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Abstract4

A single product maritime inventory routing problem (MIRP) in which the production5

and consumption rates vary over the planning horizon is studied. The problem includes6

a heterogeneous fleet and multiple production and consumption ports with limited storage7

capacity.8

Two discrete time formulations are developed. An original model is reformulated and9

appear as a fixed charge network flow model. Mixed integer sets arising from the decomposition10

of the formulations are identified. Several lot-sizing relaxations are derived for the formulations11

and used to establish valid inequalities to strengthen the proposed formulations.12

So far, the derivation of models and valid inequalities for MIRPs has mainly been inspired13

by the developments in the routing community. Here, we have developed a new model and14

new valid inequalities and generalized existing ones for MIRPs based on recent advances from15

the lot-sizing literature.16

Considering a set of instances based on real data, a computational study is conducted to17

test the formulations and the effectiveness of the inclusion of valid inequalities. By using a18

branch and bound scheme based on the strengthened fixed charge network formulation most19

of the instances with up to sixty time periods are solved to optimality.20

Keywords: Inventory routing, maritime transportation, mixed integer linear formulation, lot-21

sizing relaxations.22

1 Introduction23

Maritime transportation is a major mode of transportation covering more than 80% of the world24

trade by volume, UNCTAD [31]. Large quantities are transported over long distances, and often25
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inventories exist at the loading or discharge ports of the sailing legs. When one actor or coop-26

erating actors in the maritime supply chain have the responsibility of both the transportation of27

goods and the inventories at the ports, the underlying planning problem is a maritime inventory28

routing problem (MIRP). Such problems are very complex, but a modest improvement in the fleet29

utilization and loading/discharge quantities can translate into large increase in profit due to a30

capital intensive industry. This means that there is a great potential and need for research in the31

area of MIRPs.32

The problem analyzed in this paper is a single product MIRP. The product is produced at33

loading (production) ports and consumed at discharge (consumption) ports. It is possible to store34

the product in inventories with time dependent capacities at both types of ports. The production35

and consumption rates are deterministic but may vary over the planning horizon. There are berth36

capacities at the ports, limiting the number of ships that can load or discharge at the same time.37

A heterogeneous fleet of ships is used to transport the product. Each ship has a given capacity,38

speed, and loading/discharge rate. The ships can wait outside a port before entering for a loading39

or discharge operation. A ship can both load and discharge at multiple ports in succession. The40

initial position and load on board each ship is known at the beginning of the planning horizon.41

The sailing costs, waiting costs and port costs are all ship dependent. The planning problem is42

to design routes and schedules for the fleet that minimize the transportation and port costs and43

determine the load or discharge quantity at each port visit without exceeding the storage capacities.44

Depending on the segment the fleet is operating in, the typical planning period spans from one45

week up to several months.46

Maritime inventory routing problems have achieved increasing attention in the literature the47

last decade; see the surveys on MIRPs in Andersson et al. [3] and Christiansen and Fagerholt [5]48

and the general reviews on ship routing and scheduling by Christiansen et al. [7] and Christiansen49

et al. [8]. Most of the published contributions are based on real cases from the industry due to a50

demand for support when taking complex routing and inventory management decisions. Similar51

to the problem analyzed here, many of the studies describe single product MIRPs; see for instance52

Christiansen [4] and Flatberg et al. [12] considering ammonia supply chains, Furman et al. [13]53

focusing on the transportation of oil products and Grønhaug et al. [16] discussing liquefied natural54

gas (LNG) distribution. However, several cases are described in the literature where multiple55

products need to be taken into account; see for instance Al-Khayyal and Hwang [1], Christiansen56

et al. [6], Rakke et al. [23], Ronen [24], and Siswanto et al. [28].57

As discussed in both Andersson et al. [3] and Song and Furman [29], most combined maritime58

routing and inventory management problems described in the literature are a particular version59

of the MIRP and tailor-made methods are developed to solve the problem. These methods are60
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often based on heuristics or decomposition techniques. The choice of these solution approaches61

might be explained by the high complexity of real MIRPs and the opportunity to utilize the62

special structure of the problem. However, constant hardware developments combined with the63

theoretical advances in optimization techniques have produced optimization solvers capable of64

handling increasingly larger instances. Currently, it is possible to obtain optimal or near optimal65

solutions to small real instances occurring in maritime transportation problems using commercial66

solvers, see Agra et al. [2], and Sherali and Al-Yakoob [26, 27]. It is well-known that the choice67

of mathematical formulation for mixed integer programming problems is of crucial importance to68

efficiently solve a problem, Nemhauser and Wolsey [18]. This makes the study of the mathematical69

formulation a key issue to solve larger MIRPs.70

The study of valid inequalities for mixed integer sets and the derivation of extended formulations71

is currently receiving large attention both in solving routing and lot-sizing problems. However, rela-72

tively little work has been done on applying these techniques to maritime transportation problems.73

Sherali et al. [25] include valid inequalities in order to strengthen the formulations of an oil products74

transportation problem, and Persson and Göthe-Lundgren [19] develope valid inequalities within75

a column generation approach for a combined MIRP and production scheduling problem. Also,76

Grønhaug et al. [16] include valid inequalities to improve the path flow formulation presented for77

an LNG inventory routing problem. Agra et al. [2] develop strong mixed integer formulations for a78

short sea fuel oil distribution problem. Finally, Song and Furman [29] present valid inequalities for79

MIRPs including several practical constraints for solving problems in different shipping segments.80

Even though Savelsbergh and Song [30] do not handle a MIRP, their inventory routing problem81

has many parallels to the MIRP studied in this paper and is relevant due to the formulation and82

valid inequalities presented.83

The objective of this research has been to study a general MIRP with time varying production84

and consumption rates and to develop tight mixed integer linear programming formulations for85

the problem. Therefore the paper starts with a formulation called the original formulation for the86

MIRP studied, and then a stronger formulation which is a fixed charge network flow formulation87

(FCNF) is presented. In addition, valid inequalities for the problem are developed that are based on88

known families of valid inequalities from the lot-sizing literature. Several of these valid inequalities89

can potentially be used for other inventory routing problems and in tailor-made solution approaches90

such as column generation to solve even larger instances than those presented here. Research on91

models and valid inequalities for inventory routing problems has mainly come from the routing92

community. Now, we develop a new model and valid inequalities for the MIRP from the lot-sizing93

theory.94

The remainder of the paper is organized as follows. Section 2 presents the two alternative mixed95
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integer linear formulations for the MIRP. In Sections 3 and 4 several mixed integer relaxations are96

derived for the formulations. These relaxations are used to develop valid inequalities to strengthen97

the proposed formulations. Section 5 presents the computational study. Some concluding remarks98

follow in Section 6.99

2 Problem formulations100

To formulate the problem as a mixed integer linear program, a number of modeling decisions have101

been made. The first consideration is whether to work with continuous or discrete time periods.102

Continuous time models can be found in the literature for the MIRP when the production and/or103

consumption rates are considered given and fixed during the planning horizon; see for instance104

Christiansen [4], Al-Khayyal and Hwang [1], and Siswanto et al. [28]. In Ronen [24], Grønhaug105

and Christiansen [15], Grønhaug et al. [16], Engineer et al. [11], Furman et al. [13], Rakke et al.106

[23], and Song and Furman [29] discrete time models are developed to overcome the complicating107

factors with variable production and consumption rates. Since both production and consumption108

rates may vary over the planning horizon in the problem described in this paper, discrete time109

formulations are proposed. It is therefore assumed that the waiting time, the time for loading and110

discharge and the sailing times can be expressed as an integer multiple of a basic time period. The111

length of the time period depends on the actual shipping segment.112

In each time period, a ship can either be waiting, operating in port (loading or discharging),113

or sailing. In the following, we will use the terms operating in port or just operating for loading114

and discharging. It does not include any waiting or sailing. Two assumptions are made: i) a ship115

does not visit a port without carrying out a loading/discharge operation, and ii) waiting always116

takes place on arrival at a port before any port operations start. The first is natural while the117

second can in certain not very likely circumstances result in a worse optimal solution. We discuss118

how the models can be adapted if these assumptions are dropped at the end of Section 2. The119

assumptions imply that if a ship operates (loads or discharges) in a port in one time period, it can120

either continue to operate in that port or sail to another port in the next time period. It cannot121

wait in a port and sail to another port immediately after. This also means that if a ship waits122

outside a port in one time period, it can either continue waiting or start operating in the port in123

the next time period, but it cannot sail to another port before it has operated. When a ship has124

started operating in a port, it continues until it starts to sail. This means that it is not possible125

to wait for one or several time periods in a port after the loading/discharging has started.126

The movement of a ship is illustrated in the time expanded network in Figure 1. The ship127

starts at its initial position O and sails to Port 1. At Port 1 the ship operates for two periods128
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Figure 1: Example of the movement of a ship in a time expanded network. The arc labels are O

for operating, W for waiting and S for sailing.

(periods 4 and 5) before sailing to Port 3 where it waits for one period before operating. The ship129

then sails to Port 2 where it waits and operates before it ends its schedule. For modeling purposes130

it is assumed that the ship then sails to an artificial end node D. The sailing to this node is marked131

with a dashed line in Figure 1. Each path through the network defines a schedule for the ship. A132

schedule consists of a geographical route, i.e. a sequence of ports, and the time periods when the133

ship operates at the ports.134

In Section 2.1 a mixed integer linear formulation of the problem is given. This formulation has135

some similarities in the definitions of arc, quantity and load variables to other MIRP formulations.136

However, here the port operations are modeled in more detail than can be found in several other137

published discrete time MIRP models where the loading and discharge are assumed to take one138

time period or a given number of time periods independently of the quantity loaded/discharged;139

see for instance Song and Furman [29] and Grønhaug and Christiansen [15]. This means that the140

proposed models in this paper fit short sea shipping instances with long loading and discharge141

times relatively to the sailing times. The first model is called the original formulation. This142

formulation is then reformulated as a fixed charge network flow (FCNF) model in Section 2.2.143

The main difference between the models can be found in the precision of how the load on each144

ship is modeled. Some advantages with a FCNF formulation are that it leads to a tighter linear145

programming relaxation, and the formulation comes from an established literature with known146

families of valid inequalities.147

2.1 Original formulation148

To model the problem as a mixed integer linear program, the following notation is introduced149
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Sets150

NP set of production ports with indices i and j,

ND set of consumption ports with indices i and j,

N set of production and consumption ports with indices i and j, N = NP ∪ND,

T set of time periods with index t,

V set of ships with index v.

151

Parameters152

Bit berth capacity in number of ships at port i in time period t,

CT
ijv sailing cost from port i to port j with ship v,

CW
v waiting cost for ship v per time period,

CP
iv port cost at port i for ship v per time period,

Dit consumption at port i in period t,

Pit production at port i in period t,

Kv capacity of ship v,

L0
v initial load on board ship v,

Qv upper bound on the amount ship v loads/discharges per time period,

Sit upper bound on the inventory level at port i at the end of time period t,

Sit lower bound on the inventory level at port i at the end of time period t,

S0
i inventory level in port i at the beginning of the planning horizon,

o(v) initial position for ship v,

d(v) artificial end node for ship v,

Tijv sailing time from port i to port j for ship v.

153

Variables154

oivt 1 if ship v operates(loads/discharge) in port i in time period t, 0 otherwise,

xijvt 1 if ship v sails from port i to port j, starting in time period t, 0 otherwise,

wivt 1 if ship v is waiting outside port i in time period t, 0 otherwise,

lvt load on board ship v at the end of time period t,

qivt quantity loaded/discharged in time period t at port i by ship v,

sit inventory level in port i at the end of time period t.

155

Only variables associated with relevant nodes and arcs are defined, and the network construction156

is done implicitly within the model. The problem can now be formulated as follows157

min
∑
v∈V

∑
i∈N∪{o(v)}

∑
j∈N∪{d(v)}

∑
t∈T

CT
ijvxijvt +

∑
v∈V

∑
i∈N

∑
t∈T

CP
ivoivt +

∑
v∈V

∑
i∈N

∑
t∈T

CW
v wivt, (1)
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subject to:

∑
j∈N∪{d(v)}

∑
t∈T

xo(v)jvt = 1, ∀v ∈ V, (2)

∑
i∈N∪{o(v)}

∑
t∈T

xid(v)vt = 1, ∀v ∈ V, (3)

∑
j∈N∪{o(v)}

xjiv,t−Tjiv + wiv,t−1 + oiv,t−1 =

∑
j∈N∪{d(v)}

xijvt + wivt + oivt, ∀v ∈ V, i ∈ N, t ∈ T, (4)

oiv,t−1 ≤
∑

j∈N∪{d(v)}
xijvt + oivt, ∀v ∈ V, i ∈ N, t ∈ T, (5)

oiv,t−1 ≥
∑

j∈N∪{d(v)}
xijvt , ∀v ∈ V, i ∈ N, t ∈ T, (6)

∑
v∈V

oivt ≤ Bit, ∀i ∈ N, t ∈ T, (7)

0 ≤ qivt ≤ Qvoivt, ∀v ∈ V, i ∈ N, t ∈ T, (8)

si,t−1 +
∑
v∈V

qivt = Dit + sit, ∀i ∈ ND, t ∈ T, (9)

si,t−1 + Pit =
∑
v∈V

qivt + sit, ∀i ∈ NP , t ∈ T, (10)

Sit ≤ sit ≤ Sit, ∀i ∈ N, t ∈ T, (11)

si0 = S0
i , ∀i ∈ N, (12)

lv,t−1 +
∑
i∈NP

qivt −
∑
i∈ND

qivt − lvt = 0, ∀v ∈ V, t ∈ T, (13)

0 ≤ lvt ≤ Kv, ∀v ∈ V, t ∈ T, (14)

lv0 = L0
v, ∀v ∈ V, (15)

xijvt ∈ {0, 1},
∀v ∈ V, i ∈ N ∪ {o(v)},

j ∈ N ∪ {d(v)}, t ∈ T,
(16)

oivt, wivt ∈ {0, 1}, ∀v ∈ V, i ∈ N, t ∈ T. (17)

The objective function (1) is the sum of all sailing costs, operating costs and waiting costs.158

Constraints (2) and (3) ensure that each ship starts and finishes a schedule. Note that a ship159

can be idle the whole planning horizon by sailing directly from the initial node to the artificial160

end node. Constraints (4) are the ship flow conservation constraints at each port in each period.161

Constraints (5) prevent a ship from waiting at a port after an operation, while constraints (6) make162

sure that a ship can only sail after operating. The berth capacities are stated in constraints (7).163

Constraints (8) ensure that a ship cannot load/discharge if it is not in operating mode and defines164
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the upper bound on the quantity loaded/discharged. The inventory balances for consumption and165

production ports are expressed in constraints (9) and (10) respectively. Constraints (11) and (12)166

define the upper and lower inventory limits and the initial inventory. Constraints (13), (14), and167

(15) guarantee the equilibrium of the quantity on board the ship. All binary variable restrictions168

are stated in constraints (16) and (17).169

The connections between the variables in the formulation are shown in Figure 2. Ship v arrives170

at port i at the start of time period 2 and waits for one period before starting to discharge. The171

figure shows the movement of the ship through the x, w, and o variables, the quantity discharged172

from the ship, the q variables, the external demand, the D parameters, and the inventory lev-173

els at the discharge port, the s variables. Note that qivt only can be positive if the ship is in174

loading/discharge mode, i.e oivt = 1, qiv1 and qiv2 are therefore zero and not marked with bold175

arrows.176

0 1 2 3 4

2 3 4 5

qiv1 qiv2 qiv3 qiv4

wiv2 oiv3 oiv4

si0 si1 si2 si3

Di1 Di2 Di3 Di4

xjiv,2−Tjiv xikv5

Figure 2: Discharge operation at port i for ship v.

2.2 Fixed charge network flow formulation177

As the linear programming bounds provided by formulation (1) – (17) are weak, it is natural to try178

to strengthen the formulation. One way to do this is provided by the observation that the problem179

can be viewed as a single commodity fixed charge network flow (FCNF) problem in which the180

commodity is supplied externally at loading ports, flows along the arcs corresponding to the ships’181

routes before being deposited at the discharge ports where it can satisfy the external demands.182

This cannot be modeled in the network similar to that presented in Figure 2 since there it is183

possible for a ship to wait throughout its visit to a port and not operate at all. Thus we have chosen184

to model the problem as a single commodity FCNF problem. This allows us to take advantage of185

known inequalities for such problems. To keep the FCNF structure, an extended network is needed186

in which each arc representing either waiting or operating is split into one arc representing waiting187

and another arc representing operating. In addition each node in the upper layer in Figure 2 is188

split into one node in which a ship can enter the port and one node in which it can depart from189
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the port.190

Since a ship only can depart from a port after an operation, it is also necessary to distinguish191

between the first time the ship operates during each call to a port and the following operating192

periods. Thus new nodes and arcs are introduced along with the corresponding binary arc and193

flow variables in order to model the operations of the ship: oAivt indicates whether ship v starts to194

operate at port i in period t and oBivt indicates the succeeding operations at that port. Keep in195

mind that a ship has to load or discharge continuously in port when the ship has first started the196

port operation.197

Figure 3 illustrates the extended network corresponding to the situations shown in Figure 2.198

The ship has arrived at port i at the beginning of period 2, waits in period 2, starts operating199

(unloading) in period 3, continues operating in period 4 and then leaves for port k in period 5.200

The ship can only depart from the second layer, so it is forced to operate at least once.201

0 1 2 3 4

2 3 4 5

2 3 4 5

oBiv2 oBiv3 oBiv4

wiv2 wiv3 wiv4

oAiv2 oAiv3 oAiv4

xji,2−Tjiv xik5

qiv1 qiv2 qiv3 qiv4

si0 si1 si2 si3

Di1 Di2 Di3 Di4

Figure 3: Discharge operation at port i for ship v in the extended network.

With the new oAivt, o
B
ivt variables, the ship flow conservation constraints (4) now can be formu-

lated as

∑
j∈N∪{o(v)}

xjiv,t−Tjiv + wiv,t−1 = wivt + oAivt ∀v ∈ V, i ∈ N, t ∈ T, (18)

oAiv,t−1 + oBiv,t−1 = oBivt +
∑

j∈N∪{d(v)}
xijvt, ∀v ∈ V, i ∈ N, t ∈ T, (19)

oAivt, o
B
ivt ∈ {0, 1}, ∀v ∈ V, i ∈ N, t ∈ T, (20)

and together with constraints (2), (3), (16), and (17) they describe the movement of the ships202

through the extended network given in Figure 3.203
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The coordination between the path of the ships and the loading or discharge of the product in

a port is provided by the constraints

oAivt + oBivt = oivt, ∀v ∈ V, i ∈ N, t ∈ T, (21)

which also provide the link between the old and the new operating variables.204

To complete the fixed charge network flow formulation, the variable lvt and the constraints205

(13) – (15) describing the quantity on board the ships are replaced by flow variables and flow206

conservation constraints. A flow variable is defined for each arc in the extended network.207

fX
ijvt load on board ship v when traveling from port i to port j, leaving at time period t,

fOA
ivt load on board ship v when starting to operate at port i in time period t

when it has not operated in time period t− 1,

fOB
ivt load on board ship v before continuing to operate at port i in time period t

after an operation in time period t− 1,

fW
ivt load on board ship v while waiting during time period t at port i.

208

Hence, fX
ijvt, f

OA
ivt , f

OB
ivt and fW

ivt represent the flow on the arcs defined by the binary variables

xijvt, o
A
ivt, o

B
ivt and wivt, respectively. This leads to the flow conservation constraints:

∑
j∈N∪{o(v)}

fX
jiv,t−Tjiv

+ fW
iv,t−1 = fW

ivt + fOA
ivt ∀v ∈ V, i ∈ N, t ∈ T, (22)

fOA
iv,t−1 + fOB

iv,t−1 + qiv,t−1 = fOB
ivt +

∑
j∈N∪{d(v)}

fX
ijvt, ∀v ∈ V, i ∈ NP ∪ {o(v)}, t ∈ T, (23)

fOA
iv,t−1 + fOB

iv,t−1 − qiv,t−1 = fOB
ivt +

∑
j∈N∪{d(v)}

fX
ijvt, ∀v ∈ V, i ∈ ND ∪ {o(v)}, t ∈ T, (24)

fX
o(v)jvt = L0

vxo(v)jvt, ∀v ∈ V, j ∈ N ∪ {d(v)}, t ∈ T, (25)

and the variable upper bound and nonnegativity constraints:

0 ≤ fX
ijvt ≤ Kvxijvt ∀v ∈ V, i ∈ N ∪ {o(v)}, j ∈ N ∪ {d(v)}, t ∈ T, (26)

0 ≤ fOA
ivt ≤ Kvo

A
ivt ∀v ∈ V, i ∈ N, t ∈ T, (27)

0 ≤ fOB
ivt ≤ Kvo

B
ivt ∀v ∈ V, i ∈ N, t ∈ T, (28)

0 ≤ qivt ≤ Qvoivt ∀v ∈ V, i ∈ N, t ∈ T, (29)

0 ≤ fW
ivt ≤ Kvwivt ∀v ∈ V, i ∈ N, t ∈ T. (30)

The FCNF formulation is defined by (1) – (3), (7) – (12), (16), (17), and (18) – (30). We denote209

by X
FCNF the set of feasible solutions of the FCNF formulation.210

The original formulation can be related to the FCNF formulation as follows: (4) – (6) are211

replaced by (18) – (21) and (13) – (15) are replaced by (22) – (30). It can also be shown that212

constraints (4) – (6) and (13) – (15) are valid for the FCNF formulation, so that the FCNF213

formulation is stronger than the original formulation.214
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Figure 4: Solution of the linear relaxation using the original formulation. Next to each arc the

variable and its value is represented.

Example 2.1 Consider the following instance for T = {1, . . . , 30}, with one loading port NP =215

{1}, one discharge port ND = {2}, and a single ship. Thus, we omit the index v from variables216

and parameters. Assume the initial position o(v) coincides with Port 1. Let Bit = 1, ∀t ∈ T,217

CT
12 = CT

21 = 50, CW = 1, CP
1 = CP

2 = 2, D2t = 10, ∀t ∈ T, P1t = 10, ∀t ∈ T, K = Q = 50, L0 = 0,218

S1t = S2t = 0 S1t = S2t = 200 S0
1 = 0, S0

2 = 200 T12 = T21 = 5.219

220

The optimal solution has a total cost of 162. An optimal route is given by xo(v),1,1 = x1,2,6 =221

x1,2,18 = x2,1,12 = x2,d(v),24 = 1. There are two loading operations, in periods 5 and 17, and two222

unloading operations, in periods 11 and 23, all of them at the maximum load/unload level of 50.223

224

Using the original formulation, the value of the linear relaxation is 12. This cost mainly comes225

from the port operations. The transportation costs are very low because the routing variables are226

xo(v),1,6 = 0.08, xo(v),2,1 = 0.08. From period 6 to period 30, the ship simultaneously loads 4 units227

at port 1 and discharges 4 units at port 2. All the sailing variables between the two ports are zero.228

This happens because constraints (13) only ensure the equilibrium onboard the ship. There are229

no flow constraints linking each unit loaded at Port 1 to the same unit discharged at Port 2, see230

Figure 4.231

The linear relaxation of the FCNF formulation has value 160. In this case, there are many232

fractional routing variables (that for brevity we omit their values here) that ensure the connection233

between the two ports since the load flow constraints force any unit discharged at Port 2 to have234

been loaded at Port 1.235

In Figure 5 the graph corresponding to loading port i and ship v is depicted. The two top236

layers model the ship operations while the third layer is for the port inventory. If there is more237

than one ship, then the two top layers must be replicated with one such network for each ship.238
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Figure 5: Example of the fixed charge network flow model at loading port i, only ship v is shown.

The aggregate arriving and departing flows f
X

ivt and fX

ivt
are introduced to ease the presentation.239

Remark 2.2 If the initial model assumptions are dropped, i.e. obliging a ship to operate at least240

once during a visit to a port and imposing that a ship only waits before arrival at a port, it suffices241

to replace the equality (21) by the inequality oivt ≤ oAivt + oBivt. Now periods in which oAivt + oBivt = 1242

and oivt = 0 are waiting periods, so the cost term CW
v (oAivt + oBivt − oivt) must be added to the243

objective function. If a ship is forced to operate at least once, the constraint qivt ≥ Qoivt is added244

where Q > 0 is an appropriate minimum load/unload amount can be added.245

3 Strengthening the fixed charge network flow formulation246

The FCNF formulation can be tightened by adding inequalities that are valid inequalities for mixed247

integer sets derived as relaxations of the FCNF formulation. In this section several such relaxations248

are identified while Section 5 shows how the addition of valid inequalities for these relaxations can249

be very important in solving the test instances. The relaxations can be grouped into two major250

types: mixed integer relaxations resulting from single row relaxations along with simple or variable251

bound constraints, such as knapsack sets or single row mixed integer sets, and lot-sizing relaxations252

which can be regarded as sets with more structure. The sets of valid inequalities for different253

relaxations may overlap. In Pochet and Wolsey [22] a comprehensive study of valid inequalities254

and reformulations for the mixed integer sets used in this paper is given. Some inequalities that255

are discussed in this section, such as knapsack inequalities, are also valid or can be easily adapted256
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for the standard formulation.257

3.1 Mixed integer relaxations258

For each port, simple mixed integer relaxations are obtained from bounding the flow across cut-sets259

separating the given port from the remaining ports in the FCNF network.260

Loading ports261

The idea here is to look at the flow in and out of loading port i over a given time interval.262

Define the time interval T = [k, �] ⊆ T . For each ship v, define a set Tv ⊆ T representing a263

subset of the time periods in T in which ship v is assumed to operate at port i. Also define264

T+v = {t ∈ Tv : t+1 �∈ Tv} as the time periods in T followed immediately by the departure of ship v265

from port i and T−v = {t ∈ Tv : t− 1 �∈ Tv} as the time periods in T in which ship v starts operating266

at i.267

Summing the flow conservation constraints (24) for loading port i over all ships v ∈ V and time

periods t− 1 ∈ Tv, gives

∑
v∈V

∑
t∈Tv

qivt =
∑
v∈V

∑
t∈Tv

(fOB
iv,t+1 − fOB

ivt ) +
∑
v∈V

∑
j∈N∪{d(v)}

∑
t∈Tv

fX
ijv,t+1 −

∑
v∈V

∑
t∈Tv

fOA
ivt .

Using

∑
v∈V

∑
t∈Tv

(fOB
iv,t+1 − fOB

ivt ) =
∑
v∈V

∑
t∈T+v

fOB
iv,t+1 −

∑
v∈V

∑
t∈T−v

fOB
ivt

and nonnegativity of fOA
ivt and fOB

ivt gives

∑
v∈V

∑
t∈T

qivt ≤
∑
v∈V

⎛
⎝∑

t∈T+v
fOB
iv,t+1 +

∑
j∈N∪{d(v)}

∑
t∈Tv

fX
ijv,t+1 +

∑
t∈T\Tv

qivt

⎞
⎠ . (31)

Summing the inventory constraints (10) over T, and taking Sit as an under estimator of sit, i.e.

sit ≥ Sit, it follows from (31) that

sik +
∑
v∈V

⎛
⎝∑

t∈T+v
fOB
iv,t+1 +

∑
j∈N∪{d(v)}

∑
t∈Tv

fX
ijv,t+1 +

∑
t∈T\Tv

qivt

⎞
⎠ ≥

∑
t∈T

Pit + Si,�−1. (32)

Using the variable upper bound constraints (26) – (30), inequalities (32) imply:

sik+
∑
v∈V

⎛
⎝∑

t∈T+v
Kvo

B
iv,t+1 +

∑
j∈N∪{d(v)}

∑
t∈Tv

Kvxijv,t+1 +
∑

t∈T\Tv
Qvoivt

⎞
⎠ ≥

∑
t∈T

Pit+Si,�−1. (33)

Inequality (33) can be viewed as a continuous binary knapsack set {(s, y) ∈ R
1
+ × {0, 1}n :268 ∑n

j=1 ajyj ≤ b + s}, see Pochet and Wolsey [22].269
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Figure 6: Mixed integer knapsack relaxation for ship v at loading port i.

Replacing sik by its upper bound Sik gives knapsack sets. Valid inequalities for these knapsack

sets are valid for X
FCNF . Thus for arbitrary Q > 0, the following Chvátal-Gomory inequalities

are valid for XFCNF :

∑
v∈V

⎛
⎝∑

t∈T+v

⌈
Kv

Q

⌉
oBiv,t+1 +

∑
j∈N∪{d(v)}

∑
t∈Tv

⌈
Kv

Q

⌉
xijv,t+1 +

∑
t∈T\Tv

⌈
Qv

Q

⌉
oivt

⎞
⎠ ≥

⌈∑
t∈T Pit + Si,�−1 − Sik

Q

⌉
. (34)

In Section 5.1 appropriate values for parameter Q are considered.270

Example 3.1 Inequality (34) is derived for the situation illustrated in Figure 6. A loading port i,

a single ship v, and a time interval T = [1, 5] are given. Taking Tv = {2, 5}, implying that the ship

can leave the port in time periods 3 or 6, one has by definition T+v = {2, 5} and T−v = {2, 5}. The

ship has capacity Kv = 110 and loading rate Qv = 60. Assume S0
i = 90, Si5 = 120 and Pit = 20

for all t ∈ T . Choosing Q = Qv = 60, inequality (34) gives

2oBiv3 + 2oBiv6 + 2xiv3 + 2xiv6 + oiv1 + oiv3 + oiv4 ≥
⌈
100 + 90− 120

60

⌉
= 2

where xivt =
∑

j∈N,j �=i

xijvt.271

Two special cases of inequalities (34) lead to simpler inequalities. First, taking Tv = T implies

T+v = k and T \ Tv = ∅. Second, taking Tv = ∅ implies T+v = ∅ and T \ Tv = T. With K = max{Kv :
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v ∈ V } and Q = max{Qv : v ∈ V }, the corresponding knapsack inequalities are:

∑
v∈V

⎛
⎝oBiv,k+1 +

∑
t∈T

∑
j∈N∪{d(v)}

xijv,t+1

⎞
⎠ ≥

⌈∑
t∈T Pit + Si,�−1 − Sik

K

⌉
, (35)

∑
v∈V

∑
t∈T

oivt ≥
⌈∑

t∈T Pit + Si,�−1 − Sik

Q

⌉
, (36)

Note that all variables have binary coefficients in inequalities (35) and (36). Inequalities (35)272

impose a minimum number of ship departures and inequalities (36) impose a minimum number273

of loading periods at port i. These inequalities can also be generalized by aggregating over any274

nonempty subset of loading ports. Similar inequalities to (35) and (36) have been used for related275

problems, see Grønhaug et al. [16], Song and Furman [29], and Savelsbergh and Song [30].276

Other inequalities can also be derived for the continuous binary knapsack set. Dividing (33)

by Q > 0, one obtains:

sik
Q

+
∑
v∈V

⎛
⎝∑

t∈T+v

Kv

Q
oBiv,t+1 +

∑
j∈N∪{d(v)}

∑
t∈Tv

Kv

Q
xijv,t+1 +

∑
t∈T\Tv

Qv

Q
oivt

⎞
⎠ ≥

(∑
t∈T

Pit + Si,�−1

)
/Q.

Setting y =
∑

v∈V

(∑
t∈T+v

⌈
Kv

Q

⌉
oBiv,t+1 +

∑
j∈N∪{d(v)}

∑
t∈Tv

⌈
Kv

Q

⌉
xijv,t+1 +

∑
t∈T\Tv

⌈
Qv

Q

⌉
oivt

)
,

s = sik/Q and b =
(∑

t∈T Pit + Si,�−1

)
/Q, this becomes a basic-mip set of the form: {(s, y) ∈

R
1
+ × Z

1 : s+ y ≥ b} for which the simple mixed integer rounding inequality is derived:

s+ fy ≥ f
b� (37)

where f = b − �b. For a given Q > 0 and T, the separation problem for the inequalities (34)277

and (37) can be solved in polynomial time by finding a minimum capacity cut in a simple network278

similar to the one depicted in Figure 6, see Nemhauser and Wolsey [18] for more details.279

Discharge ports280

The simple mixed integer relaxations used to derive valid inequalities for loading ports, see Sec-281

tion 3.1, are based on ship arcs leaving a subgraph. For discharge ports the network structure is282

a little more complex since ship arcs entering a subgraph are used. This means that the subgraph283

includes all three layers of the network, see Figure 7, and the corresponding incident arcs.284

Define the time interval T = [�, k] ⊆ T as before. To construct the subgraph for ship v, T is285

partitioned into three disjoint sets R0
v, R

1
v, and R2

v. For all t ∈ T; if t ∈ R0
v, node t from the286

lowest layer is included in the subgraph, if t ∈ R1
v, node t and node t+ 1 are included in the287
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Figure 7: Cut for the fixed charge network flow formulation at discharge port i for ship v.

subgraph and if t ∈ R2
v, node t, node t+ 1, and node t are included in the subgraph. Also define288

T2v = {t ∈ R2
v : t − 1 �∈ R2

v} and T1v = {t ∈ R1
v ∪ R2

v : t − 1 �∈ (R1
v ∪ R2

v)}. In Figure 7 this gives289

R0
v = {1, 2, 5}, R1

v = {4}, R2
v = {3}, and T1v = T2v = {3}.290

Summing the inventory balance constraints (9) over T and using Sik as the lower bound on sik

gives the following inequalities written in terms of the partition R0
v, R

1
v, and R2

v

si,�−1 +
∑
v∈V

⎛
⎝∑

t∈R0
v

qivt +
∑
t∈R1

v

qivt +
∑
t∈R2

v

qivt

⎞
⎠ ≥

∑
t∈T

Dit + Sik. (38)

Summing the flow conservation constraints (22) and (24) over R2
v and R2

v ∪R1
v respectively gives

∑
t∈R2

v

fOA
ivt =

∑
t∈R2

v

⎛
⎝ ∑

j∈N∪{o(v)}
fX
jiv,t−Tjiv

+ fW
iv,t−1 − fW

ivt

⎞
⎠ , (39)

∑
t∈R2

v∪R1
v

(
fOA
iv,t−1 + fOB

iv,t−1 − qiv,t−1

)
=

∑
t∈R2

v∪R1
v

⎛
⎝fOB

ivt +
∑

j∈N∪{d(v)}
fX
ijvt

⎞
⎠ . (40)

Simplifying equations (39) by canceling out variables fW
ivt, and equations (40) by canceling out

variables fOB
ivt , and using the nonnegativity of fW

ivt, f
X
ijvt and fOB

ivt , we obtain from (38),

si,�−1 +
∑
v∈V

⎛
⎝∑

t∈R0
v

qivt +
∑
t∈R1

v

fOA
ivt +

∑
t∈R2

v

∑
j∈N∪{o(v)}

fX
jiv,t−Tji

+
∑
t∈T2v

fW
iv,t−1 +

∑
t∈T1v

fOB
ivt

⎞
⎠

≥
∑
t∈T

Dit + Sik. (41)
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Using the variable upper bound constraints (26) – (30), inequality (41) can be relaxed as follows:

si,�−1 +
∑
v∈V

⎛
⎝∑

t∈R0
v

Qvoivt +
∑
t∈R1

v

Kvo
A
ivt +

∑
j∈N∪{o(v)}

∑
t∈R2

v

Kvxjiv,t−Tjiv

+
∑
t∈T2v

Kvwiv,t−1 +
∑
t∈T1v

Kvo
B
ivt

⎞
⎠ ≥

∑
t∈T

Dit + Sik. (42)

Constraints (42) have the same structure as constraints (33) and are thus the defining con-

straints of continuous binary knapsack sets. Setting si,�−1 to its upper bound (Si,�−1 if � > 1 and

S0
i if � = 1) gives an integer knapsack constraint. Using Chvátal-Gomory rounding, we obtain for

arbitrary Q > 0

∑
v∈V

⎛
⎝∑

t∈R0
v

⌈
Qv

Q

⌉
oivt +

∑
t∈R1

v

⌈
Kv

Q

⌉
oAivt +

∑
j∈N∪{o(v)}

∑
t∈R2

v

⌈
Kv

Q

⌉
xjiv,t−Tjiv

+
∑
t∈T2v

⌈
Kv

Q

⌉
wiv,t−1 +

∑
t∈T1v

⌈
Kv

Q

⌉
oBivt

⎞
⎠ ≥

⌈∑
t∈TDit − Si,�−1 + Sik

Q

⌉
. (43)

Three special cases of these inequalities are obtained by setting R2
v = T, R1

v = T, and R0
v = T

respectively. Choosing K = max{Kv : v ∈ V } and Q = max{Qv : v ∈ V }, one obtains:

∑
v∈V

⎛
⎝ ∑

j∈N∪{o(v)}

∑
t∈T

xjiv,t−Tjiv + wiv,�−1 + oBiv�

⎞
⎠ ≥

⌈∑
t∈T Dit − Si,�−1 + Sik

K

⌉
, (44)

∑
v∈V

(∑
t∈T

oAivt + oBiv�

)
≥
⌈∑

t∈T Dit − Si,�−1 + Sik

K

⌉
, (45)

∑
v∈V

∑
t∈T

oivt ≥
⌈∑

t∈T Dit − Si,�−1 + Sik

Q

⌉
. (46)

Inequalities (44) establish the minimum number of arrivals at port i, (45) establish the minimum291

number of times a ship must start operating, and inequalities (46) impose a minimum number of292

operations. Inequalities (44) – (46) can be generalized for any nonempty subset of discharge ports.293

Example 3.2 Inequality (43) is derived for the situation illustrated in Figure 7 based on the

entering arcs crossing the cut-set shown. A discharge port i, a single ship v, and a time interval

T = [1, 5] are given. T is partitioned into R2
v = {3}, R1

v = {4}, and R0
v = {1, 2, 5}. The ship

has capacity Kv = 110 and its discharge rate is Qv = 60. Assume S0
i = 40, Si5 = 10 and

Dit = 20, ∀t ∈ T. Choosing Q = Qv = 60 then gives

oiv1 + oiv2 + 2oAiv4 + oiv5 + 2xiv3 + 2wiv2 + 2oBiv3 ≥
⌈
100− 40 + 10

60

⌉
= 2

where xivt =
∑

j∈N∪o(v),j �=i:u−Tji=t xjivu.294
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q̃it =
∑
v∈V

qivt
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Figure 8: A simple lot-sizing structure at discharge port i.

4 Lot-sizing relaxations295

In this section, several possible single item lot-sizing sets, see Pochet and Wolsey [22], that arise296

from relaxations and decompositions of XFCNF are presented. Single item lot-sizing is concerned297

with the production of a single product for which there is a demand Dt in each time period. To298

model the problem as a mixed integer program, the production qt in each period, the stock of the299

product st at the end of the period and a binary set-up variable taking the value ot = 1 if there is300

production in the period (qt > 0) are defined. Additional aspects involve upper and lower bounds301

on the stock, production capacity implying an upper bound Qt on the amount produced per period302

and start-up variables oAt = 1 if period t is the first period of an interval of set-ups (ot = 1 and303

ot−1 = 0). The variable ot can also be viewed as an integer variable, in which case it represents304

the number of batches of maximum size Q that is required to produce qt. As we will show below,305

this corresponds very closely to the situation in a discharge port, but it is also explained how to306

adapt it for loading ports.307

4.1 Constant capacitated lot-sizing relaxations308

The first lot-sizing relaxations that we derive correspond to one level of the fixed charge network at

discharge port i, see Figure 8, by taking into account a constant upper bound on the qivt variables.

The constraints (7) – (9), (11), (12), (17) lead to the relaxation

si,t−1 +
∑
v∈V

qivt = Dit + sit, ∀t ∈ T, (47)

0 ≤ qivt ≤ Qvoivt, ∀v ∈ V, t ∈ T, (48)∑
v∈V

oivt ≤ Bit, ∀t ∈ T, (49)

Sit ≤ sit ≤ Sit, ∀t ∈ T, (50)

si0 = S0
i , (51)

oivt ∈ {0, 1}, ∀v ∈ V, t ∈ T. (52)

For the constant capacity lot-sizing set, the upper bounds on the inventory level variables s are
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relaxed. The lower bounds on the same variables can then be eliminated. To do so, one first

updates the bounds as follows:

SM
it = S0

i if t = 0, and SM
it = max{Sit, Si,t−1 −Dit} if t ∈ T (53)

where SM
it is the modified lower bound and Si0 = S0

i . Now, a new net inventory level variable s̃it

and demand D̃it can be defined as:

s̃it = 0 if t = 0, and s̃it = sit − SM
it if t ∈ T, and D̃it = Dit − SM

i,t−1 + SM
it . (54)

Based on the subset (47) – (52) and setting q̃it =
∑

v∈V qivt, õit =
∑

v∈V oivt, and Q =

max{Qv : v ∈ V }, one obtains the constant capacitated lot-sizing set, LSCC, for discharge port i:

s̃i,t−1 + q̃it = D̃it + s̃it, ∀t ∈ T, (55)

q̃it ≤ Qõit, ∀t ∈ T, (56)

q̃it, s̃it ≥ 0, ∀t ∈ T, (57)

õit ∈ Z1
+ ∀t ∈ T. (58)

If it is assumed that the berth capacity Bit = 1, then (58) becomes õit ∈ {0, 1}. Several valid

inequalities for LSCC are known, see Pochet and Wolsey [20]. For discharge port i, a relaxation of

(55)-(58), known as the Wagner-Whitin relaxation WWCC, can now be given:

s̃i,k−1 +Q

t∑
u=k

õiu ≥
t∑

u=k

D̃iu, ∀k ∈ T, t ∈ T, k ≤ t,

s̃it ≥ 0, õit ∈ Z1
+, ∀t ∈ T.

A complete polyhedral description of the convex hull of solutions of WWCC is known, as well as

a polynomial size extended formulation, see Pochet and Wolsey [21]. For a comprehensive survey

on the valid inequalities for LSCC and WWCC, see Pochet and Wolsey [22]. Valid inequalities

for LSCC and WWCC can be converted back into valid inequalities for X
FCNFusing the linear

transformations:

s̃it = sit − SM
it , q̃it =

∑
v∈V

qivt, õit =
∑
v∈V

oivt.

Example 4.1 Consider an instance based on Figure 8 over five time periods T = {1, 5} with309

demands Di = (3, 2, 3, 4, 2), lower bounds on the inventory levels Si = (2, 2, 2, 2, 2), initial inventory310

S0
i = 6 and the capacity of the largest ship Q = 5.311

Calculating the modified lower bounds on the inventory levels according to (53) and the demand

according to (54) gives SM
it = (6, 3, 2, 2, 2, 2) and D̃it = (0, 1, 3, 4, 2). For the corresponding WWCC

relaxation, a valid inequality is:

s̃i2 ≥ 3(1− õi3) + 1(2− õi3 − õi4 − õi5)
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Transforming back to the original variables s̃i2 = si2 − SM
i2 , õit =

∑
v∈V oivt and collecting the

terms one obtains the valid inequality for X
FCNF :

si2 ≥ 7− 4
∑
v∈V

oiv3 −
∑
v∈V

oiv4 −
∑
v∈V

oiv5.

For a loading port i, the relaxation is defined by constraints (7), (8), (10), (11), (12), and (17)

si,t−1 −
∑
v∈V

qivt = −Pit + sit, ∀t ∈ T,

0 ≤ qivt ≤ Qvoivt, ∀v ∈ V, ∀t ∈ T,∑
v∈V

oivt ≤ Bit, ∀t ∈ T,

Sit ≤ sit ≤ Sit, ∀t ∈ T,

si0 = S0
i ,

oivt ∈ {0, 1}, ∀v ∈ V, t ∈ T.

To formulate this problem as a lot-sizing problem, new variables ŝit = Si − sit are introduced

that measure the spare stock capacity available at period t in port i, where Si = max{S0
i ,maxt∈T Sit}.

This leads to the following equivalent formulation

ŝi,t−1 +
∑
v∈V

qivt = Pit + ŝit, ∀t ∈ T, (59)

0 ≤ qivt ≤ Qvoivt ∀v ∈ V, t ∈ T, (60)∑
v∈V

oivt ≤ Bit, ∀t ∈ T, (61)

Si − Sit ≥ ŝit ≥ Si − Sit, ∀t ∈ T, (62)

ŝi0 = Si − S0
i , (63)

oivt ∈ {0, 1}, ∀v ∈ V, t ∈ T. (64)

This formulation can now be used to derive the same relaxations as for the discharge ports.312

4.2 Two level lot-sizing relaxations313

The two level relaxations are derived from two levels of the fixed charge network, see Figure 9.314

In multi-level lot-sizing problems it is useful to aggregate the levels which also makes it natural315

to consider aggregated stocks, known as echelon stocks. For a discharge port i such as the one316

depicted in Figure 9, the appropriate echelon stock in period t is shown below to be sit + fOB
i,t+1.317

Extending the lot-sizing relaxations defined in Section 4.1, the two level lot-sizing set (2LLS)
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q̃it =
∑
v∈V

qivt, f̃
OA
it =
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v∈V

fOA
ivt , f̃

OB
it =

∑
v∈V

fOB
ivt , f̃X
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∑
v∈V

fX
ivt
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Figure 9: A two level lot-sizing structure at discharge port i.

for discharge port i can be defined as

f̃OA
it + f̃OB

it = q̃it + f̃OB
i,t+1 + f̃X

i,t+1, ∀t ∈ T, (65)

f̃OA
it ≤ KõAit, ∀t ∈ T, (66)

f̃OA
it , f̃OB

it , f̃X
it ≥ 0, ∀t ∈ T, (67)

õAit ∈ Z
1
+, ∀t ∈ T, (68)

and (55)− (58) (69)

where

f̃OA
it =

∑
v∈V

fOA
ivt , f̃

OB
it =

∑
v∈V

fOB
ivt , f̃X

it =
∑
v∈V

∑
j∈N∪{d(v)}

fX
ivt, q̃it =

∑
v∈V

qivt, õ
A
it =

∑
v∈V

oAivt

and K = max{Kv : v ∈ V }. Constraints (65) are the flow balance constraints (24) summed over318

v.319

Summing constraints (65) and (55) and introducing the echelon stock variable eit = f̃OB
i,t+1+ s̃it

gives the relaxation:

ei,t−1 + f̃OA
it = D̃it + eit + f̃X

i,t+1, ∀t ∈ T,

f̃OA
it ≤ K̄õAit, ∀t ∈ T,

eit, f̃
OA
it ≥ 0, õAit ∈ Z1

+, ∀t ∈ T.

From this we again obtain a Wagner-Whitin constant capacity relaxation:

ei,k−1 +K
t∑

u=k

õAiu ≥
t∑

u=k

D̃iu, ∀k ∈ T, t ∈ T, k ≤ t,

et ≥ 0, õAit ∈ {0, 1}, ∀t ∈ T.
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Valid inequalities for this relaxation, denoted 2LWWCC, can be derived, and then converted into320

valid inequalities for XFCNF .321

In order to derive similar inequalities for loading port i, new variables, f
OA

ivt , f
OB

ivt , and f
X

ijvt

are defined. These variables indicate the unused capacity of each ship operating at that port, i.e.

f
OA

ivt = Kvo
A
ivt − fOA

ivt , f
OB

ivt = Kvo
B
ivt − fOB

ivt , f
X

ijvt = Kvxijvt − fX
ijvt.

Using these new variables, a two level lot-sizing set similar to (65) – (69) for loading ports can322

be formulated. Thus two level lot-sizing relaxations can be derived at loading ports.323

4.3 Lot-sizing with start-up relaxations324

An important extension of the lot-sizing problem is to include start-up costs, i.e. a cost associated325

with the first period of an interval of set-ups, and several lot-sizing relaxations of it have been326

studied in the literature. The first period a ship operates in a port can be seen as a start-up and327

thus these relaxations can be used to derive valid inequalities. When deriving lot-sizing relaxations328

from the standard formulation, as in Section 4.1, it is not possible to handle start-ups since the329

variable oivt does not give information on whether ship v operated at port i at time period t− 1330

or not. In the fixed charge network flow problem, oAivt can be interpreted as a start-up variable331

and can be used to derive valid inequalities. Necessarily in the binary case, the start-up variable332

oAivt = 1 if oivt = 1 and oiv,t−1 = 0.333

This can be expressed by

oAivt ≤ oivt, ∀t ∈ T, (70)

oAivt ≥ oivt − oiv,t−1, ∀t ∈ T, (71)

oivt, o
A
ivt ∈ {0, 1}, ∀t ∈ T. (72)

Constraints (70) ensure that ship v starts operating if there is a start-up, while constraints (71)334

force a start-up if the ship operates in the current time period and did not operate in the previous335

time period.336

Several lot-sizing relaxations with start-ups can be derived by adding (70) – (72) to an existing337

lot-sizing set. In particular, valid inequalities can be derived for the capacitated lot-sizing set with338

start-ups, see Constantino [9], and then used to derive valid inequalities for XFCNF .339

Here we derive a discrete constant capacity lot-sizing with start-ups relaxation (DLSCCS), for340

which valid inequalities have been proposed by van Eijl and van Hoesel [32].341
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Constraints (70) – (72) are aggregated by summing over v. This gives

õAit ≤ õit, ∀t ∈ T, (73)

õAit ≥ õit − õi,t−1, ∀t ∈ T, (74)

õit, õ
A
it ∈ {0, 1, · · · , Bit}, ∀t ∈ T, (75)

where õAit =
∑

v∈V oAivt and õit =
∑

v∈V oivt. Here in the integer case õAivt is the increase of õivt342

from period t − 1 to t. However if it is assumed that the berth capacity Bit = 1, the aggregated343

variables are still binary.344

Now let Õit =
⌈∑t

u=1 D̃iu

Q

⌉
, where D̃it is the modified demand from (54) and Q = max{Qv :

v ∈ V } is the largest ship capacity. Also set δit = Õit − Õi,t−1. Note that Õit is a lower bound on

the number of operating periods needed during the first t periods. The set DLSCCS is obtained

by adding the constraints

t∑
u=1

õiu ≥ Õit, ∀t ∈ T, (76)

to constraints (73) – (75).345

The following set of inequalities was proved to be valid for DLSCCS by van Eijl and van Hoesel346

[32] in the case where δit and Bit are binary, and thus õit and õAit are binary variables.347

Proposition 4.2 Consider a time interval [k, �] ⊆ T with δi� = 1. Let
∑�

t=k δit = p > 0 and let

t1 < t2 < · · · < tp = � be the periods in [k, �] in which δit = 1. The inequality

σi,k−1 +

p∑
j=1

(õi,k+j−1 + õAi,k+j + · · ·+ õAitj ) ≥ p (77)

is valid for DLSCCS, where σit =
∑t

u=1 õiu − Õit ≥ 0 and σi0 = 0.348

Example 4.3 Consider the data from Example 4.1. Since D̃it = (0, 1, 3, 4, 2) and Q = 5 it follows

that δit = (0, 1, 0, 1, 0). Let [k, �] = [1, 4]. This gives t1 = 2, t2 = 4 and p =
∑�

t=k Õit = 2. A valid

inequality derived from (77) is then

σi0 + (õi1 + õAi2) + (õi2 + õAi3 + õAi4) ≥ 2 ⇒ õi1 + õi2 + õAi2 + õAi3 + õAi4 ≥ 2

Hence the following inequality is valid for X
FCNF :

∑
v∈V

oiv1 +
∑
v∈V

oiv2 +
∑
v∈V

oAiv2 +
∑
v∈V

oAiv3 +
∑
v∈V

oAiv4 ≥ 2.

5 Computational results349

This section presents some of the computational experiments carried out to test different strate-350

gies for the solution of instances of the maritime inventory routing problem. The strategies tested351
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include the comparison of the two mathematical formulations presented in Section 2, the effective-352

ness of the inclusion of the valid inequalities discussed in Sections 3 and 4 and the use of branching353

priorities.354

First the original and FCNF formulations with and without the inclusion of valid inequali-355

ties are compared. This initial study leads to the selection of some relevant inequalities. Then,356

taking the two formulations tightened with the selected inequalities, different branching priori-357

ties are tested. Thus for each formulation, several different combinations of valid inequalities and358

branching priorities are tested. Finally, the scalability of the approaches are tested by changing359

the discretization of the time periods and the length of the time horizon.360

The instances used were generated from seven instances based on real data. They come from361

the short sea segment with long loading and discharge times relative to the sailing times. The362

number of ports and ships of each instance is given in the second column of Table 1. The time363

horizon is 30 days. Traveling, operating and waiting costs are time invariant.364

All tests were run on a computer with processor Intel Core 2 Duo, CPU 2.2GHz, with 4GB365

of RAM using the optimization software Xpress Optimizer Version 21.01.00 with Xpress Mosel366

Version 3.2.0. Unless stated otherwise, all inequalities used to tighten the formulations were added367

a priori to the MIP model which was then fed to the MIP solver.368

In the last six columns of Table 1 we provide summary information for the two formulations con-369

sidered. Columns “Rows” and “Columns” indicate the total number of constraints and variables,370

respectively. The column “Int. Var.” indicates the number of integer variables. In parentheses we371

provide the corresponding values after the preprocessing phase.372

Original Formulation FCNF Formulation

Inst. (| N |, | V |) Rows Columns Int. Var. Rows Columns Int. Var.

A (3,2) 982 (575) 952 (662) 694 (459) 1682 (1042) 1873 (1320) 875 (552)

B (4,2) 1308 (757) 1128 (795) 838 (569) 2050 (1252) 2235 (1466) 1078 (668)

C (4,2) 1724 (1197) 1756 (1542) 1364 (1200) 3100 (2225) 3574 (2677) 1726 (1243)

D (5,2) 2138 (1445) 2355 (1863) 1882 (1461) 4016 (2928) 4793 (3670) 2320 (1714)

E (5,2) 2138 (1446) 2367 (1878) 1894 (1476) 4028 (2949) 4817 (3699) 2332 (1731)

F (4,3) 2466 (1696) 2548 (2237) 2023 (1775) 4502 (3249) 5249 (3961) 2564 (1847)

G (6,5) 5836 (3150) 5652 (4165) 4692 (3346) 9731 (6350) 11537 (8089) 5678 (3837)

Table 1: Summary statistics for the base instances using the two models (with and without pre-

processing).
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5.1 Formulations, valid inequalities and reformulations373

The original formulation consists of (1) – (17), while the FCNF formulation is defined by (1) – (3),374

(7) – (12), (16), (17), and (18) – (30).375

The following valid inequalities and reformulations have been tested:376

Knapsack inequalities. These inequalities refer to (34) for the loading ports and (43) for377

discharge ports. In both cases T includes either the first period or the last period, that is, T =378

1, . . . , t or T = t, . . . , | T |, t ∈ T. Inequalities (34) are generated for case Tv = T, for all Q ∈379 ⋃
v∈V {Kv}, and for case Tv = ∅, for all Q ∈ ⋃v∈V {Qv}. Inequalities (43) are generated for the380

cases R2
v = T, R1

v = T, and R0
v = T for Q ∈ ⋃v∈V {Kv} in the first two cases and for Q ∈ ⋃v∈V {Qv}381

in the last one. These inequalities will henceforth be denoted K.382

Mixed integer rounding inequalities. These inequalities are stated in (37) and are gener-383

ated for all Q ∈ ⋃v∈V {Qv}. They are added dynamically as cuts (valid inequalities that cut off384

the current factional solution), and will henceforth be denoted M .385

Wagner-Whitin constant capacitated lot-sizing reformulations. These reformulations386

are given in Pochet and Wolsey [22] (denoted by XFormWWCC for the constant capacitated case387

and XFormWWU for the uncapacitated case) for the WWCC relaxation described in Section 4.1388

and the two-level relaxation 2LWWCC described in Section 4.2. These reformulations are denoted389

W .390

Inequalities for lot-sizing with start-up relaxations. These inequalities are stated in (77)391

and will henceforth be denoted D. These inequalities consider every subset [k, �] of T .392

Table 2 gives some characteristics of each instance and provides information on the lower bounds393

obtained with the original formulation. The first column specifies the instance, the second column394

contains the optimal value, and the third column gives the linear relaxation bound, denoted L,395

of the original formulation. The last four columns present the percentage of the gap closed with396

the inclusion of additional valid inequalities. X gives the gap reduced in the root node after the397

inclusion of cuts from Xpress. K means that the valid inequalities K are added to the formulation,398

K,W means that valid inequalities K and W are added.399

Table 3 shows the results obtained with some of the more interesting and/or effective combi-400

nations of valid inequalities and reformulations for the FCNF formulation. Again column L gives401

the linear relaxation bound of the FCNF formulation. The last eight columns give the gap reduced402

with the inclusion of inequalities. To ease the presentation, Ω is introduced to denote the inclusion403

of all valid inequalities, i.e. Ω = K,M,W,D and Ω−Δ denotes the inclusion of all valid inequalities404

except Δ, where Δ ∈ {K,M,W,D}.405

As expected, the FCNF formulation provides better bounds. It can also be observed that406

best bounds when only one type of inequalities is tested were obtained with the inclusion of K407
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Gap closed (%)

Inst. Opt. L X K W K,W

A 137.4 22.3 80.1 100.0 24.2 100.0

B 370.6 32.0 21.8 78.6 48.4 91.4

C 413.5 44.7 16.0 79.6 51.0 89.2

D 357.9 53.6 43.4 75.5 46.3 85.1

E 355.5 52.3 25.8 74.5 43.9 85.4

F 504.9 105.2 11.3 81.3 23.5 79.2

G 747.9 213.6 19.1 92.0 43.0 71.6

Table 2: Lower bounds based on the original formulation.

Gap closed (%)

Inst. Opt. L X W D K,M Ω−K,M Ω−W Ω−D Ω

A 137.4 69.6 53.0 100 100 100 100 100 100 100

B 370.6 263.4 72.2 44.5 16.3 42.4 45.9 43.2 44.6 46.0

C 413.5 235.9 54.5 56.6 10.6 64.0 56.5 64.0 64.3 64.3

D 357.9 204.1 52.6 52.9 10.9 58.8 53.4 61.8 61.3 62.1

E 355.5 206.2 54.8 52.2 9.2 56.0 52.8 57.6 58.5 59.0

F 504.9 350.3 64.3 58.8 7.1 60.5 59.0 58.0 58.0 58.7

G 747.9 618.2 80.0 66.0 16.7 79.3 66.1 79.6 79.7 80.1

Table 3: Lower bounds based on the FCNF formulation.

inequalities and M cuts. K and M are considered in the same type of inequality since K can be408

generated from M . On the other hand, dropping reformulations W or dropping inequalities D409

leads to a slight worsening of the bound. This suggests that a good formulation should be based410

on some inequalities K and M . However, extended testing (not reported in Table 3) showed that411

it is necessary to add many M cuts to get significant improvements on the lower bounds. That412

experience also showed that most of the gap closed by K and M can be closed by K. So to achieve413

a similar bound, many more M cuts would have to be added compared to K inequalities.414

Table 4 gives the average integrality gap over the seven instances, where gap = Opt−LB
Opt × 100415

and LB is the value of the lower bound provided by the corresponding relaxation. The X indicates416

the use of Xpress cuts. When X is present, the gap reported is the gap at the root node after the417

inclusion of cuts from Xpress. For example, Ω, X under FCNF formulation means that the gap418

is measured at the root node when the FCNF formulation is used with the addition of all valid419
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inequalities (or reformulations) and Xpress cuts are added.420

Original formulation FCNF formulation

L X Ω Ω, X L X Ω Ω, X

83.6 57.5 14.4 10.1 36.3 8.8 11.4 6.4

Table 4: Average integrality gaps for both formulations.

The valid inequalities added to the original formulation are much stronger than the general cuts421

added by Xpress, while the general cuts by Xpress gives a stronger FCNF formulation. Xpress422

recognizes the FCNF structure of the problem, and exploits it in the generation of cuts. Combining423

valid inequalities and cuts from Xpress further reduces the gap of both formulations.424

5.2 Branching strategies425

It is well known that branching decisions within a Branch and Bound algorithm may have great426

influence on the performance of the algorithm. Usually, solvers, as Xpress Optimiser, allow the427

user to define his own branching scheme. One possible branching strategy is to establish different428

branching priorities on variables. Here we followed this approach by considering new variables429

(resulting from aggregation of the original variables) providing information related to the total430

number of visits each ship makes to each port.431

Based on the results in Table 2 and 3 and related runs it was decided to use the following432

strategies for further tests:433

Sx - set highest priority to variables Sxiv =
∑

t∈T

∑
j∈N∪{o(v)} xjivt that represent the number434

of times ship v visits port i;435

SoA - set highest priority to variables SoAiv =
∑

t∈T oAivt that represent the number of start-ups of436

ship v at port i.437

For the original formulation only strategy Sx can be used. We tested the use of this strategy438

combined with the inclusion of inequalitiesK. For the FCNF formulation both strategies have been439

tested. These strategies were combined with the inclusion of inequalities K and D. The choice440

of D inequalities was motivated by the possibility of combining valid inequalities involving the441

start-up variables oA with the branching strategy based on the same set of variables. Inequalities442

K are included a priori in the formulation while inequalities D are added to the cut pool. Since443

slightly better results were obtained with SoA for the harder instances, only results for SoA are444

provided. Tables 5 and 6 show the results for the original and FCNF formulations, respectively.445

Each pair (V,B) in the header row of the tables indicates the combination of valid inequalities446

(V ) and branching priority (B) used. The symbol – means that no inequality or branching priority447

27



is added. For each such pair, the time T in seconds and the number of branch and bound nodes448

N is given. A ∗ means that the optimal solution could not be found within a three hours limit.449

(–,–) (K,–) (K,Sx)

Inst. T N T N T N

A 1.3 53 0.2 1 0.2 1

B 11 4349 6 1320 3 323

C 1700 550676 310 57590 105 17734

D 117 21195 5 35 5 17

E 268 55715 10 253 4 59

F ∗ ∗ ∗ ∗ 1754 156262

G ∗ ∗ ∗ ∗ 3236 24278

Table 5: Branching priorities for branch and bound with the original formulation.

(–,–) (K,–) (K +D,–) (K,SoA) (K +D,SoA)

Inst. T N T N T N T N T N

A 7 221 0.5 1 0.5 1 0.5 1 0.5 1

B 6 425 5 33 5 33 4 23 4 11

C ∗ ∗ 145 7520 147 8342 28 745 19 197

D 94 3789 12 3 9 3 11 7 10 7

E 136 5810 26 99 21 33 11 23 16 17

F ∗ ∗ 635 11825 317 6386 71 711 53 307

G ∗ ∗ 152 297 111 119 188 393 54 35

Table 6: Branching priorities for branch and bound with the FCNF formulation.

Tables 5 and 6 show that the use of branching priorities is essential to solve the instances tested.450

An efficient approach is the use of the FCNF formulation with the combination of inequalities K451

and D with a branching priority on the oA variables.452

In order to further test this strategy more computational experiments were conducted. Five new453

instances for each base instance were created by randomly generating the initial inventory, using454

a uniform distribution on [Si1, Si1] in each port i ∈ N . We choose the first five feasible instances455

generated. The average solution times and average number of nodes over the five instances for456

each base instance are given in Table 7. The random instances based on initial instance G turned457

out to be much harder than G. Only three of them were solved within the limit of three hours,458

28



and the final gaps of the two other instances were 12.3% and 9.3%. Thus, these instances are459

not presented in the table. The ∗∗ in column (K,–) indicates that some of the corresponding five460

instances were not solved within three hours (three instances were solved to optimality and the461

two other instances were stopped with gaps of 13.3% and 15.8%).462

Original formulation FCNF formulation

(K,–) (K,Sx) (K +D,–) (K +D,SoA)

Inst. T N T N T N T N

A 0.5 6.6 0.4 26.2 0.7 3.4 0.9 4.2

B 5.1 1150.8 3.5 390.4 4.4 197.8 2.5 24.6

C 37.5 5031.8 9.4 857.6 27 971.6 8 31.2

D 80.9 6757.4 17.4 853.8 56.3 1188.6 18.1 93

E 35 4129 11.5 591.2 80.4 2215.2 29.5 296

F ∗∗ ∗∗ 1650.2 113951.2 1066.5 17285.8 182.1 1907

Table 7: Branching priorities and D inequalities for random instances.

Using the FCNF formulation with inequalities K and D (using oA variables), and using branch-463

ing priority SoA performs well on most instances. The good performance of this approach based464

on the “start-ups” is also reinforced with the results given in Section 5.3.465

5.3 Scalability study466

Seven larger instances were constructed to test the time discretization. Each day is split into two467

periods, doubling the number of periods. The demand/production of the first new period is set to468

zero and the demand of the second is set to the demand/production of the day. The same settings469

as in Table 7 have been used. Table 8 gives the results for these instances. Again it can be seen470

that the use of branching priorities is essential, and the best results are obtained when inequalities471

K and D are added. The FCNF formulation with the addition of inequalities K and D, and with472

the use of the branching priority SoA is particularly successful for large test instances.473

Finally, different time horizons were tested. In order to extend the time horizon it was necessary474

to change the port consumption rates Dit and production rates Pit for the instances. The results475

using the FCNF formulation with inequalities K added a priori and inequalities D added to the476

cut pool, and the branching priority SoA are given in Table 9. A ∗ means that the optimal477

solution could not be found within a three hours limit. For the case of instance G with 45 days,478

the integrality gap after three hours is about 25%, and for 60 days no feasible solution was found479

within the running time limit.480
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Original formulation FCNF formulation

(K,–) (K,Sx) (K +D,–) (K +D,SoA)

Inst. Opt. T N T N T N T N

A 132.7 1 1 1.6 1 3.2 1 3.2 1

B 367 573 11458 23 1633 270 12293 50 1049

C 407 ∗ ∗ ∗ ∗ ∗ ∗ 1874 36891

D 352.3 545 11970 25 109 504 2162 83 35

E 350.2 612 17884 97 2063 658 2613 159 85

F 502.5 ∗ ∗ ∗ ∗ ∗ ∗ 2571 7410

G 747.9 ∗ ∗ ∗ ∗ ∗ ∗ 8473 3006

Table 8: Results for the two periods per day case.

30 days 45 days 60 days

Inst. T N T N T N

A 1 1 1 3 80 28

B 13 3 1 5 20285 1159

C 17 6 53 31 7084 1907

D 1 5 69 52 29356 10853

E 3 10 1257 233 6999 4098

F 17 14 3537 1420 315 1051

G 725 249 ∗ ∗ ∗ ∗

Table 9: Results for the 30, 45 and 60 days using the FCNF formulation.

6 Concluding remarks481

A maritime inventory routing problem with varying production and consumption rates is studied482

in this paper. Two discrete time formulations are introduced, an original formulation and a fixed483

charge network flow (FCNF) formulation that models the ship sequence of actions as a path484

on a given network. These formulations are strengthened using valid inequalities from (mixed)485

integer sets that arise as relaxations of these two formulations. In particular, several lot-sizing486

relaxations are derived for the FCNF formulation. It has been observed in studying lot-sizing487

problems that valid inequalities linking stocks and binary set-up variables indicating whether a488

period is a production period can often be strengthened by using additional binary variables489

indicating a start-up period at the beginning of one or more production periods. Taking production490
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periods to correspond to loading/discharge periods and ship arrivals to correspond to the start-up491

variables mean that such strengthening is also possible here. In addition a branching strategy492

based on these start-up variables turns out to be better than a similar strategy based on the set-up493

variables.494

The FCNF formulation tightened with valid inequalities and using a branching strategy based495

on the start-up variables instances including up to 60 periods could be solved to optimality.496

In general the FCNF formulation provides better bounds than the original formulation. The497

general cuts generated by the optimizer Xpress gives a much stronger FCNF formulation compared498

with the original formulation. Xpress recognizes the FCNF structure of the problem, and exploits499

it in the generation of cuts for the FCNF formulation. Therefore the valid inequalities added to500

the original formulation are particularly useful and are much stronger than the general cuts added501

by Xpress. Combining valid inequalities and cuts from Xpress further reduces the gap of both502

formulations.503

As future research, it would be interesting to investigate heuristics that could provide feasible504

solutions quickly, since there are instances with few feasible solutions for which it is hard to get505

good upper bounds early in the search. Combining such heuristics with a branch and cut approach506

might be fruitful. Another direction is to investigate other valid inequalities for different lot-sizing507

models as well as valid inequalities for the ship routing aspect of the problem. Investigation of508

the possibility of using the valid inequalities presented here together with column generation in a509

branch and price and cut framework is another interesting path for further research.510
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