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Introduction

The location and structure of the boreal-Arctic transition are major determinants for land-

atmosphere interactions at the circumpolar scale and for ecological conditions at the local to 

regional scale (Callaghan et al., 2002; Vlassova, 2002; Hofgaard, 2004; ACIA, 2005). This 

transition, henceforth the forest-tundra ecotone, covers a large expanse throughout the circum-

arctic; with a length of 13,000 km and a width of up to several hundred kilometres. Thus it has a 

global recognised importance, in terms of vegetation, climate, biodiversity and human 

settlements (Callaghan et al., 2002).  

In the past few decades the sub-arctic and the Arctic have attracted lot of attention due to 

the areas' high sensitivity to global warming (ACIA, 2005). Since the start of the 20th century the 

mean annual temperature has increased by ca. 1.0 °C in northern Norway (Førland et al., 2009). 

In comparison, the global mean annual temperature increased by 0.7 °C from 1906 2005 (IPCC, 

2007). The degree of continued warming that is projected for the present century is considerable; 

from 2.5 to 3.5 °C for northern Norway by 2100 (reference year 1990) (Førland et al., 2009). 

Annual precipitation is predicted to increase with ca. 12 % from 1981 2000 to 2017 2090 in the 

Arctic (IPCC, 2007). For parts of northern Norway the projected annual precipitation change is 

20 30 % from 1961 1990 to 2071 2100 (Førland et al., 2009), with most increase during winter 

and spring. This warming and increase in precipitation is expected to stimulate a swift northward 

advance of the sub-arctic forest-tundra ecotones (ACIA, 2005; Kaplan & New, 2006). 

The forest-tundra ecotone can extend for several hundreds of altitudinal metres where 

slopes are relatively gentle, or some tens of meters where the topography is particularly steep. 

The expanse of the forest-tundra ecotone varies from a very abrupt change from forest to no trees, 

or gradually less dense forest and more and more scattered trees and saplings (Callaghan et al., 

2002). Hence, many different factors are involved in structuring this ecotone on a local to 

regional scale. Temperature is widely accepted to be the dominant factor controlling the location 

and structure of the forest-tundra ecotone at the global scale (Körner, 1998; Harsch et al., 2009). 

Supporting evidence for this universal mechanism includes global relationships between forest-

tundra position and temperature isotherms (Körner & Paulsen, 2004), and Holocene fluctuations 

in the position of the boundary in accordance with past temperature changes (Payette et al., 2002; 

Jensen & Vorren, 2008). Drought stress has little significance in the northern forest-tundra areas 

where humidity tends to be high because cold air masses have a lower capacity to hold moisture 
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(Girardin et al., 2004). However, precipitation may be a restrictive factor for tree growth in 

continental areas such as central Alaska and central Siberia (Lloyd & Fastie, 2003; Kharuk et al., 

2010). Increased precipitation during non-growing season at high latitudes generally creates 

abundant and long lasting snow packs, which provides protection against browsing and wind 

abrasion (Sturm et al., 2001; Hofgaard et al., 2009; Holtmeier & Broll, 2010) and supply of early 

growing season soil moisture (Sveinbjörnsson et al., 2002; Holtmeier & Broll, 2005).  

Effects of herbivores on the forest-tundra ecotone structure and position are seen all over 

the world (Cairns & Moen, 2004). In northern Europe, the forest-tundra ecotone areas are 

subjected to extensive reindeer herding. In lichen dominated locations the tramping and grazing 

of reindeer may change the forest cover by opening gaps where Mountain birch (Betula 

pubescence Ehrh. ssp. tortuosa (Ledeb.) Nyman) can germinate and sprout (Tømmervik et al., 

2004). On the other hand can reindeer prevent uphill/northward movement of the forest-tundra 

ecotone at summer grazing sites by browsing birch seedlings, shoots, and leaves (Olofsson et al., 

2009). Scots pine (Pinus sylvestris L.) saplings are vulnerable to winter browsing by moose 

(Alces alces L.), as Scots pine is an important food source during winter for moose (Edenius et 

al., 1993; Månsson, 2009), and to snow blight (Phacidium infestans P. Karst.), a fungal 

infestation that spreads between Scots pine. Both factors hinder saplings to reach tree size, 

resulting in no or very slow advancement rates (Stöcklin & Körner, 1999).  

Remote sensing of the forest-tundra ecotone has great potential for analyses of change 

rates at the ecotone (Rees, 2007). High spatial resolution remote sensing products can provide 

detailed information on changes in structure and location during specific time periods 

(Heiskanen, 2006), and to some extent at the tree species level (Næsset et al., 2004). This 

information can be used to calibrate and validate coarser-resolution global remote sensing 

products to give standardised and precise estimates of forest cover change at regional to 

circumpolar scale (Stow et al., 2004; Montesano et al., 2009; McManus et al., 2012). However, a 

prevailing characteristic of the ecotone is a considerable time lag between tree establishment and 

the ability of remote sensing to detect small saplings and trees (Dalen & Hofgaard, 2005; 

Heiskanen, 2008). Combined remote sensing and ground based analyses can therefore assist in 

the calculation of climate-driven change rates, as the ground based data will give information on 

on-going changes or potential for change.  
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Aims of the thesis

This thesis deals with the dynamics and potential response to climate change of Scots pine and to 

some extent Mountain birch of the sub-arctic forest-tundra ecotone of northern Norway and Kola 

Peninsula, NW Russia. The dynamics and potential change are investigated along three major 

environmental gradients; between regions dominated by air masses of different origin, i.e. moist 

Atlantic vs. dry Arctic, between coast and inland, and along the altitudinal gradients of the forest-

tundra ecotone. Present trees and saplings of the ecotone constitute the basis for further 

development of the ecotone. Hence, special attention is given to changes in tree recruitment 

capacity across the environmental gradients.  

The specific aims of the thesis are:  

1. To analyse how the structure of the forest-tundra ecotone change along spatial and 

temporal scales (paper II & III, paper IV only spatial) 

2. To analyse if there are significant differences in growth, structure, and locations present 

across the environmental gradients, and if so elucidate main environmental forces (paper 

I, III & IV) 

3. To explore evidence for correlation between growth, regeneration, and climate across the 

forest-tundra ecotone and through time (paper I-III) 

4. Explore the possible advantages of joint use of remote sensing and dendroecology in 

understanding tree line changes (Paper II) 

Study design and study areas 
The different studies took place along a climatic gradient characterised by decreasing impact of 

Atlantic air masses from western Troms County in northern Norway to an increasing Arctic 

impact in the Kola Peninsula in north-western Russia (Fig. 1). The study areas were located in 

three regions along this climatic gradient, one western (in Troms County), one central region (in 

Finnmark County) and one eastern region (Finnmark County and Kola Peninsula). In each of the 

three regions, one area representing coastal and one area representing inland conditions were 

designated. The studies of paper I, III, and IV were conducted in all areas, while the study of 

paper II only took place at the Khibiny Mountains at Kola Peninsula. In two studies (paper III 

and IV) three sites were located along an altitudinal gradient within each area. The frequency of 

Scots pine decreases with altitude across the forest-tundra ecotone, and the lowermost site was 
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located at the forest line, i.e. the upper boundary of the closed pine forest, the middle site in the 

tree line zone, as defined by the uppermost > 2 m trees, and the uppermost site in the krummholz 

zone above the tree line where Scots pines are < 2 m in height. 

 
Figure 1. The location of the study areas; Ånderdalen, Dividalen, Børselv, Porsangmoen, Jarfjord, and 

Khibiny (circles) and used meteorological stations (stars) in northern Norway and north-western Russia. 

Grey shaded areas indicate forest. 

In the western region, the coastal area Ånderdalen is situated at the island of Senja and is 

characterised by a rather rugged mountain terrain, while the inland area Dividalen is situated in a 

slightly gentler mountain terrain. Ånderdalen has a coastal climate characterised by moist mild 

winters and cool summers and Dividalen a continental climate with cold, relatively dry winters 

and warm summers (Table 1). In the central region, the coastal area Børselv is situated close to 

the Porsanger fjord in a gentle terrain, while the inland area Porsangmoen is situated in a more 

mountainous and less gentle terrain. Børselv has warmer winters but colder summers than 

Porsangmoen, while precipitation levels are more or less similar between the two areas. In the 

eastern region, the coastal area Jarfjord is situated in a gentle landscape with small hills close to 

66°

20° 30°
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the Barents Sea, and the inland area Khibiny is situated in the largest mountain massif on the 

Kola Peninsula with rather rugged mountains. Both Jarfjord and Khibiny have relatively cold 

winters, but summers are warmer at Khibiny and precipitation is much higher at Khibiny than 

Jarfjord (Table 1). All study areas are normally snow covered from October to May, and the 

coldest month is January and the warmest July. Climate data for each study area refer to the 

nearest meteorological stations, which are located in a similar landscape as the study areas they 

represent (Federal Service for Hydrometeorology and Environmental Monitoring, 2008; 

Norwegian Meteorological Institute, 2011). Ten-year running means for annual, summer, and 

winter temperatures show a warming trend over the last century with peaks in the 1930s, and 

from the 1980s and until today, the exception being Khibiny, where no temperature trend is 

recorded. 
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Sampling 

All field work was accomplished during July and August in 2007 and 2008. Annual height 

growth and diameter growth of Scots pine were collected at open woodlands with mesic soil 

conditions at all six study sites (paper I). The height growth was measured as the distance 

between annual branching nodes along the stem of Scots pine saplings using a ruler. To record 

diameter growth, adult trees were cored at breast height, and ring widths were measured 

according to standard dendrochronological methods (Fritts, 1976; Cook et al., 1990) (paper I).  

For paper II and III all Scots pine individuals within sample plots located across the 

altitudinal gradient were sampled (for paper II the tree line and krummholz sites were 

investigated, while for paper III all three sites were used). Height, basal stem diameter, and 

diameter at breast height of each individual were measured and crown area was calculated using 

two perpendicular diameter measures. Scots pine and birch age at ground level was sampled by 

taking cores or cutting the individuals. A dissecting microscope (6 – 40 x) was used for counting 

the tree rings and determine establishment year (paper II and III), and to measure ring width 

(paper I).  

In paper II changes in the tree line ecotone of the Khibiny Mountains were mapped for 

two sites (Scots pine and birch) using air photos and satellite images. The tree line position was 

contoured on high resolution images from 1958 (air photos) and 2006/2008 (satellite images). 

The contouring was done by hand by applying a connection line between the uppermost trees 

along the slopes. To enable analysis of elevation changes of the contoured tree lines, digital 

elevation models for both sites were produced.  

In paper IV, the stand density and hemispherical photographs were sampled at all sites. At 

each site, 50 meter long lines were located perpendicular to the main gradient from the forest to 

the tundra. Three hemispherical photographs were taken at 25 m intervals along each line. The 

hemispherical photographs have a 3872 x 2048 resolution and were captured from the ground 

facing upward using a Nikon D80 camera equipped with a fisheye lens placed in the field 

vegetation on a stable board. Stand density was measured with a relascope.   

 

Major results and discussion 
Summer temperature is generally considered to be the main driver of location and structure at the 

forest-tundra ecotone (Junttila & Heide, 1981; Körner, 1998; Kullman, 2002; Salminen & 
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Jalkanen, 2005). The recent longer and warmer summers in the western and central study regions 

(Førland et al., 2009) seems to be less limitary for growth and establishment (paper I and III) 

(Linderholm et al., 2010) as non-growing season precipitation was found to have a strong 

influence on structuring and shaping of the forest tundra ecotone (paper I IV). The non-growing 

season precipitation, i.e. snow cover, is regarded as a facilitative mechanism (Kjällgren & 

Kullman, 1998; Smith et al., 2003; Batllori et al., 2009), as the snow protects from wind abrasion 

and winter browsing (Sturm et al., 2001; Sveinbjörnsson et al., 2002; Holtmeier & Broll, 2010). 

In addition, it contributes to soil moisture in spring (Baumeister & Callaway, 2006), and the 

higher soil temperatures during winter favour nutrient uptake the following summer (Weih & 

Karlsson, 2002). The drawback of increasing snow cover is a shortening of the growing season 

(Vaganov et al., 1999). The forest-tundra ecotone of regions that today are considered as snow 

rich will thus probably suffer from increased precipitation, while more continental regions may 

experience increased seedling survival and sapling growth.  

Strong among-area correlations of annual height growth (paper I) across the climatic 

gradients of sub-arctic northern Norway and Kola Peninsula suggest summer temperature to be 

the common environmental driver of height growth across the regions studied. In contrast, 

diameter growth of Scots pine lacks a common climate growth relationship across the climatic 

gradients (paper I). Also for age structures and tree cover, a substantial heterogeneity is found 

across the studied regions (paper III and IV). This implies non-homogenous climatic regions in 

terms of variables related to diameter growth, establishment, and survival (Fig. 2) and tree cover 

changes. The climatic differences between study regions and choice of Scots pine variables are 

thus deterministic for the degree of variation in spatiotemporal establishment and growth patterns 

(Linderholm et al., 2003; Aune et al., 2011). It is also suggested that variations in spatial patterns 

of the forest-tundra ecotone across large regions and the potential factors affecting establishment 

within the ecotone are site specific (Harper et al., 2011). However, correlation between 

establishment at the coastal areas and gridded winter precipitation over a regional scale suggests 

that the age structures are regionally representative (paper III). Especially the age structure that 

origins from Børselv had a large geographical representativity both west- and eastwards from the 

sample area, probably explained by the location, influenced by both Atlantic and Arctic 

dominated air masses forming a Scots pine population that thus is representative over large 

regions.  
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In contrast to the general assumption of rapidly advancing forest-tundra ecotones due to 

climate change (ACIA, 2005; Kaplan & New, 2006), the studied ecotones showed a response 

pattern with evidence of both potential Scots pine population advancement and stationary 

populations (paper II and III). The models used for predicting the above mentioned rapid 

northward movement assume that vegetation is in equilibrium with current climate and do not 

include other mediating factors.  
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Figure 2. Age structure given as trees and saplings per hectare. The data is aggregated to 5-year age 

classes for each study site. Note that the scaling of the y-axes varies between the altitudinal gradients. 
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Pine species establish at specific microsites that in general consist of sparsely vegetated gaps, 

bare soil, gravel, or litter, and that have a protective element (Batllori et al., 2009). Further, 

growth into the tree layer must overcome increased stress related to exposure when protruding 

above the snow layer, mainly controlled by wind damages (paper III). Advancing tree lines is 

often dominated by an infilling process at the local scale (paper II) (Tømmervik et al., 2004) 

where additional establishment occurs in areas of pre-established populations of scattered trees 

and saplings. A forest-tundra ecotone advance is thus facilitated by pre-established seedlings and 

saplings. This is evident in the Khibiny age structure (Fig. 2) (paper II). However, it should be 

stressed that this infilling process changes and shapes the forest-tundra ecotone (Danby & Hik, 

2007), but do not necessary cause an advance of the ecotone.  

Implications for a forest-tundra ecotone shift consider both alterations in climate and 

biodiversity (Callaghan et al., 2002; Hofgaard et al., 2012). Changes in forest cover and tundra 

encroachment would change both the albedo and energy exchange between the atmosphere and 

the biosphere, especially at high latitudes and altitudes that are snow covered part of the year 

(Harding et al., 2002; Chapin et al., 2005; Bala et al., 2007). The carbon uptake of the forest 

contributes significantly to the land carbon sink and hence causes climate cooling (Betts, 2000). 

However, this effect will be offset by radiative forcing effects of a decrease in the land surface 

albedo. Chapin et al. (2005) concluded that the warming albedo effect of increasing forest cover 

was almost 2 7 times stronger than the cooling effect of carbon uptake. Accordingly, a 

northward shift of the forest-tundra ecotone as a response to climate warming would significantly 

alter climate and ecosystem processes (Callaghan et al., 2002). Furthermore, forest advance 

would have drastic consequences for the tundra biota; arctic plant species restricted beyond the 

ecotone would experience severe habitat fragmentation and reduction, resulting in an increased 

risk of regional extinction and reduction in beta-diversity (Engler et al., 2011; Miller & Smith, 

2012). A northward movement of the forest-tundra ecotone will also have significant impact for 

animal biodiversity within and beyond the forest-tundra ecotone (Hofgaard et al., 2012). Arctic 

human societies depend on the sustained use of the Arctic tundra biota, and would also be 

strongly impacted (ACIA, 2005). 

Conclusions and further prospects 
The location, dynamics, and environmental drivers at regional and circumpolar levels of the 

forest-tundra ecotone are not fully understood, and will probably never be, but the scientific 
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community has made a large progress recently. To be able to more precisely predict the effect of 

future climate changes and feedbacks from the system, profound knowledge on how the location 

is changing in response to a range of abiotic and biotic forces is still needed. Refined techniques 

for the detection of spatial shift of the ecotone for large spatial scales are necessary to develop 

further. At present, one of the most important gaps and uncertainties in forest-tundra research 

appears at the intermediate regional geographic scale (Callaghan et al., 2002; Holtmeier & Broll, 

2005, 2007). Regional differences in establishment and size structure imply different responses to 

the same environmental factors as focal predictors for the forest-tundra zone response (Harsch & 

Bader, 2011). As suggested by Harper et al. (2011), the positive feedback will act differently at 

different locations dependent on specific underlying factors, and thus increase the variation of the 

shaping and structuring of the forest-tundra ecotone. Therefore must site-specific, species-

specific, and time-specific patterns be carefully deciphered when local scale data are used to 

interpret changes of the forest-tundra ecotone on a regional or ecotonal scale (Hofgaard et al., 

2013). Studies combining remote sensing and ecological approaches can be utilised to merge 

local scale studies, but are generally not feasible over lager spatial scales (due to cost and labour 

demands). However, a balance between remote sensing and ecological approaches is useful for 

production of high quality information valid for large regions, such as the sub-arctic forest-tundra 

ecotone (paper II). The regional scale is both important and problematic because it contains 

considerable heterogeneity and the feedbacks to the climate system are important at this scale 

(Harding et al., 2002). Furthermore, most forest-tundra studies are short-term studies with a 

temporal scale ranging from a decade to a few decades (Payette et al., 2002; Holtmeier & Broll, 

2007; Kullman & Öberg, 2009). This is problematic as forest-tundra processes are generally slow 

and accurate interpretations should be made over long time periods. Therefore, there is a great 

need for careful field studies on forest-tundra dynamics and its causes based on a complex 

ecological approach (Callaghan et al., 2002; Payette et al., 2002; Sveinbjörnsson et al., 2002; 

Holtmeier & Broll, 2005, 2007).  

The thesis encompassed a large geographical and climatically varied region of the 

circumpolar north, to be able to address cause-response forces of the changing forest-tundra 

ecotone. Both short and longer time periods and the use of growth variables and age structures 

can assist in improving scenarios for forest cover changes in sub-arctic regions. But the forest-

tundra ecotone is a highly dynamic system and thus any study of it will be challenging. Until 
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today, documented changes are only a part of the changes likely to have occurred. Additional 

changes are expected in the coming decades, emphasising the need for further research that will 

enhance the knowledge of the local and regional variation in the causes of the status and 

dynamics at the forest-tundra ecotone. 
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Background: High-latitude forests are controlled by climate and as temperature increases, a northward extension in dis-
tribution and more vigorous tree growth are expected. The replacement of tundra by forest involves changes in carbon
sequestration, land–atmosphere energy balance and ecosystems. The understanding of climate-related height and diameter
growth patterns across geographical regions is therefore important.
Aim: To analyse recent within- and between-region variations in climate–growth relationships for Scots pine at the
forest–tundra ecotone (northern Norway, Kola Peninsula).
Methods: Six pine (Pinus sylvestris) woodland sites, representing different climate regions along the forest–tundra zone,
were sampled for annual height growth (saplings) and diameter growth (adult trees) and the analyses were related to local
climate data.
Results: Height growth was strongly similar among all sites and climate regions, but not diameter growth. Although summer
temperature was the most important factor, non-growing season climate showed significant importance for both diameter and
height growth across regions.
Conclusions: The results highlight the importance of factors that are often overlooked, specifically, non-growing season fac-
tors for tree growth at high latitudes, and the role of short-term climate variation. Future climate scenarios predict moister
and milder winters for large areas of high-latitude regions. Thus, detailed analyses of region-specific climate–growth relations
that focus on growing season vs. non-growing season effects are essential in the evaluation of future forest cover response to
climate change.

Keywords: climate gradients; forest–tundra ecotone; height increment; Kola Peninsula; northern Norway; Pinus sylvestris;
radial growth

Introduction

High-latitude regions are recognised for their sensitivity
to climate change (ACIA 2005). The growth of trees and
forests at or close to the Arctic forest–tundra boundary are
strongly affected by climate, both from a short- and long-
term perspective (Callaghan et al. 2002). In the short-term,
changes in the climate cause shifts or alterations in tree
growth rate, tree vitality, stand structure and forest cover,
and over the long-term, displacement of the forest–tundra
boundary (Payette et al. 2001; Kapralov et al. 2006; Danby
and Hik 2007; Kullman 2007; Moen et al. 2008). Changes
in forest location and in forest cover (density) throughout
the circumpolar north will alter regional CO2 sequestra-
tion, water/energy balance and albedo (Harding et al. 2002;
Hyvönen et al. 2007). Increased conifer tree cover can
decrease regional albedo and may offset expected negative
radiative forcings (Hyvönen et al. 2007; IPCC 2007).

There are large regional differences in forest responses
to climate changes throughout the forest–tundra zone,
including evidence of both advance and the lack of it
(Harsch et al. 2009), and large differences between spe-
cific time periods (Lloyd and Fastie 2002). The climate
warming after the end of the Little Ice Age, around 1850,

*Corresponding author. Email: annika.hofgaard@nina.no

improved tree vitality, caused an increase in stand den-
sity and advanced distribution limits of marginal stands in
northern Europe (Hofgaard et al. 1991; MacDonald et al.
2008; Kullman and Öberg 2009). However, the response
to warming did not follow a uniform pattern: a warm-
ing during the 1930s resulted in increased tree growth,
while warming since the late 1980s has not shown a sim-
ilar response pattern (Solberg et al. 2002; Tuovinen et al.
2009). This divergence between time periods is important
to consider when modelling tree growth (Linderholm et al.
2010).

Summer temperature is the primary determinant of
both height and diameter growth for dominant trees in
the northern boreal zone. However, non-growing season
temperatures and precipitation are also known to be of
significant importance (Grace and Norton 1990; Mäkinen
et al. 2000; Fagre et al. 2003; Kullman 2007; Huang et al.
2010; Aune et al. 2011). In addition, the seasonal timing
of height and diameter growth responses to climate differs
within and among species. These factors, along with dif-
ferences in sensitivity to climate variation, including the
shifting relative importance of previous and current grow-
ing seasons, need considering when growth or growth rate
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is used to predict forest cover responses to climate change
(Jalkanen and Tuovinen 2001; Gamache and Payette 2004).

Climate scenarios for the north European sub-Arctic
region indicate an increase in both annual temperature
and precipitation, and thus tree growth enhancement is
expected (IPCC 2007). In northern Norway and the west-
ern Kola Peninsula, Russia, Scots pine (Pinus sylvestris L.)
forms the northern conifer stands. Height and diameter
growth variation in these stands can thus provide essen-
tial information on climate-related growth responses that
are fundamental for constructing growth, sink and feed-
back scenarios (Goodale and Davidson 2002). In the
light of both recent climate changes and predicted sce-
narios for rapid climate change (IPCC 2007), a focus
on recent growth responses (recent decades) is needed
along with how growth responses vary within and across
climatic regions. Hypothetically, contrasting response pat-
terns between coastal and inland localities and between
regions dominated by air masses of different origin, e.g.
moist Atlantic vs. dry Arctic, will cause significantly dif-
ferent landscape level responses regarding changes in forest
cover and carbon sequestration.

In this paper, we focus on decadal between-region
(Atlantic vs. Arctic), within-region (coast vs. inland) and
growing season variation vs. non-growing season variation
in climate–growth relations for Scots pine at its north-
ern distribution limit in northern Norway and the Kola
Peninsula. The following questions are addressed. (1) How
have height and diameter growth of Scots pine at its north-
ern distribution margin responded to climate variability
during recent years? (2) Are growth responses consistent
within and between climatic regions?

Methods

Study sites

Areas in the north-western part of Eurasia, northern
Norway and north-western Russia are exposed to climatic
influence from both the North Atlantic Ocean and the
Arctic. Study sites for collection of height and diameter
growth data were located in three regions (west, central,
east) along the main climatic gradient characterised by
decreasing impact of Atlantic air masses (and increasing
Arctic impact) from western Troms County in northern
Norway to the Kola Peninsula in north-western Russia. In
each of the three regions, two sites representing coastal
(1) and inland (2) conditions were selected (Figure 1,
Table 1).

A coastal climate is generally characterised by moist
mild winters and cool summers, and an inland climate
by cold and relatively dry winters and warm summers.
However, in these high-latitude sub-Arctic regions, this
is only pronounced in the west (Moen 1999). In the
eastern region, the inland climate is both warmer and
moister than at the coast (Table 1, Figure 2). All study
sites are normally snow-covered from October to May,
while the coldest month is January and the warmest is
July (Figure 2). Climate data for each study site refer
to the nearest meteorological station. The meteorolog-
ical normal period of 1961–1990 (Federal Service for
Hydrometeorology and Environmental Monitoring 2008;
Norwegian Meteorological Institute 2008) was used for
all stations except Ukspor, where only mean data for the
standard Russian normal period 1881–1980 were available
(Science and applied guide to the climate of the USSR

Figure 1. The location of the study sites (circles) and meteorological stations (stars) in northern Norway and north-western Russia (see
Table 1 for the names of study sites and meteorological stations). Grey shaded areas indicate forest.
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1961–1990 for all stations except Ukspor, where only mean data
for the standard Russian normal period 1881–1980 were available.
Coastal sites are shown with black lines and inland sites with grey
lines.

1988). Selected meteorological stations were located in a
similar landscape to the study site they are meant to rep-
resent (Figure 1, Table 1). Temperature data representing

individual sites showed a similar annual pattern with com-
mon summer peak temperatures for all but Ukspor (rep-
resenting E2; i.e. eastern inland in Figure 1), but with
somewhat more deviation in winter temperature lows, with
Karasjok (C2) as the coldest and Tromsø (W1) the mildest
(Figure 2). Precipitation showed a similar pattern for all
but the western coastal site and the eastern inland site. At
these sites, the annual precipitation was between two and
three times higher than at the other sites and precipitation
peaks during the late growing season or autumn compared
to summer for other sites (Figure 2). The period 1992–
2006 was selected for all analyses, and was the period for
which height and diameter growth data for all sites were
collected (see below). For the Khibiny site (E2), data from
the Murmansk climate station were used as the closest sta-
tion, because Ukspor did not have monthly data available
(Table 1). Summer (June, July, August) temperature anoma-
lies for the 1992–2006 period showed a general increase of
1.5 degrees among all sites, but with apparent variations
between years (Figure 3). Annual temperature anomalies
showed a weak increasing trend, with variations among
years. Summer precipitation anomalies showed consider-
able year-to-year variation, but no trend. Annual precipi-
tation anomalies showed less variation among years and a
weak increasing trend (Figure 3). During the last 50 years
(1956–2006), the decadal increase in annual and summer
temperatures among the meteorological stations ranged
from 0.07 to 0.45 degrees and from 0.05 to 0.2 degrees
per decade, respectively. Precipitation change ranged from
0.93% to 8.32% for annual values and −2.48% to −0.36%
for summer values (Table 1).
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Figure 4. Typical sapling (a) and tree (b) individuals of Scots pine sampled in mesic open woodland sites along the northern distribution
limit of the species in northern Norway and the Kola Peninsula (see Figure 1).

All sites were open woodlands with mesic soil con-
ditions, dominated by Scots pine in a sparse matrix
with mountain birch (Betula pubescens ssp. czerepanovii
(Ledeb.) Nyman) in the tree layer, and Vaccinium vitis-
idaea L., V. myrtillus L., V. uliginosum L. and Empetrum
nigrum L. in the field layer. The stand structure of the study
sites has not been affected by forest fire, but some selective
logging has occurred at all sites. However, the logging has
not had an important impact on the general stand structure.

Sampling and preparation

The height and diameter growth data were collected during
July and August 2007 and 2008. To emphasise climate–
growth correlations we used saplings (height 50–200 cm;
Figure 4(a)) for the height growth analyses, and adult trees
(Figure 4(b)) for diameter growth analyses (Fritts 1976;
Lanner 1976). For height growth, a minimum of 45 healthy
and non-browsed saplings were selected at each study
site. Annual height growth, measured as distance between
annual branching nodes along the stem, was recorded with
a ruler to the nearest 0.5 cm. To be selected, saplings had
to provide data for at least the last four years. For diam-
eter growth, measured as the annual tree ring width, a
minimum of 20 adult trees were cored at each site. Two
cores were taken from each tree at breast height (130 cm
above the ground) in opposite horizontal directions. The
cores were mounted on wooden supports, dried and brought
to the laboratory, where they were planed with a scalpel.
Zinc ointment was applied, when needed, to increase the
contrast between early and late wood in the tree rings. Ring

widths were measured to an accuracy of 0.01 mm using
a LINTAB measuring system and a dissecting microscope
with a magnification of 6–40×.
Chronology construction

The ring-width series of the individual cores were visu-
ally and statistically cross-dated by comparison of cores
within trees, between trees and with the site chronology.
COFECHA 6.06P and TSAP-win software were used for
the statistical correlation analyses (Holmes 1994; Rinn
2003). Cores showing low correlation (r < 0.5) with the
mean site chronology were excluded from further anal-
yses. To increase the climate signal in the constructed
chronologies, trees that showed signs of senescence were
excluded (i.e. a < 0.4 mm average ring width over the
last 15 years was used as the cut-off level). At E2, where
trees were generally slow growing, 0.15 mm was set as the
lower limit. This selection and exclusion process resulted in
chronologies ranging from 33 to 51 cores per site (Table 1).

In order to strengthen a common high-frequency sig-
nal in both the height and diameter growth data and to
remove low-frequency variation, the height and diame-
ter growth series (from height increment and ring-width
series, respectively) from each study site were standardised
to create indexed chronologies. These chronologies gener-
ally have a better correlation with yearly climate variation
(Cook and Kairiukstis 1990). For this standardisation the
unprocessed annual height and diameter growth records
for each individual were divided by the individual’s mean
annual growth. To allow for a variable number of recordings
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the resulting values were summed up by year and divided
by the number of individuals/cores representing each year
in each chronology, thus forming two (height and diam-
eter) indexed chronologies per site. Height and diameter
growth relations within and between sites were examined
with Pearson’s correlation analyses (R Development Core
Team 2008).

Climate–growth analysis

As the period with tree growth data varied among sites
with sampling year and sampling time, we used the com-
mon period of 1996–2006 in the analyses. The period was
based on a minimum of 15 height and diameter growth
samples as the cut-off level over the whole period. Climate-
growth relationships were examined by correlation- and
response-function analyses, and bootstrapped confidence
intervals, which estimate the significance of correlation and
response-function coefficients, by the software program
DendroClim 2002 (Biondi and Waikul 2004). A 16-month
period was analysed, encompassing May of the year prior to
growth (Mayt−1) to August of the year of growth (Augustt),
with the indexed chronologies as dependent variables and
monthly mean temperature and monthly total precipita-
tion values as predictors. Details for the response-function
results are not presented, since the number of predictors was
too few to give statistically reliable results. However, when
tested, significant response-function values were indicated
for the same climate variables as significant correlation-
function indications.

Results

Growth pattern and height–diameter relations

Height growth correlated strongly (P < 0.01) among all
sites (Table 2), while diameter growth only showed signifi-
cant correlation between a limited number of site combina-
tions (Table 2). There was a general low and non-significant

correlation between height growth of saplings and diameter
growth of adult trees at most sites. The exceptions were the
eastern inland site, which showed a strong positive within-
site correlation, and the western coastal site, which showed
a significant negative within-site correlation (Table 2.)

An inter-annual pattern with common growth peaks
(index values) among sites was evident for both height and
diameter (Figure 5). Height growth peaked in 2005 at all
sites, and was at its lowest level in 1996 at the western
and central sites and in 1993 at the eastern sites. Diameter
growth showed high values for 1993 at all sites except at the
eastern inland site. The year 2000 showed increased diam-
eter growth at all sites, with the most pronounced peaks at
the two eastern sites (Figure 5).

Height growth and climate

Height growth was significantly and positively correlated
with Julyt−1 temperature at all sites (Figure 6). The tem-
perature during the current growing season was of minor
importance except in the east, where above-average Junet

temperature had a positive effect on growth. Precipitation
had no significant effect except in the western coastal site,
where above-average precipitation in Junet was signifi-
cantly and positively correlated (Figure 6).

During the late non-growing season, above-average
Aprilt temperatures had a significant positive effect on
height growth at all sites except site E1 (Figure 6). In the
winter months, above-average temperatures in Februaryt

in the west, in Decembert−1 at the central sites and in
Novembert−1 and Decembert−1 in the east had an apparent
positive effect on height growth. In contrast, above-average
late winter temperatures (Marcht) had a negative effect in
the east. Higher than average precipitation in Februaryt−1
caused increased growth at W1 but had a negative effect in
the east. Above-average Aprilt precipitation had a negative
effect on growth in the west, while Mayt precipitation above

Table 2. Pearson’s product-moment correlation for height and diameter growth chronologies among sites,
and height versus diameter growth within sites for the period of analysis of 1996–2006.

W1 W2 C1 C2 E1 E2

Height growth
W1
W2 0.854∗∗
C1 0.960∗∗ 0.755∗∗
C2 0.911∗∗ 0.852∗∗ 0.946∗∗
E1 0.870∗∗ 0.751∗∗ 0.922∗∗ 0.934∗∗
E2 0.812∗∗ 0.886∗∗ 0.796∗∗ 0.883∗∗ 0.869∗∗

Diameter growth
W1
W2 −0.233
C1 0.357 −0.001
C2 −0.336 0.656∗ 0.429
E1 −0.305 0.228 0.371 0.686∗
E2 −0.283 0.243 0.075 0.445 0.844∗∗

Height vs. diameter −0.671∗ 0.166 −0.294 0.038 0.512 0.739∗∗

∗ P < 0.05; ∗∗ P < 0.01.
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Figure 5. Indexed chronologies for the six study sites. Height growth values are shown by solid lines, diameter growth is shown by dashed
lines and the number of individuals included in height growth chronologies by dotted lines (the latter refers to the right-hand y-axis). The
number of diameter growth values was constant over time and are given in Table 1.

average was favourable to height growth at the two cen-
tral sites. These late non-growing season months showed
no significant importance in height growth in the east
(Figure 6).

Diameter growth and climate

Above-average Julyt−1 temperatures had a significant
positive effect on diameter growth at the two eastern
sites, and Julyt temperature had a positive effect at
the two central sites and E1 (Figure 7). Diameter
growth showed limited correlation with June tempera-
tures (Junet was positive at E2 and negative at C1). In
the west, current growing season temperatures had no
significant effect on diameter growth, and current growing
season precipitation was of no significant importance at any
of the sites. However, moist Julyt−1 had a positive effect at
the central and eastern inland sites.

For the late non-growing season, above-average Aprilt
temperatures were positively related to diameter growth at

the eastern inland site, while the effect was negative at
W1 (Figure 7). In Mayt (late non-growing/early growing
season), temperature was of significant positive impor-
tance at all inland sites and E1 (and Mayt−1 at W2 and
C2). W1 showed a deviating pattern, with above-average
temperature in both Mayt−1 and Mayt having a signif-
icant negative impact on diameter growth. During the
early winter (October–Decembert−1), temperatures above
average had a positive effect in the east but were of no
importance at other sites. A mild midwinter (Februaryt)
in the west had a negative effect at the coast but had a
positive effect inland. Growth responses to non-growing
season precipitation showed only a few common signals,
but a moist Februaryt had a negative effect both at W1
and at the two eastern sites, and Marcht precipitation
had a positive effect at the western inland and eastern
coastal sites. At the central sites, precipitation during
the non-growing season was of no significant importance
(Figure 7).
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Figure 6. Height growth bootstrap correlation functions, based on indexed chronologies, showing the effect of monthly precipitation
(filled bars) and monthly mean temperature (open bars) on height increment for the period 1996–2006. Data are shown for Mayt−1 to
Augustt. An asterisk above or below the bars indicates significant bootstrap correlation elements. See Figure 1 for site location and Table
1 for site characteristics.

Discussion

Growth conditions at the forest-tundra transition with cool
summers and short growing seasons are marginal. Warmer
than normal summers are thus associated with increased
photosynthetic activity and hence increased tree growth
rates (Grace et al. 2002). The strong among-site corre-
lations for height growth demonstrated here indicate a
common environmental driver across the regions studied,
from the north-western coast of Norway to the inland Kola
Peninsula, with July temperature the year prior to growth as
the most likely factor of importance. This is in accordance
with the general pattern for climate–tree height growth rela-
tions at high latitudes (Junttila and Heide 1981; Salminen
and Jalkanen 2005), and is related to the time period when
the following year’s buds are initiated (Lanner 1976). Most
climate scenarios predict increased annual temperatures for
European sub-Arctic regions, including warmer summer

conditions (ACIA 2005; IPCC 2007; Førland et al. 2009),
and increased tree growth rates and northward forest expan-
sion into the current tundra are generally expected (ACIA
2005; IPCC 2007). It follows, therefore, that an alteration in
mean July temperature would have a perceptible impact on
height growth and subsequently cause forest cover/density
change. However, in contrast to height growth, diame-
ter growth lacked a strong common climate–growth rela-
tionship. This implies non-homogenous climatic regions
in terms of variables related to diameter growth, and
thus lessens the support for summer temperature as the
dominant driver for forest cover change. The climate
difference between study regions, and choice of mea-
sured growth variables will hence be deterministic in the
degree of detected homogeneity in the spatio-temporal
growth pattern (Linderholm et al. 2003; Macias et al.
2004).
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Figure 7. Diameter growth bootstrap correlation functions, based on indexed chronologies, showing the effect of monthly precipitation
and monthly mean temperature on diameter increment growth for the period 1996–2006. Data are shown for Mayt−1 to Augustt. An
asterisk above or below the bars indicates significant bootstrap correlation elements. See Figure 1 for site location and Table 1 for site
characteristics.

The reduced importance of current summer tempera-
ture for both height and diameter growth towards the west
coincides with an increase in decadal summer tempera-
ture in the western and central regions (Table 1). These
recent longer and warmer growing seasons in the Atlantic-
influenced west have lessened the dependence on July
temperature, as also has been shown for coastal areas fur-
ther south in the boreal zone (Linderholm et al. 2003).
Furthermore, the limited correlation between growing sea-
son precipitation and growth is a common pattern at high
latitudes (Linderholm et al. 2010). However, in the central
region where the growing season has become drier over
the last 50 years (Table 1), May precipitation was of sig-
nificant importance for height growth. This implies that
growing season precipitation, even at high northern lati-
tudes where growth generally is limited by temperature,
can be a temporarily important growth-limiting factor
(Kirchhefer 2001). Thus, the increased temperatures can
result in reduced tree growth rates, if not accompanied

by an increase in precipitation (Lloyd and Fastie 2002;
McGuire et al. 2010).

One of the main features in climate scenarios for the
north European sub-Arctic region is an increase in winter
and late non-growing season temperatures and precipita-
tion (ACIA 2005; IPCC 2007; Førland et al. 2009). These
climate factors had significant effect on tree growth in
the subsequent growing season in the studied regions,
although diameter growth showed no effects in the central
region. The effects are mediated by a complex set of inter-
actions of both direct and indirect climate factors. The
general pattern of increased precipitation and long-lasting
snow cover appeared to hamper early-season tree growth
in snow-rich regions, but improved early-season growth
in dry regions through melt water supply (Vaganov et al.
1999; Kirchhefer 2001; Bekker 2005). An exception to this
general pattern was the positive height growth relation to
late winter temperature and precipitation at the snow-rich
western coastal site, where growing season length has
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increased during recent years (Karlsen et al. 2007, 2009).
Such a growing season increase likely counteracted the
negative effect of snow accumulation in the region. In
contrast, in the Arctic-dominated east, growing season
length has decreased during the last few decades, on aver-
age starting 1–2 weeks later (Karlsen et al. 2007, 2009).
The shortened season and delayed start have strengthened
the dependency on late non-growing/early growing season
conditions in the region. The location of the central region
between the Atlantic and Arctic-dominated west and east
is likely to be the reason for the limited response to win-
ter climate that was shown in this region. Hypothetically,
snow accumulation during the winter in this region provides
favourable early growing season soil-moisture conditions
without delaying the start of the growing season (Vaganov
et al. 1999; Bekker 2005).

When short climate-growth periods are analysed,
response patterns deviating from the long-term mean pat-
tern may arise because of short-term climate variations. A
general increase in summer temperature, as was found dur-
ing the period analysed, could be a key factor promoting
tree growth and hence forest cover change if prolonged, but
this increase would be of little importance if representing
a short-term episode. Similarly, a shortening of the grow-
ing season, as recorded during the most recent decades in
the eastern part of the regions studied (Karlsen et al. 2007,
2009) would have a negative effect on forest cover if pro-
longed, and would involve a more dominant role for the
non-growing season climate in tree growth (Linderholm
and Chen 2005). The importance of winter climate is gen-
erally overlooked in scenarios for tree growth responses to
climate change, since growing season temperature is the
dominant factor when longer periods are analysed (Briffa
et al. 1988; Kirchhefer 2001; Linderholm and Chen 2005).
Consequently, the use of long-term mean data could lead to
over-estimation of the rate of climate-mediated tree growth
change if counteracting non-growing season effects are
not considered. Trees from high-latitudinal regions have
shown decreased sensitivity to growing season temperature
towards the end of the twentieth century (Briffa et al. 1998;
D’Arrigo et al. 2008; McGuire et al. 2010). This divergence
between tree growth and temperature increase could be
linked to a stronger relation between tree growth and non-
growing season climate during recent decades (Vaganov
et al. 1999; D’Arrigo et al. 2008; Linderholm et al.
2010). As most climate scenarios predict increased ocean-
ity, i.e. moister and warmer winters, throughout the regions
studied (IPCC 2007; Førland et al. 2009), in addition to
annual and summer temperature increases, the importance
and effects of mild winters would accordingly be amplified
(Linderholm and Chen 2005). Climate difference between
study regions and the importance of growing vs. non-
growing season variables vary through time, due to tem-
poral variations in individual climate variables. Detailed
analyses of short time periods and the use of more growth
variables can thus assist in improving scenarios for forest
cover changes in sub-Arctic regions.
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Abstract

Questions: Tree line ecotone regions are expected to respond swiftly to climate

changes. In this paper, remote sensing- and ground-based tree population data

are used to examine past and on-going changes of the tree line ecotone in a sub-

arctic region characterized by precipitation increase. Questions addressed are:

(1) at what rate has the tree line ecotone changed since the mid-20th century;

(2) can specific temporal dynamics be identified; and (3) do combined remote

sensing and tree population analyses add essential knowledge for the interpreta-

tion of tree line changes?

Location: KhibinyMountains, Kola Peninsula, northwest Russia.

Methods: Aerial photos from 1958, high-resolution satellite imagery from

2006/2008 and age structure data for dominant tree line species (birch and pine)

were used to analyse rate of change and temporal and species-specific tree line

recruitment patterns. This was accomplished using digital elevation models, res-

olution-merging procedures, visual interpretation and dendroecological meth-

ods.

Results: Mean tree line advance for birch and pine was recorded as 29 and 27

altitudinal metres (0.6 and 0.5 m�yr�1), respectively. The advancewas accompa-

nied by an apparent infilling of pre-established tree populations and by recruit-

ment beyond the tree line. Evident increased recruitment occurred in the late

1980s for birch and in the 1970s and 1990s for pine. Establishment showed no

strong correlations with climate variables, but the importance of non-growing

season variables was indicated.

Conclusions: The recorded tree line advance is modest compared to global

model predictions for advance at high latitudes, but in accordance with results

from a number of high-latitude areas. Concomitantly, the apparent increased

recruitment is indicative of a more rapidly advancing tree line zone. Studies

combining remote sensing and ground-based data minimize the risk of under-

or overestimating potential tree line advance. Low detectability of small seed-

lings and saplings by remote sensing can cause underestimation of the current

potential, while ground-based data used alone can overestimate potential

advance. A balance between the two approaches is beneficial and enhances

quality in production of change scenarios related to high latitudinal tree line

areas at local to large regional scales.

Introduction

The location of the northern tree line ecotone, which links

the boreal forest to the southwith the treeless tundra to the

north, is considered a sensitive bioclimatic indicator of both

climate changes and landscape changes (Holtmeier & Broll

2005). Tree recruitment, forest cover density and tree

growth forms across the ecotone are structured by inter-

laced climate, topography and land-use-related latitudinal

and altitudinal gradients (Callaghan et al. 2002; Moen
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et al. 2008; Aune et al. 2011). The ecotone therefore has

area- or region-specific characteristics determined by

multiple variables (Hofgaard et al. 2012), dominated by

temperature, precipitation, wind and herbivory

(Sveinbj€ornsson et al. 2002; Cairns &Moen 2004; Holtme-

ier & Broll 2005). Micro-topographical shelters and pres-

ence of tree cover alter the impact of these abiotic and

biotic factors through the creation of relatively benign local

environments in terms of wind, radiation, temperature,

snow cover and soilmoisture (Hofgaard et al. 2009; Batllori

et al. 2010; Holtmeier & Broll 2010). These microhabitat

conditions are essential to recruitment, survival and

growth of new seedlings, and thus essential to both reloca-

tion and structural change (e.g. infilling) of the ecotone

(Danby & Hik 2007; Batllori & Guti�errez 2008; Kullman &
€Oberg 2009). A change in the regeneration capacity in the

tree line ecotone has caused its main features, forest line

(limit of continuous forest), tree line (limit of

uppermost > 2-m tall trees) and species line (limit of tree

saplings and seedlings), to move back and forth over time

in accordance with long- and short-term climate changes

(Hofgaard 1997a; Dalen & Hofgaard 2005; Payette 2007;

Shiyatov et al. 2007). The history and climate sensitivity of

the ecotone has led to the assumption of swift advance and

spatially extensive response to the on-going global warm-

ing (ACIA 2005; Kaplan & New 2006). In a short-term per-

spective, an advancing tree line ecotone would cause

locally altered stand structure and forest cover, while in a

long-term perspective forest encroachment onto the tun-

dra would cause large-scale changes of the current sub-arc-

tic and low-arctic regions (Payette et al. 2001; Kapralov

et al. 2006; Danby & Hik 2007; Moen et al. 2008). At the

circumpolar scale, northward forest advance would

decrease the regional albedo and thus amplify globalwarm-

ing (ACIA 2005; Chapin et al. 2005; Bala et al. 2007).

Remote sensing of the tree line ecotone has great poten-

tial for analyses of rates of change (Rees 2007). Using high

spatial resolution airborne and Earth-orbiting tools, such

as QuickBird and WorldView satellite images, detailed

information can be acquired on changes in position and

structure during specific periods (Heiskanen 2006), and to

some extent at the tree species level (Næsset et al. 2004).

This information can thus be used to calibrate and validate

coarser-resolution global remote sensing products for stan-

dardized and precise characterization of change in forest

cover at regional to circumpolar scale (Stow et al. 2004;

Montesano et al. 2009; McManus et al. 2012). However, a

prevailing characteristic of the ecotone is a considerable

time lag between tree establishment and the ability of

remote sensing to detect small saplings and trees (Dalen &

Hofgaard 2005; Heiskanen 2008). Combined remote sens-

ing and age structure analyses can therefore assist in the

calculation of climate-driven rates of change. Age struc-

tures of tree line tree communities show the combined

outcome of recruitment and survival and how it has varied

through time (Lavoie & Payette 1992; Villalba & Veblen

1998; Aune et al. 2011). The resulting establishment pat-

tern can thus be used to elucidate ecotonal responses to

changed climate conditions (Elliot 2012).

In the present study, we analyse changes of the tree line

ecotone in the KhibinyMountains, Kola Peninsula, Russia,

for the period from 1958 to 2008, by combining remote

sensing techniques with analysis of tree population age

structures. The following questions are addressed: (1) at

what rate has the tree line ecotone changed since mid-

20th century; (2) can specific temporal dynamics be identi-

fied; and (3) do combined remote sensing and tree popula-

tion analyses add essential knowledge for the

interpretation of tree line changes?

Methods

Description of study area

Two study areas situated in the Khibiny Mountains are

used for the analyses. The Khibiny Mountains form an

approximately 2500-km2 massif in the central Kola Pen-

insula in northwest Russia (Fig. 1). The highest peaks lie

between 900–1200 m a.s.l., and the geology consists of

crystalline bedrock covered mainly by Quaternary glacial

till (Kononov et al. 2009). The Khibiny region is charac-

terized by slightly continental climate (Moen 1999), and

is generally snow-covered from October to May. The

region has an average annual temperature and total pre-

cipitation of around �3.7 °C and 1070 mm, respectively.

The average temperature of the warmest month (July) is

9.0 °C and for the coldest (February) �12.6 °C. February

Fig. 1. Map of the Khibiny Mountains study region in the Kola Peninsula,

northwest Russia (star on inset map), and the two sampling areas, Tuliok

and Yumechorr (indicated by squares on the map). Filled circles show field

study sites within the areas.
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is also the driest month, with on average 57 mm precipi-

tation, and September the wettest month with 135 mm.

The climate data refer to the Russian normal period

1881–1980, and the Yukspor meteorological station, in

the central Khibiny Mountains (910 m a.s.l.; Vlasenko

1988). In the analysis, climate data from Murmansk

meteorological station (54 m�a.s.l and 140 km north of

the Khibiny Mountains) are used (Bulygina & Razyvaev

2008). This is the closest station to the study sites, which

has daily data recordings. Monthly normal period tem-

perature and precipitation values for the Murmansk and

Yukspor meteorological stations are strongly correlated

(r = 0.991 and r = 0.796, respectively, both at

P < 0.005). The daily data available for the Murmansk

meteorological station are, however, restricted to the per-

iod 1936–2006. Over this period, precipitation shows a

significant increasing trend but no temperature trend was

registered (Fig. 2, upper sections). Cumulative sum plot

analyses (data not shown) revealed that the increase in

precipitation began around the 1960s and persisted until

the end of the period. No significant temporal autocorre-

lation was detected for the climate data.

The dominant species in the tree layer are Scots pine

(Pinus sylvestris) and mountain birch (Betula pubescens

subsp. tortuosa) together with some scattered aspen (Popu-

lus tremula), and the shrub layer is dominated by juniper

(Juniperus communis) and dwarf birch (Betula nana). The

mountain area has a low grazing/browsing pressure from

moose (Alces alces L.), hare (Lepus timidus L.), grouse (Lag-

opus spp.), voles (Microtus spp., Clethrionomys spp.) and lem-

mings (Lemmus lemmus L.), and has had low or no human

land-use impact throughout the 20th century and until

the present time (Myagkova 1988; O.V. Tutubalina pers.

com.).
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Field surveys

Tree population data were collected during the summer of

2008 at the two sites, Tuliok and Yumechorr, in central

and western Khibiny Mountains, respectively (Fig. 1). The

Tuliok site is located on a north-facing slope (67°42′N
33°46′E) at 500–600 m a.s.l. The study species is mountain

birch, and the birch tree line (as defined by the

uppermost > 2 m trees) runs on average at 535 m a.s.l.

The Yumechorr site is located on a southwest-facing slope

(67°42′N, 33°14′E) at 330–470 m a.s.l. The study species at

this site is Scots pine, and the pine tree line runs at ca.

400 m a.s.l.

The data from Tuliok and Yumechorr originate from

two different field surveys that were part of the interna-

tional PPS Arctic research programme (see: http://ppsarctic.

nina.no), and were collected to individually fit the design

of these studies (i.e. Aune et al. 2011; I.E. Mathisen et al.

unpublished data). Consequently, the layout of the sam-

pled area differs between the two study sites, but common

criteria were gentle topographic slopes, with no signs of

forest fire, logging or other human land use. At Tuliok, 133

birch seedlings (<15 cm in height) and saplings (>15 cm–

2 m in height) were sampled (details given below) within

two sampling bands, covering 0.66 ha in total, stretching

from the local tree line and 80 and 50 altitudinal metres

into the tundra, respectively. In the analyses, the two

bands are merged to one data set. At altitudes beyond the

bands, birch is increasingly more scattered. In addition to

the sampling within the bands, the altitude of the most

advanced birch specimen was recorded. At Yumechorr 234

pine seedlings, saplings and trees (>2 m) were collected at

two sampling sub-sites, one at the tree line (n = 164) and

one above it (n = 70). The tree line sub-site covered

0.75 ha, and the above tree line sub-site covered 2 ha.

Scattered pine seedlings occurred also at altitudes above

the tree line sub-site, but the uppermost specimen was not

recorded. The difference in total area analysed at the birch

and pine site/sub-sites was due to the requirements to

sample at least 100 focal tree species individuals per site/

sub-site in the original studies. This was, however, not

fully met at the pine sub-site above the tree line due to low

pine density. Birch and pine seedlings <5 cm in height are

difficult to locate and could consequently be underrepre-

sented in the data sets. Height, age and location were

recorded for all seedlings, saplings and tree individuals of

the site-specific study species represented in the sampling

bands and sub-sites. The height was measured with a ruler

(resolution 1 cm) and age determined by coring (individu-

als with a stem diameter >3.5 cm) or cutting (stem diame-

ter <3.5 cm) at the stem base (i.e. at ground level).

Location coordinates were recorded with a hand-held GPS

(WGS84 datum, horizontal accuracy 10 m or better). The

cores were mounted on wooden supports, and all age sam-

ples (cores and basal stem sections) were dried and planed.

A dissecting microscope (6–409) was used for counting

tree rings and determining the year of establishment.

Ground level samples give high quality data for the year of

establishment, but an uncertainty of ca. 0–3 yr can be

expected due to possible variations in the exact coring

height.

Remote sensing data and processing

Changes in the tree line ecotone were mapped for the two

areas where the two field surveys were conducted by con-

touring the tree line positions on high-resolution images

from 1958 and 2006/2008. The contouring was done by

hand, by drawing a continuous line between the upper-

most trees (>2 m, judging from their shadow in the image)

along the slopes. The 1958 images covered both areas and

had a 2-m resolution (black-and-white air photos from 14

August 1958). For 2006/2008, two image dates were used:

a multispectral and panchromatic QuickBird satellite

image from 28 June 2006 (resolution 0.6 m) for Tuliok,

and a panchromatic WorldView satellite image from 29

July 2008 (resolution 0.5 m) for Yumechorr. The selection

of satellite images was based on availability, correspon-

dence to peak growing season in the study area, minimal

cloud coverage and maximization of the period between

airborne and satellite images.

To enable analyses of elevation changes in the tree line

contours digital elevation models (DEMs) were produced

for both sites. For Tuliok, a stereopair of GeoEye panchro-

matic satellite images from 2009 was used, and for Yume-

chorr overlapping black-and-white airborne images from

1958, with a scanned 1:50 000 topographic map as the ele-

vation data source were used (details of this process are

given in Appendix S1). Airborne images from 1958 were

then orthorectified (geo-referencing with terrain correc-

tion) using these DEMs, and satellite images (2006/2008)

were geo-referenced to the orthorectified 1958 airborne

images using image transformation with a second-order

polynomial equation (Leica Geosystems Geospatial

Imaging, Norcross, US), which provided positioning accu-

racy better than 10 m. Additionally, the images were visu-

ally quality checked to make local adjustments and achieve

image co-registration accurate at the individual tree level.

Tree line points containing the uppermost, scattered

trees of birch and pine were selected for tree elevation

recordings along the contoured tree lines (Fig. 3). These

points were horizontally separated by at least 500 m to

avoid local dependencies and to include a variety of micro-

climatic and microtopographic locations. The distance of

500 m was empirically selected for the Khibiny Moun-

tains, where significant changes in topography and soil
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conditions occur at much shorter distances (field-based

observations). For the Tuliok site, an approximately 13 km

horizontal stretch along the tree line ecotone was used for

the selection. As a first step in the selection procedure, ten

points along the 2006 tree line contour were selected

(visual-based selection on the geo-referenced QuickBird

image). Second, on the airborne image of 1958, we

selected the closest birch trees that were situated directly

downhill from the ten 2006 points. In this second step we

used, in addition, trees that had existed throughout the

period or other terrain features for precise spatial refer-

ence. In each selected 1958 and 2006 point, ten trees

(>2 m, judging from their shadow in the image) were

identified, their elevationwas extracted from the DEM and

averaged per point to represent the elevation of the points

along each individual time-specific tree line contour. At

the Yumechorr site, seven points along a 5-km horizontal

stretch containing the uppermost pine trees were selected,

and the same process as for the Tuliok site was repeated.

The smaller number of points at the Yumechorr site was

due to cloud and terrain shadow limitations of the airborne

image.

The interpretations of airborne and space-borne images

were performed after applying a ‘resolution merge’ proce-

dure in the ERDAS Imagine 9.1 software (Leica Geosys-

tems Geospatial Imaging). This procedure enables

combination of spectral information and spatial detail from

multispectral and panchromatic images. To test if the cal-

culated altitudinal tree line positions in 1958 and 2006/

2008 were significantly different from one other, a non-

parametric Wilcoxon rank sum test was performed using R

(R Foundation for Statistical Computing, Vienna, AT).

Age structure construction and climate–establishment

analysis

To enable comparisons between the sites, the seedling, sap-

ling and tree data were calculated to represent the number

of individuals per hectare by dividing the number of birch/

pine per site/sub-site by the size of the site/sub-site. The

birch establishment data covered the period 1960–2008

and the pine data 1878–2008 (only a few individuals origi-

nate from the period prior to 1960). The data from 1960

onwards were divided into two periods, 1960–1984 and

1985–2008, for temporal comparison of establishment

rates (i.e. given as mean number of individuals�ha�1�yr�1).
Daily climatic data from the Murmansk station were

used to calculate monthly, seasonal and annual climate

(a)

(b)

Fig. 3. Altitudinal tree line contour lines representing 1958 (broken line) and 2006/2008 (solid line) for (a) birch (Tuliok area) and (b) pine (Yumechorr area)

as derived from airborne and satellite images. Encircled numbers indicate the selected tree line point locations that were analysed along the lines. Field-

based sampling locations for tree population data are marked with TP in (a), and with TP and plot shapes in (b). Gaps in the tree line contour lines are

caused by shadows and clouds in the used images. Encircled tree line point numbers are congruent with numbers in Table 1, and area locations are

indicated in Fig. 1.
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data. The calculations included correction of precipitation

data recordings for the period 1947–1966 (due to change

of instruments) according to instructions from the All-Rus-

sian Research Institute of Hydrometeorological Informa-

tion. The winter period was set as December–February,

spring as March–May, summer as June–August and

autumn as September–November. The relationship

between establishment and mean monthly, seasonal and

annual temperature and precipitation was examined using

Pearson’s correlation analysis, with Bonferroni adjustment

of the significance level (a = 0.005/number of compari-

sons; Rice 1989). Due to possible error in exact determina-

tion of the establishment year, the establishment data and

climate data were analysed both on a 1-yr basis and a

merged 5-yr class basis. The period 1960–2004 was used in

the analysis to suit uniform 5-yr classes.

Results

For the remotely sensed birch and pine tree lines, the

mean advance between 1958 and 2006/2008 was 29 and

27 altitudinal metres, respectively (Table 1). Based on this,

the upward tree line migration rate was approximated to

0.6 m�yr�1 for birch and 0.5 m�yr�1 for pine. The Wilco-

xon rank sum test revealed non-significant differences

between the average altitudes of the species-specific tree

lines (Table 1). Individual differences between the tree line

points selected in the airborne (1958) and the satellite

images (2006/2008), respectively, ranged from �4 m to

69 m for birch and from 1 m to 53 m for pine (Table 1). At

the location of the tree population data collection sites, the

calculated advance was within these ranges and amounted

to 36 m for birch and 2 m for pine over the 50-yr period.

In accordance with the change detected by the remo-

tely sensed data, a range expansion was also apparent in

the tree population data (Figs 4 and 5). The establish-

ment (i.e. as represented by surviving individuals) of

birch was initiated in the 1960s and had a colonization

peak in the late 1980s (Fig. 2). From 1960 to 1984, birch

seedlings were established along the entire analysed alti-

tudinal range, with a mean establishment rate of

3.1 � 2.1 (mean � SD) individuals�ha�1�yr�1. In the per-

iod between 1985 and 2008, birch establishment contin-

ued along the entire studied altitudinal range (Fig. 4),

but with a higher mean establishment rate, 5.2 � 4.4

individuals�ha�1�yr�1. The birch specimen with most

advanced altitudinal position was found at 398 altitudinal

metres above the current tree line, and had reached a

height of 28 cm since it established in 1968.

The earliest establishment of pine originates from the

time before 1960, both at and above the tree line (Figs 2

and 5). After 1960, new individuals filled in between

already established individuals (Fig. 5), with establishment

peaks at the tree line in the 1970s and1990s (Fig. 2). Above

the tree line, there were no evident peak periods, but the

mean establishment rate for the two periods of comparison

varied somewhat, with 0.8 � 0.8 individuals�ha�1�yr�1
during 1960–1984 and 0.4 � 0.5 individuals�ha�1�yr�1
during the 1985–2008 time period. At the tree line, pine

establishmentwasmore abundant than above the tree line,

but similarly decreased slightly over time (Fig. 2):

4.4 � 2.5 individuals�ha�1�yr�1 during 1960–1984, and

3.3 � 2.9 individuals�ha�1�yr�1 between 1985 and 2008.

No strong correlations were found between monthly, sea-

sonal or annual climate variables and establishment, and

there was no indication of growing season restrictions on

establishment. The 1-yr values for birch establishment indi-

cated a weak association with March temperature, and a

similarly weak association was indicated for pine establish-

ment with annual precipitation (Appendix S2). The 5-yr-

based values indicated no correlation with climate for

either birch or pine (Appendix S2). When Bonferroni

adjusted, none of the correlationswas significant.

Discussion

The recorded tree line advance in the Khibiny Mountains

during the 1958 to 2006/2008 period is modest when

Table 1. Altitudinal tree line position (m a.s.l.) in 1958 and 2006/2008 and

calculated changes over the period for birch and pine, as retrieved from

airborne and satellite images.

Point 1958 2006/2008 Change P-value

Birch 1 419 452 32

2 482 495 13

3 451 520 69

4 545 577 32

5 521 517 �4
6 489 525 36

7 409 422 13

8 537 554 17

9 533 554 21

10 477 534 57

Average 486 515 29 0.186

TP 494 530 36

Pine 1 364 395 31

2 322 331 9

3 385 407 22

4 498 531 33

5 491 544 53

6 300 301 1

7 444 484 40

Average 401 428 27 0.535

TP 346 348 2

Values are given for individual points (for location see Fig. 1) and total

average per species. P-values are based on Wilcoxon rank sum tests. The

field-based tree population data (TP) given in italics are not included in the

calculated average change (bold).
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compared to global climate model-based predictions for

forest advance at high latitudes (ACIA 2005; IPCC 2007).

These predictions correspond to advance rates at the scale

of kilometres per year (ACIA 2005; Kaplan & New 2006),

which however remain to be empirically shown (Van

Bogaert et al. 2011; Hofgaard et al. 2013). Upward migra-

tion rates similar to those found in the Khibiny Mountains

are recorded for a number of areas in the circumpolar

north (i.e. 0.5–1.5 m�yr�1; Lloyd & Fastie 2003; Shiyatov

et al. 2007; Kullman & €Oberg 2009; Van Bogaert et al.

2011). Even if latitudinal and altitudinal advance are not

directly comparable, the implications of these much slower

advance rates, compared to current model-based assump-

tions, has to be recognized (Van Bogaert et al. 2011; Hofg-

aard et al. 2013).

Slow rates of change are challenging when monitoring

large areas, such as regional to circum-arctic tree line

ecotones, is required (Rees 2007; Montesano et al. 2009;

McManus et al. 2012). Even if the biological response to a

changing climate is immediate at tree level (Mathisen &

Hofgaard 2011), it might not be detectable remotely at lar-

ger spatial scales (Montesano et al. 2009). The recorded

advance of both birch and pine occurred through both tree

encroachment of non-treed areas and additional establish-

ment in areas of pre-established populations of scattered

trees and saplings. This infilling process changes and

shapes the ecotone (Danby & Hik 2007), but does not nec-

essarily cause an apparent advance of the ecotone or

advanced location of the outermost tree-sized individuals

(tree line markers). Instead, the slow advance characteriz-

ing the Khibiny Mountains study sites is accompanied by

an apparent infilling and densification of the treed part of

the ecotone (i.e. as shown for the pine site). This change in

land cover is a more prominent climate driver than tree

Fig. 4. Temporal and spatial recruitment distribution of birch individuals present above the birch tree line at the Tuliok site in July 2008 (location of the site

is indicated in Fig. 1). The panels show two sampling bands running from the local tree line uphill into the tundra. The band viewed in the upper panels is

20-mwide and spans 80 altitudinal metres, while the band in the lower panels is 10-m wide and spans 50 altitudinal metres.
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line change per se through its stronger link to surface radia-

tion and albedo (Harding et al. 2002; Chapin et al. 2005;

Bala et al. 2007; Hyv€onen et al. 2007), and can be more

efficiently monitored through remote sensing than

changes in tree line location, due to its lesser demand on

resolution (Rees 2007).

An infilling process promotes both continued recruit-

ment and survival within protective microhabitats of taller

individuals during both growing and non-growing seasons

(Bekker 2005; Batllori et al. 2009; Holtmeier & Broll

2010). However, to reach tree size, establishing individuals

must overcome exposure-related increased abiotic stress,

both when establishing in non-sheltered environments

and when protruding above sheltered environments

(Batllori et al. 2009; Hofgaard et al. 2009; Olofsson et al.

2009). In the Khibiny Mountains, and despite generally

increased abiotic stress at higher elevation, both species

revealed a clear potential for upward migration of the

ecotone through the abundance of seedlings and saplings

beyond the tree line. In addition, the age structures show-

ing increased establishment of both birch and pine saplings

indicate progressive recruitment typical for advancing tree

lines (Dalen & Hofgaard 2005; Aune et al. 2011). The sur-

vival and height growth success of this recruitment pool

will be deterministic to tree line advance (Sveinbj€ornsson

et al. 2002).

In contrast to many other high-latitude and altitude

areas of Europe, where an advancement of the tree line

can be explained as a combination of declines in human

land use and climate changes (Hofgaard 1997b; Cairns &

Moen 2004; Gehrig-Fasel et al. 2007; Batllori & Guti�errez

2008; Aune et al. 2011), the tree line ecotones of the Khib-

iny Mountains have been insignificantly affected by

human land use throughout the 20th century and until

the present time (Myagkova 1988; O.V. Tutubalina pers.

com.). Although establishment showed no clear relation to

Fig. 5. Temporal and spatial recruitment distribution of pine individuals present at the two sub-sites at the Yumechorr site in July 2008 (site location is

indicated in Fig. 1). Upper panel shows the above-tree line sub-site (eight merged 50 9 50-m squares) and the lower panels the tree line sub-site (three

merged 50 9 50-m squares).
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any climate variables, the recorded climate change in the

region (doubling of seasonal and annual precipitation over

the study period; Førland et al. 2009) is a plausible under-

lying cause of the ecotonal change in the region (Aune

et al. 2011). The lack of significant evidence for climate-

controlled ecotonal change in our data is likely related to

both climate data quality (long distance to the meteorolog-

ical station with daily data) and the uncertainty associated

with age determination of trees and saplings by coring and

cutting at ground level (Gutsell & Johnson 2002).

Increased precipitation during, for example, the growing

season, if not accompanied by increased temperature, gen-

erally causes fewer and less severe summer drought events

(Girardin et al. 2004). In addition, at high latitudes and

altitudes, increased precipitation during the non-growing

season usually generates thicker and longer-lasting snow

packs, which provides protection against browsing and

wind abrasion (Sturm et al. 2001; Hofgaard et al. 2009;

Holtmeier & Broll 2010), and supply of soil moisture early

in the growing season (Sveinbj€ornsson et al. 2002; Hol-

tmeier & Broll 2005). These season-related processes,

taken individually or combined, would favour survival

and growth of establishing tree species individuals, and

thus promote advancement of the tree line ecotone (Dan-

by & Hik 2007; Batllori & Guti�errez 2008; Elliott 2011).

Increased precipitation, particularly during the non-grow-

ing season, is one of the main features in climate scenarios

for the north European sub-arctic region (Førland et al.

2009). Consequently, a plausible response scenario for tree

line ecotones of the studied region would be continued

advance, characterized and accompanied by a precipita-

tion-driven infilling process.

Remotely sensed data alone provide valuable informa-

tion on past changes of the main ecotone features, such as

forest cover and distribution of larger trees, but no infor-

mation about on-going changes or potential for change.

Through combining remote sensing and dendroecological

studies, the risk of over- or underestimating potential tree

line advance can beminimized.When tree population data

alone are used, the occurrence of abundant seedlings and

saplings above the current tree line may be interpreted as a

sign of rapidly advancing tree lines, although combined

and partly counteracting abiotic and biotic drivers may

generate a deviating response pattern (i.e. stationary or

retreating; Dalen & Hofgaard 2005; Aune et al. 2011).

Contrary to this plausible overestimation of the potential

tree line advance, remote sensing data alone may underes-

timate the current potential due to the low or non-existent

detectability of small seedlings and saplings (but see Næsset

& Nelson (2007)). As a consequence, remote sensing-based

change rates, as recorded for the studied region, give a very

restricted view regarding change potential. The tree line

ecotone is a highly dynamic system and thus any study of

its changes will be challenging. Studies combining remote

sensing and ecological approaches are advantageous to

avoid misinterpretations, but generally not feasible over

larger spatial scales (due to cost and labour demands).

However, a balance between the two approaches is needed

for the production of high-quality information valid for

large regions, such as the high-latitude tree line ecotone.
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Botany 
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Tycho Anker-Nilssen Dr. scient 
Zoology 

Food supply as a determinant of reproduction and 
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 1992 Bjørn Munro Jenssen Dr. 
philos 
Zoology 

Thermoregulation in aquatic birds in air and water: 
With special emphasis on the effects of crude oil, 
chemically treated oil and cleaning on the thermal 
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 1992 Arne Vollan Aarset Dr. 
philos 
Zoology 

The ecophysiology of under-ice fauna: Osmotic 
regulation, low temperature tolerance and metabolism 
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 1993 Geir Slupphaug Dr. scient 
Botany 

Regulation and expression of uracil-DNA glycosylase 
and O6-methylguanine-DNA methyltransferase in 
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 1993 Tor Fredrik Næsje Dr. scient 
Zoology 
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 1993 Yngvar Asbjørn 
Olsen 

Dr. scient 
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Cortisol dynamics in Atlantic salmon, Salmo salar L.: 
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 1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

 1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

 1993 Thrine L. M. 
Heggberget 

Dr. scient 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra. 

 1993 Kjetil Bevanger Dr. 
scient. 
Zoology 

Avian interactions with utility structures, a biological 
approach. 

 1993 Kåre Haugan Dr. scient 
Bothany

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2

 1994 Peder Fiske Dr. 
scient. 
Zoology 

Sexual selection in the lekking great snipe (Gallinago
media): Male mating success and female behaviour at 
the lek 

 1994 Kjell Inge Reitan Dr. scient Nutritional effects of algae in first-feeding of marine 



Botany fish larvae 
 1994 Nils Røv Dr. scient 

Zoology 
Breeding distribution, population status and regulation 
of breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo 

 1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding 
of Red Raspberry (Rubus idaeus L.) 

 1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 

 1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine 
phytoplankton: Species-specific and photoadaptive 
responses 

 1994 Morten Bakken Dr. scient 
Zoology 
 

Infanticidal behaviour and reproductive performance 
in relation to competition capacity among farmed 
silver fox vixens, Vulpes vulpes 

 1994 Arne Moksnes Dr. 
philos 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo 

 1994 Solveig Bakken Dr. scient 
Bothany 

Growth and nitrogen status in the moss Dicranum 
majus Sm. as influenced by nitrogen supply 

 1994 Torbjørn Forseth Dr. scient 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes. 

 1995 Olav Vadstein Dr. 
philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus 
requirement, competitive ability and food web 
interactions 

 1995 Hanne Christensen Dr. scient 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated biphenyls 
(PCBs), human population density and competition 
with mink Mustela vision 

 1995 Svein Håkon 
Lorentsen 

Dr. scient 
Zoology 

Reproductive effort in the Antarctic Petrel 
Thalassoica antarctica; the effect of parental body 
size and condition 

 1995 Chris Jørgen Jensen Dr. scient 
Zoology 

The surface electromyographic (EMG) amplitude as 
an estimate of upper trapezius muscle activity 

 1995 Martha Kold 
Bakkevig 

Dr. scient 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport 

 1995 Vidar Moen Dr. scient 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and 
constraints on Cladoceran and Char populations 

 1995 Hans Haavardsholm 
Blom 

Dr. 
philos 
Bothany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden 

 1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae 

 1996 Ola Ugedal Dr. scient 
Zoology 

Radiocesium turnover in freshwater fishes 

 1996 Ingibjørg Einarsdottir Dr. scient 
Zoology 

Production of Atlantic salmon (Salmo salar) and 
Arctic charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to rearing 
routines 

 1996 Christina M. S. 
Pereira 

Dr. scient 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation 

 1996 Jan Fredrik Børseth Dr. scient 
Zoology 

The sodium energy gradients in muscle cells of 
Mytilus edulis and the effects of organic xenobiotics 



 1996 Gunnar Henriksen Dr. scient 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour 
seal Phoca vitulina in the Barents sea region 

 1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality in 
early first feeding of turbot Scophtalmus maximus L. 
larvae 

 1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to 
site and stand parameters 

 1997 Ole Reitan  Dr. 
scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming 

 1997 Jon Arne Grøttum  Dr. 
scient. 
Zoology 

Physiological effects of reduced water quality on fish 
in aquaculture 

 1997 Per Gustav Thingstad  Dr. 
scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher 

 1997 Torgeir Nygård  Dr. scient 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors 

 1997 Signe Nybø  Dr. 
scient. 
Zoology 

Impacts of long-range transported air pollution on 
birds with particular reference to the dipper Cinclus 
cinclus in southern Norway 

 1997 Atle Wibe  Dr. 
scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), 
analysed by gas chromatography linked to 
electrophysiology and to mass spectrometry 

 1997 Rolv Lundheim  Dr. scient 
Zoology 

Adaptive and incidental biological ice nucleators    

 1997 Arild Magne Landa Dr. scient 
Zoology 

Wolverines in Scandinavia: ecology, sheep 
depredation and conservation 

 1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural 
transformation in Acinetobacter calcoacetius 

 1997 Jarle Tufto  Dr. scient 
Zoology 

Gene flow and genetic drift in geographically 
structured populations: Ecological, population genetic, 
and statistical models 

 1997 Trygve Hesthagen  Dr. 
philos 
Zoology 

Population responces of Arctic charr (Salvelinus 
alpinus (L.)) and brown trout (Salmo trutta L.) to 
acidification in Norwegian inland waters 

 1997 Trygve Sigholt  Dr. 
philos 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar) 
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

 1997 Jan Østnes  Dr. scient 
Zoology 

Cold sensation in adult and neonate birds 

 1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases 
and myrosinase-binding proteins 

 1998 Thor Harald Ringsby Dr. scient 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

 1998 Erling Johan Solberg Dr. 
scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

 1998 Sigurd Mjøen 
Saastad 

Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex 
(Bryophyta): genetic variation and phenotypic 



plasticity 
 1998 Bjarte Mortensen Dr. scient 

Botany 
Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro 

 1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine 
grasslands. – A conservtaion biological approach 

 1998 Bente Gunnveig Berg Dr. scient 
Zoology 

Encoding of pheromone information in two related 
moth species 

 1999 Kristian Overskaug Dr. scient 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

 1999 Hans Kristen 
Stenøien 

Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 

 1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning 
in the outlying haylands at Sølendet, Central Norway 

 1999 Ingvar Stenberg Dr. scient 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos 

 1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis 

 1999 Trina Falck Galloway Dr. scient 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

 1999 Marianne Giæver Dr. scient 
Zoology 

Population genetic studies in three gadoid species: 
blue whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus 
morhua) in the North-East Atlantic 

 1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus 

 1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon 
(Salmo salar) revealed by molecular genetic 
techniques 

 1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

 1999 Stein-Are Sæther Dr. 
philos 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

 1999 Katrine Wangen 
Rustad 

Dr. scient 
Zoology 

Modulation of glutamatergic neurotransmission 
related to cognitive dysfunctions and Alzheimer’s 
disease 

 1999 Per Terje Smiseth Dr. scient 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica) 

 1999 Gunnbjørn Bremset Dr. scient 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown 
trout (Salmo trutta L.) inhabiting the deep pool 
habitat, with special reference to their habitat use, 
habitat preferences and competitive interactions 

 1999 Frode Ødegaard Dr. scient 
Zoology 

Host spesificity as parameter in estimates of 
arhrophod species richness 

 1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, 
secretory phospholipase A2 

 2000 Ingrid Salvesen Dr. scient Microbial ecology in early stages of marine fish: 



Botany Development and evaluation of methods for microbial 
management in intensive larviculture 

  2000 Ingar Jostein Øien Dr. scient 
Zoology

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race

 2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial econtrol of live food used 
for the rearing of marine fish larvae 

  2000 Sigbjørn Stokke Dr. scient 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana) 

 2000 Odd A. Gulseth Dr. 
philos 
Zoology 

Seawater tolerance, migratory behaviour and growth 
of Charr, (Salvelinus alpinus), with emphasis on the 
high Arctic Dieset charr on Spitsbergen, Svalbard 

 2000 Pål A. Olsvik Dr. scient 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 

 2000 Sigurd Einum Dr. scient 
Zoology 

Maternal effects in fish: Implications for the evolution 
of breeding time and egg size 

 2001 Jan Ove Evjemo Dr. scient 
Zoology 

Production and nutritional adaptation of the brine 
shrimp Artemia sp. as live food organism for larvae of 
marine cold water fish species 

 2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 

 2001 Ingebrigt Uglem Dr. scient 
Zoology 

Male dimorphism and reproductive biology in 
corkwing wrasse (Symphodus melops L.) 

 2001 Bård Gunnar Stokke Dr. scient 
Zoology 

Coevolutionary adaptations in avian brood parasites 
and their hosts 

 2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer 
(Rangifer tarandus platyrhynchus) 

 2002 Mariann Sandsund Dr. scient 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

 2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

 2002 Frank Rosell Dr. scient 
Zoology 

The function of scent marking in beaver (Castor fiber) 

 2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

 2002 Terje Thun Dr.philos 
Biology 

Dendrochronological constructions of Norwegian 
conifer chronologies providing dating of historical 
material 

 2002 Birgit Hafjeld Borgen Dr. scient 
Biology

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth

 2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of 
dominating tree species along major environmental 
gradients 

 2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in 
cellular organisms. Studies of RAC GTPases in 
Arabidopsis thaliana and the Ral GTPase from 
Drosophila melanogaster 

 2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

 2003 Jens Rohloff Dr. 
philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

 2003 Åsa Maria O. 
Espmark Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L. 

 2003 Dagmar Hagen Dr. scient Assisted recovery of disturbed arctic and alpine 



Biology vegetation – an integrated approach 
 2003 Bjørn Dahle Dr. scient 

Biology 
Reproductive strategies in Scandinavian brown bears 

 2003 Cyril Lebogang 
Taolo 

Dr. scient 
Biology 

Population ecology, seasonal movement and habitat 
use of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

 2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species 
(Helicoverpa armigera, Helicoverpa assulta and 
Heliothis virescens) 

 2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 

 2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to 
species interaction and microclimatic gradients in 
alpine and Artic environments 

 2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 

 2003 Eldar Åsgard 
Bendiksen 

Dr.scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo Salar L.) parr and smolt 

 2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae (Polychaeta, Nereididae) 

 2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 

 2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein 
complex in Arabidopsis thaliana 

 2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on central Norway; recent 
past, present state and future possibilities 

 2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory learning of plant 
odours in heliothine moths. An anatomical, 
physiological and behavioural study of three related 
species (Heliothis virescens, Helicoverpa armigera 
and Helicoverpa assulta) 

 2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the 
natural environment 

 2004 Emmanuel J. Gerreta Dr. 
philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

 2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

 2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in 
cultivated strawberry (Fragaria x ananassa): 
characterisation and induction of the gene following 
fruit infection by Botrytis cinerea 

 2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-
Term Food Shortage 

 2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR 
analysis of whole-cell samples 

 2005  Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic Polymorphisms 

 2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

 2005 Tonette Røstelien ph.d Functional characterisation of olfactory receptor 



Biology neurone types in heliothine moths 
 2005 Erlend Kristiansen Dr.scient 

Biology 
Studies on antifreeze proteins 

 2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus 
grypus) pups and their impact on plasma thyrid 
hormone and vitamin A concentrations 

 2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper trapezius 

 2005 Lasse Mork Olsen ph.d 
Biology 

Interactions between marine osmo- and phagotrophs 
in different physicochemical environments 

 2005 Åslaug Viken ph.d 
Biology 

Implications of mate choice for the management of 
small populations 

 2005 Ariaya Hymete Sahle 
Dingle 

ph.d 
Biology 

Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

 2005 Anders Gravbrøt 
Finstad 

ph.d 
Biology 

Salmonid fishes in a changing climate: The winter 
challenge 

 2005 Shimane Washington 
Makabu 

ph.d 
Biology 

Interactions between woody plants, elephants and 
other browsers in the Chobe Riverfront, Botswana 

 2005 Kjartan Østbye Dr.scient 
Biology 

The European whitefish Coregonus lavaretus (L.) 
species complex: historical contingency and adaptive 
radiation 

 2006 Kari Mette Murvoll ph.d 
Biology 

Levels and effects of persistent organic pollutans 
(POPs) in seabirds 
Retinoids and -tocopherol –  potential biomakers of 
POPs in birds?  

 2006 Ivar Herfindal Dr.scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 

 2006 Nils Egil Tokle ph.d 
Biology 

Are the ubiquitous marine copepods limited by food 
or predation? Experimental and field-based studies 
with main focus on Calanus finmarchicus 

 2006 Jan Ove Gjershaug Dr.philos 
Biology 

Taxonomy and conservation status of some booted 
eagles in south-east Asia 

 2006 Jon Kristian Skei Dr.scient 
Biology 

Conservation biology and acidification problems in 
the breeding habitat of amphibians in Norway 

 2006 Johanna Järnegren ph.d 
Biology 

Acesta Oophaga and Acesta Excavata – a study of 
hidden biodiversity 

 2006 Bjørn Henrik Hansen ph.d 
Biology 

Metal-mediated oxidative stress responses in brown 
trout (Salmo trutta) from mining contaminated rivers 
in Central Norway 

 2006 Vidar Grøtan ph.d 
Biology 

Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

 2006 Jafari R Kideghesho ph.d 
Biology 

Wildlife conservation and local land use conflicts in 
western Serengeti, Corridor Tanzania 

 2006 Anna Maria Billing ph.d 
Biology 

Reproductive decisions in the sex role reversed 
pipefish Syngnathus typhle: when and how to invest in 
reproduction 

 2006 Henrik Pärn ph.d 
Biology 

Female ornaments and reproductive biology in the 
bluethroat 

 2006 Anders J. Fjellheim ph.d 
Biology 

Selection and administration of probiotic bacteria to 
marine fish larvae 

 2006 P. Andreas Svensson ph.d 
Biology 

Female coloration, egg carotenoids and reproductive 
success: gobies as a model system 

 2007 Sindre A. Pedersen ph.d 
Biology 

Metal binding proteins and antifreeze proteins in the 
beetle Tenebrio molitor 
- a study on possible competition for the semi-



essential amino acid cysteine 
 2007 Kasper Hancke ph.d 

Biology 
Photosynthetic responses as a function of light and 
temperature: Field and laboratory studies on marine 
microalgae 

 2007 Tomas Holmern ph.d 
Biology 

Bushmeat hunting in the western Serengeti: 
Implications for community-based conservation 

 2007 Kari Jørgensen ph.d 
Biology 

Functional tracing of gustatory receptor neurons in the 
CNS and chemosensory learning in the moth Heliothis 
virescens 

 2007  Stig Ulland ph.d 
Biology 

Functional Characterisation of Olfactory Receptor 
Neurons in the Cabbage Moth, (Mamestra brassicae 
L.) (Lepidoptera, Noctuidae). Gas Chromatography 
Linked to Single Cell Recordings and Mass 
Spectrometry 

 2007 Snorre Henriksen ph.d 
Biology 

Spatial and temporal variation in herbivore resources 
at northern latitudes 

 2007 Roelof Frans May ph.d 
Biology 

Spatial Ecology of Wolverines in Scandinavia  
 

 2007 Vedasto Gabriel 
Ndibalema 

ph.d 
Biology 

Demographic variation, distribution and habitat use 
between wildebeest sub-populations in the Serengeti 
National Park, Tanzania 

 2007 Julius William 
Nyahongo 

ph.d 
Biology 

Depredation of Livestock by wild Carnivores and 
Illegal Utilization of Natural Resources by Humans in 
the Western Serengeti, Tanzania 

 2007 Shombe Ntaraluka 
Hassan 

ph.d 
Biology 

Effects of fire on large herbivores and their forage 
resources in Serengeti, Tanzania 

 2007 Per-Arvid Wold ph.d 
Biology 

Functional development and response to dietary 
treatment in larval Atlantic cod (Gadus morhua L.) 
Focus on formulated diets and early weaning 

 2007 Anne Skjetne 
Mortensen 

ph.d 
Biology 

Toxicogenomics of Aryl Hydrocarbon- and Estrogen 
Receptor Interactions in Fish: Mechanisms and 
Profiling of Gene Expression Patterns in Chemical 
Mixture Exposure Scenarios 

  2008 Brage Bremset 
Hansen 

ph.d 
Biology 

The Svalbard reindeer (Rangifer tarandus 
platyrhynchus) and its food base: plant-herbivore 
interactions in a high-arctic ecosystem 

  2008 Jiska van Dijk ph.d 
Biology 

Wolverine foraging strategies in a multiple-use 
landscape 

  2008 Flora John Magige ph.d 
Biology 

The ecology and behaviour of the Masai Ostrich 
(Struthio camelus massaicus) in the Serengeti 
Ecosystem, Tanzania 

  2008 Bernt Rønning ph.d 
Biology 

Sources of inter- and intra-individual 
variation in basal metabolic rate in the zebra 
finch, (Taeniopygia guttata) 

  2008 Sølvi Wehn ph.d  
Biology 

Biodiversity dynamics in semi-natural 
mountain landscapes.  
- A study of consequences of changed 
agricultural practices in Eastern Jotunheimen 

  2008 Trond Moxness 
Kortner 

ph.d 
Biology 

"The Role of Androgens on previtellogenic 
oocyte growth in Atlantic cod (Gadus 
morhua): Identification and patterns of 
differentially expressed genes in relation to 
Stereological Evaluations" 

  2008 Katarina Mariann 
Jørgensen 

Dr.Scient 
Biology 

The role of platelet activating factor in 
activation of growth arrested keratinocytes 
and re-epithelialisation 



  2008 Tommy Jørstad ph.d 
Biology 

Statistical Modelling of Gene Expression 
Data 

  2008 Anna Kusnierczyk ph.d 
Bilogy

Arabidopsis thaliana Responses to Aphid 
Infestation

  2008 Jussi Evertsen ph.d 
Biology 

Herbivore sacoglossans with photosynthetic 
chloroplasts 
 

  2008 John Eilif Hermansen ph.d 
Biology 

Mediating ecological interests between locals and 
globals by means of indicators. A study attributed to 
the asymmetry between stakeholders of tropical forest 
at Mt. Kilimanjaro, Tanzania 

  2008 Ragnhild Lyngved ph.d 
Biology 

Somatic embryogenesis in Cyclamen persicum. 
Biological investigations and educational aspects of 
cloning 

  2008 Line Elisabeth  
Sundt-Hansen 

ph.d 
Biology 

Cost of rapid growth in salmonid fishes 
 

  2008 Line Johansen ph.d 
Biology 

Exploring factors underlying fluctuations in white 
clover populations – clonal growth, population 
structure and spatial distribution 

  2009 Astrid Jullumstrø 
Feuerherm 

ph.d 
Biology 

Elucidation of molecular mechanisms for pro-
inflammatory phospholipase A2 in chronic disease 

  2009 Pål Kvello ph.d 
Biology 

Neurons forming the network involved in gustatory 
coding and learning in the moth Heliothis virescens: 
Physiological and morphological characterisation, and 
integration into a standard brain atlas 

  2009 Trygve Devold 
Kjellsen 

ph.d 
Biology 

Extreme Frost Tolerance in Boreal Conifers 

  2009 Johan Reinert Vikan ph.d 
Biology 

Coevolutionary interactions between common 
cuckoos Cuculus canorus and Fringilla finches 

  2009 Zsolt Volent ph.d 
Biology 

Remote sensing of marine environment: Applied 
surveillance with focus on optical properties of 
phytoplankton, coloured organic matter and 
suspended matter 

  2009 Lester Rocha ph.d 
Biology 

Functional responses of perennial grasses to simulated 
grazing and resource availability 

  2009 Dennis Ikanda ph.d 
Biology 

Dimensions of a Human-lion conflict: Ecology of 
human predation and persecution of African lions 
(Panthera leo) in Tanzania 

  2010 Huy Quang Nguyen ph.d 
Biology 

Egg characteristics and development of larval 
digestive function of cobia (Rachycentron canadum) 
in response to dietary treatments 
-Focus on formulated diets 

  2010 Eli Kvingedal ph.d 
Biology 

Intraspecific competition in stream salmonids: the 
impact of environment and phenotype 

  2010 Sverre Lundemo ph.d 
Biology 

Molecular studies of genetic structuring and 
demography in Arabidopsis from Northern Europe 

  2010 Iddi Mihijai Mfunda  ph.d 
Biology 

Wildlife Conservation and People’s livelihoods: 
Lessons Learnt and Considerations for Improvements. 
Tha Case of Serengeti Ecosystem, Tanzania 

  2010 Anton Tinchov 
Antonov 

ph.d 
Biology 

Why do cuckoos lay strong-shelled eggs? Tests of the 
puncture resistance hypothesis 

  2010 Anders Lyngstad ph.d 
Biology 

Population Ecology of Eriophorum latifolium, a 
Clonal Species in Rich Fen Vegetation 

  2010 Hilde Færevik ph.d 
Biology 

Impact of protective clothing on thermal and cognitive 
responses 

  2010 Ingerid Brænne Arbo ph.d Nutritional lifestyle changes – effects of dietary 



Medical 
technolo
gy 

carbohydrate restriction in healthy obese and 
overweight humans 

  2010 Yngvild Vindenes ph.d 
Biology 

Stochastic modeling of finite populations with 
individual heterogeneity in vital parameters 

  2010 Hans-Richard 
Brattbakk 

ph.d 
Medical 
technolo
gy 

The effect of macronutrient composition, insulin 
stimulation, and genetic variation on leukocyte gene 
expression and possible health benefits 

  2011 Geir Hysing Bolstad ph.d 
Biology 

Evolution of Signals: Genetic Architecture, Natural 
Selection and Adaptive Accuracy 

  2011 Karen de Jong ph.d 
Biology 

Operational sex ratio and reproductive behaviour in 
the two-spotted goby (Gobiusculus flavescens) 

  2011 Ann-Iren Kittang ph.d 
Biology 

Arabidopsis thaliana L. adaptation mechanisms to 
microgravity through the EMCS MULTIGEN-2 
experiment on the ISS:– The science of space 
experiment integration and adaptation to simulated 
microgravity 

  2011 
 

Aline Magdalena Lee ph.d 
Biology 

Stochastic modeling of mating systems and their 
effect on population dynamics and genetics 

  2011 
 

Christopher 
Gravningen Sørmo 

ph.d 
Biology 

Rho GTPases in Plants: Structural analysis of ROP 
GTPases; genetic and functional 
studies of MIRO GTPases in Arabidopsis thaliana 

  2011 Grethe Robertsen ph.d 
Biology 

Relative performance of  salmonid phenotypes across 
environments and competitive intensities 

  2011 
 
 

Line-Kristin Larsen ph.d 
Biology 

Life-history trait dynamics in experimental 
populations of guppy (Poecilia reticulata): the role of 
breeding regime and captive environment 

  2011 Maxim A. K. 
Teichert 
 

ph.d 
Biology 

Regulation in Atlantic salmon (Salmo salar): The 
interaction between habitat and density 

  2011 Torunn Beate Hancke ph.d 
Biology 

Use of Pulse Amplitude Modulated (PAM) 
Fluorescence and Bio-optics for Assessing Microalgal 
Photosynthesis and Physiology 

  2011 Sajeda Begum ph.d  
Biology 

Brood Parasitism in Asian Cuckoos: Different Aspects 
of Interactions between Cuckoos and their Hosts in 
Bangladesh 

  2011 Kari J. K. Attramadal ph.d 
Biology 

Water treatment as an approach to increase microbial 
control in the culture of cold water marine larvae 

  2011 Camilla Kalvatn 
Egset

ph.d 
Biology

The Evolvability of Static Allometry: A Case Study 

  2011 AHM Raihan Sarker ph.d 
Biology 

Conflict over the conservation of the Asian elephant 
(Elephas maximus) in Bangladesh 

  2011 Gro Dehli Villanger ph.d 
Biology 

Effects of complex organohalogen contaminant 
mixtures on thyroid hormone homeostasis in selected 
arctic marine mammals 

  2011 Kari Bjørneraas ph.d 
Biology 

Spatiotemporal variation in resource utilisation by a 
large herbivore, the moose 

  2011 John Odden ph.d 
Biology 

The ecology of a conflict: Eurasian lynx depredation 
on domestic sheep 

  2011 Simen Pedersen ph.d 
Biology

Effects of native and introduced cervids on small 
mammals and birds

  2011  Mohsen Falahati-
Anbaran 

ph.d 
Biology 

Evolutionary consequences of seed banks and seed 
dispersal in Arabidopsis 

  2012 Jakob Hønborg 
Hansen 

ph.d 
Biology 

Shift work in the offshore vessel fleet: circadian 
rhythms and cognitive performance 



  2012 
 

2012 

Elin Noreen 
 
 Irja Ida Ratikainen 

ph.d 
Biology 
ph.d 
Biology 

Consequences of diet quality and age on life-history 
traits in a small passerine bird 
Theoretical and empirical approaches to studying 
foraging decisions: the past and future of behavioural 
ecology 

  2012 Aleksander Handå ph.d 
Biology 

Cultivation of mussels (Mytilus edulis):Feed 
requirements, storage and integration with salmon 
(Salmo salar) farming 

  2012 Morten Kraabøl ph.d 
Biology 

Reproductive and migratory challenges inflicted on 
migrant brown trour (Salmo trutta L) in a heavily 
modified river 

  2012 
 

2012 

Jisca Huisman 
 
Maria Bergvik 

ph.d 
Biology 
ph.d 
Biology

Gene flow and natural selection in Atlantic salmon 
 
Lipid and astaxanthin contents and biochemical post-
harvest stability in Calanus finmarchicus 

       
2012 

Bjarte Bye Løfaldli ph.d 
Biology 

Functional and morphological characterization of 
central olfactory neurons in the model insect Heliothis 
virescens. 

  2012 Karen Marie 
Hammer 

ph.d 
Biology. 

Acid-base regulation and metabolite responses in 
shallow- and deep-living marine invertebrates during 
environmental hypercapnia 

  2012 Øystein Nordrum 
Wiggen 

ph.d 
Biology 

Optimal performance in the cold 

  2012 Robert Dominikus 
Fyumagwa 

Dr. 
Philos. 

Anthropogenic and natural influence on disease 
prevalence at the human –livestock-wildlife interface 
in the Serengeti ecosystem, Tanzania 

  2012 Jenny Bytingsvik ph.d 
Biology 

Organohalogenated contaminants (OHCs) in polar 
bear mother-cub pairs from Svalbard, Norway  
Maternal transfer, exposure assessment and thyroid 
hormone disruptive effects in polar bear cubs 

  2012 Christer Moe 
Rolandsen 

ph.d 
Biology 

The ecological significance of space use and 
movement patterns of moose in a variable 
environment 

  2012 Erlend Kjeldsberg 
Hovland 

ph.d 
Biology 

Bio-optics and Ecology in Emiliania huxleyi Blooms: 
Field and Remote Sensing Studies in Norwegian 
Waters 

  2012 Lise Cats Myhre ph.d 
Biology 

Effects of the social and physical environment on 
mating behaviour in a marine fish 

  2012 
 

2012 

Tonje Aronsen 
 
Bin Liu 

ph.d 
Biology 
ph.d 
Biology 

Demographic, environmental and evolutionary aspects 
of sexual selection 
Molecular genetic investigation of cell separation and 
cell death regulation in Arabidopsis thaliana 

  2013 Jørgen Rosvold ph.d 
Biology 

Ungulates in a dynamic and increasingly human 
dominated landscape – A millennia-scale perspective 
 

  2013 Pankaj Barah ph.d 
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Integrated Systems Approaches to Study  
Plant Stress Responses 

  2013 Marit Linnerud ph.d 
Biology 

Patterns in spatial and temporal variation in 
population abundances of vertebrates 

  2013 Xinxin Wang ph.d 
Biology 

Integrated multi-trophic aquaculture driven by

nutrient wastes released from Atlantic salmon 

(Salmo salar) farming

 




