in figures 5.9a and b. If the force constants from the most anharmonic parent
is used, on the other hand, figures 5.9c and d show that κIII follow κI relatively well.
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Figure 5.9: Category I and III calculations of the lattice thermal conductivity at
300 K of a) and c) ScxY1−xNiBi, and b) and d) YxLa1−xNiBi. The category III
calculations use force constants from a) ScNiBi, b) YNiBi, c) YNiBi and d) LaNiBi.
The crosses in the figure defines the calculations while the solid lines are 4th degree
polynomical interpolations.

Effect of strain

The effect of uniform strain (i.e. equal elongation or compression of the lattice in each
lattice direction) on the total lattice thermal conductivity of ScNiBi is shown in figure
5.10. κTDEP describes the thermal conductivity calculated with the complete TDEP
method, meaning that step 2 through 9 of the list in section 3.3.4. κVCA is the thermal
conductivity calculated with a ”VCA like” approach where the force constants from
the equilibrium ScNiBi are used directly in the thermal conductivity calculations (i.e.
all steps, but step 9 in the list of section 3.3.4 are omitted). The crosses in the figure
defines the calculations while the solid lines are 4th degree polynomical interpolations.
In the figure, negative strain describes compression while positive describes elongation
of the lattice in each lattice direction. The inset in figure 5.10 illustrates that κTDEP

deviates from κVCA even for small changes in the lattice parameter. However, figure
5.11 shows that the phonon DOS of the 1% and -1% strained ScNiBi are relatively
similar to that of the equilibrium (i.e. unstrained) ScNiBi.



CHAPTER 5. RESULTS 46

Figure 5.10: Lattice thermal conductivity of ScNiBi as a function of strain at 300
K. Negative strain describes compression in each lattice direction of the supercell
while positive strain describes the elongation of the supercell in each lattice direc-
tion. κVCA is the thermal conductivity calculated with the ”VCA like” approach (i.e.
using the force constants of the equilibrium ScNiBi with artificially strained super-
cell). κTDEP is the thermal conductivity calculated with the complete TDEP method
(i.e. from step 2 through 9 in the list in section 3.3.4). The inset shows the lattice
thermal conductivity between -1% and 1% strain. The crosses in the figure defines
the calculations while the solid lines are 2th degree polynomical interpolations.

Figure 5.11: Phonon DOS at 300 K of 1% strained and -1% strained ScNiBi. The
phonon DOS of the equilibrium ScNiBi is shown as the shaded area.
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5.3 Reducing the lattice thermal conductivity fur-
ther

5.3.1 Effect of grain boundary scattering

In the above presented results, a monocrystalline bulk material is considered. However,
figure 5.12 illustrates the effect of introducing grains to the bulk material. With
grains of size 50 nm, the lattice thermal conductivity of ScNiBi is reduced with 60%,
of LaNiBi with 35% and minimum value of ScxLa1−xNiBi with 45% compared to
the bulk material. While the global minimum still occurs for the alloy, the decrease
upon alloying, particularly of ScNiBi, is significantly reduced compared to the effect
of alloying on the bulk sample. Moreover, the composition for which the minimum
occurs is shifted towards ScNiBi in the nanocrystalline material.

Figure 5.12: Lattice thermal conductivity of bulk ScxLa1−xNiBi compared to
ScxLa1−xNiBi with 50 nm grains at 300 K as a function of the composition x. The
crosses in the figure defines the calculations while the solid lines are 4th degree poly-
nomical interpolations.

5.3.2 Effect of alloying on the Bi-position

While the alloying on the X-position, affects the optic phonons (as shown in figure
5.1), figure 5.13 shows that alloying on the Bi-position (i.e. the Z-position) with As or
Sb affects the acoustic phonon modes. Particularly for YNiBixAs1−x as x goes from
0.25 to 0.5, the contribution to the acoustic phonon modes from Bi and As increases,
but the trend (i.e. increasing contribution as x increases) is also seen for the rest of
the YNiBixAs1−x alloys and the YNiBixSb1−x alloys. In addition, the acoustic-optic
phonon band gaps increase as x increases, resulting in an increasing deviation from
the phonon DOS of YNiBi. This is also illustrated in figure 5.14.
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Figure 5.13: Phonon DOS projected on the sites of YNiBixAs1−x (left column)
and YNiBixSb1−x (right column) for a-b) x=0.25, c-d) x=0.5 and e-f) x=0.75. The
phonon DOSes are calculated for 300 K
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Figure 5.14: Phonon DOS projected on the phonon modes of YNiBixAs1−x (left col-
umn) and YNiBixSb1−x (right column) for a-b) x=0.25, c-d) x=0.5 and e-f) x=0.75.
The phonon DOSes are calculated for 300 K. The colours in the phonon DOS cor-
responds to acoustic (red), longitudinal optic (purple) and transverse optic (blue)
phonon modes. The phonon DOS of YNiBi is shown in black.

The lattice thermal conductivity of the YNiBixAs1−x and the YNiBixSb1−x binary
alloys at 300 K is shown in figure 5.15. The crosses represent the calculated values
while the solid lines are 4th degree polynomial fits of the calculated values. The
minimum lattice thermal conductivity is 2.36 W/mK for YNiBixAs1−x at x=0.36 and
3.52 W/mK for YNiBixSb1−x at x=0.38. Note that while the thermal conductivity
is lower for the YNiBixAs1−x binary as long as x is greater than 0.1, it is higher for
YNiAs than for YNiSb.
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Figure 5.15: Lattice thermal conductivity of YNiBixAs1−x and YNiBixSb1−x at
300 K. The crosses in the figure defines the calculations while the solid lines are 4th
degree polynomical interpolations.
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Discussion

6.1 Effect of alloying

In the specialization project, the calculated lattice thermal conductivity was found
to decrease from ScNiBi to LaNiBi. The reason for the decrease was ascribed to the
increase in the mass of the X-position element upon substitution of Sc with Y or
La, which cause the acoustic-optic phonon band gap to decrease. As a result, the
anharmonic scattering of the acoustic phonon modes increases and the lattice thermal
conductivity decreases. Upon partial substitution on the X-position of one element
with another, a similar trend is observed. Figure 5.1 shows that the acoustic-optic
phonon band gap increases as the average mass of the X-position elements decreases.
For example, the acoustic-optic phonon band gap of ScxLa1−xNiBi decreases as x goes
from 1 to 0. Similarly, the phonon band gap of ScxY1−xNiBi is larger than that of
ScxLa1−xNiBi, which is larger that of YxLa1−xNiBi .

As opposed to the pure XNiBi, X=(Sc, Y or La), half-Heuslers, however, the anhar-
monic scattering is not the only scattering mechanism in the ScxYyLa1−xNiBi alloys.
The partial substitution on the X-position introduces mass-disorder to the lattice,
which causes the phonons to be scattered. The degree of mass-disorder scattering de-
pends on the mass-disorder parameter from equation 2.19, which is shown in figure 6.1
for the ScxYyLa1−x−yNiBi ternary alloy. The lattice thermal conductivity is therefore
a function of the anharmonicity and the mass-disorder. Since the anharmonic and
mass-disorder relaxation time are independent of one another in the relaxation time
approximation, the anharmonic thermal conductivity, κanh, may be calculated sepa-
rately from the mass-disorder thermal conductivity, κmd. Figure 5.6 shows κanh for
ScxYyLa1−x−yNiBi. In accordance with the trend in the phonon DOSes of the binary
alloys discussed earlier in this section, κanh is lowest for the YxLa1−xNiBi binary where
the acoustic-optic phonon band gap is lowest, highest for the ScxY1−xNiBi binary and
reaches a minimum for LaNiBi. However, the composition for which κanh reaches a
maximum conflicts with the presented hypothesis. This phenomenon is discussed at
the end of this section.
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Figure 6.1: The mass-disorder parameter of ScxYyLa1−x−yNiBi. Pure ScNiBi,
YNiBi and LaNiBi is found in the lower right, upper and lower left corner, respectively

Equation 2.20 and 2.16 show that the inverse of the mass-disorder parameter de-
scribes κmd. Since the mass-disorder parameter is highest for the ScxLa1−xNiBi bi-
nary alloy, κmd is expected to be smaller for ScxLa1−xNiBi than for ScxY1−xNiBi and
YxLa1−xNiBi. This behaviour is almost the exact opposite of κanh. κmd and κanh will
therefore counteract each other such that the minimum total lattice thermal conduc-
tivity occurs between the minimum of the individual contributors. This is illustrated
in the ternary plot of the total lattice thermal conductivity at 300 K in figure 5.5,
where the minimum thermal conductivity is found at the ScxLa1−xNiBi binary for
24% Sc and 76% La. Note that the minimum thermal conductivity occurs slightly
closer to LaNiBi than expected if, as suggested in figure 5.6 and 6.1, κmd was the
exact opposite of κanh. This indicates that κanh contributes more to the total lattice
thermal conductivity than κmd causing a shift of the minimum total lattice thermal
conductivity towards the minimum of κanh at LaNiBi.

The domination of κanh may be caused by the nature of the anharmonic and
mass-disorder scattering. In figure 5.2, the phonon DOSes projected on the atomic
sites of ScxLa1−xNiBi, ScxY1−xNiBi and YxLa1−xNiBi show that the acoustic phonon
modes are dominated by Bi whereas the optic phonon modes are dominated by the X-
position elements. Consequently, mass-disorder primarily induces scattering of the op-
tic phonon modes. The anharmonic scattering, on the other hand, affects the acoustic
phonon modes, as discussed at the beginning of this section. Consequently, increasing
the degree of anharmonicity scatters the heat carriers more efficiently than increas-
ing the mass-disorder does. Thus, the minimum total lattice thermal conductivity is
shifted towards LaNiBi.

The surprising location of the maximum κanh was mentioned briefly in the begin-
ning of the section. As discussed above, the minimum κanh follows the trend of decreas-
ing thermal conductivity as the concentration of La increases, and reaches its minimum
at LaNiBi which exhibits the highest degree of anharmonicity of the three pure half-
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Heuslers. The maximum κanh, on the other hand, occurs for Sc0.5Y0.25La0.25NiBi,
rather than the pure half-Heusler exhibiting the lowest degree of anharmonicity, Sc-
NiBi. A possible explanation for this phenomenon may rest in the phonon DOS of
the binary and ternary alloys containing Sc. Figure 5.7 shows the phonon DOS of
Sc0.5Y0.25La0.25NiBi compared to Sc0.75Y0.125La0.125NiBi for mass-disorder scatter-
ing included (in a) and excluded (in b). In the case of the anharmonic DOS (figure
5.7b, the gap between the longitudinal and transverse optic modes decrease slightly
from Sc0.75La0.25NiBi to Sc0.875La0.125NiBi. This may cause an increase in the scat-
tering of the optic phonon modes in the latter compared to the first composition,
resulting in the unexpected decrease in the anharmonic thermal conductivity. When
the mass-disorder scattering is included, however, the gap between the longitudinal
and transverse optic increases from Sc0.5Y0.25La0.25NiBi to Sc0.75Y0.125La0.125NiBi.
Since the total lattice thermal conductivity increases from Sc0.5Y0.25La0.25NiBi to
Sc0.75Y0.125La0.125NiBi, there might be a relation between the LO-TO phonon band
gap and the lattice thermal conductivity.

Interestingly, this phenomenon seems only to occur for binary and ternary com-
pounds containing moderate amounts of Sc and La. For example, κanh decreases
from Sc0.75La0.25NiBi to Sc0.875La0.125NiBi, but increases as x goes from 0 to 1 both
for the ScxY1−xNiBi and the YxLa1−xNiBi binary alloys. The mechanism of this
behaviour is not fully understood. Artifacts in the simulations may cause the irreg-
ularities. However, they may also be caused by changes in the interatomic forces at
these compositions, which affect the force constants, and thus κanh.

6.2 Impact of force interpolation

Figures 5.8a and b show the lattice thermal conductivity of ScxLa1−xNiBi for category
III and V calculations (defined in table 4.1) with the lattice parameter and/or the force
constants from LaNiBi and ScNiBi, respectively. In addition the total lattice thermal
conductivity, κI, is shown in blue. In figure 5.8b the thermal conductivity with force
constants from ScNiBi, κIII,Sc, deviates significantly from κI for increasing concentra-
tion of La on the X-position. At LaNiBi the deviation reaches its maximum at 115.5%
as shown in table 6.1. As discussed previously, the anharmonic thermal conductivity
dominates the total lattice thermal conductivity for high concentrations of La in the
alloy. Replacing the interpolated force constants with force constants from ScNiBi,
effectively removes the anharmonic contribution to the thermal conductivity resulting
in higher thermal conductivity for the La-rich alloys than if the anharmonic scattering
(in terms of the interpolated force constants) also was accounted for. In other words,
the behaviour of κIII,Sc in figure 5.8b supports the hypothesis of the relation between
the anharmonic and mass-disorder thermal conductivity from the previous section;
for the compositions close to ScNiBi, where the mass-disorder parameter shown in
figure 6.1 is largest, the mass-disorder thermal conductivity dominates, causing κIII,Sc

to follow the total lattice thermal conductivity. However, as the concentration of La
increases, the anharmonic thermal conductivity dominates, and κIII,Sc starts to devi-
ate from the total lattice thermal conductivity. At LaNiBi there is no mass-disorder
on the X-position. κIII,Sc, having the force constants of ScNiBi and no mass-disorder
to reduce the thermal conductivity, therefore increases to a value close to the total
lattice thermal conductivity of ScNiBi. Equivalent trends are seen for the category
III thermal conductivity of ScxY1−xNiBi and YxLa1−xNiBi using the force constants
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from ScNiBi and YNiBi, respectively. This is illustrated in figures 5.9a and b.

Table 6.1: The deviations of κIII from κI. Here, κIII* denotes the lattice thermal
conductivity utilizing the force constants from the most anharmonic parent half-
Heusler. For ScxLa1−xNiBi, for example, this is κIII,La. κIII** denotes the lattice
thermal conductivity utilizing the force constants from the least anharmonic parent
half-Heusler. In ScxLa1−xNiBi, this is κIII,Sc. The deviations are calculated as
κIII(material)
κI(material)

−1. Thus, in ScxLa1−xNiBi, the deviation of κIII* from κI is calculated

at ScNiBi:
κIII,La(ScNiBi)

κI(ScNiBi)
− 1 ≈ 7.6%. The definitions of the category I and III

calculations from table 4.1 are included.

Material κIII*
Deviation
from κI (%)

κIII**
Deviation
from κI (%)

ScxLa1−xNiBi κIII,La(ScNiBi) 7.6 κIII,Sc(LaNiBi) 115.5
ScxY1−xNiBi κIII,Y(ScNiBi) 12.2 κIII,Sc(YNiBi) 17.0
YxLa1−xNiBi κIII,La(YNiBi) -20.4 κIII,Y(LaNiBi) 70.6

* κIII from the most anharmonic parent (e.g. for ScxLa1−xNiBi, this is κIII,La)

** κIII from the least anharmonic parent (e.g. for ScxLa1−xNiBi, this is κIII,Sc)

Category I: Both lattice parameter and force constants interpolated from parents. Including an-
harmonic and mass-disorder scattering. (Also referred to as the total lattice thermal conductivity)

Category III: Only lattice parameter interpolated from parents. Including anharmonic and mass-
disorder scattering

The thermal conductivity of the opposite case, κIII,La shown in figure 5.8a, where
the interpolated force constants are replaced by force constants from LaNiBi, behaves
in line with the argumentation above as x goes from 0; the LaNiBi force constants
yield a higher degree of anharmonicity than the interpolated force constants while the
mass-disorder remains the same. As a result, κIII,La follows the same trend as the
total lattice thermal conductivity, but is slightly smaller. According to the hypoth-
esis discussed earlier in this section, the anharmonicity induced by the LaNiBi force
constants is expected to prevent κIII,La from increasing as much as the total lattice
thermal conductivity does when x approaches 1. However, figure 5.8a shows that
κIII,La larger than the total lattice thermal conductivity at ScNiBi. The same trend is
observed for ScxY1−xNiBi in figure 5.9c.

In figure 5.9d, however, κIII,La is lower for YNiBi than κI. Nevertheless, κIII,La

also exhibits closer relation to the total lattice thermal conductivity than κIII,Y. Thus,
κIII,La behaves in line with the general trend; the lattice thermal conductivity utilizing
the force constants from the most anharmonic parent, κIII*, deviates less form the
total lattice thermal conductivity, κI, than the lattice thermal conductivity utilizing
the force constants of the least anharmonic parent, κIII**. This trend is illustrated in
table 6.1 when comparing the left with the right column.

6.3 Validity of linearly interpolated force constants

As discussed in section 2.3.3, the interaction strength between atoms in the lattice
depends among others on the distance between the atoms. Changes in the lattice
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parameter therefore affect the force constants, and ultimately the thermal conductivity.
However, figure 5.8 shows that κIII and κV are similar. Since the only difference
between κIII and κV is whether the lattice parameter is interpolated or not, this
indicates, in contradiction to the theory of section 2.3.3, that the thermal conductivity
is largely insensitive to changes in the lattice parameter.

Consequently, the question of whether changes in the lattice parameter are cor-
rectly accounted for in the calculations, is raised. Figure 5.10 shows the lattice thermal
conductivity of ScNiBi as a function of changes in the lattice parameter for calculations
utilizing the complete TDEP method, κTDEP, and calculations using the force con-
stants of the equilibrium ScNiBi, κVCA. The latter approach is similar to that used to
calculate the thermal conductivity of the half-Heusler alloys. As for the results shown
in figure 5.8, κVCA is quite insensitive to changes in the lattice parameter. κTDEP,
however, varies significantly as the lattice parameter increases or decreases, indicating
that the calculations used to find κVCA does not account correctly for variations in
the lattice parameter.

On the other hand, the comparability between κVCA and κTDEP may be question-
able. The complete TDEP approach used to find κTDEP artificially strains the lattice
of ScNiBi. Consequently, the atoms are forcibly displaced from their equilibrium po-
sition, and interatomic forces are created. This non-equilibrium structure forms the
basis for the thermal conductivity calculations, and greatly affects the calculations of
the second and third order force constants. In the calculation κVCA, on the other
hand, the strained structure is assumed to be at equilibrium such that no interatomic
net forces are present. As a result, the two calculations may not be comparable. Nev-
ertheless, for very small changes in the lattice parameter, figure 5.11 shows that the
phonon dispersion relations of the strained structures diverge little from that of the
equilibrium structure. κTDEP and κVCA may therefore be comparable in this range.
Since κTDEP still is more sensitive to changes in the lattice parameter than κVCA, the
results indicate that the changes in the lattice parameter are not correctly accounted
for. While this also may be true for the calculations of the thermal conductivity of the
ScxYyLa1−x−yNiBi half-Heusler alloys, the error might be corrected for through the
interpolation of the force constants. Since the changes in the lattice parameter affects
the force constants, the linear interpolation performed to achieve the force constants
of the alloys in the present work, may not be valid. Conclusive testing of the validity
of the linear interpolation of the force constants of the alloys is contingent on the ex-
istence of reliable results that inherently accounts for changes in the lattice parameter
and force constants. Such results may be found through experiments. Another source
may be the results of the calculations utilizing the SQS approach, if and when those
are available.

6.4 Reducing the lattice thermal conductivity fur-
ther

6.4.1 Effect of grain size

The cumulative lattice thermal conductivity is given as a function of the mean free
path in figure 5.4a, b and c for ScxLa1−xNiBi, ScxY1−xNiBi and YxLa1−xNiBi at 300
K. Since the cumulative thermal conductivity levels out around mean free paths of
300 nm for all of the binary alloys, the phonons with mean free path less than 300
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nm must be scattered in order to reduce the thermal conductivity. In fact, since the
phonons with mean free path between 0 and 50 nm contribute most to the thermal
conductivity, these are the phonons to scatter for the most efficient reduction of the
lattice thermal conductivity.

As discussed in section 2.3.5, the introduction of grains to the bulk materials in-
duces yet another scattering mechanism; the grain boundary scattering. Since phonons
with mean free paths comparable to the size of the grain are scattered at the grain
boundary, figure 5.4 indicates that the grain sizes in ScxLa1−xNiBi, ScxY1−xNiBi
and YxLa1−xNiBi should be ranging from 0 to 50 nm in order to reduce the thermal
conductivity most. Indeed, the minimum lattice thermal conductivity at 300 K of
ScxLa1−xNiBi with 50 nm grains is 2.4 W/mK found for Sc0.5La0.5NiBi. This is a
reduction of 45% compared to that of the bulk binary alloy as illustrated in figure
5.12.

Although the lattice thermal conductivity of LaNiBi decreases significantly upon
nanostructuring (with 35%), the thermal conductivity of the nanostructured ScNiBi
is reduced with 60%. Thus, the lattice thermal conductivity of the nanostructured
ScNiBi becomes comparable to that of the LaNiBi. This confirms the efficiency of the
grain boundary scattering. Moreover, it indicates that the grain boundary scattering
largely affects the acoustic phonon modes. Consequently, the effect of the grain bound-
aries is smaller in LaNiBi where anharmonicity already targets the acoustic phonon
modes, than in the less anharmonic ScNiBi. This is supported by the shift of the
minimum lattice thermal conductivity towards ScNiBi in the nanostructured alloys. If
the grain boundary scattering largely affects the acoustic phonon modes, the effect of
increasing anharmonicity introduced as Sc is substituted with La is diminished. Thus,
the effect of mass-disorder increases, and the minimum lattice thermal conductivity
is shifted towards the maximum of the mass-disorder parameter at x=0.8 (see figure
6.1). In other words, the trends in figure 5.12 confirm the hypothesis from section
6.1 that the increasing concentration of La, increases the anharmonicity of the al-
loy which increases the scattering of the acoustic phonon modes. The contribution
from the increased anharmonicity therefore dominates over the contribution from the
mass-disorder scattering, which targets the optic phonon modes.

While the presented results indicate a large effect of nanostructuring on the lat-
tice thermal conductivity, introducing nanosized grains may also reduce the electrical
conductivity. This is shown for various materials[40]–[44] although a reduction of the
grain sizes to a few hundred nanometers has increased the figure of merit from equa-
tion 2.4 in several half-Heuslers[45]–[48]. A decrease in the grain size down to 50 nm,
however, may affect the electrical conductivity more, and thus result in lower figure of
merit than expected. In addition, the synthesis of materials with grain sizes down to
50 nm may be challenging. Even though grain sizes below 100 nm have been reported
for other materials using ball milling and spark plasma sintering[49], sizes of 200-300
nm are reported for half-Heuslers using the same methods[45]–[48].

6.4.2 Effect of alloying on the Bi-position

Although the partial isoelectronic substitution on the X-position in XNiBi, X=(Sc, Y
or La), reduces the lattice thermal conductivity, the mass-disorder primarily scatters
the optic phonon modes as discussed in section 6.1 and 6.4.1. Because scattering of
the acoustic phonon modes decreases the thermal conductivity more efficiently than
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scattering of the optic, the site of the alloying is important. As the acoustic modes
are dominated by Bi for all of the ScxYyLa1−x−yNiBi alloys, alloying on the Bi- (or
Z-) position would perhaps decrease the thermal conductivity more efficiently than the
substitution on the X-position. Moreover, the phonon DOSes projected on atomic sites
in figure 5.2 indicate a general relationship between the mass of an element and the
phonon mode it dominates; the acoustic phonon modes are dominated by the heaviest
element in the lattice while the lightest dominates the optic. This trend is also seen
in other half-Heuslers (such as TiNiSn, ZrNiTi and HfNiSn[50]). Thus, to achieve
mass-disorder scattering of the acoustic phonon modes, alloying on the site of the
heaviest element of the half-Heusler should be performed. Moreover, for the Z-position
elements to remain the dominant contributors to the acoustic phonon modes, the
substitute should be heavier than the remaining two elements of the structure. On the
other hand, the mass-disorder scattering also depends on the mass-disorder parameter
which increases for increasing mass difference. Hence, the choice of substitutes on the
Z-position is a balance between the desire to dominate the acoustic phonon modes,
and to maximize the mass-disorder parameter.

In the case of the XNiBi, X=(Sc, Y or La), half-Heuslers, two of the elements than
may be used for isoelectronic substitution are As and Sb. While both of these are
lighter than La and heavier than Sc, only Sb is heavier than Y. On the other hand,
the average mass of Bi and As is smaller than the mass of Y only for concentrations of
less than 10% Bi. Consequently, the Z-position elements in YNiBixAs1−x are expected
to either dominate or, in the case of x < 0.1, contribute strongly to the acoustic phonon
modes. Since the mass-disorder parameter is maximized when Bi is substituted with
As, as illustrated in figure 6.2, the lattice thermal conductivity is expected to decrease
more for alloying with As than with Sb.

Figure 6.2: Mass-disorder parameter of YNiBi1−x−yAsxSby . Pure YNiBi, YNiSb
and YNiAs is found in the lower right, upper and lower left corner, respectively

Even though the lattice thermal conductivity of neither YNiAs nor YNiSb is cal-
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culated in the present work, it may be approximated using the lattice parameter and
force constants of YNiBi. In table 6.1, the lattice thermal conductivity using the force
constants from the most anharmonic parent, κIII*, shows reasonable agreement with
the total lattice thermal conductivity, κI. On the other hand, since As and Sb are
lighter than Bi, the results from the specialization project indicate that the acoustic
phonon modes of YNiAs and YNiSb might experience a shift towards higher frequen-
cies. In that case, the acoustic-optic phonon band gap is reduced, and the scattering of
the acoustic phonon modes increased. Consequently, YNiAs and YNiSb may be more
anharmonic than YNiBi, and the approximation of the lattice thermal conductivity
less accurate, as illustrated by the deviations of κIII** from κI in table 6.1. Nonethe-
less, an idea of the behaviour of YNiBi when Bi is substituted with As or Sb may be
achieved using the lattice parameter and force constants of YNiBi. Thus, estimates of
the lattice thermal conductivity of YNiBixAs1−x and YNiBixAs1−x is given in figure
5.15.

As expected, figure 5.13 showing the site-projected phonon DOS of YNiBixAs1−x
and YNiBixSb1−x indicates that the Z-position elements dominate the acoustic phonon
modes. Thus, the mass-disorder efficiently reduces the lattice thermal conductivity
to 2.4 W/mK and 3.5 W/mK found for YNiBi0.36As0.64 and YNiBi0.38Sb0.62, respec-
tively. These compositions correspond with the compositions of each binary exhibiting
the highest mass-disorder. Thus, the dominance of the mass-disorder contributions to
the lattice thermal conductivity is emphasized.

Moreover, in line with the expectations, the lattice thermal conductivity of
YNiBixAs1−x is generally lower than that of YNiBixSb1−x. However, at composi-
tions close to x=0, the lattice thermal conductivity of YNiBixAs1−x exceeds that of
YNiBixSb1−x. Since As is lighter than Sb, the acoustic-optic phonon band gap is
smaller in YNiAs compared to YNiSb as suggested in figure 5.14. Here, the acoustic
and optic phonon modes are increasingly overlapping as x decreases, and overlapping
more in YNiBi0.25As0.75 than in YNiBi0.25Sb0.75. According to the discussion in sec-
tion 6.1, the lattice thermal conductivity of YNiAs should therefore be smaller than
that of YNiSb. Rather than contradicting the hypotheses presented earlier, however,
this phenomenon may arise from errors caused by the utilization of the YNiBi lattice
parameter and force constants. Similar to ScxLa1−xNiBi with LaNiBi force constants,
the lattice thermal conductivity as x approaches 0 may be overestimated. On the
other hand, the phonon DOSes exhibit less overlap and closer resemblance to those
of YNiBi as x goes to 1. Hence, the approximated lattice thermal conductivity of
YNiBixAs1−x and YNiBixSb1−x may be closer to the true value as the compositions
approaches YNiBi.

Although the lattice thermal conductivity resulting from alloying on the Bi-position
is an estimate, the results presented here indicate a large improvement to the lattice
thermal conductivity compared with that of the pure XNiBi, X=(Sc, Y or La), half-
Heuslers. On the other hand, there is no work performed on these structures that may
verify the presented results. Moreover, even though there are theoretical studies on
YNiAs and YNiBi[51], [52] suggesting the stability of these structures, it remains to
be seen if stable solid solutions of the YNiBixAs1−x and YNiBixSb1−x alloys can be
achieved experimentally.
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6.5 Lattice thermal conductivity compared

In this thesis, three different methods to reduce the lattice thermal conductivity have
been investigated; partial substitution on the X-position, nanostructuring of the bulk
materials, and partial substitution on the Bi-position. In table 6.2 the minimum lattice
thermal conductivity of each method is given in the top three rows. Comparing any
of these to the lattice thermal conductivity of the pure ScNiBi, YNiBi and LaNiBi
half-Heuslers, immense improvements are achieved. In fact, the reduction is such that
the lattice thermal conductivity is comparable with that of Ti0.5Hf0.5NiSn which is one
of the best performing thermoelectric half-Heuslers. Moreover, the minimum lattice
thermal conductivity of the YNiBixAs1−x, and nanostructured ScxYyLa1−x−yNiBi
alloy is comparable with that of Bi2Te3, one of the best commercial thermoelectrica.

Table 6.2: Lattice thermal conductivity at 300 K of selected materials investigated
in the present study compared to the lattice thermal conductivity of pure ScNiBi,
YNiBi and LaNiBi, in addition to Ti0.5Hf0.5NiSn and Bi2Te3

Material

Lattice
thermal
conductivity
(W/mK)

Method Source

Sc0.5La0.5NiBi, 50 nm grains 2.4 RTA - BTE This work
YNiBi0.36As0.84 2.4 RTA -BTE This work
Sc0.24La0.76NiBi 4.3 RTA - BTE This work

LaNiBi, 50 nm grains 3.8 RTA - BTE This work
ScNiBi, 50 nm grains 5.0 RTA - BTE This work

ScNiBi 12.3 RTA - BTE Specialization project
ScNiBi 14.3 HTC Carrete et al. [7]
YNiBi 8.9 RTA - BTE Specialization project
YNiBi 10.6 HTC Carrete et al. [7]
LaNiBi 5.8 RTA - BTE Specialization project

Ti0.5Hf0.5NiSn 3.2 RTA - BTE Eliassen et al. [50]
Bi2Te3 1.38 ZR Goldsmid [53]

RTA - BTE: Relaxation time approximation - Boltzmann equation

HTC: High-throughput computations

ZR: Zone refining

Interestingly, the present work indicate that the alloying on the Bi-position reduces
the lattice thermal conductivity as much as the nanostructuring of ScxLa1−xNiBi.
However, the lattice thermal conductivity resulting from alloying on the Bi-positions
are estimates, and may be associated with large errors. On the other hand, indica-
tions are that the values are overestimated. If that is the case, the alloying on the
Bi-position outperform the nanostructuring. In addition, this method may not as
susceptible to influencing the electronic structure as the nanostructuring. However,
the nanostructuring is more flexible, and may be applied efficiently over a range of
compositions. Thus, as a method to reduce the lattice thermal conductivity it holds
an advantage over the method utilizing alloying on the Bi-position.
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6.6 Evaluation of the simulation methods

The calculations performed in the present work are based on the density functional
theory (DFT) calculations performed in VASP in the specialization project (see Ap-
pendix A). As discussed briefly in section 3.1.5, the approximated exchange-correlation
functional utilized in the DFT calculations may introduce physical inaccuracies in the
calculated forces. Although the functional used for the DFT calculations of the pure
XNiBi, X=(Sc, Y or La), is the PBEsol functional, which includes some empirical
parameters to ensure higher physical accuracy, the lack of experimental work on the
XNiBi, X=(Sc, Y or La), based materials makes the evaluation of the DFT simulations
difficult. Moreover, there are other parameters that may influence both the physical
and numerical accuracy of the DFT calculations. If, for example, the pseudopotentials
utilized do not match the physical properties of the materials under inspection, large
errors may be introduced. Standard pseudopotentials recommended in VASP are used
for the Sc, Y, La, Ni and Bi elements in the DFT calculations. However, the impact
of the choice of pseudopotentials is not investigated neither in this nor the previous
project. Particularly f-block elements may not be handled well in the VASP pseu-
dopotentials. Thus, the potential used for the f-block element, La, may be susceptible
to self-interaction errors[31]. Again, such errors may be difficult to detect due to the
lack of experimental work.

On the other hand, table 6.2 shows that the obtained lattice thermal conductiv-
ity of ScNiBi and YNiBi from the specialization project are in good agreement with
the anharmonic lattice thermal conductivity estimated by Carrete and co-workers[7].
Although the values reported by Carrete et al. also are found through DFT calcula-
tions, and may be susceptible to similar errors as those of the present work, a different
method based on high-throughput computations is used. The agreement between the
results presented by Carrete et al. and those presented here may therefore suggest
that the calculations performed in this thesis are relatively robust with respect to the
simulation method. Consequnetly, they accuracy may be relatively good.

Even if the DFT calculations are accurate for the pure half-Heusler, ScNiBi, YNiBi
and LaNiBi, the VCA approach utilized in this study may introduce errors to the cal-
culations of the ScxYyLa1−x−yNiBi, YNiNiBixAs1−x and YNiBixSb1−x alloys. These
errors arise from the implicit substitution enforced by the VCA approach. Conse-
quently, it does not mimic the alloying of real materials, where the substitution is
random. Particularly if the forces introduced to the lattice by the different substitutes
are very different from each other, the VCA approach may yield erroneous results.
This is because the changes in the forces around the individual positions where alloy-
ing occurs are ignored in the VCA as discussed in section 3.3.5. These potential errors
are difficult to assess. Table 6.1 shows relatively small deviations for κIII* (lattice ther-
mal conductivity with force constants from the most anharmonic parent) compared to
the total lattice thermal conductivity, κI. Thus, the force constants of, for example,
LaNiBi may estimate the lattice thermal conductivity of ScNiBi. This may indicate
that the local environments are relatively constant throughout the alloys such that the
VCA approach may be applied. On the other hand, the deviations for κIII** (lattice
thermal conductivity with force constants from the least anharmonic parent) compared
to the total lattice thermal conductivity, κI, are large. Consequently, larger variations
in the local environments are indicated, and the VCA may not be valid. Further-
more, there might be errors associated with the interpolation of the force constants,
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as discussed in section 6.2. Even though a comparison with experimental results are
required to conclude on the validity of the VCA approach, results utilizing the SQS
approach may also indicate whether the VCA is a good approximation or not. This is
because the SQS approach enforces explicit alloying, and calculates the forces directly
using DFT. Thus, the challenges concerning the variations of local environments and
the interpolation of the force constants are omitted.
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6.7 Further work

The present work provides information on the effect of anharmonic, mass-disorder and
grain boundary scattering on the lattice thermal conductivity of the ScxYyLa1−x−yNiBi
half-Heusler alloys. However, the enhanced effect of alloying on the Bi-position was
merely indicated by this thesis. The calculations performed here were estimates based
on the lattice parameter and force constants of YNiBi, and the accuracy of these calcu-
lations remains unknown. Consequently, a full calculation of the effect of isoelectronic
substitution of Bi with As or Sb should be performed.

Furthermore, the effect of grain boundary scattering was only investigated in
the ScxYyLa1−x−yNiBi alloys. It would be interesting to explore this effect in the
YNiNiBixAs1−x and YNiBixSb1−x alloys to see if grains of reasonable size may tar-
get the remaining acoustic phonon modes, and reduce the lattice thermal conductivity.
Herein lies another unanswered question; the sensitivity of the grain boundary scatter-
ing to grain size. As discussed previously, it may be challenging to synthesize materials
with grains as small as 50 nm. Thus, it is important to investigate whether the same,
or similar, effects on the lattice thermal conductivity may be achieved for larger grain
sizes.

In addition, most of the calculations performed in this thesis use the VCA ap-
proach. While this approach is computationally inexpensive and easily applied with
the TDEP method, it is inherently erroneous as it enforces implicit rather than explicit
substitution. Results closer to the real materials are therefore expected when intro-
ducing the substitutes explicitly to the lattice using the SQS approach. Consequently,
comparing results from calculations using the VCA and the SQS approach may yield
information on whether the local environment changes throughout the alloys, in which
case the results from the VCA should deviate from those of the SQS approach. More-
over, the relationship between the force constants and the lattice parameter may be
investigated further. Thus, the question of whether the linear interpolation of the
force constants in the VCA approach is valid, may be answered.

Due to the lack of experimental results on the XNiBi, X=(Sc, Y or La), based ma-
terials, the overall physical accuracy of teh presented calculations remains unknown.
Rigorous testing of the impact of a number of DFT parameters, such as the exchange-
correlation functional and the pseudopotential, may indicate if there are large er-
rors associated with the calculations depending on the parameters utilized. However,
experimental work on the materials under investigation is required for a conclusive
assessment of the physical accuracy the presented calculations.
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Conclusion

The aim of this thesis was to study multiple contributions to the thermal properties of
XNiBi, X=(Sc, Y or La), based half-Heuslers. Mass disorder was introduced to the ma-
terials through isoelectronic substitution with Sc, Y or La on the X-position, and with
As or Sb on the Bi-position. The resulting alloys, ScxYyLa1−x−yNiBi, YNiNiBixAs1−x
and YNiBixSb1−x, were represented within the virtual crystal approximation (VCA).
Although this representation does not capture the local environments of the real al-
loys, it retains the full symmetry of the parent half-Heusler. Thus, finite temperature
calculations of the thermal properties could be performed using density functional
theory (DFT) together with the temperature dependent effective potential (TDEP)
method. The lattice thermal conductivity of the ScxYyLa1−x−yNiBi, YNiNiBixAs1−x
and YNiBixSb1−x half-Heusler alloys was found by solving the Boltzmann transport
equation (BTE) within the relaxation time approximation (RTA). The additional ef-
fect of nanostructuring, introduced to the ScxYyLa1−x−yNiBi half-Heusler alloys by
means of 50 nm grains, was also investigated.

The effect of alloying in the XNiBi, X=(Sc, Y or La), based half-Heuslers was
found to depend on the site of alloying. The introduction of heavier elements on
the X-position of ScNiBi and YNiBi decreases the acoustic-optic phonon band gap,
and thus increases the anharmonic scattering of the acoustic phonon modes of the
resulting alloys. The increased anharmonicity combined with the mass-disorder on
the X-position reduces the lattice thermal conductivity to a minimum lattice ther-
mal conductivity of 4.3 W/mK found for Sc0.24La0.76NiBi. This is comparable with
the smallest lattice thermal conductivity of the TixHf1−xNiSn half-Heusler alloys.
However, the site-projected phonon DOS reveals that the alloying of the X-position
mainly introduces scattering of the optic phonon modes. Since the optic phonon
modes contribute less to the lattice thermal conductivity than the acoustic modes,
the reduction in the lattice thermal conductivity of Sc0.24La0.76NiBi is largely as-
cribed to the increased anharmonicity rather than the increased mass-disorder as
La substitutes Sc. In contrast, alloying on the Bi-position with As or Sb affects
the acoustic phonon modes since these modes are dominated by Bi in the XNiBi,
X=(Sc, Y or La), half-Heuslers. Consequently, the mass-disorder on the Bi-position
efficiently reduces the lattice thermal conductivity to 2.4 W/mK and 3.5 W/mK for
YNiBi0.36As0.64 and YNiBi0.38As0.62, respectively. The minimum lattice thermal con-
ductivity of YNiNiBixAs1−x and YNiBixSb1−x is comparable to, and even lower than,
the smallest lattice thermal conductivity of the TixHf1−xNiSn half-Heusler alloys.
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Moreover, it is comparable to that of the commercial bismuth tellurides.
Even though the introduction of mass-disorder, particularly on the Bi-position,

reduces the lattice thermal conductivity of the half-Heusler alloys considerably, nanos-
tructuring was found to scatter the acoustic phonon modes more efficiently over a
range of compositions. In the pure half-Heusler, ScNiBi, the introduction of nanoscaled
grains reduces the lattice thermal conductivity from 12.3 W/mK in the bulk material
to 5.0 W/mK in the nanostructured. This is the largest single reduction found in
the presented work. However, combining nanostructuring with alloying reduces the
lattice thermal conductivity further. In ScxLa1−xNiBi, the lattice thermal conductiv-
ity was reduced with 45% compared to the bulk ScxLa1−xNiBi alloys, and reached a
minimum at 2.4 W/mK in Sc0.5La0.5NiBi. As for the alloying on the Bi-position, the
lattice thermal conductivity resuting from the nanostructuring is comparable to that
of the commercial bismuth tellurides.

The present work indicates that the lattice thermal conductivity of XNiBi, X=(Sc,
Y or La), based half-Heuslers may be reduced sufficiently through nanostructuring
and alloying on the Bi-position to be competitive with state-of-the-art thermoelectric
materials. Moreover, the understanding of how different mechanisms influence the
lattice thermal conductivity achieved in this thesis may be applied to other materials.
Thus, the ability to predict the potential of unexplored materials within thermoelec-
tric applications may increase, and aid the continued progress of the performance of
thermoelectric devices.



Bibliography

[1] U. E. P. Agency. (2014). Global greenhous gas emissions data, [Online]. Avail-
able: https : / / www . epa . gov / ghgemissions / global - greenhouse - gas -

emissions-data.

[2] I. Johnson, W. T. Choate, and A. Davidson, “Waste heat recovery. Technology
and opportunities in US industry,” BCS, Inc., Laurel, MD (United States), Tech.
Rep., 2008.

[3] A. I. Kalina et al., “Combined cycle system with novel bottoming cycle,” ASME
J. Eng. Gas Turbines Power, vol. 106, no. 4, pp. 737–742, 1984.

[4] W. Liu, Q. Jie, H. S. Kim, and Z. Ren, “Current progress and future challenges
in thermoelectric power generation: From materials to devices,” Acta Mater.,
vol. 87, pp. 357–376, 2015.

[5] Fitriani, R. Ovik, B. Long, M. Barma, M. Riaz, M. Sabri, S. Said, and R. Saidur,
“A review on nanostructures of high-temperature thermoelectric materials for
waste heat recovery,” Renew Sust Energ Rev, vol. 64, pp. 635–659, 2016.

[6] S. Chen and Z. Ren, “Recent progress of half-heusler for moderate temperature
thermoelectric applications,” Mater Today, vol. 16, no. 10, pp. 387–395, 2013.

[7] J. Carrete, W. Li, N. Mingo, S. Wang, and S. Curtarolo, “Finding unprecedent-
edly low-thermal-conductivity half-heusler semiconductors via high-throughput
materials modeling,” Phys. Rev. X, vol. 4, p. 011 019, 1 Feb. 2014.

[8] C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, “Realizing high
figure of merit in heavy-band p-type half-Heusler thermoelectric materials,” Nat.
Commun., vol. 6, 2015.

[9] S.-W. Kim, Y. Kimura, and Y. Mishima, “High temperature thermoelectric prop-
erties of TiNiSn-based half-Heusler compounds,” Intermetallics, vol. 15, no. 3,
pp. 349–356, 2007.

[10] T. J. Seebeck, “Ueber die magnetische polarisation der metalle und erze durch
temperatur-differenz,” Ann Phys, vol. 82, no. 2, pp. 133–160, 1826.

[11] A. da Rosa, “Chapter 5 - Thermoelectricity,” in Fundamentals of Renewable
Energy Processes (Third Edition), A. d. Rosa, Ed., Third Edition, Boston: Aca-
demic Press, 2013, pp. 149–212.

[12] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater.,
vol. 7, pp. 105–114, 2008.

66



67 BIBLIOGRAPHY

[13] A. Minnich, M. Dresselhaus, Z. Ren, and G. Chen, “Bulk nanostructured ther-
moelectric materials: Current research and future prospects,” Energy Environ.
Sci., vol. 2, no. 5, pp. 466–479, 2009.

[14] T. Graf, C. Felser, and S. S. Parkin, “Simple rules for the understanding of
heusler compounds,” Prog Solid State Ch, vol. 39, no. 1, pp. 1–50, 2011.

[15] W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T. M. Tritt, “Recent
advances in nanostructured thermoelectric half-Heusler compounds,” Nanoma-
terials, vol. 2, no. 4, pp. 379–412, 2012.

[16] N. Shulumba, “Vibrations in solids: From first principles lattice dynamics to
high temperature phase stability,” PhD thesis, Linköping University Electronic
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Appendix A

Specialization project

In the following, a summary of the specialization project, DFT simulations of phonon
propagation in the thermoelectric half-Heusler XNiBi (X = Sc, Y or La), performed
by the author in the fall of 2016 is given. The results from the DFT and TDEP
calculations are relevant for the calculations performed in this thesis.

A.1 Methods

The thermal properties of XNiBi, X=(Sc, Y or La), was calculated using the tempera-
ture dependent effective potential (TDEP) method together with the Vienna Ab initio
Simulation Package (VASP). The PBEsol functional was used in all of the thermal
property calculations, and the pseudopotential was build from standard, recommended
PAW pseudopotentials in VASP; Sc sv, Y sv, La, Ni and Bi d. Convergence of the
VASP force calculations was found to be within 1meV for an energy cutoff of 500 eV
and a k-point density of 8 in each lattice direction for the primitive half-Heusler lattice.
Thus, relaxation of the primitive lattices of XNiBi, X=(Sc, Y or La), was performed
using the converged energy cutoff and k-point density. The molecular dynamics cal-
culations were performed with VASP on 3x3x3 supercells with cutoff energy of 500 eV
and k-point density of 1. The second and third order force constants were calculated
from the pairs of forces and displacements using a second order cutoff radius of 7 Å,
and a third order cutoff radius of 6 Å. Based on the low-accuracy force constants and a
Monte Carlo routine, 100 structures with size 3x3x3 and representative displacements
of the atoms were generated. High-accuracy force calculations were performed on each
of these structures using a k-point density of 2 in each lattice direction and an energy
cutoff of 500 eV. The force constants were calculated using the same cutoff radii as be-
fore. From the high-accuracy force constants, the thermal conductivity was calculated
using four q-point meshes with 29, 31, 33 and 35 q-points in each lattice direction,
and the tetrahedron integration over the q-point mesh. The thermal conductivity was
then extrapolated using a least square method such that the thermal conductivity at
q-point distance equal 0 was found.
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A.2 Results

Figures A.1a-f) show the dispersion relations and group velocities of ScNiBi, YNiBi
and LaNiBi. The acoustic, longitudinal optic and transverse optic phonon modes
are indicated with the red, purple and blue colour in all plots. The phonon dispersion
relations show that there is no direct overlap between the three groups of phonon modes
in any of the materials. A phonon can therefore not transition between different modes
without addition of momentum to the phonon. Moreover, the shape of the phonon
modes in the three different materials is similar. This observation is confirmed by the
group velocities shown in figure A.1b, d and f, where the group velocity of the different
modes are of similar shapes and magnitudes in all of the three materials. Also note
that the acoustic phonon modes dominate the group velocity of the materials, and its
group velocity is of similar magnitude regardless of the material.

Although the dispersion relations in figure A.1a, c and d were not overlapping di-
rectly, the phonon DOS of ScNiBi, YNiBi and LaNiBi shows that the optic phonon
modes, shown in figures A.2b, d and f, shift towards lower frequencies as Sc is substi-
tuted with Y and La. Eventually, in LaNiBi, the acoustic-optic phonon band gap is
closed. the shift of the optic rather than the acoustic phonon modes may be explained
by the phonon DOS projected on the atomic sites given in figures A.2b, d and f. For
all three materials, the acoustic phonon modes are dominated by bismuth. Moreover,
there is a trend of increasing bismuth contribution to the optic phonon modes from
ScNiBi to LaNiBi. The contributions from the X-position element and nickel, however,
differ between the materials. While nickel contributes most to the longitudinal and the
X-position element most to the transverse optic modes in ScNiBi and LaNiBi, their
contributions are similar to both longitudinal and transverse optic modes in YNiBi.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: The phonon dispersion relation and group velocity of a) and b) ScNiBi,
c) and d) YNiBi, and e) and f) LaNiBi. The red colour corresponds to acoustic, the
purple to longitudinal optic and the blue to transverse optic phonon modes
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: The phonon DOS projected on the phonon modes and atomic sites of
a) and b) ScNiBi, c) and d) YNiBi, and e) and f) LaNiBi. The red colour corresponds
to acoustic, the purple to longitudinal optic and the blue to transverse optic phonon
modes
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Figure A.3: The lattice thermal conductivity of ScNiBi (in blue), YNiBi (in red)
and LaNiBi (in green) as a function of temperature. The inset shows the thermal
conductivity zoomed in around 300 K

Figure A.3 shows the lattice thermal conductivity as a function of temperature
for ScNiBi, YNiBi and LaNiBi, respectively.The inset in the figure shows the lattice
thermal conductivity zoomed in around 300 K. At 300 K the thermal conductivity of
ScNiBi, YNiBi and LaNiBi is 12.3, 8.9 and 5.8 W/mK, respectively.

A.3 Conclusion

The phonon dispersion relations of the XNiBi (X = Sc, Y or La) materials exhibit
a shift in the phonon modes towards lower frequencies as the X-position element is
substituted with a heavier element. Since the optic phonon modes have higher con-
tributions from the X-position elements than the acoustic phonon modes, the shift is
larger in the optic modes. As a result, the acoustic-optic frequency band gap decreases
from ScNiBi to LaNiBi. Simultaneously, the group velocity of the different materials
remains similar. This indicates that the reduction in the calculated thermal conduc-
tivity from ScNiBi to LaNiBi is caused by the increasing phonon-phonon scattering as
the acoustic-optic frequency band gap decreases.



Appendix B

VASP

In this appendix, technical details of VASP input files are given. The first section of
the appendix is intended to give a general overview of the structure of the input files.
In the following sections, specifications of the VASP input files used in this project are
given.

B.1 Structure and specifications of VASP input files

As mentioned in section 3.1.6 there are four vital input files to VASP: the INCAR,
POSCAR, KPOINTS and POTCAR files.

B.1.1 INCAR parameters

The INCAR file contains the input parameters defining how a calculation should be
performed. Listing B.1 shows the parameters of a general VASP calculation.

Listing B.1: INCAR file showing the most important general input parameters

! E l e c t r o n i c convergence loop
NELMIN = 4 ! Minimum # of e l e c t r o n i c s t ep s
ENCUT = 500 ! Cutof f energy
LREAL = .FALSE. ! Pro j e c t i on in r e c i p r o c a l space
ISMEAR = 0 ! Gaussian smearing o f p a r t i a l occupanc ie s
SIGMA = 0.02 ! Smearing width
ISPIN = 1 ! No sp in p o l a r i z a t i o n

! XC−f u n c t i o n a l
GGA = PS

! I o n i c r e l a x a t i o n
EDIFFG = −0.001 ! Tolerance f o r i on s

• NELMIN Defines the minimum number of electronic steps in each electronic
convergence loop
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• ENCUT Defines the cutoff energy

• ISMEAR Determines how the partial occupancies are set for each orbital. IS-
MEAR = 0 gives Gaussian smearing.

• SIGMA Defines the smearing width in eV

• ISPIN Determines whether spin polarized calculations are performed. ISPIN =
1 gives non-spin polarized calculations

• GGA Determines the specific GGA functional used. GGA = PS defines the
PBEsol functional

To do relaxations, some extra parameters are required. These are shown in listing
B.2.

Listing B.2: INCAR file showing the most important extra input parameters for
relaxations

! E l e c t r o n i c convergence loop
EDIFF = 1E−5 ! Accuracy f o r e l e c t r o n i c groundstate
PREC = Accurate ! Low/Normal/ Accurate
LREAL = .FALSE. ! Pro j e c t i on in r e a l space

! I o n i c r e l a x a t i o n
EDIFFG = −0.001 ! Tolerance f o r i on s
NSW = 80 ! Max # of i o n i c s t ep s
IBRION = 1 ! Algorithm f o r i on s . 0 : MD 1 : QN/DIIS 2 : CG
ISIF = 3 ! Relaxat ion . 2 : i on s 3 : i on s+c e l l

• EDIFF Defines the convergence criterion of the electronic convergence loop

• PREC Determines the accuracy of the calculation. VASP automatically opti-
mizes other parameters, such as the energy cutoff (if not specified already in the
INCAR file) and the convergence of the stress tensor, according to the speci-
fied level of precision. For PREC = Accurate, high precision calculations are
performed

• LREAL Determines whether the projection operators are evaluated in real or
reciprocal space. The cost of real space evaluation increases with supercell size,
but yields higher accuracy. The reciprocal space evaluation gives less accurate
results, but is independent of supercell size

• EDIFFG Defines the convergence criterion for the ionic convergence loop

• NSW Defines the maximum number of ionic steps

• IBRION Determines how the ions are updated and moved. For IBRION = 1,
the ions are relaxed into their instantaneous ground state using a quasi-Newton
algorithm

• ISIF Determines whether the stress tensor is calculated. This affects how the
cell shape and volume are changing. For ISIF = 3, the ions are relaxed, and
both the cell volume and shape may change
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For molecular dynamics calculations, however, there are other more important
parameters as defined in the following listing.

Listing B.3: INCAR file showing the most important extra input parameters for
molecular dynamics

! E l e c t r o n i c r e l a x a t i o n
ALGO = Fast ! Algorithm f o r e l e c t r o n i c r e l a x a t i o n
EDIFF = 1E−4 ! Accuracy f o r e l e c t r o n i c groundstate
PREC = Low ! P r e c i s i o n o f c a l c u l a t i o n
LREAL = Auto ! Pro j e c t i on in r e c i p r o c a l space

! I o n i c r e l a x a t i o n
IBRION = 0 ! MD c a l c u l a t i o n s
NSW = 1500 ! Number o f MD step s
POTIM = 1.0 ! Time per s tep ( f s )
TEBEG = 300 ! Sta r t temperature
TEEND = 300 ! Sta r t temperature
SMASS = 0 ! MD in microcanon ica l ensemble
ISIF = 2 ! Relax ions , not c e l l

• ALGO Determines the algorithm by which the electrons are relaxed. For ALGO
= Fast, a mixture of the blocked Davidson and the RMM-DIIS scheme is used

• POTIM Defines the time between the MD steps in femtoseconds (fs)

• TEBEG Defines the temperature at the beginning

• TEEND Defines the temperature at the end

• SMASS Determines the velocities of the ions. For SMASS = 0, a canonical
ensemble is used

Lastly, the essential INCAR-tags for high precision calculations are defined in list-
ing B.4

Listing B.4: INCAR file showing the most important extra input parameters for
high accuracy calculations

! E l e c t r o n i c convergence loop
ALGO = Fast ! Algorithm f o r e l e c t r o n i c r e l a x a t i o n
EDIFF = 1E−6 ! Accuracy f o r e l e c t r o n i c groundstate
PREC = High ! P r e c i s i o n o f the c a l c u l a t i o n

! I o n i c r e l a x a t i o n
NSW = 0 ! No i o n i c r e l a x a t i o n
ISIF = 2 ! Relax ions , not c e l l

B.1.2 POSCAR structure

The POSCAR file contains all information about the geometry and composition of the
supercell. Listing B.5 shows an example of a POSCAR for the primitive half-Heusler
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structure. The first line is a comment line, naming the system. The next line defines
the scaling factor for the Cartesian vectors spanning the supercell, which are defined
in the three following lines. In the sixth and seventh line, the atomic species and
the number of each species comprising the supercell are given. It is important that
the order of the atomic species equals the order of the elemental pseudopotentials
of the respective species in the POTCAR file. The eight line specifies whether the
atomic positions are given in fractional or Cartesian coordinates, where Direct defines
fractional atomic coordinates. The remaining lines provides the atomic coordinates.

Listing B.5: POSCAR file for LaNiBi half-Heusler

LaNiBi Half−Heus ler
1.00000000000000

3.4613141013166100 3.4613141013166100 0.0000000000000000
0.0000000000000000 3.4613141013166100 3.4613141013166100
3.4613141013166100 0.0000000000000080 3.4613141013166100

La Ni Bi
1 1 1

Di rec t
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.2500000000000000 0.2500000000000000 0.2500000000000000
0.5000000000000000 0.5000000000000000 0.5000000000000000

B.1.3 KPOINTS structure

The KPOINTS file defines the density of points on the mesh projected onto the 1BZ.
An example of a KPOINTS file is shown in listing B.6. Here, the first and second line
specifies that an automatic k-point mesh is generated. The third line generates an
automatic mesh centered at the gamma point. The fourth line specifies the number of
k-points within the 1BZ along each reciprocal lattice vector, and the last line defines
the shift of the mesh. For all calculations in this project, an automatic, Γ-centered
k-point mesh is used.

Listing B.6: KPOINTS file

Automatic mesh
0
Gamma
1 1 1
0 0 0

B.2 VASP files for molecular dynamics on SQS

The SQS supercell for molecular dynamics was generated using the Monte Carlo algo-
rithm discussed in section 3.3.5, which is included in the TDEP method. The starting
point is the POSCAR file of the primitive cell defining the position of the element to
be substituted and the composition of the structure as shown in listing B.7.
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Listing B.7: POSCAR file for generation of SQS supercell

Pr imi t ive POSCAR f o r SQS
1.00000000000000

0.0000000000000000 3.2696479435326578 3.2696479435326578
3.2696479435326578 0.0000000000000000 3.2696479435326578
3.2696479435326578 3.2696479435326578 0.0000000000000000

ALLOY1 Ni Bi
1 1 1

Di rec t
0.00000000000 0.00000000000 0.00000000000 2 Sc 0 .222 La 0 .778
0.25000000000 0.25000000000 0.25000000000 s i t e 2 : 2 Ni
0.50000000000 0.50000000000 0.50000000000 s i t e 3 : 3 Bi

A minimal example of a SQS structure is shown in listing B.8.

Listing B.8: POSCAR file describing the SQS supercell

SQS
1.00000000000000

0.0000000000000000 9.8089438305979737 9.8089438305979737
9.8089438305979737 0.0000000000000000 9.8089438305979737
9.8089438305979737 9.8089438305979737 0.0000000000000000

Sc La Ni Bi
6 21 27 27

Di rec t
0.000000000000 0.333333333333 0.000000000000 s i t e 1 : 1 Sc
0.000000000000 0.333333333333 0.666666666667 s i t e 2 : 1 Sc

. . . . . . . . .
0 .000000000000 0.666666666667 0.000000000000 s i t e 7 : 2 La
0.000000000000 0.666666666667 0.333333333333 s i t e 8 : 2 La

. . . . . . . . .
0 .083333333333 0.083333333333 0.083333333333 s i t e 28 : 3 Ni

. . . . . . . . .
0 .166666666667 0.166666666667 0.166666666667 s i t e 55 : 4 Bi

. . . . . . . . .

The POSCAR shown in listing B.8 was used for the molecular dynamics calculation,
together with the INCAR file specified in B.1.1, and the KPOINTS file defined only
for the gamma point (i.e. only one k-point along each lattice vector).

B.3 VASP files for high accuracy calculations on
SQS

The POSCAR from listing B.8 together with the force constants extracted after the
molecular dynamics calculation, was used to generate 100 structures where the atoms
were displaced from their equilibrium position. Thus, the POSCAR files were similar
to listing B.8, but with atomic positions slightly deviating from those given in this
POSCAR file. The INCAR file defined high accuracy calculations as described in
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section B.1.1, and there were two k-points along each lattice vector defined in the
KPOINTS file.


