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Abstract

Ice accumulation on outdoor infrastructure is a major problem for many indus-
tries. Several strategies are commonly employed to remove ice, but they are often
expensive or have negative environmental consequences. An alternative strategy
is to utilize anti-icing surfaces, which can prevent ice formation or make it easier
to remove. A surface that has been investigated for its anti-icing properties are
hydrophobic surfaces. These surfaces are extremely water-repellent, and they have
also been shown to suppress icing and lower ice adhesion.

In this work, hydrophobic surfaces have been created on aluminium by combining
a hierarchical roughness on the micro- and nanoscale with a low surface energy
coating. Aluminium has been sandblasted with coarse and fine sand, resulting in
two different microstructures. SiO2 nanoparticles were synthesised and deposited
through spray coating in different amounts, and were found to be 186± 12 nm in
diameter. A low surface energy sol-gel coating based on the fluorosilane precursor
1H,1H,2H,2H-Perfluorooctyltriethoxysilane was synthesised and deposited in one or
several layers via spray coating. The micro- and nanostructure that resulted from
the experimental parameters were optimized. The most hydrophobic substrate was
coarsely sandblasted, had SiO2 nanoparticles and a single layer of fluorosilane coat-
ing. It demonstrated a contact angle of 165.7± 1.3° and a contact angle hysteresis
of 22.8± 1.6°.

The anti-icing properties of the hydrophobic surfaces have been investigated by
measuring the temperature that water froze on the surfaces, the delay before water
froze at −10 ◦C and the effect of several icing/deicing cycles. The freezing tem-
perature was lowered significantly by the coating, but it was not affected by the
microstructure. The lowest freezing temperature was −13.1± 1.1 ◦C on a substrate
with reduced nanoparticle deposition. The most hydrophobic substrate registered
the longest freezing delay at 43 minutes. But other, less hydrophobic substrates also
showed long freezing delays. Thus, no correlation between hydrophobicity and anti-
icing properties was found. In addition, the humidity was found to have a major
influence on the hydrophobicity and anti-icing properties, because of condensation
and frost formation.
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Sammendrag

Ising på installasjoner og infrastruktur er et betydelig problem for mange industrier.
Flere ulike strategier brukes for å fjerne is, men de er ofte dyre eller de kan ha
negative miljøkonsekvenser. En alternativ strategi er å bruke antiisende overflater,
som kan forhindre ising eller gjøre den lettere å fjerne. En type overflate som har
blitt undersøkt for dette bruksområdet er hydrofobe overflater. Disse overflatene er
særdeles vannavstøtende, og de har også demonstrert evnen til å kunne forhindre
ising og redusere isadhesjon.

I denne oppgaven har hydrofobiske overflater blitt dannet på aluminium ved å
kombinere en hierarkisk ruhet på mikro- og nanoskala med et belegg med lav
overflateenergi. Aluminium har blitt sandblåst med ru og fin sand, som resul-
terte i to ulike mikrostrukturer. SiO2 nanopartikler ble dannet og deponert via
spray coating i ulike mengder. Partiklene ble funnet å være 186± 12 nm i diame-
ter. Et sol-gel belegg med lav overflateenergi basert på fluorsilanet 1H,1H,2H,2H-
Perfluorooctyltriethoxysilane ble dannet og deponert i ett eller flere lag via spray
coating. Mikro- og nanostrukturen som resulterte fra de eksperimentelle parame-
trene har blitt optimalisert. Det mest hydrofobiske substratet var sandblåst med
ru sand, den hadde SiO2 nanopartikler og et enkelt lag med fluorsilanbelegg. Den
hadde en kontaktvinkel på 165.7± 1.3° og en kontaktvinkelhysterese på 22.8± 1.6°.

Antiisingsegenskapene til de hydrofobiske overflatene har blitt undersøkt ved å
måle frysetemperaturen til vann på overflatene, hvor lenge frysing ble forsinket ved
−10 ◦C og effekten av flere ising/deising sykluser. Frysetemperaturen ble betrak-
telig nedsatt av belegget, men ble ikke påvirket av mikrostrukturen. Den laveste
frysetemperaturen var −13.1± 1.1 ◦C på et substrat med redusert konsentrasjon
av nanopartikler. Det mest hydrofobiske substratet forsinket ising lengst med 43
minutter. Men andre, mindre hydrofobiske substrater forsinket også ising i en bety-
delig tid. Dermed ble det ikke funnet noen sammenheng mellom hydrofobisitet og
antiisende egenskaper. I tillegg ble det funnet at fuktighet hadde en stor påvirkning
på de hydrofobiske og antiisende egenskapene på grunn av kondens og dannelsen
av frost.
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Chapter 1

Introduction

1.1 Motivation

Ice accumulation on outdoor infrastructure is a major problem for many industries
that operate in cold regions. Overhead transmission lines, wind turbines, aircraft
and offshore installations are all affected by icing.[4][5]. For overhead transmission
lines, the extra weight added by ice growth lead to more frequent breakdowns
and power outages . Lives can be endangered and economic losses can occur as a
result[6][7][8]. Icing on wind turbines can lead to efficiency losses as the ice changes
the aerodynamic properties of the turbine blades[9][10]. On aircraft, icing has led
to numerous delays and several crashes[11][12]. Examples of icing on infrastructure
is shown in figure 1.1.

Several strategies are commonly employed to deal with ice accumulation. They can
typically be divided into two categories: deicing, or anti-icing. Deicing techniques
are based on removing ice that has already formed through a variety of methods. For
overhead transmission lines and wind turbines, ice is commonly removed through
thermal or mechanical methods[15][16][17]. However, these methods demand either
large amounts of energy or manpower. Icing on aircraft is typically removed through
the use of salt or glycols, which represent significant costs and leads to groundwater
contamination[12][18].

Clearly, there are several major disadvantages to the most commonly used deicing
techniques. Another approach to the problem is to use anti-icing methods, which
seeks to prevent ice from forming in the first place. Both active and passive anti-
icing methods exist, with the central difference that active methods require some
sort of energy input[16]. Passive methods on the other hand prevent icing without
any external input. One such method is to modify the surface on which icing occurs.

There has been widespread research in the past ten years on what surface treat-
ments can prevent icing[12]. One type of surface that has been investigated are

1
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(a) (b)

Figure 1.1: Examples of icing on outdoor infrastructure. (a) shows the grounded
wire of an overhead transmission line that has broken down due to a large ice
load[13]. (b) shows ice build up on a wind turbine blade[14].

hydrophobic surfaces, which are highly water-repellent surfaces. The concept of hy-
drophobic surfaces originate from nature, and is particularly evident on the leaves
of the Indian Lotus, Nelumbo nucifera. Water droplets on the lotus leaves roll
off very easily, and can remove dirt and other contaminating particles from the
leaves[19]. The origin of the extreme water repellency lies in its surface structure.
The surface of the leaves consists of microscale epicuticular wax crystalloids with
additional nanoscale structures, shown in figure 1.2. Water will rest on top of these
structures and easily roll off. In addition, the wax crystalloids have low surface
energy [20], which prevents water from sticking to the surface. Efforts to create
hydrophobic surfaces have therefore focused on recreating these two factors: a hier-
archical surface roughness on the micro- and nanoscale, in addition to low surface
energy.

Figure 1.2: A SEM image of the microstructure of the Indian lotus leaf. The
bar is 20 µm. Modified from [19].

2
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There are several reasons why hydrophobic surfaces could be used to prevent icing.
If supercooled water from freezing rain or atmospheric humidity is prevented from
sticking to the surface, icing should theoretically be prevented. Hydrophobic sur-
faces have demonstrated other beneficial anti-icing properties as well, such as very
low freezing temperatures and long delays before water freezes on the surface[21][22].
They have also demonstrated low ice adhesion, which is beneficial for deicing pur-
poses when icing eventually does form in extreme conditions[23][24][25]. However,
the origin of these properties are somewhat unclear, and are subject to debate in
literature[4][10][12]. Central to the debate is the question of how the properties of
a hydrophobic surface relates to its anti-icing properties.

This thesis builds on the work performed by previous master students. Aase Marie
Halvorsen[26] and Ellen-Kristin Raasok[27] laid the foundation for the hydrophobic
coatings based on fluorosilane sol-gels. They also examined the hydrophobicity and
anti-icing properties of the coatings. Raymond Luneng[2] and Ole-Bjørn Ellingsen
Moe[3] created hydrophobic surfaces on steel based on Halvorsen and Raasok’s
findings. They also examined methods to create hierarchical roughness on steel,
where Luneng focused on silica nanoparticles, and Ellingsen Moe focused on ZnO
nanowires. Finally, Hanna Vassmyr[1] further optimized the deposition method
and coating parameters for both the fluorosilane sol-gel and silica nanoparticles. In
addition, she refined the methods used to characterize the anti-icing properties of
the hydrophobic surfaces.

1.2 Aim of the work

This work aims to expand upon the earlier development of hydrophobic surfaces
for anti-icing applications by using aluminium. Some of the most damaging ice
accumulation happens on aluminium surfaces, such as on overhead transmission
lines and aircraft. The hydrophobicity on Al substrates will be investigated on
a hierarchical rough surface covered by a fluorosilane coating. The relationship
between hydrophobicity and anti-icing will be investigated.

To accomplish this, aluminium 5052 substrates will be sandblasted with two types
of sand to introduce microroughness. Silica nanoparticles will be synthesised and
spray coated onto the sandblasted aluminium substrates with varying deposition
speeds to create additional nanostructuring on the surface, resulting in a hierarchical
roughness. Finally, a fluorosilane-based sol-gel will be synthesised and spray coated
onto the substrates to lower their surface energy. The number of coating layers will
be varied and its influence on hydrophobic and anti-icing properties investigated.
Spray coating will be utilized because it was shown to be a good deposition method
for this coating system[1][2]. In addition, it has potential for easy incorporation into
existing industries. The end result will be hydrophobic surfaces, with hierarchical
roughness and low surface energies.

The hydrophobicity of the substrates will be investigated through measuring their

3
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contact angles and contact angle hystereses, with respect to the sandblasting type,
silica particle deposition and number of coating layers. The anti-icing properties
will be examined through determining their freezing temperatures, the delay before
water freezes and the development in freezing temperature as the substrate is
repeatedly cooled and reheated.

Additionally, the contact angle dependence on temperature will be examined, to
see if the hydrophobic properties deteriorate at lower temperatures. The substrate
micro- and nanostructure will be investigated in detail. Finally, coating durability
testing will be performed, to ascertain any influence freezing water had on the
coating.

4
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Chapter 2

Theory

2.1 Surface tension

Surface tension is a force which appears for all liquids that have a surface towards
a gaseous phase[28, Chapter 6]. The force works to minimize the exposed surface
area. It is denoted by γ and expressed in units of N/m. The magnitude of γ is
specific for that liquid at a certain temperature. Water, for example, has a reported
surface tension of 72.8 mN/m at 20 ◦C[29].

A tension force also appears when a liquid has an interface to a different system
than air. For example, when a water droplet is resting on a solid surface, it will
have a certain interaction with the surface. The surface chemistry will decide how
energetically favourable the interaction is, and thus the magnitude of the tension
force. The surface tension can therefore be said to be a specific case of the more
general interfacial tension, which is the tension force between two specific systems.

Another relevant factor when considering the droplet resting on a solid surface is
that a pressure difference ∆p exists across its surface, because of its curvature[30,
Chapter 1].

If the droplet is assumed to have a spherical curvature, the pressure difference ∆p
is given by the spherical Laplace equation:

∆p = 2γ
Rs

(2.1)

This pressure difference, referred to as the Laplace pressure from here on out,
has several consequences. One of them is that the evaporation rate from the
curved surface will be larger than for a flat surface. I.e. one would expect a faster
evaporation rate for a droplet compared to the same volume with a flat surface.
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If work is done against the interfacial tension of a system, energy needs to be
expended. For example, increasing the surface area of a volume of water by splitting
it in two will have an energy cost. The required work dW needed to increase the
surface area by dA can be written as:

dW = γdA (2.2)

In the context of equation 2.2, γ has a second definition: it is the work per unit
area needed to create a new surface. By this definition γ can be expressed in units
of J/m2, and γ is then referred to as surface or interfacial energy.

Of particular interest is the interaction between water and solid surfaces. The
interaction depends on the chemical make-up of the surface, i.e. the surface en-
ergy γ. Changing γ can change how energetically beneficial it is for water to
interact with the surface. One approach to changing γ is to treat the surface
with polymers rich in fluorine. Surfaces with a high density of trifluoromethyl-
groups (−CF3) has been shown to have extremely low surface energy, and be
very water repellent[31]. For example, Heydari et al.[32] treated silicon wafers
with 1H,1H,2H,2H-perfluorooctyltriethoxysilane to attain a low surface energy. Its
structural formula is shown in figure 2.1.

Figure 2.1: The structural formula of 1H,1H,2H,2H-
Perfluorooctyltriethoxysilane. Adapted from [33].

2.2 Hydrophobicity

Hydrophobicity (from Greek hydor, meaning water, and phobos, meaning fear) is
used to describe the water repellency of a surface. It can be quantified through the
contact angle (CA) denoted by θ, which is the angle of contact that water makes
with the surface in question. A very hydrophobic surface results in a higher contact
angle, as water seeks to reduce its contact area with the surface. Inversely, a less
hydrophobic surface gives a lower contact angle. Typically, a hydrophobic surface
is defined as having θ > 90°, while θ < 90° for a hydrophilic surface[5]. The two
cases are illustrated in figure 2.2.
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Figure 2.2: An illustration of the static contact angle θ for a droplet resting on
a hydrophobic (left) and a hydrophilic (right) surface respectively. Adapted from
[34].

For a water droplet resting on a surface, the contact angle is a result of the three
media in the system interacting: the solid surface, the liquid water and the water
vapour. The angle appears on the solid-liquid-vapour three-phase contact line, and
varies quantitatively based on the interfacial tensions between each of the three
media[35]. The exact relation is given by Young’s equation:

cos θ = γsv − γsl

γlv
(2.3)

where γsl, γsv and γlv are the interfacial tensions between solid and liquid, solid and
vapour, and liquid and vapour respectively[12][35]. Young’s equation is therefore
effectively a force balance equation, as illustrated in figure 2.3.

Figure 2.3: Illustration of Young’s equation. The interfacial tensions between
the three media in the system are noted as γsl, γsv and γlv. They work as forces
denoted by vectors, creating a force balance and giving rise to the contact angle
θ. Adapted from [5].

Young’s equation was proposed in 1805 by Thomas Young[36], and is widely used
in surface science to this day[28]. It should be noted however that despite its
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widespread use, several major assumptions are made in the derivation of equation
(2.3). Perhaps the biggest assumption is that the surface is perfectly smooth. Since
this is not the case for most real world surfaces, the influence of roughness on
contact angles will be investigated further.

2.2.1 Influence of roughness

Most solid surfaces have some amount of roughness despite appearing smooth. This
roughness can have micro- and nanometer sized features, often both. The roughness
created on surfaces is normally unintentional, for example through the process in
which the surface is fabricated. It can also be created intentionally, for example
by sandblasting the surface. This roughness can have a large effect on the contact
angle and hydrophobicity[37]. Increasing the roughness of a hydrophobic surface
will make it even more hydrophobic, and vice versa for a hydrophilic surface. That
means to make an extremely hydrophobic surface, a low energy surface must be
combined with a certain surface roughness. More specifically, a hierarchical surface
roughness is sought after to maximize the hydrophobicity, combining micrometer
and nanometer sized surface features[4][38][39].

In the case of the aluminium surface, several approaches have been taken to create
a hierarchical surface roughness upon it. Cho et al.[40] reports using a combination
of sandblasting techniques and alkali surface modification to create such a surface.
They used sandblasting to create a microstructured aluminium surface, and immer-
sion in a NaOH solution to create a nanostructure with flake-like morphology. They
then applied a self-assembled monolayer fluorosilane coating to lower the surface
energy. A different approach is taken by Shi et al.[41]. They deposited nano-silica
particles onto acid-etched aluminium surfaces in order to create hierarchical rough-
ness. They then coated the surface with a fluorosilane to make it hydrophobic.
Jung et al.[10] synthesised polymer coatings with added poly(tetrafluorethylene)
(PTFE) nanoparticles and spray coated it onto smooth and sandblasted aluminium
surfaces to create hydrophobic surfaces.

The Cassie-Baxter model and Wenzel model are commonly used in literature to
understand the contact angle of droplets on rough surfaces. These models offer two
different takes on how a liquid can be in contact with a surface. In the Wenzel
model, the liquid is assumed to be fully in contact with the surface, with no air
pockets[42]. It is illustrated in figure 2.4. In this case, the apparent contact angle
θ∗ can be found through the relation:

cos(θ∗) = r cos(θ) (2.4)

where r is a roughness factor which describes the ratio of actual surface area to the
projected area.
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Figure 2.4: Illustration of the Wenzel (left) and Cassie-Baxter (right) contact
modes respectively. Modified from [4].

The Cassie-Baxter model is a contact model originally developed for the wetting
of porous surfaces[43]. The model can be applied to a droplet resting on top
of the surface features of a rough, hydrophobic surface. In this case, there are
air pockets trapped under the droplet, in contrast to the Wenzel model. The
Cassie-Baxter contact mode is illustrated in figure 2.4. The contact mode is more
typically encountered for surfaces which have been chemically treated to lower
surface energy and to promote hydrophobicity[30]. For the Cassie-Baxter contact
mode, the apparent contact angle θ∗ is given by the equation:

cos(θ∗) = −1 + ΦS(cos(θ) + 1) (2.5)

where ΦS is the surface fraction that is in contact with the liquid.

Equation (2.5) shows that the observed contact angle θ∗ in the Cassie-Baxter regime
will be much larger than on a smooth surface, as long as θ is larger than 90°. In
fact, having a rough surface is absolutely necessary to achieve contact angles above
120°[38]. It is worth noting that θ∗ in equation (2.5) changes drastically if ΦS is
varied, especially if ΦS gets very small. This contributes to the difficulty of creating
surfaces with consistently high contact angles. Equation (2.5) also shows that a
contact angle of 180° is unrealisable, because ΦS can never reach zero. Nevertheless,
the Cassie-Baxter equation makes it clear that promoting air trapping through
reducing ΦS is important in increasing contact angles [30, pp. 222-223].

Quéré[38] discusses how to determine whether a droplet will prefer the Wenzel- or
Cassie-Baxter mode. By comparing the surface energy of a droplet in each state,
he concludes that the Cassie-Baxter mode will be observed when θ > θc, where:

cos(θc) = −1− Φs

r − Φs
(2.6)

Here, Φs is the surface fraction from equation (2.5), and r is the roughness factor
from equation (2.4).
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Figure 2.5: A droplet resting on a tilted, solid surface. θadv is the advancing
contact angle. θrec is the receding contact angle.

A droplet does not have to exist only in the Wenzel- or Cassie-Baxter contact mode.
In fact, a coexistence of states is possible. The Cassie-Baxter mode can also be
metastable, and a transition to the Wenzel mode can occur if it is more energetically
beneficial. The transition can for example be triggered by pushing the droplet into
the surface with a certain force[38]. In this case, the droplet can be partly impaled
by the surface asperities[44].

2.2.2 Contact angle hysteresis

Another important parameter used in determining the hydrophobicity of a surface
is the contact angle hysteresis (CAH). Consider a droplet which is deposited on a
tilted surface, illustrated in figure 2.5. The advancing contact line of the droplet
pointing down the slope will typically have a larger contact angle compared to
the level one, this is the advancing contact angle. Initially, the contact line of the
droplet will be pinned to the surface as it is deposited. It will be impossible to
move the droplet unless a certain macroscopic force is applied[30, p. 71]. But if
the surface tilt increases, the gravity of the droplet might eventually overcome the
pinning. The advancing contact angle will keep increasing until a certain value,
until the advancing contact line moves. This maximum value is known as the
advancing contact angle, or θadv. Inversely, the receding contact line trailing the
droplet will have a smaller contact angle. When the surface is tilted, the angle
will keep decreasing until the contact line moves, giving the minimum receding
contact angle θrec[12][45, pp. 159-160]. The contact angle hysteresis is given by the
difference between the advancing and receding contact angle:
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CAH = θadv − θrec (2.7)

CAH is present for most surfaces, and can be seen as an expression of the non-ideality
of the surface[35][46]. A higher CAH is typically indicative of larger adhesion forces
between droplet and surface. However, a surface can exhibit large CAH while at the
same time maintaining large static contact angles. An example of such a surface is
the rose petal surface[47]. Properly characterizing the hydrophobicity of a surface
therefore necessitates not only finding its static contact angles, but also its CAH.

Growing interest has been shown in superhydrophobic surfaces in literature[37]
[48][49]. Superhydrophobic surfaces exhibit not only a CA above 150°, but also
a CAH of less than 10°[4]. Droplets on these surfaces will roll off at very low
tilting angles, and they will have excellent self-cleaning abilities. There are several
examples of such surfaces in nature, and the lotus plant leaves is an often used
example.

The key behind achieving a superhydrophobic surface is related to exploiting the
Cassie-Baxter contact mode. As a droplet rests on top of the features of a rough
surface, its only adhesion to the surface will be at these areas. The total water/solid
surface area will be very low, and thus the total adhesion will be lower as well.
Quéré[37] writes that in the case of strong pinning on dilute defects, the hysteresis
can be related to the defects per unit area φs:

(cos θrec − cos θadv) ≈ φs log(1/φs) (2.8)

That means minimizing CAH requires minimizing the density of defects that the
droplets rests upon. However, the density of defects still has to be large enough to
support the droplet such that the Cassie-Baxter mode is maintained. In addition,
the pinning force of the droplets to the defects can be lowered by reducing the
surface energy. That makes it necessary to combine a certain surface roughness
with low surface energy in order to achieve a superhydrophobic surface.

A closely related parameter to the CAH is the roll off angle (ROA), which is reported
in literature as its own parameter[5][35]. Take a sessile droplet resting on a tilted
surface, as shown in figure 2.5. The ROA is the tilting angle at which the droplet
starts to roll or slide down, typically during CAH measurements. A low ROA is
reported to imply a low CAH as well, but they are not equal[48].

Evaporation and contact angle

It is important to note that a droplet resting on a surface is a dynamic system. For
example, the droplet can evaporate, which may change its apparent contact angle.
This phenomenon has been well studied in literature. Birdi, Vu andWinter[50] found
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that the evaporation led to a constant volume decrease over time, depending on
droplet size. Another study was performed by Bourges-Monnier and Shanahan[51].
They found that initially, the diameter of a deposited droplet stayed constant while it
evaporated. However, both the height of the droplet and its contact angle decreased.
The contact line of the droplet was pinned, which ensured a constant surface area
between droplet and surface. The contact line pinning thus led to the reduction of
the contact angle during evaporation. This lasted until a certain contact angle was
reached, when the contact line started to recede. This angle was interpreted by the
authors to be the receding contact angle. Kulinich and Farzaneh[52] writes that
with a low enough CAH, the contact line pinning will be weak. In that case, the
CA will remain relatively constant during evaporation, but the contact diameter
will decrease.

2.3 Anti-icing

Several different groups publicized results between 2009 and 2010 showing very
beneficial anti-icing properties of some hydrophobic surfaces. For example, in 2009,
Tourkine et al.[53] reported a significant delay before droplets froze on superhy-
drophobic surfaces holding −8 ◦C. Kulinich and Farzaneh[24][54] reported a corre-
lation between ice adhesion strength and CAH in 2009. Cao et al.[55] reported low
ice accretion and reduced nucleation of supercooled water on a hydrophobic surface
in 2009. In 2010, Wang et al.[56] reported reduced ice accretion on hydrophobic
surfaces. These findings, amongst others, prompted a discussion between several
authors if hydrophobic or superhydrophobic surfaces could be used to prevent ice
nucleation on surfaces, or lower ice adhesion[4][12][57][58]. They concluded that
the earlier results cannot be seen as conclusive evidence for a general correlation
between hydrophobicity and anti-icing properties. One has to consider how each
aspect of a hydrophobic surface affects each separate anti-icing property to properly
evaluate any correlations.

The anti-icing performance of a surface can be evaluated using two different metrics:
the ice nucleation temperature and the time delay before ice nucleation on the
surface[59]. There has also been interest in the ice adhesion strength on hydrophobic
surfaces in literature. The term icephobicity has been used to encompass either or
all of these traits by different authors[58]. However, in this work, icephobicity will
strictly refer to low ice adhesion, while the general term anti-icing will refer to the
ability of a surface to prevent icing in the first place. The ice adhesion strength
will be considered outside the scope of this work. As such, this work will consider
how the hydrophobicity of a surface is related to the two anti-icing properties.

2.3.1 Hydrophobicity and anti-icing

Several groups have found that some hydrophobic surfaces can supress or signifi-
cantly delay ice nucleation[22][59][60]. Most authors generally attribute this effect
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to the following three phenomena[12]:

1. An insulating layer of air formed under droplets in the Cassie-Baxter contact
regime

2. Reduced contact area between solid and liquid

3. An increase in the free-energy barrier to heterogeneous nucleation

Regarding the first and second explanation, if a droplet is resting on a surface in the
Cassie-Baxter contact regime, air may be trapped under the droplet. The air will
be contained within the asperities of the surface, reducing the water/solid surface
area. The water/air interfacial area may be as much as 10-100 times larger than
the water/solid area, depending on the surface topography[53]. The air layer will
function as a thermal insulator, leading to a lower heat transfer rate from droplet
to solid[61]. If the solid is gradually cooled at a constant rate, then the droplet
will cool at a reduced rate compared to the solid. Lower nucleation temperatures
and longer freezing delay times will be observed as a result. This effect may help
explain some of the observed ice suppression effects observed in literature.

The third explanation of the ice nucleation delay concerns the thermodynamics
of nucleation. When a water droplet freezes, it has to overcome a certain critical
energy barrier for homogeneous nucleation, or the free-energy barrier. This energy
barrier ∆G∗

homo can be expressed as[61]:

∆G∗
homo = 16

3
πγ3

AB

[(∆T
Tm

)∆Hf ]2
(2.9)

Here, γAB is the surface tension between water and ice, ∆T is the difference between
the actual temperature and melting temperature, Tm is the melting temperature
and ∆Hf is the latent heat of fusion. Equation (2.9) shows the absolute maximum
energy barrier which is required for water to spontaneously nucleate, i.e. the critical
energy barrier for homogeneous nucleation. However, ∆G∗

homo can be reduced by
factors such as vibration and contaminants. If the water rests on a solid surface,
any surface defects may also reduce the critical energy barrier. In these cases it will
undergo heterogeneous nucleation. The energy barrier ∆G∗

homo will be modified
by a reducing factor f , which ranges from 0 to 1. The heterogeneous nucleation
energy barrier ∆G∗

hetero is then given by:

∆G∗
hetero = ∆G∗

homof (2.10)

f is a function of the roughness radius of curvature Rs, the water static contact
angle θ, several interfacial energy terms and the critical ice nucleus radius rc. rc is
9.1 nm at −5 ◦C and 4.5 nm at −10 ◦C[32]. Assuming that Rs is greater than 10rc,
then f can be expressed as[60]:
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f = 1
4[2 + (γiv − γlv

γil
) cos θ][1− (γiv − γlv

γil
) cos θ]2 (2.11)

where γiv, γlv and γil are the interfacial energies between ice and vapour, water
and vapour, and ice and water respectively.

The interfacial energy term in equation (2.11) will vary with temperature, but will
stay at approximately unity for the temperature range most relevant here[10][29]
[62].

Then, the heterogeneous energy barrier ∆G∗
hetero becomes:

∆G∗
hetero = ∆G∗

homof = ∆G∗
homo

1
4(2 + cos θ)(1− cos θ)2 (2.12)

as given by Oberli et al.[61] and Bahadur et al.[63].

Equation (2.12) implies that as the contact angle θ → 180°, then f → 1 and the
heterogeneous energy barrier approaches the homogeneous barrier, ∆G∗

hetero →
∆G∗

homo. Based on this, it is clear that maximizing the contact angle with water
would be the best approach to limit ice nucleation. However, some groups have
publicized results which seem to conflict with this picture. Jung et al.[10] found a
larger freezing delay on hydrophilic surfaces with nanoscale roughness, compared
to the hydrophobic surfaces they tested. Some authors have tried to explain this
discrepancy by arguing that only the local surface energy where the ice nucleus is in
contact with the solid is important, rather than the macroscopic surface energy[32].
In this case, f becomes a function of the CA of the ice nucleus in that point.
Furthermore, a quasi-liquid layer has been postulated to exist between the ice
nucleus and the solid surface[21][59]. This is illustrated in figure 2.6. In that case,
the macroscopic CA used in equation (2.12) should be replaced with θIW , which is
the CA between the ice embryo and its quasi-liquid layer.

Figure 2.6: An illustration of an ice embryo on a solid surface, resting on a
quasi-liquid boundary layer. Adapted from [59].

As the origin of the nucleation delay is not entirely clear, there have also been
disagreements on which parameters to optimize for the hydrophobic surfaces. Some
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groups have focused on the nucleation delay on microstructured surfaces[63], while
others have found the nanostructuring to be more important[59]. It has also been
been proposed that surfaces with minimal roughness are beneficial when condensa-
tion and frost formation can occur[10][64].

Kreder et al.[12] explains this wide variance in results from different groups with
the complexity of the system. Several length scales are involved when considering
the nucleation of ice on a surface: the critical nucleus size for ice (<10 nm), the
nanoscopic surface roughness (<100 nm), the topography needed for superhydropho-
bicity (50 nm to 10 µm) and the macroscopic droplet dimensions. The wide variety
of hydrophobic surfaces tested for anti-icing properties also have a wide variety of
topographies on different length scales. Other complicating factors include the effect
of opportunistic nucleation sites on a surface, droplet impurities, surface chemistry
and environmental conditions. Although one group can keep their experimental
parameters consistent, these factors make comparing results across literature more
challenging.

2.4 Sol-gel method

The sol-gel method is a synthesis route based on polymerization which is used
to create a wide range of functional materials[65][66]. The method can produce
ceramic materials with high purity, with the potential for very different structures
and compositions[67]. The sol-gel method is based on using certain inorganic or
metal-organic precursors, which are the starting compounds of the synthesis[68][69].
These precursors typically consist of a metal or metalloid element and certain non-
metallic ligands, or appendages. One example of a precursor is the commonly
used tetraethyl orthosilicate (TEOS), Si(OC2H5)4, which is a metal alkoxide. The
structural formula of TEOS is shown in figure 2.7.

Figure 2.7: The structural formula of tetraethyl orthosilicate (TEOS). Adapted
from [70].

For TEOS, the central metalloid, Si, is bound to four −OC2H5 ligands. TEOS
and other metal alkoxides react readily with water, whereby one of its ligands is
displaced through hydrolysis:

−−−Si−OR + H2O −−⇀↽−− −−−Si−OH + ROH (2.13)
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Here, −OR is the generalized form of a ligand bound to the central metalloid, in this
case Si. The hydrolysis in equation 2.13 may continue partially or fully, depending on
the presence of water or catalysts, which will displace more ligands. The hydrolyzed
precursors may then react through one of two condensation reactions:

−−−Si−OH + HO−Si−−− −−⇀↽−− −−−Si−O−Si−−−+ H2O (2.14)

−−−Si−OR + HO−Si−−− −−⇀↽−− −−−Si−O−Si−−−+ ROH (2.15)

Equations (2.14) and (2.15) form the basis for the sol-gel method. The precursor
molecules are bound together through a polymerization process, potentially creating
large networks. The structures of the resulting networks can be carefully controlled
through several parameters, which will be expanded upon in section 2.4.2.

2.4.1 Steps in the Sol-gel process

The sol-gel process can be divided into six steps[71]:

1. Formation of a stable solution (a sol) of the precursor compound.

2. Gelation resulting from the precursor molecules reacting through equation
(2.14) and (2.15), forming a network.

3. Aging of the gel (syneresis) where the condensation reactions continue, even-
tually forming a solid mass with contraction of the network.

4. Drying of the gel, which happens as water and other solvents are expulsed
from the network.

5. Dehydration of the sol, where the structure is calcined to remove surface −OH
groups.

6. Densification and decomposition of the gel at high temperatures (>800 ◦C).

Depending on the desired structure and application, some of these steps may be
omitted. For example, if a thin sol-gel coating is desired, dehydrating the coating at
high temperatures would cause undesirable shrinking and cracking, and is therefore
skipped.

2.4.2 Influencing the network structure

Two important parameters in the initial sol can be changed to control the final
network structure: water content, and the pH in solution. Regarding the water
content in solution, it has been shown how the precursor hydrolyses using water in
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equation (2.13). The water content in the sol will decide the degree of hydrolysis,
if it is partial or total. The degree of hydrolysis will control the morphology and
structure formed by condensation, through equation (2.14) and (2.15).

The pH in solution will also help determine the final structure. H3O+ and OH–

groups in solution can help catalyse the hydrolysis and condensation reactions re-
spectively. At lower pH, the rate of hydrolysis will increase, making it the dominant
reaction. The increased hydrolysis will promote the formation of linear Si−O−Si
chains, with cross-linking and branching happening later during the aging step.
Inversely, at higher pH, the condensation reaction rate will increase. A greater
degree of cross-linking will be promoted early on, leading the monomers to form
agglomerates. The agglomerates may eventually cross-link, creating a network
structure.

One application of the sol-gel method is to make a variety of functional coatings
on surfaces. The morphology and structure of a coating will change depending on
the water content and pH. An acid-catalysed sol-gel will result in a dense, thinner
coating, as the linear chains align during the coating deposition. Contrarily, a
base-catalysed sol-gel will make a thicker coating, with a rougher surface because
of its agglomerate structure.

2.4.3 Silica nanoparticle synthesis

The Stöber-Fink-Bohn-method (SFB-method) is a widely used method of generating
a monodisperse suspension of SiO2 nanoparticles[72]. Spherical particles in the size
range of 5 nm to 2000 nm with homogenous size distribution can be produced[73].
The method is based on reacting TEOS with water, using ammonia as a catalyst and
an alcohol with low molecular weight as solvent. The TEOS will hydrolyse according
to equation (2.13) to form the singly hydrolysed (OC2H5)3Si(OH). This monomer
will further react according to the following simplified condensation reaction:

(OC2H5)3Si(OH) + H2O −−⇀↽−− SiO2 + 3 C2H5OH (2.16)

The SFB-method has similarities to the sol-gel method in that silicon alkoxide
precursors react through hydrolysis and condensation to form a structure. However,
letting the reaction progress under the specific conditions that the SFB-method
demands results in spherical SiO2 particles and not a gel. A general explanation for
this phenomenon is that the molar ratio of water to TEOS used is much higher than
strictly necessary for the total hydrolysis and condensation reactions. The large
water content in addition to the high pH serves to promote condensation. Thus
compact network structures are favoured rather than a gel[68].

Several explanations for the growth mechanism behind the SiO2 particles, or silica
particles, have been proposed. Masalov et al.[74] categorizes them into two types.
The first is the monomer addition growth model. First proposed by LaMer et
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al. in 1950[75], the model attempts to explain the growth mechanism inspired by
classic nucleation theory. Reaching a certain supersaturation of monomers triggers
nucleation and growth through continued diffusion of monomers to the nucleus
surface. However, as Brinker and Scherer[68] point out, this view conflicts with the
sometimes porous structure of the spheres. They explain that the smaller silica
spheres are porous, with reducing porosity as they grow larger. Another issue
with the model is its explanation of the narrow size distribution of the particles. It
attempts to explain the size distribution as a consequence of a very short time spent
above the critical nucleation concentration of reaction precursors. However, Bogush
and Zukoski[76] found that the concentration of reaction precursors stay above the
concentration required for nucleation to occur for an extensive time period.

Figure 2.8: An overview of the proposed growth model for silica particles grown
by the SFB method. From [74].

The second growth model is the aggregation growth model. Here, nanometer-
sized particles aggregate to form larger particles. Later, depending on the reaction
conditions, the growth mode changes to the condensation of monomeric and dimeric
silicates on the surface. They therefore end up with a hard outer silica shell, and
porous inner structure, seemingly in agreement with observed experimental results.
Masalov et al.[74] proposes another growth mechanism based on the two existing
models and experimental data, which is summarized in figure 2.8. Essentially, it
is a multistage particle growth model based on particle aggregation. When the
concentration of the hydrolysed silica monomers decrease, the growth transits to
mono- and dimer addition to the particle surfaces. With the addition of more TEOS
to the solution, new and smaller secondary particles are formed, and will start to
grow. When around 30 nm to 40 nm in size, the secondary particles will join to the
surface of the larger, primary particles. The growth will again start to transit to
mono- and dimer addition to the particle surface, creating the smooth shell. This
process can continue several times with addition of more TEOS.

2.5 Spray coating

Spray coating is a technique used for depositing solutions onto surfaces. It consists
of forcing the solution through a nozzle by applying pressurized gas. The surface
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to be coated can be positioned on a hot plate to aid in evaporation of solvents[77].
Spray coating is a highly scalable and flexible deposition method used for several
different applications, such as in the manufacturing of hydrophobic surfaces. For
example, Li et al.[78] used spray coating to coat glass insulators used for high
voltage transmission lines with a PDMS/modified nano-silica hybrid system. This
resulted in very hydrophobic surfaces and significant reduction in ice accumulation.
Shang, Zhou and Xiao[79] used spray coating to apply a suspension of silica mi-
crosphere and silica sol onto a glass substrate. The suspension was used to attain
a micro/nanoscale hierarchical roughness upon the surface. The surface was later
treated with 1H,1H,2H,2H-perfluorodecyltriethoxysilane to attain a hydrophobic
surface.
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Experimental

Figure 3.1 shows a flowchart of the experimental work that was performed. Each
point is further detailed in the following sections.
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Figure 3.1: A flowchart of the experimental work. The blue bubble show the
starting substrate, green bubbles show manufacturing steps, while orange bubbles
show characterization steps.
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3.1 Substrate details

Aluminium substrates of the 5052 type were used, hereby referred to as Al substrates.
Their dimensions were 1 cm× 1.5 cm× 0.2 cm. The substrates were delivered by
NTNU Fine Mechanical Workshop.

3.2 Preparation of substrates

3.2.1 Sandblasting of substrates

Aluminium substrates were sandblasted to introduce microroughness in the surface.
The substrates were sandblasted in a sandblasting machine property of SINTEF.
Two types of sand were used, with different grain sizes. The first type of sand used
was SiO2, with a grain size of approximately 150 µm. This type of sand will be
referred to as "fine" from here on out. The second type was Al2O3 with a grain
size of 0.5 mm to 1 mm, this type will be referred to as "coarse". The machine
was thoroughly cleaned with pressurized air between sandblasting runs to avoid
contamination. When sandblasting, each substrate had their backside fastened
with duct tape to a wooden support inside the machine. The substrates were then
blasted with sand for approximately five seconds each. The sand ejection speed
from the nozzle was unknown.

3.2.2 Chemical cleaning

To ensure no organic residue or other contamination was left on the substrates, a
chemical cleaning procedure was performed. This was performed after the sandblast-
ing step. The substrates were immersed in acetone, then isopropanol and finally
ethanol, spending 5 minutes in each solution. They were then left to evaporate for
approximately 10 minutes.

3.3 Roughness measurements of sandblasted sub-
strates

The average roughness of the sandblasted Al substrates were measured using a
Veeco Dektak 150 Profilometer at the NTNU NanoLab. The average roughness was
measured by the parameter Ra, which is the arithmetic average of the deviation
from a level baseline of each point on the surface. The baseline was set by using a
flat aluminium substrate which was not sandblasted. Most of the roughness tests
were conducted over 4 mm of substrate each time, using 180 s per measurement.
Some roughness measurements were performed over a smaller distance (2 mm over
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150 s), or over a larger area and duration (8 mm over 200 s). 4 substrates were
measured upon.

3.4 Synthesis of the silica nanoparticle sol

The SiO2 (silica) nanoparticles were synthesised through the sol-gel method, using
tetraethyl orthosilicate (TEOS) as a precursor molecule. The synthesis method
used was adapted from earlier master theses[1][2], based on the Stöber-Fink-Bohn
process[72]. Figure 3.2 shows a picture of the experimental setup.

The chemicals used are summarized in table 3.1. First, ethanol, DI water and
ammonium hydroxide were mixed for a minute in a round bottom flask. Then,
TEOS was added drop-wise to the flask across a timespan of 3 minutes. The
solution was then left for 1 hour. Afterwards, the solution was transferred to a new
container, and allowed to cool to room temperature. Unused solution was stored in
a fridge at 5 ◦C, though care was taken not to use any old solution at a later time
with visible agglomeration and precipitation.

Table 3.1: Overview of the chemicals used for the silica particle sol synthesis.

Chemical Formula CAS Volume [mL] Purpose

Tetraethyl
orthosilicate

Si(OC2H5)4 78-10-4 0.75 Silica sol precur-
sor

Ethanol C2H6OH 64-17-5 22.5 Solvent

Ammonium hy-
droxide solution
(28-30%)

NH4OH(aq) 1336-21-6 1.5 pH regulation
and catalyst

DI water H2O 7732-18-5 2.5 Reactant
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Figure 3.2: A picture showing the experimental setup used for synthesising silica
nanoparticles and fluorosilane sol-gel. The synthesis was performed in a 50 mL
round bottom flask on a combined hot plate and magnetic stirrer. For the silica
nanoparticles, the hotplate was kept at 35 ◦C with the magnetic stirrer rotating a
stir bar in the solution at 300 rpm. For the fluorosilane sol-gel, the hotplate was
kept at 60 ◦C with a magnetic stir bar rotating at 350 rpm. A Liebig condenser
was used above the round bottom flask to avoid solvent loss due to evaporation.
The condenser was connected via tubing to a water outlet.
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3.5 Synthesis of the fluorosilane sol-gel

The fluorosilane sol-gel synthesised in this work used 1H,1H,2H,2H-perfluorooctyl-
triethoxysilane as a precursor molecule, its structural formula is shown in figure
2.1. The synthesis parameters were based on the previous master’s theses on this
subject[1][2]. Figure 3.2 shows the experimental setup used for synthesising the
fluorosilane sol-gel. The reagents used, as well as their purpose and the amounts
used, is summarized in table 3.2. The 0.070 mL of DI water added to the synthesis
held a pH of 10, to ensure a base-catalyzed sol-gel reaction. Creating a solution
of DI water with a pH of 10 was accomplished by slowly adding NH4OH to the
solution until its pH reached 10. As 0.070 mL of this solution was added, only
2.71× 10−6 mL of NH4OH was added to the synthesis in total.

Table 3.2: Overview of the chemicals used for the fluorosilane sol synthesis.

Chemical Formula CAS Volume [mL] Purpose

1H,1H,2H,2H-
Perfluorooctyl-
triethoxysilane

C14H19F13O3Si 51851-37-7 0.5 Fluorosilane
sol precursor

Ethanol C2H6OH 64-17-5 3.043 Solvent

Ammonium hy-
droxide solution
(28-30%)

NH4OH(aq) 1336-21-6 2.71× 10−6 pH regu-
lation and
catalyst

DI water H2O 7732-18-5 0.070 Reactant

The synthesis was carried out by first adding the ethanol and pH adjusted DI water
to the round bottom flask. Then, the fluorosilane sol precursor was added to the
flask. The solution was left to react for 1 hour. Afterwards, the solution was
transferred to another container, and allowed to cool to room temperature for 1
hour. It was then used to coat substrates. Unused solution was stored in a fridge
holding 5 ◦C.

3.6 Sol deposition via spray coating

Both the silica nanoparticle sol and the fluorosilane sol was deposited onto substrates
using spray coating. The coating was performed in an ExactaCoat SC spray coater
from Sono-Tek, pictured in figure 3.3. Each substrate was fastened inside the
spray coater using double sided tape on aluminium foil fastened to the deposition
platform. The platform could be heated, allowing for faster evaporation of solvents.
A computer program controlled the position and speed of the spray nozzle, allowing
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for multiple layers. The speed of the nozzle was set to a constant 40 mm/s. The
nozzle moved across the substrates in straight lines, with 3 mm spacing between
them. Because of the spray width of the nozzle, this resulted in a certain amount
of overlap between the lines.

Figure 3.3: The ExactaCoat SC spray coater used for spray coating substrates
and accompanying computer.

3.6.1 Silica deposition

For the deposition of the silica nanoparticles, an ultrasonic syringe was used, to
help prevent agglomeration. The deposition speed used was primarily 1 mm/min,
with 0.5 mm/min being used for certain substrates to investigate any effects a
reduced deposition of silica particles would have on its hydrophobicity and anti-
icing properties. Only a single layer was deposited. The deposition platform was
kept at 50 ◦C. Some substrates were also not coated with silica particles at all to
further investigate its effects.

3.6.2 Fluorosilane deposition

The fluorosilane sol was diluted at a 1:1 volume ratio with ethanol, using a magnetic
stirrer rotating at 350 rpm for 10 minutes. The number of layers deposited varied
from 1 to 4 layers to find the optimal thickness. The spray coater deposition surface
was heated at 50 ◦C. The heating was used to accelerate the evaporation of solvents
between layers. Each new substrate spent a minimum of 5 minutes fastened to
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Figure 3.4: A picture showing how a batch of substrates were oriented in the
Carbolite oven.

the surface to heat it before coating. There was a 1 minute interval between each
coating layer to facilitate the evaporation.

3.7 Heat treatment

The substrates were heat treated after each deposition step to remove any remaining
solvents and water. The heat treatment was done in a programmable Carbolite
HTCR6/28 oven approximately 15-30 minutes after deposition.

After deposition of the silica sol, the substrates were heat treated at 100 ◦C. The
temperature was ramped up from 25 ◦C at a rate of 100 ◦C/h. The ramp down
speed was set to the same as the ramp up speed, but turned out to be considerably
slower in practice. The substrates were therefore manually retrieved after 3 hours
and 30 minutes total, with the oven holding 82 ◦C.

After deposition of the fluorosilane sol, the substrates were heat treated at 150 ◦C.
The temperature ramp up was from 25 ◦C at a rate of 100 ◦C/h, with the ramp
down set to the same rate. The substrates were retrieved after 6 hours and 30
minutes.

A picture of the orientation of substrates in the oven is shown in figure 3.4.
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3.8 Overview of samples

Table 3.3 show an overview of all the substrate samples prepared. The three most
important parameters that were varied for each sample are shown. The designated
name of each sample contains each of the three parameters that were varied, and
an explanation of the naming system is shown in figure 3.5.

Figure 3.5: An explanation of the naming system used for the samples. The
name C-S1-L2 is used as an example. The first part (here: C) signifies which
type of sand the substrate was sandblasted with. The second part (S1) shows the
deposition speed at which the silica particle sol were spray coated. The third part
(L2) shows the number of fluorosilane sol layers spray coated onto each substrate.
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Table 3.3: A table giving an overview of all samples prepared. The columns are
divided into the main parameters which were modified per sample.

Sample name Sandblasting type Silica particle
deposition speed
[mL/min]

Number of flu-
orosilane layers
deposited

F-S1-L1 Fine 1.0 1

F-S1-L2 Fine 1.0 2

F-S1-L3 Fine 1.0 3

F-S1-L4 Fine 1.0 4

F-S1-L0 Fine 1.0 0

F-S2-L3 Fine 0.5 3

F-S0-L2 Fine 0 2

F-S0-L0 Fine 0 0

C-S1-L1 Coarse 1.0 1

C-S1-L2 Coarse 1.0 2

C-S1-L3 Coarse 1.0 3

C-S0-L2 Coarse 0 2

C-S0-L0 Coarse 0 0

U-S0-L2 Untreated 0 2

U-S0-L0 Untreated 0 0
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3.9 Weight gain

To investigate the amount of coating applied to the substrates, and the amount of
solvents evaporated during heat treatment, some samples were weighed before and
after these steps. The scale used was a Sartorius ME235P analytical balance scale.
A picture of the scale is shown in figure 3.6.

Figure 3.6: The Sartorius ME235P analytical balance scale used for weight
measurements.

3.10 Micro- and nanostructure characterization

To image the micro- and nanostructure of the substrate surfaces, a Zeiss Supra 55
VP Low Voltage Field Emission Scanning Electron Microscopy was used, hereafter
referred to as the SEM. Samples were imaged using the secondary electron detector.
The parameters used were mainly working distances of 8.5 mm and 6.5 mm, an
aperture of 30 µm, and an acceleration voltage of 5 kV, unless otherwise noted.
Backscattered electron mode was also attempted. The purpose was to be able to
separate different phases on the surface. The parameters used here were an aperture
of 60 µm, a working distance of 10.2 mm and 5 kV acceleration voltage.

The size of the deposited silica nanoparticles was estimated using SEM images,
along with ImageJ image analysis software. The apparent size of the particles
were compared to the length scale at that magnification as displayed by the SEM
software.

To investigate the interface structure, the cross section of sample C-S1-L2 was
imaged. The sample was positioned vertically in 15 mL PolyFast thermoplastic
powder in a Struers casting machine. The sample was cast at 180 ◦C for 5 min,
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hardening the PolyFast powder around the sample. The cast was then ground
down approximately 5 mm to expose the sample surface and coating. The grinding
was performed using a Struers grinding machine and Silicon Carbide grinding paper,
types 80, 220 and 320. The surface of the cast was polished using a Struers polishing
machine. It was polished by using polishing plates and diamond slurry, with three
runs of 3 min each. The sample was cleaned with ethanol and water between each
polishing step. After polishing, the sample was imaged in the SEM. Later, a carbon
coater was used to coat the surface of the cross section with carbon. The purpose of
the carbon coating was to avoid charge build-up when imaged in the SEM. Finally,
the cross section was imaged in the SEM a second time.

3.11 Characterization of hydrophobicity

To characterize the hydrophobicity of the finished substrates, a Drop Shape An-
alyzer from KRÜSS GmbH was used, known as DSA100 and shown in figure 3.7.
The hydrophobicity of the substrates was characterized through contact angle and
contact angle hysteresis measurements.

Figure 3.7: The Drop Shape Analyzer DSA100 used for hydrophobicity charac-
terization.

3.11.1 Contact angle

The contact angles (CA) of water on the substrates were measured. To accomplish
this, water droplets were deposited onto the substrates. The alignment of the
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substrate and the deposition of water droplets was controlled by KRÜSS Advance
software running on a separate computer. The deposition process could be done
manually through the software, or it could be automated. The deposition itself was
done by a thin needle connected to a syringe controlled by the Advance software.
After deposition, a high speed camera was used to capture still frames of the droplet
on the surface. These frames were analysed by the software using an algorithm
based on the Young-Laplace equation. The software attempted to find the contact
baseline between droplet and surface, and calculated the droplet CA. In practice,
the contact baseline often had to be set manually, and the CA re-analysed.Additional
information was also recorded, such as the temperature recorded by a temperature
sensor, and time of measurement.

The size of the deposited droplets were set to be 8 µL of DI water. The Advance
drop shape analyzer software also made a volume estimate of deposited droplets
based on measurements taken by the camera. The volume estimation was based
on a size comparison with a known size, and the droplet depositing needle was
used. The needle was measured with a micrometer, and its diameter entered into
the software. The DSA100 used camera settings controlled by the KRÜSS Advance
software. All measurements were done using the following settings: 40 brightness,
85 zoom, 51 focus and 20 FPS. The camera itself was physically tilted 2° in relation
to the plane of the substrate, to make the baseline more accurate.

The DSA100 allowed for a large degree of automation in its operation, allowing
the measurements to be taken with very precise timing. The measurements done
has taken full advantage of its potential for accuracy, ensuring the measurements
were done at the exact same time after each droplet was deposited. Eleven mea-
surements were done in the first six seconds after the droplet was deposited, with
one measurement per 0.5 s.

The CA measurements were repeated on three different areas on each substrate,
giving a total of 33 measurements per substrate. To avoid any edge effects, the
droplets were deposited some distance away from the edges of the substrate. The
droplets were also not deposited on areas which were already measured, to avoid
any potential effects the droplets might have had on the surface. Because of the
droplet volume and substrate size, this allowed for three measurement areas per
substrate, as can be seen in figure 3.8.

Figure 3.8: Three sessile droplets deposited on a sample substrate. The droplets
are deposited in the typical positions where measurements were made on the
substrates.
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3.11.2 Contact angle hysteresis

An external tilting table connected to the DSA100 allowed the samples to be tilted
a maximum of 90°. An example of the tilting function in use is shown in figure 3.9.
The tilting function was used to determine the roll off angle (ROA) and contact angle
hysteresis (CAH) for the coated substrates. An experimental procedure was used
wherein a 8 µL droplet was deposited onto the substrates, and after a few seconds
the tilting table was used to start tilting the DSA100. For the initial measurements,
the table was tilted 1 °/s, and each second a still frame measurement was recorded
by the camera. If the droplet rolled off before the table was tilted 90°, then a more
careful measurement was made. To increase the accuracy of determining the angle
at which the droplet rolled off, i.e. the ROA, new droplets were deposited and the
table tilted by 0.5 °/s, with 2 measurements per second. At the frame that the
droplet started moving, or complete roll off occurred, the tilting angle was recorded
as the ROA. The previous frame, where roll off had yet to occur, was used to find
the CAH. The angle of each side of the droplet to the baseline was found using a
tangent fitting algorithm in the software. The angle difference, i.e. the CAH, was
recorded manually. The samples being characterized were fastened while tilting
with either two clamps or adhesive tape.

Figure 3.9: A picture of the DSA100 being tilted 30° by the external tilting
table.

Typically, 2 measurements of the contact angle hysteresis were made per sample.
Any more measurements could not be made without measuring on areas of the
substrate that had already been measured upon, and to avoid touching the edges.
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3.11.3 Environmental behaviour

An environmental chamber, the TC40, and a humidity chamber, the HC10, were
used to investigate the environmental behaviour of the substrates. The HC10 was
connected to the TC40, which itself was connected to the DSA100. The TC40
was an enclosed, temperature-controlled environmental chamber. The temperature
in the chamber was controlled manually by using two devices: a water/ethylene
glycol cooling system, controlled externally by a Julabo F12-MA Circulator system,
and a Peltier element, allowing for fine-tuning of the temperature. The samples to
be tested were placed on a platform in the chamber with good heat-conductance,
which the Peltier element was directly connected to. The HC10 as it was installed
onto the TC40, controlled the humidity levels inside the TC40. The HC10 was
connected to a Silver Line air compressor, which in combination with a container
of distilled water was used to control the humidity. The air compressor was set to
deliver a constant 1 bar of pressure. A thermal hood could be inserted into the
TC40, which improved control over temperature, but reduced control over humidity.

A temperature sensor connected to the DSA100 was inserted into the chamber,
enabling the software to measure the temperature inside the chamber. The temper-
ature sensor was taped down to constantly be in contact with the sample platform, in
order to most accurately measure the substrate temperature. A second temperature
sensor was connected to the HC10. A small opening in the top of the environmental
chamber allowed for the droplet depositing needle to enter the chamber.

Contact angle reduction with reducing temperature

The effect of temperature on the static contact angle was examined. In these tests,
samples were gradually cooled from 22 ◦C to 5 ◦C, while measuring the development
in CA. To accomplish this, a sample was placed in the environmental chamber
holding 22 ◦C. An 8 µL droplet was then deposited on the sample. The thermostat
temperature connected to the Peltier element was manually lowered at a rate of
−1 ◦C/min. A measurement was taken in the KRÜSS Advance software each minute
during cooling. This process was continued until the measured temperature inside
the chamber was approximately 5 ◦C. The thermal hood was utilized in these
experiments to improve temperature control. But as a result the humidity levels
fluctuated in the range of 60 - 70%. The water/ethylene glycol cooling system was
kept at 15 ◦C.

Contact angle reduction with evaporation

The change in static contact angle over time was also investigated. The purpose was
to examine the effect that evaporation had on the CA of a droplet. An 8 µL droplet
was deposited on a sample, and its CA measured every minute for 30 minutes. The
sample was kept at 22 ◦C, and the humidity was kept in the range of 60 - 65%.
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3.12 Characterization of anti-icing properties

To characterize the anti-icing properties of the substrates, the DSA100 was used.
Only the environmental chamber TC40 was connected to the DSA100 for these
experiments. The HC10 humidity chamber could not be used below 5 ◦C. There-
fore, humidity levels could not be precisely controlled during the anti-icing char-
acterization. The TC40 without the HC10 installed is shown in figure 3.10. The
water/ethylene glycol cooling system was kept in the range of −2 ◦C to 3 ◦C. The
thermal hood was utilized during these experiments to improve temperature control.

Figure 3.10: An environmental chamber, the TC40, installed in the DSA100.

Three anti-icing properties were tested for. These include the nucleation temper-
ature, the delay of ice formation and cyclic icing behaviour. The experimental
procedures are largely based on [1] with modifications.

3.12.1 Nucleation temperature

For the nucleation temperature measurements, a substrate was placed in the envi-
ronmental chamber at ambient conditions. The temperature in the chamber was
then gradually lowered to 5 ◦C. This was done by lowering the thermostat tem-
perature for the Peltier element to 3 ◦C, because of a discrepancy between the
temperature set and the temperature that was measured. It was kept at 5 ◦C for
10 min to ensure the sample was at thermal equilibrium. Then, an 8 µL sessile
droplet was deposited onto the sample surface. The thermostat temperature con-
nected to the Peltier element was manually lowered at a rate of −1 ◦C/min. For
many samples, a measurement was made in the KRÜSS Advance software each
minute during cooling. The thermostat temperature was lowered at a constant rate
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until the sessile droplet froze. The freezing process was recorded by the software,
and the temperature was recorded by the temperature sensor each frame. This
allowed for precise determination of the freezing temperature.

For some samples, a three-droplet test was performed. This was done to investigate
the homogeneity of the surface and ascertain the uncertainty of the nucleation
temperature measurements. Three droplets were deposited on separate areas of the
sample before cooling began, similar to figure 3.8. The temperature at which each
droplet froze was recorded during cooling.

3.12.2 Delay of ice formation

To test the delay of ice formation, the environmental chamber containing a sample
was first lowered to −10 ◦C. The temperature was maintained for at least 10 min
to ensure thermal equilibrium. The deposition needle was then lowered into the
chamber, and an 8 µL sessile droplet was deposited onto the substrate. When the
droplet came into contact with the surface, a timer was started. The chamber
temperature was maintained at −10 ◦C until the droplet froze. The timer was then
stopped, and the time recorded was found as the delay of freezing. For samples
that showed some delay of ice formation, a measurement was made in the Advance
software every 5 min. For some samples, three droplets were deposited on different
areas, and the time was taken before each droplet froze.

3.12.3 Cyclic icing behaviour

Finally, the cyclic icing behaviour of the samples were investigated. First, a proce-
dure similar to the nucleation temperature tests were performed. An 8 µL sessile
droplet was deposited at 5 ◦C on a sample and the chamber temperature was low-
ered at −1 ◦C/min until freezing. The contact angle of the droplet was measured
every minute during cooling until it froze. The droplet freezing temperature was
recorded as normal. After freezing, the Peltier thermostat was increased in tem-
perature by 2 ◦C/min, until it reached 5 ◦C again. The chamber was kept at 5 ◦C
for approximately 10 min. Then, the same process was repeated two or three more
times, with the temperature of freezing being recorded each time.

To ascertain the uncertainty in the ice cycling measurements, and investigate the
homogeneity of the surface, the ice cycling tests were performed using three droplets
simultaneously on certain samples. Three droplets were deposited on separate areas
of the sample at 5 ◦C, similar to figure 3.8. Then, the temperature was lowered by
−1 ◦C/min until all three droplets froze. The freezing temperature was recorded
individually for each droplet. The ice cycling process was repeated two or three
more times, similar to the single droplet method. The camera zoom was set to 40
for these experiments to allow viewing all three droplets simultaneously.
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3.12.4 Coating durability

The coating durability was tested by measuring contact angles, contact angle hys-
teresis and nucleation temperature on sample C-S1-L1, after it had been subject to
all three types of icing characterization. In total, sample C-S1-L1 had been subject
to one nucleation temperature test, one delay of icing test, one single droplet ice
cycling test, as well as one three-droplet ice cycling test. The contact angles and
hysteresis were measured through the same procedure as those detailed in section
3.11. The droplets were deposited on approximately the same positions as the
ones used for the three-droplet ice cycling test, though with some variance likely to
occur.
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Results

4.1 Substrate characterization

4.1.1 Effects of sandblasting

Substrates sandblasted with coarse and fine sand became visibly distinct, not just
compared to an untreated substrate but also to each other. The difference in
appearance is shown in figure 4.1.

Figure 4.1: A picture showing the difference in appearance between the different
sandblasting types. From left to right are substrates sandblasted with coarse sand,
fine sand and no sandblasting respectively.

4.1.2 Roughness measurements of sandblasted substrates

The average roughness of the substrates sandblasted with fine particles was found
to be 2.83± 0.15 µm.

The roughness of the substrates sandblasted with coarse sand was also measured.
However, the roughness proved to be outside the measuring limitations of the
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profilometer. The only data acquired from these measurements was that the average
roughness was above 7 µm.

4.1.3 Weight gain

Table 4.1 shows the weight changes measured for the samples before and after
coating with fluorosilane, in addition to after heat treatment.

Table 4.1: An overview of the weight changes of several samples before and after
coating with fluorosilane and after heat treatment. The difference in weight after
the fluorosilane coating step and after the heat treatment are shown. Finally, the
total differences are shown in the rightmost column. All values may have an error
of ±0.02 mg from the scale.

Sample weight [mg]

Sample name Weight difference Weight difference Total difference

after coating after heat treatment

C-S1-L1 0.22 -0.41 -0.19

C-S1-L2 0.43 -0.32 0.11

C-S1-L3 1.12 -0.96 0.16

C-S0-L2 1.38 -1.09 0.29

F-S2-L3 1.08 -0.82 0.26
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4.1.4 Micro- and nanostructure characterization

Effects of sandblasting

Figure 4.2 shows a comparison of the resulting microroughness of substrates sand-
blasted with either fine or coarse sand.

(a) SEM image of sample F-S0-L0. (b) SEM image of sample C-S0-L0.

Figure 4.2: A comparison of SEM images taken of samples F-S0-L0 and C-S0-L0.

Effects of silica nanoparticle deposition

Figure 4.3 shows SEM images taken from sample F-S1-L0, i.e. a sample which was
sandblasted with fine sand and coated with silica particles, but not with fluorosilane.
Another SEM image taken of sample F-S1-L0 is shown in figure 4.4. As can be seen
from the figures, the deposited density of silica nanoparticles has some variability.
Certain areas can be seen to only have a monolayer of particles, or an even less
dense layer, where the aluminium surface is visible beneath. This can be seen
highlighted in the upper right of figure 4.3, or the upper part of figure 4.4. Here,
features of the sandblasted aluminium surface are exposed with only a few particles
deposited on top. Other areas, such as the one highlighted in the upper left of
figure 4.3, had a much greater density of particles. Here, a relatively thick layer of
closely packed spheres have formed. Fracture lines run through and split the dense
particle deposition.
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Figure 4.3: SEM images taken of sample F-S1-L0. On the bottom is a larger
overlook of the distribution of silica particles on the surface. The red rectangles
show two areas of high magnification, these are shown on the top left and right
of the figure.

Figure 4.4: SEM image taken of silica nanoparticles deposited on sample F-S1-
L0.
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Effects of fluorosilane sol-gel deposition

Figure 4.5 shows SEM images comparing the final surface of samples F-S1-L4 and
C-S1-L3. It was not possible to detect the fluorosilane coating directly through
SEM. Backscattered electron mode was attempted, but did not yield any usable
results.

Figure 4.6 and 4.7 shows the silica particle distribution on the surface of sample
C-S1-L3. On areas without charge build-up, the particle coverage was similar to
the one seen in 4.4 for sample F-S1-L0. Generally, a single layer of particles were
spread across the surface, with minimal stacking.

Figure 4.8 shows SEM images of the surface of sample F-S2-L3, i.e. a coated sample
with reduced silica particle deposition. Of particular note is the lower density of
silica particles deposited on the surface.
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(a) SEM image of sample F-S1-L4.

(b) SEM image of sample C-S1-L3.

Figure 4.5: A comparison of the microstructure on samples F-S1-L4 and C-S1-L3.
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Figure 4.6: SEM image taken of sample C-S1-L3, showing the microstructure
covered with silica particles.

Figure 4.7: SEM image taken of sample C-S1-L3, showing a typical distribution
of silica particles on the surface.
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(a)

(b)

Figure 4.8: SEM images of sample F-S2-L3. The images show the silica particle
coverage at two areas of the surface. (a) shows a more sparsely covered area,
while (b) shows an area with larger particle density.
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Nanoparticle size analysis

The size of the deposited nanoparticles were estimated using the SEM image shown
in figure 4.9. The length of 20 particles were measured and compared with the scale
bar. The estimated particle size was found to be 186± 12 nm.

Figure 4.9: A SEM image of sample C-S1-L3, showing silica nanoparticles.

Cross section analysis

A picture of the cross section of sample C-S1-L2 as it was molded in thermoplastic
is shown in figure 4.10.

Figure 4.10: A picture of sample C-S1-L2 that has been molded into thermo-
plastic, then ground and polished to expose its cross section.

An overview of the cross section profile for sample C-S1-L2 can be seen in figure
4.11. The microstructure roughness induced by the coarse sandblasting is clearly
visible.
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Figure 4.12: A SEM image showing the cross section of sample C-S1-L2 coated
with carbon. The aluminium sample is on the bottom.

Figure 4.12 shows a closer look at the surface cross section after coating with carbon.
Silica nanoparticles are visible as they are spread across the microstructure.
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4.2 Characterization of hydrophobicity

4.2.1 Contact angle measurements

An overview of the static contact angles found for each substrate can be found in
table 4.2. The values are additionally illustrated in a chart in figure 4.14. The
volume of the droplets deposited were estimated by the Advance software to be
8± 2 µL, while the droplet depositing needle was 0.513 mm in diameter. An example
of a contact angle measurement is shown in figure 4.13.

Figure 4.13: A picture of a contact angle measurement. The sample being
measured upon is F-S1-L4, at area 2.
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Table 4.2: A table of the static contact angles found through the contact angle
measurements. The results are divided into the 3 areas that were tested on
each sample, with the average contact angle per sample shown in the rightmost
column. The variance per area is the standard deviation of the 11 measurements
per droplet done for that area. The results in the "Average" column are the mean
contact angle based on the three averages from the three areas. The variance is
the standard deviation of the result averages from the three areas.

Contact angle [°]

Sample name Area 1 Area 2 Area 3 Average

F-S1-L1 163.0 ± 0.1 158.8 ± 0.3 162.0 ± 0.2 161.2 ± 2.2

F-S1-L2 159.5 ± 0.3 163.5 ± 0.3 158.0 ± 0.5 160.3 ± 2.9

F-S1-L3 159.9 ± 0.3 160.2 ± 0.2 159.0 ± 0.6 159.7 ± 0.6

F-S1-L4 162.5 ± 0.3 164.2 ± 0.3 163.2 ± 0.2 163.3 ± 0.8

F-S2-L3 163.7 ± 0.4 163.4 ± 0.3 152.7 ± 0.2 159.9 ± 6.3

F-S0-L2 159.3 ± 0.3 156.9 ± 0.1 151.5 ± 0.2 155.9 ± 4.0

F-S0-L0 60.8 ± 0.4 56.5 ± 0.2 49.3 ± 0.1 56 ± 6

C-S1-L1 165.3 ± 1.7 164.7 ± 0.5 167.1 ± 1.3 165.7 ± 1.3

C-S1-L2 162.4 ± 0.2 163.1 ± 0.5 163.1 ± 1.5 162.8 ± 0.4

C-S1-L3 161.7 ± 0.6 161.6 ± 0.6 161.7 ± 0.4 161.7 ± 0.1

C-S0-L2 156.5 ± 0.1 157.9 ± 0.1 154.8 ± 0.1 156.4 ± 1.6

C-S0-L0 56.9 ± 0.2 62.1 ± 0.2 52.2 ± 0.2 57 ± 5

U-S0-L2 95.9 ± 1.7 107.8 ± 1.0 92.3 ± 2.4 99 ± 8

U-S0-L0 55.6 ± 0.1 66.8 ± 0.2 62.1 ± 0.2 62 ± 6
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Figure 4.14: A chart showing the average static contact angles for certain sam-
ples, which are summarized in table 4.2. The error bars are the standard error
of the 3 average results for that sample. The error bars for samples F-S2-L3,
C-S0-L2 and F-S0-L2 are not included to retain clarity.
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4.2.2 Contact angle hysteresis measurements

Table 4.3 shows an overview of the measured Roll Off Angle (ROA) and Contact
Angle Hysteresis (CAH) for the different samples. An example of the ROA and
CAH measurements can be seen in figure 4.15a. The CAH could not be found for
samples that had a greater ROA than 90°, as the CAH should be measured the
frame before roll off. However, it was observed that the contact angle difference for
such samples were greater than 50° when tilted 90°. An example is shown in figure
4.15b.

(a) CAH measurement on sample C-
S1-L1. In this case a droplet ex-
hibited a 21.6° CAH at a 9.71° tilt,
which was the last frame before roll
off.

(b) CAH measurement on sample F-
S1-L4. The DSA100 is tilted 90°. A
large deformation of the droplet pro-
file can be seen due to the strong
contact line pinning working against
gravity.

Figure 4.15: Examples of CAH measurements.
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Table 4.3: A table showing the average Roll Off Angle (ROA) and Contact Angle
Hysteresis (CAH) for the different samples. The ROA is given as > 90° if the
droplet did not roll of during tilting. The variance shown for each value is the
standard deviation of each group of measurements.

Sample name Roll off angle [°] Contact Angle Hysteresis [°]

F-S1-L1 > 90° -

F-S1-L2 > 90° -

F-S1-L3 > 90° -

F-S1-L4 > 90° -

F-S2-L3 > 90° -

F-S0-L2 > 90° -

F-S0-L0 > 90° -

C-S1-L1 9.2 ± 0.6 22.8 ± 1.6

C-S1-L2 12.3 ± 1.8 45.6 ± 10.8

C-S1-L3 13.3 ± 7.3 33.2 ± 10.5

C-S0-L2 > 90° -

C-S0-L0 > 90° -

U-S0-L2 > 90° -

U-S0-L0 > 90° -
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4.2.3 Environmental behaviour

Contact angle reduction with reducing temperature

The contact angle development as the temperature was lowered from 22 ◦C to 5 ◦C
is shown in figure 4.16 for two samples.

Figure 4.16: A chart showing the contact angle development for a droplet de-
posited on samples C-S1-L3 and U-S0-L2.

It should be noted that a certain amount of evaporation occurred for the droplets
as they were cooled down from 22 ◦C to 5 ◦C. The change in estimated volume per
degree of cooling is shown in figure 4.17.

Contact angle reduction with evaporation

Figure 4.18 shows how the contact angle changed for a droplet deposited on C-S1-L3
during the evaporation test.
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Figure 4.17: A chart showing how the volume of the droplets deposited on
samples C-S1-L3 and U-S0-L2 varied during cooling.

Figure 4.18: A chart of the contact angle change for a droplet deposited on
C-S1-L3 as the droplet evaporated.
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4.3 Characterization of anti-icing properties

The results of each anti-icing characterization method are summarized in the fol-
lowing sections.

4.3.1 Nucleation temperature

The nucleation temperatures found during the single droplet characterization are
summarized in table 4.4, while table 4.5 shows the three-droplet characterization.
The temperature noted is the temperature registered by the temperature sensor at
the time of nucleation, and not the temperature set by the thermostat.

Table 4.4: The temperature at which a droplet froze on each sample during the
nucleation temperature characterization.

Sample name Nucleation temperature [◦C]

F-S1-L1 −8.5

F-S1-L2 −9.3

F-S1-L3 −8.7

F-S1-L4 −8.4

C-S1-L1 −9.9

C-S1-L2 −9.3

C-S1-L3 −10.2

C-S0-L0 −5.4

U-S0-L0 −3.9

Furthermore, it is important to note that the first cycle of the ice cycling tests were
identical to the nucleation temperature tests. The results from the first freezing
cycle for each sample were therefore included in the dataset used to find an average
nucleation temperature and its standard deviation for each sample. These are
shown in table 4.6. The results in table 4.6 are compared in figure 4.19.
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Table 4.5: The temperature at which each of the three droplets froze on each
sample during the three-droplet nucleation temperature characterization. Only
two droplets could fit on F-S0-L0 and U-S0-L0 because of the large droplet contact
angle on these samples.

Nucleation temperature [◦C]

Sample name Area 1 Area 2 Area 3 Average

C-S1-L1 −6.2 −6.5 −6.2 −6.3± 0.2

C-S0-L2 −9.9 −9.7 −9.7 −9.8± 0.1

F-S0-L0 −3.1 −3.1 - −3.1

U-S0-L2 −9.7 −14.0 −8.4 −10.7± 2.9

U-S0-L0 −4.0 −3.9 - −4.0± 0.1

Figure 4.19: Chart of the results displayed in table 4.6. Each data point shows
the average nucleation temperature for that sample. All data labels are in units
of ◦C. The error bars are the standard error of the dataset for that sample.
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Table 4.6: The average temperature at which a droplet froze on each sample
during the nucleation temperature characterization, in addition to the first cycle
of the cyclic icing characterization. This includes both the one-droplet and three-
droplet characterization. The variance shown is the standard deviation of the
entire data set for that sample.

Sample name Average nucleation temperature [◦C]

F-S1-L1 −8.7± 1.4

F-S1-L2 −9.9± 0.4

F-S1-L3 −9.7± 0.7

F-S1-L4 −7.7± 0.5

F-S2-L3 −13.1± 1.1

F-S0-L2 −8.8

F-S0-L0 −3.1

C-S1-L1 −7.8± 1.9

C-S1-L2 −9.7± 1.4

C-S1-L3 −8.0± 2.0

C-S0-L2 −9.8± 0.1

C-S0-L0 −4.2± 1.7

U-S0-L2 −10.7± 2.9

U-S0-L0 −3.9± 0.1
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Freezing mechanism during nucleation temperature characterization

For the nucleation temperature characterization, the freezing process was consis-
tently the same across every test and substrate. The freezing process is shown
in figure 4.20. At a certain point during cooling, the water droplet suddenly and
quickly went opaque. A freezing front appeared at the bottom of the droplet where
it was in contact with the surface. The front was characterized by a darker area
with less transparency. It slowly advanced up through the droplet volume and to-
wards the top of the droplet. As the front approached the top of the droplet, some
deformation of the upper profile appeared. Eventually, the freezing front reached
the top of the droplet, ending in a pyramid-shaped top.

A similar freezing mechanism was observed during the three-droplet tests. Each
droplet formed a frozen shell and started freezing from the substrate individually.
The volume estimation of the deposited droplets performed by the Advance software
showed only a small decrease during cooling. For example, for a single droplet test
on sample C-S1-L2, the volume was estimated to be 7.92 µL at 5 ◦C, and 7.80 µL at
−9.2 ◦C. For sample C-S1-L3, the droplet volume decreased from 9.21 µL to 8.98 µL
during cooling.

Contact angle development during cooling

It was observed that the static contact angles for deposited droplets decreased as
the temperature was lowered from 5 ◦C until freezing. This behaviour was most
pronounced for coated substrates, although a small decrease was observed for an
untreated substrate as well. Figure 4.21 shows this phenomenon through the contact
angle development for 3 different substrates. All coarsely sandblasted substrates
had higher contact angles at 5 ◦C and right before freezing compared to finely
sandblasted substrates. All contact angle developments were not included in figure
4.21 to preserve clarity. The contact angle developments are compared in 4.7 for
more substrates. The average reduction in contact angle per degree Celsius of
cooling are also included.

Thermostat temperature versus actual temperature

It was found during the nucleation temperature experiments that the temperature
manually set on the thermostat did not equal the temperature registered by the tem-
perature sensor. Although the thermostat temperature was lowered by −1 ◦C/min,
the actual temperature typically changed at a rate of −0.6 ◦C/min to −0.9 ◦C/min.
For example, for a nucleation temperature experiment on sample F-S1-L3, the mea-
sured temperature dropped at a rate of −0.75± 0.09 ◦C/min. Figure 4.22 shows
an overview of how the measured temperature changed for some samples compared
to the set thermostat temperature.
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Table 4.7: A table showing the contact angle development during cooling for
some samples. The average reduction in contact angle per degree Celsius of
cooling is shown in the rightmost column.

Sample name Contact angle at
5 ◦C [°]

Contact angle be-
fore freezing [°]

Average CA re-
duction per de-
gree Celsius of
cooling [°/◦C]

F-S1-L1 136.5 124.8 -1.0

F-S1-L2 124.8 114.5 -0.7

F-S1-L3 130.7 120.7 -0.8

C-S1-L1 143.7 125.4 -1.3

C-S1-L2 149.3 133.6 -1.2

C-S1-L3 140.8 131.6 -0.7

U-S0-L0 59.3 57.3 -0.2
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(a) One frame before freezing. (b) The first frame after freezing.

(c) 2 seconds after freezing. (d) 6 seconds after freezing.

(e) 10 seconds after freezing. (f) 16 seconds after freezing.

Figure 4.20: Pictures showing the freezing process for a droplet deposited on
sample C-S1-L3 during nucleation temperature characterization. The pictures
were taken from a recording of the freezing process, and the frames before and
after nucleation are shown. This droplet froze at −10.2 ◦C.
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Figure 4.21: An overview of the CA development for droplets deposited during
three nucleation temperature experiments on three different substrates.
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Figure 4.22: A comparison of the set thermostat temperature with the measured
temperature during three instances of nucleation temperature experiments, for
three different samples.
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4.3.2 Delay of ice formation

Table 4.8 shows an overview of the delay of ice formation for each sample.

Table 4.8: A table showing the freezing delay for each sample that was measured.
When the sessile droplet seemed to freeze immediately upon deposition, the
freezing delay is marked as "None".

Sample name Freezing delay

F-S1-L1 2 min 18 s

F-S1-L2 5 min 10 s

F-S1-L3 None

F-S1-L4 None

F-S2-L3 19 min 35 s

F-S0-L2 None

F-S0-L0 None

C-S1-L1 43 min

C-S1-L2 28 min

C-S1-L3 40 s

C-S0-L2 None

C-S0-L0 None

U-S0-L0 None

Figure 4.24 shows the development during the delay of ice formation test on sub-
strate C-S1-L2. As can be seen from the figure, the droplet remains liquid for a
certain time until it eventually nucleates. The freezing mechanism here is similar
to the one observed during nucleation temperature characterization, where droplets
were gradually cooled. The droplet turns opaque, and a darker freezing front slowly
rises up from the surface and through the droplet. The end result is a nontrans-
parent droplet with deformation in its upper profile, which is also visible in figure
4.20. This freezing mechanism was observed for all droplets where a certain delay
before nucleation was observed. The mechanism was also observed for some droplets
which froze immediately upon deposition. However, the droplets with no nucleation
delay could also freeze through a second mechanism. In this case, the droplet did
not turn opaque, yet started freezing from the surface. The freezing front moved
slowly upwards through the droplet, forming transparent ice. The end result was a
very transparent frozen droplet with no visible deformation in its upper profile. A
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droplet that froze through this mechanism is shown in figure 4.23.

Figure 4.23: A picture showing a droplet frozen through the second freezing
mechanism.

The contact angles at−10 ◦C for certain droplets that showed a delay of ice formation
is summarized in table 4.9.

Table 4.9: A table showing the CA of certain droplets that showed some signifi-
cant delay of ice formation.

Sample name Contact angle [°]

F-S2-L3 116.4

C-S1-L1 129.3

C-S1-L2 129.1

C-S1-L3 133.0

Another phenomenon observed in the delay of ice formation experiments were
the appearance and growth of ice crystals on the sample surfaces, away from any
deposited droplet. Moisture condensed and froze, forming ice crystals on the exposed
sample surfaces as they were kept at −10 ◦C. Typically, the density of ice crystals
increased over time, and existing crystals grew in size. Figure 4.25 shows how ice
crystals started to cover the surface of sample F-S1-L2. The growth of an ice crystal
can also be seen in 4.24. If a water droplet was deposited onto one such ice crystal,
the droplet immediately froze through the second freezing mechanism, forming a
transparent frozen droplet. During droplet deposition, care was taken not to deposit
droplets onto ice crystals. The immediate nucleation would not allow characterizing
the anti-icing properties of the surface itself. Because the two freezing mechanisms
resulted in two distinctly different droplets, it was assumed that it was possible
to discern whether a droplet was deposited onto an existing nucleation point or
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not. If deposition resulted in a transparent droplet, that result was not used when
deciding the delay of ice formation for a sample.
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(a) 5 minutes after deposition. (b) 10 minutes after deposition.

(c) 15 minutes after deposition. (d) 20 minutes after deposition.

(e) 25 minutes after deposition. (f) 28 minutes after deposition.

Figure 4.24: Pictures showing a freezing delay test performed on sample C-S1-L2.
A picture was taken every five minutes until the droplet froze. A gradual growth
of ice crystals on the sample surface is also visible to the right of the droplet.
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Figure 4.25: A picture showing ice crystal growth on sample F-S1-L2 while at
−10 ◦C.
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4.3.3 Cyclic icing behaviour

Table 4.10 shows the results of the cyclic icing characterization done for single
droplets. Table 4.11 shows the results for the three-droplet characterization. For
sample C-S1-L1, the single droplet test was performed before the three-droplet one.
An increase in nucleation temperature can be seen for most samples during the
cyclic icing characterization, with F-S1-L4 and C-S0-L0 as notable exceptions.

Table 4.10: A table showing the nucleation temperature for the cyclic icing
characterization done with one droplet.

Sample name Cycle number Freezing temperature [◦C]

C-S1-L1 1 −9.7

2 −5.4

3 −9.3

C-S1-L2 1 −11.2

2 −11.4

3 −8.5

4 −7.7

C-S0-L0 1 −3.0

2 −3.2

3 −3.8
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Table 4.11: A table showing the nucleation temperature for the cyclic icing
characterization done with three droplets. The freezing temperature for each
of the three droplets are shown under the columns for each area. The average
freezing temperature of each cooling cycle is shown in the rightmost column. The
variance is the standard deviation of the three results per cycle.

Freezing temperature [◦C]

Sample name Cycle number Area 1 Area 2 Area 3 Average

F-S1-L1 1 −9.9 −9.5 −6.7 −8.7± 1.7

2 −6.4 −6.2 −6.4 −6.3± 0.1

3 −4.8 −4.7 −4.7 −4.7± 0.1

F-S1-L2 1 −10.1 −10.1 −10.1 −10.1

2 −6.6 −6.7 −6.5 −6.6± 0.1

3 −4.8 −5 −5 −4.9± 0.1

4 −4.1 −4.1 −4 −4.1± 0.1

F-S1-L3 1 −10.1 −10 −10 −10.0± 0.1

2 −9.9 −10.1 −10.1 −10.0± 0.1

3 −10.2 −10.1 −10.1 −10.1± 0.1

4 −9.2 −9.2 −9.2 −9.2

F-S1-L4 1 −7.5 −7.3 −7.4 −7.4± 0.1

2 −8.8 −9.0 −9.3 −9.0± 0.3

3 −11.2 −11.1 −11.2 −11.2± 0.1

4 −10.4 −10.4 −10.3 −10.4± 0.1

F-S2-L3 1 −12.8 −12.1 −14.3 −13.1± 1.1

2 −13.1 −12.8 −12.5 −12.8± 0.3

3 −12.8 −13.2 −15.5 −13.8± 1.5

4 −13.1 −12.7 −15.1 −13.6± 1.3

F-S0-L2 1 −8.8 −8.8 −8.8 −8.8

Continued on next page
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Table 4.11 – Continued from previous page

Freezing temperature [◦C]

Sample name Cycle number Area 1 Area 2 Area 3 Average

2 −4.2 −4.1 −4.2 −4.2± 0.1

3 −4.4 −4.5 −4.4 −4.4± 0.1

C-S1-L1 1 −6.2 −6.9 −6.2 −6.4± 0.4

2 −5.8 −6.5 −5.8 −6.0± 0.4

3 −6.1 −6.6 −6.1 −6.3± 0.3

C-S1-L3 1 −8.0 −5.4 −8.3 −7.2± 1.6

2 −7.5 −7.3 −6.4 −7.1± 0.6

3 −8.7 −7.3 −7.8 −7.9± 0.7

4 −7.5 −5.7 −7.7 −7.0± 1.1

Contact angle development over several icing cycles

The static CA of a droplet deposited on a sample varied considerably during the
cyclic icing characterization. An example is shown in figure 4.26 for sample C-S1-
L1. Similarly to the nucleation temperature characterization, the CA can be seen
to decrease during cooling, until the droplet freezes. When the sample is heated
back up to 5 ◦C and the droplet melts, it has a reduced CA compared to the angle
measured during the first cycle. It is decreased even further at the start of the third
cycle. However, the total CA decrease with cooling is lower for each cycle.
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Figure 4.26: The static contact angles measured for a droplet during a single
droplet cyclic icing characterization on sample C-S1-L1. The contact angles for
each cycle are shown, from approximately 5 ◦C to freezing.
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4.3.4 Coating durability

The contact angles that were remeasured on sample C-S1-L1 are shown in table 4.12.
The contact angle hystereses are shown in table 4.13. A nucleation temperature of
−7.6 ◦C was recorded for the sample.

Table 4.12: A table showing the static CA measured on sample C-S1-L1 after
being subject to icing characterization.

Contact angle [°]

Sample name Area 1 Area 2 Area 3 Average

C-S1-L1 162.4 ± 0.2 162.7 ± 0.4 164.3 ± 0.5 163.1 ± 0.9

Table 4.13: A table showing the ROA and CAH for sample C-S1-L1 after being
subject to icing characterization.

Sample name Roll off angle [°] Contact Angle Hysteresis [°]

C-S1-L1 9.3 ± 6.3 27.6 ± 20.7
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Chapter 5

Discussion

5.1 Substrate treatment

5.1.1 Effects of sandblasting

It is natural to compare the roughness observed on the sandblasted aluminium 5052
substrates with the values found by Vassmyr[1] on steel 316 substrates. Vassmyr
used exactly the same types of sand and sandblasting machine, and so the only
parameters that could differ except substrate material are the time spent sandblast-
ing each substrate, and the distance from the nozzle to the substrate. A larger
roughness is expected on the aluminium substrates, because aluminium 5052 has
a hardness of 62 HB[80, pp. 674], while steel 316 has a hardness of 149 HB[81].
Vassmyr observed a 1.6± 0.2 µm and 1.59± 0.06 µm average roughness for finely
sandblasted substrates, compared to the 2.83± 0.15 µm found in this work. There
is thus a clear increase in roughness for the aluminium substrates compared to
steel. The increase is even larger for coarsely sandblasted substrates. Vassmyr got
4.8± 0.2 µm and 3.6± 0.9 µm average roughness. While the roughness could not
be precisely determined on the aluminium substrates because it was too large for
the instrument, it was found to be over 7 µm and is thus an even larger increase
than for finely sandblasted substrates.

5.1.2 Silica particle deposition

The silica particles seem to have been deposited relatively unevenly on the sample
surfaces. Figure 4.3 shows an area with a very thick deposition of particles, but
with a less dense deposition on outlying areas. This deposition seems to cover up
any underlying microroughness on the aluminium surface, and therefore suppresses
the intended hierarchical roughness.
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However, outside the larger agglomerates, the particle deposition covered the mi-
crostructured surface more evenly. Figure 4.4 shows areas where the particles have
been deposited along the features of the microstructure. Some variation can still
be seen, with a thinner layer in the valley in the upper right. It is likely that the
microstructure prevented a completely even silica particle deposition. Even so, the
resulting surface appears to have a hierarchical roughness, with a microstructure of
sandblasted aluminium, and a layer of silica nanoparticles providing nanoroughness.

Effect of silica particle deposition speed

In this work, the silica particle sol deposition speed was varied as a parameter.
Sample F-S2-L3 had a deposition speed of 0.5 mL/min, compared to the standard
1 mL/min used for most samples. With a reduced deposition speed, a smaller density
of deposited silica particles on the surface is expected. This is seen to be the case
when comparing the SEM images for sample F-S2-L3 in figure 4.8 with the SEM
image for sample C-S1-L3 in figure 4.7, which had a standard particle deposition.
Sample F-S2-L3 seems to have a lower coverage of silica particles, and less complete
particle layers. Though it should be noted that there is density variation on F-S2-L3
as well, as seen in figure 4.8b.

Silica nanoparticle size estimation

The size of the silica nanoparticles synthesised in this work was estimated to be
186± 12 nm. This can be compared to the nanoparticle sizes found by Vassmyr[1]
and Luneng[2], as they followed the same synthesis route and used the same exper-
imental parameters. Vassmyr estimated her particle sizes to be 261± 26 nm, while
Luneng found his particle sizes to be 221± 8 nm. The particles were thus found to
be somewhat smaller than in Luneng and Vassmyr’s works.

The difference may be caused by several factors. For example, the rate at which
TEOS was added to the reaction solution was not specified, and likely differed. The
Masalov growth model[74] for silica nanoparticles says that the growth happens
in several stages. Silica particles appear and grow when TEOS is added to the
reaction solution. Adding more TEOS will lead to new, smaller particles being
formed, which will join to the existing particles. That means a new growth stage
takes place whenever more TEOS is added, as shown in figure 2.8. Varying the rate
at which TEOS is added, and volume of each dose, will therefore change the growth
of the particles. Then, the final porosity and size of the final particles would also
be affected.

Another reason for the difference in results could be the size estimation itself. The
nanoparticle size estimation in section 4.1.4 was based on the particles shown in the
SEM image in figure 4.9. The estimation was based on comparing the apparent size
of the particles with a set scale for an image. This related the pixels to an actual
physical size. The image scale was set based on the scale bar provided by the SEM
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software for that magnification. However, the scale of the image still had to be set
based on a manual measurement of the scale bar in ImageJ. Inaccuracy in setting
the scale could therefore introduce a systematic error in all the size measurements.
A second possible source of uncertainty was the focus of the SEM image. The
particles were not in perfect focus, which made it difficult to see their outlines. The
particle size would therefore have been over- or underestimated by a few pixels in
certain cases.

The surface roughness involved would also have affected the size estimation. The
accuracy of the size estimation depended on the relative height of the surface on
which the particles are placed. Particles which were placed higher will appear larger,
and vice versa. The particular SEM image in figure 4.9 was chosen because the
surface was relatively flat, to make the size estimation more accurate. However, a
certain roughness is still visible in the image. Additionally, the surface seems to
have a certain slope, which would further worsen the accuracy of the size estimation.

5.1.3 Fluorosilane sol deposition

Because the fluorosilane coating could not be imaged in SEM, an evaluation of
the coating coverage or quality could not be performed. The coating thickness
was uncertain, but was expected to be thin from the cross section SEM images.
Additionally, the coating may have been partly torn off during polishing. It is
therefore difficult to conclude to what degree the coating may have covered up the
micro- or nanostructure. But based on the interface visible in figure 4.12, both the
micro- and nanoroughness seem to have been preserved. The SEM images of C-S1-
L3 (figure 4.6 and 4.7) and F-S2-L3 (figure 4.8) show that the silica nanoparticles
are still very evenly distributed after fluorosilane coating.

However, it is possible that the fluorosilane coating had its own inherent roughness.
The fluorosilane sol-gel was base catalyzed, which would promote agglomerate
formation during the synthesis. These agglomerates would later cross-link to form
a rough coating[67]. These agglomerates could potentially have introduced more
roughness on the surface. The form of this roughness was unknown, though from
the cross section SEM image it seems any inherent roughness would exist on the
nanoscale rather than microscale. Crucially, its interaction with the existing surface
nanoroughness provided by the SEM particles is unknown, and would be natural
to investigate further.

81



CHAPTER 5. DISCUSSION

5.2 Hydrophobicity characterization

5.2.1 Contact angle measurements

Generally, the static contact angles for coated samples trended around 160°. A
significant increase in contact angles compared to uncoated substrates (F-S0-L0,
C-S0-L0, U-S0-L0) was observed. The contact angle was also increased by 55°
or more with the introduction of microroughness through sandblasting and silica
nanoparticles. The substrates that were only coated with fluorosilane and not
silica particles, i.e. F-S0-L2 and C-S0-L2, had average contact angles around 155°.
More precisely, without silica particles, there was a 6.4° CA decrease for coarsely
sandblasted substrates, and 4.4° CA decrease for finely sandblasted substrates. The
finely sandblasted substrate with reduced silica particle deposition, F-S2-L3, had
an average CA very close to the finely sandblasted substrate with more particle
deposition, F-S1-L3, though with very high variance. These results indicate that
the nanoroughness offered by the silica particles make a noticeable difference in the
CA. To understand why, the contact mode on the surfaces has to be discussed.

According to Quéré[38], it is very improbable that droplets on a surface with a
significant roughness will be purely in the Wenzel contact regime. Especially so
when the surface has a low surface energy, which was the intention of the fluorosilane
coating. Additionally, some coarsely sandblasted samples demonstrated low ROA
and CAH, which would be impossible in a strict Wenzel regime. It is therefore more
likely that droplets existed primarily in a mixed state, or the Cassie-Baxter state.
From equation 2.5, it is known that the apparent contact angle θ∗ for droplets in
the Cassie-Baxter regime depends on the surface fraction Φs. By reducing Φs, θ∗

is increased, and an increased CA is measured. It seems likely that the deposited
silica particles increased the air trapping under the droplet, and therefore increased
Φs.

If this interpretation is correct however, one would expect a higher contact angle
for the substrate with reduced silica particle deposition. Less particles should allow
for an even smaller contact area with the surface, as there is less of a complete layer
of particles. This is assuming there are enough silica particles there to maintain the
air trapping effect in the first place. It is worth noting that F-S2-L3 actually did
exhibit a larger contact angle than F-S1-L3 on area 1 and 2, but had a 10° lower CA
on area 3. The low result on area 3 may have been caused by uneven silica particle
or coating deposition. If there was a significantly lower silica particle deposition on
area 3, the wetting behaviour would have been more similar to the substrate with
no silica particle deposition, F-S0-L2, which had a CA of 155.9± 4.0°.

Other general trends that can be observed is that coarsely sandblasted substrates
have higher CA than their finely sandblasted counterparts, with lower variance.
This is reasonable when considering that an increased roughness would reduce the
water/solid surface contact area. Another trend is that samples with more coating
layers have reduced average CA. However, the variance in the measurements is

82



CHAPTER 5. DISCUSSION

large enough that no conclusion can be drawn about any correlation. One notable
exception to the aforementioned trends is sample F-S1-L4, a finely sandblasted
sample with 4 fluorosilane coating layers. It is unclear why this sample had a
markedly higher CA than other samples with less coating layers. It also draws into
question the validity of the trends discussed here.

Sources of uncertainty in contact angle measurements

Several sources of uncertainty may have affected the CA results, and should be taken
into consideration. One example is the humidity at the time of measurement. The
CA measurements were always done in ambient laboratory conditions. That means
at a temperature of approximately 22 ◦C to 24 ◦C. Humidity on the other hand was
not controlled for, and may have been a wide range of values. It is expected that
the advancing CA would decrease with increasing humidity[82]. Vassmyr[1] also
observed variations in CA with humidity on the order of 3°. Both an increase and
decrease in CA was seen with increasing humidity, so no definitive correlation was
shown.

Additionally, the baseline placement may have introduced uncertainty in the contact
angle results. The baseline was set manually through identifying the actual contact
line between droplet and surface in the image. For samples that were not sand-
blasted, identifying the correct baseline was difficult because it was very reflective.
Setting the baseline a few pixels higher or lower could vary CA by approximately 2°
to 3°. This means there may be significant deviation between the reported results
and the actual results. Such a considerable element of uncertainty may make several
apparent correlations between experimental parameters and resulting CAs invalid.

Any imprecision in setting the baseline would also affect the droplet volume esti-
mation. The droplet volume estimation was based on two parameters: the baseline,
and the diameter of the droplet depositing needle. The measurement of the needle
was assumed to be precise, as it was done physically with a micrometer. However,
the diameter then had to be compared to the apparent size of the needle on the
Advance camera feed. Setting the needle size wrong would make the software over-
or underestimate the size of the droplet. The baseline was used by the software
to estimate the size of the droplet, and setting it too high or too low would also
introduce errors to the size estimation. In addition, some variance in the actual
deposition volume should be expected.

The combination of these factors would have contributed to the ±2 µL variance
in the size estimation. However, the uncertainty introduced was not random, but
systematic. The needle diameter was set once per measurement session, and the
baseline on a droplet to droplet basis. That means comparing droplet volumes
between different droplets and sessions would introduce uncertainty. But measuring
volumes for a specific droplet multiple times would avoid this uncertainty. Thus
any trends of decreasing or increasing droplet volume for the same droplet could
be considered reliable, such as the one shown in figure 4.17.
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5.2.2 Contact angle hysteresis measurements

It was established in section 2.2.2 how a certain surface roughness is necessary to
achieve small CAH and ROA. The droplet should be in the Cassie-Baxter contact
mode, resting on the surface asperities and the air trapped beneath it. The hysteresis
results show that only the coarsely sandblasted substrates had any notable ROA and
CAH. Therefore, it is likely the coarsely sandblasted substrates were more easily
able to maintain the Cassie-Baxter contact mode compared to finely sandblasted
substrates. The larger roughness would increase the air trapping under the droplets.
The roughness values and the SEM images in figure 4.5 imply that there was a
greater height difference between hills and valleys in the surface topography for the
rougher substrates. If the droplets rested mostly on the surface asperities, it would
have been harder to penetrate into the pits on coarsely sandblasted substrates. In
that case, the defects per unit area φs that the droplet encounters will be low, and
the CAH will be reduced as well, per equation (2.8).

However, a surface with greater average roughness does not necessarily have a
smaller CAH, despite seemingly being the case here. Extrand[83] argues that
the shape of the microscale topography is much more important than simply its
roughness. Different surfaces can exhibit either very large or very small CAH
depending on the topography, even though they both have large roughness per se.
For example, if the surface asperities are too far apart, the droplet can collapse
into the pits between the asperities. The surface becomes unable to suspend the
droplet, and the liquid/solid contact area will increase. This will make the contact
line pinning stronger and increase the CAH of the droplet.

The lower water/solid surface area should also result in a larger static contact angle.
From the Cassie-Baxter equation (2.5), it is known that the apparent static contact
angle increases with reducing Φs, which is the water/solid surface area. Larger
static contact angles is in fact observed for most coarsely sandblasted substrates
compared to finely sandblasted substrates. However, the significant uncertainty
in the contact angle results, as well as the finely sandblasted substrate with four
coating layers having the second largest contact angle, makes it difficult to connect
the CA and CAH results through the Cassie-Baxter equation.

If the droplets on the finely sandblasted substrates were in a mixed contact mode
instead, its CA would also be governed by the roughness factor r in equation
(2.4) and (2.6). As Φs and r were unknown, nothing conclusive can be said about
the contact modes on finely and coarsely sandblasted substrates and the resulting
contact angles.

It should be noted that several authors in literature have found the Cassie-Baxter
and Wenzel equations to be inaccurate, especially for surfaces with complex to-
pographies [37], sharp edges[83], or surface chemical/topographical inhomogeneities
[84][85]. Using the Cassie-Baxter equation for superhydrophobic surfaces have been
cautioned against[86]. Improvements to the equation have been proposed to enable
a prediction of hysteresis[87]. The apparent disconnect in the CA and CAH results
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according to the Cassie-Baxter equation are thus not out of the norm.

Another source of uncertainty are the possibility of metastable Cassie-Baxter states.
If some substrates exhibited a metastable state, the force that the droplets were
deposited with may have pushed the droplet partly into the surface topography.
This scenario was discussed by Quéré et al.[38], and took a force of 200 Pa in their
example. The deposition force was decided by how gently the needle with the
droplet was lowered, and was not standardized. This would have resulted in a
greater degree of Wenzel states on certain samples and a ROA higher than 90°.

5.2.3 Reduction in contact angle with temperature

The contact angle θ, measured at room temperature, was used as a parameter
to define the hydrophobicity of the substrates. However, a large decrease in the
CA was observed with decreasing temperature for several coated samples, both
from 22 ◦C to 5 ◦C, as well as from 5 ◦C to nucleation. This behaviour was also
observed by Vassmyr[1], as well as by other authors in literature[32][64]. If the
hydrophobic properties drastically decrease at lower temperatures, the ability of a
hydrophobic surface to prevent water from freezing on the surface would be reduced.
The insulating air layer between droplet and surface would be reduced or removed
entirely. Classical nucleation theory implies that a smaller contact angle decreases
the energy barrier for icing. This would be counter-productive, as the surface has
to be used at low temperatures for anti-icing applications.

An influencing factor on the change in contact angle during cooling was likely the
evaporation of the droplet. It has been discussed in section 2.2.2 that the evapora-
tion of a droplet reduces its contact angle, unless on a surface with very low contact
angle hysteresis. The Advance software also measured a decrease in the droplet
volume during cooling from 22 ◦C to 5 ◦C, shown in figure 4.17. The reduction in
volume per degree of cooling gradually decreases as the temperature is lowered.
However, the evaporation rate seems to have been higher for the sandblasted sub-
strate compared to untreated. Both volumes end up relatively constant closer to
5 ◦C, but the droplet deposited on the sandblasted substrate loses some more vol-
ume in the process. It is therefore expected that evaporation played a greater role
in the reduction of contact angle for the sandblasted substrate, compared to the
untreated. As it was found that the sandblasted substrate had a greater reduction
in contact angle during cooling, the influence of evaporation may be worth further
investigation.

The difference in evaporation rates between the sandblasted substrate and untreated
substrate can be explained by the difference in hydrophobicity. The sandblasted
substrate is clearly more hydrophobic, demonstrating a larger CA. Droplets with a
larger CA has a more spherical shape, and reduced contact area with the surface.
Instead, the droplet will have a greater surface area towards air. It may then seem
reasonable that the evaporation rate is larger on hydrophobic surfaces. Similar
results have been found in literature, for example by Hu and Larson[88]. They
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found that an increased contact angle of an initial droplet would lead to increased
evaporation rates. However, their model was only developed for contact angles
between 0 and 90 degrees.

Another factor which may have influenced the difference in evaporation rates is the
cooling rate for the two droplets. In the theory section, it was explained how the
small water/solid contact area on hydrophobic surfaces was a beneficial anti-icing
property. The small contact area reduces the heat transfer rate from water, which
lets a droplet remain at higher temperatures for longer. If a droplet remains at
higher temperatures, its evaporation rate will also be larger. Thus the droplet
deposited on the sandblasted sample may have had increased total evaporation
because it cooled slower than the droplet on the untreated sample.

However, the evaporation rate of the droplet flattened out as it approached 5 ◦C,
and was almost non-existent at lower temperatures. Clearly, another phenomenon
caused the reduction in CA at these temperatures. Heydari et al.[32] attributes the
reduction in CA at lower temperatures to the condensation of humidity. As the
air in the chamber is cooled, its vapour pressure is reduced. At that point, air will
start to condense instead of evaporate. A certain evaporation still happens from
the droplet because of its curved surface driving a pressure difference, but it has
been shown to be minimal. The vapour will condense on cold surfaces in particular,
including the sample.

Simplified, the air layer surrounding a droplet will be saturated with vapour, and the
vapour will spread through diffusion[88]. Therefore, it is expected that condensation
will be more extensive in the areas immediately surrounding the droplet, including
at its triple-phase contact line. The supersaturation and condensation will modify
the solid-vapour and solid-water interfacial energies, leading to a reduced CA[61].
Condensation will also happen within the air pockets between the surface asperities,
which the droplet on a rough, hydrophobic surface rests upon. Thus a gradual
transition to the Wenzel contact mode will occur, with accompanying CA and CAH
decrease. This is illustrated in figure 5.1.

The transition to the Wenzel contact mode explains why a much larger CA decrease
is seen for the rough sample compared to the smoother sample. It also explains
why the CA decrease seem to be divided into two stages. The first stage is driven
by evaporation, with a slow CA decrease until around 12 ◦C. And the second
stage is where the condensation began, leading to a much faster CA decrease. The
significant CA decrease at sub-zero temperatures is also explained by the humidity
condensing. Ambient humidity levels were present in the chamber before reducing
the temperature, which would start to condense at lower temperatures. The higher
CA for coarsely sandblasted substrates compared to finely sandblasted ones when
cooling is likely because their initial CA were higher, and that there was more room
for condensation within their microstructure. Coarsely sandblasted substrates would
then be more resistant to a change in wetting state through condensation.
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Figure 5.1: An illustration of the origin behind the CA decrease for rough,
hydrophobic surfaces as the temperature is lowered. From [32].
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5.3 Anti-icing characterization

5.3.1 Nucleation temperature

Generally, the nucleation temperatures can be divided into three levels, or tiers. The
samples within each tier had relatively similar nucleation temperatures, although
there were still variations within each tier. The first tier are the uncoated samples
U-S0-L0, C-S0-L0 and F-S0-L0, which had nucleation temperatures in the range
of −3.1 ◦C to −4.2 ◦C. The second tier are the fluorosilane coated samples, both
with no silica deposition and a standard silica deposition (1 mL/min). These results
are grouped in the interval of −7.7 ◦C to −10.7 ◦C. The nucleation temperature
results within this tier are not necessarily all equal, but the results have to be
viewed in context with the uncertainty of the measurements. Several substrates
exhibited variances in results that spanned across the entire range of this tier. The
measurement method was also expected to cause uncertainty in the measurements,
which will be expanded upon further. Hence, any conclusions based on the 2 ◦C to
3 ◦C differences in nucleation temperature within this tier are not justified. The
substrate with reduced silica particle deposition has to be placed into a third tier,
because of its lower nucleation temperature of −13.1± 1.1 ◦C.

The fluorosilane coating lowered the nucleation temperature significantly. Applying
the fluorosilane coating reduced the nucleation temperature by at least 5 ◦C, inde-
pendent of both sandblasting and silica particles. The increased hydrophobicity
from the sandblasting or the silica nanoparticles did not translate into a lower
nucleation temperature. For example, sample U-S0-L2, which was not sandblasted
but only coated with fluorosilane, had a nucleation temperature of −10.7± 2.9 ◦C,
which was lower than most other coated substrates despite large variance. The
middle area had a nucleation temperature of −14 ◦C, which was as low as some
nucleation temperatures on the finely sandblasted sample with reduced particle
deposition. These results were achieved despite a room temperature CA of only
99± 8°. Therefore, no correlation between hydrophobicity and nucleation tempera-
ture was found. Any effect the insulating layer of air would have had was negated
by the change in wetting state at lower temperatures. In addition, these results
seemingly contradicts the prediction from classical nucleation theory in equation
(2.12). Here, a larger CA would lead to a larger energy barrier for icing.

However, this disagreement is not out of the norm compared to existing literature.
Eberle et al.[59] found relatively constant nucleation temperatures across a wide
range of both CA and roughness values. They explained this through expanding
on the classical nucleation theory, by postulating a quasi-liquid layer under the
nucleus. Furthermore, the importance of the surface nanostructure was underlined.
To arrive at equation (2.12), it was assumed that Rs > 10rc. But if the surface
radius of curvature Rs is close to the critical ice nucleus radius rc, a strong ice
suppression effect is expected.

The silica particle diameter was found to be 186± 12 nm, compared to rc = 9.1 nm
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at −5 ◦C and rc = 4.5 nm at −10 ◦C. The particle radius is therefore too large
to suppress ice nucleation. Theoretically, smaller silica nanoparticles may have
suppressed ice nucleation more effectively. The findings of Cao et al.[55] supports
this recommendation. They tested the anti-icing properties of a superhydrophobic
particle-polymer composite with different particle sizes. They found a greater ice
suppressing effect when using smaller, nanometer-sized particles. The fluorosilane
coating may also have had a certain nanoscale roughness, which could have helped
suppress nucleation.

But importantly, the surface homogeneity is very important for ice suppression.
There is a possibility that a few areas of the substrates had nanostructures that
strongly suppressed ice nucleation. However, as long as there also were more flat
areas where Rs > 10rc, ice nucleation would be favoured in these areas[21]. It is
therefore unlikely that the ice suppression effect of small nanostructures affected
the nucleation temperatures.

The nucleation temperature for the sample with reduced silica particle deposition
is promising. But its low nucleation temperatures cannot be properly understood
without further knowledge of the nanoroughness as a result of the nanoparticles
and coating, and how varying the silica particle concentration will change the
nanoroughness.

To investigate the influence of aluminium as a substrate material compared to steel,
the nucleation temperatures can be compared to the ones found by Vassmyr[1]. She
found a nucleation temperature of −9.5 ◦C for a sample that underwent the same
surface treatment as F-S1-L2, which had a nucleation temperature of −9.9± 0.4 ◦C.
Moreover, she found a nucleation temperature of −6.1 ◦C for the same treatment as
C-S1-L2, with a −9.7± 1.4 ◦C nucleation temperature. The nucleation temperature
was very close for F-S1-L2, yet showed a large difference for C-S1-L2. No variance
was given, and so a precise comparison is difficult. One explanation for the differ-
ence could be the microroughness. The same sandblasting resulted in a different
microroughness on aluminium compared to steel. Nevertheless, the microroughness
type did not result in large differences in nucleation temperatures for other samples
in this work. It is unknown whether the large difference in results for sample type
C-S1-L2 is caused by the substrate material.

Uncertainty in the nucleation temperature measurements

In general, substrates exhibited variances in nucleation temperatures of up to ±2 ◦C,
or ±3 ◦C in the case of the substrate which was not sandblasted. Eberle et al.[59]
also found that most of their nucleation temperatures spanned over 2 ◦C to 3 ◦C
despite a very different surface and a median nucleation temperature closer to
−22 ◦C. Hence, some uncertainty could perhaps be attributed to the nature of the
nucleation temperature experiments, though it can certainly be decreased further.

A significant source of uncertainty for the nucleation temperature measurements
was the way the temperature was measured. It was shown in figure 4.22 that
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there was a large difference between the actual measured temperature and the
temperature of the Peltier element. The temperature sensor was taped down to
stay in contact with the Peltier surface which the substrates were resting on. Despite
this, the temperature sensor is expected to measure a combination of air and surface
temperature. Heydari[32] found that the temperature decrease in air was much
slower than the surface temperature decrease during their cooling experiments.
This depends on the environment that the measurements were performed in, such
as the amount of air in the chamber and cooling rate, and would be expected to
be different for this work. Even so, it is still reasonable to expect that the air
temperature remained warmer for longer during cooling. Hence, the measured
temperature would likely also be larger.

This puts into question the nucleation temperature results. However, since the
same thermostat cooling rates were used across all experiments, the same difference
between the measured temperature and the surface temperature would be expected.
Therefore, any trends in increasing or decreasing nucleation temperatures across
substrates would not be invalidated. That means the conclusion that there is no
correlation between hydrophobicity and nucleation temperature still holds as well.

5.3.2 Delay of icing

A delay of ice formation was only observed for certain fluorosilane coated substrates
with silica particles. The greatest delays observed were 43 min and 28 min for
the coarsely sandblasted substrates with 1 and 2 coating layers, compared to the
approximately immediate freezing on most other substrates. Interestingly, the
coarsely sandblasted substrates with the longest freezing delays did not have any
lower nucleation temperatures than substrates without any delay, indicating that
other factors govern delay of icing. The only exception is sample F-S2-L3, the finely
sandblasted substrate with reduced particle deposition, which also had particularly
low nucleation temperatures.

Several authors have shown that a reduction in contact area will increase the freezing
delay time for hydrophobic surfaces[22][59]. The results found in this work seem to
support this conclusion. Some of the most hydrophobic substrates also experienced
the longest freezing delays. In particular, the coarsely sandblasted substrates that
retained a higher CA at lower temperatures showed long delays of freezing, as shown
in figure 4.7 and 4.9. Their higher CA likely implied that they had transitioned
less to the Wenzel regime because of condensation. That would also imply that
the droplets had a smaller contact area with the surface than on substrates with
smaller CA. If this interpretation is correct, it would also mean a correlation exists
between hydrophobicity and anti-icing in this instance.

However, some results contradict this. For example, samples F-S1-L1 and F-S1-L2
had longer delays than sample C-S1-L3, but much smaller CA at low temperatures.
Further experiments need to be undertaken to confirm or deny a correlation. In
addition, there is reason to suspect significant uncertainties in the freezing delay
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measurements caused by environmental conditions. Extensive ice crystal growth was
observed on the substrates at −10 ◦C, and resulted in a different freezing mechanism
with immediate nucleation. This phenomenon will be expanded upon to investigate
its influence.

5.3.3 Freezing mechanism

Two visibly different freezing mechanisms were observed during this work. The first
was observed primarily during the nucleation temperature characterization, shown
in figure 4.20. Here, the droplet quickly turned opaque at a certain temperature.
The process is discussed in Oberli et al.[61], and is believed to be a rapid kinetic
crystal growth from the initial point of nucleation. The rapid growth continues
until the droplet reaches 0 ◦C. Other authors report that the frozen shell forms in
approximately 20 ms to 40 ms[21][60], though this could not be precisely verified in
this work. Different explanations for the non-transparency of the droplet have been
offered[61]. It has been suggested that the release of air bubbles or light scattering
may be the origin of the effect. It has also been proposed that a solid ice shell
forms around the droplet, with a still liquid interior. If the ice shell interpretation
is correct, it also explains the deformation that appears in the upper profile of the
droplet. The upper part of the ice shell will be pushed outwards because of the
volume expansion associated with the phase transition from water to ice.

The second freezing mechanism was only observed during the delay of ice formation
experiments. Here, the frozen droplet is very transparent, with the occasional
appearance of what seemed to be air bubbles. This can be seen in figure 4.23. For
these droplets, no opaque outer shell forms when they freeze. This may be the
reason why no deformation is visible in the upper droplet profile, unlike for the first
freezing mechanism. When no outer shell forms, there is no deformation as the water
expands in volume while freezing. The reason the droplet did not turn opaque in the
first place is because of ice growth on the surface. This freezing mechanism could
deliberately be provoked by depositing a droplet on an existing ice crystal. The
nucleation energy barrier was likely drastically lowered, and the crystal functioned
as a nucleation site. The droplet started freezing immediately upon contact with
the nucleation site, and thus did not have time to become supercooled. The droplet
therefore did not go through a kinetic crystal growth step.

The substantial ice crystal growth at −10 ◦C often prevented characterization of the
surface itself. Occasionally, it also disturbed the gentle balance of the supercooled
droplets resting on a surface without freezing. One example is shown in 4.24, where
the ice crystal on the right may have grown until it came into contact with the
droplet.

Despite trying to avoid depositing droplets on ice crystals, it is likely that micro-
scopic crystals still covered the surface, forming a layer of frost. Oberli et al.[61]
found that micrometer-sized droplets formed on their hydrophobic surfaces at tem-
peratures around 1 ◦C and below, and started growing through a process equivalent
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to Ostwald ripening. Once one of the droplets froze, dendritic ice crystals started
growing out from the droplet. If these crystals came into contact with another
droplet, nucleation was initiated. Thus frost started spreading on the surface,
which made droplets they deposited freeze prematurely.

It is likely that the same process happened in this work. Vapor droplets would
have fit inside the microstructure of the surface and formed in the Wenzel regime.
They would then have had a lower energy barrier for nucleation and started freezing,
thus forming frost on the surface. Frost formation may therefore have affected the
results obtained during the delay of icing experiments. The frost formation would
have been greater at higher humidity levels, which could not be controlled below
5 ◦C. It has however been demonstrated that certain superhydrophobic surfaces
delay frost formation in literature[89]. Unfortunately, there was no way of tracking
the frost formation on the substrates. That means droplets may have nucleated
far earlier than would otherwise be the case. Therefore, it is very difficult to draw
conclusions from the icing delay results. Simply ensuring that the first freezing
mechanism was observed instead of the second would not be enough to ensure no
deposition on microscopic nucleation sites. The freezing mechanism was believed
to result from how supercooled a droplet was, and the droplet temperature before
deposition was not controlled.

5.3.4 Cyclic icing behaviour

The substrates showed a wide variety of behaviours during the cyclic icing tests.
Most substrates experienced an increase in nucleation temperatures, some remained
stable, while sample F-S1-L4, which was finely sandblasted and with 4 coating layers,
showed a decrease. Other than the finely sandblasted substrates with the fewest
coating layers showing the largest increase during the cyclic tests, no apparent trend
appears. The CA of the droplet on substrate C-S1-L1 decreased each cycle as seen
in figure 4.26, likely because of a transition to the Wenzel contact mode through
condensation.

The cause of the large variances between cycles may be the uncertainty in the
nucleation temperature experiments, similarly to what was discussed in section 5.3.1.
However, there was much less variance in the temperatures where each droplet froze
during the three-droplet measurements. They generally stayed within 1 ◦C from
each other per cycle. The small variance may have originated from frost spreading
across the substrate surface. Once one droplet froze, frost would have spread out
from that droplet. The frost may have made the other droplets freeze prematurely,
similarly to the problems experienced by Oberli et al.[61]. The additional two
droplets may have also increased the humidity levels in the chamber, and thus led
to increased condensation. Another explanation for the small variance is relatively
homogeneous substrates. In that case, the general 2 ◦C to 3 ◦C uncertainty would
simply reflect the variance in the nucleation temperature measurements. Further
experiments with better control of the humidity levels and thus frost formation
would have to be conducted to clarify.
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Figure 5.2: Illustration of surface roughness degradation through icing. In (a),
the upper asperities of the roughness are indented into the ice. In (b), some
asperities have been damaged, increasing the droplet and ice contact area. From
[57].

But how can the significant increase in nucleation temperatures for the finely sand-
blasted substrates with one and two coating layers be explained? These substrates
eventually reach similar nucleation temperatures to the uncoated substrates. The
increase thus seem to be outside the expected uncertainty for nucleation tempera-
ture measurements. In addition, an large increase was found for substrate C-S1-L1
when comparing its nucleation temperature of −9.9 ◦C with the first cycle of its
cyclic icing behaviour, which was −6.4± 0.4 ◦C.

An explanation for the decrease could be surface degradation. Kulinich et al.[57]
found that the ice adhesion on their samples increased after several icing cycles, with
an accompanying reduction in room temperature CA and CAH. They attributed
this reduction to the upper asperities of the surface being caught inside the droplet
as it froze. The expansion of the droplet as it turned to ice led to mechanical
damage or breaking of the uppermost asperities. That means the surface was worn
down, which should lead to a larger droplet/surface contact area and smaller CA,
as illustrated in figure 5.2. Boinovich et al.[90] also experienced a reduction in CA
over several cycles, which they attributed to changes in surface morphology and
hydrolysis of their fluorooxysilane coating. In a later study, Boinovich et al. also
found that some of their surface features, such as nanoparticles and nanotubes,
detached from their surface when exposed to water[22].

It is possible that the surface of the samples in this work were affected in a similar
manner. This hypothesis was tested through the coating durability experiments,
which consisted of finding the CA and CAH on sample C-S1-L1 after icing charac-
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terization. Only a 2.6° CA decrease was found, which is not conclusive. The CAH
had too much variance to judge whether an increase or decrease had taken place.
It should be noted that small variations in droplet placements could occur per area,
which could have led to partly missing the areas which were tested upon. Though
the CA decrease was small, Boinovich et al.[90] found a similar decrease for the same
amount of cycles. However, it was found that the nucleation temperature remained
relatively constant across multiple types of roughnesses. Hence, a degradation of
the surface roughness would not be expected to increase nucleation temperatures.

But if the coating was degraded, it would have had a much larger effect on the
nucleation temperatures. When water froze and expanded, coating could have
been indented into the ice and removed from the surface. The result would be
areas with bad coating coverage, which would be more prone to nucleation. An
increase in the nucleation temperature would then be expected. But CA would
not be expected to decrease much, as it is a result of surface properties over a
larger area. Coating degradation would be expected to have a larger impact for
samples with a thinner coating from fewer coating layers. The large increase in
nucleation temperature observed for the samples F-S1-L1 and F-S1-L2, with 1 and
2 coating layers, support this notion. To confirm that coating degradation affected
the nucleation temperatures, further investigations into the coating coverage would
have to be performed.
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Chapter 6

Conclusion

Aluminium substrates have been sandblasted with fine and coarse sand, and the
resulting microstructure has been investigated. The surface roughness was found to
be larger than for similarly treated steel substrates. Silica nanoparticles have been
synthesised and spray coated onto substrates at varying deposition speed, and their
diameter was found to be 186± 12 nm. Their coverage was relatively even, though
with some thicker deposits covering up the microstructure. A fluorosilane sol-gel
was synthesised and spray coated onto the substrates in one or several layers. The
result was aluminium surfaces with a hierarchical micro- and nanoscale roughness
and low surface energies.

The combination of a sandblasted microstructure and fluorosilane coating proved to
be necessary to achieve large hydrophobicity. The addition of silica nanoparticles
increased the CA by approximately 5°, and was attributed to a reduced solid-liquid
contact area. Generally, substrates with larger microroughness and less coating
layers were found to have greater CA, but no conclusive correlation could be found.
Only coarsely sandblasted substrates were found to have a ROA < 90°. The coarse
microstructure was thought to be able to more effectively suspend droplets in
the Cassie-Baxter contact mode. The most hydrophobic substrate demonstrated
a CA of 165.7± 1.3°, a ROA of 9.2± 0.6° and a CAH of 22.8± 1.6°. It had a
coarse microstructure, standard silica particle deposition speed and one fluorosilane
coating layer.

The CA was found to decrease significantly at lower temperatures. The decrease
signalled a transition to the Wenzel contact mode, and an increased solid-liquid
contact area. It was thought to primarily be caused by the condensation of humidity
on the substrate surfaces at low temperatures.

The fluorosilane coating was found to lower the nucleation temperature significantly.
Application of the fluorosilane coating decreased the nucleation temperature by more
than −5 ◦C. The lowest nucleation temperature for a substrate was −13.1± 1.1 ◦C.
However, significant variance in the nucleation temperature results was found.
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Taking the uncertainty into account, the nucleation temperature was found to be
independent of microstructure type, whether it be untreated or sandblasted, despite
having widely different CA. Only a small decrease in nucleation temperatures for
a reduced silica particle deposition was observed. Thus, no correlation between
hydrophobicity and nucleation temperatures was found, in agreement with literature.
The lack of a correlation could not be explained by the reduction in CA at low
temperatures for rough surfaces, which would remove the insulating air layer and
lower the energy barrier to nucleation. It was concluded that the coating was
primarily responsible for the nucleation temperature decrease, and not the micro-
or nanostructure. The silica particles were found to likely be too large to effectively
suppress ice nucleation. No conclusive explanation could be found for the lower
nucleation temperatures observed with a reduced silica particle deposition, because
the nanoroughness as a result of nanoparticles and coating was unknown. Surface
homogeneity was found to be important for the nucleation temperature, especially
in terms of coating coverage. Indications of surface degradation after icing was
found, but could not be confirmed.

Some coated substrates were found to have long delays of ice formation compared
to untreated substrates, with the longest being 43 minutes. The most hydrophobic
substrates had the longest delays of ice formation, which would support a correlation
between these properties. However, the correlation is contradicted by certain
less hydrophobic substrates showing longer delays than other, more hydrophobic
substrates. Thus, no correlation was found between hydrophobicity and anti-icing
properties. In addition, the icing delay measurements were found to be significantly
affected by condensation. The condensation and freezing of atmospheric humidity
formed ice crystals on the substrates. A second freezing mechanism was observed
for droplets on substrates with significant growth of ice crystals. These droplets
had no delay of icing, and froze immediately upon deposition. Frost formation was
therefore suspected to have affected the icing delay results.
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Chapter 7

Further work

Despite showing good anti-icing properties, the coating and surface structure can
both be improved. The effects of a reduced silica nanoparticle deposition should be
further investigated. Smaller silica particles should be tested to exploit the nucle-
ation suppressing effect of small nanostructures. The coverage of the fluorosilane
coating should be examined and improved. The nanostructure and thickness of the
coating should be investigated, to determine how it interacts with the nanoroughness
provided by the silica particles.

Additionally, environmental factors such as the condensation of humidity was sus-
pected to have a large influence on the anti-icing properties. Simulating real
environmental conditions during testing should be prioritized going forward. The
behaviour of the coating under such conditions needs to be examined. The influence
of surface structuring on humidity and frost formation should be investigated. Less
emphasis should be put on maximising hydrophobicity through surface structur-
ing, as it was not found to be correlated with anti-icing properties. The coating
durability should be considered, and especially how it is affected by icing.

The ability of a surface to remove supercooled, impacting droplets is another poten-
tial anti-icing behaviour of hydrophobic surfaces, but it was not examined in this
work. The surface ice adhesion and mechanical properties would be important for
industrial applications, and would thus be essential to optimize.
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