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Abstract

By creating phosphorus δ-layers in silicon, varying in thickness from an atomically
sharp doping profile to a 4.0 nm layer, the effect of quantum confinement on the
electronic structure of a 2DEG was studied using ARPES. The location of theo-
retically predicted, but experimentally undiscovered, quantum well states known
as 1∆ was revealed, validating density functional theory calculations developed
for describing Si:P δ-layer systems. Verification of these states contributes to
the development of accurate models describing the behaviour of δ-layer derived
devices. Further, the electronic band structure of boron-doped thin film (1.8 nm)
diamond was uncovered and compared to that of thick film (> 3 µm). Although
diamond and silicon share several crystallographic properties, it was found that
confinement induced different effects in these materials. Two-dimensional elec-
tron states were induced in silicon already for dopant layers of 4.0 nm, and a
valley splitting of 120 meV was created between the two most occupied bands
upon reaching a 2.0 nm doping profile. A confinement of 1.8 nm was shown to
have little effect on the diamond band structure, however. The surface δ-doped
thin film displayed negligible differences from its bulk counterpart, supporting
the notion of utilising thin film diamond in miniaturised systems.
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Sammendrag

Den kvantemekaniske effekten av δ-doping i silisium har blitt studert ved bruk
av "angle-resolved photoemission spectroscopy", ARPES. Dette ble gjort ved å
danne fosfor δ-lag med dopingsprofiler varierende i tykkelse fra ett atomlag til
4.0 nm. Målingene førte til bekreftelse av teoretisk forventede, men hittil ikke
påviste elektrontilstander, kjent som 1∆. Den eksperimentelle verifikasjonen av
disse tilstandene styrker teoretisk utviklede modeller, og kan dermed medvirke
til en mer presis modellering av komponenter basert på Si:P δ-doping. Bånd-
strukturene til tynnfilm (1.8 nm) og tykkfilm (>3 µm) p-dopet diamant har også
blitt direkte målt ved bruk av ARPES. Til tross for at diamant og silisium deler
flere krystallografiske egenskaper, har det blitt vist at disse materialene ble svært
forskjellig påvirket av en tynn dopingsprofil. Todimensjonale elektrontilstander
ble påvist i silisium ved profiler på 4.0 nm, og en 120 meV energisplitting oppstod
mellom de to mest okkuperte tilstandene ved en profil på 2.0 nm. Diamant deri-
mot, viste en overraskende liten effekt av begrensningene indusert av δ-doping, da
båndstrukturen innhentet fra tynnfilm diamant fremstod som ubetydelig endret
sammenlignet med tykkfilm diamant. Dette resultatet tyder på at egenskapene
til diamant vil være bevart i miniatyriserte systemer.
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Chapter 1

Introduction

The manufacturing of small device structures requires that the spatial distribu-
tion of material dopants are well controlled, and the mechanisms involved in this
concept must be understood on a near atomic-length scale. The first clear ev-
idence for a narrow doping profile, known as δ-doping, was presented in 1984
by Schubert et al [45], showing a full doping profile width of 4.0 nm epitaxially
grown Si on GaAs. The theoretical limit of confining dopants to a single atomic
plane in the host material has now been reached, and δ-doping has proven to be
a successful approach for creating a new class of electronic devices [6]. Today,
δ-doping has greatly contributed to the insight in reduced dimension electronics
[16], it has been used to realise the making of the worlds smallest transistor [18],
and is now considered a promising platform for quantum computing components
[55]. The possibility of doping with atomic level precision introduces a new era in
device manufacturing. Following this, new understanding needs to be developed,
as quantum confinement effects begin to show their influence. In this thesis,
δ-doping has been investigated in two materials; silicon and diamond.

Being both a semiconductor and an abundant element on Earth, silicon has be-
come one of the most widely used materials for device manufacturing. When the
recent achievement of δ-doping is realised in silicon, creating a hybrid material
with metallic properties, silicon becomes a natural candidate for future quantum
computer devices. This requires the engineering of suitable quantum states in a
host material, which must be controlled, manipulated and read with atomic-scale
precision. The presented experiment investigate the quantum confinement effects
induced in silicon when a dopant layer of phosphorus is reduced from a 4.0 nm
profile down to a single atom layer. This is conducted with the specific goal of
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2 CHAPTER 1. INTRODUCTION

verifying the formation of theoretically calculated quantum well states, known as
1∆, a prediction not yet experimentally confirmed. Precise knowledge of these
states may show crucial for an accurate model of the behaviour of δ-layer derived
devices, making an experimental verification of these states desirable.

Diamond has gained industrial attention in its own right. It is one of the hard-
est materials existing in nature, holds the highest recorded value for thermal
conductivity [41], it displays high breakdown field strength, and high carrier mo-
bility. Diamond is an electrical insulator, but shown to obtain superconductive
behaviour upon doping boron in concentrations exceeding 5 ·1020 cm-3 [6]. These
superior properties are desirable to maintain for nanoscale systems. Little is
known about the electronic band structure of thin film diamond, largely due to
the difficulties of creating sufficiently high quality samples [17]. The experiment
presented aims to contribute to this missing information, as significant progress
in the fabrication of δ-doped diamond is recently shown [6]. Using angle-resolved
photoemission spectroscopy, the electronic band structure of metallic diamond at
the nanometer scale is uncovered, investigating the effect of confinement and the
usage of diamond in miniaturised systems.

The process of δ-doping, together with a theoretical basis regarding the elec-
tronic behaviour of crystals, is presented in Chapter 2. The effect of δ-doping
confinement is studied using the technique of angle-resolved photoemission spec-
troscopy. Chapter 3 is therefore dedicated to the theoretical concepts surrounding
this experimental technique, and Chapter 4 describes the associated experimen-
tal requirements and methods. The results obtained will be presented in two
parts; the investigation of silicon δ-layers will be presented in Chapter 5, while
Chapter 6 is dedicated to diamond thin- and thick- film. Narrow doping profiles
in silicon have already been intensely studied, and this thesis aims to address
some unanswered questions within this field. Before the results are presented,
the specifics of these questions are elaborated on in Chapter 5, together with
a description of the adapted experimental approach. Little is known about the
electronic structure of δ-doped diamond, but an introduction of earlier works is
provided prior to the results in Chapter 6. The results are discussed as they are
presented, together with suggestions for further work. Some speculations regard-
ing the different observed effect of δ-doping in the two materials are offered last
in Chapter 6 and the conclusions are summarised in Chapter 7.



Chapter 2

Theory

This chapter provides a basis for some of the theoretical aspects of the work
presented in this thesis. The ideas described here concern the electrical properties
of materials, while the next chapter addresses methods used to measure such
properties. A description of the electronic band structure is presented, developed
from the nearly free electron model. Different electronic states are discussed
within this framework, and it will be shown that the concept of δ-doping may
give rise to new exciting electronic states in a material.

2.1 Electrons in a crystal

In order to exploit the electronic properties of a material, it is necessary to
have some understanding of the electrons residing there. The better our un-
derstanding, the greater are the possibilities for creative developments. The
most accurate description of particles available today is provided by the famous
Schrödinger equation, named so after its developer Erwin Schrödinger. In its
time-independent form, this equation reads

[
−~2

2m
∇2 + U(r)

]
ψ(r) = Eψ(r), (2.1)

where ψ(r) is the wavefunction describing the particle, E is the particle energy,
and U(r) is the surrounding potential. The constants m and ~ are the particle
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4 CHAPTER 2. THEORY

mass and the reduced Planck constant respectively, while r is the spatial coor-
dinate. To describe the behaviour of electrons, we thereby need to know what
potential, U(r), surrounds them. The precise form of U(r) is usually unknown,
but in a crystal we can take advantage of the fact that the potential must have
the same periodicity as the crystal lattice [24]. When imposing this condition,
U(r) = U(r +R), where R is a crystal lattice vector, the general solution to 2.1
becomes the familiar Bloch waves 1,

ψk(r) = uk(r)e−ik·r, (2.2)

where uk(r) is a lattice periodic function. The vector k is a measure of the
momentum2 carried by the electron, and is used to label the different Bloch wave
solutions. By analysing the wavefunction, it is evident that this is in fact periodic
with the reciprocal lattice, so that ψk(r) = ψk+G(r), where G is a reciprocal
lattice vector. Inserting back into the Schrödinger equation, we see that this also
must apply for the energy, so

Ek = Ek+G. (2.3)

This means that it is not necessary to examine ψk(r) and Ek for all values of k,
but we can restrict ourselves to an analysis of just the first Brillouin zone (BZ)3.
One might think that inside a material there will for certain exist some electrons
carrying any given energy. However, it turns out that this is not the case. Inside
a crystal, the different energy values follow a specific pattern, and some values
of energy are not carried by any electrons. This is one of the key properties
of a crystal, and is exploited in most everything of modern electronics. It is
therefore of great interest to describe and, even better, manipulate the different
energy values allowed in a material. By plotting which energies are associated
with electrons of a specific momentum, E(k), we obtain what is commonly called
the electronic band structure of the material [29].

1"By straight Fourier analysis I found to my delight that the wave differed from the plane
wave of free electrons only by a periodic modulation." -F. Bloch.

2Note that k is just a measure of the momentum, p, carried by the electron. The actual
momentum is given by p = ~k

3A derivation of the Bloch wavefunctions and the Brillouin zone together with a thorough
explanation of the concepts surrounding these are provided by Ref. [29].
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2.2 Band structure of crystals

How can we find this band structure we are interested in? Firstly, we need a
theoretical basis to develop our understanding. There are several ways to obtain
an intuitive understanding of the band structure, the approach elaborated here
being the nearly free electron model. In this model, we first consider the solution
of the Schrödinger equation for a truly free electron; that is, an electron moving
in the potential U(r) = 0. Such an electron may take on any energy value,
as shown in Figure 2.1a, where the function of E(k) becomes a mere parabola
centred at k = 04. We can now proceed by assuming the periodic potential is
almost zero, so that the electrons are nearly free. For the solutions, we obtain the
same parabola as for the free electron, but now we also get repeated parabolas,
separated by G, which meet the requirement of Eqn. 2.3. These solutions are
shown in Figure 2.1b. The situation now has dramatically changed. Where
before, a given value of k had only one associated value of E corresponding to a
solution of the Schrödinger equation, now there are several (in principle infinite
for an infinite crystal).

Figure 2.1: Nearly free electron model. (a) Situation for a truly free electron.
There exists a solution to the Schrödinger equation for all values of energy,
E. (b) Electron in an almost vanishing periodic potential. Same solutions as
for a free electron, now also repeated with the reciprocal lattice. (c) Effect of
increasing the potential strength. Gaps open near the zone boundaries, giving
rise to the formation of bands. Figure adapted from Ref. [26].

An interesting effect occurs as we let the potential strength slowly increase. This
situation is shown in Figure 2.1c, where the solutions from (b) are represented

4The same solutions also hold for non-zero potential, as long as the potential is constant.



6 CHAPTER 2. THEORY

by dotted green lines. We find that the solutions start to change in such a way
that gaps begin to appear in the Figure. That is, some values for E no longer
have a corresponding value of k that yield a solution to the Schrödinger equation.
These are known as forbidden energy values, and no electron in the crystal can
have this energy. The range of energy values where solutions do exist, form what
is known as the electron bands in the crystal. Each band is in reality made
up of a discrete set of allowed energy values, where each atom contributes to a
singular value. The bands only form a true continuum for an infinite crystal, but
in most situations the number of atoms in the system is so large as to make little
difference from the idealised situation [49].

The situation in a crystal is now this: the electrons can only possess certain
energy values. These values are clustered so close together as to form a con-
tinuum of allowed energies, broken apart with periods where no solution to the
Schrödinger equation exists. These are known as bands and gaps respectively.
This finding has been of fundamental importance in solid state physics, where it
has been successfully used to explain many physical properties, such as electrical
conductivity in semiconductors, optical transparency and magnetotransport. It
provides a clear distinction between metals, semiconductors and insulators, and
forms the understanding of all solid-state devices [29]. As an example of the
powerful insight that follows from the band description of materials, consider
this somewhat simplified illustration: Imagine a material where all the solutions
within the first two bands in Figure 2.1c are filled with an electron. Visible light
shines upon the material, that is, the material is hit by photons of a given en-
ergy within the range of visible light. An electron may absorb a photon and get
lifted to a higher energy state. According to the Pauli exclusion principle, no two
electrons may occupy the same quantum state within the system simultaneously.
When all the states in band 1 and band 2 are filled, the next available state is in
the bottom of band 3. What then happens if the photons hitting this material
do not carry enough energy to lift an electron up to band 3? The answer is that
no electron will absorb the photons, which in turn will pass unaffected through
the material. Thus, this material will appear optically transparent [48]. The
band description of materials thus offers an intuitive understanding of why some
materials are transparent and others not.

2.3 Bulk- and surface states

We now understand that inside a crystal there are some values of energy in
which there exists a solution to the Schrödinger equation, and others where there
does not. We can now proceed with investigating what these solutions, ψk(r),
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look like. Inside a crystal, the periodic potential demands that these solutions are
Bloch waves, as previously described. When investigating the form of these (Eqn.
2.2), we see that they are periodic oscillating waves, stretching out infinitely in all
directions. Interpreting |ψk(r)|2 as the position probability density we understand
that this cannot be the end of the story, as it would imply that the wavefunction
does not change as it stretches outside the crystal. The electrons are bound to
the solid (or, more precisely, we only consider the bound electrons), so outside
the crystal the wavefunction must take on a decaying form. By appropriately
matching a Bloch wave inside the solid with an exponentially decay 5 in vacuum,
we get the description of a bulk state, as shown in Figure 2.2a.

Figure 2.2: Electron states in a crystal. (a) Bulk state; periodical oscillation
in the bulk and exponential decay in vacuum. (b) Surface state; oscillating in
the bulk with an exponential modulation, matched with an exponential decay
into vacuum. Figure reprinted from Ref. [25].

In the description of the bulk states, it was assumed without mention that k was
a real vector, which made the wavefunctions mere oscillating functions. This was
done because if k was complex, the Bloch waves would not only be oscillating,
but also have an exponential part stretching towards infinity. Such solutions
needed previously be discarded as non-physical, as the wavefunction would not
be normalizable. However, after introducing a material surface, such solutions
may yet be possible. If a Bloch wave where to be exponentially increasing in the
direction where it is to be matched with the decaying form imposed from the
vacuum, the resulting wavefunction will not grow towards infinity, and thus the
wavefunction can be normalised. Assuming the presence of a surface only in the

5The form of this decay follows from the solutions for a free electron. A complete derivation
of these are found in Ref. [22].
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z-direction, that is, a crystal stretching infinitely in the xy-plane, the restriction
of a real valued k-vector is only lifted for the z-component. The wavefunction,
ψ, now take the form

ψk‖(r) = uk‖(r‖)e−ik‖·r‖e−iκz (2.4)

inside the crystal, and should be appropriately matched to the vacuum at the
surface. Here, k‖ = (kx, ky) is a real vector, r‖ = (x, y) and κ is the complex
wave vector in z-direction. The wavefunction becomes an oscillating wave, mod-
ified with an exponential growth towards the surface, and then matched to an
exponential decay outside the material [25]. The resulting form is illustrated in
Figure 2.2b. It is clear that such a state is highly localised at the surface and
will therefore act two-dimensional. The surface state will not have any kz depen-
dence, as this quantity is meaningless for a two-dimensional state. An important
quality about the surface states, is that they cannot be degenerate with any bulk
states in the material. To avoid degeneracy, this surface state cannot overlap
with any of the bulk states already present. More precisely, a surface state needs
to appear in a band gap within the band projection on k‖ [25].

2.4 Delta doping

Impurities and imperfections in a semiconductor can drastically change the elec-
trical properties of the material. By deliberately adding impurities, a process
known as doping, this can be exploited to modify and create desired behaviour
of the material [29].

Consider the effect of impurities in silicon, which has four valence electrons.
Each atom forms four covalent bonds, one with each of its nearest neighbours.
Imagine one of the silicon atoms replaced by a phosphorus atom, which has five
valence electrons. After the four covalent bonds are formed to each of the nearest
neighbours, there will still be one electron left from the phosphorus. This electron
is not strongly bound, and may be moved with relatively little energy up to the
conduction band. The impurities, known as donors, have created extra energy
levels in the material, located closely beneath the conduction band. The Fermi
level6 will effectively be shifted upwards, to reside about halfway between the
donor level and the conduction band. As this process has the effect of adding

6The Fermi level is a hypothetical energy level of an electron, such that at thermodynamic
equilibrium this level would have a 50% probability of being occupied. The term "Fermi level"
should be regarded as nothing more than a synonym for "chemical potential," in the context of
semiconductors. - N. Ashcroft, D. Mermin [2].
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charge carriers to the system, it is known as n-doping the material. The opposite
effect would be achieved by adding an impurity with three valence electrons and
is called p-doping. This would in turn create an extra energy level with vacant
holes, lowering of the Fermi level [35]. A schematic illustration of these situations
is shown in Figure 2.3.

Figure 2.3: Doping a semiconductor. (a) Undoped system: Fermi level is
determined by the energy that separates the occupied and unoccupied states.
(b) Donor impurities have the effect of adding electrons to the system and
raising the Fermi level. (c) Removing electrons will shift the Fermi level down.

Figure 2.4: δ-doped semiconductor.
Dopants in the material are restricted
to one atomic plane. Illustration is
based on Figure 1.1 from Ref. [45].

The process of δ-doping is to cre-
ate a high-density doping profile
within a narrow, well-defined re-
gion in a semiconductor. Such a
situation is illustrated in Figure
2.4, where the dopants, shown as
dark circles in the inset of the fig-
ure, are confined to a single atomic
plane. This confinement describes
an ideal δ-layer, where in reality,
the dopants will most likely be the
subject of some redistribution and
spread to the neighbouring planes.
Still, as long as the dopants are
confined within a layer less that
2.5 nm thick, the profile is consid-
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ered to be δ-function-like [45]. In
the previous section, both bulk- and surface states have been discussed. The ef-
fect of δ-doping may be of "trapping" bulk states, giving rise to other electronic
states of fundamental interest, known as quantum well states.

2.5 Quantum well states

Consider the situation shown in Figure 2.5a. The illustration is that of a semi-
conductor; an empty conduction band with the Fermi level in the band gap
underneath. The valence band is not shown. A n-type δ-layer is introduced,
lifting the Fermi level (or more precise, the chemical potential) in this region. In
thermodynamic equilibrium, the chemical potential is constant throughout the
material, so this situation is clearly unstable. Donor electrons will flow from the
dopant region, leaving behind positively charged ions.

Figure 2.5: Band bending effect from δ-doping. (a) The Fermi level in the
n-doped region of the δ-layer is lifted compared to the undoped region. This
situation is not in chemical equilibrium. Donor electrons will flow from this
region, creating an electric field. (b) The resulting situation manifests itself as
a band bending in the dopant region, creating the possibility of quantum well
states.

The situation will stabilize when the Fermi level is constant, now with an electric
field in the direction normal to the δ-layer [25]. The effect of this manifests itself
in the band structure as a bending of the bands in the dopant area. If the doping
profile is strong and narrow enough, this can result in such an extreme bending as
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to make the band dip beneath the Fermi level, resulting in the situation shown in
Figure 2.5b. The wavefunction for such states will have an exponential decay in
both directions perpendicular to the δ-layer, and the electrons will thus be highly
localized to the dopant plane. We say that they are "trapped" in a potential
well. In the bulk bands, the allowed states lie so close to each other in values
of energy as to form a continuum. In the quantum well, however (being narrow
and deep enough), the solutions become separated, allowing only discrete energy
states. The four green lines in Figure 2.5 indicate such states, where the bottom
two are below the Fermi level. The electrons filling these states are still free to
move in the direction parallel to the doping region, but are now confined in the
perpendicular direction. Such states are often described as a two-dimensional
electron gas (2DEG), as their motion is confined to a two-dimensional sheet
[25].

It can be difficult to separate quantum well states from the surface states dis-
cussed previously, but there is a distinct difference between the two. For the
surface states, new solutions to the Schrödinger equation are possible by the ex-
istence of a surface on one side (since the wavefunction is allowed to exponentially
increase in the direction where it is to be matched to the vacuum). The quantum
well states, however, are not new solutions arising from a complex component
of the wavevector. They are merely bulk states that are confined to the dopant
region by a strong band bending [25]. Because of this, we can expect that the
behaviour of the quantum well states will be somewhat influenced by that of the
bulk states from which they are derived, a point which will be discussed in later
chapters.
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Chapter 3

Photoemission Techniques

The electrons in a material do not move independently from each other or their
surroundings, but their movements are a result of the net interactions of the whole
system. In this way, an electron carries information not only about itself, but
also regarding the material of its residence. Several characterisation techniques
are founded on this concept. The main idea is to extract electrons from the
material of interest, detect characteristics of these electrons, and in this way gain
information about the material itself.

The purpose of this section is to provide a basic explanation of the main prin-
ciples regarding Photoemission Spectroscopy (PES), and the refinement, Angle-
Resolved Photoemission Spectroscopy (ARPES). The latter of these is the tech-
nique used in this work. For a more thorough description of the variety of phe-
nomena regarding photoemission, it is referred to the solid state physics textbooks
[27, 29, 56].

3.1 Three-Step Model

The three-step model describes the photoemission process in the following steps:
(i) A photon excites an electron; (ii) the electron travels through the crystal to
the sample surface; (iii) the electron transmits through the surface and escapes
into vacuum.

The three-step model provides a somewhat artificial description of the photoexci-
tation, as the whole process in reality should be treated as one step. Nevertheless,

13
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the model is commonly used, as it is conceptually simple and the theory provides
results that are not very different from the complex one-step model [27]. In the
following, a description of the different steps will be presented. Some key notions,
to give a better perception of the photoemission process, will also accompany the
description.

3.1.1 Step 1: Excitation of the electron

The first step describes the local absorption of a photon which results in the
excitation of an electron. The electron absorbs the photon energy hv, and is
lifted to a higher energy state [56]. Depending on the electron initial and final
state, different properties of the specie is probed, and different techniques are
adapted. The excitation process of XPS and ARPES is illustrated in Figure
3.1.

Figure 3.1: Excitation of an electron. First step in the photoemission process
as described by the three-step model. An electron is, by photoelectric absorp-
tion, excited from an initial to a final electron state. Figure is re-adapted from
Ref. [53].
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Simple as this may seem, something in this situation is not obvious. In order to
be freed from the sample, the electron must be lifted to an energy state above
the vacuum level. However, the electron cannot be excited to any given final
state. It needs an available, existing state that is resulting from the material
band structure to be excited into. It might seem strange that the material will
have states above the vacuum level at all, as one may consider this to be outside
the sample. Looking back at the band structure in Figure 2.1c, however, it is
clear that solutions will exist for, in principle, infinite energy values. The vacuum
level is typically a few eV higher than the Fermi level. In Figure 3.1 it is drawn
to lie in the conduction band (although this is not always the case), illustrating
that solutions to the Schödinger equation do not cease to exist by crossing the
vacuum level.

3.1.2 Step 2: Propagation to the surface

Having been excited into a final state which lies above the vacuum level, the
electron is now free to move and is propagating through the material to the
surface. We view the electron as following a path of constant potential, so that
the energy is conserved during the travel. However, not all electrons are so lucky
as to propagate to the surface without undergoing any inelastic scattering and
losing some of their energy. This effect manifests itself in the measurements
by a "tail" of electrons with kinetic energy less than the main signal [57]. At
first glance this may seem like a highly inconvenient disturbance, but an adept
experimentalist may be able to extract useful and interesting information from
the behaviour of these tails.

It is now straightforward to realise that photoemission should be a surface sensi-
tive technique. The incoming photons will penetrate in the scale of microns into
the sample, but electrons that get excited from the deeper layers of the material
will have a longer travel towards the surface. Such electrons thus have a higher
probability of getting inelastically scattered along the way. The average length
an electron travel before such scattering is known as the inelastic mean free path,
λ, and is a characteristic of the material and the electron kinetic energy. By
studying a large number of materials under a wide range of kinetic energies, λ is
found to be highly dependent on the electron kinetic energy and lesser dependent
on the specific material [26]. This resulted in what is known as the universal
curve, shown in Figure 3.2, which is frequently used for estimating the inelastic
mean free path of the traveling electrons [47].

Usually, one defines the sampling depth, d, as the depth for which 95 % of the
electrons arise within. This is given by
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d = 3λe cos θ (3.1)

where λe is the electron inelastic mean free path and cos θ is a factor accounting
for the increased length the electrons have to travel if the sample is tilted relative
to the photoelectron analyser [26]. When detecting electrons with a kinetic energy
of EK = 200 eV at normal emission, it is understood from Figure 3.2, and by the
use of Eqn. 3.1, that we are probing roughly 2 nm into the sample.

Figure 3.2: Universal curve of inelastic mean free path. The curve shows
the calculated (red dashed line) and experimentally obtained (black and white
symbols) values for the inelastic mean free path of electrons in a solid. Figure
reprinted from Ref. [47].

3.1.3 Step 3: Transmission through the surface

The last step in the model considers the transmission of the electron through
the surface potential barrier. This process is described by a probability factor,
which is obtained by matching the bulk Bloch eigenstates inside the material to
free-electron plane waves in vacuum [14].

Inside a material, the electron may exchange momentum with the crystal lattice.
The lattice carries momentum in the quanta of G, determined by the lattice pe-
riodicity. Since the wavefunction is periodic with this quantity, such an exchange
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will not alter the electron description. As the electron leaves the sample, however,
the symmetry in the direction normal to the surface is broken, and any amount of
momentum k⊥ may be exchanged. That is, given that the translational symme-
try of the surface potential is conserved across the surface boundary, the parallel
component of the electron momentum must be conserved under the transmission,
but the same is not true for the perpendicular momentum [12].

3.2 Photoemission Spectroscopy

Having established the important details of the three-step model of photoemis-
sion, we now turn to consider how this might be used to extract information
about a sample of interest. The relation between a photon of energy hν and the
outgoing electron with kinetic energy E′K , is simply described from conservation
of energy as

hv = E′K + EB + φS . (3.2)

Here, EB is the energy of the electron initial state, measured relative to the
Fermi level and φS is the energy needed to extract the electron from the sample
Fermi level and out to vacuum. These are known as the binding energy and the
sample work function respectively. From vacuum, the electrons may be collected
by a suitable lens system, and thereby analysed using a photoelectron energy
analyser. It is important to remember that the analyser has a work function,
φA, of its own. By electrical connection between the sample and the analyser,
the Fermi level in these materials will align, and the electrical potential between
them becomes φS − φA. We then realise that the relation between the kinetic
energy of the electron leaving the sample and the kinetic energy upon entering
the analyser, EK , becomes

E′K + φS = EK + φA, (3.3)

as illustrated in Figure 3.3. Combining Eqn. 3.2 and 3.3, the expression to
correctly extract the binding energy becomes

EB = hv − EK − φA. (3.4)

Note that the sample work function cancel, but the analyser work function must
be known [13]. By exposing the sample of photons carrying a specific energy, and
measuring EK , it is possible to determine the electron binding energy.
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Figure 3.3: Kinematics of a photoemission experiment. Illustrating the re-
lation between different variables in the photoemission process. The binding
energy, EB , is calculated by knowing the analyser work function, φA, measuring
the kinetic energy, EK , and controlling the photon energy, hv.
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3.3 Angle-Resolved Photoemission Spectroscopy

With technological progress, a refinement of the photoemission technique, known
as angle-resolved photoemission spectroscopy, became possible. Here, not only
the kinetic energy, EK , is measured, but also the wavevector K in vacuum is
obtained. The wavevector is a measure of the momentum carried by the electron,
related by K = 1

~P . This is used to extract information about the wavevector
carried by the electron traveling inside the crystal, k, and thus obtaining detailed
information about the band dispersion and Fermi surface of the sample. For
simplicity, k is often just referred to as the electron momentum. A schematic
of an ARPES measurement is shown in Figure 3.4, where both K and EK are
measured.

Figure 3.4: Geometry of an ARPES experiment. Electrons are freed from
the material by an incoming light beam. They leave the sample in an angle
described by the parameters θ and φ. Figure reprinted from Ref. [61].
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The magnitude of the electron momentum in vacuum is given by K = 1
~
√

2mEK
and from the geometry of the experiment its components become

Kx =
1

~
√

2mEK sin θ cosφ, (3.5)

Ky =
1

~
√

2mEK sin θ sinφ, (3.6)

Kz =
1

~
√

2mEK cos θ. (3.7)

The extraction of the electron momentum inside the solid is based on the princi-
ple that, under photoemission, the emitted electron does not undergo a shift in
momentum parallel to the sample surface, so that

k‖ = K‖. (3.8)

The reason for this is that the absorbed photon carries so little momentum as to
assume that kphoton ≈ 0, and the parallel momentum is not affected by transmis-
sion through the surface1. With a sample orientation as illustrated in Figure 3.4,
and by combining Eqn. 3.5 and 3.6, the parallel component may be expressed in
terms of measurable quantities by

|k‖| =
√
k2x + k2y =

1

~
√

2mEK sin θ. (3.9)

However, the wavevector perpendicular to the surface, k⊥, is not conserved. Still,
it is possible to determine the value of k⊥, by making an a priori assumption of
the dispersion of the bulk final states. To this end, we assume the final states
have a parabolic dispersion, and can then be described as

Ef (k) =
~2k2

2m
− |E0| =

~2(k2
‖ + k2

⊥)

2m
− |E0|. (3.10)

Here, the value of |E0| corresponds to the bottom of the valence band as indicated
in Figure 3.5, which illustrates the kinematics of a photoemission process. It
follows further from this illustration that the bulk final state energy may be

1The assumption kphoton ≈ 0 is not reasonable for high photon energy ARPES measure-
ments, and a correction to Eqn 3.9 and Eqn. 3.11 is required. The corrections at normal emission
are given by k‖ = 1

~
√
2mEK sin θ − 2πν

c
cosα and k⊥ = 1

~
√

2m(EK cos2 θ + V0) +
2πν
c

sinα;
this has been applied to the results in Chapter 6, where a higher photon energy is used.
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Figure 3.5: Kinematics of an ARPES experiment. Developed from the three-
step nearly free electron final state model. (a) Direct transition in the solid.
(b) Free electron final state in vacuum. Schematics based on Figure 4 in [14].

expressed as Ef = EK + φ. Combining this with Eqn. 3.9, the perpendicular
component of the electron momentum may be expressed as

|k⊥| =
1

~
√

2m(EK cos2 θ + V0). (3.11)

The value V0 = |E0| + φ is known as the inner potential of the sample, and
describes the energy at the bottom of the valence band referenced to the vacuum
level, EV . Note that in the above context, EK is also referenced to the vacuum
level, while both E0 and Ef is referenced to the Fermi energy, EF .

We now understand that this technique allows a detailed description of the disper-
sion relation E(k) of our sample, simply by measuring the kinetic energy and the
emission angle. The only parameter left to determine, is the inner potential, V0,
which can be extracted from the measured periodicity of the dispersion E(k⊥).
Various methods also exists for calculating the inner potential in crystals [52],
and a great many determined values are now available in the literature.
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3.4 Mapping of 2D and 3D states

In Chapter 2, the characteristics of different electronic states were discussed.
Some states were shown to have a wavefunction highly localized to a single atom
layer (e.g. in the xy-plane), thereby named 2D states. Such a state is confined in
the z-direction and will therefore not inhibit any kz dependence. If we still were
to use the a priori assumption of Eqn. 3.10 to describe these electrons (as is the
case), we are assuming that the energy is depending on a quantity that it is, in
fact, independent from. The result is, by plotting the energy (or k‖) as a function
of kz, the 2D states will appear to be constant, while the 3D states will vary. This
is therefore a simple and elegant way of differentiating such states.

It can be a challenge to separate different 2D states from each other (e.g. surface
states from quantum well states), and one sometimes need settle with mere indi-
cations. Surface states will, as mentioned, appear in the projected band gap. Any
2D state appearing outside this region will then clearly not be associated with
a surface state. For 2D states appearing in the band gap however, the opposite
argument is not valid. It is therefore important to have complete knowledge of
the band structure before inducing a δ-layer to the sample, so one can associate
the δ-layer with any eventual new states appearing in the measurements.

It may be questioned how a 2D state can be detected in photoemission at all,
carrying no kz momentum. Even if such an electron were to get excited, and
instantaneously appear outside the sample (as within the one-step-model), it
should never reach the detector. Strangely, such states are frequently detected.
Where then, do this additional momentum arise? The answer is that it comes
from the lattice itself, which carries momentum in the form of lattice vibrations.
This momentum exists in quantities of G, and can be transferred to the electron.
We need not worry that such a transition may obscure the k‖ mapping, as this
would just change the momentum by a repeating period. This is illustrated in
Figure 3.5, showing that a vertical transition between the initial and final bulk
states is equivalent to a transition with the reciprocal lattice vector, G, added to
the momentum vector2.

2"in a nearly-free electron gas, optical absorption may be viewed as a two-step process. The
absorption of the photon provides the electron with the additional energy it needs to get to
the excited state. The crystal potential imparts to the electron the additional momentum it
needs to reach the excited state. This momentum comes in multiples of the reciprocal-lattice
vectors G: So in a reduced zone picture, the transitions are vertical in wave-vector space. But
in photoemission, it is more useful to think in an extended-zone scheme." - G.D. Mahan [32].



Chapter 4

Experimental Requirements
and Methods

An important consideration for any experiment is the apparatus involved, as this
often dictates both the possibilities and restrictions imposed on the experimen-
talist. The measurements presented in this thesis are obtained at three different
synchrotrons. An introduction to the general concepts of a synchrotron facil-
ity will therefore be presented first, followed by the description of fundamental
equipments and the experimental methods used.

4.1 Synchrotron facility

In order to conduct a photoemission experiment one will need a source of pho-
tons. This can be provided by the acceleration of charged particles, which causes
emission of electromagnetic radiation [30]. The electromagnetic radiation emit-
ted when charged relativistic particles are being deflected is called synchrotron
radiation. In a synchrotron facility, this type of radiation is produced artifi-
cially.

4.1.1 Synchrotron radiation

The electrons used to produce radiation are maintained circulating in a storage
ring at near-light speed and at almost constant energy. When thinking about the
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size and speed of the particles involved, one realise that this is not an effortless
accomplishment. The electron trajectories are affected by everything in the ring.
in addition, they naturally repel each other. Therefore, their trajectories need
to be constantly corrected to prevent them from crashing into the sides of the
storage ring. The electrons are kept circulating in different "bunches" inside the
ring. Each bunch will quickly spread out, so timed electric fields are switched on
and off to assemble the bunches [50]. Some electrons will unavoidably crash into
the walls, so there is need for a "top up" of electrons from time to time. The
circumference of a synchrotron storage ring is highly variable, ranging from some
meters to a few kilometers. The choice of circumference influences the accessible
photon energy range of a synchrotron facility.

Since the electrons are kept in circulation (and therefore are accelerating), they
produce radiation constantly. However, these photons are of lower energy than
those desired for most experiments. To make the electrons produce the desired
radiation, devices such as wigglers and undulators are placed along the ring.
These are magnetic devices which impose a force, known as the Lorentz force, on
the electrons, causing their trajectory to bend in a controlled manner. [21]. An
illustration of a wiggler device is shown in Figure 4.1. Here, a series of magnets
are placed with alternating poles, causing the electrons traveling through this field
to "wiggle" sideways and produce an intense and narrow beam of electromagnetic
radiation. The magnets are constructed in such a way that the radiation emitted
by a given electron at one oscillation is in phase with the radiation from the
following oscillations. The undulator works according to the same principle, but
has device parameters resulting in a narrow energy spectrum in the produced
radiation.

Figure 4.1: Insertion device in storage ring; wiggler. The device creates an
alternating magnetic field that causes the passing electrons to oscillate and
produce electromagnetic radiation. Reprinted from Ref. [19].
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4.1.2 Synchrotron beamline

The radiation beam produced in the storage ring must be guided to the experi-
ment end-station. This is accomplished with a beamline that consists of a series of
mirrors that focus the beam onto a monochromator. The monochromator allows
a fine selection of the photon energy by spatially separating the frequencies of the
radiation, and filtering out all but a narrow frequency range of the radiation. The
monochromatic beam is focused into the end-station and ready for experimental
use. An illustration of a beamline and an overview of a synchrotron are presented
in Figure 4.2.

Figure 4.2: Synchrotron beamline and overview. (a) Detailes of the SUL-
X beamline at the ANKA test facility in Leopoldshafen, Germany [28]. (b)
Overview of the SOLEIL synchrotron in Paris, France [10]. Radiation is pro-
duced in the storage ring and guided to the end station through the beamline.

The effort, knowledge, and expenses required to develop and maintain a syn-
chrotron is immense, which is why there must be good reasons for building such
a facility. Perhaps the most attractive feature offered by a synchrotron is the
ability to tune the photon energy reaching the sample, which may be done by
changing the gap of the wiggler/undulator or the positioning of the monochro-
mator [1]. Simpler sources of electromagnetic radiation may provide photons at
several discrete energies, but to have a continuously tuneable beam of radiation
offers a huge advantage in several experimental techniques, including, as will
be shown in the following chapters, ARPES. The radiation produced in a syn-
chrotron is also of high intensity, making it possible to perform the experiments
fast. This is beneficial since the experimentalist often works against the clock, as
samples may have a limited lifetime before they get contaminated.
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4.2 Analyser and Detector

Figure 4.3: Hemispherical electron analyser. Schematics showing the oper-
ating principle of an hemispherical electron analyser. Photoelectron intensity
is mapped with respect to both the electron kinetic energy and the emission
angle θ. Reprinted from Ref. [54].

There are several different ways to analyse the photoelectrons ejected by the
synchrotron radiation. In the experiments presented in this thesis, this was ac-
complished using a hemispherical electron analyser. Such an analyser consists
of two metallic hemispheres, with a potential difference applied between them.
The potential difference creates equipotential surfaces between the hemispheres,
affecting the electron trajectories. This work as an energy filter, only allowing
electrons within a certain kinetic energy range to reach the detector screen, while
the rest will hit the hemisphere walls. Before reaching the analyser, the electrons
are collected by a suitable electrostatic lens system. The lens system allows a
retardation of the electrons, making it possible to select which kinetic energy
range is allowed to reach the detector. A schematic of the hemispherical electron
analyser is presented in Figure 4.3. The design preserves the electrons’ angular
trajectory along one direction. By using a 2D detector it is therefore possible to
map the photoelectron intensity with respect to both the kinetic energy and the
emission angle θ, which again can be converted to k.
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4.3 Ultra high vacuum

When conducting a surface science or photoemission experiment, there is often
a need to perform the experiment in a clean environment. Ideally, this would
be to measure the sample with not a single contaminant stuck on the surface or
floating in the surroundings to disturb the measurements. One strives towards
this situation by taking great care in preparing the samples and keeping the
surroundings at very low pressure during all measurements.

To get an impression of the pressure required, it is insightful to do a rough
estimate over the number of O2 molecules that hit a surface of 1 cm2 per unit time
if the pressure is P = 10-6 mbar. Kinetic theory of gases gives the impingement
rate, Γ, as

Γ =
P√

2πMkBT
. (4.1)

Here, M is the molecular mass, kB is the Boltzmann constant and T is the
temperature. At room temperature, this results in an impingement rate for O2
at Γ = 3,8·1014 cm-2s-1. The average number of molecules on a 1 cm2 surface area
is in the order of ∼1015. This means that, with the aforementioned pressure, it
will take about 3 seconds to contaminate the entire sample surface. This clearly
illustrates the need for much lower pressure values. Usually, one requires the
pressure to be in the order of 10-9 mbar or below; a condition categorised as ultra
high vacuum (UHV) [33].

This ultra high vacuum is obtained and maintained by an intricate system of
different pumps and chambers, that can be sealed off from each other upon trans-
ferring the sample in and out of the measurement system. The significance of
a successfully prepared sample is obvious, as the process of changing a ruined
sample may cost a day of experiment time.

4.4 Sample preparation

An important step in preparing a photoemission experiment is to ensure a clean
sample. There are several common methods for cleaning a sample before trans-
porting it into UHV. Some materials, such as metals with a weak out-of-plane
bonding, are well suited for cleaving, the process of tearing off the top atom layers.
Silicon is not suited for cleaving, but the standardised cleaning procedure of Ra-
dio Corporation of America, involving different chemical processes as described
in Ref. [59] is usually followed. Nevertheless, during the transportation into the
system, the sample is exposed to atmosphere, and thus gets contaminated by
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molecules in the air. Due to the short mean free path of photoelectrons, a large
fraction of the measured intensity arises from the surface, making it important for
this to be clean. Contaminants will also increase the scattering of photoelectrons
and may even dramatically alter the electronic properties of the sample [5]. It is
therefore vital to clean the sample even after it is brought under UHV conditions.
In the work of this thesis, the in situ cleaning of samples was accomplished by
the processes of annealing and flashing. In situ sample growth has also been
conducted. This was done using two different methods, namely gas dosing and
thermal evaporation. These will be discussed in the following sections.

4.4.1 Annealing and flashing

In the process known as annealing, thermal energy is applied to the system,
with the aim to overcome the desorption energy of the contaminant species. The
material must be heated sufficiently to allow free movement of the particles, and is
usually held at this temperature for several hours in order to let particles migrate
from within the sample. One can also heat the sample to as high a temperature as
possible for a few seconds, known as flashing the sample. This is an effective way
of getting rid of an oxide layer and other contaminants that eventually will form
on the surface of the sample, even under UHV conditions [25]. Both annealing
and flashing are generally done by one or both of two different methods, known
as direct heating and indirect heating. These are illustrated in Figure 4.4. Direct
heating is achieved by applying a current through the sample, created by an
applied voltage. The process is only limited by the sample resistance, thereby
working poorly for insulators. During indirect heating, a current is sent through
a filament to make it hot. The filament is placed close to the sample, which gets
heated by thermal irradiation [33].

Figure 4.4: (a) Direct heating ; the sample is heated by passing a current
through it. (b) Indirect heating ; the sample is heated by thermal irradiation
from a hot filament.
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4.4.2 Gas dosing

Figure 4.5: Phosphine dosing and
annealing. Sample is dosed with
PH3 and subsequently annealed to
remove H. Illustration based on
Fig. 2.8 in Ref. [33].

Gas can be used to coat a material
through a process whereby the gas re-
acts chemically near or on a substrate
to form a solid product. In the work
of this thesis, phosphine gas, PH3, was
used to create δ-layers of phospho-
rus on a silicon substrate. This was
achieved by introducing phosphine gas
to the chamber containing the sample,
and letting the sample surface satu-
rate with the gas molecules. To subse-
quently remove the H atoms, the sam-
ple was under a short anneal. A tem-
perature of 350◦C for 10 seconds is
shown to remove H atoms and incor-
porate P to the surface, producing a
coverage of 1

4 monolayer (ML) of phos-
phorus at the sample surface [44, 58].
The process of gas dosing and anneal-
ing is illustrated in Figure 4.5.

After a coverage of phosphorus is pre-
pared, the sample may be capped with
silicon. That is, new silicon may be
deposited on top of the phosphorus,
creating a buried δ-layer. The capping
layer was created by thermal evaporation of silicon.

4.4.3 Thermal evaporation

Thermal evaporation is one of the oldest techniques used for depositing thin
film materials on a substrate in vacuum. The method is still widely used in
laboratories, as it is simple, precise and versatile. The general principle is to heat
the depositing material, making it evaporate, and then transport the vapour to
the substrate and letting it condense to a solid film [46].

Heating the depositing material may be done both by the direct and the indirect
method, similarly as to the process in Figure 4.4. In this work, thermal evapora-
tion was conducted as part of the fabrication of Si:P δ-layers, where new silicon
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was evaporated on top of the dopant layer, capping the sample. The evaporation
was conducted with a homemade evaporator, based on the direct heating process.
This is shown in Figure 4.6.

Figure 4.6: Silicon evaporator. A piece of silicon wafer is connected
to the chamber in such a way that a current can flow through it. The
temperature increases until silicon evaporates, covering the sample
substrate.

A piece of silicon wafer was connected to the inside of the UHV chamber by rods
and clips made of stainless steel. One can easily apply a voltage between these
rods and make a current flow through the silicon wafer, heating it to the tempera-
ture of evaporation. The sample substrate was simply held in close vicinity to the
wafer, thus getting covered by silicon vapour which condensed upon contact with
the cool sample. After silicon deposition, a final step of annealing was conducted
to recrystallise the capping layer surface.

4.5 Materials

Silicon and diamond may seem unrelated, but there exists several similarities
between these materials. Silicon, with its nuclei accommodating 14 protons, is
found just beneath diamond (hosting 6 protons) in the periodic table. This means
that they both have four valence electrons. The orbital nature of these are also
similar. For both materials, the valence electrons reside in s and p orbitals, and
in order to create covalent bonds, the s orbital mixes with the three p orbitals to
form what is known as the sp3 hybridisation, shown in Figure 4.7.
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Figure 4.7: Illustration of
the sp3 hybridisation.

This makes silicon and diamond crystallise in the
same tetrahedral crystallographic structure, and
as a result the band structure, presented in Fig-
ure 4.8, of the two materials is quite similar. The
valence band maximum (VBM) appears at the
high symmetry Γ point. This band splits in two
going towards the high symmetry X or L point,
while into three if moving in the Γ-K direction.
The conduction band minimum (CBM) occurs for
both materials near the high symmetry X-point,
though somewhat closer to X in the case of sili-
con.

In the current work, the primary difference be-
tween the δ-doping conducted on these materi-
als is the nature of the dopants used. The sili-
con dopant layer is produced by phosphorus, an
n-donor, while the diamond epilayer is heavily
boron-doped, making it p-type. An n-type doping has the effect of adding elec-
trons to the system, raising the Fermi level, and in turn induces a downward
band bending. For silicon, the conduction band minimum is therefore of special
interest, occurring close to the high symmetry X-points. The situation for dia-
mond is different, as the p-type doping lowers the Fermi level, making the Fermi
contour appear at Γ. This means that for silicon, the focus of attention will be
the conduction band minimum, while for diamond the valence band maximum is
the point of highest interest.

Figure 4.8: Band structure. Tight-binding calculations describing the band
structure of Silicon and Diamond. Re-adapted from Ref. [40].
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Chapter 5

Silicon δ-doping

In the previous chapters, the theory behind electronic band structure and con-
cepts regarding photoemission have been presented. These have aimed to explain
different electronic states in a crystal and the technique utilised for characterising
these states, ARPES. Sample growth and methods for sample preparation have
been introduced, in addition to some insight in the experimental environment
associated with a synchrotron and an introduction to the investigated materials.
Now we turn to the experimental findings. The results obtained will be presented
in two parts. In this chapter, all results regarding the measuring of δ-layers in
silicon is presented, while the next chapter is dedicated to the measurements of
diamond thin- and thick film.

The work presented in this chapter investigates the quantum confinement effect
in δ-doped silicon, by examining samples with phosphorus δ-layers varying from
an atomically sharp doping profile to a 4.0 nm thick layer. In doing so, we hope
to verify experimentally, for the first time, the existence of the 1∆ quantum well
states which have been found in theoretical calculations. Before the results are
presented, this chapter provides an introduction to the current findings within
Si:P δ-layers, the approach used in the experiment, and a description of the
measured samples.

5.1 Previous works

Investigating δ-layers in silicon has been a subject of growing interest the past
few years. The theoretical band structure of phosphorus δ-layers in silicon has

33
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been studied intensely by different methods such as tight-binding (TB), pseu-
dopotential method (PP) and by density functional theory (DFT) [7, 8, 9, 31]. A
predicted band structure of an ideal ordered Si:P δ-doped layer with the phospho-
rus covering 1

4 monolayer at 4 K is shown in Figure 5.1, with the band structure
of pure silicon with the same dimensions inset as dashed black lines as a compar-
ison.

Figure 5.1: Calculated projected band
structure for 1

4
ML Si:P δ-doped layer (red)

and for pure silicon (black dashed lines).
Reprinted from Ref. [31].

The calculations predict that
the quantum well created
from the δ-doped layer in-
duces a strong confinement
that pulls down the bands sig-
nificantly. This confines elec-
trons in dense impurity bands
under the standard silicon
conduction band, with a large
splitting between the confined
subbands. An increased dop-
ing density is found to in-
crease the confinement and to
lower the impurity band en-
ergies [31]. The first three
subbands of this calculation
are named 1Γ, 2Γ and 1∆.
They are interpreted to derive
from the band projection of
the bulk silicon valleys origi-
nating at the high symmetry
X points. The quantum well
states are confined to the dopant plane and thus act as 2D states. They will
lose their kz dependence and should therefore be fully described within the 2D
Brillouin zone. This can be thought of as a compression of the 3D zone down
to a plane as illustrated by Figure 5.2. Note that these states originate from
the same high symmetry point in the 3D Brillouin zone, but their relative po-
sitions have changed in the projected picture. The out-of-plane valleys are now
located at the 2D zone centre, while the in-plane valleys are projected to their
own positions.

Several experiments have been conducted with the goal of locating and char-
acterising these states, which have led to the observation of both 1Γ and 2Γ
[36, 39]. The experiments have revealed the Fermi level position, and thereby the
occupancy, effective masses, and valley splitting of the 1Γ and 2Γ bands. The
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Figure 5.2: Band projection diagram for the highly confined 2D δ-layers. Two
valleys (dark) are projected to the Γ point, and four valleys are projected to
their own positions. Reprinted from Ref. [31].

understanding of these properties it essential for the use of δ-layers in atomic-
scale devices. However, the 1∆ states have not been observed in these exper-
iments, and it is therefore possible that we are lacking information which may
be crucial to accurately modelling the behaviour of devices based on δ-layers.
Results from the most recent experiment by Miwa et. al. [39] are presented
in Figure 5.3. Figure 5.3a shows an ARPES measurement of a constant energy
surface at the Fermi level, taken with hv = 113 eV. The accompanying LEED
pattern is shown as an inset and the surface (1x1) unit cell is overlaid as a yel-
low square. Figure 5.3b shows an illustration of the theoretical predictions of
the equivalent situation, reprinted from supporting online material accompany-
ing Ref. [39]. The 1Γ and 2Γ states are predicted to arise in the zone centre,
and the 1∆ states close the zone corners. In the measurements, a signal is clearly
evident in the zone centre and recognised to arise from the 1Γ and 2Γ states.
However, when comparing the two representations, it is clear that there is no
evidence of the 1∆ states. A possible explanation for this may be that the 1∆
states are located above the Fermi level and would therefore not be observed
by photoemission. This explanation is supported by the calculations presented
in Figure 5.2, where the 1∆ states are shown to appear at a lower binding en-
ergy than the 1Γ and 2Γ states. It is therefore reasonable to assume that the
1∆ states may be unoccupied even though the Γ states are visible. Another
possibility is that the 1∆ states are positioned beneath the Fermi level, but
have not been found by the measurements due to other experimental factors.
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Figure 5.3: Recent experiment by
Miwa et. al. [39]. Results show the
Γ states, but the 1∆ states appear
absent. (a) Fermi surface taken at
hv = 113 eV with (b) accompany-
ing schematics showing predicted
positions for 1Γ, 2Γ and 1∆.

The quantum well states are localised in
the buried δ-layer and, due to the short
mean free path of low kinetic energy pho-
toelectrons, ARPES is a highly surface sen-
sitive technique. It is therefore surprising
that the quantum well states within such a
buried layer are observable by ARPES at
all, and the possibility of this was only re-
cently demonstrated [36]. This is allowed
by a resonant enhancement of the buried
states such that the fraction of the wave
function which exists near the surface may
be measured. For the 1Γ and 2Γ states, this
happens when probing with photon ener-
gies corresponding to electron emission from
the bulk high symmetry X point. It is not
given however, that this same photon energy
will produce a resonance for the 1∆ states.
When the 1∆ states do not appear in the
measurements it may well be that the reso-
nance point is not hit or that they simply do
not have a resonance point. It must also be
considered that the calculations may form
an erroneous description of the situation,
or that the interpretation of these calcula-
tions leads to an incorrect interpretation of
where the 1∆ states should be located in
the 2D Brillouin zone. The DFT calcula-
tions are constructed from a 4x4 supercell
in order to integrate the phosphorus atoms
in the lattice. This imposes a four times
shorter periodicity on the calculated band
structure. The band curvature must at the
same time remain unchanged, as this would
elsewise lead to a different electron effective
mass. The resulting predictions will thereby
be a folded representation of the real band
structure. To recover the original structure,
the bands need be untangled and refolded
to their respective position. This process is not trivial, and may easily lead to a
wrong prediction of different band locations.
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5.2 Proposed Experimental Approach

Given that it is unclear whether the delta states simply do not exist, or whether
the design of the previous experiments did not allow for the observation of these
states, it is important to carefully consider any new approach.

There are two relevant experimental parameters that govern the location of the
quantum well states relative to the Fermi level. These are the dopant density
and the thickness of the dopant layer. With a higher density of phosphorus,
more electron states are filled, and the Fermi level rises. The second parameter,
the dopant layer thickness, dictates the confinement potential. In principle, for
an infinitely thick film, the states 1Γ, 2Γ and 1∆ should behave as bulk, and
therefore, as they are derived from the same bulk state, be equally occupied. As
the dopant layer gets thinner, a confinement potential is created which effects the
in-plane and out-of-plane states differently, separating the 1Γ, 2Γ and 1∆ states
in terms of binding energy. The making of a thicker dopant layer should bring
the states closer together, possibly revealing 1∆ states hiding above the Fermi
level. In addition, it is experimentally easier to achieve the high-density limit
with a thick dopant layer.

Motivated by these thoughts, samples of different character were prepared. Ef-
forts were made towards making the samples with an equal high-density doping
profile (25 % phosphorus), but with different dopant layer thickness. Not only is
this a favourable approach for potential validation of the 1∆ states, it allows the
effect of confinement to be monitored as the dopant layer decreases. Measure-
ments were conducted on both buried and unburied δ-layers to investigate the
effect of capping. Since it was not certain whether the 1∆ states were occupied
states beneath the Fermi level, if they had a high symmetry point resonance, or
even that they were located close to the 2D Brillouin zone corners, this could
prove a severe and unfruitful task, particularly as the act of not observing the
1∆ states is not equivalent to disproving their existence.

5.3 Samples

The starting point for all samples was a p-type Si(001) wafer, prepared in vacuo
by degassing at 650◦C for several hours followed by flashing to 1200◦C, to produce
a clean and well-ordered surface. Preliminary measurements were conducted at
this point to confirm the sample quality before continuing the dopant growth.
This was accomplished by measuring the bulk bands by ARPES. A contaminated
surface would break the sample periodicity, leading to non-conserved parallel
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momentum in the photoemission process, leading to poor signal-to-noise and
contributing to an overall broadening of the band linewidths. The detection
of clear bands, as shown in Figure 5.4, is therefore testimony of a clean and
well-ordered surface. The dopant layer was created with different procedures,
depending on the desired thickness.

Figure 5.4: Example measurement. Clear
bands indicating a clean, well-ordered sur-
face.

To create a δ-layer confined to a
single atomic plane, a true δ-layer,
phosphine gas (PH3) was dosed
onto the sample for 5 minutes at
a pressure of P = 5 · 10−9 mbar
with the substrate at room tem-
perature. This was followed by
annealing to 350 ◦C for 10 seconds
to remove hydrogen and incorpo-
rate the phosphorus to the surface.
This procedure has been shown to
make a coverage of 1

4 monolayer of
phosphorus at the sample surface
[36]. To make a thicker dopant
layer, Si was evaporated onto the
substrate at the same time as the
phosphine gas was dosed. As be-
fore, the phosphine was dosed at a
base pressure of P = 5·10−9 mbar,
and a Si filament was heated to
evaporate for a total pressure of P = 7 · 10−9 mbar, until the layer had reached
the desired thickness, based on the calculated silicon deposition rate. In this way,
phosphorus will constantly be incorporated into the crystal, making up approx-
imately 1

4 of the lattice. A capping layer was created on two of the samples by
evaporating Si on top for 20 minutes, corresponding to a coverage of 0.66 nm
silicon, followed by a finishing anneal to reconstruct the surface.

Four different samples are illustrated in Figure 5.5. These are the monolayer, the
middle layer and the uncapped and capped megalayer, appropriately named after
the thickness of the dopant layer. The monolayer sample is a true δ-layer, with
the dopants confined to a single atom plane, buried underneath a capping layer
of silicon. The middle sample is uncapped, with a 2.0 nm dopant layer, created
by simultaneous deposition of phosphine and silicon for one hour. Depositing
for two hours, resulting in a dopant layer of 4.0 nm, one capped by silicon and
one uncapped, created the megalayer samples. The calculations estimating these
sample dimensions are provided in Appendix A.
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Figure 5.5: Silicon samples. Four samples of different dopant layer thickness
was measured. Sample (a) was created with the doping profile as a "true"
δ-layer, while the remaining three had thicker dopant layers. Samples (a) and
(d) were capped by silicon.

5.4 Results and Discussion

As outlined in Section 5.2, a narrow potential force the quantum well states to
split apart in terms of energy. The making of a thicker dopant layer should
bring the states closer together. It is therefore a good approach to begin the
investigation with the samples created with a 4.0 nm dopant layer, as, if the
1∆ states exist, this will bring them closer in energy to the already observed
Γ states. Figure 5.6a presents a schematic of the Fermi surface, showing the
predicted positions of the quantum well states1. The projected Brillouin zone
is inset as a yellow square. The measured Fermi surface (hv = 118 eV) of the
uncapped megalayer is presented in Figure 5.6b. In the zone centre, features
that are interpreted to be the Γ states are recognised, and the shape of these
suggests the presence of both 1Γ and 2Γ. In addition, there is a clear evidence
of states located near the 2D zone corners, strikingly similar to the predicted 1∆
states. One interpretation is that these features derive from the bulk CBM, and
are not associated with any quantum well states, but this explanation can be
discredited. Firstly, the bulk CBM is calculated to reside well above the Fermi
level (see Fig. 5.1). Secondly, the bulk CBM (located near the high symmetry X
points) should manifest itself equivalently in all its six representations within the
3D Brillouin zone. Detailed ARPES measurements were carried out, comparing
the out-of-plane (Figure 5.7b) and in-plane (Figure 5.7c) representations. Figure
5.7a provides an overview for the measured locations. The out-of-plane and in-
plane features are captured at k = [0, 0, 3.3] Å-1 and k = [±0.17,−1.1, 3.5] Å-1,

1The illustration is the equivalent of Figure 5.3a, rotated 45◦, and with redefined directions
of kx and ky , to match the experimental orientation.
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Figure 5.6: Fermi surface. (a) Re-adapted illustration of the Fermi surface
from Ref. [38]. The predicted positions of the quantum well states, 1Γ, 2Γ and
1∆ are shown relative to the projected 2D Brillouin zone (yellow square). (b)
Fermi surface measurements of the uncapped megalayer at hv = 118 eV.

respectively2. The equivalent coordinates given relative to their closest Brillouin
zone centre is thus k = [0, 0, 1.0] Å-1 for the out-of-plane feature, and k =
[∓1.0, 0, 0] Å-1 for the in-plane features. The former of these shows a band minima
at EB = 195 meV, while the latter appear with a binding energy of EB = 50
meV. The measurements thus reveal that these states do not appear with equal
binding energy, and should therefore not be attributed to the bulk CBM. The
states obtained in the zone centre and 2D zone corners are therefore confidently
identified to originate from the Γ bands and 1∆ band respectively.

Figure 5.7b reveals that the out-of-plane feature can be well described by the
presence of a single parabola, with band minima at EB = 195 meV. This parabola
is presumed to contain both 1Γ and 2Γ, since we expect both these states to
appear at a higher binding energy than the 1∆ state, and the latter is obtained
at EB = 50 meV. It is not unexpected that the valley splitting between 1Γ and
2Γ does not resolve in these measurements. The confinement in this sample is
much less than for a true δ-layer, and only a narrow splitting between 1Γ and 2Γ
is predicted in the latter.

2The value of V0 = 10.9 eV is used for the inner potential, as measured for bulk silicon by
Ashenford et al. [3].
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Figure 5.7: (a) Fermi surface at hv =
118 eV. Blue and green lines indicate the
orientation of measurements taken at (b)
the zone centre, hv = 36 eV, and (c) the
projected 2D zone corners, hv = 45 eV.

Going back to the Fermi surfaces of
Figure 5.6, an interesting mismatch
is evident between the predicted and
the measured appearance of the 1∆
states. Where the 1∆ states are
predicted to form a "flower" shape
around the zone corners, only two of
the "leafs" in this shape are present
in the measurements. The reason for
this is a resonant enhancement which
occurs at some locations, enabling
direct measurements of the states.
That is, a strongly enhanced photoe-
mission intensity occur when the elec-
tron initial state has a momentum
that is well matched to that of a bulk-
like final state into which it can be
excited [36]. To understand how this
effect explains the absence of the two
"leafs", it is necessary to examine the
2D and 3D Brillouin zones.

Consider the illustration of Figure
5.8, showing the silicon bulk 3D Bril-
louin zone. Underneath is illustrated
an extracted plane, cutting through
the 3D zone centre, and spanning
through the neighbouring zones. The
projected 2D Brillouin zone (dotted
blue lines in the underlying plane)
takes the shape of a square. The bulk
high symmetry X points are indicated
in the 3D zone, and may be projected
down to the plane. A state origi-
nating from the "top X" symmetry
point will, as a result of the projec-
tion, be located at the centre of the
2D Brillouin zone. States originat-
ing from a "side X" symmetry point
will, however, be projected to the 2D
zone corners. An important note is
that equivalent positions between 2D



42 CHAPTER 5. SILICON δ-DOPING

Figure 5.8: Brillouin zone projection. Silicon 3D Brillouin zone3showing high
symmetry X points and their location in the projected 2D zone.

square zones may have different locations in the plane extracted from the 3D
zone. As an example: The middle 2D square from the extracted plane is located
within a red octagon. Upon travelling from this square to the next by travers-
ing through a zone corner (dark red arrow) one will approach a 2D zone that is
also inside a red octagon. On the other hand, by traversing through the square
side (green arrow) one will end up in a 2D zone corresponding to an entirely
different place in the extracted 3D plane. This now explains why only two of the
1∆ "leafs" are detected simultaneously. Even though we are scanning equivalent
2D initial states, they will not be matched to the same final state. Therefore,
resonant enhancement does not occur for all 1∆ states simultaneously.

By measuring Fermi surfaces for a range of different photon energies, the positions
for intensity enhancement of the quantum well states was revealed. These are
illustrated by the schematics of Figure 5.9. The δ-layer states are non-dispersing
with k⊥, and appear as cylinders through the 3D Brillouin zone. It was found that
the 1Γ and 2Γ states were resonantly enhanced when probing the high symmetry
X-plane, while the 1∆ states experienced this effect in the high symmetry Γ-plane.

3Image of 3D Brillouin zone adapted from [37]. Reused in several figures.
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Figure 5.9: The varying inten-
sity from the observed 2D states
through the Brillouin zone.

Note how the 1∆ states (left cylinder) are
always visible when appearing within a red
octagon, whereas the Γ states (right cylin-
der) are visible when located in a red square.
The resulting effect yields a pattern where,
within each 2D zone (dotted blue square),
either the 1∆ or the Γ states are detected
from the photoemission process.

Measurements obtained from the X-plane
and the Γ-plane are presented in Figure
5.10a and 5.10b respectively. A compari-
son of the two clearly shows an inversion of
the signal intensity. In Figure 5.10a the 1Γ
and 2Γ appear strong in the zone centre,
while the 1∆ states are not visible within
the same zone. In Figure 5.10b, however,
the opposite "set" of quantum well states
are detectable. Here, the 1δ states are vis-
ible in the zone corners, while the Γ states
are weakly present in the centre. The fact
that the Γ states do appear in the centre of Figure 5.10b, outside its resonance
point, serves as a confirmation of their dimensionality. Note that in the mea-
surements, different pairs of the 1∆ states are brought to light, revealing all the
different representations between them.

Figure 5.10: Fermi surface of the uncapped megalayer. Obtained at (a) the
X-plane (hv = 118 eV), and (b) the Γ-plane (hv = 80.5 eV).
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The thickness of the dopant layer in the discussed sample is estimated to be
4.0 nm. This is far from a true δ-layer, and it is interesting that the sample
already shows formation of a two-dimensional electron gas. One can view a bulk-
doped sample as the equivalence of an infinite δ-layer. For such a situation, the
observed states should behave like bulk, 3D states, while in the opposite limit
the states would be completely 2D. Upon creating δ-layers of different thickness,
the transition from 3D to 2D becomes observable in incremental steps. The
measured Fermi surface for four samples of different thickness is presented in
Figure 5.11.

Figure 5.11: Fermi map of all silicon samples. Measurements taken at photon
energy hv = 118 eV for direct comparison between the four different, (a) capped
megalayer, (b) uncapped megalayer, (c) middle- and (d) monolayer sample.

The measurements are taken at photon energy hv = 118 eV, corresponding to
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a cut through the X-plain indicated in Figure 5.9. Figure 5.11a and 5.11b are
obtained from the capped and uncapped megalayer respectively. Figure 5.11c is
from the middle sample and 5.11d presents the monolayer. Comparison of the
capped and uncapped megalayer indicated that the burying of the δ-layer has lit-
tle effect on the quantum well states. The measurements do not differ noticeably
from each other, other than an expected reduction of the signal quality induced
by burying the states. The capping layer is calculated to be approximately 0.6
nm, which corresponds to a coverage of about 6 atomic layers of silicon. This
means that when detecting photoelectrons excited from the dopant layer, they
will first need to traverse through several planes of silicon before crossing the
surface/vacuum interface, thus weakening and distorting the signal.

A distinct difference between the monolayer and the remaining samples is ob-
served, where the foremost mentioned seems to display an entirely separate pat-
tern. The cause of this impression is twofold. Firstly; the 1∆ states are no longer
visible, which will be addressed later. Secondly, a streaking has arisen, forming
a cross through the image. The streaking are proven to be an effect from the
surface Umklapp process. The silicon atoms will reconstruct at the surface, as
they no longer have an overlaying plane of atoms to bond with. Typically, this
reconstruction results in a (2 x 1) surface periodicity, and with a rotational equiv-
alence of (1 x 2), the resulting periodicity will appear (2 x 2). As the unit cell gets
twice as big, the reciprocal lattice vector becomes halved. Upon crossing the sur-
face/vacuum interface, the electrons may now exchange parallel momentum with
the lattice equal to half the bulk periodicity. Features from the original pattern
will thereby be "copied", to form a resulting periodicity of half the original size.
This effect is more easily recognised by going back to Figure 5.10b. Here, the
Γ states are strongly appearing at kx = ±1.1 Å-1, ky = ±1.1 Å-1. By carefully
examining the areas kx = ±0.55 Å-1, ky = ±0.55 Å-1 we can indeed recognise a
weak repetition of the Γ state features. This does not fully explain the streaking
of Figure 5.11d, however, where the streaking is not a single repetition of an
observed state, but rather two lines forming a cross through the measurements.
This is simply understood by considering the effect if the surface rather recon-
structed to appear (4 x 4). The Γ states will then be "copied" with a 1

4 fraction
of the original periodicity. Extending this principle to an even larger surface
periodicity, it is clear that the eventual result will be an appearing cross, slicing
through the zone centre. This means that the apparent discrepancy should not
be associated with the δ-doping in itself, but that the surface reconstruction of
the monolayer sample is less ordered than for the remaining samples. A detailed
investigation of the surface Umklapp effect on Si:P δ-layers is provided by Ref.
[39]

Figure 5.12 presents measurements of the Γ states for all four samples, with an
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Figure 5.12: Energy scan of all silicon samples. Measurements of the 1Γ
and 2Γ quantum well states in samples of different doping layer thickness. A
parabola is fitted to the states, estimating the binding energy at k‖ = 0

overlaid parabolic trend. This is constructed by extracting horizontal (constan-
tenergy) and vertical (constant momentum) slices through the measurements,
and fitting a parabola to the intensity peak positions. This procedure 4 reveals
that that two bands contribute to the total intensity from the middle-layer sam-
ple (Figure 5.12c), while the signal obtained from the remaining samples are well
described by a single parabola. This is understood by the following arguments;
The capped and uncapped megalayer samples show band minima of EB = 185
meV and EB = 195 meV respectively. Ref. [34] shows that a completely satu-
rated 1

4 ML phosphorus delta layer will give a binding energy of 200 meV for the
1Γ state. It is thus inferred that the megalayer samples are close to saturation.

4Elaborated in appendix B.
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High dopant density, combined with a thick dopant layer, results in a deep, but
wide, potential-well. This brings 1Γ and 2Γ deep beneath the Fermi level, but
the confinement created is not narrow enough to split the states to a detectable
separation. Thus, they appear degenerate. As the dopant layer becomes thinner,
the confinement increases, and an observable splitting appear between 1Γ and 2Γ
for the middle sample. The result is two distinct states, separated by a valley
splitting of 120 meV. In the monolayer sample (Figure 5.12d), the band minima
is obtained at binding energy of only EB = 110 meV, thus the desired dopant
density of 1

4 fraction phosphorus atoms has not been reached. The potential well
is not deep enough to bring both 1Γ and 2Γ below the Fermi level, so only 1Γ is
visible5.

Comparing Figure 5.12a and 5.12b it is clear that capping makes the detected
signal weaker and noisier, as observed in the previous Fermi maps. This is a
natural effect of burying the states, but is an expected consequence of our chosen
method of probing these states and we cannot, based on the current data, infer
whether this is also reflecting a physical change within the layer. A more notable
difference is that the Γ states appear slightly deeper in the uncapped sample
compared to the capped equivalent. This may indicate that the dopants are not
confined within a sharp region of the sample, but diffuse into the bulk silicon. In
the capped sample, the dopants are able to diffuse into silicon in both directions,
while in the uncapped sample the dopants cannot diffuse into the vacuum. The
doping profile of the uncapped sample will be the sharper of the two; making the
Γ states appear with higher binding energy. Other effects could also contribute
to this. Upon capping the sample, a different surface is introduced to the system,
which again would create a new environment for surface states. This may result
in separate effects of Fermi level pinning, which will also affect the measured
binding energy.

Having characterised the 1Γ states of each sample, we now turn to examining the
1∆ states, which were observed in the constant energy slices. As it is expected
that the strength of the confinement potential will change the splitting between
all of the quantum well states, it is useful to consider the position of 1∆ relative
to 1Γ. The 1∆ states are presented in Figure 5.13, where the binding energy is
estimated by a Gaussian fit of the energy distribution curve (EDC), extracted
along k‖ = 0. Both the capped (5.13a) and uncapped (5.13b) megalayer samples
show the 1∆ states to be located at EB = 50 meV. In the middle sample (5.13c)
they are observed at a slightly larger binding energy, EB = 75 meV, while in
the monolayer sample (5.13d), the 1∆ states are not not observable beneath the

5All measurements have been performed at low temperature (8 K), reducing inaccuracy
induced by thermal effects, and leaving the pixel size as the largest source of error. The error
within determining these binding energies is estimated to be 10 meV (see appendix B).
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Fermi level. A surprising result is that the quantum well states 1∆ and 1Γ are,

Figure 5.13: Energy scan of all silicon samples. Measurements of the 1∆
quantum well states in samples of different doping layer thickness. The states
are obtained at ky = −1.1 Å-1.

in the middle sample, observed with a separation of only 95 meV. That is, the
separation is less than that obtained for the thick samples (135 meV and 145
meV). The splitting is expected to behave inversely proportional to the sample
thickness, making this an apparent contradiction. Several factors may create such
a result, however. Firstly, experimental differences must be considered. While the
megalayer samples are both from the same sample creation, measured before and
after capping, the middle sample is produced from a different initial piece of bulk
silicon. In the procedure of sample development, it is subject to several processes
of annealing, flashing, and growth of both phosphorus and silicon. Silicon is
a challenging material to maintain clean and well structured, and even small
variations in the creation procedure may result in samples of different quality.
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An explanation of more physical nature, however, is illustrated in Figure 5.14.
As the dopant region becomes thinner, it eventually forces a splitting between
the 1Γ and 2Γ bands. By reducing the extent of the dopant layer from 4.0 nm
(megalayer) to 2.0 nm (middle sample), a valley splitting of 120 meV is induced
between 1Γ and 2Γ. When this occur, it may simultaneously create a lowering of
the 1∆ band, to house electron states suddenly pushed above the Fermi level by
an abrupt raising of the 2Γ band.

Figure 5.14: Illustration of the possible effect on the 1∆ states as the con-
finement potential increase by a thinner dopant region. 1∆ states are pushed
down in energy as a result of charge transfer by a splitting of 1Γ and 2 Γ.

Currently, there is an increased drive internationally to realise a working quan-
tum computer. This requires the engineering of suitable quantum states in a
host material. These states must also be controlled, manipulated and read with
atomic-scale precision. This experiment provides new insight into the nature of
the quantum states created by Si:P δ-layers. Specifically, existence of the theo-
retically predicted 1∆ states is verified, discrediting suggestions that the states
should emerge in a different location, or alternatively, not at all. It has been
shown that confined states are formed with a 4.0 nm dopant profile. This led to
very small splitting between the two most occupied bands, 1Γ and 2Γ. By further
reducing the extent of the dopant layer to 2.0 nm, a valley splitting of 120 meV
was induced between 1Γ and 2Γ, showing that the splitting may be controlled by
changing the layer thickness. The verification of 1∆ now opens for a thorough
investigation of the states characteristics. The results presented indicate that,
while the splitting between states will increase with stronger confinement, the
1∆ states may be shifted down (in energy) when the confinement forces 1Γ and
2Γ to split apart. Investigation of this effect follows as a natural continuation to
the work presented here, and as a further step towards complete understanding
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of the quantum well states. The evidence of confinement already in samples with
dopant layer as large as 4.0 nm motivates for another investigation. A bulk-doped
sample can be viewed as the equivalence of an infinite δ-layer, in which, the ob-
served states should behave like bulk, 3D states. In the opposite limit, a true
δ-layer, the states would be completely 2D. When the dopant layer is 4.0 nm,
confined states arise. However, it is not unlikely that the 1Γ, 2Γ and 1∆ states
still inhibit some dependence on k⊥. That is, the states may not be completely
described as either 3D or 2D states, but something in between. Extending the ap-
proach adapted for this experiment could carry out investigation of this; creating
samples of different dopant profiles thickness, to eventually reach bulk behavior,
carefully mapping the k⊥ dependence as the dopant layer increases.



Chapter 6

Diamond δ-doping

Experimental knowledge of the electronic band structure of diamond is relatively
poor in comparison to semiconductors such as Si, Ge and GaAs [17], and even
less is known about the band structure of thin film boron-doped diamond. Us-
ing angle-resolved photoemission spectroscopy, the electronic band structure of
highly δ-doped layers within diamond is uncovered, investigating the effect of
confinement and the usage of diamond in miniaturised systems. An introduction
to the qualities of diamond and the advantages of thin film δ-layers will here be
presented. This is followed by a description of the samples investigated, before
the results obtained in this experiment is presented and discussed.

6.1 Previous works

Diamond exhibits an abundance of outstanding properties, such as high electronic
carrier mobilities, high breakdown field strength and high thermal conductivity.
It is one of the hardest materials existing in nature and shows itself to be robust
against radiation damage [33]. These properties make diamond desirable for elec-
tronic devices of high voltage, high frequency and high power active and passive
qualities [6]. With a band gap of around 5.5 eV, intrinsic diamond is highly
insulating. Thus, in order to exploit diamond for electronic devices in room tem-
perature, dopants with a sufficiently low thermal activation energy barrier need
be incorporated into the system. Only boron and phosphorus have shown itself
as reliable dopants, where the former is the most common of the two. At small
doping concentrations, less than 5 · 1017 cm-3, boron creates an acceptor state
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located at 0.37 eV above the valence band. Although this yield a lesser activation
energy than by phosphorus doping (0.57 eV), this still only makes a fraction of
the boron activated at room temperature, leading to a low concentration of free
carriers [51]. However, increasing the boron concentration gradually decreases
the activation energy, and an insulator-to-metal transition occur upon boron-
doping concentrations exceeding 5 · 1020 cm-3, where a fully activated impurity
band is formed. Heavily doping decrease the activation energy, but sadly it also
decreases the carrier mobility as impurity scattering increases [6].

A solution to this problem came with the development of δ-doping diamond. By
the epitaxial growth of a thin, heavily doped layer on the surface of (or buried
within) a region of intrinsic or weakly doped diamond, a material of both high car-
rier concentration and high mobility can be created. The carriers are created by
the heavily doped δ-layer and may be transported in the adjacent high-mobility
layer, thus creating a new class of diamond electronic devices. However, in-
vestigations of such creations have led to varying conclusions surrounding the
enhancement of the δ-layer systems compared to bulk diamond [4, 11, 43]. This
may reside in the technological difficulty of creating a successful δ-layer, as it de-
mands a very thin (≈ 2 nm) region of heavily boron-doped diamond (preferably
above the insulator-to-metal transition), with an atomically smooth interface to
the intrinsic diamond. A recent paper by Butler et al. [6] showed significant
progress in the fabrication process of δ-layer thin films and was able to demon-
strate room temperature Hall effect mobility of 120 cm2/Vs with a corresponding
sheet carrier concentration of 1.3 · 1013 cm-2. This is an encouraging indicator
of the possibility to obtain successfully δ-doped diamond with enhanced room
temperature mobility, making this an appealing way for obtaining miniaturised
devices with superlative qualities.

6.2 Samples

The results presented are mainly concerning two different diamond samples, one
thin δ-doped sample and another bulk-doped diamond for comparison. The δ-
layer sample consist of a thin (≈ 1.8 nm) epitaxial layer of heavily boron-doped
diamond, grown epitaxially on a weakly boron-doped substrate. The substrate
is doped to a concentration of less than 1017 cm-3. This value means that only
a fraction of the boron present is activated at room temperature, leading to rel-
atively low concentrations of free carriers in the bulk. The overlayer is doped
to a concentration in the order of ∼ 1020 cm-3, close to the insulator to metal
transition to occur. This sample was compared with a semi-infinite heavily boron-
doped sample, that is, a sample where more than the top 3 µm is boron-doped
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to a concentration in the order of ∼ 1020 cm-3. In addition, complimentary mea-
surements are presented from a third diamond sample. This is created as to form
a so-called double δ-layer, that is, two heavily boron-doped layers with weakly
boron-doped diamond in between. Both δ-layers are 1.8 nm, with a spacing of
3.0 nm. The three diamond samples are illustrated in Figure 6.1.

Figure 6.1: Diamond samples. Heavily boron-doped "thick" and "thin" di-
amond together with a "double δ-layer" sample. Grey colouring represent a
doping concentration of less than 1017 cm-3, while the blue areas illustrate a
boron concentration in the order of 1020 cm-3.

The cleaning process was done in situ by degassing at T ≈ 600 K for several (8
- 12) hours. This ensures that water and other contaminants accumulate on the
sample surface, to be removed by subsequent flashing procedures to T ≈ 1200
K. The samples described have been the subject of thorough study to determine
their different sample parameters. Further details about these samples can be
found in Ref. [42] for the thick sample1 and Ref. [6] for the thin, single and
double δ-layer samples2.

1Growth results are presented in Chapter 4.1 and the sample is named Sup1.
2The single and double δ-layer are referred to as sample 1 and 5 respectively.
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6.3 Result and Discussion

The electronic band structure collected from the diamond samples has a some-
what different nature than the bands observed in silicon. The p-type doping with
boron shifts the Fermi level down, thus resulting in an upward band bending.
This means that the focus for the ARPES measurements will go from examining
the conduction band, to now investigate the valence band. In turn, this proscribes
a different approach in interpreting the measurements, as the possible induced
quantum states must be untangled from the bulk valence band. It is therefore
crucial to have a clear understanding of the bulk diamond band structure, in
order to discern any relative changes in the δ-doped thin films.

Information about the electronic structure of the samples can be found by col-
lecting ARPES data at different values of photon energy. That is, the band
dispersion is repeatedly collected along the k‖-direction, each image taken at a
specific value of k⊥. Measurements of bulk boron-doped diamond were collected
in the range of hv = 380 eV to hv = 580 eV, where four of these are shown in
Figure 6.2a-d.

Figure 6.2: Bulk boron-doped diamond. (a-d) Band dispersion along k‖, col-
lected for four different photon energies. Closest cut through Γ is obtained for
hv = 411 eV. (e) Constant energy surface at EB = 2 eV.
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Inspection of these images provides an understanding of the measured location
in the Brillouin zone. The minimum binding energy at k‖ = 0 is obtained upon
measuring with a photon energy of hv = 411 eV, making this the closest cut
through the high symmetry Γ point. The bands here, shown in Figure 6.2a, falls
nicely on top of each other at k‖ = 0, and split into two distinct bands for larger
values of k‖. This indicates that the measurement is cutting quite closely through
Γ, and is an indicator of probing along the Γ-X direction. Increasing the photon
energy will increase the value of k⊥, while at the same time not affecting the
collected value for k‖, provided EK is held fixed. This results in a movement
throughout the Brillouin zone as illustrated by Figure 6.3. Note that the red
lines, representing a single measurement, curve down in the BZ as k‖ increase, in
agreement with Eqn. 3.11. The measurements are collected in a range beginning
slightly beneath the Γ point, to extend above the X point, as reflected by the
figure.

Figure 6.3: Location in the Brillouin
zone corresponding to the measure-
ments of Figure 6.2a-d. Each measure-
ment is a curved cut through the Bril-
louin zone and increasing the photon
energy correspond to increasing values
of k⊥.

By extracting a horizontal line from
the single ARPES measurements, a
constant energy surface may be cre-
ated. This provides the dispersion of
k‖ as a function of hv. By demand-
ing that the Γ point is mapped to
Γ3 = 3[0, 0, 4πa ] = [0, 0, 10.56] Å−1,
the inner potential is determined to
V0 = 19 eV. This is a reasonable value,
and comparable to that provided by
Guyot et. al. of V0 = 17.7 eV [23],
the value of 23 eV used by Yokoya et
al. [60] and 22 eV experimentally ob-
tained by Edmonds et al. [17]. After
determining a value for the inner po-
tential, the conversion from hv to k⊥ is
possible. Such an image is displayed in
Figure 6.2e, where a line at EB = 2 eV
(green line) is extracted from the sin-
gle ARPES measurements. Electronic
bands of a two-dimensional character
are independent of k⊥, and will appear as horizontal, dispersionless features in
the image. The 3D bands, on the other hand, will disperse. In this way, the
electronic dimension of the system may be unveiled. Studying Figure 6.2e, two
bands is seen, forming a symmetric pattern around the Γ point. It is clear that
the observed bands are dispersing with k⊥, as neither is appearing as horizontal
lines, confirming bulk behaviour for this sample
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There exists a large volume of theoretical and experimental work on bulk boron-
doped diamond, as this material exhibit several outstanding qualities. Boron
δ-doped diamond is now explored as a route to achieve high mobilities and car-
rier concentrations, and is desired for usage in miniaturised systems. However,
little information is yet obtained concerning the electronic structure of such thin
films. Figure 6.4 contributes to this missing information, presenting ARPES
measurements of surface δ-doped diamond.

Figure 6.4: Surface δ-doped diamond. (a-d) Band dispersion along k‖, col-
lected for four different photon energies. Closest cut through Γ is obtained for
hv = 411 eV. (e) Constant energy surface at EB = 2 eV.

The measurements of Figure 6.4 do at first glance appear to have some qual-
itatively differences to that of the corresponding thick film data in Figure 6.2,
where now three bands are distinctly visible. However, this additional band is
not contributed to any quantum confinement effects. The band is not behaving
electronically two-dimensional, as it then should appear as a horizontal line in
Figure 6.4e. This band should rather be associated with a bulk band. Studying
the band structure of bulk diamond, presented earlier in Figure 4.8b, it is clear
that three bands are expected when probing in the Γ-K direction, which is exactly
where this feature occurs. The presence of this band is therefore merely evidence
of an increased sample quality, a notable advantage over the thick sample, but
not an indication of new electronic behaviour from quantum confinement.
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A closer inspection of the systems effective masses is presented in Figure 6.5.
The ARPES measurements obtained at photon energy hv = 411 eV are shown,
with blue and red schematics overlaying the surface δ-doped and the bulk sample
respectively. The thin film is shown in Figure 6.5a, while Figure 6.5b presents
the thick film. A comparison of the dispersions is provided in Figure 6.5c, where
a vertical shift has been applied, to match the binding energy at k‖ = 0. The
illustration shows high similarity between the two samples. If anything, there is
a slight tendency towards a higher effective mass obtained for the electrons in the
surface δ-doped sample. This is a somewhat crude estimate, as it is clear that
the measurements of the thin film is not cutting perfectly through Γ. However,
an investigation of the constant energy surface in Figure 6.4e reveals that a small
miscut in this area would not affect the curvature of the bands notably. It is
therefore concluded that no notable difference is observed for the systems effective
masses.

Figure 6.5: ARPES measurements obtained at photon energy hv = 411 eV
with fitted schematics overlaid, showing the (a) δ-doped and (b) bulk sample.
A vertical shift of the schematics is applied in (c) to match the binding energy
at k‖ = 0.

Other than sample quality, the measurements presented so far show little differ-
ence between the surface δ-doped and bulk boron-doped diamond samples. Three
bands have been recognised in the thin sample, all associated with bulk behaviour.
Further investigation of the samples electronic properties is made possible by ex-
tracting the intensity along a constant value of k‖ from the single ARPES mea-
surements. That is, extracting a vertical cut trough the measurements, creating a
waterfall plot. As before, 2D electronic bands are not dependent on k⊥, and will
in such a plot appear as vertical lines. A waterfall plot from surface δ-doped dia-
mond is presented in Figure 6.6, integrating counts within the range k‖ = [0.0, 0.2]

Å-1 for improved statistics: this region of k‖ is indicated on the band structure in
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Figure 6.6: Thin film diamond. (a) Wa-
terfall plot in the range hv = 380 − 500
eV, integrated between k‖ = [0.0, 0.2]. (b)
High statistics measurements of the sub-
range hv = 460 − 480 eV. (c) Image illus-
trating the integrated location.

Figure 6.6c. Emission from the
bulk band structure appear as the
prominent feature, dispersing from
the top lef to the bottom right of
Figure 6.6a. In addition, a weak
non-dispersive band is visible along
EB = 0.9 eV, indicated by a dot-
ted blue line. It is clear that this
feature is not dispersing with hv,
and thus also not k⊥, but appears
at a constant binding energy re-
gardless of which photon energy
is used in the emission process.
The electron states giving rise to
this band is therefore not bulk-
like, but have a two-dimensional
character. Further investigation of
this band was made by high statis-
tics ARPES measurements, focus-
ing on the range between hv = 460
eV and hv = 480 eV. The blue bar
in Figure 6.6a marks this area, and
the high statistics measurements
are showed in Figure 6.6b. Here,
the non-dispersive feature is clearly
seen as an unchanging shoulder on
the right hand side of the bulk
band intensity. This state is, how-
ever, not suspected to arise from
quantum confinement, but rather
contributed to a surface state. This
state, hereby named S1, has been
reported in bulk boron-doped di-
amond by several sources [17, 15,
20], with all references reporting a constant feature at the Γ point.

Waterfall plots from the discussed bulk boron-doped and surface δ-doped dia-
mond, in addition to the double δ-layer, are presented in Figure 6.7. From this
presentation, it is clear that S1 is present in all three samples. In the thick sam-
ple (Figure 6.7a), S1 appears as a minor perturbance located at EB = 1.3 eV,
and is less visible that in the surface δ-doped sample (Figure 6.7b). S1 appears,
however, most obvious in the double δ-layer, where it emerges as a strong vertical
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Figure 6.7: All diamond samples. Waterfall plot in the range hv = 380 − 500
eV, integrated between k‖ = [0.0, 0.2]. Measurements from (a) bulk boron-
doped, (b) surface δ-layer, and (c) double δ-layer diamond. Surface state, S1,
is present in all samples.

line along EB = 1.1 eV. The strong presence of S1 in the two thin film samples,
relative to the thick, is not an effect of confinement. This is clear, as S1 ap-
pears with different intensity, also between the two thin samples. The measured
intensity naturally varies between samples, as small disturbances on the surface
may greatly alter the signal. The enhancement of an electron state is not to be
confused with the creation of an electron state. The former is associated with
sample quality and measurement optimisation, while the latter would be a fun-
damental change of the material properties. Although it is with low intensity,
the two-dimensional band is indeed present in the bulk sample, confirming S1 to
be a surface state, which would be common to all the samples.
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It is clear that the δ-doped diamonds are very similar to the bulk, in terms of
the electronic bands dimensionality and the electron effective mass. All samples
show the presence of the two-dimensional state S1, and no notable differences
were observed by comparing the dispersion of the surface δ-doped sample to that
of the bulk. Both the surface δ-layer and the double δ-layer showed a significant
improved sample quality compared to the thick counterpart. This was evident by
the detection of three bands in the Γ-K direction for the surface δ-layer, where
only two bands were detectable in the thick sample, and the strong appearance
of the surface state, S1, in both the single and the double δ-layer. This work shed
light on the electronic band structure of thin film diamond, grown by creating
highly doped δ-layers onto (and within) a weakly doped diamond substrate. The
measurements indicates that bulk-like behaviour occurs for all samples, irrespec-
tive of their physical dimensionality. These results encourage the notion of using
diamond in miniaturised systems, preserving diamonds desirable qualities also in
atomic-scale devices.

6.4 Speculations

Although silicon and diamond share several crystallographic properties, the two
materials responded quite differently to δ-doping. In silicon, two-dimensional
states were already evident for a dopant layer of 4.0 nm, while δ-doped diamond,
with a 1.8 nm heavily boron-doped epilayer, behaved strikingly similar to that
of the bulk. The thin boron-doped layers do not exist at isolated films, but are
grown on top of a substrate of weakly boron-doped diamond. Because of this,
the wavefunction in the δ-layer regions are expected to extend further into the
underlying diamond than it would for vacuum. The confinement is therefore less
abrupt in these samples than it would be for a sample created as an isolated 1.8
nm thick layer. Nevertheless, this presents itself as a remarkable contrast to the
behaviour observed in silicon. The reason for this seemingly converse reaction
has been the subject of some discussion, which is summarised below.

An important difference between the δ-doping conducted on these materials, is
the nature of the dopants used. The silicon dopant layer is produced by incor-
porating phosphorus, an n-donor creating a downward band bending, while the
diamond thin film is heavily boron-doped, making it p-type. This would make an
eventual upward band bending in diamond. In silicon, DFT calculations predict
the quantum well states to reside in bands splitting off from the projected bulk
conduction band, and as the work presented in Chapter 5 has shown, this predic-
tion is validated by experimental data. The projected band structure in diamond
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Figure 6.8: Illustration of band structure projec-
tion. (a) Diamond band structure in the Γ-plane
and translated in k⊥ to the X-plane. (b) Planes
"merged" together, illustrating a projected band
structure.

are illustrated by the sim-
ple schematics in Figure 6.8.
The bands along the Γ-X and
Γ-K direction is illustrated
in the front of Figure 6.8a
(red bands). By a trans-
lation parallel to the direc-
tion of k⊥, through a distance
of half a Brillouin zone, the
band structure illustrated in
green is reached. The red
and green band diagrams thus
represent a cut through the
Γ-plane and X-plane respec-
tively, as indicated by the
Brillouin zone inset. The
projected band structure is
obtained by "merging" these
planes together, including all
the intermediate planes in the
process. The result is shown
by the shaded area of Fig-
ure 6.8b. Bands splitting up-
wards from the bulk band
projection are illustrated in
the figure by red dotted lines
above the shaded projected
bulk states. The calculated
band splitting for silicon was
predicted to strongly affect
the conduction band minima.
A proposed theory is that
the band splitting will be the
strongest along the Fermi con-
tour which, in the case of di-
amond, occurs at the bulk Γ-point. This is reflected in Figure 6.8b, where the
band splitting is indicated to be strongest at the valence band maxima. The
opposite band bending therefore makes the Fermi contour between the two ma-
terials appear quite different, which may be of high importance for the resultant
confinement effect.

The silicon conduction band minima appears in the Brillouin zone as six valleys,
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close to the zone X points. The diamond valence band maxima is, however, found
in the zone centre, where the Fermi contour is small and approximately spherical.
These situations are illustrated by Figure 6.9, where the described situation for
silicon is shown in Figure 6.9a, and that of diamond in Figure 6.9b. Electronic
confinement due to δ-doping will result in electron states independent of kz.
These states should therefore be fully described within the projected 2D Brillouin
zone. This is visualised as a projection of the 3D Brillouin zone down to a 2D
plane. The Fermi contour of silicon has a strong out-of-plane dependence, and
such a projection greatly alters the appearance of the conduction band minimum
valleys, where relative positions of the out-of-plane states have changed from
the zone edge to be located in the zone centre. However, the same significant
alteration is not forced upon the diamond, where the Fermi contour is small,
spherical, and already located in the zone centre. Studying Figure 6.9b, it is
evident that the characteristics of the valence band maxima are already closely
related to the projected counterpart. In this way, it may be understood that an
out-of-plane confinement have a strong effect on n-doped silicon, while a similar
confinement does not alter the appearance of p-doped diamond.

Figure 6.9: Fermi contour projection. Projection of the six conduction band
minima valleys in silicon, and the valence band maxima in diamond, down
to the 2D plane. The out-of-plane silicon valleys are strongly affected by the
projection. Figure adapted from Ref. [31].

These thoughts should be considered as merely speculative, as they reside from
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the assumption that the upward band splitting in diamond will be most affected
in the valence band maxima. Even so, this provides an interesting starting point
for further experimental investigations. Today, the effect induces by δ-doping is
considered to mainly depend on the doping concentration and the width of the
dopant layer. If the location of the Fermi contour is a contributing factor to
such a vastly different response to confinement, then this also needs to be con-
sidered as a vital parameter when developing these δ-doped systems. This could
experimentally be investigated by measuring n-doped diamond, or equivalently,
p-doped silicon, where the latter may be the preferred approach, as phosphorus-
doped diamond has a high activation energy, and has not yet been successfully
grown at δ-layer thicknesses. Insight into how these materials respond to the op-
posite band bending, may provide information that either strengthen or discredit
these speculations. One may also consider the approach of n-doping another ma-
terial, where the conduction band minima is located at Γ, and compare this with
the observed response of silicon n-type δ-doping.
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Chapter 7

Conclusion

The effect of introducing electronic confinement in silicon and diamond with
nanometer scale doping profiles, known as δ-doping, has been investigated, by
using angle-resolved photoemission spectroscopy. Phosphorus δ-layers in silicon
allowed a two-dimensional electron gas to be formed in the dopant layer. The
effect of varying the dopant layer thickness was explored. It was found that
confined states were formed with a 4.0 nm dopant profile, thicker than the typical
thickness used in such studies. This led to very small splitting between the two
most occupied bands, 1Γ and 2Γ, which have been the focus of previous work
on this system. By further reducing the thickness of the dopant layer to 2.0
nm, a valley splitting of 120 meV was induced between 1Γ and 2Γ, showing that
we can control the splitting by changing the layer thickness. The existence of
theoretically predicted quantum well states, 1∆, was verified experimentally for
the first time. The location of these was shown to be in good agreement with
density functional theory calculations. Through these results, the work presented
here gives strength to established theoretical models, and provides an important
step towards obtaining an accurate description of δ-layer derived devices. In order
to realise a working quantum computer, engineered quantum states in a host
material must be controlled, manipulated and read with atomic-scale precision.
As this work provide new insight in the nature of the quantum well states induced
by Si:P δ-layers, it also gives rise to new questions and motivates for further
investigation. The results presented suggest that the 1∆ states shift towards
higher binding energy upon the splitting of 1Γ and 2Γ. Deeper investigation of
this effect follows as a natural continuation to the work presented here, and as a
further step towards complete understanding of these quantum well states. The
evidence of confinement in samples of 4.0 nm dopant layers, motivates for yet
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another investigation: creating samples of even thicker dopant profiles to reach
the final bulk, and in this way obtaining a complete transition from 3D to 2D
behaviour.

Diamond is a material of superlative qualities, amongst other things showing
high thermal conductivity, high breakdown field strength and being one of the
hardest materials existing in nature. Boron δ-doped diamond is now explored as
a route to achieve high mobilities and carrier concentrations, a critical require-
ment for implementing diamond in electronic applications. The investigation of
doped diamond thin films is still in its youth, largely due to the lack of suitable
dopants and the difficulties in creating such thin film samples. Recent progress
in the fabrication process allowed for measurements of two high quality δ-doped
diamonds to be conducted. These were created as a surface δ-layer and a double
δ-layer, the latter with a buried δ-layer in addition to a layer at the surface. The
effect of confinement was investigated by comparing the band structure obtained
from the thin film samples to that of a highly boron-doped thick film. The mea-
surements showed a surprising similarity between the δ-doped samples to that
of the bulk counterpart, in terms of band structure and electron effective mass.
This indicates that bulk-like behaviour occurs in all samples, irrespective of their
physical dimensionality. These results encourage the notion of using diamond in
miniaturised systems, preserving diamonds desirable qualities also in atomic-scale
devices.

A discussion was presented exploring whether the nature of the Fermi contour
may account for the stark contrast in the observed confinement effect between the
two materials. The silicon CBM valleys are located far from the Brillouin zone
centre, with a strong out-of -plane dependence, which may explain a resulting
strong effect from an out-of-plane confinement. The VBM in diamond is, however,
found in the zone centre, where the Fermi contour is small and approximately
spherical. This may in turn result in a small induced effect of the confinement, as
the characteristics of the VBM are not significantly different from its projected
counterpart. These notions may be further examined by investigating the effect
of an upward band bending in silicon or a downward band bending in diamond.
At the present time the former approach is the more viable, as n-type doping
of diamond is technologically difficult and has not yet been developed to the
point where δ-layer thicknesses may be grown. Investigation of this effect will
extend understanding of the requirements for forming engineered quantum states
in semiconductor materials.
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Appendix A

Silicon Deposition Rate

The diamond samples have already been the subject of extensive preliminary
measurements, providing sample parameters such as doping density and dimen-
sions of bulk and δ-layers. The silicon samples were however created in situ,
and thus a method for calculating the different layer thicknesses needed to be
developed. This was accomplished by comparing the measured intensity from
different atom core levels, tracking the rate of change as a function of deposi-
tion time and thus an increased thickness in the attenuating layer. Specifically,
a layer of phosphorus was deposited on the sample and the P 2p core level was
measured. Silicon was stepwise deposited on top of this, eventually burying the
phosphorus. The phosphorus core level was measured between each step, making
the calculation of the silicon growth rate possible.

The initial intensity, I0, of the phosphorus core level and the resulting intensity,
It, after deposition of silicon for t minutes are related by

It = I0e
− d
λ cos θ , (A.1)

where λ is the inelastic mean free path of the electron and d is the overlayer
thickness. The core level measurements were performed at normal emission (θ =
0) and an assumed value of λ = 0.7 ± 0.1 nm is adapted in accordance with
the universal curve of inelastic mean free path. Rearranging Eqn. A.1, give the
deposited silicon thickness after time t as

d = λ ln
I0
It

(A.2)
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Figure A.1: Measured P 2p core level
after depositing silicon for 0, 2.5, 10 and
20 minutes. Shirley background sub-
tracted.

The phosphorus core level was mea-
sured initially, after 2.5 minutes, 10
minutes, and lastly after 20 minutes
of silicon deposition. To obtain com-
parable values for the measured core
levels, the spectra need first be subject
to a background removal. This distin-
guishes the electrons that are appar-
ent in the measurement due to ran-
dom scattering processes and those
who should be identified with exci-
tation from the measured core level.
The background may be modelled in
several ways, common choices being
the linear, Shirley and Tougaard back-
ground. The foremost mentioned is
the simplest model, but the latter two
are considered more representative for
the physical reality. In this calculation, the background is approximated by the
Shirley model. The measured P 2p core levels, with a subtracted Shirley back-
ground, are shown in Figure A.1. The deposition rate is calculated assuming
the ratio of total electron counts is equivalent to the ratio of core level intensity.
Calculated deposition rate together with relevant parameters are summarised in
Table A.1.

Table A.1: Deposition thickness. Every value for d is calculated
relative to zero deposition.

t Total counts d Deposition rate
(minutes) (106 electrons) (nm) (nm/min)

0 3.32 0 -
2.5 2.64 0.16 0.065
10 2.06 0.33 0.033
20 1.30 0.66 0.033

The calculations show the deposition rate stabilised at 0.033 nm/min after silicon
had been evaporated for at least 10 minutes. The rate of growth after 2.5 minutes
was dramatically larger, with a value of 0.065 nm/min. This is interpreted as a
burst of silicon when the evaporator first hits the correct temperature, skewing
the rate. After some time, the growth will eventually trend to a constant rate.
As the shortest deposition time of silicon was 20 min, the growth rate of 0.033
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nm/min is used for all estimates of layer thickness. With an assumed uncertainty
of 10% in the mean free path and the square root of counts in the value for the
total counts, the estimated uncertainty in deposition rate is calculated to 0.0035
nm/min. The resulting descriptions of the silicon samples are presented in Table
A.2.

Table A.2: Sample description. Thickness of phosphorus-doped
δ-layers and the silicon capping

Sample name δ-layer Capping layer

Monolayer 1
4 monolayer 0.66 ± 0.07 nm

Middle 2.0 ± 0.2 nm -
Thick, uncapped 4.0 ± 0.4 nm -
Thick, capped 4.0 ± 0.4 nm 0.66 ± 0.07 nm
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Appendix B

Parabolic trend for Γ states

In Chapter 5, measurements of the Γ states in silicon (Figure 5.12) were presented
with an overlaid parabolic trend. The procedure for obtaining these parabola are
illustrated by Figure B.1, where the middle δ-layer sample is used as an example.
Figure B.1a show the obtained measurement. The EDC, extracted along k‖ = 0
(black dashed line), is presented in Figure B.1b.

Figure B.1: (a) ARPES measurement of 1Γ and 2Γ states with (b) energy
distribution curve extracted at k‖ = 0. The position of the peaks is evaluated
using a Gaussian, and used to create a parabolic trend for the Γ-states.
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The intensity profile shows two distinct peaks, revealing that two bands are re-
quired to describe the Γ states. The peak positions, in terms of binding energy,
were determined using a Gaussian fit. This procedure provides two data points,
the centroid positions of the Gaussian peaks, connecting momentum and binding
energy. These are marked in Figure B.1a with a red and blue diamond. A set
of data points was collected by repeating this process for every EDC slice within
a reasonable range. To increase the number of points for analysis, this process
was repeated using momentum distribution curves (MDCs), intensity profiles ex-
tracted at constant binding energy. A parabolic trend-line has then been fit
to these collected data points and overlaid on the collected data, allowing the
dispersion of the Gamma state to be visualised.

The signals obtained from the remaining samples were described by a single
parabola. This is discussed in Chapter 5, and interpreted to mean that splitting
of the 1Γ and 2Γ states, if any, is less than the resolution of the measurements.
All measurements regarding silicon was performed at low temperature (8 K).
The error induced by thermal effects is therefore small (≈ 2 meV), leaving the
pixel size (5 meV) as the largest source of error. The total error for determining
the band minima is estimated to be twice the pixel size, resulting in an error
of 10 meV. Sources of error for the estimation of EB are summarised in Table
B.1.

Table B.1: Sources for error in estimating EB for silicon Γ states.

source formula error (meV)

Thermal 4kBT 2
Gaussian Fit - 0.5
Fermi edge - 1
Pixel size 2 x Width 10
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