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Abstract

Fixed-wing Unmanned Aerial Vehicles are extensively used for ground observation,
as they allow for effective and precise methods of collecting information. They do
however, have a downside as the quality of the information gathered depends on the
attitude of the aircraft. There is a coupling between the sensor and the aircraft attitude
states, which is usually decoupled by mounting the sensors to a gimbal which increases
the weight of the payload. This paper investigates a control method that seeks to mini-
mize the negative effect of this coupling when using a hyperspectral pushbroom camera
fixed to the aircraft body to survey a ground path. This will be done by developing an
offline intervalwise Model Predictive Control algorithm that seeks to minimize the dis-
tance between the camera centre point and the pre-defined ground path that is to be
observed. As this is an offline method, it is intended to be executed before the flight
is initiated. The algorithm is implemented using C++ and the ACADO Toolkit, and
the optimized paths will be simulated using a software-in-the-loop simulator. The ap-
plication developed is able to optimize both curved and piecewise linear paths. It is
able to optimize curved 90◦ turns with radius of 50m, and also 180◦ turns with a radius
of 200m. The sharpest linear corner it is able to optimize is 45◦. When optimizing
longer paths consisting of several turns, the application proves not to be robust enough
to handle turns that are positioned close after one another. On the other hand, long
straight lines connecting turns is a disadvantage for the application as well, as it does
not seek to position the aircraft straight above the ground path. The application is that
it is very time consuming, one second of flight time can take almost 150s to calculate
the optimized solution. Simulations show that tracking the optimized path can give ob-
servations of the ground track with a mean error below 5m, and that the optimized path
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results in a slightly more precise tracking of linear paths compared to curved paths.
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Sammendrag

Ubemannede fly blir ofte brukt til å observere strukturer på bakken, siden de på en enkel
og presis måte kan samle inn informasjon ovenfra. De har derimot en ulempe ved at
kvaliteten på informasjonen som samles inn avhenger av orienteringen til flyet, siden
det er en kobling mellom sensoren og flyets vinkler. Vanligvis håndteres denne koblin-
gen ved å feste sensorene til en stabilisator som motvirker effekten av vinklene til flyet,
men denne løsningen medfører ekstra vekt i nyttelasten til flyet. Denne avhandlingen
ser på en kontrollmetode som minimerer negative effekter av denne koblingen når et
hyperspektralt linje-kamera som er festet direkte til flykroppen blir brukt til bakke-
observering. Dette gjøres ved å utvikle en frakoblet intervallvis modell-prediktiv regu-
lator som forsøker å minimere avstanden mellom midtpunktet til kameraet på bakken,
og til ruten på bakken som skal observeres. Siden dette er en frakoblet kontrollmetode
kjøres den før flygningen starter. Algoritmen blir implementert i C++ med ACADO
Toolkit, og den optimaliserte ruten vil bli simulert ved hjelp av en ”software-in-the-
loop” simulator. Applikasjonen kan optimalisere både kurvede og lineært stykkvise
ruter. Den er i stand til å optimalisere kurvede 90◦ svinger med en radius på 50m, og
180◦ svinger med en radius på minst 200m. For lineære hjørner er det skarpeste den
klarer å optimalisere 45◦. Hvis ruten består av flere svinger er ikke applikasjonen robust
nok til å optimalisere ruten om svingene er for nærme hverandre. Samtidig håndterer
den lange rette strekker mellom svinger dårlig, siden den ikke posisjoner flyet rett over
ruten som skal observeres. Applikasjonen bruker veldig lang tid på å optimalisere ruter,
et sekund med flyvning kan ta 150s å optimalisere. Simuleringer av den optimaliserte
ruten viser at ruten på bakken kan observeres med en presisjon på under 5m, og den
optimaliserte ruten for lineære ruter er litt mer presis en for kurvede.
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Chapter 1
Introduction

Unmanned Aerial Vehicles (UAV) are today widely used in ground observation, and by
equipping them with different sensors they can be used in different situations. While
the use of UAVs eases many cases of ground observation, there are some difficulties
related to the attitude of the aircraft. When the sensor is attached directly to the aircraft
the sensor will be coupled with the UAVs states, so what is captured by the camera
depends on the angles of the UAV. Figure 1.1 illustrates how what is captured by the
camera changes with the roll angle φ .

A common solution to decouple the sensor from the UAV states is to attach the sensor
to a gimbal which will counteract the movements of the UAV. While this is a good
solution for decoupling, it raises some new issues regarding its weight and size. As
one of the benefits of UAVs is their small size, the gimbal can quickly be too big and
heavy for the UAV, and it may make the aerodynamics of the aircraft less effective.
This usually leads to increased fuel consumption.

This paper will investigate methods that will ensure precise ground observation when
a camera attached directly to the aircraft is used to observe both curved and piecewise
linear paths on ground level, while also avoiding the extra costs associated with a gim-
bal. This will be accomplished by finding an optimal path that minimizes the deviance
between what is to be observed and what is captured by the camera. The optimal
path will be calculated by an offline intervalwise Nonlinear Model Predictive Control
(NMPC) algorithm before the flight commences [1]. The control method is developed
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1.1. RELATED WORK CHAPTER 1. INTRODUCTION

UAV

φ

Figure 1.1: An illustration of the issues related to UAV operation with fixed sensors.

with the usage of a hyperspectral pushbroom camera that is fixed to the UAV in mind.

1.1 Related Work

The most common method to decouple the UAV attitude states from the sensor today is
to equip the aircraft with a gimbal, which results in easy UAV operation without losing
track of the features that is to be observed. Since the gimbal angles have limited range,
features can be lost from the camera field of view (FOV) for some combinations of
aircraft positions and attitudes. Previous solutions to this problem include generating
trajectories that ensures that the gimbal angles are able to cover the features of interest
[2], or putting constraints on the roll angle and altitude of the UAV [3].

A simpler solution to avoid lateral movements of the FOV is to change the UAV course
by using the rudder instead of the ailerons. The rudder deflection creates a yawing
moment which causes the aircraft to change course [4]. This type of controller is
referred to both as a Rudder Augmented Trajectory Correction (RATC) controller [4]
and a skid-to-turn (STT) controller [5]. Results show that the performance of these
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CHAPTER 1. INTRODUCTION 1.2. HYPERSPECTRAL IMAGING

controllers are comparable to conventional controllers using roll to change course, and
that errors in the images is greatly reduced [4] [5] [6].

While the controllers offer a solution to the control problem that reduces the errors
in the images, they do not ensure that the features of interest stay inside the sensors
FOV. To ensure that they stay within the FOV, Jackson has developed an optimization
algorithm that minimizes the error of the sensor footprint [7]. Jakcson’s solution differs
from the solution proposed in this paper as his solution uses a simplified model of the
UAV to calculate the optimal path online, while this paper focuses on using a more
precise model to find an optimal solution before the flight is initiated.

Jackson presents a path planner that aims to minimize the error between the target
on the ground, and the footprint of a camera fixed to a UAV by using a Nonlinear
Model Predictive Controller (NMPC). The NMPC is compared to a PID and a sliding-
mode controller that seek to follow the same path. Simulations of the three controllers
show that of the three, the PID controller had the biggest crosstrack error. The results
of the simulation of the NMPC and the sliding-mode controller showed that the two
had comparable performance. The NMPC controller was able to find a near optimal
solution with the performance characteristics of a real-time application.

One important point made by Jackson is that perfect tracking of a ground path with
a fixed camera is not possible when using the roll angle to change the course of the
aircraft. A controller that attempts to solve this problem would be unstable because of
the dependence the camera position has on the roll angle. When the path turns right
and the aircraft rolls right to follow this path, the camera position will move left, away
from the path. This only applies to controllers that attempt a perfect tracking of the
path, so that a near-perfect tracking is still achievable.

1.2 Hyperspectral Imaging

The control method developed in this paper will be developed with the use of a fixed
hyperspectral, pushbroom sensor in mind. A hyperspectral sensor/camera allows for
accurate detection of different types of material from the UAV by sensing the wave-
length of the received light.
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1.2. HYPERSPECTRAL IMAGING CHAPTER 1. INTRODUCTION

1.2.1 Description

Hyperspectral imaging uses basics from spectroscopy to create images, which means
that the basis for the images is the emitted or reflected light from materials [8]. The
amount of light that is reflected by a material at different wavelengths is determined by
several factors, and this makes it possible to distinguish different materials from each
other. The reflected light is passed through a grate or a prism that splits the light into
different wavelength bands, so that it can be measured by a spectrometer.

When using a hyperspectral camera attached to a UAV for ground observation, it is
very likely that one pixel of the camera covers more than one type of material on the
ground. This means that the observed wavelengths will be influenced by more than one
type of material. This is called a composite or mixed spectrum [8], and the spectra of
the different materials are combined additively. The combined spectra can be split into
the different spectra that it is built up of by using noise removal and other statistical
methods which will not be covered here.

1.2.2 UAV Ground Observation

Hyperspectral imaging is already being used for ground observation from UAVs. Its
ability to distinguish materials based on spectral properties means that it can be used
to retrieve information that normal cameras are not able to. For example in agriculture
it can be used to map damage to trees caused by bark beetles [9], or it can be used to
measure environmental properties, for example chlorophyll fluorescence, on leaf-level
in a citrus orchard [10].

Systems for ground observation with hyperspectral cameras can be very complex,
which often leads to heavy systems. In [11], a lightweight hyperspectral mapping
system was created for the use with octocopters. The purpose of the system is to map
agricultural areas using a spectrometer and a photogrammetric camera, and the final
takeoff weight of the system is 2.0 kg. The resolution of the final images made it possi-
ble to gather information on a single-plant basis, and the georeferencing accuracy was
off by only a few pixels.
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1.3 Contributions

This paper will investigate a control method for fixed wing UAVs that will minimize
the distance between what is intended to be observed, and what is actually observed
when a fixed hyperspectral camera is used for ground observation. The goal of the
thesis is to develop software able to generate an optimal path that can be used to survey
a pre-defined ground path. The contributions from the thesis are:

• A kinematic model to calculate the position of the camera footprint on the ground
based on the attitude of the UAV

• An offline intervalwise MPC that, given a pre-defined parametrized ground path,
calculates an optimal path the UAV may follow in order to minimize the error
between what is to be observed and what is actually captured

• A software implementation of the offline intervalwise MPC using the ACADO
Toolkit

• A software-in-the-oop simulator to test the performance of the path using an
pre-existing autopilot

1.4 Thesis Outline

In Chapter 2 the equations for the UAV model used in this thesis will be given, as
well as the kinematic model used to compute the camera position on the ground. In
Chapter 3 the equations needed to create an offline intervalwise MPC that seeks to
control the camera centre point is given. In Chapter 4 the software implementation of
the MPC using the ACADO Toolkit will be presented, and in Chapter 5 the simulation
environment will be presented.

In Chapter 6 the performance of the software implementation of the MPC will be ana-
lyzed to state what it is capable of. In Chapter 7 a path optimized in Chapter 6 will be
used to guide a UAV using a software-in-the-loop simulator. Discussion and conclusion
of the thesis will be given in Chapter 8 and 9 respectively.

The complete state space model of the UAV will be presented in Appendix A, together
with linear equations for the aerodynamic coefficients. In Appendix B the parameters
used for the application will be given, and in Appendix C the algorithms for the offline
intervalwise MPC will be given.
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1.4. THESIS OUTLINE CHAPTER 1. INTRODUCTION

This thesis is a continuation of project work performed during the fall semester 2016
[12]. The introduction of hyperspectral imaging in Section 1.2 was done for this
project, and the equations used to calculate the camera position in Chapter 2 is built on
work done for this project.
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Chapter 2
Kinematics

What is captured by the camera, the camera footprint, is dependent on the attitude
angles of the aircraft when the camera is fixed to the aircraft body. In this section a
model for calculating the camera footprint on the ground assuming flat earth will be
presented, as well as the necessary UAV states for this thesis.

2.1 Reference Frames

Three different reference frames will be used to describe the kinematics of the UAV: the
body frame, North East Down (NED) frame and Earth Centered Earth Fixed (ECEF)
frame. The transformations given here can be found in Fossen [13].

The body frame, denoted {b}, is attached to the UAV and is used to describe the attitude
and velocity of the aircraft. The NED frame, denoted {n}, is used to locally describe the
position of the UAV using Cartesian coordinates. The position of the camera footprint
will be given in the NED frame, based on the attitudes in the body frame.

While the body and NED frame are local frames that are useful to describe the UAVs
attitude, speed and position, a different frame is needed to express the location of the
UAV in a global perspective. For this the ECEF frame, denoted {e}, is used. In the
ECEF frame position is often represented using Cartesian coordinates with the origin at
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2.1. REFERENCE FRAMES CHAPTER 2. KINEMATICS

the earth center, but in this case the position will be represented by longitude, latitude
and height.

2.1.1 Transformations

Between NED and Body

The body frame and the NED frame are related by rotation matrices, one for each of
the attitude angles. The transformation to the NED frame from the body frame is given
by the rotation matrix Rn

b:

Rn
b(ΘΘΘnb) =

cψ cθ −sψ cφ + cψ sθ sφ sψ sφ + cψ cφ sθ

sψ cθ cψ cφ + sφ sθ sψ −cψ sφ + sθ sψ cφ

−sθ cθ sφ cθ cφ

 (2.1)

where c and s are the cosine and sine trigonometric functions of the angle in subscript,
respectively. The transformation from the NED frame to the body frame can be found
by taking the inverse of the transformation matrix Rn

b(ΘΘΘnb).

Between NED and ECEF

The transformation between ECEF and NED frames when the position is given using
longitude, latitude and height is also given by a rotation matrix Re

n(ΘΘΘen). However, it is
the velocity vectors in each frame that are related by the rotation matrix. The rotation
matrix is composed by two rotations about the latitude l and longitude µ:

Re
n(ΘΘΘen) =

−c(l)s(µ) −s(l) −c(l)c(µ)
−s(l)s(µ) c(l) −s(l)c(µ)

c(µ) 0 −s(µ)

 . (2.2)

The transformation between the velocity vectors in the ECEF and NED frame can be
written as:

ṗe
b/e = Re

n(ΘΘΘen)ṗn
b/e. (2.3)
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CHAPTER 2. KINEMATICS 2.2. UAV MODEL

Since this transformation represent velocities, a reference position must be known
when transforming positions. Since NED is a local frame, the position in NED pn

will be given as a displacement from the reference ECEF position pe
0. The relation

between position in NED and ECEF can therefore be written as [14]:

pe−pe
0 = Re

n(ΘΘΘen)pn. (2.4)

2.2 UAV Model

In this thesis the linearized UAV model presented by Beard & McLain [15] will be
used as the prediction model for the path planner that is presented in chapter 3. In this
section the UAV states used in this model will be presented, as well as the linearization
method.

2.2.1 UAV States

The position of the UAV will be given using the North East Down (NED) coordinate
frame denoted {n}:

pn
b/n =

pN
pE
pD

=

xn
yn
zn

 , (2.5)

while the global location will be given using the Earth Center Earth Fixed (ECEF)
frame, denoted {e}, represented by longitude and latitude:

ΘΘΘen =

[
l
µ

]
. (2.6)

Following the notation used in [15], the velocities of the UAV will be given in the body
frame denoted {b}:

9



2.2. UAV MODEL CHAPTER 2. KINEMATICS

Vb
g =

u
v
w

 . (2.7)

The attitude ΘΘΘnb of the UAV will be given as Euler-angles, with the corresponding
angular velocities Θ̇ΘΘnb:

ΘΘΘnb =

φ

θ

ψ

 , Θ̇ΘΘnb =

p
q
r

 . (2.8)

Euler angles are used over quaternions in this paper because the optimization is to
be run offline so that computation time is not a critical measure. Even though Euler
angles do suffer from gimbal lock while quaternions don’t [15], the UAV will not be
performing any high-angle maneuvers so that a gimbal lock should never occur.

The UAV model has four control inputs, namely the elevator, aileron, rudder, and throt-
tle:

u =
[
δe δa δr δt

]ᵀ
. (2.9)

The complete nonlinear state space equations for the UAV model is given in appendix
A.1.

2.2.2 Linearizing the Model

In order to ease computational load the linear decoupled model of a UAV, presented
by Beard & McLain [15], will be used in this thesis. While a linear model is not able
to fully describe the motions of an aircraft, it is valid around the trimmed state of the
aircraft. An aircraft in its trimmed state will be able to maintain a straight level flight
without any change in the control input, and since the UAV in this thesis is not expected
to perform any high-angle maneuvers that puts it far away from the trimmed state, the
linear model will be valid. An aircraft in the trimmed state satisfies the following
equation:

ẋ = f (x∗,u∗) = 0. (2.10)
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Linearization is performed by adding perturbations to the trimmed state solution, and
the linearized states x̄ represent the perturbations away from the trimmed state [16].
The linearized state is defined as x̄ = x−x∗, where x∗ is the trimmed state.

The states of an aircraft are highly coupled, meaning that they affect each other. This
greatly increases the complexity of finding an optimal solution of the model since a
change in one variable has effect on more than one state. For this reason the model
is also decoupled into lateral and longitudinal models, where the states in one of the
models does not affect the states in the other model. This simplification is done by
removing terms that has a very small effect on the state, as these effects are easily
controlled by the control systems [15]. The lateral and longitudinal states are given as:

ẋlat =
[
v p r φ ψ

]ᵀ
,ulat =

[
δa δr

]ᵀ
ẋlon =

[
u w q θ h

]ᵀ
,ulon =

[
δe δt

]ᵀ
.

(2.11)

2.3 Camera Footprint

The camera footprint is coupled with the three attitude angles given in ΘΘΘnb. The po-
sition of the camera footprint will be calculated using forward kinematics, and an il-
lustration of how the roll φ and pitch θ affects the camera position is shown in Figure
2.1.

2.3.1 Centre Position

The attitude of the UAV is given in the body frame {b} and the height zn is given in the
NED frame {n}, and the model presented here assumes flat earth. The position of the
footprint centre point cb

b in the body frame {b} can be expressed as the distance from
the center of the body frame, the UAV, caused by the angles φ and θ :

cb
b =

[
cb

x/b
cb

y/b

]
=

[
zntan(θ)
−zntan(φ)

]
. (2.12)

The coordinates of the camera position in {n} can be found by rotating the point cb
b with

respect to the aircraft heading ψ , and by translating the rotated point to the aircrafts
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E

N

−D

zn

z nt
an(θ

)
−zntan(φ)

θ

φ

{b}

cn

Figure 2.1: Illustration of how the aircraft attitude influence the camera position.
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position in the {n} frame. The rotation matrix for rotating with respect to the heading
is given as:

Rz,ψ =

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]
. (2.13)

The final expression for the camera footprint centre position cn in the {n} frame then
becomes:

cn = pn +Rz,ψ cb
b

=

[
xn
yn

]
+Rz,ψ

[
xb

x/b
cb

y/b

]
(2.14)

2.3.2 Edge Points

Since a hyperspectral pushbroom sensor captures images in a line, the centre point of
the camera footprint does not express the entire area that is captured by the sensor. The
edge points of the camera footprint are calculated with respect to the sensor’s field of
view, as shown in figure 2.2. These points, e, can be found by altering (2.12):

eb
1,b =

[
zntan(θ)

−zntan(φ +σ)

]
, eb

2,b =

[
zntan(θ)

−zntan(φ −σ)

]
. (2.15)

The final expression for the cameras edge points then becomes:

en
i = p+Rz,ψ eb

i,b. (2.16)

13
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{b}

zn

eb
2,b eb

1,b

φ −σ

φ

φ +σ
σ

Figure 2.2: Illustration of how the field of view for a pushbroom sensor is calculated.
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Chapter 3
Model Predictive Control

Model Predictive Control (MPC) is a term used to describe control methods that uses
knowledge about the process to calculate the future control inputs to the system in
order to follow a reference trajectory [17]. In this chapter the equations for an offline
intervalwise MPC that seeks to minimize the distance between the camera centre point
and the ground path that is to be observed will be given. A linear state space-model for
the UAV will be used to predict the future states and control inputs.

3.1 MPC Method

The MPC strategy can be broken down into three tasks [17]:

1. Predict the future outputs of the process for the given prediction horizon using
past inputs to the process and the past measured states of the process, and by
using the future control signals.

2. Optimize an objective function in order to determine the future control signals
that follows a given reference trajectory as closely as possible.

3. Apply the optimal control signals to the process, and measure the resulting output
so that it may be used to calculate the next prediction horizon in the first task.
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3.2. DISCRETIZATION CHAPTER 3. MPC

In short MPC problems are made up of three elements: Prediction model, objective
function and constraints. The prediction model represents the model of the process
that is to be controlled, and will in this case consist of the differential equations for
the states of the UAV. The objective function is the function that is to be minimized
by the optimization algorithm. In this case the function will be the distance from the
camera centre point to the desired ground path, combined with some of the UAV states,
that together will give a stable flight. The objective function represents the difference
between the reference trajectory that the UAV states is to follow, and the current states
of the UAV. The constraints are used to limit the values that either states or control
inputs can take, and can prevent solutions that are not physically feasible.

A common mathematical formulation of the three elements that make up the opti-
mization problem is shown in (3.1) [18]. f (x) represents the objective function that is
subject to equality and inequality constraints respectively. In this thesis the differential
equations describing the UAV model will be implemented as equality constraints, while
the inequality constraints will be used to define the ranges the control inputs must be
within.

min
x∈Rn

f (x)

s.t ci(x) = 0, i ∈ ε,
ci(x)≥ 0, i ∈ I.

(3.1)

3.2 Discretization

The model and optimization problem will be written on continuous time form, which
means that it has to be discretized in order to be solved. The method used to discretize
the problem plays a big role in how the problem is solved, and a common method to
use for nonlinear programs (NLP) is the direct multiple-shooting method. Direct dis-
cretization methods can be explained as ”first discretize, then optimize”, which allows
for easier treatment of inequality constraints [19]. One of the major benefits by us-
ing the direct multiple-shooting method is that all shooting nodes are initialized with
the result from the previous iteration, which gives the solver an easier start configura-
tion [20].

In short, the direct multiple-shooting method starts by computing a discretized control
trajectory for a finite time interval. Independently, the Ordinary Differential Equations
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(ODE) of the optimization problem is solved one time for every timestep of the dis-
cretized control trajectory. Simultaneously, an integral of a cost function is computed,
which is the reason why the direct multiple-shooting method is also called a simulta-
neous method.

min
s,q

∑
N−1
i=0 Fi(si,qi)+E(sN)

s.t x0− s0 = 0
xi(ti+1;si,qi)− si+1 = 0, i = 0, ...,N−1

h(si,qi) ≤ 0, i = 0, ...,N

(3.2)

The direct multiple-shooting method can be described by the NLP shown in (3.2) [20].
In the equation the objective function F is the result of integrating the cost function,
and s and q are the optimization variables for the states and controls respectively. s and
q are introduced in order to ensure that the solution for the time interval is tied to the
initial values. E is the end term of the objective function.

3.3 Offline Intervalwise MPC

The control problem in this thesis will be solved by using an offline intervalwise MPC
to generate an optimal path that will reduce the image error when using a fixed camera
to survey a ground track. The generated path is intended to be tracked by the autopilot
on the UAV that will perform the survey.

3.3.1 Offline MPC

An offline MPC means that the initial state of the MPC is not a measurement of the
UAV states, but rather the result of a simulation of the UAV. This means that the result
from the prediction model used in the MPC will act as the physical system, and the
outputs of the model will be fed back as inputs to the MPC for every iteration. The
equations of the offline MPC are the same as the ones for the online version.

Rawlings & Mayne [21] refers to this kind of problem as a deterministic problem since
there is no uncertainty in the system. A feedback loop in this kind of system is not
needed in principle, since it does not present any new information. They also state that
the resulting control action from an MPC for a deterministic system is the same as the
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control action from a receding horizon control law (RHC), which is another kind of
predictive control.

3.3.2 Intervalwise MPC

Since this is a deterministic system, it is possible to perform the entire path optimization
over one long optimization horizon. However, the computational load of using one long
optimization horizon is heavier than the load of using several, shorter optimization
horizons. For this reason an intervalwise MPC will be used. The term intervalwise has
been introduced by Kwon & Han [1] to describe a type of receding horizon controller
that implements the same strategy.

Commonly an MPC is used to optimize the model over a given horizon, where the
initial states are given. After the optimization has finished, the first timestep of the
optimization is returned and applied to the system, before a measurement of the system
is performed. The new measurements are given as initial states for the next horizon,
and so on.

The principle is the same for an intervalwise MPC. However, instead of only returning
the first timestep, an interval of timesteps are returned, and the last timestep of the in-
terval is used as initial states for the next optimization horizon. This way the number of
MPC iterations is reduced, and the increased complexity by having long optimization
horizons is avoided. Figure 3.1 shows how timesteps, intervals and horizons relate to
each other. Since the MPC developed here is an offline MPC, the timesteps of each
interval is stored as the result.

3.4 Objective Function

The main objective of the MPC developed in this thesis is to minimize the cross track
error between the centre point of the camera footprint and the ground path that is to
be observed. This, together with other objectives, will be defined in the objective
function of the optimization problem. In this section a way of formulating the objective
function, least-squares, will be described, and how the objective function for an MPC
is formulated to express the optimization horizons.
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Interv
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Interv
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n

Tim
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Figure 3.1: How a path can be divided into timesteps, intervals and horizons in an
intervalwise MPC.
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3.4.1 Least-Squares Problem

In many applications the objective function is formulated as a least-square (LSQ) prob-
lem. LSQ is a form of regression where the distance between a measurement and a
known model is computed. In this case the known model is the reference signals, and
the distance between the current states and the reference signal is calculated as a LSQ
problem. The general mathematical formulation for LSQ is [18]:

f (x) =
1
2

m

∑
j=1

r2
j (x) =

1
2

m

∑
j=1
|φ(x, t j)− y j|. (3.3)

In (3.3) r j is called the residual function, which represents the distance between the
measurement y j taken at time t j, and the model φ . In the optimization problem the
residual function is what the algorithm seeks to minimize by selecting the parameters
x that gives the lowest possible value of the residual function r j.

In order to have a reference model that the measurements can be compared to, the
desired values will be associated with timepoints. This means that the optimization
algorithm will at given timepoints compare the current values of x to the value of the
reference model at the same time. A visual representation of this is shown in Figure
3.2.

3.4.2 MPC Objective Function

The objective function is where the goal of the optimization is expressed, together with
the optimization horizon of the problem. Typical goals of the optimization is to follow
a predefined trajectory or reference signal while reducing the control inputs used. This
can be expressed as follows [17]:

J(N1,N2,Nu) =
N2

∑
j=N1

δ ( j)[ŷ(t + j|t)−w(t + j)]2 +
Nu

∑
j=1

λ ( j)[∆u(t + j−1)]2. (3.4)

The first term of (3.4) represents the costs from the states of the model, and the second
term represents the cost of the control effort. In the first term ŷ is the value of the
prediction model, which is compared to the desired trajectory w. In the second term
the changes in control ∆u is expressed. The change in control is used instead of the
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t

y

|φ(x, t j)− y j|

Figure 3.2: The distance between the measurements, represented by dots, and the
model, represented by a line.
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3.5. PROBLEM DEFINITION CHAPTER 3. MPC

value of the control signal itself, since the steady state of the control signal may differ
from zero. δ and λ are weighting variables which are used to tune the MPC. The three
different N coefficients defines the horizon over which the states and the control effort
should be optimized. The optimization horizon for states and control effort can be
different, but they will stay the same for this problem.

3.5 Problem Definition

min
x,∆u

Ji+k =
1
2 ∑

j+N
j=i [(y(x j)−yd, j)

ᵀQ(y(x j)−yd, j)+(∆u j)
ᵀR(∆u j)]

s.t xlow ≤ x j ≤ xhigh

ulow ≤ u j ≤ uhigh

∆ulow ≤ ∆u j ≤ ∆uhigh

ẋ j+1 = f (x j,u j)

(3.5)

The equations for the full optimization problem is shown in (3.5). The objective func-
tion uses the same setup as shown in (3.4), but in matrix form. Each of the three
components of the problem definition will be described in detail in the following sec-
tions.

3.5.1 Prediction Model

The linear decoupled UAV model presented in chapter 2 will be used as the prediction
model for the MPC. The model is associated with the following states and control
inputs:

x =
[
pN pE h u v w φ θ ψ p q r

]ᵀ (3.6a)

u =
[
δe δa δr δt

]ᵀ
. (3.6b)

The prediction model relates to the equality constraints of (3.1) in the form of dif-
ferential equations, and is represented by the differential equation for ẋ in (3.5). As
explained in the previous chapter the control rates ∆u will be used as control inputs in
the optimization problem:

∆u =
[
∆δe ∆δa ∆δr ∆δt

]ᵀ
. (3.7)
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The control surfaces u are calculated from the rates ∆u through integration:

u̇ = ∆u. (3.8)

3.5.2 Objective Function

The objective function J will be minimized over the entire optimization horizon, which
consists of N timesteps. The current timestep for the entire optimization problem is
denoted i, while the current timestep within the current optimization horizon is denoted
j. Since this is an intervalwise MPC, as described in section 3.3, all states within in
the interval will be stored, and the interval consists of k timesteps. If the number of
intervals needed to cover the entire path is L, the result will contain kL timesteps.

The first term of the objective function calculates the distance between the UAV states
and the reference trajectory. The vector yd is the measurement vector, which is the
references for the states:

yd =
[
cxd cyd hd ud

]ᵀ
. (3.9)

The function y(x) holds the current values for the optimization problem. While the
height h and velocity u can be used as-is, the camera centre point cn needs to be calcu-
lated using (2.14):

y(x) =


pN +hcos(ψ)tan(θ)−hsin(ψ)tan(φ)
pE +hsin(ψ)tan(θ)+hcos(ψ)tan(φ)

h
u

 . (3.10)

In order to reduce the control effort for the optimization problem, the rate of change of
the control inputs ∆u will be minimized. Since all the control rates is to be compared
to zero, no function is needed.

The matrices Q and R are the weighting matrices. They are diagonal matrices where
each row represent one state or control rate. The higher the value in the row, the more
value is given to the difference between the corresponding state or control rate and the
reference trajectory while minimizing the objective function.
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3.5.3 Constraints

The states and control inputs to the optimization problem are bounded by constraints to
ensure that the values stays within ranges that are physically possible. The constraints
umin and umax directly relates to the maximum deflection angle for the control surfaces,
while the throttle is described as a proportion between zero and one. The same goes
for the control rate constraints ∆umax and ∆umin, as these as well are directly related to
physical restrictions. It is worth noting that in addition to constraints, the control rates
are included in the objective function, which seeks to minimize these variables.

When constraints are put on the optimization problem the complexity of the problem
increases, which may make it more computational difficult to find a feasible solution.
For this reason the constraints put on the UAV states xmin and xmax will not be set to
begin with, as it is assumed that the ”cheapest” way to fly the aircraft is the ”correct”
way. However, if testing shows that the MPC finds solutions that shouldn’t be feasible,
constraints will be included to remove these solutions.
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Chapter 4
MPC Implementation

The offline intervalwise MPC presented in chapter 3 will be implemented using C++
and the ACADO Toolkit [22]. The implementation consists of two main parts: the
MPC algorithm that prepares the optimization problem, and the optimization solver
that will use the ACADO Toolkit to solve the optimization problem.

This chapter will describe the ACADO Toolkit, how to use it and how it works; as well
as the MPC algorithm. An overview of what information the modules share is shown
in figure 4.1.

Figure 4.1: An overview of what information the modules share.
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4.1 ACADO toolkit

The ACADO Toolkit [22] is an open-source toolkit that supports several different meth-
ods for solving optimization problems. The toolkit provides methods to solve four
different classes of optimization problem: Optimal control problems, multi-objective
optimization and optimal control problems, parameter and state estimation problems,
and model predictive control.

Even though the toolkit will be used to create an MPC in this paper, the optimal control
problems (OCP) class will be used to solve the optimization problem. The reason
for this is that between each iteration of the MPC algorithm a new trajectory must be
generated, and the MPC problem class does not have the functionality needed to do
this.

4.1.1 Runge-Kutta Method

The Runge-Kutta method is a form of numerical integrator that can be used to solve
differential equations, and is used by the ACADO toolkit to integrate the prediction
model. The method is based on the Euler method, which is a very simple method for
numerical integration.

The ACADO toolkit provides algorithms for explicit Runge-Kutta methods [22], where
explicit means that the method calculates the state of the system at a later time based on
the current state. The Runge-Kutta method calculates the later state of the system by
calculating several approximations of the derivative of the system. The current state of
the system, together with a linear combination of the approximated derivatives, gives
the next state of the system [16]. For a system on the form ẏ = f(y, t), the Runge-Kutta
method can be mathematically expressed as:

ki = f(yn +h
i−1

∑
j=1

ai jk j, tn + cih), i = 1, ...,σ (4.1a)

yn+1 = yn +h
σ

∑
j=1

b jk j (4.1b)

where tn is the current time, yn is the output of the system at the current time, h is the
step size and σ is the number of approximations of the derivative that is calculated. a,
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b and c are parameters for the specific Runge-Kutta method used, and c must satisfy
0 < c < 1.

Systems may consist of dynamics of different time constants, and the difference be-
tween the constants may have a big impact on how fast an explicit method can perform
the computations. While they don’t have a formal definition, systems that explicit
methods compute poorly are referred to as stiff systems [23]. The poor performance of
explicit method comes from the stability of these methods, as the stability is dependent
on the step size. This means that for systems with dynamics of varying time constants,
a very small stepsize has to be chosen in order for the method to remain stable. For
stiff systems implicit methods have a better performance and faster computation time.

4.2 Implementing the Optimization Problem

Since ACADO offers a symbolic way of implementing the optimization problem the
equations from chapter 3 can be implemented as they stand. The 12 UAV states x are
implemented as differential states, as well as the four control surfaces u. The control
rate u̇ is defined as the control states of the problem, and are linked to the control states
through (3.8). The model of the UAV is implemented using the differential equations
for each state.

ACADO offers a symbolic way of defining the objective function as an LSQ as well. By
defining what states are included in the LSQ and their weights, ACADO automatically
minimizes the objective function. The reference model can either be a constant value
or a time varying variable. When a path is to be tracked, the path needs to be given
with related timepoints.

Lastly, the constraints are also implemented using the symbolic syntax, by simply as-
signing max-min values for the variables that are subject to constraints. The initial
value of the states is also set using the same syntax.

4.2.1 Nonlinear Prediction Model

Initially, effort was made to implement the nonlinear model presented by Beard &
McLain [15] as the prediction model in the optimization problem. This would have
given more precise results as the nonlinear model is a closer representation of the real
UAV. Since the nonlinear model also includes the effect wind has on the aircraft, the
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path could be optimized with the knowledge about the wind conditions as well. The
level of calculation needed for the nonlinear model is significantly higher; however,
since this implementation is intended to run offline before the flight occurs, computa-
tion time is not a critical concern.

Achieving stable flight within the optimization problem with the nonlinear model on
the other hand, turned out to be a difficult task that was far from trivial. This is some-
what due to the nonlinearity, but also to the high coupling between states in the model.
The coupling causes changes in one state to affect many other states, which results
in a much more complex problem. Several different algorithm and solver settings in
ACADO was tested, as well as different objective functions and weighting of these
functions. After many attempts the decision to use the linear model instead was made,
largely due to this being a project with limited time available.

4.2.2 Nonlinearity

The ACADO toolkit is written for nonlinear optimization problems, and using it to-
gether with a linear optimization will give a correct solution, but the computation time
for a linear problem will be longer than it needs to be because of extra overhead related
to nonlinear algorithms.

For this reason, using it with a linear prediction model may seem odd. However, the
cost function used in this problem is not linear. This is because of both the calculations
for the position pN and pE is represented by nonlinear equations, and the equations to
calculate the camera footprint are nonlinear. If the timing demands for this optimization
problem was of importance, a solution may be to linearize the position equations as
well as the equations used to calculate the camera footprint, and then implement the
optimization problem using a toolkit that is made for linear problems.

4.3 MPC

The task of the MPC module is to supply the ACADO implementation with the infor-
mation needed to perform the optimization, and also control the optimization algorithm
so that the correct horizon is calculated, as well as storing the results in the correct or-
der. The pseudocode for the MPC implementation is shown in algorithm 1 and 2 in
appendix C.
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Figure 4.2: Calculating trajectory based on constant speed.

4.3.1 Generating the Trajectory

The ground path that is to be observed is assumed to be time independent, meaning
that it does not matter when a section of the path is captured by the camera. However,
the function that minimizes a least-squares objective function that is provided with the
ACADO toolkit requires that the path is given as values with associated time points.

In order to meet this requirement a time dependent path will be generated at the be-
ginning of every iteration of the MPC. This will be done by making the assumption
that the UAV will maintain its reference speed throughput the horizon. With this as-
sumption the distance the UAV will travel between every timestep can be calculated,
and based on this distance the desired position for the UAV at the next timestep can be
found. Since the horizon is in the order of seconds and the predicted path is updated
every iteration, this assumption will not lead to big errors. The principle behind the
calculation is shown in Figure 4.2.
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Chapter 5
Simulation Environment

In this chapter the tools needed to give input to the MPC application is described, as
well as the software that will be used to simulate a UAV tracking the optimized path.

5.1 Software In the Loop Testing

In order to simulate an aircraft tracking the optimized path, a software in the loop
(SITL) simulation will be performed. For this the applications Dune, ArduPilot and
Neptus will be used. A short explanation of each of these will be given in the following
sections.

5.1.1 DUNE

DUNE Unified Navigation Environment is part of the LSTS toolchain (Laboratório de
Sistemas e Tecnologia Subaquática) which aims to provide a control architecture that
will ease the control of unmanned air, ground surface and underwater vehicles [24].
DUNE is the software intended to run on board the unmanned vehicles, and provides
an interface towards sensor drivers, and navigation and control functionality. In this
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thesis DUNE will be used to turn the flight path into waypoints that can be sent to the
autopilot.

The functionality needed to track the path is made as a task using the application pro-
gramming interface (API) provided by DUNE. The task receives information about the
UAV states from the vehicle, and uses this information to provide meaningful input to
the autopilot depending on the stage of the operation. When generating waypoints from
the path the task uses the principle of Line-of-Sight (LOS) guidance to find waypoints
a given distance away from the vehicle.

5.1.2 ArduPilot

ArduPilot is an open-source autopilot, which supports several types of vehicles [25].
It provides functionality for SITL simulation by interfacing the flight dynamics model
provided by JSBSim [26]. ArduPilot communicates with DUNE to receive control
commands and send information about the UAV states.

5.1.3 Neptus

Neptus is also a part of the LSTS toolchain, and is used to execute the simulations, and
generate logs after they are finished [27]. It provides a map interface to observe the
simulations in real-time, and also displays information about the aircraft. It communi-
cates with DUNE with messages based on a control message set defined by the LSTS
toolchain.

5.2 Finding Trim Conditions

The trim conditions described in Section 2.2 play an important role when using a linear
model, as the linear model is linearized about these states. Since the trim conditions
also represent a straight level flight they are good initial values for states and controls in
the optimization problem. In order to find the trim conditions a built-in Matlab function
together with a Simulink model will be used. The procedure that is used is described
by Beard & McLain [15], and a short summary will be given here.

Matlab features a built-in function trim that calculates the trim conditions of a given
Simulink model. The Simulink model must be set up with the four control signals as
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inputs, and the output of the model is the airspeed Va, the angle of attack α and the
sideslip β . The out states are chosen as they can easily be used to express a trimmed
stable flight. The airspeed is set to the desired cruise speed, while the angle of attack
and sideslip is set to zero for a straight level flight. The function uses initial guesses of
the states and inputs, also the derivatives, and what the desired output is. The Simulink
model used in this thesis was developed by Gryte for his master thesis [28].

5.3 Generating the Path

The MPC application expects a parameterized path that can be either linear or curved.
The linear paths will be generated using parameterization, and the curved paths will be
generated as Dubins paths. This will be done using Matlab, and the generated paths
will be stored in a text file containing only the points on the path.

One important matter when generating the paths is to ensure that the resolution of the
path is high enough. How high the resolution needs to be depends on the speed of
aircraft and the length of the timestep, and how much uncertainty is accepted when
generating the trajectory. In this thesis the parametrized points that makes up the paths
was spaced by 0.1m.

Dubins Path

A Dubins path is a path that consists of two circles connected by a straight line, and it
has been proven that this is the shortest path between two vehicle configurations [29].
In order to generate the Dubins path the algorithms presented by Beard & McLain [15]
will be used. An illustration of a simple Dubins path is shown in figure 5.1.
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Figure 5.1: An illustration of a simple Dubins path.
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Chapter 6
Optimizing Paths

In this chapter an analysis of paths optimized by the MPC will be performed. Several
paths will be reviewed, and the discussion will focus on how the control problem is
solved.

The optimizations will be performed at an altitude of 150m unless stating otherwise.
For other survey missions using a hyperspectral camera the altitude has been as low as
100m [11], and as high as 1900m [30]. The cruising speed is set to 25m/s, as this gives
a stable trimmed flight.

6.1 Horizon Length

In order to determine what horizon length is needed to optimize the path, several paths
were optimized with horizon lengths varying from 10 to 140, spaced by 10. A piece-
wise linear and a curved 45◦ turn was optimized with the different horizon lengths.
The resulting path flown by the UAV is shown in Figure 6.1, and the resulting camera
position can be seen in Figure 6.2. In general, the horizon lengths for the paths increase
from the paths to the left to the paths on the right.

The results for the two paths are very similar, and longer horizon length seems to be
synonymous with better tracking of the ground path. The MPC compensates for the
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sideways shift in the camera position caused by the roll angle by initiating the turn
earlier, and the aircraft levels out from the turn later for the same reason.

For the shorter horizon lengths the MPC runs into problems because it hasn’t planned
far enough ahead when the turn begins. As the path starts turning the aircraft is still
straight above it. At this point it is too late to start altering the aircrafts position to
ensure that the camera footprint stays on the path, so the MPC creates a roll angle in
the opposite direction of the path so that the camera continues to move in the direction
of the path. This in turn leads to the aircraft turning left, worsening the situation and
making the problem more and more difficult. In some cases this causes the roll angle
to become very high, causing the MPC to lose control and the aircraft loses height.

Upon closer inspections it can be seen that when the horizon length reaches 90, there
are no more big unwanted motions in the system. As the horizon length reaches 110 the
optimized paths are almost identical, and as can be seen in Figure 6.3b, there is very
little precision to gain from increasing the horizon length. The optimization is time
consuming, and as seen in Figure 6.3a the time it takes to optimize the paths increases
exponentially. For these reasons a horizon length of 110 will be used for the rest of the
simulations, as this gives an accurate path tracking for a relatively short computation
time.

One result to take specific note of is the light blue UAV path in Figure 6.1a. This
path is generated when the horizon length is 130, and is clearly not a solution to the
optimization problem. There are no simple explanations for why this exact horizon
length returns a bad result, as both lengths shorter and longer return good results. One
explanation may be that this exact horizon length with this exact discretized path results
in a very unfortunate set of waypoints. This result has been removed from the camera
position shown in Figure 6.2a, as it made it difficult to see the other correct results.
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(a) Linear 45◦ turn.
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(b) Curved 45◦ turn with 200m radius.

Figure 6.1: The position of the UAV during the two turns with horizon lengths varying
from 10 to 140.
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(a) Linear 45◦ turn.
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(b) Curved 45◦ turn with 200m radius.

Figure 6.2: The camera position during the two turns with horizon lengths varying
from 10 to 140.
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Figure 6.3: Computation time per interval for varying horizon lengths, and the mean
error.

6.2 Turns

In this section both linear and curved turns of different degrees will be optimized, and
an analysis will be performed on the results.

6.2.1 70◦ Turn

Curved 70◦ Turn

The optimized path of a 70◦ turn with a radius of 150m is shown in Figure 6.4. Even
though the camera centre point deviates more from the desired path than during the
45◦ turn, the result is still a smooth path with no big unwanted motions. The aircraft
maintains a stable altitude, and the angles are stable and smooth.

Linear 70◦ Turn

Optimizing a path containing a 70◦ linear turn returns a very different result than for
the curved turn. As can be seen in Figure 6.5, the MPC is not able to achieve stable
flight throughout the turn, and it is difficult to point to one exact reason for why the
optimization fails. The aircraft is about halfway through the turn when it suddenly
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Figure 6.4: Results of optimizing a curved 70◦ turn.
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banks to the left and enters a spiral. This could be for the same reason as when the
horizon length is too short, that it tries to cover the path by moving the camera position
using roll. It is also possible that the optimization algorithm could not find a feasible
solution. When it cannot find a feasible solution it still returns some values and tries to
continue, but in most cases the system is already unstable at this point, so it is not able
to get it back to a stable state.
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Figure 6.5: Results of optimizing a linear 70◦ turn with 10−1 weight on camera posi-
tion.

In an attempt to achieve stable optimization of the corner, the weighting of the camera
position in the objective function was reduced. The result of changing the weighting
from 10−1 to 10−3 can be seen in Figure 6.6. This tuning results in a stable flight,
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but the path tracking is not as precise and smooth as for the 45◦ turn. In addition the
resulting camera path consists of several loops. This occurs as a combination of both
the roll angle and pitch angle changing at the same time.
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Figure 6.6: Results of optimizing a linear 70◦ turn with 10−3 weight on camera posi-
tion.

A third attempt on a linear 70◦ turn was made, this time with a weighting of the camera
position of 10−5. As can be seen in Figure 6.7 this results in a stable flight. The path
tracking on the other hand, is poor. With this tuning the weight on the camera position
is so much lower than on the other states included in the objective function, so that the
path with the lowest cost is not the path that tracks the ground path.
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Figure 6.7: Results of optimizing a linear 70◦ turn with 10−5 weight on camera posi-
tion.

6.2.2 90◦ Turn

Curved 90◦ Turn

Figures 6.8 and 6.9 shows the optimized paths of a curved 90◦ turn with varying radii.
The results show that with a radius of 200m, 150m, and 50m the optimization algorithm
returns a smooth stable flight path. As expected the camera position deviates more
from the ground path than for gentler turns, and Figure 6.10 shows that the roll angles
contains some smaller spikes that did not appear in the 70◦ turn.
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Figure 6.8: The position of the UAV when optimizing a curved 90◦ turn with varying
radius.

For all the three radii there is a deviation between the camera centre point and the
ground path after the turn. For the 50m radius turn in Figure 6.9d, this deviation is
as high as 50m. While this most likely would correct itself if the path was simulated
further, the deviation is a result of how the cost function is weighted. As mentioned
in the previous section the weight on the camera position is so low compared to the
weight put on the control rates, so having a deviation is cheaper than using control
input to correct it.

A more surprising result is seen in Figures 6.8c and 6.9c. Even though the MPC is able
to optimize the turn with 50m radius, it is not able to return a stable flight path for the
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Figure 6.9: The position of the camera when optimizing a curved 90◦ turn with varying
radius.

turn with 100m radius. As for the linear 70◦ corner, the MPC appears to fail mid-turn,
which causes the aircraft to enter a spiral motion. As the MPC handles the other radii
well, this may occur because of a very unfortunate set of waypoints, as mentioned for
the failing horizon length.
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Figure 6.10: The roll angle φ during the 90◦ turns.

Linear 90◦ Turn

Since the MPC struggles to track a 70◦ corner, it is no surprise that it fails to track a 90◦

corner as seen in Figure 6.11. Once again the MPC ends up with solving a difficult path
using roll instead of the position, which ends with a bad solution. Different weightings
on the position was tested without success.

6.2.3 180◦ Turn

When optimizing a 180◦ turn the radius plays a big role, as can be seen in Figures 6.12
and 6.13. The figures show optimizations of six 180◦ turns with radius ranging from
300m to 50m.

Unsurprisingly, broader turns give better solutions. For the turn with 300m radius the
tracking is very good. And while the tracking is not as good for the turns with 250m
and 200m, they return a smooth stable path that puts the camera centre not too far away
from the path. As for the 90◦ turn, the MPC accepts deviance after the turn rather than
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Figure 6.11: Result of attempting to optimize a linear 90◦ turn.

using expensive control inputs to correct it. Figure 6.14 shows that shorter radii require
higher roll angles, which is as expected.

For the three shortest radii, 150m, 100m and 50m, the result is not as good. For the
turns with 150m and 100m radius the result is similar to previous paths where the path
is too sharp: the MPC fails halfway through and ends up spiralling in the opposite
direction. In Figure 6.12e it may appear as the aircraft is about to recover and continue
tracking the ground path, but closer inspection of the height plots show that at this point
the aircraft is only about 20m above ground, and still descending.

For the 50m turn in Figure 6.12f the MPC fails before the turn has started. About
250m before the turn begins the aircraft drifts off to the left, the opposite direction of
the turn. In Figure 6.13f it can be seen that the camera point is still close to the ground
path at this point, however, it is swinging rapidly from side to side a few times before
it completely drifts off.
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Figure 6.12: The position of the UAV when optimizing a curved 180◦ turn with varying
radius.
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Figure 6.13: The position of the camera when optimizing a curved 180◦ turn with
varying radius.
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Figure 6.14: The roll angle φ during the 180◦ turns.

50



CHAPTER 6. OPTIMIZING PATHS 6.3. EFFECT OF HEIGHT

-100 -50 0 50 100 150 200

East [m]

300

350

400

450

500

550

600

N
or

th
 [m

]

100m
200m
300m

(a) UAV position

-100 -50 0 50 100 150 200

East [m]

300

350

400

450

500

550

600

N
or

th
 [m

]

100m
200m
300m

(b) Camera position

Figure 6.15: The UAV and camera position when tracking a 45◦ turn with 200m radius
at different altitudes.

6.3 Effect of Height

As can be seen in (2.12), the effect the pitch and roll has on the camera position in-
creases proportionally with the altitude of the aircraft. In Figure 6.15, a 45◦ curved turn
has been optimized with the aircraft flying at different altitudes, namely 100m, 200m
and 300m. While the altitude can appear not to affect the path the MPC chooses to fly
the aircraft, the effect is clearly visible in the camera position shown in Figure 6.15b.
When flying at an altitude of 100m the camera position takes the inner turn, while for
300m it greatly widens the turn. For an altitude of 400m the MPC fails to return a sta-
ble result, which indicates that the optimization problem becomes more difficult with
increasing altitude.
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6.4 Path

In this section paths consisting of more than one turn will be optimized.

6.4.1 Two Opposite Turns

How the MPC takes advantage of subsequent opposite turns can be seen in Figure 6.16.
When there is an opposite turn trailing the first turn, the optimized path cuts across the
line connecting the two turns, while still keeping the camera on the observation path.
This is also seen in Figure 6.16f that shows the course angle throughout the turn. The
course angle never reaches 45◦ or 70◦, which is the angle of the lines, because the
MPC decides to cut across the lines and correct the camera position using roll angle.
The course angle and heading angle are close to identical, which indicates that the MPC
does not correct the course angle by using rudder to induce sideslip.

6.4.2 Lawnmover Path

The result of attempting to optimize a lawnmover-pattern path is shown in Figure 6.17.
The radius was set to be 250m, as the optimization of 180◦ turn show that the MPC
performs well on this turn, and the line connecting two arcs is set to 500m.

When the MPC optimizes the first 180◦ turn, it performs in a similar manner to the
results in section 6.2.3: it takes the inner turn to begin with, and then widens the turn
at the end in order to avoid changing the roll angle quickly. While it should have taken
the advantage of the straight line to position the UAV right above the path so it could
return to trimmed flight, it instead chooses to continue flying next to the path with a
constant roll angle to compensate for the offset from the path. It uses the rudder to
compensate for the roll angle so it can travel at a constant course angle. The roll angle
it uses to track the path while flying next to the path can be seen in Figure 6.17c.

As the UAV approaches the next 180◦ arch it is already on the inner side of the turn.
Instead of this being an advantage, since it previously has optimized a 180◦ turn like
this by taking the inner turn, it throws the UAV into an unstable right-turning spiral.
This is similar to previous failures, as the spiral is in the opposite direction of the turn.
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Figure 6.16: UAV position, camera position, and heading and course angle during two
subsequent turns of 45◦ and 70◦.
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Figure 6.17: Result of attempting to optimize a lawnmover-pattern path with radius
250m.
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Figure 6.18: Result of optimizing the piecewise linear path.

6.4.3 Long Paths

In order to test the performance of the MPC over a longer duration, a longer path
consisting of several turns was optimized. The path was designed with linear corners
that the MPC could handle, and then the curved path was made with similar waypoints
and radius of 150m.

The results of optimizing the longer path can be seen in Figures 6.18 and 6.19, and
the results of the two optimizations are very similar. At the beginning of the path the
MPC chooses to start the turn immediately, which causes the camera to move quickly
to the right for both the linear and the curved path. The long right turn is in both cases
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Figure 6.19: Result of optimizing the curved path with a radius of 150m.
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Mean Max STD
Linear path 6.8390m 16.8792m 4.1585m
Curved path 5.4001m 14.8386m 3.7833m

Table 6.1: Mean error, max error and the standard deviation between camera centre
point and ground path when tracking the path.

optimized by taking one long, continuous turn, with the camera pointing just beside the
ground path.

A difference between the linear and the curved paths can be seen in the roll angle in
Figures 6.18c and 6.19c. The peaks in roll are sharper for the linear path than for the
curved path, which allows it to better track the sharp corners. Table 6.1 show that the
error between the camera centre point and ground path for the linear has both a higher
max and a higher mean value than for the curved. The standard deviation is also smaller
for the curved path, meaning that there are slightly smaller oscillations when tracking
the curved path. In Figure 6.20 the two optimized paths are shown together, and it can
be seen that they are almost identical.

6.5 Reducing the Stepsize

For the results shown in this chapter a stepsize of 0.2s has been used for the MPC.
This stepsize returns smooth stable paths for most of the curved paths, but do not work
well with the sharper corners in the linear paths. Testing showed that by decreasing
the timestep to 0.1s, the MPC manages to return a stable flight path for linear corners
with a 70◦ angle. The MPC was still not able to return a stable flight path for 90◦ linear
turns.

Figure 6.21 shows the result of optimizing a linear 70◦ turn with a stepsize of 0.1s.
Even though the MPC returns a stable flight path, it can be seen that the camera contains
many small oscillations. These oscillations can also be seen in the roll angle in Figure
6.21b. The horizon length of 110 timesteps was used for this optimization, but when the
stepsize is reduced to 0.1s this horizon is a significant shorter amount of time compared
to a stepsize of 0.2s. Because of this, better results might be achieved by increasing the
horizon length when using a stepsize of 0.1s.

57



6.5. REDUCING THE STEPSIZE CHAPTER 6. OPTIMIZING PATHS

-200 0 200 400 600 800
0

200

400

600

800

1000

1200

Curved Path
Piecewise Linear Path

Figure 6.20: The optimized path of the piecewise linear and the curved path.
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Figure 6.21: Results of optimizing a curved 70◦ turn with reduced stepsize.
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Chapter 7
Simulating the Optimized Path

In this chapter the SITL simulator described in Chapter 5 will be used to track an
optimized path. Ideally the simulated model would be the Aerosonde UAV, as this is the
model that has been used as the prediction model in the MPC. However, the ArduPilot
SITL interface is only delivered with one default model to interface with JSBSim.
This is a model of the Rascal110, and as there was no time to create a model of the
Aerosonde the simulations will be performed with this model. Even though the results
would have been more precise if the same model was used in both the optimization and
the simulation, they will serve to show if the optimized path offer any improvements
or not.

As mentioned in Chapter 5, the guidance during simulations will be based on the LOS
principle. By trial and failure the LOS distance was set to 150m. The path flown by
the UAV is shown together with the path that was tracked in Figure 7.1, and the results
show that the tracking performance of the LOS guidance implemented in DUNE is
satisfactory.

7.1 Tracking the Optimized Path

The path that will be tracked is the path that was optimized in Section 6.4.3. The
optimized paths for both the curved and the piecewise linear path will be tracked. In
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Figure 7.1: Result when tracking the optimized path.
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addition the ground path that is to be observed will be tracked for comparison.

7.1.1 Linear Path

The result of tracking the linear ground path and the optimized path can be seen in
Figure 7.2. It is clear that when tracking the ground path the biggest problem is that
the path that is being tracked consists of linear corners, causing abrupt changes in the
roll angle of the aircraft. When tracking the optimized path on the other hand, the are
no abrupt changes in the roll angle. The smooth reference path gives a smooth flight
path, and the camera centre point stays focused on the ground path without any major
deviations.

When comparing the attitude of the two simulations, it is clear that the optimized path
gives a much more stable flight. Not only do the roll angle vary less, the pitch angle is
also close to zero throughout the flight. When tracking the ground path the pitch has
some variations, that will further add to movement in the camera position.

7.1.2 Curved Path

The results for tracking the optimized curved path is very similar to the results for
the optimized linear tracking. The biggest difference is that when tracking the curved
ground path, the oscillations are smaller than for the linear ground path. The oscil-
lations for the curved optimized path are also slightly smaller than for the optimized
linear path, but this difference is so small that it has no practical significance.

7.1.3 Linear VS. Curved

Mean Max STD
Optimized Curved Path 4.0366m 21.6539m 5.0647m
Optimized Linear Path 3.5139m 18.4791m 4.0691m
Ground Curved Path 8.0423m 36.4857m 10.4101m
Ground Linear Path 7.9658m 40.5172m 11.2268m

Table 7.1: Mean error, max error and the standard deviation between camera centre
point and ground path when tracking the path.
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Figure 7.2: The result when tracking the ground path and the optimized path.
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Figure 7.3: The result when tracking the ground path and the optimized path.
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The statistics for the simulations of the paths can be seen in Table 7.1, and they show
that the performance when tracking the optimized linear path is better than when track-
ing the optimized curved path. The mean deviance is 0.5m smaller for the linear path
than for the curved path, and the maximum deviance when tracking the linear path is
a little more than 3m better than for the curved path. This is opposite of the results
when optimizing the paths, where the curved path had a better tracking. It is also worth
noting that mean error when optimizing the paths was bigger than the mean error when
simulating the paths, and tracking the optimized paths give a considerably better result
than tracking the ground path.

7.1.4 Camera Field of View

In Figure 7.4 the field of view has been added to the camera footprint, in order to show
what would be captured by an actual camera. The field of view is set to 19◦, which
is approximately the same as the camera used in [11]. The figure shows that either if
the ground path is tracked or the optimized path is tracked, the ground path that is to
observed will be within the camera footprint. In other words, the path simulated here
is a bit too simple to really show the benefits of using the optimized paths. However, it
is still clearly visible that the optimized path results in a much more stable image.
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(a) Ground Path

(b) Optimized Path

Figure 7.4: The field of view of the camera.
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Chapter 8
Discussion

The results show that optimizing a path to achieve better observation of the ground path
while using a fixed camera is a difficult optimization problem to solve. However, the
results also show that tracking can be improved by following an optimized path.

8.1 Piecewise Linear Vs. Curved Paths

There was a big difference in how well the MPC handles piecewise linear and curved
paths. While it managed to optimize curved turns as sharp as 90◦ with a 50m radius, it
couldn’t optimize linear corners sharper than 45◦.

The difference in how well it performs is most likely due to the fact that the piece-
wise linear paths consists of actual corners, which do not give the same smooth change
in reference that curved paths do. These linear corners do not represent a path that a
fixed-wing UAV would naturally travel. However, since no processing is performed on
the path before it is used as a reference to the optimization problem, the optimization
algorithm will try to find a solution that do follow these corners. If some more process-
ing was put into the trajectory generation, it would have been possible to smooth out
the corners before they were fed to the optimization algorithm, making it more similar
to a curved path.
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As shown in the results, the MPC is able to optimize a 70◦ linear corner when the step-
size is reduced from 0.2s to 0.1s. This makes sense with the rapid changing reference,
since the MPC is able to respond to rapid changes in reference quicker with a shorter
stepsize. However, the application is very time consuming even when using a stepsize
of 0.2s, and decreasing the stepsize would increase this duration, as both the number
of intervals and number of steps in the horizon would need to be increased to achieve
good results.

A more surprising result when comparing piecewise linear and curved paths is that the
linear paths gave a more precise result during simulation. As was seen when comparing
the optimization result for curved and linear paths, the linear paths required sharper
changes in the roll angle. This information is not embedded in the optimized path, and
thus it was not expected that tracking the optimized path would give a better result in
the linear case.

8.2 Generating a Precise Trajectory

For some of the results in this thesis it is suspected that a particular set of unfortunate
waypoints can cause instability. The reason for this suspicion is the way the trajectory
is generated for every iteration of the MPC, described in section 4.3.1. This method
assumes that the UAV will maintain a constant speed, in order to calculate the distance
the UAV will travel during one timestep. This assumption will introduce some inac-
curacies, but the results show that during stable optimizations the speed did not vary
much. However, this method of generating the trajectory introduces another inaccu-
racy, related to the parametrization of the path.

A parametrized path consists of several points spaced by a given distance. For this
reason, when processing the reference path, it is not always possible to find a point that
is exactly the desired distance away from the UAV. To avoid this, points with a distance
away that is within a given range is accepted as the next waypoint. If this range is too
big the inaccuracy will be too big, which will cause a spike in the reference model in
the cost function. Because of this spike in reference the optimization algorithm will
seek to follow the spike, which causes the oscillations in the states.

In Figure 8.1 the effect the acceptance range of waypoints has on the roll through a 45◦

linear turn is shown. First of all, the tracking of the ground path was worse, as can be
seen in Figure 8.1b. And as can be seen in Figure 8.1a, the roll angle contains more
oscillations when the acceptance rate is ±1m, compared to ±0.08m. While this is as

68



CHAPTER 8. DISCUSSION 8.3. COST FUNCTION

0 10 20 30 40

Time [s]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

A
ng

le
 [r

ad
]

± 0.08m
± 1m

(a) Roll angle

-200 -100 0 100 200 300 400

East [m]

100

200

300

400

500

600

700

N
or

th
 [m

]

(b) Camera Position for ±1m

Figure 8.1: The effect of difference acceptance rates for waypoints.

expected, it proves that the precision is important when generating the trajectory.

8.3 Cost Function

The cost function in this thesis consisted of eight states, where the position of the
camera were the states included to solve the problem of finding an optimal path to
track with a fixed camera. While this cost function do solve the problem, it does have
some problems related to the tuning of it.

Early in testing, before the final tuning of the cost function had been decided, it was
clear that the easiest way to solve the control problem was to control the course of the
airplane using the rudder. This is an easy solution to the problem since it does not
rely on using the roll angle that inherently shifts the camera position. Since this thesis
aimed to create an optimal path that could be used with a bank-to-turn controller, this
behaviour had to be removed. This was done be heavily punishing usage of rudder,
while there was almost no weight put on the usage of ailerons.

Weighting the usage of rudder more than aileron worked as intended: The MPC uses
roll to follow the path instead of yaw. However, the light weighting of aileron input
caused it to oscillate heavily, adding to the effect of the poor trajectory generation
previously mentioned.

Another problem discovered during testing was how the MPC deals with long stretches
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Figure 8.2: The control signals when optimizing a 45◦ curved turn.

of path. When the turns were positioned closely after one another it was no problem,
as the MPC would have to change the course of the aircraft often. When optimizing
the lawnmover path in section 6.4.2 however, it became clear that the MPC chose to
position the camera centre point on the ground path by keeping a constant roll angle
and flying next to the path. Since the cost function only seeks to minimize the control
rates, this was a cheap solution that required no change of the control states.

One possible solution to this would be to include the position of the UAV in the cost
function. These terms would have to be weighted lower than the position of the camera
since the camera position is the main focus, but it would cause flying next to the path a
more expensive solution compared to flying just above the path. Another solution may
be to include control surface deflection in the cost function, but this is most likely a bad
decision as some situations require a constant deflection of the control surfaces.
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8.4 Control Signals

In this report no plots of the control signals have been given. The main reason for this
is that the output of the MPC is the optimized path, and the control signals are not
intended to be used for tracking the path. Another reason can be seen in Figure 8.2:
they do not always make sense. There are two reasons for this.

First of all, the noise is most likely related to the oscillations previously mentioned in
this chapter. For every iteration of the MPC there is a significant spike in all of the four
control signals, some more than others. Since there is a spike in the reference for every
iteration, it is no surprise there is a spike in the control signals with that spike.

The second reason is that the control signals for the aileron and rudder are surprisingly
small, and the aileron control signal often do not match the roll angle of the aircraft.
The reason for this is most likely tied to the linearized model. The model is already an
approximation of the real model, and poor selection of parameters may make matters
worse.

Since the UAV states seem reasonable, it was decided not to give much weight to the
control signals in this thesis.
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Chapter 9
Conclusion

The goal of this thesis was to develop a control method that would enable a UAV
equipped with a hyperspectral camera fixed to its body to optimally survey a ground
path. This was solved by creating an offline intervalwise MPC that seeks to minimize
the distance between the camera point on the ground and the ground path that is to be
observed. The MPC algorithm was implemented using C++ and the ACADO Toolkit.

The results show that the optimization method can be used to achieve good tracking
of the ground path. SITL simulations show that even for a simple path, the mean
error when tracking a path can be cut in half when tracking the optimal path compared
to tracking the ground path. In addition to reduced error, tracking the optimized path
results in less movement of the camera footprint, causing less movement in the captured
images. The MPC is able to optimize both curved and piecewise linear paths, with
piecewise linear paths giving the most precise end result during SITL simulations.

Even though the piecewise linear paths resulted in the most precise tracking, the MPC
had a hard time optimizing piecewise linear paths. The sharpest linear corner it could
optimize was a 45◦ turn. For curved turns it managed to optimize 90◦ turns with a
radius of 50m, and it can optimize 180◦ turns with a radius equal to or larger than
200m. Long, straight paths connecting turns turned out to be a difficult for the MPC to
solve. This was because the MPC do not correct the UAV position to be straight above
the path during these stretches, which caused the aircraft to be in an unfortunate state
when it encounters the next turn.
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Testing showed that the optimization problem was a difficult and time consuming prob-
lem to solve. The application created in this thesis was not very robust, and it was es-
pecially vulnerable to how precise the ground path was given. Testing show that there
is most likely an improvement to gain by reducing the stepsize of the MPC from 0.2s
to 0.1s however, since the application was so time consuming, it was not thoroughly
tested in this thesis.

9.1 Future Work

One of the major shortcomings of the MPC developed in this thesis is the method used
to generate a new trajectory for each iteration of the MPC. The method currently used is
not precise enough, which leads to spikes in the reference used to solve the optimization
problem. If the trajectory generation is improved it would hopefully remove many of
the oscillations seen in these results, and make it possible to optimize even sharper
corners. A more sophisticated trajectory generator could also allow the MPC to support
loitering above a point.

Another problem area for the MPC that should be improved is the duration it takes
to optimize the paths. Even though this application isn’t intended to run in realtime,
it uses what should be an unnecessary amount of time. The ACADO Toolkit offers
a code-generation tool, that generates C++ code to be run instead of re-compiling the
optimization problem for every iteration of the MPC. Using the code-generation tool
may improve the time consumption.

Since the MPC already uses a linear model of the UAV, the cost function could be lin-
earized in order to get a problem that takes less time to solve. Since the ACADO Toolkit
is not optimal for linear problems, the linearized problem should be implemented with
a different toolkit intended for solving linear problems, which could improve the com-
putation time.

In order to achieve more precise optimization, the complete nonlinear model of the
UAV should be implemented. It was attempted in this thesis, but as it proved to be far
from trivial to achieve stable trimmed flight with the nonlinear model, the linearized
model was used instead. With the complete nonlinear model it would be possible to
include wind in the optimization problem.
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Appendix A
UAV Model

A.1 Nonlinear State Space Model

The complete state space equations for the nonlinear model presented by Beard &
McLain [15], that is the basis for the linearized model used as the prediction model in
the MPC, is given here.

 ṗn
ṗe
ṗd

=

cθ cψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ

cθ cψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ

−sθ sφ cθ cφ cθ

u
v
w

 (A.1)

 u̇
v̇
ẇ
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qu− pv

+ 1
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 fx
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 (A.2)

φ̇
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ψ̇

=

1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)

cos(θ)
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 (A.3)
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ṗ
q̇
ṙ

=

 Γ1 pq−Γ2qr
Γ5 pr−Γ6(p2− r2)

Γ7 pq−Γ1qr

+
Γ3l +Γ4n

1
Jy

m
Γ4l +Γ8n

 (A.4)

fx, fy and fz in (A.2) represent the forces in each direction in the body frame, and m
represent the mass of the UAV. In (A.4) the Γ values represent the inertia of the UAV,
and l, m, and n is the moments about the axes in the body frame.

A.2 Aerodynamic Force Coefficients

What aerodynamic force coefficients to use with the linearized model is not explicitly
stated by Beard & McLain [15]. For this thesis, the linear equations for the coefficients
given by Beard & McLain have been used together with the trimmed state values of the
UAV states.

CL(α
∗) =CL0 +CLα

α (A.5a)

CD(α
∗) =CD0 +CDα

α (A.5b)

CX0 = 0 (A.6a)

CXα
(α∗) =−CD(α

∗)cos(α∗)+CL(α
∗)sin(α∗) (A.6b)

CXq(α
∗) =−CDqcos(α∗)+CLqsin(α∗) (A.6c)

CXδe
(α∗) =−CDδe

cos(α∗)+CLδe
sin(α∗) (A.6d)

CZ0 = 0 (A.7a)

CZα
(α∗) =−CD(α

∗)sin(α∗)−CL(α
∗)cos(α∗) (A.7b)

CZq(α
∗) =−CDqsin(α∗)−CLqcos(α∗) (A.7c)

CZδe
(α∗) =−CDδe

sin(α∗)−CLδe
cos(α∗) (A.7d)
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Appendix B
Parameters

In this chapter the different parameters used will be given.

B.1 Trimmed States

States Control
pN 0.0 δe -0.0594
pE 0.0 δa 0.0
h 150 δr 0.0
u 25.0 δt 0.15
v 0.0 ∆δe 0.0
w 0.0 ∆δa 0.0
φ 0.0 ∆δr 0.0
θ 0.066 ∆δt 0.0
ψ 0.0
p 0.0
q 0.0
r 0.0

Table B.1: The values for the trimmed states used in this paper.
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B.2. OPTIMIZATION PARAMETERS APPENDIX B. PARAMETERS

Variable Min Max
θ −π/2 π/2
φ −π/2 π/2
δe −π/6 π/6
δa −π/6 π/6
δr −π/6 π/6
δt −π/6 π/6
∆δe −0.2 0.2
∆δa −0.2 0.2
∆δr −0.2 0.2
∆δt −0.2 0.2

Table B.2: Constraints used in the optimization problem.

B.2 Optimization Parameters

MPC Cost Function
Horizon length 110 Q(pN) 10−2

Timestep 0.2s Q(pE ) 10−2

Interval length 5 Q(u) 10
Acceptance
range trajectory ±0.08m

Q(h) 10
Q(∆δe) 10
Q(∆δa) 10−2

Q(∆δr) 106

Q(∆δt ) 1

Table B.3: Tuning parameters used for the optimization problem.
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Appendix C
MPC Algorithms

Algorithm 1 Offline Intervalwise MPC Algorithm

procedure MPC
path← path from file
timestep← duration of timestep [s]
horizonlen← number of timestep in horizon
intervallen← number of timestep in interval
intervals← number of intervals needed to cover path
x0← initial values of states
u0← initial values of control states
∆u0← initial values of control rates
results[]← empty list to store result from optimization
for each interval do

cn← calculate camera centre position using equation 2.14
trajectory← GENERATEHORIZON(path, timestep, horizonlen, cn)
Solve optimization with initial states x0, u0, ∆u0 for current horizon
x0← last x value in the interval
u0← last u value in the interval
∆u0← last ∆u value in the interval
result[]← the first intervallen number of timesteps from horizon
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APPENDIX C. MPC ALGORITHMS

Algorithm 2 Generate horizon

procedure GENERATEHORIZON(path, timestep, horizonlen, cn)
distance← distance travelled during one timestep
pos← find the point in path that is closes to current camera position cn

trajectory[]← empty list to store the generated trajectory
for each timestep in horizonlen do

Find point postemp on path with the given distance away from current pos
trajectory[]← postemp
pos← postemp

return trajectory
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