
Combining Methods of Mathematical
Optimization and Artificial Intelligence for
Autonomous UAV Mission Planning and
Execution

Henning Andre Åsgård

Master of Science in Cybernetics and Robotics

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: July 2017

Norwegian University of Science and Technology

i

Abstract

In this thesis, different solutions for autonomous mission planning and execution aimed at

Unmanned Aerial Vehicles (UAV) is investigated using methods of Artificial Intelligence

(AI) and Mathematical Optimization. Different configurations of these solutions is then im-

plemented as an Autonomous Mission Planning and Execution (AMPE) system in order to

test the online performance of the complete system, and the different individual models that

composes the system. Inspired by [26] the system is divided into modules handling the plan

in different levels of refinement in a hierarchical manner. Where applicable, modules will

be tested and compared when implemented by AI and Mathematical Optimization and the

advantages and disadvantages will be discussed. The system should be able to plan with a

certain amount of resources in mind, continuously update the plan using state feedback, and

perform the plan by using the plans current actuator inputs. In order to keep clear goals for

the the AMPE system, it is designed with a specific case in mind. Both the implemented

capabilities and the discussion of results will focus on off-shore data gathering from sensors

where the distances causes the required bandwidth impossible to achieve for direct commu-

nication. Several UAVs will cooperate in order to collect the data by creating a delay-tolerant

communication network, and will seek to do so in some optimal manner. The different levels

of the planning problem will be solved using Nonlinear Model Predictive Control (NMPC),

Mixed Integer Linear Programming (MILP) and domain models for EUROPA. The tools

ACADO, AMPL, EUROPA and T-REX will be used to implement the AMPE system with

parallel, synchronous deliberation of the planning levels. Simulations will be performed

which shows that using the MILP optimization with data flow constraints are note applicable

for a real world system as it uses hours to solve a plan. However, by finding plans in a static

mission, the EUROPA solvers will show that it is much more efficient and ways of combining

EUROPA and MILP in the future will be discussed. Simulations is done to show re-planning

capabilities when the mission is affected by poor flight dynamics, dynamic resource con-

sumption and dynamically positioned nodes. In the end we will see how this system can

be quite easily expanded so that the case of this thesis is only a specialization of a much

broader domain of problems solvable by a more general system. A system where a mission

problem would be defined as a top-level nddl domain model, and then solved automatically

throughout the AMPE pipeline. The thesis will conclude with how a system based on purely

Mathematical Optimization is ill-fitted for real-time demands, and how AI and Mathematical

Optimization can be combined for autonomous mission planning and execution.

ii

Abstrakt
I denne oppgaven vil forskjellige løsninger for autonom oppdragsplanlegging og utførelse

siktet mot ubemannede fly bli utforsket ved å bruke matematisk optimalisering og kunstig

intelligens. Forskjellige konfigurasjoner for disse løsningene er så implementert til et au-

tonomt system for å teste den online ytelsen til det komplette systemet, og til de individuelle

modulene som utgjør systemet. Inspirert av [26] vil systemet bli delt inn i moduler som

behandler planen i forskjellige grovhetsgrader på en hierarkisk måte. Der det er mulig vil

moduler bli testet og sammenlignet med hverandre når de er implementert med kunstig intel-

ligens og matematisk optimalisering, og fordeler og ulemper vil bli diskutert. Systemets skal

kunne planlegge med en bestemt mengde tilgjengelige ressurser, kontinuerlig oppdatere pla-

nen ved å bruke status tilbakemeldinger, og gjennomføre planen ved å bruke de nåværende

kontrolverdiene i planen for flykontroll. For å holde klare mål for systemet vil det bli utviklet

for en spesifikk case. Både den implementerte funksjonaliteten, og diskusjonen av resultater

vil fokusere på off-shore datasamling fra sensorer hvor avstandene er for store for direkte

kommunikasjon. Flere fly vil samarbeide for å samle data ved å skape et forsinkelsestol-

erant relénettverk, og vil prøve å gjøre så på en optimal måte. De forskjellige delene av

planleggingen vil bli gjennomført ved å bruke Nonlinear Model Predictive Control (NMPC),

Mixed Integer Linear Programming (MILP) og domenemodeller for EUROPA. Verktøyene

ACADO, AMPL, EUROPA og T-REX vil bli brukt for å implementere systemet med paral-

lell synkron overveielse av planleggingsnivåene. Simuleringer vil bli gjennomført som viser

at MILP optimaliseringen med dataflyt begrensninger kan ikke brukes for systemer i den

virkelige verden da den er treg og kan bruke flere timer på å finne en løsning. Ved å finne

planer for et statisk oppdrag vil EUROPA løseren vise at den er mye kjappere enn MILP

modulen, og måter for å kombinere EUROPA og MILP vil bli diskutert. Simuleringer er så

gjort for å vise re-planleggingsevnene til systemet når oppdraget er påvirket av dårlig fly-

dynamikk, dynamisk ressursbruk, og dynamisk plasserte noder. Til slutt vil vi se hvordan

dette systemet kan utvides til å takle et mye bredere spekter av oppdrag. Oppgaven vil kon-

kludere med at et system basert rent på matematisk optimalisering vil passe dårlig for ekte-tid

systemer, og hvordan kunstig intelligens og matematisk optimalisering kan kombineres for

autonom oppdragsplanlegging og løsning.

Contents

I Introduction 1
1.1 Introduction . 3

1.2 Structure of this thesis . 4

1.3 Previous work . 4

1.4 Case . 5

1.5 Assumptions and scope . 5

1.6 The AMPE system high level overview 6

1.7 Agents and modules . 6

1.8 External libraries and equipment . 7

II Methods of implementation 9

2 Deriving a linear and non-linear model for the X-8 UAV 11
2.1 Motivation . 11

2.2 Reference frames . 12

2.2.1 NED frame . 12

2.2.2 Body frame . 12

2.2.3 Vehicle frames . 12

2.3 State vector . 13

2.4 Kinematics . 14

2.5 Dynamics . 15

2.5.1 Actuators . 16

iii

iv CONTENTS

2.6 Nonlinear equations of motion . 18

2.7 Linearized equations of motion . 20

2.7.1 Trim conditions . 22

3 Concepts and terminology of deliberative control by EUROPA and T-REX 23
3.1 Terminology of T-REX and Europa . 23

4 The AMPE system implementation 25
4.1 Modularizing the system for hierarchical synchronous planning and execu-

tion using T-REX . 25

4.2 The AMPE system . 27

4.2.1 System definitions . 28

4.2.2 Agents and Teleo-reactors . 29

4.2.3 Timelines and predicates . 31

4.2.4 Implementation customized for local simulations 32

4.3 Flow diagram . 32

5 The modules of the AMPE system 35
5.1 Planning a crude overall mission - The upper level module using EUROPA . 35

5.1.1 EUROPA and the new domain description language 36

5.1.2 The nddl model formulation . 37

5.2 Planning a crude mission path using mixed integer linear programming . . . 47

5.2.1 Motivation and considerations . 47

5.2.2 Convexity . 47

5.2.3 Mixed Integer Linear Programing principles and formulation 48

5.2.4 The MILP problem formulation 49

5.2.5 Resources constraints . 58

5.2.6 Solver algorithms . 59

5.2.7 Implementing The MILP crude path planner using AMPL, CPLEX

and AMPLAPI . 61

5.3 Refining a system dynamics dependent path using Model Predictive Control 61

5.3.1 Motivation . 61

5.3.2 Motivation . 61

5.3.3 Model predictive control principle 61

5.3.4 Formulation . 62

5.3.5 MPC for UAV control . 64

5.3.6 The objective function and constraints 64

CONTENTS v

5.4 The navigator module . 67

6 Handling external forces 69
6.1 Optimization of path with consideration of wind 69

6.2 Implemented utilities . 70

6.2.1 Europa nddl model debug-tool . 70

6.2.2 MILP model debug-tool . 70

6.2.3 MPC debug-tool . 70

6.2.4 UDP service . 71

III Simulations and results 73

7 Simulations and equipment 75
7.1 The mission definition . 75

7.2 Simulation and system parameters . 76

8 Simulating static missions 79
8.1 Simulating a static mission using EUROPA 79

8.1.1 Expanding to dynamic planning 79

8.2 Simulating a static mission using MILP and data flow constraints 80

8.2.1 Expanding to dynamic planing . 81

8.3 Re-planing capabilities in a static mission 81

9 Simulating dynamic missions 97
9.1 Simulating a mission with dynamic resources consumption 97

9.2 Simulating a mission with dynamic node positions 102

9.3 External simulator . 103

IV Discussion and conclusion 121

10 Discussion 123
10.1 MILP performance . 123

10.2 EUROPA performance . 124

10.3 MPC performance . 124

10.4 Applicability in real-time operations . 125

10.5 Notes on stability . 127

10.6 A combined system of MILP and EUROPA 127

vi CONTENTS

11 Future work 129

12 Conclusion 131

13 Bibliography 133

V Appendix III

Appendices V

A UAV model constants and parameters V
A.1 UAV linear model constants . VI

A.2 The X8 flying-wing parameters . VII

A.3 The X8 flying-wing trim condition . VIII

B EUROPA nddl model XI

C AMPL model XIX

Part I

Introduction

1

1.1. INTRODUCTION 3

1.1 Introduction

The application of Unmanned Aerial Vehicles (UAVs) have over the past decades become

so significant that in 2011, International Civil Aviation Organization started regulations of

civil UAV usage[10], and global guidelines have been created as templates for national laws.

More and more large area both civil and military operations are being executed by remotely

controlled or autonomous UAVs. Therefore, the field of UAV control and autonoumisation

is an important subject, and different approaches for autonomous systems are receiving a lot

of research. As the vehicles become autonomous, some important aspects of design appears.

One would want the system to be reactive to changes in the environment and able to complete

the mission with minimal human interaction. It is also important that the system is efficient

in the sense that it accomplishes the mission in some optimal way. A mission must then be

planned and executed in accordance with these requirements, and the approaches of this is

often divided into control, mathematical optimization, and Artificial Intelligence (AI). By

defining optimality for the mission, mathematical optimization provides a way to plan and

find control inputs by this definition. The solution, if one is found, is guaranteed to be

optimal within some predefined limit[23], and this optimality can be proven. It is however

often a computationally expensive task, and intricate planning problems can take even high-

end industrial systems a long time to solve. The AI systems on the other hand, does not

give any proof of optimality. It is a well suited approach for on-line mission planning and

replanning as it is designed to be responsive by maintaining the ability to decide changes of

action on the fly. The approach also makes the system able to deliberate on new situations

and handle unforeseen events.

In this thesis mathematical optimization for path planning and vehicle control is imple-

mented in an ”AI environment”, meaning a program flow built around driving an abstraction

hierarchy of deliberate AI modules. This system will be heavily inspired by the work of

Fredéric Py et. al. and utilizes the Teleo-reactor executive (T-REX) system presented in

[22] and [26]. T-REX implements such a hierarchy where different AI modules deliberate

on different abstraction levels of a plan and on the execution of this plan. Here, some of the

AI modules will be replaced by optimization program modules and see if this combination

allows for optimal control, and on-line path optimization - an operation with a complexity

and with a required processing time that makes it previously impractical for on-line use. I

will also seek for optimal control in this environment, using a model predictive control.

4

1.2 Structure of this thesis
First, previous work on T-REX and optimal path planning for UAV control, as well as pre-

liminary work done for this thesis will be presented. Then the case which will be used to test

the system is explained. A high level overview is then shown of the complete system that

will be developed will then give the introduction to what is required and which methods will

be explored. A nonlinear and linear mathematical model of the UAVs are derived in chapter

2. The basics of deliberative control be EUROPA and T-REX will then give the basis needed

to understand the approach and terminology used. Then all the T-REX and all the indi-

vidual modules that constitutes the mission planner and executioner are detailed along with

the methods and concepts used by these modules will be detailed. Finally external forces

and noise will be touched upon before the simulation results, discussion and conclusion are

presented.

1.3 Previous work
In [28] some preliminary work were done for designing the system. A non-linear model

were derived, a model for a crude path planning for several UAVS using [7], and a model

predictive control were designed for control and path refining. The goal of [28] was to test

these approaches and several simplifications were made. This thesis will use and build on

this work in order to design a complete system. The models designed in [28] applicable

for the complete autonomous system will be explained in this report for completeness, and

simplifications will be rectified.

This thesis will expand on the MILP path planning program with anti-collision and connec-

tivity constraints, design a new more reliable MPC and reference trajectory, redesign some

of the models using artificial intelligence for performance comparison, include considera-

tions of wind and sensor noise, design T-REX agents for parallel synchronous execution of

the modules, and simulate communications relay missions using the autonomous system.

The four main components of this thesis are the Mixed Integer Optimization Program, the

Model Predictive Control, the EUROPA domain model, and the T-REX implementation of a

parallel synchronous system. In Motion- and communication-planning of unmanned aerial

vehicles in delay tolerant network using mixed-integer linear programming [17], Esten I.

Grøtli and Tor A. Johansen presents a complete system for optimizing the path of several

UAVs in order to create a communication network with the UAVs capable of ferrying data,

by storing it in a buffer. This is much of the basis in my case and the program of this article

will be the main component in the optimized path planning. [6], [8] and [18] provide formu-

1.4. CASE 5

lations, detailing some parts of the model even further. T-rex: A model-based architecture for

auv control, Planning and Plan Execution for Real-World Systems explains the problems of

popular control techniques where the UAV is driven by a fixed sequence of commands, and

seek to fix this by the use of a teleo-reactive executive (T-REX) artificial intelligence system.

The article then focuses on what the T-REX are and how it works. The more updated work,

of some of the same authors, “Towards deliberative control in marine robotics”[26] details

more of this system, and also the EUROPA artificial intelligence system. The EUROPA sys-

tem is presented as a core component in T-REX. These will be the main sources used in this

thesis, and the planning and architecture takes great inspiration from these.

1.4 Case

The problem to be explored is defined as a dynamic planning and a control problem. By the

use of multiple UAVs, a data relay network should be formed in order to retrieve sensor data

from several stationary or moving marine vessels. The vessels will throughout this report be

defined as ”nodes”. The area of operation will be too large for direct communication with

satellite links such as Iridium. The mission must be planned and executed in some optimal

manner, which are adaptive to changes in node positions. Resources should be monitored

and the plan should change if these are inadequate for further operations. The resources

monitored will be fuel, and should this be inadequate, the UAVs should return and reach

the base station before running out. The mission to be simulated is one data retrieval loop,

ending with all UAVs at the base station.

To summarize, a system should be built which takes as input the position stream of moving

ships or other nodes, and perform on-line planning and execution of the mission to retrieve

sensor data from all nodes, while being able to ”ferry” data, and managing resources.

1.5 Assumptions and scope

This thesis will take into consideration external forces but noisy signals is removed from the

scope. There will throughout this work be assumed an external state-estimator and therefore

fairly accurate full-state feedback. The effect of wind on the aircraft will however be taken

into the system and measures to counter-act this will be implemented. The mission is as-

sumed to be performed off-shore, where a simple bounding box is sufficient to restrict the

mission area and avoid crash landings.

6

1.6 The AMPE system high level overview

The goal of this thesis is to investigate and develop means of autonomously planning and ex-

ecution of a data collecting mission involving several cooperating UAVs. This immediately

poses several challenges. First, the mission should be planned and executed in some optimal

manner. This optimality will be defined here as the minimization of the time duration of

the mission, resource consumption and UAV actuators wear and tear. Secondly, the UAV

decisions should be coupled by cooperation. The mission is intended to be performed over

a large area requiring a long range, low bandwidth radio link, and the system must therefore

allow for common decision between the UAVs with minimal strain on this link. Lastly, the

planning must be performed on-line, as the mission is dynamic. The computational cost

of the implementations then becomes important, as the deliberations should happen within

some time frame. In addition to being able to retrieve the sensor data as presented in the case

description, this will constitute the main requirements of the autonomous system.

The system will be broken down into agents, which are the different separate processes,

and into modules, which are the different task or subproblems of the objective. Methods

of implementing these modules will be explored by the use of Artificial Intelligence and

Mathematical Optimization, and be compared against each other. The system in this thesis

will seek to meet the requirements posed above as best as possible and the methods will be

assessed by how they meet these requirements.

1.7 Agents and modules

The planning problem will require both common and individual decisions by the UAV plan-

ners. The UAVs must cooperate to solve the mission in a sensible way, and must take into

consideration the individual state of the UAVs in the planning and execution. Therefore the

system is split into two processes, or agents. The common agent is located at the base station

and, as the name suggest, is common to all UAVs. The second agent is individual to all

UAVs and is located aboard each vehicle. This is illustrated in figure 1.1a. The setup makes

communication between each UAV negligible and makes the joint decision without the delay

of communication between each agent. When this part has executed, each vehicle receives

their relevant part of the plan. This can be done in form of sending waypoints which is a

lightweight transmission, and with enough spacing of the waypoints, tolerant to the delays

of an Iridium link.

The planning problem of this case is solved by splitting the system into into subproblems, or

1.8. EXTERNAL LIBRARIES AND EQUIPMENT 7

(a) The two agents of

AMPE

(b) The main modules of the AMPE

pipeline

modules which are able to independently perform some part of the problem using the results

of overlying modules. These modules are shown in figure 1.1b. The system developed in

this thesis will be called the Autonomous Mission Planner and Executive (AMPE) and the

signal flow through the modules illustrated in figure 1.1b will be the AMPE pipeline.

1.8 External libraries and equipment

The system is written as a C++ application, and several external libraries are used. These

will be presented here. The optimization program for path planning, will be modelled using

AMPL, and AMPL API is used as the interface to C++. AMPL is short for A Mathematical

Programming Language which is a algebraic modelling language, that facilitate for the dec-

larations of optimization programs and interface to a range of different solvers. The MILP

module for path planning in section 5.2.3 is implemented as a model in AMPL as it supports

mixed integer programming. The solution is found using the CPLEX solver developed by

IBM. AMPL is a declarative language that are very similar to the syntax of mathematical

8

notation, and the model is implemented in the same fashion as the mathematical model. For

the MPC ACADO Toolbox is used. This is a C++ library providing modelling interfaces,

integrators and optimal control solvers. EUROPA is used for the AI module, which are de-

veloped by NASA and T-REX is used to build the overall system architecture. These will be

detailed more later in this thesis.

Part II

Methods of implementation

9

CHAPTER 2

Deriving a linear and non-linear model for the X-8 UAV

2.1 Motivation

In order to perform simulations, as well as constraining the model predictive control later in

this thesis, the equations of motion of the UAVs must be found. For the different modules

and the simulation, the models used will vary. Some work will be mentioned using the

Simulink simulator developed by Kristoffer Gryte in [16], which will use the nonlinear model

presented in this chapter. This model is fairly accurate but because of performance issues,

the model is linearized before applied to the MPC in chapter 5.3. The model used in the

MILP formulation in section 5.2 is fairly simple and will not be presented here.

The UAV mathematical model will be designed with the X-8 Skywalker flying wing in mind.

The modelling of the actuators will be especially important in this matter as the UAV lack

a tail with elevators and rudder. Using the approach and equations described in [7] the

reference frames used will be presented first, then the kinematics and dynamics of the UAV

before a nonlinear model is completed. The linearization scheme of this model with the

resulting linear equations of motion concludes this chapter.

11

12CHAPTER 2. DERIVING A LINEAR AND NON-LINEAR MODEL FOR THE X-8 UAV

Figure 2.1: The X-8 flying wing UAV

2.2 Reference frames
Throughout this report, the states of the UAV will be denoted with respect to one of the

following reference frames. The state variables defined in these frames are listed in table

2.3.

2.2.1 NED frame

North-East-Down frame is illustrated in figure 2.2a. It is fixed in the Earth-Centered-Earth-

Fixed frame which has its centre in the middle of the earth and rotates with it. The NED

frame has its origin somewhere on the planet surface and moves with this location. As the

name suggest, it has a axis pointing north, east and downwards. This frame will be assumed

as an inertial frame, meaning we consider it to have no accelerations. The frame will be

denoted by the superfix F i.

2.2.2 Body frame

The body frame, illustrated in figure 2.2b is defined in what is called the stability frame [7].

The stability frame has the origin fixed to the UAV but the orientation of the axes remains as

the NED frame. The body frame is rotated in this frame to define the axis ib out the nose of

the UAV, jb out the side of the UAV and kb out the belly.

2.2.3 Vehicle frames

When rotating the body frame to the NED frame, some intermediate frames Fv and Fv1

becomes important. The vehicle frame Fv has its origin at the UAV center of mass, but

oriented as the NED frame, and then rotated by the yaw of the UAV about the axis ki.The

vehicle frame 1 Fv1 gives frame Fv rotated by the pitch about the axis jv.

2.3. STATE VECTOR 13

(a) (b)

Figure 2.2: The two reference frames used throughout the report. (a) The NED frame located

in the Earth-Centered-Earth-Fixed frame [20]. (b) The body frame [20].

Name Description

u Body frame velocity along ib

v Body frame velocity along jb

w Body frame velocity along kb

φ Roll angle of body frame with respect to Fv1 about iv1

θ Pitch angle of body frame with respect to Fv about iv

ψ Yaw angle of body frame with respect to the body frame about ib

p Roll rate about ib

q Pitch rate about jb

r Yaw rate about kb

X North position in NED frame

Y East position in NED frame

Z Down position in NED frame

2.3 State vector

When modeling the UAVs we are interested in the linear speed in the body frame as well as

the attitude of the body frame with respect to the NED frame. The UAVs have to navigate in

the NED frame, so the north, east and down positions will be the last states. The final state

vector is X, and will be stated here for convenience and as a reference for further reading.

The states are illustrated in figure 2.3. The next sections will derive the equations of motion

for the UAVs and gives the relationships of these states.

14CHAPTER 2. DERIVING A LINEAR AND NON-LINEAR MODEL FOR THE X-8 UAV

Figure 2.3: Illustration of states with the associated axes in the body frame[7]

2.4 Kinematics

For the model, the translational velocities are defined in the body frame as Vb. But in order to

follow a trajectory set in the NED frame, we measure the translational positions (N,E,D)T

in this frame. The position is then achieved from the body frame translational velocities by

differentiation and rotation according to the vehicle attitude with respect to the NED frame.

The differentiated (N,E,D)T equals the rotated linear body velocities, and the rotation are

achieved by

1. Rotating Vb by RDψ - ψ about the D axis

2. Rotating Vb by REθ - θ about the new E axis

3. Rotating Vb by RNφ - φ about the new N axis

These three angles are called the Euler angles, and we get the relation.

d

dt

N

E

D

 = Ri
b

u

v

w

 (2.1)

We can see from the listing of the Euler rotation above, that the steps in this rotation iterates

the system through the frames described in 2.2. After rotating F i by RDψ we get the Fv

frame, which we rotate by REθ to get the frame Fv1, which is finally rotated by RNφ to

get F b. This means that the differentiated angles are represented in their respective separate

frame. In order to get the angular velocities in Fv1 we get

2.5. DYNAMICS 15

p

q

r

 =

φ̇

0
0

+Rb
v1(φ)

p

q

r

+Rb
v1(φ)R

v1
v(θ)

p

q

r

 (2.2)

Rb
v1(φ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

Rv1
v(θ) =

cos θ 0 − sin θ

0 1 0
sin θ 0 − cos θ

(2.3)

2.5 Dynamics
Newtons second law for translational motion states that [7]

m
dVg

dti
=
∑

fn (2.4)

m being the mass of the vehicle, dVg
dti

being the derivative of the speed over ground in the

inertial frame, and the right hand side being the sum of all forces. Equivalently, for rotational

motion, Newtons second law gives that the change of angular momentum equals the sum of

all external moments m

dhb

dti
=
∑

mn (2.5)

with angular momentum defined as the product of angular velocity wbb/i of the bodyframe

relative to the inertia frame, and the inertia matrix J

hb = Jwb
b/i (2.6)

By using these equations for angular and linear accelerations of the UAVs with the forces

and moments above, we can get the model of the system dynamics and kinematics (see [7]

for full derivation)

The external forces acting on the UAV is the gravitational force Fg and the aerodynamic

forces. There will also be the added force of propulsion detailed in the next section. The

16CHAPTER 2. DERIVING A LINEAR AND NON-LINEAR MODEL FOR THE X-8 UAV

aerodynamic forces are caused by the UAV movement through air, as a pressure distribution

is built up about the UAV. The force is split into lift Fl, drag Fd and a moment m, and as the

dynamic distribution is given by 1
2ρV

2
a , the foces are commonly expressed by [7]

Fl = 1
2ρV

2
a SCl

Fd = 1
2ρV

2
a SCd

M = 1
2ρV

2
a ScCm

(2.7)

Where ρ is the air density, Va is the speed through air, S is the planform area of the UAV

wing, c is the mean chord of the wing, and Cl, Cd, Cm is aerodynamic coefficients.

The drag force acts counter to the velocities of the UAV and can be split into parasitic drag

and induced drag. The parasitic drag caused by the shear stress of the air moving along the

UAV exterior, and pressure resistance. It is proportional to the square of the airspeed but

simplifying according [7], it is assumed roughly constant around the operational airspeed as

as Cdp . Induced drag is also called the by-lift-induced-drag and is proportional to the square

of the lift force. The drag coefficient can then be expressed as

CD(α) = CDp + (CL0 + CLαα)2

πeAR
(2.8)

The gravitational force is linear as we assume symmetric weight distribution of the UAV, and

acts along the NED down-axis.

The external forces acting on an UAV airfoil is illustrated in figure 2.4.

2.5.1 Actuators

As the X-8 is a flying wing UAV, it only has two actuators

1. Throttle - The propeller gives forward momentum in the body frame

2. Ailerons - The control surfaces on the wings is used to control the attitude.

By this configuration we cannot control the yaw ψ of the UAV directly, we have to use a

bank-to-turn pilot. This means that we must change the roll, and then pitch in order to turn

the plane. The pitch is controlled by the actuator action δas which is the sum of the aileron

deflections, and the roll is controlled by the actuator action δad which is the difference be-

tween the aileron deflections on the two wings.

2.5. DYNAMICS 17

Figure 2.4: The illustration of a wing shows the forces acting on a gliding UAV body. The

thin lines represent the airflow, the thick arrows are the aerodynamic forces of drag and lift,

and the thin arrow is the gravity.

The thrust force from the propeller is defined by the propeller speed Vp and its aerodynamic

lift. In figure 2.5 it is shown that the approach vector of the air towards the blade is depen-

dent on the angle of attack and the airspeed of the UAV. Therefore the aerodynamic thrust

coefficient becomes

Clt(αp) = Cl(αp)
1
2ρU

2
0S (2.9)

where αp is the propeller angle of attack.

This gives us the thrust

ft = 1
2ρVp(δt)

2SClt(αp) (2.10)

where the propeller speed Vp is given by the thrust input δt.

The pitching moments of pitch and roll is given as the aerodynamic contributions of the

control surfaces, the ailerons, as they are deflected.

Mθ = 1
2ρV

2
a SacaCm(αa(δas))

Mφ = 1
2ρV

2
a SacaCm(αad(δad))

(2.11)

where Sa and ca are the platform area and mean cord of the ailerons, and αa is the ailerons

angle, and αad the difference in the angle of the two ailerons.

18CHAPTER 2. DERIVING A LINEAR AND NON-LINEAR MODEL FOR THE X-8 UAV

Figure 2.5: Illustration of propeller thrust. The approach vector of the air towards the blade

is dependent on the angle of attack and the airspeed of the UAV. NTNU.

2.6 Nonlinear equations of motion

By combining the equations presented in this chapter, the nonlinear model of the UAV is

completed. This is done in [7] and [27], and the nonlinear equations of motion is presented

here. For the step by step recipe for this, the reader is referred to [7]. Note that the control

signals δs and δd are modeled as δe and δa.

2.6. NONLINEAR EQUATIONS OF MOTION 19

u̇ = rv − qw − g sin θ + fx
m

v̇ = pw − ru+ g cos θ sinφ+ fy
m

ẇ = qu− pv + g cos θ cosφ+ fz
m

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = q cos θ − r sinφ

ψ̇ = q sinφ+ r cosφ
cos θ

ṗ = c1pq − c2rq + L

q̇ = c5pr − c6(p2 − r2) +M

ṙ = (c8p+ c1r)q +N

Ṅ = (cos θ cosψ)u+ (sin phi sin θ cosψ − cosφ sin psi)v+

(cos phi sin θ cosψ + sinφ sinψ)w

Ė = (cos θ sinψ)u+ (sinφ sin θ sinψ + cosφ cosψ)v+

(cosφ sin θ sinψ − sinφ cosψ)w

Ḋ = (sin θ)u+ (sinφ cos θ)v + (cosφ cos θ)w

(2.12)

Using the inertia terms derived in [7]

c1

c2

c3

c4

c5

c6

c7

c8

c9

=

(Jxz(Jx−Jy+Jz)
τ

Jz(Jz−Jy)+J2
xz

τ
Jz
τ
Jxz
τ

Jz−Jx
Jy
Jxz
Jy

(Jx−Jy)Jx+J2
xz

τ
Jx
τ

(2.13)

τ = JxJz − J2
xz (2.14)

20CHAPTER 2. DERIVING A LINEAR AND NON-LINEAR MODEL FOR THE X-8 UAV

and the forces and moments

fx = ρV 2
a S

2

[
Cx(α) + CXq(α) cq

2V 2
a

+ CXδe

]
+ ρSpropCprop

2
[
(kmotorδt)2 − V 2

a

]
fy = ρV 2

a S

2

[
CY0 + CYββ + CYp

br

2Va
+ CYr

br

2Va
+ CYδaδa

]

fz = ρV 2
a S

2

[
CZ(α) + CZq(α) cq2Va

+ CZδe (α)δe
]

L = 1
2ρV

2
a Sb

[
Cp0 + Cpββ + Cpp

br

2Va
+ Cpr

br

2Va

]

M = ρV 2
a Sc

2Jy

[
Cm(α) + Cmq(α) cq2Va

+ Cmδe (α)δe
]

N = 1
2ρV

2
a Sb

[
Cr0 + Crββ + Crp

br

2Va
+ Crr

br

2Va
+ Crδaδa

]

(2.15)

Where Va is the airspeed, ρ is the air mass density, Sprop the effective surface of the pro-

pellers, S the surface of the airfoils, α is the angle of attack between the forward direction

pitch and the body frame pitch. β is the sideslip between the forward movement direction

and body frame yaw. All C values are aerodynamic constants for the specific aircraft found

by experimentation. The values used in the simulations and controls are for the X8 craft, and

the values are discussed in [16]. They are listed in appendix A.

2.7 Linearized equations of motion
A linearized model is found in order to increase the computational efficiency of the MPC.

This is discussed in more detail in section 5.3.5. The system should be transformed to the

form

ẋ = Ax + Bu

y = Cx + Dw
(2.16)

Linearization about the solution y∗ is based on defining the system output and states as

y = y∗ + y, x = x∗ + x and using the Taylor series to define [12]

ẏ∗ + ˙̄y = f(y∗, t) + ∂f(y, t)
∂y

∣∣∣∣∣
y=y∗

(2.17)

The Jacobian J becomes

2.7. LINEARIZED EQUATIONS OF MOTION 21

J = ∂f(y, t)
∂y

∣∣∣∣∣
y=y∗

(2.18)

And we get the linearized definition of ˙̄y as

˙̄y = Jȳ (2.19)

This gives us the system in the form of 2.16 by the set of equations shown bellow

A(t) =

∇xf1(x0, u0, t)

...

∇xfn(x0, u0, t)

B(t) =

∇uf1(x0, u0, t)

...

∇ufn(x0, u0, t)

C(t) =

∇xg1(x0, u0, t)

...

∇xgn(x0, u0, t)

D(t) =

∇ug1(x0, u0, t)

...

∇ugn(x0, u0, t)

(2.20)

Where

∇xf(x0, u0, t) =
[
δf(x0,u0,t)
δx1(t)

δf(x0,u0,t)
δx2(t) ... δf(x0,u0,t)

δxn(t)

]
(2.21)

However, as we assume fairly accurate state feedback, y is set as equal to x. Therefore C and

D is not considered.

This process is done in [7] to achieve a linearized model for small unmanned aerial vehicles

with decoupled lateral and longitudinal components. This is the model that is used for the

MPC in section 5.3.5. The resulting linear equations of motion will be presented, but the

reader is refered to [7] for the complete spelling of the calculations. Note that the control

signal δs is modelled as δe and δd as δa. The equations for all constants are given in appendix

A

22CHAPTER 2. DERIVING A LINEAR AND NON-LINEAR MODEL FOR THE X-8 UAV

Lateral:

˙̄v
˙̄p
˙̄r
˙̄φ
˙̄ψ

=

Yv Yp Yr g cos θ∗ cosφ∗ 0
Lv Lp Lr 0 0
Nv Np Nr 0 0
0 1 cosφ∗ tan θ∗ q∗ cosφ∗ tan θ∗ − r∗ sinφ∗ tan θ∗ 0
0 0 cosφ∗ sec θ∗ q∗ cosφ∗ sec θ∗ − r∗ sinφ∗ tan θ∗ 0

v̄

p̄

r̄

φ̄

ψ̄

+

Yδa

Lδa

Nδa

0
0

δ̄a

(2.22)

Longitudinal:

˙̄u
˙̄w
˙̄q
˙̄θ

 =

Xu Xw Xq −g cos θ∗

Zu Zw Zq −g cos θ∗

Mu Mw Mq −g cos θ∗

0 0 1 0
sin θ∗ − cos θ∗ 0 u∗ cos θ∗ + w∗ sin θ∗ 0

ū

w̄

q̄

θ̄

+

Xδe Yδt

Zδe 0
Mδe 0

0 0
0 0

δ̄e
δ̄t

(2.23)

2.7.1 Trim conditions

[25] suggests a set of systems linearized about different flight conditions, and a algorithm

who switches these models appropriately. In this text however, one model will be used,

linearized about the UAV trim conditions and the controller will constrain the angular states

to be reasonably close to trim. The trim condition is given when the UAV is in a steady state

having no acceleration. The Matlab tool developed by Kristoffer Grye [16] is used to get

these values for the X8 UAV. The tool uses the method described in [3] and [7], and in the

interest of brevity, the reader is referred to these works for the full presentation of how to

find the trim conditions. The trim condition values for the X8 flying-wing UAV is presented

in A.

CHAPTER 3

Concepts and terminology of deliberative control by

EUROPA and T-REX

This chapter is rather short, but it was deemed necessary to keep as the concepts and ter-

minology explained here will be key for most of the other chapters. Here the reader is

introduced to ”the way of thinking” when dealing with domain modelling and dividing a

system hierarchy as in EUROPA and T-REX.

3.1 Terminology of T-REX and Europa
When deliberating a plan there must be some way of defining the domain in which the plan

is performed. The domain consists of all the possible outcomes of the plan, and following

the EUROPA concepts in [1], this is done by constraining what, when and how actions are

possible to place in the plan. All actions or states in this plan is called predicates. An object

can have several possible predicates. It can for example be at a location, be going towards a

location or gather a sample at that location. When placing such a predicate in a specific time

interval in the plan, we place what is called a token. Tokens are instances of a predicate with

temporal attributes, defining the interval it can start and end in. The attributes can both be

singleton values holding a single time instance, or it can define an interval. Say we want to

be at a specific place by the end of the day. This is a goal, with the temporal constraint of

being ”while” the day ends. In order to achieve this goal we can start walking at any time

23

24CHAPTER 3. CONCEPTS AND TERMINOLOGY OF DELIBERATIVE CONTROL BY EUROPA AND T-REX

that day, as long as the duration of the walk don’t make it too late. When looking at the

different predicates mentioned above, it is clear that no one can both be at a place, and be

walking to it at the same time. This can be ensured be declaring the predicates in a timeline.

In a time line only one token can exist in the same time window. A timeline with tokens are

illustrated in figure 5.1.

When creating the AMPE system, The plan will consist of several such timelines. Every

state of the UAV to be defined in chapter 2 is a separate timeline for every UAV, which can

only have one value at any time. When executing the plan, the system moves along these

timelines in real time, and the current states is controlled with the current planned value as a

reference. The real-time functionality of online planning and dispatching of goals on these

timelines, while moving the current reference is what T-REX implements and facilitates [22],

[26].

Throughout this thesis, the terms module and teleo-reactor (or just reactor) will be sepa-

rated. The module will define the functionality and the tools used to implement a planning

level in the AMPE system. These levels are the crude path planner, the ”scientist” also

named refined path planner, and the ”navigator”. The reactor will refer to the T-REX re-

actor encapsulating the module, placing it in the larger system with the required functions

for parallelisation, synchronization and ”translation” and flow of system signals between the

modules.

CHAPTER 4

The AMPE system implementation

In this chapter, the entire AMPE system is illustrated with the With its agents, modules and

timelines. Some terms and concepts are restated in order to present a complete reference

system overview. These concepts is stated in section 4.2.1 which can be skipped if the T-

REX and EUROPA terminology is understood.

First it is explained how the system is divided into a hierarchical parallel system by using T-

REX, then the complete system is shown. Each reactor and module functionality is detailed

and the program flow is shown in section 4.3. The next chapter will then explain the methods

used by each module in order to implement the said functionality.

4.1 Modularizing the system for hierarchical synchronous

planning and execution using T-REX
The T-REX agent is built as a program control unit with several reactors being responsible

for the different tasks of the system Each reactor can provide internal timelines and subscribe

to external timelines. When providing an internal timeline the reactor can post observations

and are given requests when other reactors posts goals to this timeline. When a reactor

subscribes to an external timeline, it can post goals to it and receives notifications when an

observation is posted by another reactor. This process is illustrated in figure 4.1.

25

26 CHAPTER 4. THE AMPE SYSTEM IMPLEMENTATION

[26]

Figure 4.1: [22]

First, the T-REX agent reads a configuration file where all reactors, and their respective data,

is defined. Then the respective reactors are constructed, which in turn construct the objects

that hold the modules contained in each reactor. Then the planning and execution loop is

started. For each tick the agent checks whether the reactor has work to do, meaning some

deliberation process is needed. If so, a function is run letting the reactor check in on the

deliberation process of the module. finally, the agent synchronizes all reactors. If a module

is done deliberating, it will dispatch the new goals planned by the process, and all reactors

will receive goals if they own the appropriate timelines. If some state handled by a reactor

is changes, a observation will be dispatched on the appropriate internal timeline, and all

reactors subscribing to this timeline will be notified. Figure 4.1 illustrates the program flow

of the agent ticks. The left illustration shows how a tick is defined between synchronizations,

and the deliberation in the course of this tick. The right side of the figure shows hoe goals

and observations are dispatched at the synchronization. T-REX can also define a reactor

latency which allows the reactor to deliberate over several ticks.

Figure 4.2: The figure illustrates the course of a tick on the left side, and how goals and

observations are dispatched at the right side [26]

The AMPE system have four different reactors, one for each module and a navigator reactor

which are responsible for

4.2. THE AMPE SYSTEM 27

In order to select one of these reactors for the crude path planning, two different configu-

ration files is created. One which defines the system with an EUROPA crude path reactor

and one defining a MILP reactor. The rest of this chapter will present the methods and im-

plementation of each of these modules. The next chapter will the present the system in it’s

entirety, including the agents, reactors and modules used, and how they are structured.

4.2 The AMPE system
This section will present the complete system with all timelines, reactors and modules and

then explains the components one by one. Figure 4.3 illustrates the complete AMPE system.

28 CHAPTER 4. THE AMPE SYSTEM IMPLEMENTATION

Figure 4.3: The complete system block diagram. The next sections will explain in detain the

different parts of the figure.

4.2.1 System definitions

Agent

An agent is a complete encapsulation of some separated system. This is a T-REX ”program”

and there will be two different agents in the system. The first is the common agent, which

handles the planning of all UAV paths. The second is the UAV agent, which handles all local

planning and execution aboard the UAV. It is important to note that one common agent can

connect to several UAV agents. Both of these are colored green.

4.2. THE AMPE SYSTEM 29

Teleo-reactor

A Teleo-reactor, or simply reactor, is a module inside the agent performing some specific task

in the planning pipe-line. These are colored blue. The common agent consists of one reactor,

the MILP path planner, and the UAV agent consists of the path processor, the EUROPA

resource planner and the MPC controller.

Module

The module is the object holding the deliberation functionality inside each reactor. This also

goes for the navigator module, which provides a UDP link to the simulator or physical UAV.

Timelines

A timeline is internal to the T-REX structure and are represented as solid lines and maintain

both a current state, and goals with different time intervals. A timeline is internal to a re-

actor if the reactor is handling the current state and are receiving goals. A reactor can also

subscribe to a timeline internal to another reactor in order to post goals on it. This makes it

an external timeline to the subscribing reactor. The individual timelines will be specified in

section 4.2.3.

4.2.2 Agents and Teleo-reactors

The common agent

The common agent is a of-UAV agent, that is responsible for the overall path planning of

all UAVs. As the UAVs are by law required to uptain a communication link throughout the

entire mission, it is assumed that this agent are constantly able to communicate the paths

and states with the UAVs. The requirement of a common path planning comes from the

optimization problem of creating a best possible way for all nodes to be visited by a UAV,

minimizing all UAVs traveling time.

MILP crude path planner reactor

This is the reactor that creates the UAV paths in the common agent. It iterates with the

biggest delay in the system and is seen as the top level in the planning problem. It sends the

individual UAV paths to the correct vehicle by posting the waypoints as goals on the location

timeline. Every path to a node is sent as a timestamped goal with the intermediate path as

attached data to the goal. Tuning of path loss constraints must be carefully adjusted to make

30 CHAPTER 4. THE AMPE SYSTEM IMPLEMENTATION

sure nodes can not move out of range from a waypoint during the computing time of this

reactor.

The crude path planner reactor is the highest level in the planning deliberation. It contains

and runs the crude path planner which are responsible of planning the waypoints for all the

UAVs, ensuring cooperation towards a time optimal plan. The MILP reactor does so with the

use of the MILP crude path planner module. This uses mathematical optimization to achieve

the plan, and is run at a certain interval by the reactor. The interval is ensured big enough

that the module completes the plan in time for the next iteration. The reactor is responsible

for extracting the plan, translate the waypoints to tokens and place them on their respective

timelines as goals. It must also record observations on these timelines, and updates the data

storage, position and resource status of the UAVs in the module before the planner is started.

EUROPA crude path planner reactor

The EUROPA reactor implements the same functionality as the MILP reactor, but uses an

EUROPA module implemented by NASA with an interface developed by Fredérik Py et.al..

Goals are dispatched and observations updated as in the MILP reactor.

The UAV agent

This is the planning and controlling system aboard an UAV. It receives a crude path from the

common agent, and follows this in an optimal manner by the use of MPC. All subsequent

reactors belongs to this agent.

Navigator reactor

This is the reactor that as an interface towards the actual UAV actuators and sensors, or

a simulator. In EUROPA and T-REX terminology, it is the implementation of the current

token of the actual UAV states and controls. Goals dispatched to this reactor acts as control

inputs to the UAV, and the observations posted by this reactor implements the feedback loop.

MPC path refining and control reactor

In this reactor, a Model Predictive Control is constantly iterating to generate optimal ref-

erence trajectory for a given time horizon. It uses state observations received from the

navigator reactor to initialize the MPC module. Then it dispatches the control inputs to

the navigator reactor timelines to act as reference control signals. Each reactor implements

4.2. THE AMPE SYSTEM 31

some lookahead distance, meaning how far into the future the planner considers. For the

crude path planners this is unnecessary as they considers the entire mission, but for the MPC

reactor it defines the optimization horizon of the module.

4.2.3 Timelines and predicates

2.1.1 - Here does the first number indicates agent 2, the second number indicates reactor 1

in that agent, and the last number indicates the timeline. Timelines are illustrated in figure

4.3 as continuous lines.

Predicates used by all timelines

When planning the mission, the plan is formed as tokens placed on different timelines, as

shown in section 3.1. These tokens are goals and the current state of the timelines of the

vehicles are tokens placed as observations. These stems from predicates, and all timelines

have a set of predicates from which i produces tokens.

1.1.1 Waypoints

This timeline is owned by the Radio links The waypoints timeline uses only a ”Waypoint”

predicate giving a waypoint of all UAVs at a specific time.

2.1.1 UAV position

The UAV position timelines are owned by individual UAV path refiner reactors. These time-

lines uses the ”At” and ”Going” predicates, holding the NED coordinates as variables. ”Go-

ing” keeps the coordinates for where it’s going, and ”At” for where the UAV is positioned.

”Going” tokens are placed as goals from the Radio link interface to the appropriate timeline,

and this works as waypoints. ”At” observations are used when a node is visited to remove

the node from futher planning.

2.2.1 UAV states timeline and 2.2 UAV controls timeline

This timeline is owned by the Navigator reactor. The navigator produces ”State” tokens

on this timeline as observations, which means that in the plan, this timeline represent the

planned and current physical and complete state of the UAV. For the state of the controls, the

same goes for the controls timeline. Control inputs are given as goals from the MPC path

refiner reactor and the Navigator reactor will work to achieve these states and controls by

communicating with the UAV systems.

32 CHAPTER 4. THE AMPE SYSTEM IMPLEMENTATION

UDP links

These links are not timelines but provide inter-process communication between the AMPE

system and the UAV controller, or a simulator. The links are implemented using UDP with

Boost asio, and this service will be described in section 6.2.4.

4.2.4 Implementation customized for local simulations

The system implementation for the simulations in part III, is somewhat simplified as there

is no requirement for a radio link between the different agents. Therefore the system is

implemented as a single agent, without the interface reactor for the common agent. The

crude path planner reactor is responsible for the separation of the UAV timelines, and a UDP

connection through localhost is used to communicate with the Simulink simulator made by

Kristoffer Gryte in [16].

4.3 Flow diagram
The system proved several parallel services and a means of synchronizing them by T-REX.

The system becomes somewhat complicated, and therefore a flow diagram will be presented

to illustrate how the system shown in section 4.2 are implemented, and to show the execution

flow of the agent. The diagram is illustrated in figure 4.4, and shows the agent and all reactors

and modules. The control loop in the middle represents the agent, which are responsible

for regularly synchronizing the reactors. The first thing that happens in the diagram is the

deliberation command from the reactors. The reactors then translates all inter-reactor signals

stored, like position or crude path, and starts the asynchronous deliberation of the modules.

The agent then continues to synchronize the modules, and as shown in the figure, while the

modules executes no plan is returned to the agent. However, as soon as the module completes

the result is stored at the reactor, and at the next synchronization, the agent collects and

dispatches that data. A new deliberation command is then sent, and the program loops all

aforementioned tasks.

4.3. FLOW DIAGRAM 33

Figure 4.4: A flow diagram for the implemented agent program with all external modules.

The control loop in the middle is the agent, responsible for synchronizing all reactors.

34 CHAPTER 4. THE AMPE SYSTEM IMPLEMENTATION

CHAPTER 5

The modules of the AMPE system

In this chapter, all modules are presented with their methods for implementing the function-

ality of which they are responsible. How EUROPA solves the planning problem is shown in

section 5.1.1 before the nddl domain model used by EUROPA is explained. Then the con-

cepts of mathematical optimization and Mixed Integer Linear Programming is shown. The

MILP model used, is presented and explained before it is shown how AMPL is used to solve

this program. Finally, the Model Predictive Control method is illustrated and models and

constraints used is shown. It is also explained how ACADO toolbox is used to implement

the MPC and how ACADO does so efficiently.

5.1 Planning a crude overall mission - The upper level mod-

ule using EUROPA
In accordance with the intended design of T-REX [22] the crude path planner module is

first implemented by an Europa reactor. Europa, introduced in section 1.8, offers the ”new

domain description language” or nddl language (pronounced ”noodle”) [4], [1], [26]. This

language is designed to describe the domain of the planning problem, and will be read by

EUROPA and constraints the solution. The way this is modeled is somewhat similar to writ-

ing optimization programs as it is based on adding constraints to the feasible solutions. It is

however built quite different, and in the next section the principles of nddl will be explained

35

36 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

as well as the architecture of EUROPA. Then the crude path model will be presented in

section 5.1.1.

5.1.1 EUROPA and the new domain description language

The new domain description language is described in detail in the nddl reference manual

[4] and the concepts used in the EUROPA module will be explained here. Nddl utilizes

predicates, tokens and timelines as detailed in section 3.1. In addition, nddl defines actions.

These are specializations of predicates, and the solver will search through the actions in the

model in order to try and reach the goals of the problem. The actions will be given temporal

attributes and behaves just like predicates once it is placed. The language also defines rules.

All predicates and actions can be appended with rules, which constraints the placement of

tokens of these predicates and actions with conditions and effects. Conditions tells the

solver the requirements the plan must meet in order to place the token, and will consist of

temporal relationship to other tokens. Say one wants to by a banana at the grocery store. A

condition will be that during the buying process, the person must be at the store. After that,

the person would own the banana. Here, ”buying” is the action and ”during” is the temporal

relationship between the buy action and an ”at” token. ”At” is therefore a predicate.

Nddl is an object oriented language, and defines classes which can be instantiated as objects.

The person and the banana as well as the store would be objects, and the buying action, ”at”

predicate, and the ”own” predicate would be owned by the ”person” object. The ”own”

predicate specifies that the person own a banana in this case. This would be contained by

a variable. Both classes, predicates and actions can contain variables, and in this case a

”product” variable owned by the ”own” predicate would be specified as a banana. The last

elements to mention is the goals and facts. Goals are specified after instantiating all objects.

These are tokens with a temporal relation between each other, or a specific start and/or end

time. Once tokens are created and all rules and temporal conditions are realized the plan is

complete. Facts are specifications of tokens with variables that are in place when the solver

is started.

Objects can be specialized as timelines. As objects can own predicates, this will give the

object the behavior of a timeline, making the tokens mutually exclusive at time steps. The

object can only have one token, at a time step. Object timelines with tokens and their re-

spective rules are shown for the buying example in figure 5.1 All variables and classes have

a domain in EUROPA. The domain of a class will be all objects created in the nddl, and

variables like ”string” and ”float” can be restricted to certain ranges. This is what is done

5.1. PLANNING A CRUDE OVERALL MISSION - THE UPPER LEVEL MODULE USING EUROPA37

when setting the start and end times of a token, as well as the duration. Since the temporal

conditions of a goal most likely can be reached be starting our actions at different times, the

time attributes of a token is restricted to earliest and latest start, and earliest and latest end.

If these or the duration is specified, all these attributes will naturally constrain each other.

Figure 5.1: An EUROPA timeline for buying milk in a shopping domain [26].

The Europa planner architecture overview is shown in figure 5.2. When initiating a solver,

a domain model must first be loaded. This will supply the rules engine and the constraints

reasoning engine. The solver(s) will then try to add action tokens in order to reach the set

goals. As the rules demands certain tokens to be in place at certain time, the rules engine

will create slave tokens when placing a token. The solver will try to place these new tokens

in accordance with their own rules, and if necessary, new slave tokens are created from these

tokens and so on. As the solver iterates through these steps, the plan is added to the plan

database. If the addition of a slave token creates a flaw in the plan, for example overstepping

the constraints of a timeline object, this is captured by a handler which tries to remedy the

flaw.

5.1.2 The nddl model formulation

The crude mission problem will be modelled as a nddl domain model in this section. When

solving the problem using EUROPA, a plan with the latest and earliest times possible for all

actions in order to achieve all goals are given. The solution to in some sense optimize the

time horizon of the mission, for all tokens produced by the plan, only the early start times are

used. This gives only singleton values for all temporal attributes and gives what EUROPA

calls a grounded plan [1].

The domain is modelled around datagrams. Each node have data, and all nodes, UAVs and

the base station can own such a datagram. When the solver is initialized each node is given

some data, and the goals of the model is for the base station to own all datagrams by the

38 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

Figure 5.2: An overview of the EUROPA architecture [26]

end of the mission.In addition for the UAVs. the base station is the only data sink, which

ensures the UAV is at the base area on mission completion. For the resource management

some inspiration is taken from the official NASA Rover example [5].

c l a s s UAV;

c l a s s N a v i g a t o r ;

c l a s s B a t t e r y ;

c l a s s Node ;

c l a s s Data ;

c l a s s D a t a C o n t a i n e r S t a t e ;

c l a s s D a t a C o n t a i n e r ;

c l a s s L o c a t i o n ;

c l a s s B a s e S t a t i o n ;

This is the list of all classes that will be defined in this model. The first class that are defined

is the Location class. This contains the NED coordinates of the owning object. It will be

used later in predicates to specify locational constraints.

c l a s s L o c a t i o n

5.1. PLANNING A CRUDE OVERALL MISSION - THE UPPER LEVEL MODULE USING EUROPA39

{
f l o a t n ;

f l o a t e ;

f l o a t d ;

L o c a t i o n (f l o a t n , f l o a t e , f l o a t d)

{
n = n ;

e = e ;

d = d ;

}
}

The next class is a Data class. Objects of Data will be used in predicates, telling some object

that it is owning this specific data message. This way, each node can be given a unique

message, and goals can be set to retrieve these to the base station.

c l a s s Data

{
s t r i n g name ;

/ / i n t s i z e ;

Data (s t r i n g name)

{
name = name ;

}
Data ()

{
name = ” u n s p e c i f i e d ” ;

}
}

The DataContainerState is used for the nest class which ill contain data. A data container

can only have one state at a time, it can have data, be transmitting that data or it can be

empty. All of these are predicates, and by inheriting the Timeline class by EUROPA. These

predicates are guaranteed to be temporal exclusive.

c l a s s D a t a C o n t a i n e r S t a t e

e x t e n d s T i m e l i n e

40 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

{
p r e d i c a t e HasData {}
p r e d i c a t e I s T r a n s m i t t i n g {}
p r e d i c a t e IsEmpty {}

}

The TrancieverState class is like the DataContainerState but handles the base stations ability

to send and receive data. It has the predicates allowing it to be free or transmitting.

c l a s s T r a n s c i e v e r S t a t e

e x t e n d s T i m e l i n e

{

p r e d i c a t e F r e e P r e d {}
p r e d i c a t e T r a n s m i t t i n g P r e d {}

}

DataContainer class is responsible for holding the data of a node. It keeps a data object,

which is the unique message that is held by the node, and a state timeline. It is implemented

with several constructors, giving different ways of initializing an object.

c l a s s D a t a C o n t a i n e r

{
Data d a t a ;

D a t a C o n t a i n e r S t a t e s t a t e ;

D a t a C o n t a i n e r (s t r i n g dataName)

{
d a t a = new Data (dataName) ;

s t a t e = new D a t a C o n t a i n e r S t a t e () ;

}
D a t a C o n t a i n e r ()

{
d a t a = new Data () ;

s t a t e = new D a t a C o n t a i n e r S t a t e () ;

}

5.1. PLANNING A CRUDE OVERALL MISSION - THE UPPER LEVEL MODULE USING EUROPA41

D a t a C o n t a i n e r (Data d a t a)

{
d a t a = d a t a ;

s t a t e = new D a t a C o n t a i n e r S t a t e () ;

}
}

The BaseStation class provides all functionality for the last node, where the UAVs are to

end their mission. It keeps a state timeline for receiving capabilities of data, a location used

by UAV GO predicates to be detailed soon, and a ReceivedDataPred predicate. As the base

station is not a timeline, it can hold several such predicates. The predicate keep the variable

data, which means that the predicate says that the base owns some data at some time.

c l a s s B a s e S t a t i o n

{
L o c a t i o n l o c a t i o n ;

T r a n s c i e v e r S t a t e s t a t e ;

B a s e S t a t i o n (f l o a t n , f l o a t e , f l o a t d)

{
l o c a t i o n = new L o c a t i o n (n , e , d) ;

s t a t e = new T r a n s c i e v e r S t a t e () ;

}

p r e d i c a t e R e c i e v e d D a t a P r e d

{
Data d a t a ;

}
}

The navigator class is the class used externally when exporting the plan. The class specifies

the location of an UAV at any time. It can be ”At” some location, or be ”Going” to from and

to a location. The plan created by the model will consist of tokens of these two predicates.

By extending the AgentTimeline class, all tokens on this timeline will be dispatched as goals,

and all received observations will be used as a fact of which state token the timeline holds at

some time.

42 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

c l a s s N a v i g a t o r

e x t e n d s Agen tT ime l ine

{

p r e d i c a t e Going

{
L o c a t i o n from ;

L o c a t i o n t o ;

}

p r e d i c a t e At

{
L o c a t i o n a t ;

}
}

The node implementation is specified bellow. It contains a location, and a data container.

The data name variable is used for debugging. This data container is holding the datagram

which the UAVs should collect.

c l a s s Node

{

s t r i n g dataName ;

L o c a t i o n l o c a t i o n ;

D a t a C o n t a i n e r d a t a C o n t a i n e r ;

Node (s t r i n g dataName , f l o a t n , f l o a t e , f l o a t d)

{
dataName = dataName ;

d a t a C o n t a i n e r = new D a t a C o n t a i n e r (dataName) ;

l o c a t i o n = new L o c a t i o n (n , e , d) ;

}
Node (f l o a t n , f l o a t e , f l o a t d)

5.1. PLANNING A CRUDE OVERALL MISSION - THE UPPER LEVEL MODULE USING EUROPA43

{
dataName = ” u n s p e c i f i e d ” ;

d a t a C o n t a i n e r = new D a t a C o n t a i n e r () ;

l o c a t i o n = new L o c a t i o n (n , e , d) ;

}

Node (L o c a t i o n l o c a t i o n , D a t a C o n t a i n e r d a t a C o n t a i n e r)

{
dataName = ” u n s p e c i f i e d ” ;

d a t a C o n t a i n e r = d a t a C o n t a i n e r ;

l o c a t i o n = l o c a t i o n ;

}

}

The Battery class bellow implements resouce management to the model. It extends the

Reservoir class which takes the initial value ic, the minimum value llmin and the maximum

value llmax. This class is constrained to not have a resource value bellow llmin, which is

used by the UAV later.

c l a s s B a t t e r y

e x t e n d s R e s e r v o i r

{
s t r i n g p r o f i l e T y p e ;

B a t t e r y (f l o a t i c , f l o a t l l m i n , f l o a t l l m a x)

{
s u p e r (i c , l l m i n , l l m a x) ;

p r o f i l e T y p e =” I n c r e m e n t a l F l o w P r o f i l e ” ;

}
}

This is the UAV class. It implements the predicates to own data, and the actions to GO to a

location, a collect data action, and a send data to base action. These will be explained bellow.

c l a s s UAV

{

44 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

N a v i g a t o r n a v i g a t o r ;

B a t t e r y b a t t e r y ;

UAV()

{
n a v i g a t o r = new N a v i g a t o r () ;

b a t t e r y = new B a t t e r y (1 0 0 0 , 0 , 1 0 0 0) ;

}

p r e d i c a t e HasData

{
Data d a t a ;

}

a c t i o n GO

{
L o c a t i o n t o ;

}

a c t i o n C o l l e c t D a t a

{
Data d a t a ;

Node p o s s i b l e N o d e s ;

}

a c t i o n SendDataToBaseAct

{
Data d a t a ;

B a s e S t a t i o n base ;

}

}

5.1. PLANNING A CRUDE OVERALL MISSION - THE UPPER LEVEL MODULE USING EUROPA45

This is the action allowing the UAV to mode to an location. It first requires the navigator to

be at some location, and stores that value. This is used as an effect to ensure that the duration

of the action matches the distance between from and to. To is set by the solver, and after the

action completes (after the duration) the navigator is set to be at this position. The last line

of this action is to use a quantity of the battery equal to the distance travelled.

UAV: : GO

{
t h i s . s t a r t >= 0 ;

met by (c o n d i t i o n o b j e c t . n a v i g a t o r . At f rom) ;

meets (e f f e c t o b j e c t . n a v i g a t o r . At d e s t i n a t i o n) ;

eq (to , d e s t i n a t i o n . a t) ;

e q u a l s (e f f e c t o b j e c t . n a v i g a t o r . Going go ing) ;

eq (go ing . from , f rom . a t) ;

eq (go ing . to , d e s t i n a t i o n . a t) ;

f l o a t d i s t ;

c a l c D i s t a n c e (d i s t , f rom . a t . n , f rom . a t . e , d e s t i n a t i o n . a t . n , d e s t i n a t i o n . a t . e) ;

d u r a t i o n <= d i s t ;

d u r a t i o n >= d i s t − 0 . 9 9 9 9 ;

s t a r t (e f f e c t B a t t e r y . consume t x) ;

eq (t x . q u a n t i t y , d i s t) ;

}

This action collects data from a node. It holds a possible nodes variable, which keeps all

nodes as a domain, and require that the selected node have the data it want to collect. Then it

require the UAV to be at the node position when collecting before setting the data container

of the node to empty and gives the UAV an ”own” predicate with the data.

UAV: : C o l l e c t D a t a

{
eq (d u r a t i o n , 2) ;

t h i s . s t a r t >= 0 ;

46 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

p o s s i b l e N o d e s . d a t a C o n t a i n e r . d a t a == t h i s . d a t a ;

c o n t a i n e d b y (c o n d i t i o n o b j e c t . n a v i g a t o r . At c u r r e n t L o c a t i o n) ;

eq (c u r r e n t L o c a t i o n . a t , p o s s i b l e N o d e s . l o c a t i o n) ;

met by (c o n d i t i o n p o s s i b l e N o d e s . d a t a C o n t a i n e r . s t a t e . HasData) ;

s t a r t s (e f f e c t HasData i n p u t D a t a) ;

eq (i n p u t D a t a . da t a , d a t a) ;

e q u a l s (e f f e c t p o s s i b l e N o d e s . d a t a C o n t a i n e r . s t a t e . I s T r a n s m i t t i n g) ;

meets (e f f e c t p o s s i b l e N o d e s . d a t a C o n t a i n e r . s t a t e . IsEmpty) ;

}

The send data to base action works similarly to the collect data predicate. It releases the

own predicate of the UAV by the met by constraint, and gives the base station the has data

predicate. It locks the transceiver of the base station during the actions, which ensure no

more than one UAV is sending at a time.

UAV: : SendDataToBaseAct

{
d u r a t i o n == 2 ;

met by (c o n d i t i o n HasData hasDa ta) ;

ha sDa ta . d a t a == t h i s . d a t a ;

c o n t a i n e d b y (c o n d i t i o n o b j e c t . n a v i g a t o r . At c u r r e n t L o c a t i o n) ;

c u r r e n t L o c a t i o n . a t == base . l o c a t i o n ;

e q u a l s (e f f e c t ba se . s t a t e . T r a n s m i t t i n g P r e d) ;

meets (e f f e c t ba se . s t a t e . F r e e P r e d) ;

s t a r t s (e f f e c t ba se . R e c i e v e d D a t a P r e d r e c i e v e d) ;

r e c i e v e d . d a t a == d a t a ;

5.2. PLANNING A CRUDE MISSION PATH USING MIXED INTEGER LINEAR PROGRAMMING47

}

5.2 Planning a crude mission path using mixed integer lin-

ear programming

5.2.1 Motivation and considerations

This will be the mathematical optimization alternative to the EUROPA module for the crude

path planning. It utilizes Mixed Integer Linear Programming in order to create what EU-

ROPA defines as a grounded plan [1], meaning all tokens time attributes are singleton val-

ues. It plans to be at a specific location at a specific time.

In this section the main principles of mathematical optimization is introduced. Then the

idea and challenges of Mixed Integer Linear Programming is explained before it is used to

model the path planning problem. An overview of this problem is given before the different

part of the program is detailed further. The program used is proposed by Esten I. Grøtli and

Tor A. Johansen in ”Motion- and communication-planning of unmanned aerial vehicles in

delay tolerant network using mixed-integer linear programming” [17], and in [18], and will

be thoroughly explained in this section as it is a corner stone in the AI module replacement

technique. Constraints for resource management will be added to this model.

Implemented with a receding time horizon, which gives it the functionality of a slow model

predictive control. This concept will be

5.2.2 Convexity

Before moving on to the mathematical optimization concepts and methods, convexity must

be defined. According to [23] a set is convex if for any two points A and B in the set,

a straight line connecting them has every point inside the set. A function is convex if its

domain is a convex set and if for any two points x and y in the set the following holds

f(ax+ (1− α)y) ≤ (1− α)f(y) (5.1)

∀α ∈ [0, 1] An optimization program is convex if the objective function is linear or quadratic,

and all constraints are linear [23]. This is important because, if a program is convex, any local

solution is a global solution, and this significantly simplifies the optimization. It is often not

practically possible to solve a non-convex program if the problem is complex. Therefore the

48 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

rest of this chapter will go to some length to use integer variables to create a linear program.

The integer variables however, makes the program non-convex, but there are fast solvers and

algorithms in place to make solving mixed integer programs possible within some reasonable

timeframe. The next section explains briefly why the program is non-convex, and the solver

algorithms are touched upon in section 5.2.6.

5.2.3 Mixed Integer Linear Programing principles and formulation

In mathematical optimization you a set of variables is decided in order to minimize or max-

imize some objective function that defines optimality for your program. By minimizing an

objective function that includes for example fuel consumption, you get a solution of variable

values that gives the minimum fuel consumption. However, without further information, the

solution would be trivial by setting the consumption to zero. Therefore we would want to

constraint our solution to comply with physical laws as well as practical goals and issues.

This is done by adding constraints to some or all variables that are to be optimized. These

constraints forces the variables to be either greater or equal, smaller or equal, or equal to

some constant or combination of other variables. For practical reasons we do not use less,

and greater as the solution might be as close as possible to the constraint. The solver, finding

a solution to the problem would then in the continuous case try to find the closest point to

the constraint in a set of infinite points. The formulation of the program becomes

minimize f(X)

Subject to

g(Xi) ≤ 0 : i ∈ I

h(Xi) = 0 : i ∈ E

X ∈ Rn

(5.2)

Where is the objective function, a vector of the optimization variables of dimension n,

I the set of inequalities, and E the set of equalities. Figure 5.3 illustrates such a program

graphically with linear constraints and a quadratic objective. Namely a quadratic problem.

Mixed Integer Linear Programming generalizes this formulation co consider a mix of contin-

uous and integer variables. There’s some challenges in this formulation, where possibly the

most prevalent is that the feasible set becomes non-convex when introducing integer vari-

ables. The feasible set is the set of solutions complying with the constraint, and when not

convex the problem becomes np-hard. Still there is algorithms like branch and cut, that are

5.2. PLANNING A CRUDE MISSION PATH USING MIXED INTEGER LINEAR PROGRAMMING49

Figure 5.3: A graphic representation of a quadratic optimization program with two variables

and three constraints. The greyed area is the feasible set.

able to solve the program efficiently. I will present the consept of this algorithm in some

detail, and note that its is implemented in the solver CPLEX which will be used find the

optimal solution to our final program. The MILP in canonical formulation becomes:

maximize cTX

Subject to

AX ≤ b

X = (XC ,XI) ≥ 0

XC ∈ RnC

XI ∈ ZnI

(5.3)

Where ZnI is the set of integer variables. The feasible set of such a program with two

variables is illustrated in figure 5.5.

5.2.4 The MILP problem formulation

The program used was developed by Esten Ingar Grøtli and Tor Arne Johansen in [18], [11]

and [17]. It is modeled as a time horizon N of time steps i. The UAVs will be denoted p in the

set P np
1 where np is the amount of UAVs. In addition (np+1) denotes the base station. Each

50 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

UAV should visit all waypoints w in the set TW1 given during operations, where W is the

amount of waypoints. The last waypoint represents the base station. Waypoints represents

the nodes from which the UAVs should collect data, so nodes and waypoints will be used

interchangeably to describe w. The program will model these data messages that is collected

by the UAVs when visiting a waypoint, and the base station will operate as a sink for UAV

to transfer the data. In the end the UAVs should return to the base station, and the program

minimizes the time to do so after visiting all nodes. In addition the program should minimize

the acceleration throughout the mission to avoid rapid fluctuations of speed. How this is

modeled will be described in the sections to follow, and the objective function which should

be minimized becomes

J = Jacc + Jfinnished (5.4)

Following the MILP model from [18], we can divide our model into sections. First we

will constrain the solution by the UAV model, then the velocity will be approximated in

a linear manner and constrained. The UAV acceleration will be modelled and weighted

in our objective function in order to reduce actuation. We will formulate a bounding box

of the UAV flight volume and constraint the path to this. We then constrain the model to

accommodate all data transfer demands and processes. These are the data gathering process,

the constraints of connectivity in order to transfer data, and how the data flow by delayed

transmission. Some parts of the problem formulation of [17] is left out. In this article, anti

grounding constraints are included. This is done by modelling the ground as a Triangular

Irregular Network, an approximation of the ground shape as a linear combination of the

corner points of triangles covering the ground. As our mission is simplified to a general

location above open sea, these constraints falls under our definition of the flight volume and

is therefore satisfied by constraining the UAVs to this volume. Throughout this section only,

x and y and z are defined as the inertial frame axes.

UAV model

As the system only provides coarse path planning, a simple model is used for the UAVs. The

program is

pp(i+1 = ppi + ∆tvpi (5.5)

∀p ∈ P np
1 , i ∈ IN1 Where δt is the sampling time, and vpi is the vector of the speeds along

each axis of vehicle p at time i.

5.2. PLANNING A CRUDE MISSION PATH USING MIXED INTEGER LINEAR PROGRAMMING51

The approximation of euclidean distance

On several occasions throughout the coming model, there will necessary to constraint the

distance
√
X2 + Y 2 + Z2. Doing this directly would render the program non-linear, and

the distance must therefore be estimated in some way. In the article ”Low observability

path planning for an unmanned air vehicle using mixed integer linear programming”[11]

a solution is prepared in the two dimensional case, and in ”Path Planning for UAVs Under

Communication Constraints Using SPLAT! and MILP” [18] the solution is expanded to the

three dimensional case. By these solutions the distance from a center point, as a sphere with

radius r, can be approximated by encapsulating the sphere with a polyhedron as illustrated in

figure 5.4. The discretization level Dvel will decide the resolution of the polyhedron, which

is then modeled as

vT ξkl ≤ V (5.6)

αvel vT ξkl ≥ V −M vel
kl (1− bvelkl) (5.7)

k ∈ {1, ... , Dvel}, l ∈ {1, ... , Dvel/2}
Dvel∑
k=1

Dvel/2∑
l=1

bvelkl = 1 (5.8)

v is a vector, V is a scalar estimation of the length of v, αvel is some value slightly smaller

than 1, bvelkl is a binary optimization variable and χkl is given by

ξkl =

cos θk sinφl
sin θk sinφl

cosφl

 (5.9)

Velocity

The velocity must be constrained between some minimum and maximum value, which can

be done linearly by using the above method. The constraint of the estimated value for every

time sample and every UAV the becomes

vTpi ξkl ≤ Vpi (5.10)

αvel vTpi ξkl ≥ Vpi −M vel
pkl(1− bvelpikl) (5.11)

k ∈ {1, ... , Dvel}, l ∈ {1, ... , Dvel/2} ∀p, q ∈ P np
1 , i ∈ IN−1

0

Dvel∑
k=1

Dvel/2∑
l=1

bvelpikl = 1 (5.12)

52 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

Figure 5.4: Illustration of the approximation of the euclidean distance. Dvel is the discretiza-

tion level [18].

∀p, q ∈ P np
1 , i ∈ IN−1

0

Now, Vpi is the estimated velocities at time i and vehicle p. Setting V p and V p the minimum

and maximum velocities of vehicle p respectably, velocity the constraint become

V p(1− bwppiw) ≤ Vpi ≤ V p(1− bwppiw) (5.13)

The binary value bwppiw) will be visited in more detail in section 5.2.4, so for now it is sufficient

to say that it will give zero at both ends when visiting the last waypoint, so the speed is forced

to 0.

Position constraints

When operating a UAV one typically get a segregated airspace, and as such the UAVs should

be constrained to this area. With the assumption of flying above open water, restricting

the UAVs to a box a certain height above sea level will also prevent a crash landing. The

5.2. PLANNING A CRUDE MISSION PATH USING MIXED INTEGER LINEAR PROGRAMMING53

constraints simply become

x ≤ xpi ≤ x (5.14)

y ≤ ypi ≤ y (5.15)

z ≤ zpi ≤ z (5.16)

(5.17)

∀p ∈ P
np
1 , i ∈ IN1 where the left and right inequalities represent min and max values re-

spectably for each axis.

Acceleration

In order to keep the UAV thrust actuation within reasonably limits and prevent wear, accel-

eration is penalized by the following cost function

Jacc =
∑

p∈Pnp1

∑
i∈IN−2

0

rTp wacc
pi (5.18)

(vjpk − vjpi) ≤ waccpi (5.19)

−(vjpk − vjpi) ≤ waccpi (5.20)

∀p ∈ P np
1 , i ∈ IN−2

0 , k = i + 1, j ∈ {1, 2, 3} rp ∈ R3
≥0 wacc

pi = [wacc1pi , w
acc
2pi , w

acc
3pi]T rTp is a

non-negative weighing vector, and constraint 5.19 and 5.20 forces the elements of w to be

the difference between the previous and current speed.

Anti-collision constraints

The anti collision constraint is simply modeled as a box around each UAV, having constraints

on all axes on all UAVs at all times, to be a certain distance away.

dx−Mpqi1 ≤ xpi − xqi ≤Mpqi2 − dx (5.21)

dy −Mpqi3 ≤ ypi − yqi ≤Mpqi4 − dy (5.22)

dz −Mpqi5 ≤ zpi − zqi ≤Mpqi6 − dz (5.23)

∑
l∈1..6

Mpqil ≤ 5 (5.24)

54 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

Task assignment

In order to determine whether a waypoint was visited, a bounding box will be modeled

around all waypoints, and a binary variable bwppiw will denote if UAV p is at waypoint w at

time i. The constraints are

xpi − xwp − dwp ≤Mwp
pw1(1− bwppiw)

−xpi + xwp − dwp ≤Mwp
pw2(1− bwppiw)

ypi − ywp − dwp ≤Mwp
pw3(1− bwppiw)

−ypi + ywp − dwp ≤Mwp
pw4(1− bwppiw)

zpi − zwp − dwp ≤Mwp
pw5(1− bwppiw)

−zpi + zwp − dwp ≤Mwp
pw6(1− bwppiw)

(5.25)

∀p ∈ P np
1 , i ∈ IN1 , winTW1 . Mwp

pw1..6 is set to be larger than the cross-section of the area of

operations, and dwp is the distance from the waypoint when it is considered to be visited.

The constraint

∑
p∈Pnp1

∑
i∈IN1

bwp (5.26)

∀w ∈ TW1 ensures that all nodes are visited once and only once during the mission.

In order to minimize the time consumption of the mission, several variables are defined.

θfinnishp represents the time elapsed before UAV p returns to the base station by

θfinnishp ≤M finnish(1− bwppiW) + ibwppiW

θfinnishp ≥ (i+ 1)(1− bwppiW)
(5.27)

∀p ∈ P np
1 , i ∈ IN1 . M finnish is selected as N. In order to mminimize the time horizon, the

variable ηfinnish is constrained to be larger than θfinnishp and gives Jfinnish by

ηfinnish ≥ θfinnishp (5.28)

Jfinnish = γfinnishηfinnish (5.29)

Where γfinnish is a scalar grater than zero, and Jfinnish is used in the objective function in

section 5.2.4

5.2. PLANNING A CRUDE MISSION PATH USING MIXED INTEGER LINEAR PROGRAMMING55

Connectivity constraints

In order for a UAV to transmit data successfully at the specified data rate at an time instance

is determined by constraining the UAV to be within a certain distance to the target. The

distance Rcon
pqi must be close enough for the radio propagation path loss to be within a certain

limit. The radio propagation path loss can be estimated as 1/r2 where r is the distance,

or done more accurately using a system named ”SPLAT!”. This uses real world geometry

and calculates the local path loss. There is two options on constraining the actual distance

against the feasible distance where one is by far superior. The first is to insert the distance

as r in the radio path loss calculation. This would require us to estimate the path loss as a

linear function through for example a CC-model, that being a linear combination function

of points in a non-linear function. The other solution is to estimate the euclidean distance√
x2
pi + y2

pi + z2
pi as a polyhedron following section 5.2.4. r is calculated as the threshold

Rcon
pqi and the relation

b̃conpqi = 1

m

χTpqiξkl −Rcon
pqi ≤ 0

(5.30)

∀p, q ∈ P np+1
1 , k ∈ {1, ..., Dcon/2}, l ∈ {1, ..., Dcon}

is enforced. For all nodes p and q at all time instances b̃conpqi is one if node p can transmit

successfully to node q. The constraints that ensures this relation is implemented following

”Control of systems integrating logic, dynamics, and constraints” [8].

χTpqiξkl −Rcon
pqi ≤M conλ(1− λ̃conpqikl) (5.31)

χTpqiξkl −Rcon
pqi ≥ ε+ (mconλ − ε)λ̃conpqikl (5.32)

∀p, q ∈ P np+1
1 , k ∈ {1, ..., Dcon/2}, l ∈ {1, ..., Dcon}

whereM conλ = −mconλ is some value larger than the domain of χTpqiξkl−Rcon
pqi , and ε is some

small number (typically the machine precision). λpqikl are boolean values that for every ξkl
is true if χTpqiξkl−Rcon

pqi ≤ 0 as in 5.30. b̃conpqi represents whether or not UAV p is within range

of UAV q, and should be true if all λpqikl are true. Using the same approach the constraint

becomes

M con −
∑

k∈{1,...,Dcon/2}

∑
l∈{1,...,Dcon}

λconpqikl ≤M con(1− b̃conpqi)

M con −
∑

k∈{1,...,Dcon/2}

∑
l∈{1,...,Dcon}

λconpqikl −M con ≤ ε+ (mcon − ε)b̃conpqi
(5.33)

56 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

∀p, q ∈ P np+1
1 , k ∈ {1, ..., Dcon/2}, l ∈ {1, ..., Dcon}

where M con = Dcon ∗ (Dcon/2) − 1. b̃conpqi can only be true if the left-hand side is above or

equal zero, and M con ensures that the left-hand side will be zero if all λconpqikl is 1 for vehicle

p and q at time i. This is favorable as the solver do not have to consider the domain caused

by the CC-model.

Data flow constraints for delayed transmission

When the UAV have gathered data upon visiting a sensor, it have several ways of propagating

this data through the relay network. It can transmit directly and immediately to another

vehicle or the base, and as we allow ”ferrying” of data, it can buffer the data and physically

transport it. This allows for a network with much larger range, but we require to keep track

of the amount of data buffered so not to exceed the buffer size of the UAVs. [17] introduces

several constraints to model these options in the program, which will be detailed here. The

UAVs will be modelled as sources, creating a data message when visiting a node, and the

base station will be the only sink. The rate of which data is gathered at nodes, or transmitted

to the base station is csensor. The variable bsensor will indicate when the UAV is gathering

data, and is true when the UAV is servicing a task.

The messages will be modelled as mpisj where p is the vehicle the message is currently on at

time step i. The message will be identified by being created by vehicle s at timestep j. These

messages can be divided into several smaller pieces, each being potentially routed differently

back to the base station.

The data transmission rate between vehicles or the base station p and q at time step i for a

message created at time step j by vehicle s, is denoted cpqisj . These variables as well as the

data message sizes can not be less than zero, which becomes the constraints

mpisj ≥ 0 (5.34)

∀p ∈ P np+1
1 , j ∈ IN1 , s ∈ P

np
1 , i ∈Nj

cpqisj ≥ 0 (5.35)

∀p, q ∈ P np+1
1 , j ∈ IN1 , s ∈ P

np
1 , i ∈Nj

Then the flow of data between nodes are modelled as

5.2. PLANNING A CRUDE MISSION PATH USING MIXED INTEGER LINEAR PROGRAMMING57

mpisj = ∆t

csensorbsensorpj −
∑

q∈Pnp1 \{p}

cpqisj

 (5.36)

∀s ∈ P np
1 , j ∈ IN1 , i = j, p = s

mpisj = mp(i−1)sj + ∆t

 ∑
q∈Pnp1 \{p}

(cqpisj − cpqisj)

 (5.37)

∀p, s ∈ P np
1 , j ∈ IN1 , i ∈ INj+1

These constraints can be thought of as the conservation of data. 5.36 represent the gathering

of data where the first term on the right-hand side is the data stored on the buffer, and the

subtraction of the second term is the data that is immediately transferred to another UAV.

5.37 ensures that the message at a time instance equals the message already stored on the

vehicle, plus the received message data from other UAVs, minus the message data transferred

to other UAVs.

Then the sum of message data on a vehicle is constrained to be less than the buffer size hp

∑
s∈Pnp1

∑
i∈Ii1

mpisj ≤ hp (5.38)

∀p ∈ P np
1 , i ∈ IN1

The next constraint ensures that is a message created by a vehicle at a time instant is zero, it

remains zero throughout the time horizon.

mpisj ≤ bsensorpj Mmsg (5.39)

∀p, s ∈ P np
1 , j ∈ IN1 , i ∈ INj

The base station (np + 1) can only receive data, and is constrained to

c(np+1)qisj ≤ 0 (5.40)

∀q, s ∈ P np
1 , j ∈ IN1 , i ∈ INj

We the constrain the transmission rate at time instance i of the message created by vehicle s

at time instance j, between vehicle p and q, to be zero if they are out of range and less than a

max transmission rate Cmax

58 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

cpqisj ≤ Cmaxb̃conpqi (5.41)

∀p, s ∈ P np
1 , p ∈ P np+1

1 , j ∈ IN1 , i ∈ INj

where bconpqi indicates connectivity as shown in section 5.2.4 Lastly, the transmission rate is

constrained bellow a separate max input and output rate.

∑
q∈Pnp+1

1 \{p}

∑
s∈Pnp1

∑
j∈Ii1

cpqisj ≤ Cmaxout (5.42)

∑
q∈Pnp+1

1 \{p}

∑
s∈Pnp1

∑
j∈Ii1

cqpisj ≤ Cmaxin (5.43)

5.2.5 Resources constraints

The model should take into consideration the limited resources aboard the UAVs. These

resources are the UAV battery for the actuators, and the battery for the UAV transceivers.

The controllers in the subsequent reactors will optimize the control input around the trim

conditions of the UAV. The power usage of the propeller is therefore modelled as the usage

when travelling at the trim airspeed multiplied with distance traveled and the power con-

sumption pr meter traveled. The consumption of other actuators are considered negligible in

comparison and is not considered. The constraint becomes

∑
i∈IN1

VpiU
prop ≤ Bprop (5.44)

∀p ∈ P np
1 ,

Where the battery capacity is Bprop and Uprop is the power consumption for each meter

traveled. The same concept is used for transceiver power. The transceiver battery capacity

is Btran and a certain amount of power U tran is drawn each time instance the sensor is used.

This gives the constraint

∑
i∈IN1

bsenpi U
tran ≤ Btran (5.45)

∀p ∈ P np
1

5.2. PLANNING A CRUDE MISSION PATH USING MIXED INTEGER LINEAR PROGRAMMING59

5.2.6 Solver algorithms

The program defined in this section is linear, but also not convex. This is because of the non-

convex nature of using integer domains in the program. The requirement of convexity is that

one can draw a straight line between any two points inside the feasible area of a program.

However, in figure 5.5 a integer domain is shown, and the feasible areas are only the points

at which the grid values are integers, causing a set of disconnected regions. There is still

efficient algorithms to solve the mixed integer programs, and the branch-and-cut algorithm

are able to solve our program in a reasonable time. The algorithm actually is a combination

of several others, and I will explain the concepts of these algorithms in the coming section

before wrapping them together in the final Branch-and-Cut algorithm.

Simplex

This algorithm is based on tracing the constraints of a program in a methodical way until

it have found some point with a negative gradient on both sides of the current point on a

constraint. It does this by introducing a new constraint with a new slack variable forcing the

program along the selected constraint when the slack variable is increasing. It does this until

reaching a new constraint, and adds a second constraint in the same fashion. This is iterated

until the solution is found, or a solution within some limit.

Branch-and-Bound algorithm

A relaxation of the problem is a simplification that in some way makes the optimization

program easier to solve, giving a less optimal, and maybe infeasible solution to the original

problem. The advantage of this is that we get a upper bound on our solution. The optimal

solution will not be better than the solution to the relaxed problem. One such relaxation is

the integer relaxation dropping the requirement of a integer solution. When acquiring such

a solution one could simply floor the decimal solution, but this will not necessarily give the

right solution as figure 5.5 illustrates. The top point is found after relaxation and the point

straight below is found after rounding as the feasible set does not reach the above point.

When using the convex hull however, the decrease after rounding causes the rightmost point

to actually have the best objective value. The branch-and-bound algorithm works by splitting

the problem into several sub-problems by the means of integer relaxation. It finds a solution,

giving one or more of the integer variables a non-integer number. Then it splits the problem

on all such variables, giving a problem with the constraint on the integer variable of being

bellow the floor of the non-integer value, and another constrained to be above the ceiling

60 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

Figure 5.5: An illustration of the integer feasible set. NTNU.

of the value. This is repeated on the sub-problems until a integer solution is found on all

integer variables. The best sub-problem solution is selected as the answer. To make this

method viable and not likely to split the problem excessively, methods of pruning the sub-

problem tree is used. Problems are not split if it is in-feasible, have fund a optimal solution,

or have a relaxed solution (higher bound) lower than a current integer solution.

Cutting-plane algorithm

If a integer program has a convex hull, meaning the constraints have all ”corners” in integer

solutions (illustrated with the inner boarder in figure 5.5) the integer relaxed solution will be

optimal. The algorithm takes advantage of this property, and tries to create a convex hull. It

uses a principle called Gomory-cuts, which will not be detailed here, but the main principle

consists of using the simplex method to iteratively make cuts that tangents the actual convex

hull to better and better fit the feasible set.

Branch-and-Cut algorithm

Branch-and-Cut is a combination of all of the above methods. It uses the Branch-and-Bound

algorithm and then some iterations of the Cutting-plane algorithm for every node. Then

the algorithm continues with the simplex method as the Branch-and-Bound algorithm. In

practice, both the B-a-B and Cutting.plane algorithms can be fairly slow. This combination

however tends to give good results.

5.3. REFINING A SYSTEM DYNAMICS DEPENDENT PATH USING MODEL PREDICTIVE CONTROL61

5.2.7 Implementing The MILP crude path planner using AMPL, CPLEX
and AMPLAPI

The program is implemented in C++ by using AMPL as a modeling interface towards the

IBM solver CPLEX. AMPL is connected to the crude path module by the programming

interface library AMPLAPI, from the same developers as AMPL. To illustrate and provide

the MILP model written in the AMPL modeling language, the entire program is included in

appendix C.

5.3 Refining a system dynamics dependent path using Model

Predictive Control

5.3.1 Motivation

5.3.2 Motivation

In [27] we rely on being at waypoints at specific times. Also using dubins path would be

a long way towards a refined path already. However, such path planning would have little

consideration of the UAV dynamics. Therefore the MPC developed here is given more ”free-

dom” in sense of constraints and cost penalties of path choice. The MPC should minimize

the distance from a UAV to the current waypoint at the appropriate time, and minimize fuel

consumption, meaning thrust input, and minimize the changes of actuator states to prevent

wear and tear.

5.3.3 Model predictive control principle

Following [13], model predictive control (MPC) is an algorithm for solving an optimal con-

trol problem (ocp). It does so by defining an optimization program that is constrained by the

model of the vehicle that is to be controlled, and an objective function relating the states to a

reference trajectory. The program defines both state and control variables for a certain steps

into the future, and these are optimized according to the objective function. The first control

output is then selected and passed to the actuator controls. The MPC then takes a new set

of measurements and repeats this loop like shown in figure 5.6. In [13] a state estimator is

implemented alongside the MPC, but as mentioned this is outside the scope of this report,

and is therefore skipped.

62 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

Figure 5.6: A diagram illustrating the execution flow of a MPC. The MPC takes a reference

trajectory and the current state measurements and optimizes the control inputs throughout

the time horizon. Then the first control input is selected and used. Only signals relevant to

the controller without noise and disturbances is shown.

The optimization of a single control is shown in figure 5.7. The MPC will optimize the

control from t to t+p, and this is defined as the time horizon or optimization horizon. The

MPC follows the receding time horizon principle, meaning that as the time t moves, so does

k, and the MPC optimizes over a constant interval p into the future. The figure shows how a

predicted output converges on a reference trajectory using the predicted control input.

The algorithm of the MPC is defined in [13] as

Algorithm 1 Linear MPC with output feedback [13]
for t = 0,1,2,... do

Compute an estimate of the current state x̂t based on the measured data up until time t

Solve convex QP problem (5.52) on the prediction horizon from t to t+N with x̂ as the

initial condition.

Apply the first control move ût
end for

5.3.4 Formulation

As the MPC optimizes over a time horizon at discrete time steps, the system should also

be discrete as the MPC evaluates the system at discrete time steps. The system bellow is a

nonlinear discrete system interpretable by the MPC.

5.3. REFINING A SYSTEM DYNAMICS DEPENDENT PATH USING MODEL PREDICTIVE CONTROL63

Figure 5.7: Example plot of a MPC iteration [25]

min
∑

i=t..t+p
Ji (5.46)

xi+1 = f(xi,ui) + vi

yi = h(xi,ui) + wi

x0 = given

xlow ≤ xi ≤ xhigh

ulow ≤ ui ≤ uhigh

∆ulow ≤ ∆ui ≤ ∆uhigh

(5.47)

where x is the states, y is the measured outputs, u control vector and t is the current sample

time. v and w is disturbances and noise respectively and we set these to 0 for the reminder

of the chapter. ∆u is the change in control input, and is constrained between a high and low

value, along with the states and control inputs.

64 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

5.3.5 MPC for UAV control

A suitable model must be chosen to constraint the MPC to the UAV dynamics. The MPC is

intended as an online control algorithm, and solving a complex program can be computation-

ally expensive. Keeping an accurate UAV model without rendering the constraints nonlinear

and thereby the program non-convex, becomes a challenge. However, by using the SQP al-

gorithm, solving a nonlinear program is done quite efficiently in the ACADO library. This

will be discussed in more detail in section 5.3.6. ACADO also allows for continuous mod-

els to be defined as constraints, and uses online shooting methods to get a discrete system

[24] as in 5.47. Therefore the linear model presented in chapter 2 will be used in order to

reduce the nonlinearities, and keep the program as close to quadratic as possible. However,

a rotation is required to get an accurate position in the NED frame in order to use waypoints

provided by the crude path planner, and this results in a nonlinear MPC. In order to avoid

these nonlinearities the model would have to be simplified significantly in some similar way

to the crude path program. As we want to adapt the crude path to the UAV model, keeping

these simplifications is not suitable for the MPC. As such, using the linear UAV model and

adding the non-linear rotations from body to NED frame has proven to be a good trade-off,

by significantly reducing the computation time of using the nonlinear model 2.12.

5.3.6 The objective function and constraints

We want to control the states x along a reference trajectory γref in some optimal way. The

objective function will therefore include the absolute difference between the predicted states

γ and the reference trajectory. We also want weight the usage of actuators in the optimization

in order to reduce these, and as such limit fuel usage and actuators wear and tear. The

ACADO MPC, to be detailed later, takes a least squares objective function, and as such the

objective function presented in [13] is modified and these aspects are implemented in the

objective function as

J =
t+p∫
t=0

1
2(γ − γref)TQ(γ − γref) + 1

2uTRu + 1
2∆uTR∆u (5.48)

min
z∈Rn

f(z) = J (5.49)

where Q � 0 and R � 0 are weighting matrices, and z = (u0,u1,u2, ..., x0, x1, x2, ...)

5.3. REFINING A SYSTEM DYNAMICS DEPENDENT PATH USING MODEL PREDICTIVE CONTROL65

In order to restrict the predicted states according to the system model, we need to add con-

straints. We also want to constraint the possible control input according to saturation. At

last we want to constraint the possible predicted states to avoid too low or high speeds, or

oddities like the UAV performing barrel rolls or loops. The full system including constraints

take the form

min
z∈Rn

f(z) = J

subject to

xt+1 = Axt + But

x0 = given

xlow ≤ xt ≤ xhigh

ulow ≤ ut ≤ uhigh

∆ulow ≤ ∆ut ≤ ∆uhigh

(5.50)

When adding constraints to the UAV states, the system might end up in a situation where

the program becomes infeasible. Say, the MPC is started with a very high acceleration very

close to the maximum allowed speed. This makes it impossible for the MPC to decelerate

in time, and the problem will be infeasible. This is unacceptable as the control algorithm

would fail, leaving the UAV uncontrollable. A solution is presented in [13] by adding the

slack variables ε to the constraints and minimizing these variables in the objective function.

We set

Jε = ρT ε+ 1
2ε

TSε (5.51)

And the new program becomes

min
z∈Rn

f(z) = J + Jε

subject to

xt+1 = Axt + But

x0 = given

xlow − ε ≤ xt ≤ xhigh + ε

ulow ≤ ut ≤ uhigh

∆ulow ≤ ∆ut ≤ ∆uhigh

(5.52)

66 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

Where ρ and S are the weighting vector and matrix and

ε ∈ Rn ≥ 0

ρ ∈ Rn ≥ 0

S ∈ diag{s, 1, ..., sn}, si ≥ 0, i = {1, ..., nx}

Using the controls of the X8, the control limits are presented in [16]. Using these limits,

the MPC is constrained to the saturation of each control, being ±0.3 for the ailerons and

elevators, and between zero and one for the propeller. In addition, the attitude of the UAVs

are constrained to be within reasonable limits of the trim condition of which the UAV is

linearized about. This ensures the accuracy of the linear model, and restrict risky maneuvers

such as loops. The roll and pitch are constrained to ±30 degrees.

Implementation of MPC using ACADO

The MPC is implemented in C++ as a module of the AMPE system using ACADO Toolbox

for optimal control. The toolbox provides a interface which is close to how the the program

would be written mathematically. The expressions are stored symbolically allowing for the

definitions of models accepted as constraints to the MPC. ACADO are able to solve non-

linear programs and is designed for optimal control [19]. The toolbox accepts continuous

functions by using shooting methods such as numerical Runge-Kutta methods to evaluate the

model at discrete time steps, and implements fast solvers by the use of Sequential Quadratic

Programming for nonlinear control. The main principle of these concepts will be visited

briefly in the next two sections.

Runge-Kutta45

RK45 or Runge-Kutta4(5) is a numerical integrator method which allows for a specified

accuracy in the estimation of the new state in the MPC. The full explanation of the method

is provided in [12], but for the reader of this thesis it is sufficient to know that it uses the

relationship of step length and the derivative of a function to estimate the function after that

step length, and does so by dividing the step into several stages, using the derivatives at these

intermediate points and the step length between them to decrease the error. When comparing

method to a Taylor expansion series, it can be seen that a RK method is of a certain order,

and the order of the error estimate can be read from the Taylor series matching the method.

RK45 uses a 4. and 5. order numerical method to set the step length of the integrations in

order to ensure a minimum error, a feature used as a standard by Matlab integrators [12].

5.4. THE NAVIGATOR MODULE 67

SQP

Following [9], the Sequential Quadratic Programming, or SQP method used by ACADO

[24] to solve nonlinear, non-convex programs, are based on iterativeliy finding a quadratic

approximation to the objective function at each step of the MPC, and solve this relaxed prob-

lem. Linear approximations replaces the nonlinearities, effectively linearizing the function

at each step about the predicted state. For each step, 2 SQP iterations have been found to be

sufficient for the model used in this MPC.

5.4 The navigator module
This module provides the interface towards the vehicle, and in the AMPE system it represent

the same as the navigator in the EUROPA model. When reactors are dispatching plans, this

module is responsible for the position timeline of the UAV. Internally it communicates with

other systems aboard the UAV and translates sensor data to the AMPE system.

68 CHAPTER 5. THE MODULES OF THE AMPE SYSTEM

CHAPTER 6

Handling external forces

6.1 Optimization of path with consideration of wind
Both the planning and control of the UAV should be able to perform when affected by exter-

nal forces. In this case we take into consideration the wind. Doing this for both the control

and planning mean that the MPC as well as the crude planning modules should include some

form of wind effect. In order to do so for the MPC, some adjustments inspired by [15] are

made to the UAV model constraints. These are also adapted to be included in the MILP for-

mulation. In [15] the components Fwnn, Fwe and Fwd is added to the NED components of

the UAV models. The new constraints for the NED differential states of the MPC becomes

Ṅ = (cos θ cosψ)u+ (sin phi sin θ cosψ − cosφ sin psi)v+

(cos phi sin θ cosψ + sinφ sinψ)w + Fwn

Ė = (cos θ sinψ)u+ (sinφ sin θ sinψ + cosφ cosψ)v+

(cosφ sin θ sinψ − sinφ cosψ)w + Fwe

Ḋ = (sin θ)u+ (sinφ cos θ)v + (cosφ cos θ)w + Fwd

(6.1)

For the MILP model we bias the velocity constraints toward the direction of the wind. The

wind components Fw are used. The velocity constraints are now modified to

69

70 CHAPTER 6. HANDLING EXTERNAL FORCES

vTpi ξkl ≤ Vpi (6.2)

αvel vTpi ξkl + Fw ≥ Vpi −M vel
pkl(1− bvelpikl) (6.3)

k ∈ {1, ... , Dvel}, l ∈ {1, ... , Dvel/2} ∀p, q ∈ P np
1 , i ∈ IN−1

0

Dvel∑
k=1

Dvel/2∑
l=1

bvelpikl = 1 (6.4)

∀p, q ∈ P np
1 , i ∈ IN−1

0

6.2 Implemented utilities
The system is complex as it consists of many modules working in parallel as a looping

pipeline providing a singe result. This makes debugging difficult and therefore debugging

tools have been created to test each module independently. In addition an UDP service is

created to allow the AMPE system to communicate with the separate Simulink simulation.

These tools are presented here.

6.2.1 Europa nddl model debug-tool

EUROPA provides a JAVA/C++ interface with a GUI for testing and debugging of models.

This tool is expanded upon with helper functions and scripts for fast iteration and debugging

of the crude path domain model.

6.2.2 MILP model debug-tool

AMPL allows for the definition of a .run file, which initializes a solver, sets the appropriate

options and prints the desired optimization variables upon completion. A simple .run file is

created initializing a CPLEX solver.

6.2.3 MPC debug-tool

For this module, a simple c++ application is created. It defines initial conditions in compile

time and uses the internal simulation function in ACADO[19] for testing over a given time

horizon. Computations are given in the terminal in real time, and simple graphs of all states

are provided on completion.

6.2. IMPLEMENTED UTILITIES 71

6.2.4 UDP service

The simulations is done locally on one computer, and therefore the common agent, the UAV

agents and the external simulator need to communicate throughout some inter-process pro-

tocol. To this end an asynchronous UDP library is made using Boost. Boost is a modular

set of libraries performing a variety of tasks, and the UDP service uses the libraries asio and

thread. Asio, or Asynchronous io, facilitates several protocols and is used to create simple

UDP sockets. The UDP peer will create such a socket and start a new thread to listen for in-

coming UDP datagrams. A list is filled with incoming messages and can be pulled from the

UDP peer object asynchronously. To avoid multithreading issues such as race-conditions,

the use of this list is protected by a mutex from the thread library of Boost.

72 CHAPTER 6. HANDLING EXTERNAL FORCES

Part III

Simulations and results

73

CHAPTER 7

Simulations and equipment

All simulations in this part will use the same base mission with different parameters and

conditions in order to test the different capabilities of the AMPE system. The simulation is

done on one computer for all reactors and modules, and therefore any real-time demands can

not expected to be met. Instead, steps of 0.25 seconds between each MPC step, using the

RK45 method to integrate between steps, while logging computation times and performance.

The applicability of the system in a real-world application is then discussed in the next part.

Note that any logged computation times will therefore not match up to the simulation times.

The linear model presented in chapter 2 is used for the UAV simulations. This is done to

thoroughly test the different capabilities the system should have when faced with different

situations. Then some work towards using an external simulator with the nonlinear model

from 2 is presented. The simulations are performed on a virtual machine Ubuntu, using a

Intel(R) Core(tm) i7-4720HQ 3.60 HZ CPU.

7.1 The mission definition
The mission to be performed by the AMPE system is that of the case presented in the intro-

duction. Several marine vessels or sensors called nodes in this thesis, should be visited in

order to collect and retrieve data too large for a long range radio link (for example an Iridium

satellite link). The mission area, along with the initial node positions, UAV positions and

75

76 CHAPTER 7. SIMULATIONS AND EQUIPMENT

the base position is shown in figure 7.1. All UAVs should return to the base station when the

nodes are visited. The node at north (-600 800 100)T is moved to (-600 500 100)T for the

last 3 simulations.

Figure 7.1: The mission area along with initial conditions used for the simulations in this

part

7.2 Simulation and system parameters

The MILP connectivity and estimation parameters used, are heavily inspired by [18], and

are as follows

7.2. SIMULATION AND SYSTEM PARAMETERS 77

Parameter Value

Dcon 8

Dvel 8

csensor 2 Mbitss−1

Cmax 4Mbitss−1

tseparation 5 s

racc1 racc2 2

Dvel 8

As no means of measuring or calculating the actual path loss between UAVs, a simple square

function is used for the path loss, and Rcon is set to 200 m, for a maximum path loss of 4e4.

The flight area is set to be between -1500 and 1500, -1500 and 1500, and between 50 and

-150 in NED coordinates. For the MILP crude path planer, the mission planning horizon is

set to 3 minutes and 30 seconds with a sampling time of 5 seconds which N 42 time steps.

Vmin is set to 18m/s, and Vmax is set to 19 m/s. This is quite strict, but keeps the speed of

the UAVs close tho the trim conditions around which the system is linearized so that the

model stays accurate. The distance dx when a waypoint is met is set to 10, and anti-collision

distances dN , dE and dD is set to 50 m.

78 CHAPTER 7. SIMULATIONS AND EQUIPMENT

CHAPTER 8

Simulating static missions

8.1 Simulating a static mission using EUROPA
The mission was first simulated using EUROPA as the crude path planer module. The model

presented in section 5.1.2 is used, and the resulted plan is grounded at early start times and

presented in figure 8.1.

The plan is created efficiently. The module uses 1.85 seconds to deliberate the plan. However

the plan do not seem to be optimal. Instead of trying to handle several close nodes, UAV 2

only handles one node. For this and all further simulations, the MPC is used as both a refined

path planer, and a controller.

The trajectory is clearly not time optimal, the left UAV (UAV 1) returns after two minutes

and 40 seconds. The simulation were stopped at the final approach. Some other system

would take control at this point. To asses the MPC performance, the rest of the flight states

are given in the next few pages.

8.1.1 Expanding to dynamic planning

The results of dynamic mission simulations using the EUROPA reactor would be very inter-

esting as the EUROPA reactor is many times more computationally efficient than the MILP

79

80 CHAPTER 8. SIMULATING STATIC MISSIONS

Figure 8.1: The resulting traveled trajectory of the EUROPA crude path test.

reactor, and therefore more suited in the dynamic case than the static. Sadly, because of

technical issues with local compilation of some EUROPA code, this simulation could not be

performed. The issue is related to the open issue #172 on Github [2].

8.2 Simulating a static mission using MILP and data flow

constraints
The system will be tested using the MILP crude reactor, and otherwise, the mission is similar

to the previous. The left UAV (UAV 1) is assigned a buffer size of two complete messages,

and all constraints from section 5.2 is included. The MILP computed an optimal path before

the mission started which is given in figure 8.9. The mission is then started and the UAV

follows the path using the MPC for combined refined planning and control. The resulting

traveled path is shown in figure 8.10.

From figure 8.10, it is seen that the MPC are able to follow the path given by the MILP crude

path module in a smooth and accurate manner. The figures 8.11 and 8.12 shows how the

8.3. RE-PLANING CAPABILITIES IN A STATIC MISSION 81

path is accomplished by the UAVs without excessive actuation, and that the inputs changes

smoothly. The system aimed to minimize actuation wear and tear, and battery usage, and the

figures shows good results towards this end. The red dotted lines shows the trim condition,

and the black lines are the constrains on the control.

8.2.1 Expanding to dynamic planing

The plan of this simulation was only deliberated initially and not maintained online. This

is because, for this simulation with the data flow constraints, solving the MILP problem

could take anywhere from 2 hours to more than a day based on the mission configurations.

Therefore, for the rest of the simulations, the data flow constraints are not included and the

buffer size is assumed to be sufficient for ferrying all data.

8.3 Re-planing capabilities in a static mission
In this section a brief simulation will be presented in which the MPC is tuned to perform

poorly. Figure 8.13 shows the plan after the first waypoint, which is the same as the plan

dispatched at time 0. It can be seen inn this plot that UAV 2 overshoots the turn and ends up

behind in the plan. This is picked up on the next crude path plan, and as seen in figure 8.14.

UAV 1 is now set to handle both the upper nodes, and UAV 2 returns to base. Figure 8.15

shows the completion of this mission. As the MPC is purposely tuned poorly, no flight states

are included in these results.

82 CHAPTER 8. SIMULATING STATIC MISSIONS

Figure
8.2:T

he
E

U
R

O
PA

path
sim

ulation.T
he

dotted
red

line
represents

the
trim

condition,and
the

black
lines

the
M

PC
constraints.

8.3. RE-PLANING CAPABILITIES IN A STATIC MISSION 83

Fi
gu

re
8.

3:
T

he
E

U
R

O
PA

pa
th

si
m

ul
at

io
n.

T
he

do
tte

d
re

d
lin

e
re

pr
es

en
ts

th
e

tr
im

co
nd

iti
on

,a
nd

th
e

bl
ac

k
lin

es
th

e
M

PC
co

ns
tr

ai
nt

s.

84 CHAPTER 8. SIMULATING STATIC MISSIONS

Figure
8.4:T

he
E

U
R

O
PA

path
sim

ulation.T
he

dotted
red

line
represents

the
trim

condition,and
the

black
lines

the
M

PC
constraints.

8.3. RE-PLANING CAPABILITIES IN A STATIC MISSION 85

Fi
gu

re
8.

5:
T

he
E

U
R

O
PA

pa
th

si
m

ul
at

io
n.

T
he

do
tte

d
re

d
lin

e
re

pr
es

en
ts

th
e

tr
im

co
nd

iti
on

,a
nd

th
e

bl
ac

k
lin

es
th

e
M

PC
co

ns
tr

ai
nt

s.

86 CHAPTER 8. SIMULATING STATIC MISSIONS

Figure
8.6:T

he
E

U
R

O
PA

path
sim

ulation.T
he

dotted
red

line
represents

the
trim

condition,and
the

black
lines

the
M

PC
constraints.

8.3. RE-PLANING CAPABILITIES IN A STATIC MISSION 87

Fi
gu

re
8.

7:
T

he
E

U
R

O
PA

pa
th

si
m

ul
at

io
n.

T
he

do
tte

d
re

d
lin

e
re

pr
es

en
ts

th
e

tr
im

co
nd

iti
on

,a
nd

th
e

bl
ac

k
lin

es
th

e
M

PC
co

ns
tr

ai
nt

s.
e

88 CHAPTER 8. SIMULATING STATIC MISSIONS

Figure
8.8:T

he
E

U
R

O
PA

path
sim

ulation.T
he

dotted
red

line
represents

the
trim

condition,and
the

black
lines

the
M

PC
constraints.

8.3. RE-PLANING CAPABILITIES IN A STATIC MISSION 89

Fi
gu

re
8.

9:
T

he
in

iti
al

cr
ud

e
pa

th
s

ca
lc

ul
at

ed
by

th
e

M
IL

P
m

od
ul

e
us

in
g

da
ta

flo
w

co
ns

tr
ai

nt
s.

90 CHAPTER 8. SIMULATING STATIC MISSIONS

Figure
8.10:T

he
traveled

trajectories
follow

ing
the

initialcrude
paths

calculated
by

the
M

IL
P

m
odule

using
data

flow
constraints.

8.3. RE-PLANING CAPABILITIES IN A STATIC MISSION 91

Fi
gu

re
8.

11
:

T
he

co
nt

ro
ls

of
th

e
U

AV
1

fo
llo

w
in

g
th

e
in

iti
al

cr
ud

e
pa

th
s

ca
lc

ul
at

ed
by

th
e

M
IL

P
m

od
ul

e
us

in
g

da
ta

flo
w

co
ns

tr
ai

nt
s.

T
he

do
tte

d
re

d
lin

e
ill

us
tr

at
es

th
e

tr
im

co
nd

iti
on

s,
an

d
th

e
bl

ac
k

lin
es

ill
us

tr
at

es
th

e
co

ns
tr

ai
nt

s
of

th
e

M
PC

.

92 CHAPTER 8. SIMULATING STATIC MISSIONS

Figure
8.12:

T
he

controls
of

the
U

AV
2

follow
ing

the
initialcrude

paths
calculated

by
the

M
IL

P
m

odule
using

data
flow

constraints.
T

he

dotted
red

line
illustrates

the
trim

conditions,and
the

black
lines

illustrates
the

constraints
ofthe

M
PC

.

8.3. RE-PLANING CAPABILITIES IN A STATIC MISSION 93

Figure 8.13: The static mission with a poorly tuned MPC. At this point the plan is unchanged

from the initial.

94 CHAPTER 8. SIMULATING STATIC MISSIONS

Figure 8.14: The static mission with a poorly tuned MPC. The plan has changed to accom-

modate the delay of UAV 2.

8.3. RE-PLANING CAPABILITIES IN A STATIC MISSION 95

Figure 8.15: The static mission with a poorly tuned MPC. The plan has changed to accom-

modate the delay of UAV 2.

96 CHAPTER 8. SIMULATING STATIC MISSIONS

CHAPTER 9

Simulating dynamic missions

In this chapter the simulations will include some dynamic elements to the missions. First

the battery consumption of one UAV will be increased throughout the mission, and then a

mission configuration is used in which some of the nodes are moving at a speed of 8 knots.

9.1 Simulating a mission with dynamic resources consump-

tion
In order to test how the system adapts to changing resources, the battery is set to drain

increasingly faster than the crude path planner assumes it will. UAV 1 will not be able to

complete the same mission as planed in the previous simulations. Figure 9.1 shows the start

of the simulation with the initial plan. The planer is started again as the mission starts,

and deliver the same plan. However, when the crude path module start deliberation on 40

seconds, it delivers the plan about 46 seconds into the mission, and the resources are too

low. The plan changes, and UAV 2 is now set to handle all nodes. The plan at 35 seconds is

illustrated in figure 9.2

97

98 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Figure 9.1: The start of the constrained resources simulation. The battery consumption of

UAV 1 increases with time and the plan should change during the mission.

9.1. SIMULATING A MISSION WITH DYNAMIC RESOURCES CONSUMPTION 99

Figure 9.2: 46 seconds into the constrained resources simulation. The battery of UAV 1 is

drained at triple speed and the plan is changing during the mission.

100 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Figure 9.3: The end of the constrained resources simulation. The battery of UAV 1 is drained

at triple speed and the plan has changed during the mission.

9.1. SIMULATING A MISSION WITH DYNAMIC RESOURCES CONSUMPTION 101

After about 1 minute and 45 seconds seconds the mission is completed as the UAVs approach

the base station. This stage is shown in figure 9.3. The computation time of the individual

MPCs and the MILP crude path planner is shown in figure 9.4. For the crude path planer

reactor, it is interesting to notice that after the initial long calculation times, the times drop

significantly when UAV 1 reaches the first node and is deemed to low on battery to handle

more nodes. This illustrates how the MILP solver depends on the complexity of the mission

mode, given the current state. The plot also shows how the initial deliberations exceed

300 seconds, which poses a problem to the applicability on a online system. The MPC

calculations stay somewhat stable excepts some serious increases. These happens at plan

changes and sharp turns when the objective function becomes larger.

102 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

9.2 Simulating a mission with dynamic node positions
One goal of the system is to investigate the possibility of replacing the AI modules of T-REX

with mathematical optimization algorithms, and still use the system for dynamic missions

with moving nodes. This simulation illustrates the system performance when the two top

nodes are given a velocity of 8 knots (about 4.5 m/s). The top right node will move 180

degrees directly south, while the top left node will move at 45 degrees north east. Again the

initial mission plan is the same, but after 60 seconds the plan changes several times. Figure

9.5 shows the plan which are synchronized from the crude path planer at 60 seconds.

Notice that the deliberation time have been extensive, which causes a big lag from the state

dispatched to the crude path reactor to the state when the plan is dispatched. This provides

a challenge to the MPC which will in turn get a significantly higher objective function. The

controls of UAV 1 illustrated in figure 9.9. At 60 seconds, when the plan is dispatched there

is a large increase in rapid control moves, which are undesirable when seeking to limit wear

and tear as well as battery consumption. However, the plan is able to adapt to the moving

nodes, and after 75 seconds a new plan is dispatched shown in figure 9.6. The new plan uses

the positions at 60 seconds, and UAV is now given responsibility of the upper nodes, while

UAV 2 takes care of the left node which UAV 1 have missed due to the MPC turning early

in the bend at that node.

Then again after another 20 seconds a new plan is dispatched. At this point UAV 1 have

taken a right hand turn, and is closer to the left node. The new plan gives the node to UAV 1

and figure 9.7 shows the UAVs after following this plan for some 10 seconds. The last stage

of the plan is shown in figure 9.8, where the plan is simply for all UAVs to return to the base

station. At this point some other system takes control and handles the approach and landing

at the base station.

For this mission, all flight states will be illustrates the figures 9.10 to 9.16. These are included

to show some interesting differences from the EUROPA planner simulation. The change of

paths causes a much more sporadic behaviour and it can be seen especially as the first new

plan is dispatched at 60 seconds that the increasingly rapid actuation is represented in all

states. This is normal in the case of the 60 second plan change as the new plan is drastically

different. But this phenomena is present also in the last 20 seconds when the UAVs does

their approach, but before they have the base station in the time horizon of the MPCs. This

seems to be caused by a timing challenge caused by the design of objective function for the

MPCs. In figure 9.17 the computation times of the MPCs and MILP module are shown. The

MILP times are especially high during the first 10 iterations of the plan, almost averaging on

9.3. EXTERNAL SIMULATOR 103

500 seconds.

The mission is successful in this simulations with two moving nodes, but with more dynam-

ics in the nodes position, the slow deliberations of crude paths can cause serious issues. The

delay when between node position sensing and the plan being dispatched can cause the UAV

to miss the node entirely. The node will not register as visited and the planner will attempt

to visit it again.

Figure 9.18 shows a mission which illustrates this point. In this mission, all nodes except

the upper right is moving. UAV 1 misses the first node on the left, and continues towards

the upper nodes. The plan changes at the top like in the successful mission, but this time the

node at the bottom remains. This worsen when UAV two misses the upper, now right, node.

The result are that both nodes follows the path past a node, misses it, flies towards the next

nodes before doubling back and missing the node again.

9.3 External simulator
Work was done to implement the AMPE system as a planning and control system in an

external simulator created by Kristoffer Gyrte in [16]. Sadly I was not able to develop this

into a stable system in terms of reliable functionality during the appointed time of this thesis,

and it is therefore left out of this chapter. However, experience using the simulator shows

that the system is also not stable in terms of control when simulating in real time using

the MPC as a controller. This is because of the long calculation times. As shown in the

above results, the MPC can sometimes use as much as 5 seconds to calculate one control

input. This is unsuitable for the rapid flight dynamics of the UAV, which quickly starts to

oscillate increasingly about the given path and looses altitude. Solutions, and other possible

reasons of instability is discussed further in chapter 10. Another setup was attempted using

the MPC as a pure refined planning module, and use an external PID controller provided in

the simulator for control. Even though no logged data is available for these tests, experiences

with this setup will be included here as it facilitates further work, and affects the conclusion

of this thesis.

The step length of the MPC was increased to 2 seconds as this is within some margin from

the average calculation times. A Runge-Kutta45 integrator is then used with the input to find

the intended waypoint of the first control provided by the MPC. This is done again with the

next two inputs to keep as a buffer in case the next calculation exceeds the 2 seconds until

the UAV should pass the first waypoint. The combined time of these operations becomes the

deliberation time of the reactor, and tended to average on 1.8 to 2 seconds. Therefore the first

104 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

waypoint in the buffer was often used but seldom the second. The height of the waypoints

are extracted and used as a height offset, and then line-of-sight guidance as described in [14]

is used to set a heading course reference. This setup provided stable flight and was able to

meet waypoints during the short simulation tests that were achieved. Wind forces were also

applied and terms to account for this discussed in section 6.1 were set to match the wind

speed and direction. As the NED position relative to the current path waypoint is part of the

MPC objective function, the controller becomes more and more erratic in terms of control

amplitude when the distance is too far. This makes the wind terms in both the crude path

planner, and the MPC essential. The flight path tended to be smoother when expected air

and ground speed was not the same.

9.3. EXTERNAL SIMULATOR 105

Fi
gu

re
9.

4:
T

he
co

m
pu

ta
tio

n
tim

e
of

th
e

M
PC

s
an

d
M

IL
P

re
ac

to
rd

ur
in

g
th

e
co

ns
tr

ai
ne

d
re

so
ur

ce
s

si
m

ul
at

io
n.

106 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Figure 9.5: This figure illustrates the moving nodes simulation. after about 60 seconds the

first new plan is deliberated by the MILP module telling UAV 1 top return.

9.3. EXTERNAL SIMULATOR 107

Figure 9.6: This figure illustrates the moving nodes simulation. After about 60 seconds the

first new plan is deliberated by the MILP module telling UAV 1 top return.

108 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Figure 9.7: This figure illustrates the moving nodes simulation. After about 75 seconds a

new plan is dispatches, using the positions at 60 seconds.

9.3. EXTERNAL SIMULATOR 109

Figure 9.8: This figure illustrates the moving nodes simulation. At this point of the simula-

tion the mission some landing system takes control.

110 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Figure
9.9:T

he
controls

ofU
AV

1
during

the
m

oving
nodes

m
ission.N

otice
the

increase
in

rapid
controlm

oves
w

hen
a

new
plan

is
received

at75
seconds.

9.3. EXTERNAL SIMULATOR 111

Fi
gu

re
9.

10
:D

at
a

fr
om

th
e

dy
na

m
ic

no
de

po
si

tio
n

si
m

ul
at

io
n.

T
he

do
tte

d
re

d
lin

e
ill

us
tr

at
es

th
e

tr
im

co
nd

iti
on

s,
an

d
th

e
bl

ac
k

lin
es

ill
us

tr
at

es

th
e

co
ns

tr
ai

nt
s

of
th

e
M

PC
.

112 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Figure
9.11:D

ata
from

the
dynam

ic
node

position
sim

ulation.T
he

dotted
red

line
illustrates

the
trim

conditions,and
the

black
lines

illustrates

the
constraints

ofthe
M

PC
.

9.3. EXTERNAL SIMULATOR 113

Fi
gu

re
9.

12
:D

at
a

fr
om

th
e

dy
na

m
ic

no
de

po
si

tio
n

si
m

ul
at

io
n.

T
he

do
tte

d
re

d
lin

e
ill

us
tr

at
es

th
e

tr
im

co
nd

iti
on

s,
an

d
th

e
bl

ac
k

lin
es

ill
us

tr
at

es

th
e

co
ns

tr
ai

nt
s

of
th

e
M

PC
.

114 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Figure
9.13:D

ata
from

the
dynam

ic
node

position
sim

ulation.T
he

dotted
red

line
illustrates

the
trim

conditions,and
the

black
lines

illustrates

the
constraints

ofthe
M

PC
.

9.3. EXTERNAL SIMULATOR 115

Fi
gu

re
9.

14
:D

at
a

fr
om

th
e

dy
na

m
ic

no
de

po
si

tio
n

si
m

ul
at

io
n.

T
he

do
tte

d
re

d
lin

e
ill

us
tr

at
es

th
e

tr
im

co
nd

iti
on

s,
an

d
th

e
bl

ac
k

lin
es

ill
us

tr
at

es

th
e

co
ns

tr
ai

nt
s

of
th

e
M

PC
.

116 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Figure
9.15:D

ata
from

the
dynam

ic
node

position
sim

ulation.T
he

dotted
red

line
illustrates

the
trim

conditions,and
the

black
lines

illustrates

the
constraints

ofthe
M

PC
.

9.3. EXTERNAL SIMULATOR 117

Fi
gu

re
9.

16
:D

at
a

fr
om

th
e

dy
na

m
ic

no
de

po
si

tio
n

si
m

ul
at

io
n.

T
he

do
tte

d
re

d
lin

e
ill

us
tr

at
es

th
e

tr
im

co
nd

iti
on

s,
an

d
th

e
bl

ac
k

lin
es

ill
us

tr
at

es

th
e

co
ns

tr
ai

nt
s

of
th

e
M

PC
.

118 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Figure
9.17:D

ata
from

the
dynam

ic
node

position
sim

ulation.

9.3. EXTERNAL SIMULATOR 119

Figure 9.18: An unsuccessful mission due to large delay from the crude planning starts till it

ends.

120 CHAPTER 9. SIMULATING DYNAMIC MISSIONS

Part IV

Discussion and conclusion

121

CHAPTER 10

Discussion

10.1 MILP performance
The Mixed Integer Linear Programming model is shown to perform well in the sense of

creating good paths, but long and unpredictable calculation times can rise cause to effects

like shown in section 9.2. In addition, the deliberation time of the module can stay at 500

seconds for the first part of the mission. During this part the plan can stay static for 8

minutes. Most importantly, it can cause the UAV to miss the nodes, but the plan might also

not be optimal any longer after so long. This diminishes the usefulness of having complex

computation, with its trade-off computation times. As an observation, the MILP module

seems to get significantly worse the more time steps that is required to complete the mission,

while as the number of time steps is less important of both UAVs reach the base station

within the time horizon.

The computation times shown in the results are without the data flow constraints. This also

impacts the applicability of the MILP module. If the UAVs are to perform long missions,

visiting a large amount of nodes before completion, the buffer size would not be enough.

The scalabillity of the system suffers from this, and the observation that the longer it takes

to complete the mission, the longer the deliberation. However, the sampling time can be

increased to allow for a longer mission. Then the UAVs could reach further and therefore

the sampling time must be scaled with the size of the mission area. This must be done with

123

124 CHAPTER 10. DISCUSSION

care, not to risk loosing collision avoidance. UAV collision avoidance unreliable at best in

mid flight because of the spread in the positions at each time step, but it is not important as

UAVs travels to different nodes, and is only likely to get close at these nodes, and therefore

only if approaching the end node at the same angle. If anti-grounding constraints are to be

included however, the security of the UAV could suffer from increased time steps.

10.2 EUROPA performance
The EUROPA module was run in the static mission simulation, but the results points towards

the module to be more suited for the dynamic mission. The planner chose a short path for

the UAV 2 and had UAV handle all others. In this simulation, it is easy to tweak the temporal

goals for this special case in order to get good results, but this would be counterproduc-

tive towards a general and autonomous system. Therefore the EUROPA simulation is done

with the results given without any special configuration for the specific mission. The mod-

ule, in difference from the MILP reactor, deliberates the plan quickly at only 1.8 seconds.

This would make it suitable for dynamic missions, if the loss of optimally is acceptable.

To accommodate both optimality and efficiency a combination of the two modules will be

suggested later in this chapter.

10.3 MPC performance
The system shows very good results for following the paths in the static mission case, and

performs stable control with small perturbation on the actuators. However, these results are

found using the linear model, which are the same as used internally by the MPC. Good

results are to be expected, and the work done on a external simulator shows that the results

are not that simple in an real-time operation where the modelled flight dynamics are not

perfect.

The MPC can react poorly when receiving a new plan. This can be seen for example at the

end of the moving nodes simulation. When approaching the base station the MILP problem

becomes trivial and is solved for every tick, giving a constant stream of new plans. At this

approach, the UAV controls becomes somewhat ”shaky”. This seems to be because the in-

tervals of the new references is skewed, causing the UAV to try and catch up or slow down

to synchronize with the new trajectory. This is a challenge when dealing with parallel asyn-

chronous systems, (until synchronized by the T-REX agent). The reaction of the MPC when

introduced to this skewed input intervals is somewhat extreme, and causes unwanted devi-

ations from the plan. Also, the changes in plan during that mission, though drastic, should

10.4. APPLICABILITY IN REAL-TIME OPERATIONS 125

still be met with a smooth transition. A way to relax the reaction could be to introduce slew-

rate to the objective function, as described in [27]. The idea is to use the previous output

sequence over the planed time horizon as a input, and minimize the difference towards the

new output (except the last output). This helps to introduce a soft transition in results from

one MPC step to the next, and would be well suited as the change of plans in the AMPE

system is a abrupt change in most input variables of the MPC. The slew-rate could help limit

the effect of this disruption.

While T-REX is built with synchronization in mind as one of the main goals, it proves chal-

lenging to synchronize signals accurate in the discrete time intervals. There are some delays

in the dispatching of goals, however, this is deterministic and one should be able to com-

pensate this. The challenge here seems to be that the planned speed is given to the UAV as

timed reference signal of position. When the new plan has a slightly skewed time horizon,

the MPC will try to reach that waypoint sooner or later than intended. It will have to catch

up or slow down to synchronize with the new phase of the intervals. This could be solved

with some heuristics or a interpolation between the old and the new reference trajectories

when a new plan is complete.

A significant issue with the MPC in its current state is, along with the MILP module, the

computation time of each step. Averaging between one and two seconds is too slow for the

fast UAV dynamics. ACADO provides a tool which automatically generates optimized MPC

code in C++ from Matlab code, and this is suggested as a way of reducing the computation

times. This code would be optimized for the specific program at hand.

10.4 Applicability in real-time operations
The AMPE system have been shown to be able to perform optimal planning, follow a given

and changing trajectory and achieving smooth and precise maneuvers. It is important to re-

member that this is in simulations that is not performed in real-time. The planning time of the

MILP crude path planner is unpredictable and have sometimes exceeded five minutes. In this

case, the mission would be completed before the plan was finished and all mission dynamics

would be lost. The deliberations of each individual module would be shorter on the intended

distributed system. In these simulations, the crude path planner, and both MPCs are running

at the same processor, while as in a deployment of the AMPE system, one agent would be

on the ground responsible for the crude planning of the overall mission, while each MPC

would mainly perform only one MPC task, or a MPC and PID task. This would lighten

126 CHAPTER 10. DISCUSSION

the load significantly, but it would require expensive computational equipment aboard the

UAVs. This is not desirable as the loss of a UAV would be more expensive. Still, some

required processing power aboard the UAV must be expected, and sensors might be much

more costly anyways. The ground station could keep powerful computers, for the common

agent. This can be impractical with mobile base stations at land, but for a base aboard a

vessel, A permanent setup able to do the MILP planning in a timely manner might be a good

solution.

For real time demands using the available equipment for simulations, an alternative setup

was tested when working with the system at an external simulator. By using the MPC to

determine waypoints given to a PID regulator, the system was able to keep stable control in

the initial testing. This gives a smoother path and avoids 180 degree turns which occurs in

the crude plans. A Dubins path wold be much less costly to calculate and would remedy the

same issues, which leaves the usefulness of such a setup in question. There are still some

advantages of the MPC planning approach. When data flow constraints are used, the crude

plan is determined by time stamped waypoints, and if the UAVs are to meet for data transfer

they are dependent on keeping these temporal goals. The MPC does not only optimize the

path to be the shortest as Dubins path does [7], but also optimizes the time it is at the way-

point, changing the path accordingly.

This thesis have focus on the use of both Artificial Intelligence and Mathematical Optimiza-

tion to built the system. The system is built into an AI framework with the architecture of

a continuous plan implemented on timelines by T-REX. For the modules implemented with

MILP optimization, the results give good paths, but the unpredictable makes it risky for real

operations. This is where there can be great compatibility between the EUROPA AI module

and the MILP module. The EUROPA module performed its task in just about 1.8 seconds.

This is will within the limits of what is needed of the crude path planner. Therefore, for a real

system a combination of these two systems could be favorable. The MILP would perform

the initial plan, which is then followed up by the EUROPA module until the MILP module

completes a new plan. EUROPA have the feature of rejectable goals, meaning the goals

would only apply if they are possible to reach. When receiving the MILP plan the temporal

relations between the visit of each node could be set as rejectable goals, causing EUROPA

to change from the initially optimal order of nodes to visit only when it would be unfeasible.

This would introduce more optimally to the EUROPA reactor. It would be useful to simulate

the system with online deliberation of EUROPA to test this theory, and therefore it is left to

future work to get in contact with the NASA EUROPA team for possible work-arounds of

10.5. NOTES ON STABILITY 127

the compilation issues.

10.5 Notes on stability
A MPC with unconstrained actuators are guaranteed to be stable [21], however this is not

realistic in the real world and all controls of the X8 UAV must be constrained to the satura-

tion. This makes the problem of stability complex, ... It becomes even more complex as the

Runge-Kutta method used in the MPC can become unstable, rendered unable to find a step

length for which the requested accuracy is achieved, at very rapid dynamics. The constrains

added to the MPC should prevent such scenarios, but if the MPC is not stable it might not

be able to keep these constrains. [21] goes into detail on the study of closed-loop stability

when using Model Predictive Controls. As the AMPE system have yet to produce any stable

results on external systems, this is left for future work. The first challenge of the control in

the AMPE system would be to reduce the computation time of the MPC if it is to be used as

a controller.

10.6 A combined system of MILP and EUROPA
A module combining Europa and MILP path planning will be suggested here. At the start of

the mission, spending ten minutes at deliberating a plan does not affect the mission success.

During the flight it is more important to keep the deliberation time down, or have some

other technique to get intermediate plans between each deliberation. This is how the two

concepts would work together. The MILP module would provide a initial plan, and set

the planned approach of nodes as goals for the EUROPA reactor. EUROPA features as

mentioned rejectable goals. The temporal relations between node visits from the MILP plan

can be set as rejectable goals (before, after...). Then EUROPA would follow the plan of the

MILP reactor while being able to use much fresher position samplings of the nodes for the

plan.

128 CHAPTER 10. DISCUSSION

CHAPTER 11

Future work

This system, while considering a variety of conditions such as resources, and for static mis-

sions the data flow through the network, still faces some simplifications. A simple quadratic

function was used for the path loss, but in [18] a solution is presented using SPLAT! to check

whether the connectivity holds at the a positions where the UAVs attempts a data transfer.

This is done by iteratively checking a plan to see if the requested path loss actually holds,

and if not constrain Rcon more. This might be impractical as it potentially multiplies the

deliberation time of the module several times. The online usage is already strained as shown

by the logged times in the results, but in a scheme using both EUROPA and MILP, it could

become feasible as a means to ensure the data transfer is possible. Another simplification

that were touched upon is the off-shore usage of the AMPE system. In order to execute

mission above land, some form of terrain avoidance must be implemented. This is done in

[17],

The AMPE system is in this thesis developed with a specific case in mind, which is that of

the data gathering be establishing a relay network or ferrying data to a base station. The

T-REX system is built to allow hierarchical planning, and in order to generalize the system

to more cases than the one specified here, another level of planning can be built on top of

the existing system. Given a working combination of EUROPA and MILP for crude path

planning, all capabilities of the UAV using the AMPE system can be contained as building

blocks. Then the new planning level will utilize these building blocks to perform a mission

129

130 CHAPTER 11. FUTURE WORK

within constraints and parameters given. Say or example the data flow constraints. If the

UAV was only searching for drifting ships as a default, the data flow constrains could be

added as a block to include data transmissions with any found ship.

Finally, stability analysis, adding and tuning slew rate objectives to the MPC and to utilize

the ACADO code generation tool for a optimized MPC have all been discussed before as

future work.

CHAPTER 12

Conclusion

This thesis sat out to develop a mission planning and execution system by using T-REX with

its AI approach as inspiration. The system should be autonomous and subtasks of this system

were to be tested using EUROPA together with Mathematical optimization. The resulting

AMPE system where developed to test the T-REX system in which some or all modules

were replaced from EUROPA planners to MPC and MILP modules. To this end the results

have shown different tendencies towards applicability of each of these modules. The overall

system architecture have proven smart for the optimization methods. The parallel design

suits the slow deliberation of the MILP module, and the architecture of using timelines for

each module to fill with tokens, iterated through as the time progresses makes it easy for

the MPC to collect the current goals an insert it into its own planning horizon. Both the

MILP model and the MPC uses the receding time horizon principle in this thesis, giving

then naturally a planning horizon which correlates well with the T-REX functionality. The

Mathematical Optimization’s had been even more suited had the observations received been

included directly into the current planning, but this is not applicable for these methods.

Both the MPC and the MILP modules have proven to be too slow for any online use in its

current configuration. The MPC can be improved to reach computation time that allows

for online control by taking measures such as utilizing the ACADO code generation tools

which optimizes the controller for the specific program used. The MILP module does not

seem to have a potential of being efficient enough to be used as a standalone online planner.

131

132 CHAPTER 12. CONCLUSION

The MILP module have been shown to sometimes use more than five minutes to reach an

optimal plan, but this plan is guaranteed to be optimal within some limit. However, a static

mission have been planed by the EUROPA module, showing a successful mission with much

faster deliberation time than the MILP module. The ability to test the Artificial Intelligence

in the form of the crude path planning reactor implemented with an EUROPA module, have

been less than desirable. However, the results that have been established tends towards both

a problem with the MILP module, and a solution using EUROPA. The extensive delays in

the MILP path planning introduces a risk of the system not completing the mission if the

dynamics are to great. A case was shown where 4 nodes where moving, at which the delay

of the MILP plan resulted in the UAVs always missing the nodes.

In the end, the system is a functional autonomous system, which takes in only the node posi-

tions and plans the entire mission, then executing it while re-planing in order to maintain that

plan, but which is yet not able to meet any real-time demands. The performance of the opti-

mization modules are less then desirable, and therefore improvements and designs including

EUROPA have been suggested. The concepts of T-REX, EUROPA, MILP and MPC shows

good compatibility, and further development by combining the efficiency of EUROPA with

the optimality of the MILP module have potential for a functional online mission planning

module allowing for real-time autonomous mission planning and execution.

CHAPTER 13

Bibliography

[1] How does europa represent and think about plans? https://github.com/nasa/

europa/wiki/Planning-Approach. Accessed: 2017-02-20.

[2] How to build head of master. https://github.com/nasa/europa/issues/

172. Accessed: 2017-0-25.

[3] Mathworks (2015a). airframe trim and linearize. http://se.mathworks.com/

help/aeroblks/examples/airframe-trim-and-linearize-html#

zmw57dd0e1168. Accessed: 2017-06-22.

[4] Nddl reference manual. https://github.com/nasa/europa/wiki/

NDDL-Reference. Accessed: 2017-02-20.

[5] A simple sample application (the planetary rover). https://github.com/nasa/

europa/wiki/Example-Rover. Accessed: 2017-04-13.

[6] Ali Ahmadzadeh, Ali Jadbabaie, Vijay Kumar, and George J. Pappas. Multi-uav coop-

erative surveillance with spatio-temporal specifications. pages 5293–5298, 2006.

[7] Randal W. Beard and Timothy W. McLain. Small Unmanned Aircraft : Theory and

Practice. Small Unmanned Aircraft. Princeton University Press, Princeton, 2012.

133

https://github.com/nasa/europa/wiki/Planning-Approach
https://github.com/nasa/europa/wiki/Planning-Approach
https://github.com/nasa/europa/issues/172
https://github.com/nasa/europa/issues/172
http://se.mathworks.com/help/aeroblks/examples/airframe-trim-and-linearize-html#zmw57dd0e1168
http://se.mathworks.com/help/aeroblks/examples/airframe-trim-and-linearize-html#zmw57dd0e1168
http://se.mathworks.com/help/aeroblks/examples/airframe-trim-and-linearize-html#zmw57dd0e1168
https://github.com/nasa/europa/wiki/NDDL-Reference
https://github.com/nasa/europa/wiki/NDDL-Reference
https://github.com/nasa/europa/wiki/Example-Rover
https://github.com/nasa/europa/wiki/Example-Rover

134 CHAPTER 13. BIBLIOGRAPHY

[8] Alberto Bemporad and Manfred Morari. Control of systems integrating logic, dynam-

ics, and constraints. Automatica, 35(3):407–427, 1999.

[9] Eduardo F. Camacho, Carlos Bordons Alba, and SpringerLink. Model Predictive Con-

trol. Advanced Textbooks in Control and Signal Processing. Springer London : Im-

print: Springer, 2nd ed. edition, 2007.

[10] James. Cary, Leslie; Coyne. Icao unmanned aircraft systems (uas), circular 328”. 2011-

2012 uas yearbook - uas: The global perspective. Blyenburgh Co., page pp. 112–115,

2012.

[11] A. Chaudhry, K. Misovec, and R. D’ Andrea. Low observability path planning for

an unmanned air vehicle using mixed integer linear programming. In Decision and

Control, 2004. CDC. 43rd IEEE Conference on, volume 4, pages 3823–3829 Vol.4.

[12] Olav Egeland and Jan Tommy Gravdahl. Modeling and simulation for automatic con-

trol. Marine Cybernetics, Trondheim, 2002.

[13] Bjarne Foss and Aksel N. Heirung. Merging optimization and control. 2014.

[14] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. Vade-

mecum de navium motu contra aquas et de motu gubernando. Wiley, New York, 2011.

[15] F. Gavilan, R. Vazquez, and E. F. Camacho. An iterative model predictive control

algorithm for uav guidance. IEEE Transactions on Aerospace and Electronic Systems,

51(3):2406–2419, 2015.

[16] Kristoffer Gryte and Thor Inge Fossen. High Angle of Attack Landing of an Unmanned

Aerial Vehicle. Thesis, 2015.

[17] Esten I. Grøtli and Tor A. Johansen. Motion- and communication-planning of un-

manned aerial vehicles in delay tolerant network using mixed-integer linear program-

ming. Modeling, Identification and Control, 37(2):77–97, 2016.

[18] Esten Ingar Grøtli and Tor Arne Johansen. Path planning for uavs under communication

constraints using splat! and milp. Journal of Intelligent Robotic Systems, 65(1):265–

282, 2012.

[19] B. Houska, H.J. Ferreau, M. Vukov, and R. Quirynen. ACADO Toolkit User’s Manual.

http://www.acadotoolkit.org, 2009–2013. Accessed: 2017-05-30.

[20] D. Koks. Using rotations to build aerospace coordinate systems, australian government

electronic warfare and radar division systems sciences laboratory. DSTO, 2008.

I

[21] Basil Kouvaritakis and Mark Cannon. Nonlinear predictive control : theory and prac-

tice, volume 61 of IEE control engineering series. Institution of Electrical Engineers,

London, 2001.

[22] Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas, Richard Henthorn, and Rob

McEwen. T-rex: A model-based architecture for auv control. In 3rd Workshop on

Planning and Plan Execution for Real-World Systems, volume 2007.

[23] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer series in op-

eration research and financial engineering. Springer, New York, 2nd ed. edition, 2006.

[24] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl. Autogenerating microsecond solvers

for nonlinear mpc: A tutorial using acado integrators. Optimal Control Applications

and Methods, 36(5):685–704, 2015.

[25] AJM Raemaekers. Design of a model predictive controller to control uavs. Report,

Technische Universiteit Eindhoven, 2007 2007.

[26] Kanna Rajan, Frédéric Py, and Javier Barreiro. Towards deliberative control in marine

robotics, pages 91–175. Springer New York, 2013.

[27] Thomas J. Stastny, Adyasha Dash, and Roland Siegwart. Nonlinear MPC for Fixed-

wing UAV Trajectory Tracking: Implementation and Flight Experiments. AIAA

SciTech Forum. American Institute of Aeronautics and Astronautics, 2017.

[28] Henning A. Åsgård. Combining methods of mathematical optimization and artificial

intelligence for autonomous uav mission planning, execution and resource manage-

ment. 2016.

II CHAPTER 13. BIBLIOGRAPHY

Part V

Appendix

III

APPENDIX A

UAV model constants and parameters

This chapter will provide the remaining constants and parameters for the UAV model illus-

trated in chapter 2. This is a similar to the table in [7].

V

VI APPENDIX A. UAV MODEL CONSTANTS AND PARAMETERS

A.1 UAV linear model constants

Lateral Formula

Yv
ρSbv∗

4mV ∗
a

[CYpp∗ + CYrr
∗] + ρSv∗

m
[CY0 + CYββ

∗ + CYδaδ
∗
a + CYδr δ

∗
r] + ρSCYβ

2m

√
u∗2 + w∗2

Yp w∗ + ρV ∗
a Sb

4m CYp

Yr −u∗ + ρV ∗
a Sb

4m CYp

Yδa
ρV ∗2
a S

4m CYδa
Yδr

ρV ∗2
a S

4m CYδr
Lv

ρSbv∗2

4mV ∗
a

[Cppp∗ + Cprr
∗] + ρSv∗b[Cp0 + Cpββ

∗ + Cpδaδ
∗
a + Cpδr δ

∗
r] + ρSCpβ

2

√
u∗2 + w∗2

Lp Γ1q
∗ + ρV ∗

a Sb
2

4 Cpp

Lr Γ2q
∗ + ρV ∗

a Sb
2

4 Cpr

Lδa
ρV ∗
a Sb

2

2 Crδa
Lδr

ρV ∗
a Sb

2

2 Crδr
Nv

ρSbv∗2

4mV ∗
a

[Cppp∗ + Cprr
∗] + ρSv∗b[Cr0 + Crββ

∗ + Crδaδ
∗
a + Crδr δ

∗
r] + ρSCrβ

2

√
u∗2 + w∗2

Np Γ7q
∗ + ρV ∗

a Sb
2

4 Crp

Nr −Γ1q
∗ + ρV ∗

a Sb
2

4 Crr

Nδa
ρV ∗
a Sb

2

4 Cpδa
Nδr

ρV ∗
a Sb

2

4 Cpδr

Longitudinal Formula

Xu
ρSw∗CXα

2mV ∗
a

+ ρSu∗

m
[CX0 + CXαα

∗ + CXδeδ
∗
e] + ρScCXqu

∗q∗

4mV ∗
a
− ρSpropCpropu∗

m

Yp −q + ρSw∗

m
[CX0 + CXαα

∗ + CXδeδ
∗
e] + ρScCXqw

∗q∗

4mV ∗
a

+ ρSu∗CXα
2mV ∗

a
− ρSpropCpropw∗

m

Xq −w∗ + ρV ∗
a SCXq c

4m

Xδe

ρV ∗
a SCXδe

c

2m

Xδt
ρSpropCpropk2δ∗

t

m

Zu q+ ρSw∗CZα
2mV ∗

a
+ ρSu∗

m
[CZ0 + CZαα

∗ + CZδeδ
∗
e] + ρScCXqu

∗q∗

4mV ∗
a

Zw
ρSw∗

m
[CZ0 + CZαα

∗ + CZδeδ
∗
e] + ρScCZqw

∗q∗

4mV ∗
a

+ ρSu∗CXα
2mV ∗

a

Zq −w∗ + ρV ∗
a SCXq c

4m

Zδa
ρV ∗
a SCZδe

c

2m

Mu
ρSw∗CXα

Jy
+ ρSu∗

m
[CX0 + CXαα

∗ + CXδeδ
∗
e] + ρScCXqu

∗q∗

4mV ∗
a

Mw
ρSw∗CZα

2mV ∗
a

+ ρSu∗

m
[CM0 + CMαα

∗ + Cmδeδ
∗
e] + ρScCmqu

∗q∗

4JyV ∗
a

Mq
ρV ∗
a SCMδe

c

4Jy

Mδa

ρV ∗
a SCmδe

c

4Jy

A.2. THE X8 FLYING-WING PARAMETERS VII

Parameters

Longitudinal Formula

Ci Aerodynamic coefficients

ρ Air density

kmotor Efficiency of the motor

b Wing span

α Angle of attack

β Side slip

ρ air

ρ air

ρ air

A.2 The X8 flying-wing parameters

m 3.364

J x 1.2289999886841

J y 0.170199999115332

J z 0.880799992835993

J x z 0.934299991564547

S 0 . 7 5

b 2 . 1

c 0 .357142858

S prop 0 .3556

rho 1 .2682

k motor 80

k T p 0

k Omega 0

e 0.993384556116078

C L 0 0.025906250396833

C D 0

C m 0 0.017293940631080

C L a lpha 4.016155154888014

C D alpha

C m alpha −0.283327228485977

C L q 3.918552496580028

VIII APPENDIX A. UAV MODEL CONSTANTS AND PARAMETERS

C D q 0

C m q −1.304655882352941

C L d e l t a e 0 .587243508940072

C D d e l t a e 0 .846082348709986

C m d e l t a e −0.485680915663958

C prop 1 . 1 1

M 50

a l p h a 0

e p s i l o n 0 .1592

C D p 0.010182

C n d e l t a r 0

C Y 0 0

C l 0 0

C n 0 0

C Y beta −0.194933999410735

C l b e t a −0.076488773525576

C n b e t a 0 .026884995608090

C Y p −0.117176976744186

C l p −0.401796046511628

C n p −0.024744093023256

C Y r 0.095932174418605

C l r 0 .024960209302326

C n r −0.125246744186047

C Y d e l t a a −0.069648368873249

C l d e l t a a 0 .298694319687316

C n d e l t a a 0 .007569499616129

C Y d e l t a r 0

C l d e l t a r 0

A.3 The X8 flying-wing trim condition

u S t a r 1 8 . 0 1 6 8 ;

v S t a r 0 . 0 0 0 1 ;

wStar 0 . 8 3 6 6 ;

t h e t a S t a r (2 . 6 5 8 6 8 / 180) ∗ 3 .14159265359 ;

A.3. THE X8 FLYING-WING TRIM CONDITION IX

p h i S t a r 0 . 0 ;

p s i S t a r 0 . 0 ;

p S t a r 0 . 0 ;

q S t a r 0 . 0 ;

r S t a r 0 . 0 ;

a l p h a S t a r 0 . 0 ;

b e t a S t a r 0 . 0 ;

d e l t a a S t a r 0 . 0 0 0 0 ;

d e l t a r S t a r 0 . 0 ;

d e l t a e S t a r 0 . 0 0 3 9 ; / / 0 . 0 0 7 9 ;

d e l t a t S t a r 0 . 1 2 4 0 ;

V a S t a r 1 9 . 0 ;

h S t a r 0 . 0 ;

X APPENDIX A. UAV MODEL CONSTANTS AND PARAMETERS

APPENDIX B

EUROPA nddl model

/ / # i n c l u d e ” Plasma . ndd l ”

c l a s s UAV;

c l a s s N a v i g a t o r ;

c l a s s Node ;

c l a s s Data ;

c l a s s D a t a C o n t a i n e r S t a t e ;

c l a s s D a t a C o n t a i n e r ;

c l a s s L o c a t i o n ;

c l a s s B a s e S t a t i o n ;

c l a s s L o c a t i o n

{
f l o a t n ;

f l o a t e ;

f l o a t d ;

L o c a t i o n (f l o a t n , f l o a t e , f l o a t d)

{
n = n ;

e = e ;

XI

XII APPENDIX B. EUROPA NDDL MODEL

d = d ;

}
}

c l a s s Data

{
s t r i n g name ;

/ / i n t s i z e ;

Data (s t r i n g name)

{
name = name ;

}
Data ()

{
name = ” u n s p e c i f i e d ” ;

}
}

c l a s s D a t a C o n t a i n e r S t a t e

e x t e n d s T i m e l i n e

{
p r e d i c a t e HasData {}
p r e d i c a t e I s T r a n s m i t t i n g {}
p r e d i c a t e IsEmpty {}

}

c l a s s T r a n s c i e v e r S t a t e {

p r e d i c a t e F r e e P r e d {}
p r e d i c a t e T r a n s m i t t i n g P r e d {}

}

c l a s s D a t a C o n t a i n e r

{

XIII

Data d a t a ;

D a t a C o n t a i n e r S t a t e s t a t e ;

D a t a C o n t a i n e r (s t r i n g dataName)

{
d a t a = new Data (dataName) ;

s t a t e = new D a t a C o n t a i n e r S t a t e () ;

}
D a t a C o n t a i n e r ()

{
d a t a = new Data () ;

s t a t e = new D a t a C o n t a i n e r S t a t e () ;

}
D a t a C o n t a i n e r (Data d a t a)

{
d a t a = d a t a ;

s t a t e = new D a t a C o n t a i n e r S t a t e () ;

}
}

c l a s s B a s e S t a t i o n

{
L o c a t i o n l o c a t i o n ;

T r a n s c i e v e r S t a t e s t a t e ;

B a s e S t a t i o n (f l o a t n , f l o a t e , f l o a t d)

{
l o c a t i o n = new L o c a t i o n (n , e , d) ;

s t a t e = new T r a n s c i e v e r S t a t e () ;

}

p r e d i c a t e R e c i e v e d D a t a P r e d

{

XIV APPENDIX B. EUROPA NDDL MODEL

Data d a t a ;

}
}

c l a s s N a v i g a t o r

e x t e n d s T i m e l i n e

{

p r e d i c a t e Going

{
L o c a t i o n from ;

L o c a t i o n t o ;

}

p r e d i c a t e At

{
L o c a t i o n a t ;

}
}

c l a s s Node

{

s t r i n g dataName ;

L o c a t i o n l o c a t i o n ;

D a t a C o n t a i n e r d a t a C o n t a i n e r ;

Node (s t r i n g dataName , f l o a t n , f l o a t e , f l o a t d)

{
dataName = dataName ;

d a t a C o n t a i n e r = new D a t a C o n t a i n e r (dataName) ;

l o c a t i o n = new L o c a t i o n (n , e , d) ;

}

XV

Node (f l o a t n , f l o a t e , f l o a t d)

{
dataName = ” u n s p e c i f i e d ” ;

d a t a C o n t a i n e r = new D a t a C o n t a i n e r () ;

l o c a t i o n = new L o c a t i o n (n , e , d) ;

}

Node (L o c a t i o n l o c a t i o n , D a t a C o n t a i n e r d a t a C o n t a i n e r)

{
dataName = ” u n s p e c i f i e d ” ;

d a t a C o n t a i n e r = d a t a C o n t a i n e r ;

l o c a t i o n = l o c a t i o n ;

}

}

B a t t e r y

e x t e n d s R e s e r v o a r

{
s t r i n g p r o f i l e T y p e ;

B a t t e r y (f l o a t i c , f l o a t l l m i n , f l o a t l l m a x)

{
s u p e r (i c , l l m i n , l l m a x) ;

p r o f i l e T y p e =” I n c r e m e n t a l F l o w P r o f i l e ” ;

}
}

c l a s s UAV

{

N a v i g a t o r n a v i g a t o r ;

UAV()

XVI APPENDIX B. EUROPA NDDL MODEL

{
n a v i g a t o r = new N a v i g a t o r () ;

}

p r e d i c a t e HasData

{
Data d a t a ;

}

a c t i o n GOAct

{
L o c a t i o n t o ;

}

a c t i o n C o l l e c t D a t a A c t

{
Data d a t a ;

Node p o s s i b l e N o d e s ;

}

a c t i o n SendDataToBaseAct

{
Data d a t a ;

B a s e S t a t i o n base ;

}

a c t i o n MeetUAVAct

{
UAV meet ;

}

}

UAV: : GOAct

XVII

{
t h i s . s t a r t >= 0 ;

met by (c o n d i t i o n o b j e c t . n a v i g a t o r . At f rom) ;

meets (e f f e c t o b j e c t . n a v i g a t o r . At d e s t i n a t i o n) ;

eq (to , d e s t i n a t i o n . a t) ;

e q u a l s (e f f e c t o b j e c t . n a v i g a t o r . Going go ing) ;

eq (go ing . from , f rom . a t) ;

eq (go ing . to , d e s t i n a t i o n . a t) ;

f l o a t d i s t ;

c a l c D i s t a n c e (d i s t , f rom . a t . n , f rom . a t . e , d e s t i n a t i o n . a t . n , d e s t i n a t i o n . a t . e) ;

d u r a t i o n <= d i s t ;

d u r a t i o n >= d i s t − 0 . 9 9 9 9 ;

}

UAV: : C o l l e c t D a t a A c t

{
eq (d u r a t i o n , 2) ;

t h i s . s t a r t >= 0 ;

p o s s i b l e N o d e s . d a t a C o n t a i n e r . d a t a == t h i s . d a t a ;

c o n t a i n e d b y (c o n d i t i o n o b j e c t . n a v i g a t o r . At c u r r e n t L o c a t i o n) ;

eq (c u r r e n t L o c a t i o n . a t , p o s s i b l e N o d e s . l o c a t i o n) ;

met by (c o n d i t i o n p o s s i b l e N o d e s . d a t a C o n t a i n e r . s t a t e . HasData) ;

s t a r t s (e f f e c t HasData i n p u t D a t a) ;

eq (i n p u t D a t a . da t a , d a t a) ;

e q u a l s (e f f e c t p o s s i b l e N o d e s . d a t a C o n t a i n e r . s t a t e . I s T r a n s m i t t i n g) ;

meets (e f f e c t p o s s i b l e N o d e s . d a t a C o n t a i n e r . s t a t e . IsEmpty) ;

XVIII APPENDIX B. EUROPA NDDL MODEL

}

UAV: : SendDataToBaseAct

{
d u r a t i o n == 2 ;

met by (c o n d i t i o n HasData hasDa ta) ;

ha sDa ta . d a t a == t h i s . d a t a ;

c o n t a i n e d b y (c o n d i t i o n o b j e c t . n a v i g a t o r . At c u r r e n t L o c a t i o n) ;

c u r r e n t L o c a t i o n . a t == base . l o c a t i o n ;

a f t e r (c o n d i t i o n C o l l e c t D a t a i s C o l l e c t e d) ;

i s C o l l e c t e d . d a t a == t h i s . d a t a ;

i s C o l l e c t e d . p o s s i b l e N o d e s . d a t a C o n t a i n e r . d a t a == d a t a ;

e q u a l s (e f f e c t ba se . s t a t e . T r a n s m i t t i n g P r e d) ;

meets (e f f e c t ba se . s t a t e . F r e e P r e d) ;

s t a r t s (e f f e c t ba se . R e c i e v e d D a t a P r e d r e c i e v e d) ;

r e c i e v e d . d a t a == d a t a ;

}

APPENDIX C

AMPL model

param np ; # t o t a l number o f v e h i c l e s

param N; # o p t i m i z a t i o n h o r i z o n

param d e l t a t ; # Sample t ime

param Vmax ;

param Vmin ;

s e t Dim := 1 . . 3 ; #NED

param i n i t P o s 1 { i i n Dim} ;

param i n i t P o s 2 { i i n Dim} ;

param i n i t P o s {p i n 1 . . np , i i n Dim} ;

param x min ;

XIX

XX APPENDIX C. AMPL MODEL

param x max ;

param y min ;

param y max ;

param h min ;

param h max ;

t e s t params :

param g o a l { i i n Dim} ;

param g o a l 2 { i i n 1 . . 2 , j i n 1 . . 4 } ; # row f i r s t t h e n co l lumn

param Dvel ;

param c h i x {k i n 1 . . Dvel , l i n 1 . . Dvel / 2 } ;

param c h i y {k i n 1 . . Dvel , l i n 1 . . Dvel / 2 } ;

param c h i z {k i n 1 . . Dvel , l i n 1 . . Dvel / 2 } ;

param a l p h a v e l ; # a l p h a f o r v e l o c i t y e s t i m a t i o n

param Mvel ;

param r w e i g h t { j i n Dim} ; # a c c e l e r a t i o n w e i g h t i n g

param W;

param dwp ;

param Mwp;

param w a y p o i n t s {w i n 1 . .W, j i n Dim} ; #−−− a c t u a l w a y p o i n t s .

param M f i n n i s h ;

param gamma f inn i sh ; # p o s i t i v e we i gh t f o r J f i n n i s h

param dx ; #

param dy ; # −a n t i−c o l l i t i o n s a f e t y d i s t a n c e

param dz ; #

param MCol ; # Big M a n d t i−c o l l i s i o n

XXI

param MConDim ; # b i g M f o r c a s t i n g c o n e c t i v i t y D i m e n t i o n a l t o boo l

param Rcon ;

param e p s i l o n ;

param MCon ;

param wind{ j i n Dim} ;

Da ta f low

param c S e n s o r ;

param hBar ;

param Cmax ;

param CmaxOut ;

param CmaxIn ;

R e s o u r c e s c o n s t r a i n t

param b a t t e r y 1 ;

param b a t t e r y 2 ;

#−−−−−−−− Vars

v a r v {p i n 1 . . np , i i n 0 . . N, row i n Dim} ; # v e l o c i t y i n v e h i c l e , t ime , row

v a r V {p i n 1 . . np , i i n 0 . . N} ; # a b s o l u t e v e l o c i t y i n v e h i c l e , t ime , row

v a r pos {p i n 1 . . np +1 , i i n 0 . . N, row i n Dim} ;

v a r J a c c ; #The p e n a l i z i n g v a r f o r a c c e l e r a t i o n

v a r wacc{p i n 1 . . np , i i n 0 . . N, j i n Dim} ; # A c c e l e r a t i o n v e c t o r

v a r t h e t a {w i n 1 . .W} ;

v a r t h e t a f i n n i s h {p i n 1 . . np } ;

v a r e t a f i n n i s h ; # max f i n n i s h i n g t ime

v a r J f i n n i s h ; # f i n n i s h i n g t ime p e n n a l i z e r ;

XXII APPENDIX C. AMPL MODEL

v a r x{p i n 1 . . np , i i n 0 . . N} ; #

v a r y{p i n 1 . . np , i i n 0 . . N} ; # −Used t o r e a d i n t e l e o r e a c t o r

v a r z{p i n 1 . . np , i i n 0 . . N} ; #

v a r l a m b d a s e n s o r {p i n 1 . . np , i i n 0 . . N, t i n 1 . .W} ;

v a r UAV dis tances {p i n 1 . . np , q i n 1 . . np , i i n 0 . . N} ;

Da ta f low

v a r m{p i n 1 . . np +1 , i i n 1 . . N, s i n 1 . . np , j i n 1 . . N } ;

v a r c{p i n 1 . . np +1 , q i n 1 . . np +1 , i i n 1 . . N, s i n 1 . . np , j i n 1 . . N } ;

#−−− b i n a r y v a r s

v a r b v e l {p i n 1 . . np , i i n 0 . . N, k i n 1 . . Dvel , l i n 1 . . Dvel / 2} b i n a r y ;

v a r bwp{p i n 1 . . np , i i n 0 . . N, w i n 1 . .W} b i n a r y ;

v a r b s e n s o r {p i n 1 . . np , i i n 0 . . N} b i n a r y ;

v a r bCol{p i n 1 . . np−1, q i n 2 . . np , i i n 0 . . N, row i n 1 . . 3 , c o l i n 1 . . 2 } ; # b i g M a n t i−c o l l i s i o n

v a r lambdaCon{p i n 1 . . np + 1 , q i n 1 . . np + 1 , i i n 1 . . N, d i n 1 . . Dvel , j i n 1 . . Dvel / 2 , r i n Dim} b i n a r y ;

v a r bCon{p i n 1 . . np +1 , q i n 1 . . np +1 , i i n 0 . . N} b i n a r y ;

#−−−−−−−− t e s t v a r s

v a r numberOf lambdaCon{p i n 1 . . np +1 , q i n 1 . . np +1 , i i n 1 . . N} ;

#−−−−−−−− model

o b j e c t i v e goes h e r e :

XXIII

min imize o b j e c t i v e : J f i n n i s h + J a c c ;

c o n s t r a i n t s :

i n i t i a l P o s i t i o n

s u b j e c t t o i n i t P o s 1 c o n s t r a i n t {p i n 1 . . np , r i n Dim} :

pos [p , 0 , r] = i n i t P o s [p , r] ;

Base s t a t i o n

s u b j e c t t o b a s e S t a t i o n { i i n 1 . . N, r i n Dim} :

pos [np +1 , i , r] = w a y p o i n t s [W, r] ;

s u b j e c t t o i n i t P o s 2 c o n s t r a i n t { r i n Dim} :

pos [2 , 0 , r] = i n i t P o s 2 [r] ;

#UAV model

s u b j e c t t o model{p i n 1 . . np , i i n 0 . . N−1, row i n Dim} :

pos [p , i +1 , row] = pos [p , i , row] + d e l t a t ∗ (v [p , i , row] + wind [row]) ;

v e l o c i t y c o n s t r a i n t s

s u b j e c t t o V e s t i m a t e 1 {p i n 1 . . np , i i n 0 . . N−1, k i n 1 . . Dvel , l i n 1 . . Dvel / 2 } :

V[p , i] >= v [p , i , 1] ∗ c h i x [k , l] + v [p , i , 2] ∗ c h i y [k , l] + v [p , i , 3] ∗ c h i z [k , l] ;

s u b j e c t t o V e s t i m a t e 2 {p i n 1 . . np , i i n 0 . . N−1, k i n 1 . . Dvel , l i n 1 . . Dvel / 2 } :

a l p h a v e l ∗ (v [p , i , 1] ∗ c h i x [k , l] + v [p , i , 2] ∗ c h i y [k , l] + v [p , i , 3] ∗ c h i z [k , l]) >= V[p , i] − Mvel ∗ (1 − b v e l [p , i , k , l]) ;

s u b j e c t t o V e s t i m a t e 3 {p i n 1 . . np , i i n 0 . . N−1}:

sum{k i n 1 . . Dvel , l i n 1 . . Dvel / 2 } (b v e l [p , i , k , l]) = 1 ;

s u b j e c t t o v e l o c i t y C o n s t r a i n t s M a x {p i n 1 . . np , i i n 0 . . N} :

V[p , i] <= Vmax ∗ (1 − bwp [p , i ,W]) ;

XXIV APPENDIX C. AMPL MODEL

s u b j e c t t o v e l o c i t y C o n s t r a i n t s M i n {p i n 1 . . np , i i n 0 . . N} :

V[p , i] >= Vmin ∗ (1 − bwp [p , i ,W]) ;

p o s i t i o n c o n s t r a i n t s

s u b j e c t t o posx1 {p i n 1 . . np , i i n 0 . . N} :

pos [p , i , 1] >= x min ;

s u b j e c t t o posx2 {p i n 1 . . np , i i n 0 . . N} :

pos [p , i , 1] <= x max ;

s u b j e c t t o posy1 {p i n 1 . . np , i i n 0 . . N} :

pos [p , i , 2] >= y min ;

s u b j e c t t o posy2 {p i n 1 . . np , i i n 0 . . N} :

pos [p , i , 2] <= y max ;

s u b j e c t t o posh1 {p i n 1 . . np , i i n 0 . . N} :

pos [p , i , 3] >= h min ;

s u b j e c t t o posh2 {p i n 1 . . np , i i n 0 . . N} :

pos [p , i , 3] <= h max ;

s u b j e c t t o a c c e l e r a t i o n C o n s t r a i n t 1 :

J a c c = sum{p i n 1 . . np , i i n 0 . . N−2, j i n Dim} (r w e i g h t [j] ∗ wacc [p , i , j]) ;

s u b j e c t t o a c c e l e r a t i o n C o n s t r a i n t 2 {p i n 1 . . np , i i n 0 . . N−2, j i n Dim} :

(v [p , i , j] − v [p , i +1 , j]) <= wacc [p , i , j] ;

s u b j e c t t o a c c e l e r a t i o n C o n s t r a i n t 3 {p i n 1 . . np , i i n 0 . . N−2, j i n Dim} :

−(v [p , i , j] − v [p , i +1 , j]) <= wacc [p , i , j] ;

#−−−−−− Task a s s i g n m e n t

XXV

s u b j e c t t o w a y p o i n t H i t P {p i n 1 . . np , i i n 1 . . N, w i n 1 . .W, j i n Dim} :

pos [p , i , j] − w a y p o i n t s [w, j] − dwp <= Mwp ∗ (1 − bwp [p , i ,w]) ;

s u b j e c t t o waypoin tHi tN {p i n 1 . . np , i i n 1 . . N, w i n 1 . .W, j i n Dim} :

− pos [p , i , j] + w a y p o i n t s [w, j] − dwp <= Mwp ∗ (1 − bwp [p , i ,w]) ;

s u b j e c t t o wpOnce{w i n 1 . .W−1}:

sum{p i n 1 . . np , i i n 1 . . N} (bwp [p , i ,w]) = 1 ;

s u b j e c t t o A l l T o L a s t { p i n 1 . . np } :

sum{ i i n 1 . . N} (bwp [p , i ,W]) >= 1 ;

s u b j e c t t o bS tayTrue {p i n 1 . . np , i i n 1 . . N−1, w i n 1 . .W} :

bwp [p , i +1 , W] >= bwp [p , i ,w] ;

s u b j e c t t o timeBeforeWP{w i n 1 . .W−1}:

t h e t a [w] = sum{p i n 1 . . np , i i n 1 . . N} (i ∗bwp [p , i ,w]) ;

s u b j e c t t o f i n n i s h T i m e 1 {p i n 1 . . np , i i n 0 . . N} :

t h e t a f i n n i s h [p] <= M f i n n i s h ∗ (1 − bwp [p , i ,W]) + i ∗bwp [p , i ,W] ;

s u b j e c t t o f i n n i s h T i m e 2 {p i n 1 . . np , i i n 0 . . N} :

t h e t a f i n n i s h [p] >= (i + 1) ∗ (1 − bwp [p , i ,W]) ;

s u b j e c t t o t i m e P e n n a l t y 1 {p i n 1 . . np } :

e t a f i n n i s h >= t h e t a f i n n i s h [p] ;

s u b j e c t t o t i m e P e n n a l t y 2 :

J f i n n i s h = gamma f inn i sh ∗ e t a f i n n i s h ;

XXVI APPENDIX C. AMPL MODEL

S e t r e a c t o r r e a d a b l e v a r s

s u b j e c t t o xPos{p i n 1 . . np , i i n 0 . . N} :

x [p , i] = pos [p , i , 1] ;

s u b j e c t t o yPos{p i n 1 . . np , i i n 0 . . N} :

y [p , i] = pos [p , i , 2] ;

s u b j e c t t o zPos {p i n 1 . . np , i i n 0 . . N} :

z [p , i] = pos [p , i , 3] ;

a n t i c o l l i s i o n c o n s t r a i n t s

s u b j e c t t o a n t i C o l l i s i o n X 1 {p i n 1 . . np−1, q i n p + 1 . . np , i i n 1 . . N} :

pos [p , i , 1] − pos [q , i , 1] >= dx − MCol ∗ bCol [p , q , i , 1 , 1] ;

s u b j e c t t o a n t i C o l l i s i o n X 2 {p i n 1 . . np−1, q i n p + 1 . . np , i i n 1 . . N} :

pos [p , i , 1] − pos [q , i , 1] <= MCol ∗ bCol [p , q , i , 1 , 2] − dx ;

s u b j e c t t o a n t i C o l l i s i o n Y 1 {p i n 1 . . np−1, q i n p + 1 . . np , i i n 1 . . N} :

pos [p , i , 2] − pos [q , i , 2] >= dy − MCol ∗ bCol [p , q , i , 2 , 1] ;

s u b j e c t t o a n t i C o l l i s i o n Y 2 {p i n 1 . . np−1, q i n p + 1 . . np , i i n 1 . . N} :

pos [p , i , 2] − pos [q , i , 2] <= MCol ∗ bCol [p , q , i , 2 , 2] − dy ;

s u b j e c t t o a n t i C o l l i s i o n Z 1 {p i n 1 . . np−1, q i n p + 1 . . np , i i n 1 . . N} :

pos [p , i , 3] − pos [q , i , 3] >= dz − MCol ∗ bCol [p , q , i , 3 , 1] ;

s u b j e c t t o a n t i C o l l i s i o n Z 2 {p i n 1 . . np−1, q i n p + 1 . . np , i i n 1 . . N} :

pos [p , i , 3] − pos [q , i , 3] <= MCol ∗ bCol [p , q , i , 3 , 2] − dz ;

s u b j e c t t o a n t i C o l l i s i o n S u m {p i n 1 . . np−1, q i n p + 1 . . np , i i n 1 . . N} :

sum{ row i n 1 . . 3 , c o l i n 1 . . 2 } (bCol [p , q , i , row , c o l]) <= 5 ;

Data g a t h e r i n g c o n s t r a i n t s

s u b j e c t t o g a t h e r 1 {p i n 1 . . np , i i n 1 . . N, t i n 1 . .W−1}:

l a m b d a s e n s o r [p , i , t] <= sum{k i n 1 . . i } (bwp [p , k , t]) ;

s u b j e c t t o g a t h e r 2 {p i n 1 . . np , i i n 1 . . N, t i n 1 . .W−1}:

XXVII

l a m b d a s e n s o r [p , i , t] <= sum{k i n i . . N} (bwp [p , k , t]) ;

s u b j e c t t o g a t h e r 3 {p i n 1 . . np , t i n 1 . .W−1}:

sum{ i i n 1 . . N} (l a m b d a s e n s o r [p , i , t]) = sum{ i i n 1 . . N} (i ∗ bwp [p , i , 1]) − sum{ i i n 1 . . N} ((i + 1) ∗ bwp [p , i ,W]) ;

s u b j e c t t o s e n s o r A c t i v e {p i n 1 . . np , i i n 1 . . N} :

sum{ t i n 1 . .W} (l a m b d a s e n s o r [p , i , t]) = b s e n s o r [p , i] ;

Da ta f low c o n s t r a i n t s

c o n n e c t i v i t y c o n s t r a i n t s

s u b j e c t t o connec t iv i tyLambda1X {p i n 1 . . np + 1 , q i n 1 . . np +1 , i i n 1 . . N, d i n 1 . . Dvel , l i n 1 . . Dvel / 2 } :

c h i x [d , l] ∗ (pos [p , i , 1] − pos [q , i , 1]) − Rcon <= MConDim ∗ (1 − lambdaCon [p , q , i , d , l , 1]) ;

s u b j e c t t o connec t iv i tyLambda2X {p i n 1 . . np + 1 , q i n 1 . . np +1 , i i n 1 . . N, d i n 1 . . Dvel , l i n 1 . . Dvel / 2 } :

c h i x [d , l] ∗ (pos [p , i , 1] − pos [q , i , 1]) − Rcon >= e p s i l o n + (−MConDim

− e p s i l o n) ∗ lambdaCon [p , q , i , d , l , 1] ;

s u b j e c t t o connec t iv i tyLambda1Y {p i n 1 . . np + 1 , q i n 1 . . np +1 , i i n 1 . . N, d i n 1 . . Dvel , l i n 1 . . Dvel / 2 } :

c h i y [d , l] ∗ (pos [p , i , 2] − pos [q , i , 2]) − Rcon <= MConDim ∗ (1 − lambdaCon [p , q , i , d , l , 2]) ;

s u b j e c t t o connec t iv i tyLambda2Y {p i n 1 . . np + 1 , q i n 1 . . np +1 , i i n 1 . . N, d i n 1 . . Dvel , l i n 1 . . Dvel / 2 } :

c h i y [d , l] ∗ (pos [p , i , 2] − pos [q , i , 2]) − Rcon >= e p s i l o n + (−MConDim

− e p s i l o n) ∗ lambdaCon [p , q , i , d , l , 2] ;

s u b j e c t t o c o n n e c t i v i t y L a m b d a 1 Z {p i n 1 . . np + 1 , q i n 1 . . np +1 , i i n 1 . . N, d i n 1 . . Dvel , l i n 1 . . Dvel / 2 } :

c h i z [d , l] ∗ (pos [p , i , 3] − pos [q , i , 3]) − Rcon <= MConDim ∗ (1 − lambdaCon [p , q , i , d , l , 3]) ;

s u b j e c t t o c o n n e c t i v i t y L a m b d a 2 Z {p i n 1 . . np + 1 , q i n 1 . . np +1 , i i n 1 . . N, d i n 1 . . Dvel , l i n 1 . . Dvel / 2 } :

c h i z [d , l] ∗ (pos [p , i , 3] − pos [q , i , 3]) − Rcon >= e p s i l o n + (−MConDim

− e p s i l o n) ∗ lambdaCon [p , q , i , d , l , 3] ;

XXVIII APPENDIX C. AMPL MODEL

s u b j e c t t o t e s tLambda {p i n 1 . . np + 1 , q i n 1 . . np +1 , i i n 1 . . N} :

numberOf lambdaCon [p , q , i] = sum{d i n 1 . . Dvel , l i n 1 . . Dvel / 2 , r i n Dim} (lambdaCon [p , q , i , d , l , r]) ;

s u b j e c t t o c o n n e c t i v i t y 1 {p i n 1 . . np +1 , q i n 1 . . np +1 , i i n 1 . . N} :

(3∗Dvel ∗ (Dvel / 2)) − sum{d i n 1 . . Dvel , l i n 1 . . Dvel / 2 , r i n Dim} (lambdaCon [p , q , i , d , l , r]) <= (3∗Dvel ∗ (Dvel / 2)) ∗ (1 − bCon [p , q , i]) ;

s u b j e c t t o c o n n e c t i v i t y 2 {p i n 1 . . np +1 , q i n 1 . . np +1 , i i n 1 . . N} :

(3∗Dvel ∗ (Dvel / 2)) − sum{d i n 1 . . Dvel , l i n 1 . . Dvel / 2 , r i n Dim} (lambdaCon [p , q , i , d , l , r]) >=

e p s i l o n + (− (3∗Dvel ∗ (Dvel / 2)) − e p s i l o n) ∗ bCon [p , q , i] ;

Da ta f low c o n s t r a i n t s

s u b j e c t t o dfAboveZero1 {p i n 1 . . np +1 , i i n 1 . . N, s i n 1 . . np , j i n 1 . . N } :

m[p , i , s , j] >= 0 ;

s u b j e c t t o dfAboveZero2 {p i n 1 . . np +1 , q i n 1 . . np +1 , i i n 1 . . N, s i n 1 . . np , j i n 1 . . N } :

c [p , q , i , s , j] >= 0 ;

s u b j e c t t o dfAboveZero3 {p i n 1 . . np +1 , j i n 1 . . N, i i n 1 . . j , s i n 1 . . np } :

m[p , i , s , j] = 0 ;

s u b j e c t t o dfAboveZero4 {p i n 1 . . np +1 , q i n 1 . . np +1 , j i n 1 . . N, i i n 1 . . j , s i n 1 . . np } :

c [p , q , i , s , j] = 0 ;

s u b j e c t t o t r a n s m i s s i o n 1 { s i n 1 . . np , j i n 1 . . N} :

m[s , j , s , j] = d e l t a t ∗ (c S e n s o r ∗ b s e n s o r [s , j] − sum{q i n 1 . . np +1: q != s } (c [s , q , j , s , j])) ;

s u b j e c t t o t r a n s m i s s i o n 2 {p i n 1 . . np , j i n 1 . . N, i i n j + 1 . . N, s i n 1 . . np } :

m[p , i , s , j] = m[p , i −1, s , j] + d e l t a t ∗ (sum{q i n 1 . . np +1: q != p } (c [q , p , i , s , j] − c [p , q , i , s , j])) ;

s u b j e c t t o b u f f e r S i z e {p i n 1 . . np , i i n 1 . . N} :

sum{ s i n 1 . . np , j i n 1 . . i } (m[p , i , s , j]) <= hBar ;

XXIX

s u b j e c t t o t i m e N o t G a t h e r e d {p i n 1 . . np , s i n 1 . . np , j i n 1 . . N, i i n j . . N} :

m[p , i , s , j] <= b s e n s o r [p , j] ∗ d e l t a t ∗ c S e n s o r ;

s u b j e c t t o p a s s i v e B a s e { s i n 1 . . np , q i n 1 . . np , j i n 1 . . N, i i n j . . N} :

c [np +1 , q , i , s , j] <= 0 ;

s u b j e c t t o c o n n e c t i v i t e T r a n s f e r {p i n 1 . . np , s i n 1 . . np , q i n 1 . . np +1 , j i n 1 . . N, i i n j . . N} :

c [p , q , i , s , j] <= Cmax ∗ bCon [p , q , i] ;

s u b j e c t t o c o l l e c t i v e O u t {p i n 1 . . np , i i n 1 . . N} :

sum{ q i n 1 . . np +1 , s i n 1 . . np , j i n 1 . . i : p != q } (c [p , q , i , s , j]) <= CmaxOut ;

s u b j e c t t o c o l l e c t i v e I n {p i n 1 . . np , i i n 1 . . N} :

sum{ q i n 1 . . np +1 , s i n 1 . . np , j i n 1 . . i : p != q } (c [q , p , i , s , j]) <= CmaxIn ;

Resouce c o n s t r a i n t s

s u b j e c t t o r e s o u r c e 1 :

sum{ i i n 1 . . N} (V[1 , i]) ∗ d e l t a t <= b a t t e r y 1 ;

s u b j e c t t o r e s o u r c e 2 :

sum{ i i n 1 . . N} (V[2 , i]) ∗ d e l t a t <= b a t t e r y 1 ;

	I Introduction
	Introduction
	Structure of this thesis
	Previous work
	Case
	Assumptions and scope
	The AMPE system high level overview
	Agents and modules
	External libraries and equipment

	II Methods of implementation
	Deriving a linear and non-linear model for the X-8 UAV
	Motivation
	Reference frames
	NED frame
	Body frame
	Vehicle frames

	State vector
	Kinematics
	Dynamics
	Actuators

	Nonlinear equations of motion
	Linearized equations of motion
	Trim conditions

	Concepts and terminology of deliberative control by EUROPA and T-REX
	Terminology of T-REX and Europa

	The AMPE system implementation
	Modularizing the system for hierarchical synchronous planning and execution using T-REX
	The AMPE system
	System definitions
	Agents and Teleo-reactors
	Timelines and predicates
	Implementation customized for local simulations

	Flow diagram

	The modules of the AMPE system
	Planning a crude overall mission - The upper level module using EUROPA
	EUROPA and the new domain description language
	The nddl model formulation

	Planning a crude mission path using mixed integer linear programming
	Motivation and considerations
	Convexity
	Mixed Integer Linear Programing principles and formulation
	The MILP problem formulation
	Resources constraints
	Solver algorithms
	Implementing The MILP crude path planner using AMPL, CPLEX and AMPLAPI

	Refining a system dynamics dependent path using Model Predictive Control
	Motivation
	Motivation
	Model predictive control principle
	Formulation
	MPC for UAV control
	The objective function and constraints

	The navigator module

	Handling external forces
	Optimization of path with consideration of wind
	Implemented utilities
	Europa nddl model debug-tool
	MILP model debug-tool
	MPC debug-tool
	UDP service

	III Simulations and results
	Simulations and equipment
	The mission definition
	Simulation and system parameters

	Simulating static missions
	Simulating a static mission using EUROPA
	Expanding to dynamic planning

	Simulating a static mission using MILP and data flow constraints
	Expanding to dynamic planing

	Re-planing capabilities in a static mission

	Simulating dynamic missions
	Simulating a mission with dynamic resources consumption
	Simulating a mission with dynamic node positions
	External simulator

	IV Discussion and conclusion
	Discussion
	MILP performance
	EUROPA performance
	MPC performance
	Applicability in real-time operations
	Notes on stability
	A combined system of MILP and EUROPA

	Future work
	Conclusion
	Bibliography

	V Appendix
	Appendices
	UAV model constants and parameters
	UAV linear model constants
	The X8 flying-wing parameters
	 The X8 flying-wing trim condition
	EUROPA nddl model
	AMPL model

