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SAMMENDRAG

Børshandel startes og lukkes typisk med såkalte enkeltprisauksjoner. Disse auksjonene
fungerer, for hver notert enkeltaksje, ved å samle inn ordre i en førauksjonsperiode, og
rett før kontinuerlig handel starter, utføre alle de oppsamlede ordrene på den endelige
auksjonsprisen, som er den prisen som maksimerer det omsatte volumet.
Opp til 10% av total daglig dollar-volum er omsatt under åpnings- og sluttauksjoner
i store Amerikanske børser, men likevel har de fått lite oppmerksomhet fra akademia.
For å endre på dette, har vi karakterisert de statistiske egenskapene til auksjonene i
NYSE, NYSEarca og NASDAQ ved å tilnærme oss dem som om de var systemer fra
fysikk.
Vi har fastslått, gjennom bruk av diverse statitiske tester og kurvetilpassningsmeto-
der, at fordelingen i størrelsen til individuelle handler er preget av fete haler under
auksjonene til NYSEarca, og at kvotienten mellom omsatt dollar-volum under åp-
ningsauksjoner og sluttauksjoner er lognormalfordelt for aksjene som er notert på
NYSE, NYSEarca og NASDAQ.
Ved hjelp av tidsserieregresjon har vi klart å vise at daglig omsatt dollar-volum er, til
en betydelig grad, forutsigbart for aksjer notert på NYSEarca og NASDAQ.
To regulariteter i førauksjonsperioden, altså når auksjonsdeltagerene sender inn ord-
rene sine, til NYSEarca åpningsauksjoner ble funnet: Den første viser at det totale
dollar-volumet til de kjøps- og salgsordene som er matchet vokser lineært med tiden,
for aksjene i NYSEarca. Den andre viser at den indikative auksjonsprisen, hvis rol-
le er å estimere den endelige auksjonsprisen, systematisk overestimerer den endelige
auksjonsprisen med rundt 0.05 til 0.1% mellom de 65. og 85. minuttene i førauksjons-
perioden, for NYSEarca aksjene.
Til slutt ble prisdynamikken til NYSEarcas åpningsauksjoner sin førauksjonsperioden
undersøkt. Dette ble gjort ved å anvende lineære responsfunskjoner med mål å stu-
dere hvordan nye ordre, og ordrekanselleringer, påvirker auskjonsprisen. Her ble det
oppdaget at ordre som motvirker ubalansen mellom kjøps- og salgsordre har en mye
lavere prisrespons enn de ordrene som tilfører ubalanse, at prisresponsen går mot null
når førauksjonsperioden nærmer seg slutten, og diverse andre stiliserte faktum.
Dette arbeidet har vært vellykket i å gi en oversikt i de kvantitative egenskapene
til åpnings- og sluttauksjoner til Amerikanske børser, og gjennom dette åpnet veien
videre for mer detaljerte undersøkelser.



SUMMARY

Major stock exchanges typically open and close by employing so-called single-price
auctions. The auctions work, for each noted stock, by gathering orders through a
pre-auction period, and just before continuous trading begins, execute the orders at
the final auction price, which is the price that maximises the volume traded.
The opening and closing auctions of major U.S. stock exchanges account for up to
10% of total daily trading dollar-volume, yet they have received little attention from
the academic community. To amend this, we characterised the statistical properties
of the auctions of NYSE, NYSEarca and NASDAQ by approaching them as physical
systems.
Using various statistical fitting and testing methods, it was established that the dis-
tribution in sizes of individual trades matched at the NYSEarca opening & closing
auctions are heavy-tailed, and that the ratio of daily dollar-volume between opening
and closing auctions is log-normally distributed for the stocks of NYSE, NYSEarca
and NASDAQ.
Next, time-regressive methods were used to show that the auctions’ daily dollar-
volume is predictable to a significant extent for the stocks of NYSEarca and NASDAQ.
Afterwards, two regularities in the pre-auction period, which is when the auction
participants send in their orders, of NYSEarca opening auctions were found: Firstly,
the dollar-volume of the buy & sell orders matched with each other exhibits linear
growth as a function of time for the stocks of NYSEarca. Secondly, the indicative
price of the auction, which functions as an estimate for the final price of the auction,
is shown to systematically over-estimate the final price by 0.05-0.1% between the 65th
and 85th minutes of the pre-auction period for the stocks of NYSEarca.
Finally, the price dynamics of the pre-auction period of NYSEarca opening auctions
were investigated by using linear response functions to study the effect new orders,
and order cancellation, have on the auction price. Here it was found that orders which
contribute to the current imbalance (between buy and sell orders) cause a much larger
price response than orders which counteract the imbalance, that the price response of
all order types tend to zero as the pre-auction period nears its end, and other stylised
facts.
This work has successfully produced an overview of the quantitative properties of the
opening and closing auctions of U.S. stock exchanges, and also outlined the way for
more in-depth investigations into the opening and closing auctions.
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Finally, I would like to thank Prof. Challet, my supervisor, for taking me in and
spending his time and energy on supervising me; I learned a great deal from him. I
am also grateful for the warm welcome I received at the Laboratoire MICS of École
CentraleSupélec and for the discussions I partook in with the researchers and Ph.D.
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NOMENCLATURE

Abbreviations

RMSE Root Mean Square Error

MO Matched Order

IMP Indicative Matching Price

FMP Final Matching Price

SF Survival Function, also known as Complementary Cumulative Distribution
Function

ETF Exchange Traded Fund

RV Random Variable

SE Standard Error

Notation

Subscripts are used to denote the coordinates of a variable.

Superscripts are used to label a variable’s origin or type.

Ignoring tend When the timestamp of a variable is t = tend, meaning the variable lives
at the end of an auction, the timestamp is often discarded out of convenience.

Square Brackets [] are used to denote arguments to discrete functions and round
brackets for continuous functions. In other words, p[t] is a time-series, while
p(t) is a continuous function of t.

Angular Brackets 〈〉 represent the mean/average of some set of numbers.

Symbols

(s, d, a, t) Stock (which in this report can refer to any security traded on a stock
exchange), date, auction type and timestamp, respectively. These are the
coordinates of an auction.

D Denotes the statistical distribution (random or empirical) of a variable.
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mk
s,d,a The dollar-volume of the k-th order matched during the auction (s, d, a).

{mk
s,d,a : ∀k} The set of dollar-volumes of all the orders matched during the auction

(s, d, a).

{mk
s,d,a : ∀k∀d} The set of dollar-volumes of all the orders matched for stock s during

auction type a.

Dms,a
The empirical statistical distribution of the MO dollar-volumes of stock s for
auction type a that resulted from aggregating across all d, k available in data
(notice the missing d, k).

vs,d,a The daily MO dollar-volume of auction (s, d, a).

{vs,d,a : ∀d} The set of all daily dollar-volumes for stock s for auction-type a.

Dvs,a
The empirical statistical distribution of the daily MO dollar-volumes of stock
s during auction type a that resulted from aggregating across all d available in
data (notice the missing d).

vs,d,open

vs,d,close
The ratio between opening auction and closing auction daily MO dollar-

volumes.

D vs,open

vs,close

The empirical statistical distribution of the ratio between opening auction

and closing auction daily dollar-volumes aggregated across d for stock s.

ps,d,a The final matching price of auction (s, d, a).

ps,d,a,t The indicative matching price at time t during auction (s, d, a).

is,d,a,t The total imbalance between all active sell and buy orders at time t during
auction (s, d, a).

vs,d,a,t Total MO dollar-volume during auction (s, d, a) at auction-time t.
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Chapter 1

INTRODUCTION

Firstly, the field of my project is motivated, then the system I have chose to work on
is presented and finally the goals of the project are defined.

The language used in this thesis is geared towards physicists, thus the finance jargon
is kept to a minimum. To this end, the equity securities of both publicly traded cor-
porations as well as exchange-traded funds (ETFs) are referred to simply as "stocks"
in this thesis.

1.1 Motivation

My Master thesis is in applied physics, yet during this work I studied a system from
finance. But this is not as surprising as might first seem, because the main benefits
of an education in physics is that it teaches one to think about and understand phe-
nomena not only from physics, but also in fields that bear similarity to physics. And
finance is one such field.

There exist strong parallels between the study of financial and physical systems. In
1900 the French mathematician Louis Bachelier postulated that the price of stocks,
i.e. ownership shares of public1 companies, were perturbed, or "knocked around", by
news and events such that their price at a time t was independent of any previous
time t′ < t, and further that these perturbations were normally distributed. This
amounts to a random walk in the price dimension. Half a century later, this no-
tion of stocks moving in memoryless random walks turned into a fundamental axiom
of modern finance [2] and had profound influence on the Efficient Market Hypothe-
sis (EMH), a widely accepted theory among financial economists which claims that
financial products (e.g. stocks) are almost always optimally priced. It is also the
foundation under a great deal of financial models. Around the same time, in 1905,
Einstein explained Brownian Motion with the same mathematics; Brownian particles
were similarly driven into normally-distributed perturbations and a random walk in 3
spatial dimensions, but this time they were "knocked around" by molecules surround-
ing them instead of stock-market news. This work ended up helping firmly establish
the atomic theory of matter.

1Companies noted on stock exchanges.
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What is interesting here is that both Bachelier and Einstein understood and modelled
their systems in quite analogous ways, despite them operating in two completely sep-
arate fields. Now, this of course does not mean that these two systems are identical
in behaviour or that models from physics can be liberally applied to finance, but this
story does illustrate one of the many parallels between physical and financial systems.

Quantitative finance is the subfield of finance that studies financial systems through
mathematics. In many ways, quantitative finance is surprisingly analogous to physics,
and therefore many physicists have been attracted to this field; indeed, it is the work
done by physicists here that is popularly referred to as "econophysics". This research
can be everything from physicists reusing approaches of statistical mechanics to ex-
ploring data with the goal of understanding how financial systems work.

1.2 Opening and Closing Auctions

This investigation deals with stock exchange behaviour. Because of the dynamic
nature of financial markets and the multitude of different, complex agents with var-
ious strategies interacting inside it, stock exchanges can be considered to be non-
equilibrium systems made up of heterogeneous, imperfect participants; they could
be human or machine, long-term or shot-term focused, highly rational or completely
emotional, skilled or incompetent, an insider or an amateur; the broadness of the
range of participants is difficult to overstate. In addition, every individual stock can
by itself be considered as a sub-system of the stock exchange which interacts with
many other assets, and stock exchanges themselves can be seen as sub-systems of the
global market, the grand system that encompasses all economic activity on earth.

Stock exchanges are businesses and so their goal is to create the best environment
possible for their clients, the traders/investors. The traders require two central prop-
erties from the exchange; sufficient liquidity, which is its ability to absorb trading
orders, and a fair price for the trade(s) they want to carry out, namely a so-called
equilibrium price/market price. During the open trading sessions, this is achieved
through continuous "auctioning"2, where traders who wish to sell are matched with
those who wish to buy in a highly efficient manner, and the execution of the trade
is immediate upon a match. But trading is not continuous around the clock; the
stock-exchanges are closed during nights, weekends and holidays.

The periods around the opening and closing of exchanges requires special treatment.
Right before an exchange is closed for the day, trading activity may become unstable,
as many traders wait with carrying out their trades until the final minutes, for a
variety of reasons [13]. This can cause buy/sell imbalance, price instability, liquidity
shocks and favourable conditions for price manipulation; which both hurts the avail-
ability of liquidity towards the end, and creates uncertainty in the values of various
external financial products that use the closing prices as reference prices. When the
stock exchanges close, the stock prices are freezed but the world moves on; by the time
the stock exchange opens, the previous closing price has become largely irrelevant due
to the arrival of new information, and so every stock price has to undergo a new price

2From now on I will refer to it as simply continuous trading
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discovery process (which cannot be continuous trading, as that would lead to price
instability, and hence a lack of liquidity until the equilibrium price is found). To solve
these issues, stock exchanges employ auctions3 to open and close their open-market
trading [16] in a smooth way.

While the precise rules and regulations for the auctions vary between exchanges,
the general principles behind them remain the same. They essentially work by allow-
ing individual traders to place various types of buy/sell orders, e.g. limit orders and
market orders (which are defined in section 3.1.1), within the pre-auction period, with
the promise that they will get the best price possible on their trade at the conclusion
of the auction. This price is found through algorithms that take into account the
supply & demand, and then at the conclusion of the auction, all compatible orders
are matched and carried carried out at this price, the final market-price of the auction.

The behaviour of stocks during open trading has been extensively explored in academia,
but, surprisingly, not their behaviour during auctions; there is in fact very little in
the literature on the statistics of auctions. This is a peculiar situation as the auctions
make up around 2-10% of the total dollar-volume traded on major U.S. stock ex-
changes [1]. Therefore we decided to study the statistical regularities of stocks during
auctions at three very large exchanges: NYSE, NYSEarca and NASDAQ. Our data
originated from Thomson Reuters Tick History.

Auctions exhibit complex dynamics as they take place, but the result at their conclu-
sion is always that a range of buy and sell orders of various sizes4 are matched and
exchanged at a final match price. Thus the distribution in the size of these matched
orders (MOs) along with the final price are the two features that largely define the
outcome of every auction. Therefore this project revolved around investigating the
price-finding process and the properties of the MOs. Before speaking more on this
though, let us first describe the auction process in a more mathematical manner.

1.3 Describing Auctions Mathematically

This section will mathematically define the auction process, introduce the most im-
portant quantities of the auctions, and establish a notational precedent which will be
used throughout this thesis.

1.3.1 Denoting an Auction

The auction-process takes place for every combination of stock s and trading date
d, and its type a can be one of two kinds; opening auction or closing auction, thus
a ∈ {open,close}. Every stock is part of an exchange, i.e. s ∈ SE where SE repre-
sents all the stocks listed on the exchange E. In this project, there was data available
on NYSE, NYSEarca and NASDAQ, so E ∈ {NYSE, NYSEarca, NASDAQ}.

3For the record, they are formally called "single-price auctions", as all the orders matched during
the auction are carried out at a single price, the so-called final matching price of the auction.

4With the size of a
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Thus it is natural to represent an auction of type a for stock s that took place
during day d as (s, d, a, t), with t representing the auction’s temporal dimension. The
so-called pre-auction period takes place during t ∈ [tstart, tend〉, and at t = tend the
auction is concluded. Throughout this thesis, auctions will often be denoted as simply
(s, d, a), with t being added only when the auction’s temporal properties are relevant.

1.3.2 Auction Variables

At the conclusion of an auction, ns,d,a,tend
MOs are executed, with each of these MO

being representable by an element in some set {m1
s,d,a,tend

, m2
s,d,a,tend

, .., m
ns,d,a,tend

s,d,a,tend
}. The

elements mk
s,d,a,tend

themselves represent the size of the matched orders (MOs) in terms
of dollar-volume. This dollar-volume is equal to the volume/turnover multiplied by
the final matching price of the auction:

mk
s,d,a,tend

≡ qk
s,d,a,tend

ps,d,a,tend
(1.1)

When ps,d,t : t < tend, the price is called the indicative matching price of the auction.
Furthermore, because all the buy orders are matched with sell orders, the elements
of every set of MOs {mk

s,d,a,tend
: ∀k} are interrelated with each other through the

following manner:










mk
s,d,a,tend

:
∑

k∈O
Buy

s,d,a,tend

mk
s,d,a,tend

=
∑

k∈OSell
s,d,a,tend

mk
s,d,a,tend











(1.2)

Where O
Buy
s,d,a,tend

and O
Sell
s,d,a,tend

are the lists of buy and sell orders that were matched
at the conclusion of the auction (s, d, a, tend). In other words, the MOs mk

s,d,a are not
independent of each other.

For convenience, t will from now on often be dropped from the variables’ subscripts
if t = tend, i.e. if the variable is at the end of the auction.

Moving on, the aforementioned set {mk
s,d,a : ∀k} is distributed according to an em-

pirical density Dms,d,a
. It turns out that one can think of this empirical density as

the realisation of a probability distribution, and as a consequences qk
s,d,a, ns,d,a,tend

and
other empirical quantities are also realisations of random variables (RVs). In other
words, the empirical density Dmk

s,d,a
can be considered to be a realisation of a proba-

bility distribution D
Mk

s,d,a
, and thus mk

s,d,a is a realisation of some RV Mk
s,d,a ∼ D

Mk
s,d,a

.
RVs are denoted with a capitalised version of their observables’ letter.

Thus from equation (1.1) it follows that Mk
s,d,a can be represented as the product

of the RV of the volume of the k-th MO, Qk
s,d,a, and the RV representing the final

match price Ps,d,a:
Mk

s,d,a ≡ Qk
s,d,aPs,d,a (1.3)

Another quantity of interest is the sum of the individual MOs:

vs,d,a ≡
ns,d,a
∑

k=1

mk
s,d,a (1.4)
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which will from now on be denoted as the daily MO dollar-volume vs,d,a of the auc-
tion (s, d, a). Analogously to the previous definitions, its RV cousin is denoted by
Vs,d,a ∼ DVs,d,a

.

The variables above characterise the end of the auction, i.e. their t = tend, but
the notational precedent is extended in a straight-forward way for the pre-auction
times t ∈ [tstart, tend〉. For instance, the daily MO dollar-volume currently matched
at time t during the pre-auction period is simply denoted by vs,d,a,t, and its RV cousin
by Vs,d,a,t. And so on so forth for the other variables.

1.3.3 The Auction Process

In formal terms, stock exchanges use so-called single-price auctions/call auctions to
find appropriate opening and closing prices. Roughly speaking, the auction-processes
can typically be divided into three parts; the pre-auction period, the freeze period
and the execution period. During the pre-auction period, traders submit orders to
buy or sell given quantities of shares of certain stocks, and at the same time market
information is disseminated by the stock exchange; one such piece of disseminated
information is the indicative matching price, which is supposed to estimate the final
matching price. During the freeze period, which takes places during the final seconds,
traders are no longer allowed to modify or cancel their orders, and the only new or-
ders that can be entered are those that counteract any buy/sell imbalance present
between the market orders. Finally, during the execution, the final matching price is
calculated and all eligible orders are matched at said price.

The precise rules and mechanisms vary between stock exchange, but they are all
tâtonnement processes, meaning process that find an equilibrium price that max-
imises the exchange of stocks. In other words, the goal of the auction-process is to
always find a final matching price ps,d,a,tend

that maximises the daily MO dollar-volume
vs,d,a,tend

at the conclusion of every auction (s, d, a). Section 3.1.3 describes the auction
process of NYSEarca in detail, and in addition outlines those of NYSE and NASDAQ.

1.4 Goals of Research

When faced with a new system, it is often a good idea to start by characterising
the properties of its basic components. In finance, this often means classifying its
statistical properties, and so we studied the distribution of MOs at both order-by-order
and auction-by-auction scales, and looked for patterns in the pre-auction dynamics.
The specific goals of this work are presented here.

1.4.1 Properties of Individual Auctions

Firstly the properties of the auctions for individual days were explored. As previously
mentioned, the distribution of the MO dollar-volumes (along with the final matching
price) define the outcome of auctions, and so the investigation was centred around
Dms,d,a

.

At the very beginning, Dms,d,a
appeared to be power-law distributed, or at least
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heavy-tailed, which is interesting because many quantities in finance are known to
be heavy-tailed (in particular daily volume, price returns, individual order sizes, etc.)
[45]. Thus the investigation started by investigating the tail properties of Dms,d,a

.

Questions to be Investigated:

1. Is Dms,d,a
heavy-tailed, and if so, power-law distributed?

2. What can be said on the statistical features of Dms,d,a
?

The approach will be to systematically fit power-laws and other heavy-tailed distri-
butions to the tails of Dms,d,a

, and use the results to uncover the statistical features
of Dms,d,a

.

1.4.2 Aggregate Properties of the Auctions

The aggregate behaviour, i.e. over long time ranges5, of the auctions were explored
by studying the behaviour of the daily MO dollar-volume vs,d,a. Preliminarily, due
to the relation defined by equation (1.4), it was checked whether one could expect to
infer important properties of Dvs,d,a

when knowing the behaviour of Dms,d,a
. Further,

it turned out that D vs,d,open

vs,d,close

appeared to be log-normally distributed and vs,a[d] was

to some extent predictable; both of these qualities were investigated in detail.

Square brackets instead of subscripts will be used when emphasising one of the pa-
rameters of a discrete function. For example, vs,d,a will be written as vs,a[d] ≡ vs,d,a

below to emphasise that its time-evolution across d is of interest.

Questions to be Investigated:

1. What properties of Dvs,d,a
can be inferred from the properties of Dms,d,a

?

2. Is vs,d,open

vs,d,close
log-normally distributed?

3. Further, what can be said concerning the statistical properties of vs,d,open

vs,d,close
?

4. Is the time-evolution of vs,a[d] predictable?

The first point will be resolved by a theoretical treatment, while the second and
third points will be studied by systematically fitting log-normal distributions. The
last question will be resolved by applying various regressive forecasting algorithms on
vs,a[d].

1.4.3 Pre-auction Dynamics

Finally, the dynamics of the pre-auction phase were investigated. Firstly, to gain an
overview, the available pre-auction data was systematically checked for any regulari-
ties across time. Further, one of the premier concerns of large investors is minimising

5Aggregate properties here means "properties of the whole system". When this the term is used
with regards to with sets, it is meant combining smaller sets into larger ones.
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their market impact6, and so it was of interest to investigate how buy/sell orders shift
the stock prices of the auction; this was done by studying the so-called price response
function.

Questions to be Investigated:

1. Are there any statistical regularities present in the pre-auction period?

2. What is the price response of individual orders?

The simplest way of investigating market impact [36] is by measuring the price re-
sponse. To this end, multiple price response functions were defined and applied on
the data to measure the the average shift in price due to a new order, conditioned on
the type of order. This was done both for the indicative matching price, and much
more importantly, the final matching price.

6The market impact of a trade on a stock is the change in price it induces; because it makes
trading more expensive, it is in the interest of all traders, with the exception of price manipulators,
to minimise their market impacts.
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Chapter 2

BACKGROUND

This chapter will give an overlook of finance. In particular, different approaches to
financial modelling and analysis will be discussed.

2.1 Basics of Finance

Finance is the science of money and investing. Money is fundamentally a tool for fa-
cilitating trade, i.e. buying and selling of products, such as financial products. These
financial products can be everything from stocks, bonds1, derivatives 2 to commodities
3 to nice cars and real estate, and so on. Whatever the product, the goal is the same:
maximise the the expected profit, and control its risk 4. This is the core of finance,
but there is also the matter of actually carrying out these transactions.

Financial transactions can in principle be carried out in person between two par-
ties who are in agreement and shake hands, but this is not how it is typically done
today (though sometimes this is necessary, like when property changes hands or dur-
ing the acquisition of a company). This because it is comparatively very inefficient
for an agent to personally find a buyer or seller, when there exist financial markets
with well-programmed computers that can efficiently and fairly do this job instead
(for a small price). This is called matchmaking and it is perhaps the most important
role of a market.

Financial assets are often traded through exchanges. Each exchange specialises in
a given type of asset, with the best known being stock exchanges (which trade in
stocks and related equities) and foreign currency exchanges (FOREX).

Due to the enormous sums of money traded on stock exchanges every date, where

1This type of security entitles the holder to, at a pre-defined point in time, a debt repayment
from the issuer of the bond.

2A "derivative", depending on its nature, either obliges or entitles the holder to a certain action.
They are essentially either used to bet on the performance of other securities or products, or to
"hedge" an investment, i.e. decrease its risk.

3An item sold to satisfy a need. E.g. Ammonia sold to a fertiliser-producing company.
4In finance, an investment’s risk is typically defined as the uncertainty of the return in said

investment.
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it is not uncommon that single stocks have daily volumes5 in the order of billions
of dollars [4], much effort has been made to study their behaviour. In particular,
predictability is a central question. If a trader is able to identify a predictable pattern
in the market price fluctuations of a stock, he might be able to carry out trades on
this stock that allows him to profit. In fact, finding these patterns is the job of many
physicists, mathematicians and engineers today working in (and sometimes owning)
hedge funds and banks. In finance jargon these patterns are commonly referred to as
market inefficiencies, because they are deviations from what otherwise would be an
Efficient Market, as per the notorious Efficient Market Hypothesis (EMH).

The Efficient Market Hypothesis essentially says that markets are efficient if they
reflect all available information, with there being three categories, or forms, of "all
available information". These forms are ordered by the strength of the efficiency,
and each weaker form is implicit in all stronger forms. In strong-form efficiency,
markets price everything perfectly because all information available to humanity is
flawlessly employed to price each financial product. In semi-strong-form efficiency,
prices completely reflect all publicly available information (meaning all information
except insider-information). In weak-form efficiency, prices reflect all previously avail-
able price-information , which means no autocorrelation in price exists and thus future
prices cannot be predicted from past ones; in other words, weak-form efficiency im-
plies that price movement has no memory and hence moves in some kind of random
walk, which is in-line with Bachelier’s original 1900 model.

The strong-form expression of the EMH has a strong consequence. Because all infor-
mation Ω(t) at time t is available to the N rational and intelligent traders of security
s, the fundamental price6 p∗

s(t) at time t is in fact in the limit of N → ∞ defined by
the expectation value of traders’ best guess at p∗

s(t), which can be considered as a RV
Ps(t):

p∗
s(t) = lim

N→∞
E[Ps(t)|Ω(t)] (2.1)

This presents a very convenient and simple way to look at things - just put your
faith in strong-form market efficiency and you can be safe that whenever you trade
anything on the stock market you are getting a fair price. Also known as the market
is always right, trust the market, and if you subscribe to neoclassical economics, do
as the market commands.

2.2 The Challenge of Financial Markets

These opportunities, market inefficiencies, are far from easy to find however, because
every trader is looking for them, and when one is found, it can be mathematically
shown that exploiting it removes it. This tendency to hunt for inefficiencies leads to
financial markets exhibiting extremely complicated behaviour. Take the BP stock on
the London Stock Exchange for instance, which is traded in the order of billions of
GBP every day. A large and heterogeneous mix of agents, which includes everyone
from small-time investors to robots, perform many different trades on both this stock

5In finance, volume either refers to the raw number of shares traded or their value, depending on
the context.

6The "fundamental price" of a stock defines the real value of the company at the current time.
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and the multitude of derivatives stemming from it, with strategies that are based on
not only on impressions of how BP itself is doing, but also on what the other agents
in the market are doing and on how they might react to other agents’ strategies. The
trading of this stock alone is thus a hugely complex, chaotic non-equilibrium system
with nonlinear feedback loops, many time scales, disordered interactions and hetero-
geneous and learning agents.

What kind of rich behaviour can we observe from such a system? A financial system’s
state is said to be in equilibrium when none of the agents can increase his utility7 by
changing his strategy, in other words when the agents exist in a Nash-equilibrium 8.
Nash-Equilibrium is an implicit assumption in the EMH, but real markets are clearly
out of equilibrium whenever emotions take over, such as when emotions drive traders
to start herding [7], i.e. changing their strategy in response to others changing theirs
(also known as peer-pressure). The interaction between traders, and even their own
thought processes, are clearly nonlinear due to emotions alone, and this gives rise to
many nonlinear feedback loops that can result in all manners of collective phenomena,
such as panics and even what has been described by physicists as phase changes.

The inherent instability present in markets has been studied extensively in the litera-
ture. For example, in 2003 D. Challet and M. Marsili [25] used minority games models
and statistical mechanics to explain a possible origin. They produced a market model
which exist in two phases, one where the prices are predictable and one where they
are not, and showed that completely unpredictable prices lead to market instability.
A later example is Patzelt & Pawelzik’s 2013 paper [8], where they show in a generic
way that perfectly learning markets, equivalent to perfectly unpredictable markets,
must be highly volatile9.

2.3 Methodologies of Physicists and Economists

The ultimate way of understanding and capturing the behaviour of a system is by cre-
ating a model of it, and in finance there are two important paradigms for doing that;
financial economics and econophysics. The former evolved from classical economics,
while the latter can trace it roots in statistical physics.

Modelling is a central part of physics. When a physicist attempts to create a model,
the first step is to observe a phenomena and look for patterns, the second is to identify,
or at least guess, the causes and effects, the third is to put this into a mathematical
framework, and finally use the tentative model to create predictions and find a way to
test them. If the last point turns out good then a phenomena is successfully classified,
and if not then it is time to try again. In my opinion, two ingredients in particular
makes this approach useful across fields: Firstly, the aforementioned phenomena do
not need to be within the realm of physics, or even the natural sciences, they just
need to be measurable, which is precisely the case with much of finance. Secondly,
physicists model systems from the "ground up"; meaning, if no established theory

7In finance, an agent’s utility represents his level of satisfaction.
8Meaning no agent has an incentive to change their strategy, in this case buy/sell the stock
9High volatility means large fluctuations in price.
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exists, they create their models on the basis of the empirical behaviour of a system,
and only then try to formulate the theory. This latter point is an important one,
because economists often do the opposite.

Finance was, and to a certain extent still is, dominated by economists with a way
of modelling that is very different from that of physicists. Economists are typically
more concerned with deriving mathematically elegant models based on idealised first
principles borne out of economical frameworks such as microeconomics and beliefs
such as the EMH. Essentially, they derive mathematical models from what they con-
sider truth, analogous to how mathematicians derive results from axioms. Physicists
on the other hand tend to focus on creating models that are able to reproduce em-
pirical results to the greatest possible extent, rather than caring whether they fit into
any idealised frameworks or are mathematically elegant. In other words, the main
goal for a physicist is to understand her systems, with models being a powerful tool
for doing this, while an economist focuses on producing models that are already based
on a pre-defined set of beliefs of how her system works.

Let us have a closer look both methodologies, starting with the one that was ap-
plied to finance first.

2.4 Classical Financial Economics

In essence, financial economics is the extension of microeconomics and the decision
theory of rational agents to financial markets.

Modelling in financial economics is based on predefined first principles. Typically,
financial models are created so that they exist in so-called "worlds" approximating
reality. First postulates concerning the behaviour of the agents in the system are
formulated, then the rules of how the system is supposed to work are outlined, and
finally, based on these first principles, a model is derived. Some first principles are so
often used that they have even become axioms of financial economics, the most promi-
nent of which are rationality of agents and the efficient market hypothesis. The first
entails that every agent in the financial market always seeks to maximise his profit
over his individual time scale, market efficiency entails that every one of these agents
consistently take into account all available information before carrying out any trans-
action and are in nash-equilibrium with each other. Some first principles have become
so powerful and ingrained that they even form the basis of whole economic schools of
thoughts. An example of this is the "invisible hand of the market" principle which is
the basis of neoclassical economics. It states that when all the agents of the market
are in collective pursuit of profit, they end up doing what is best for society as a whole.

Take the case of the BP stock. Classical finance attacks the problem of modelling
it by using first principles assumptions to create theoretical models that can capture
aspects of the system’s behaviour. To illustrate, consider the following two models
taken from financial economists; The Capital Asset Pricing Model (CAPM) and the
Black-Scholes model. The Capital Asset Pricing Model was introduced in the 1960s
and is used to decide on whether buying a stock or not is a rational choice. What is
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considered a "fair price" for the European-style put/call options10 based on the un-
derlying stock can be calculated with the famous Black-Scholes model, introduced in
1974. Both of these models resulted in Nobel Prizes in economics.

The CAPM lives in a world mainly described by the following first principles: The
stock’s price is defined by a normally distributed random walk (as proposed by Bache-
lier in his original work), all market conditions, except linear growth in returns 11,
remain constant, and all agents are risk-averse and in equilibrium. Its purpose is to
calculate the appropriate return over some period of time a risk-averse investor should
demand from the market given the risk he takes. The equation behind the model is:

E[Ri] − rf = (E[Rm] − rf )
(

σi

σm

)2

(2.2)

Here Ri is the RV denoting the (risky) rate of return of the stock (i for investment),
rf is a constant denoting the risk-free rate, Rm is the RV denoting the (risky) rate of
return of the market portfolio and σi, σm are the observed standard deviations of the
stock and market portfolio, respectively.

Figure 2.1: An illustration of the CAPM. βi ≡ σi

σm
. (Augment Systems Pvt. Ltd)

The most important assumptions in the Black-Scholes world are perfect markets12,
existence of a risk-free interest rate and that the price of the underlying stock goes as
a geometric random walk (which is a correction of Bachelier’s earlier model). Using
these assumptions (along with a few other standard ones from economical finance), it
can be shown that the fair price V for a European call/put option on an underlying
stock without dividends is found from:

∂Vi

∂t
+

1
2

σ2
i p2

i

∂2Vi

∂2pi

= rfV − rfpi
∂Vi

∂pi

(2.3)

10Depending on the type of option, a trader who owns an option has the right to sell/buy the
underlying security for a certain price at, or until, a certain date.

11The return rs(t, t0) of stock s between some initial time t0 and current time t denotes its relative

growth (or fall) in price ps in said time period: rs(t, t0) = ps(t)
ps(t0)

12Perfect markets are completely efficient, have limitless liquidity, zero transaction costs and one
can even trade fractions of stocks on them.
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Where pi = pi(t) is the price of the underlying stock at time t and σi is the standard
deviation of the stock.

Both of these models can be applied to the BP stock example, and are indeed actively
used in real trading. However, the CAPM is so simplified that it can at most be
used as a "back of the envelope" calculation to check whether an investment is worth
considering. The Black-Scholes model has uses in estimating the prices of options
when its serious limitations and known discrepancies (e.g. the option smile) are taken
into account and patched up [6].

This first-principles approach dominates financial economics, but it has serious flaws.
The worlds the financial economists create are far too simple and rosy, with particu-
larly the central assumptions of rational agents and efficient markets being dubious;
the claim that trading agents are rational and unemotional profit-generating machines
falls on its own unreasonableness, and the notion of efficient markets, which has even
been elevated to worrying heights by many economists [9], forbid the existence of
phenomena that are known to happen, such as financial bubbles13. Unrealistic as-
sumptions like these lead to models that are strongly limited, yet mathematically
elegant and simple and thus convenient to believe in and use.

A main limitation of these models is that they neglect the existence of extreme price
movements and, as previously mentioned, financial bubbles, yet this is often ignored
by their users. A consequence of this is that when these models are used to price
products which are already radically mispriced, the market can become unstable and
crash. This was the case with the Black-Scholes model and its effect on the Octo-
ber 1987 crash, and the models used to price the sub-prime mortgage packages that
helped trigger the 2007-2008 financial crisis [5].

While this might sound grim, it is not meant to discount economical finance and
least of all economics. Economics have met success elsewhere, such as in the study of
optimal resource allocation and in creating an intuitive understanding of how most
aspects of an economy functions. Many (but not all, as exemplified by the insistence of
Fama on the infallibility of the EMH), economists are also empirically-minded enough
to accept the serious limitations of the models they use in finance. The point I was
trying to make in this section is that economical thinking has it limits and that it
can benefit from exchange of thoughts with other fields, most prominently of which
is physics.

2.5 Econophysics

Physicists do things differently. The insistence of economists to build models that are
mathematically elegant and based on highly idealised worlds is in stark contrast to
the empirical, data-driven, approach employed physics, where a model is only as good
as the validity of its predictions, regardless of how elegant it is. This lack of empirical
attitude among economists, increased competitiveness within theoretical physics and
the many exciting properties of economical systems has over the years led to physicists

13Trade in assets that are vastly overpriced.
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migrating into quantitative finance and creating a new academic field, econophysics.
It is worth noting that physicists are not just active in academic finance. Many are
paid ample sums by investment banks so that they can use their education to search
the market for inefficiencies that can be exploited by the bank’s traders, or to control
the risk of investments. The research physicists do in industry is however confidential,
so I will only talk about the results from academia.

Econophysics applies the thinking of physics to topics of finance. This includes the
aforementioned empirical and "ground up" methodology of physics as well as their
analytical techniques. One such technique is random matrix theory (RMT), which
was first used in nuclear physics to create statistical models of the energy spectrums
of large nuclei, and is now similarly used in finance to remove risk from large port-
folios14. Another prominent example of physics expertise applied to finance is the
proliferation of power-laws and heavy-tails in finance. Let us talk about these two
achievements.

In the 1950s physicists were scattering neutrons of heavy nuclei, and it was observed
that the neutron scattering cross section as a function of neutron energy for each
nucleus had distinct peaks that were orders of magnitude above everything around
them - see figure 2.2.

Figure 2.2: The total interaction cross-section for neutrons scattered on U-235 versus
neutron energy. Note the resonance peaks. (Kayle& Laby, Ch. 4.7)

Accurately modelling the spectrums of these heavy nuclei from the ground up through
quantum mechanics and electrodynamics was (and still is) an insurmountable chal-
lenge due to the extreme complexity of their internal structures. The case was not
hopeless though; general statistical patterns were observed in the spectra of the heavy
nuclei. Eugene Wigner saw this and he reasoned that while it is impossible to analyt-
ically calculate the resonance energies, one could treat the extremely complex system

14In finance, a portfolio refers to the ownership of a set of weighted securities.
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that is the nuclei as a black box which generates energy spectra according to a certain
kind of statistics. This black box system would have to be characterised by some
kind of Hamiltonian which permitted the existence of all types of nuclei while simul-
taneously being restricted by the universal laws of quantum mechanics (in particular
hermiticity), and Wigner indeed found such a Hamiltonian; in matrix form. The struc-
ture of Wigner’s matrix reflected the laws of physics, while its entries were RVs that
represented possible nuclear structures. Thus, calculating the statistical distribution
of its eigenvalues would give the probability distribution ρ(s) of the nearest-neighbour
spacing s between the resonance peaks, known as the Wigner Surmise:

ρ(s) ∼ se−π/4)s2

(2.4)

This is a successful statistical model that has been empirically verified for isolated
peaks, and the mathematics Wigner created to do all of this came to be known
as random matrix theory. See figure 2.3 as an illustration; in particular, note the
accuracy of the prediction, and more importantly the fact that the empirical spacing
distribution is universal, which means it does not depend on the nuclei.

Figure 2.3: The Wigner Surmise superimposed on a histogram of 1407 empirical
spacings of isolated resonance peaks taken from a host of different nuclei. (M. Mehta,
Random Matrices 2004, Fig 1.4 )

Stock portfolios, which can be worth $ billions, are generally created with the goal of
minimising un-systematic15 risk. This correlation between all stocks i, j ∈ {1, 2, .., N}

15Risk that that is not a result of market fluctuations, but due to correlations in the price-
movements of the stocks in the portfolio.
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making up a portfolio of N stocks can be represented by a correlation matrix C with
elements:

Ci,j =
〈xixj〉 − 〈xi〉〈xj〉

σiσj

(2.5)

where xi[t]is the time-series of price changes of the stock i and σi is its standard
deviation. The expected return RP of this portfolio is defined as weighted sum
of the individual expected returns Ri multiplied by the money invested into them,
RP =

∑N
i=1 wiRi, and its risk is often expressed as the variance σ2

P =
∑N

i=1 wiCi,jwj.
The optimal portfolio then becomes the one that minimises σ2

P for any given RP given
the set of N stocks available, and doing this is a standard linear problem.

Finding a reliable empirical determination of C is very difficult though, and this
is where RMT comes into the picture. Using principle values analysis, it can be
shown that the eigenvector and eigenvalue pairs of C represent different classes of
risk, with the eigenvectors with the smallest eigenvalues being heavily favoured by a
risk-minimising portfolio. However the price xi is, as previously discussed, a time-
series that moves according to an extremely complicated function and is thus very
noisy, which carries over to C and its eigenvalues being noisy too. This leads to the
question of how to identify the smallest eigenvalues correctly, in other terms how does
one separate the signal from the noise? To answer this, it turns out that it is useful
to compare the behaviour of C with a random-matrix version of it.

If xi[t] was assumed to be perfectly noisy, all the elements Ci,j could be modelled
as RVs in a symmetric matrix. This is completely analogous to how Wigner mod-
elled the internal structure of nuclei as randomly distributed entries in a symmetric
hamiltonian matrix, and so the whole machinery can be carried over from physics
to finance. Doing this, it turns out that information-carrying eigenvalues, and their
corresponding eigenvectors, can be isolated and employed in risk optimisation. In an
early demonstration of this, a group of physicists [10] managed to reduce the risk of
a large portfolio by a factor of 2 compared to the classical Markovitz efficient frontier
that economical theory considers to be optimal!
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Figure 2.4: Density of the empirical eigenvalues λ calculated from a correlation
matrix constructed from a portfolio of N = 406 stocks from the S&P500 during the
years 1991−1996, along with curves that represent the theoretical probability density
distribution of a purely random matrix. The eigenvalues outside of the curves are the
signals in the noise. (L. Laloux, P. Cizeau, M. Potters, J. Bouchaud, Random matrix
Theory and Financial Correlations, 2000 )

Another good example of the contribution of econophysicists are power laws. Power
laws are functional relationships where one function f varies as a power in some
exponent α of another function g such that f(g) ∼ g−α (see 3.2.3). The presence of
power law tails in the distribution of stock-returns was first suggested by Mandelbrodt
in the 1960’s [11]; he found evidence for stock price movements being one of his
fractals, and therefore that the distribution of stocks’ returns were Lévy stable with
heavy power-law tails. The last observation was pioneering and led to the introduction
of heavy-tails into finance, but Mandelbrodt was wrong in one important aspect; due
to a lack of data, he calculated a power-law exponent was far too small. It was so
small in fact that it implied an infinite variance in the stock price, and this paradox
led to much confusion in the finance community. It was not until the physicists P.
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Gopikrishnan, V. Plerou, L. Amaral, M. Meyer and E. Stanley [12] analysed a much
larger data-set that this was resolved. Physicists are used to working with huge data
sets, and so they managed to firmly establish that there was indeed a power-law in
the price returns, but with a larger exponent that did not imply any infinite variances.
To be precise, they put the value on this exponent αr at ≈ 3 for the S&P500, which
means that the probability of the log-return of Rs(t, t − ∆t) of a stock s rising above
some value x being

P (|ln(Rs(t, t − ∆t))| > x) ∼ x−αr = x−3 (2.6)

After the exponent was established, the next question physicists started asking was
where these power-laws in the distribution of stock returns came from. In other
words, what kind of microphenomena are the reasons behind them? Power-laws can
have many possible origins (with the origin sometimes revealed by the exponent), and
physicists have offered many explanations.

An interesting explanation for them comes from statistical mechanics. In 2001, D.
Challet, A. Chessa, M. Marsili & Y. Zhang [15] created an agent-based mean field
model of a financial market that turned out to partially reproduce the observed power-
laws. To understand why, recall that when a physical system approaches its critical
point during a continuous phase transition, its microscopic correlation lengths start
diverging and thus the system starts losing its scale. In the case of a sufficiently large
system, it becomes completely scale-free, and thus its responses turn into scale-free
power-laws. With this line of thinking, these aforementioned physicists created an
agent-based model of a financial market that had two phases; one where the market
was not efficient and one where it was. This system could be put into criticality by
adjusting an independent parameter representing a ratio between the complexity of
possible strategies the agents could employ and the number of active agents in the
game, and this immediately led to the system exhibiting power-law distributed re-
turns due to scale-invariance with regards to time.

A later explanation, proposed by X. Gabaix, P. Gopikrishnan, V. Plerou & E. Stanley
[14], was that optimally-executed, large trades from big market participants was the
origin of the power laws.

My hope is that this long text has illustrated the approach employed by physicists
doing research in finance as well market some of their successes. Econophysics is
far from perfect however [3]: Completely inappropriate physical models have pre-
viously been force-fitted to financial markets, physicists have received criticism for
wrongly dispensing with statistical tests [3] and it has also been said that many early
econophysicists even started studying financial systems without bothering to read
the financial economics literature. All in all though, I think the power of statistical
physics along with the empirical approach of physicists allows econophysics to provide
a valuable perspective on finance.
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Chapter 3

THEORY

This chapter explains concepts and methods that were used during, or otherwise
relevant to, the research-work.

3.1 Trading

3.1.1 Order Types

Stock exchanges provide a broad array of ways for traders to buy and sell stocks, but
the most often used ones are limit orders and market orders.

Market Order

The market order is an order to buy or sell a certain number of assets (e.g. stocks)
at the currently best available price.

Limit Order

The limit order is an order to buy or sell a certain number of assets (e.g. stocks) at
a specified "limit price", or a price that is better for whoever placed the order.

3.1.2 Order Book

The order book is a list of all the currently active buy and sell orders. Each listing
contains an order’s type, volume, price and the time at which it was entered.

3.1.3 Exchange-specific Auction Rules

NYSEarca Auctions

NYSEarca carries out three auctions; opening limit order auction, opening market
order auction and the closing auction. The opening limit order auction, which is
executed at 04:00 ET, is not discussed in this thesis; whenever I write about the
NYSEarca opening auction, I am exclusively referring to the opening market order
auction.

The order collection & dissemination of market data begins for the opening auction
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at 08:00 ET, its freeze period starts at 09:29 ET and finally the auction is executed at
09:30 ET. Orders can be entered for the closing auction at any time after 09:30 ET,
but its pre-auction period does not truly begin until NYSEarca starts disseminating
market data at 15:00 ET. The closing auction freeze period begins at 16:29 ET, and
the auction is executed at 16:30.

The exact mechanisms are described with words by NYSEarca [32], but they could
as well be represented through mathematics.

NYSEarca Auction Mechanisms As per section 1.3, at time t into the auction,
vs,d,a(t) represents the sum of all currently matched orders, and ps,d,a(t) their matching
price. In NYSEarca, they are both defined through a function fs,d,a(x, t), which
represents the matchable volume at price x for auction (s, d, a):

ps,d,a(t) ≡ argmax
x

(fs,d,a(x, t))

vs,d,a(t, ps,d,a) ≡ fs,d,a(x = ps,d,a, t)

fs,d,a(x, t) = min({vBuy,L
s,d,a (x, t) + vBuy,M

s,d,a (t), vSell,L
s,d,a (x, t) + vSell,M

s,d,a (t)})

(3.1)

where vBuy,L
s,d,a (x, t) and vSell,L

s,d,a (x, t) represent the total tradeable dollar-volumes at price
x and time t of the buy and sell limit orders, while vBuy,M

s,d,a (t) and vSell,M
s,d,a (t) are the buy

and sell market order dollar-volumes available at time t.

In other words, this means that the matching price is simply the price that max-
imises the daily MO dollar-volume.

NASDAQ Auctions

NASDAQ carries out two auctions; the opening and closing crosses. The opening cross
timetable is as follows: it becomes possible to enter orders at 07:00 ET, at 09:25 ET
NASDAQ publicises market information, at 09:28 ET it freezes and finally the cross
executes at 09:30 ET. The timetable for the closing cross is: orders can be entered at
any time after 07:00, the auction freezes at 15:50 and the closing cross is executed at
16:00.

The mechanisms behind the NASDAQ crosses are meant to maximise MO dollar-
volume, just as those of NYSEarca. The exact rules are not relevant to this thesis,
and so they will not be discussed. However, they are defined through NASDAQ
brochures such as [33] [34].

NYSE Auctions

The NYSE carries out an opening and closing auction. It becomes possible to enter
orders for the opening auction at 07:30 ET, information on buy/sell imbalance & daily
MO dollar-volume starts being disseminated at 08:30 ET, at 09:28 ET the indicative
match price information is also disseminated and finally the execution is carried out
at 09:30 ET. It is possible to enter orders for the closing auction already from 07:30
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ET, but then it gets more complicated as the freeze happens in two parts; after 15:45
only imbalance offsetting orders may be entered, and orders stop being cancellable at
15:58. Then finally the execution takes place at 16:00.

The intricacies of the NYSE auction mechanisms are not relevant to this research
work, and so they will not be discussed. The interested reader can, however, read
about the precise rules here [35].

3.2 Statistical Distributions

The continuous statistical distributions that are of relevance to this thesis are listed
in this section.

3.2.1 Pareto Tails

A distribution is said to be Pareto-tailed if it is asymptotically Lévy stable. Meaning,
the distribution DX of some RV X is Pareto-tailed if its PDF ρ(x) asymptotically
follows the following power-law:

ρ(x) ∼ C
1

|x|µ+1
, when x → ±∞ (3.2)

with µ ∈ 〈0, 2〉 and C being a constant number.

To understand why Pareto tails are interesting, we need to define Lévy stability;
A probability distribution DX of some RV X is Lévy-stable if X has the following
property: Let X1 and X2 be two independent copies of X. If there exist a positive
number c and real number d such that aX1 + bX2 has the same probability distribution
as cX + d for all positive numbers a, b, then X is Lévy-stable.

This definition implies that an arbitrary number of Pareto tailed RVs can be summed
together to a new RV that is also Pareto-tailed; this phenomena is called the Gener-
alised Central Limit Theorem.

3.2.2 Heavy-tailed Distributions

Heavy-tailed, or "fat-tailed", distributions are formally defined to be the set of all func-
tions which are not exponentially bounded [18], or equivalently the set of all functions
that decrease more slowly than any exponential. Mathematically, the distribution DX

on [0, ∞〉 is formally heavy-tailed i.f.f. its PDF ρ(x) fulfils the following condition
∀ǫ > 0

∫ ∞

0
ρ(x)eǫxdx = ∞ (3.3)

Of course, no real statistical distribution goes to infinity, but this definition does
define a set of idealised mathematical distributions whose properties are, for practical
purposes, also valid for their physical realisations.
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3.2.3 Power-law Distributions

The power-law distribution is an extremely important class of heavy-tailed distribu-
tions. If the tail of a RV X past some lower bound xmin > 0 follows a power-law
distribution, then the power-law distribution has the following PDF:

ρ(x) =
α − 1
xmin

(

x

xmin

)−α

(3.4)

where α > 1 is the power-law exponent and x ∈ 〈xmin, ∞〉.

Further, the survival function1 (SF) of the power-law is as follows:

P (X ≥ x) =
(

x

xmin

)−α+1

(3.5)

The power-laws have several interesting features. Firstly, they are Lévy-stable as
long as α ∈ 〈1, 3〉. Second, a power-law (if its domain really goes to infinity) only has
a well-defined mean for α > 2, a well-defined variance only for α > 3 and so on with
higher moments. Finally, power-laws have the remarkable and unique feature of be-
ing scale-invariant: ρ(cx) = c−αρ(x) ∼ ρ(x); thus the power-law exponent completely
defines the scaling of the tails of ρ(x).

Finally, it must be noted that both the SF and PDF of power-laws appear as straight
lines in log-log plots. This can be seen by taking the natural log of P (X ≥ x):
ln P (X ≥ x) = (−α + 1)(ln x − ln xmin) ∼ (−α + 1) ln x.

Truncated Power-laws

An important subclass of power-laws are the truncated power-laws. In reality, heavy-
tails can not go on until infinity; at some point they must stop, i.e. be truncated.
This applies for power-laws too, but often one does not have enough data in the tails
to notice the truncation and so then the classical power-law expression, i.e. equation
(3.5), is used. If a noticeable truncation is present though, the data could be better
modelled by an exponentially truncated power-law:

ρ(x) = C
(

x

xmin

)−α

e−βx (3.6)

where C is some normalisation constant and β is the truncation parameter. Another
way to truncate power-laws is by means of a "hard" truncation:

ρ(x) =







C
(

x
xmin

)−α
, x ∈ 〈xmin, xmax〉

0, otherwise
(3.7)

where the power-law simply stops existing past some upper bound xmax.

In theory, the truncation forces the power-laws to have finite means, variance and

1The SF is formally known as the complementary cumulative distribution function.
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so on regardless of the power-law exponent, but physical power-laws can still appear
unbounded if the truncation comes into effect at sufficiently large x. And the same
goes for the scaling behaviour; over some range, truncated power-laws exhibit scale-
free behaviour.

Further, the truncation distorts straight lines in log-log plots expected from power-
laws. For example; in the case of hard truncation, the PDF appears as a straight
line in log-log plots, but the SF does not, because P (X ≥ x) =

∫ xmax

x C
(

x
xmin

)−α
=

Cxα
min

α−1
(x−α+1 −x−α+1

max ) will only produce a linear dependence between ln P (X > x) and
ln x when xmax >> x.

3.2.4 Log-normal Distribution

The log-normal distribution is the distribution of a RV whose logarithm is normally
distributed. Thus, if ln X ∼ N (µ, σ2), then it can be shown that X ∼ Lognormal(µ, σ2),
with the PDF of X being:

ρ(x) =
1
x

1
σ

√
2π

exp

(

−(ln x − µ)2

2σ2

)

(3.8)

Log-normal distributions arise from multiplicative processes just as normal distri-
butions arise from additive ones; If X is the product of a large number of RVs, then
ln X must be the sum of a large number of RVs. Then, if the conditions are appro-
priate, the CLT applies and ln X converges towards a normal distribution, and thus
X converges towards a log-normal one.

Another interesting feature is that a log-normal distributions is the (Shannon) entropy-
maximising distribution of a RV X whose logarithm has a specified mean and variance[37].
In other (and informal) words, if the only consistent behaviour of the RV X is that
∫

ln xρ(x)dx = u and
∫

(ln x − u)2ρ(x)dx = s2, where the integrals go over the domain
of X and ρ(x) is its PDF, then it can be shown that X ∼ Lognormal(u, s2).

3.2.5 Exponential Distribution

An exponentially distributed RV X is characterised by an exponentially decaying PDF:

ρ(x) =







λe−λx, x ≥ 0

0, otherwise
(3.9)

It is of interest for this thesis because it defines the notion of heavy-tails, as noted in
equation (3.3) above.

3.2.6 Empirical Cumulative Distribution Function

The empirical cumulative distribution function is defined as follows. Assume we have
a dataset of n points {xk : ∀k ∈ [1, n]}; then the associated empirical cumulative
distribution function is:

F (x) =
1
n

n
∑

k=1

I[−∞,x](xk) (3.10)
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where I[−∞,x] is the indicator function; it works by returning 1 if xk < x, and 0
otherwise.

3.3 Statistical Methods

The statistical methods (for continuous RVs) that are of relevance to this thesis are
presented below.

3.3.1 Maximum Likelihood Estimation

Given a sample of i.i.d. observables {xk : ∀k} along with a prior assumption of their
underlying RV X belonging to some family of parametric PDFs ρ(x; ~θ) defined by the
parameters ~θ, then one can employ maximum likelihood estimation (MLE) to find an

estimator ~̂θ for these parameters. The estimator is formally defined to be the function
that maximises the likelihood L of {xk : ∀k}:

~̂θ = argmax
~θ

(L(x1, x2, ..; ~σ)) = argmax
~θ

∏

∀k

ρ(xk; ~θ) (3.11)

In practice though, one maximises the log-likelihood Λ = ln L because it is more con-
venient to work with sums (and because maximising it is equivalent to maximising the
likelihood, due to the fact that the logarithm is a monotonically increasing function):

~̂θ = argmax
~θ

(Λ(x1, x2, ..; ~σ)) = argmax
~θ

∑

∀k

ln ρ(xk; ~θ) (3.12)

3.3.2 Kolmogorov-Smirnov Distance

The Kolmogorov-Smirnov (KS) distance D(P1, P2) is a metric for the distance between
the two cumulative distribution functions (CDFs) P1(X > x) and P2(X > x):

D = max
x

|P1(X > x) − P2(X > x)| (3.13)

in other words, the KS distance is simply the maximum difference between the two
CDFs.

3.3.3 Hypothesis Testing

Three hypothesis tests that are of relevance to the research work are described in this
section.

Log-likelihood Ratio Test

The log-likelihood ratio test (LLRT) is used to compare fitted distributions against
each other, and the variant used by the python.powerlaw package [39] is described
here. Assume we have a dataset of n samples {xk : ∀k ∈ [1, n]} and that two distri-
butions were fitted to this dataset, with PDFs p1(x) and p2(x). Then the respective
likelihoods functions are L1 =

∏

∀k p1(xk) and L2 =
∏

∀k p2(xk), and thus their log-
likelihood ratio Λ is:

34



Λ = ln
L1

L2

=
∑

∀k

ln p1(xk) − ln p2(xk) =
∑

∀k

l1
k − l2

k (3.14)

where l1
k and k2

k are the log-likelihoods for the k-th observable. Now, if the samples
are sufficiently well-behaved (i.e. close to i.i.d.), then by the CLT Λ approaches the
normal distribution N (µ, σ2) as the sample size tends to infinity. Assuming from now
on that the sample is sufficiently well-behaved and numerous for Λ to follow N (µ, σ2),
we have that µ = 〈l1

k − l2
k〉∀k and σ2 = n〈((l1

k − l2
k) − µ)2〉∀k.

Now comes the core of the LLRT: Let the null-hypothesis be that µ = 0, so that
neither fit is considered better than the other. Then, under this null-hypothesis, the
probability p to see a fluctuation more extreme than Λ is simply given by the standard
normal distribution due to the assumed normality of Λ:

p = P

(

Λ − 0
σ

≥ |z|
)

= 1 − erf

(

Λ − 0
σ

)

(3.15)

where P (Z ≥ z) = 1 − erf(z), with erf(z) being the error function of the standard
normal distribution, whose values can of course be looked up in any statistical table.

If the null-hypothesis is that µ = 0 and thus none of the fits are better than each
other, then the alternative hypothesis must be that one of the fits is better than the
other, and which one is better can be decided from the sign of Λ.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) tests the similarity between two distributions. Its
strength lies in it making no assumptions about the nature of the distributions it is
testing, i.e. it is "distribution free" [40]. The test uses the Kolmogorov distribution
K to decide whether the two tested distributions are similar. The two (very similar)
versions of the KS test are presented below.

The one-sample version tests whether the n observables in the sample {xk : ∀k ∈
[1, n]}, with empirical CDF Fn(x), are realisations of some RV X with CDF P (X > x).
To this end, the test-statistic

√
nDn(Fn, P ) is used, where Dn(Fn, P ) is the KS dis-

tance from equation (3.13). Under the null-hypothesis, Fn converges in distribution
to P when n → ∞, meaning the observables are indeed realisations of X, and thus√

nDn(Fn, P ) ∼ K. The alternative hypothesis is then that the samples are not ob-
servables of X.

The two-sample version is practically the same, except now it tests the similarity
of the samples {xk : ∀k ∈ [1, n]} and {x′

k : ∀k ∈ [1, m]}. The test-statistic this time
is
√

nm
n+m

Dn,m(Fn, F ′
m), and it operates under the null-hypothesis of the two samples

being drawn from the same distribution. The alternative hypothesis must then be
that the two samples are not drawn from the same distribution.
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Student’s t-Test

Student’s t-test is an umbrella term for all hypothesis tests that employ Student’s
t-distribution. In this thesis, only the one-sample version was used and it is described
below:

The one-sample t-test tests the null-hypothesis that the mean µ of some sample of n
i.i.d. observables {xk : ∀k ∈ [1, n]} is equal to some µ0 with the test-statistic

t =
x̄ − µ0

s/
√

n
(3.16)

with x̄ being the sample mean and s being the sample standard deviation. The test
is carried out by calculating the p value for t by using Student’s t-distribution with
n − 1 degrees of freedom. The alternative hypothesis is that the mean of the sample
is in fact not equal to µ0.

3.3.4 Bootstrapping

Bootstrapping is a Monte-Carlo method used to empirically estimate the properties,
such as variance, of complex statistical functions. More precisely, given a set of i.i.d.
observables {xk : ∀k ∈ [1, n]} used to calculate some statistic ŷ(x1, x2, ..), one can esti-
mate various properties of this statistic by drawing (with replacement) m random sub-
samples {xk : ∀k ∈ [1, l]}, and using these sub-samples to construct a "bootstrapped"
distribution Dŷ from the bootstrapped set of statistics {ŷj(x1, x2, ..) : ∀j ∈ [1, m]}.
One must typically find appropriate m, l through trial and error, but the rule-of-
thumb guideline for choosing appropriate values is to simply use sufficiently large m, l
so that Dŷ converges in distribution to a peaked distribution [38].

3.3.5 Distribution Fitting

Distribution fitting is the process of fitting probability distributions to a sample of
data. The procedure can essentially be broken down into three steps:

Procedure

1. Based on the properties of the sample, one must find an appropriate distribution,
or family of distributions to fit.

2. Then the parameters of the fitting distribution must be found by some means.

3. And finally the quality of the fit must be evaluated.

Four different heavy-tailed distributions and the normal were fitted to data in this
thesis; the methods used to do that are descried below.

Fitting Heavy-Tails

The python.powerlaw package [50] is capable of fitting, and testing against each
other, 4 kinds of distribution to the tails of some data-sample {xk : ∀k}; power-laws,
exponentially truncated power-laws, log-normal tails and exponential distributions
(see section 3.2.2 for an overview of their statistical properties).
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Fitting Procedure Its fitting algorithm employs MLE (which is described in sec-
tion 3.3.1) and the KS distance (which is described in section 3.3.2), and it works as
follows [39]:

1. Find an xmin by minimising the KS distance D = max
x≥xmin

|F (x) − P (X ≥ x)|,
where F (x) is the empirical CDF of the data and P (X ≥ x) is a power-law
fitted through MLE.

2. The xmin now represents the starting point of the tail, and α̂ is the fitted power-
law exponent. Next, fit the tails ∀xk : xk ≥ xmin with exponentially truncated
power-laws, log-normal tails and exponential distributions by again employing
MLE

3. Finally, return xmin along with the parameters of the fitted distributions.

Goodness of Fit The variance of the fitting parameters can be estimated through
bootstrapping (which is described in section 3.3.4), but when one is dealing with
heavy-tails it is typically more useful to simply compare tail distributions with each-
other; for this, the python.powerlaw package employed Log-likelihood Ratio Test
(which is described in section 3.3.3).

Fitting Normal Distributions

The R::MASS package [49] is capable of fitting a variety of distributions to datasets,
and among them is the normal distribution. The fitting procedure for the normal
distribution is rather simple; R::MASS simply employs MLE (as described in section
3.3.1) to find the normal-distribution parameters µ and σ2 that fit the data best.

3.4 Time-series

A time-series y[t] is simply a series of data-points sorted by an index representing
their timestamp (here t).

3.4.1 Stationarity

Time-series are often divided into two types; stationary, and non-stationary. A time-
series y[t] is stationary if it is generated by some stochastic process {Yt} : FY (y[1], y[2], .., y[t])
whose cumulative joint probability distribution FY is independent from time; in other
words, FY : FY (y[1], y[2], .., y[t]) = FY (y[1 + τ ], y[2 + τ ], .., y[t + τ ]), ∀τ . If this is not
the case, then the time-series is not stationary.

The expectation value, variance and autocorrelation pattern of a stationary time-
series are all constant across time.

3.4.2 Autocorrelation Function

The autocorrelation function (ACF) was often used to check for stationarity, pre-
dictability. and independence of time-series across time.
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The theoretical ACF of a time-series x[t] is defined as:

R(τ) =
E[(x[t] − µt)(x[t + τ ] − µt+τ )]

σtσt+τ

(3.17)

where τ is the lag, µt and µt+τ are the time-series’ mean at time t and t + τ respec-
tively, and similarly σt and σt+τ are the standard deviations.

In practice however, one does not know what the theoretical means and variances
are as functions of time; thus the ACF, as used in the R::stats package, is defined
[41] to be:

R(τ) =
1
n

min(n−t,n)
∑

t=max(1,−τ)

(x[t + τ ] − u)(x[t] − u)
s

(3.18)

where n is the length of x[t], s is its standard deviation and u is its mean.

If the absolute value of the ACF is statistically significant at lag τ (meaning larger
than what one would expect under the null-hypothesis of white noise), it implies
that knowing the time-series’ amplitude time t gives you prior information on its
amplitude at t + τ . This is equivalent to saying its movement exhibits a degree of
predictability, and thus one can use time-regressive forecasting algorithms to capture
this predictability (more on them below). For example, periodic movements in the
ACF across τ imply the presence of seasonality.

3.5 Time-series Forecasting

In chapter 5 a significant amount of time-series forecasting is performed, and this
section was written as a reference for the forecasting methods and statistical concepts
used there.

3.5.1 The Concept of Forecasting

Forecasting is the process of analysing past responses of a time-series with the aim
of predicting its future responses. This is a regressive process that is carried out by
fitting a model ŷ[t′], t′ ∈ T to the time-series’ past responses y[t′], t′ ∈ T, where T

is a training interval made up of past responses, and then use this model to make
predictions on future responses y[t], t ∈ P, where P is a prediction interval for future
times.

In this thesis, three different forecasting methods were employed; ARIMA, Facebook
Prophet and Random Forests.

3.5.2 ARIMA with Fixed Effects

ARIMA is a generative (meaning it defines a stochastic process) linear model that
is capable of modelling autoregressive and moving average processes, as well as ac-
count for certain non-stationarities by differencing. Mathematically, it is denoted as
ARIMA(p, d, q) and defined as:
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y[t] = c +
p
∑

i=1

ai∆dLiy[t] +
q
∑

j=1

bjL
jǫ[t] + ǫ[t] (3.19)

where c, ai, bj are parameters of the model, ∆ is the difference operator, L is the
lag operator, d is the degree of differencing and p, q define the orders of the model.
(p, d, q) together define a stochastic process.

In this research work, the R::forecast [46] package was used to find the appropriate
ARIMA(p, d, q) model, which is built on the Hyndman-Khandakar (2008) algorithm
[31]. But it was not used in isolation; a fixed-effects model was applied in conjunction
to stationarize2 the time-series.

This was carried out in the following manner: Before ARIMA was applied, the training
interval y[t′] was transformed to

ỹ[t′] = y[t′] − ŷFE[t′]

and after ARIMA was applied on ỹ[t′], the resulting predictive model was transformed
back from ˆ̃yARIMA[t] to

ŷARIMA = ˆ̃yARIMA[t] + ŷFE[t]

Fixed Effects Model

The fixed effects model accounted for certain seasonal non-stationarities that ARIMA
was unable to model. In essence, it works as just a rolling conditional average, which
mathematically means the fixed effects model ŷFE[t] is defined as:

ŷFE[t] =







1
|T∗|

∑

∀t′∈T∗ y[t′], if t is a seasonality

0, otherwise
(3.20)

where |T∗| is a lists of all the seasonalities in the training set that are of the same
type as the seasonality at t.

3.5.3 Facebook Prophet

Facebook Prophet [22] is a non-linear, additive-decomposable model used for time-
series analysis. With additive-decomposable, it is meant that the model is simply the
sum of a trending function g[t], a function representing seasonalities s[t], a "holidays"
function h[t] and a gaussian error-term ǫ[t]:

ŷProphet[t] = g[t] + s[t] + h[t] + ǫ[t] (3.21)

g[t] can represent a range of growth models/trends, such as piecewise linear growth or
logistic growth. s[t] is a fourier sum capable of modelling various seasonalities. h[t] is
essentially a fixed-effects model almost identical to the one described above; the only
difference is that rolling conditional average in h[t] is smoothed by a gaussian kernel to
avoid overfitting. The Prophet model is implemented in the R::Prophet package [47].

2That is, transform time-series data such that it becomes more stationary
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Finally, it is worth mentioning that unlike ARIMA, Prophet is not a generative
method, but a purely regressive one. This means it essentially is a curve-fitting
algorithm and does not define any specific stochastic process and is thus of limited
use for inferencing, i.e. understanding the physical reasons for why the data behaves
as it does.

3.5.4 Random Forests

Random Forests is a machine-learning algorithm that is fundamentally different from
the two previous methods. While ARIMA & Prophet are parametric models whose
behaviour is precisely defined through parametric functions, Random Forests is an
ensemble learning method which is defined algorithmically.

The regressive version of Random Forests inputs a training set
D = {(~x1, y1), (~x2, y2), ..., (~xk, yk)}, with ~xi ∈ R

d being a vector of predictors of d
features (features are variables related to the response3) and yi ∈ R being the corre-
sponding response, and then Random Forests creates a model which it uses to forecast
the response ŷnew for any vector of predictors ~xnew.

At its core, the Random Forests algorithm works by segmenting the data {(~xi, ŷi) : ∀i}
according to the data’s dependence with its features, it does this multiple times and
every time in a random fashion, and then it uses decision trees to navigate the result-
ing segmentations to produce forecasts. More precisely, the regressive version of the
algorithm works as described below:

Algorithm 1 Regressive Random Forests
Input: D, ntree, ~xnew, mtry

Output: ŷnew

1: for (∀b ∈ {1, 2, ..., ntree) do

2: Bootstrap a sample Db from D of sufficient size
3: From the d features, randomly draw mtry < d features
4: Grow a binary decision tree Tb by segmenting the data according to the drawn

.....features by using a greedy algorithm which minimises a least squares error

.....metric
5: Travel down all the decision trees using ~xnew, and return the average of their

individual forecasts: ŷnew = 1
ntree

∑ntree

b=1 Tb(~x)

This is the exact algorithm used in the R::randomForest package [48] (which is the
package used in this project).

3Examples of features include time, first order difference of the response, some past response, day
of the week/month/year etc.
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Chapter 4

PROPERTIES OF INDIVIDUAL

AUCTIONS

This chapter concerns itself with the properties of the orders at the end of the auctions,
i.e. at t = tend. The investigation revolved around studying the properties of the tails
of Dms,d,a

for NYSEarca.

4.1 Available Data

The available data consisted of 13, 221, 820 unique datapoints for 1408 stocks traded
on the NYSEarca exchange, across the years of 2010 up to and including 2014.

Each datapoint represents a concluded auction (s, d, a) with an associated dataset
of MO dollar-volumes {mk

s,d,a : ∀k} along with the price at which they orders were
carried out, i.e. the final matching price of the auction ps,d,a,tend

. Thus each datapoint
can be classified as (s, d, a, k, tend, ps,d,a,tend

).

4.2 Behaviour of ms,d,a

4.2.1 Power-laws Spotted

When first exploring the data, power-law like behaviour was observed in Dms,d,a
, the

empirical density of the dollar-volumes of MOs. The linear nature of the data in the
log-log plot of figure 4.1 exemplifies this.
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Figure 4.1: Empirical survival function of the MO dollar-volumes for the opening
auction of SPY during 2013-06-03.

Due to the interesting properties of power-laws, as describes in section 3.2.3, let us
first focus on them.

4.2.2 Fitting a Power-law

Finding Power-law Fit Parameters

A way to fit power-law distributed tails to data was needed before there was any
point in seriously investigating whether power-law tails were present. For this pur-
pose, the python.powerlaw package was employed to find the power-law parame-
ters αs,d,a, which is the exponent characterising the power-law observed for auction
(s, d, a), and mmin

s,d,a, the dollar-volume value at which the power-law/fat-tail starts.
The package employs maximum likelihood estimation (MLE) and minimisation of
the Kolmogorov-Smirnov (KS) distance to find these parameters. The theory behind
power-laws is described in section 3.2.3, and the fitting procedure in 3.3.5.

To illustrate, the dataset from figure 4.1 is fitted with a power-law in figure 4.2 below.
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Figure 4.2: Power-law fit to empirical survival function of the MO dollar-volumes for
the opening auction of SPY during 2013-06-03.

Numerical Stability of Fitting and the Question of I.I.D.

A cursory investigation into the numerical stability of the fitted (αs,d,a, mmin
s,d,a) pairs

was also undertaken. The mathematics employed by python.powerlaw to find
(αs,d,a, mmin

s,d,a) (and test its goodness of fit) in principle require i.i.d. data to be the-
oretically guaranteed to converge. Alas, equation (1.2) already established that the
data was not independent, and there were reasons to suspect it was not identically
distributed either (as will be explained in section 5.2). Therefore a Monte-Carlo pro-
cedure called bootstrapping (see section 3.3.4) was employed to ensure that MLE,
which python.powerlaw uses for fitting, can be expected to converge.

Bootstrapping is a computationally intensive method, and so the numerical stability
was investigated by looking at the stability of a handful fitted (αs,d,a, mmin

s,d,a) pairs for
randomly selected auctions (s, d, a). A demonstrative example of this investigation is
presented in figure 4.3 below, where the estimated numerical uncertainty correspond-
ing to the fit-parameters in figure 4.1 was estimated. 500 bootstrap samples were
used.
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Figure 4.3: Result of bootstrap-estimation of the numerical uncertainty in the power-
law fit parameters fitted to the opening auction of SPY at 2013-06-03.

The success of a bootstrapping run is judged on whether the parameters of interest
cluster around a typical value. In our case, 500 samples was sufficient for them
to do that, as both the distributions in figure 4.3 above demonstrate. Further, the
bootstrapping runs consistently produced peaked distributions, which means MLE can
indeed be expected to converge. Therefore, the investigation continued by retaining
MLE, and assuming the lack of i.i.d. was sufficiently mild to be discounted as noise,
as far as this section is concerned1.

4.2.3 Confirming Power-law Presence

Further power-law fitting consistently revealed the presence of straight lines in the
log-log plots, hinting towards the power-law relationships being a general phenomena
∀s ∈ SNYSEarca. Therefore, the investigation continued, with the next step being fitting
power-laws to every available dataset {mk

s,d,a : ∀k}.

However, the resulting plots, including the one above, also firmly established that
the power-laws were truncated in their tails. In principle this is not a cause for worry
because, firstly, physical power-laws must get truncated at some point, and secondly,
truncation is always exaggerated in log-log SF plots (see section 3.2.3 for why). Still,
the truncations were heavy enough to make us doubtful on whether the power-law fit
was superiour at explaining the data compared to other heavy-tailed distributions.
Proclaiming tenuous power-laws relationships has been a common problem in sci-
ence [17], and so to avoid past mistakes it was decided to make sure our suspected
power-law behaviour was a better fit than the other prominent candidates.

1It should be noted that while a great deal of statistical theory makes the assumption of i.i.d.,
real data is almost never completely i.i.d.; thus in cases such as this, one must simply assume the
lack of i.i.d. is sufficiently mild and proceed with caution, as the alternative is to either use very
complex statistical theory, or give up.
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4.2.4 Other Candidates

The power-law fit could be compared against many heavy-tailed distributions, but the
most important alternative candidates are the exponential and log-normal distribu-
tions. As defined in 3.2.2, heavy-tails are absolutely required to not be exponentially
bounded. Therefore, as a minimum condition, a power-law must be a better fit than
an exponentially distributed tail; otherwise it cannot even be claimed that heavy-
tailed behaviour is present. Log-normal distributed tails are also important to test
against due to their close relation to power-law distributions [19]. In addition to these
two, it was also of interest to check whether a power-law fit was better than the fit of
an exponentially truncated power-law, which is just a power-law relation multiplied
with an exponentially decaying function (see section 3.2.3 for more). Thus came the
final part of the investigation: systematically fitting power-laws and testing them
against the alternative distributions.

4.2.5 Procedure for Fitting & Testing ∀(s, d, a)

The systematic fitting was carried out by employing the python.powerlaw package
to fit the tails of all the datasets with at least 100 datapoints, i.e.
all{mk

s,d,a : ∀k} : |{mk
s,d,a : ∀k}| > 100, with exponential, log-normal, power-law and

exponentially truncated power-law distributions. Then the Log-likelihood Ratio Test
(which is explained in section 3.3.3) was used to separately test each of the alternative
distributions against the power-law distribution on the tails of {mk

s,d,a : ∀k}, with the
null-hypothesis being that both the tested distributions fit the tails of {mk

s,d,a : ∀k}
equally well.

4.2.6 Results of the Fitting & Testing

The result was a set of fitted power-law exponents {αs,d,a : ∀(s, d, a)}, and for each
of these power-law exponents there were 3 p-values, one for each of the alternative
distributions it was tested against. The resulting datasets covered 263 stocks, and had
cardinalities of |{αs,d,a : ∀(s, d, a)}| = 24962 datapoints. The starting points of the
power-laws, {mmin

s,d,a : ∀(s, d, a)}, were of course also found, but their distributions pro-
vided no interesting information; therefore the following discussion will solely revolve
around the fitted power-law exponents and the results from Log-likelihood Ratio Test
against alternative distributions.

Distribution of Power-law Parameters

The distributions of the fitted power-law exponents are illustrated in the following
figures across stocks, auctions and years.
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nents aggregated across all stocks and dates.
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Figure 4.5: Top: Density of open-auction (left) and close-auction (right) fitted power-
law exponents aggregated across dates for the 10 stocks with most datapoints avail-
able. Bottom: The same distributions, except aggregated across stocks and dates for
each year.

Result of Log-likelihood Ratio Test

The results of the log-likelihood ratio test of the power-law fits versus the fits of expo-
nential distributions, log-normal distributions and exponentially truncated power-laws
are shown in figure 4.6 below. There, the p-values represent the probability for both
the power-law and alternative distributions being equally good fits. Each of them is
calculated from its corresponding log-likelihood ratio Λ, which are also shown in the
two bottom plots of the figure. The log-likelihood Λs are defined as:

Λ ≡ ln
LPower-law

LAlternative

(4.1)
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where LPower-law & LAlternative represent, respectively, the likelihood functions of the
power-law fit and the fit of the alternative distribution to some dataset {mk

s,d,a : ∀k}.
See section 3.3.3 for the theory behind the Log-likelihood ratio test.
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Figure 4.6: The log-likelihood ratios (bottom) and their associated p-values (top)
found through Log-likelihood Ratio Test. The ratios and p-values are aggregated
across days and stocks for opening (right) and closing (left) auctions. The test com-
pared power-law fits to the MO dollar-volume distributions against various alternative
fits (see legends).

4.2.7 Discussion of Results

Log-likelihood Ratio Test

The Log-likelihood Ratio Test was used to test the power-law fit to the tails of Dms,d,a

against that of three other alternative distributions; exponential, log-normal and ex-
ponentially truncated power-law. Under the null-hypothesis (which was defined in
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section 4.2.5), its p-values represent the probability that both the power-law and al-
ternative distributions are equally good fits. So, judging from their distributions in
figure 4.6, it is clear that none of the alternative distributions described the data
much better. However, the exponential distribution is clearly a far worse fit than
power-laws. This firmly establishes that Dms,d,a

is not exponentially bounded, and
thus is concluded that Dms,d,a

is indisputably heavy-tailed. A brief discussion on the
other two fits follows below:

The log-likelihood values of the log-normal fits are skewed towards the left, which
implies the log-normal does tend to fit the data better. However, the corresponding
p-values are roughly evenly distributed, which is what one would expect under the
null-hypothesis. In addition, the log-normal distribution has more fitting parameters
than the power-law distribution and so it more vulnerable to overfitting. Therefore,
when taking these arguments into consideration, it is firmly concluded that the tails of
Dms,d,a

are not significantly better described by log-normal distributions than power-
laws, and vice versa.

Concerning the exponentially truncated power-laws; judging from the distributions
of the p-values and log-likelihood ratios, they fit the data somewhat better than pure
power-laws for the opening auctions, but not closing auctions. This implies that the
opening auctions are more exponentially truncated than the closing ones. The fits are
hardly significantly better though, and as with log-normals, the truncated power-laws
have more parameters and are thus easier to overfit. Therefore, it is firmly concluded
that exponentially truncated power-laws do not explain the data significantly better
than pure power-laws, and vice versa.

Analysis of Power-law Fits

Dms,d,a
is not a simple distribution, as the above discussion shows, and therefore no

clean, general conclusions can be reached on its behaviour, except it consistently be-
ing heavy-tailed. That said, the results did reveal rule of thumb behaviour that are
often valid for the datasets {mk

s,d,a : ∀k}, and so they will be discussed in the following
paragraphs for the sake of completeness.

The power-law exponentials found are typically in the asymptotically Lévy-stable
regime. As explained in section 3.2.1, a power-law tail is stable if its α ∈ 〈1, 3〉; and
the figures 4.4 and 4.5 reveal that the great majority of the fitted αs,d,a are indeed
within that regime. While by itself this would imply that also the tails of Dms,d,a

are
Lévy-stable, it was established above that two non Lévy-stable distributions, expo-
nentially truncated power-laws and log-normal distributions, fit equally well as pure
power-laws. Therefore it cannot be concluded that the distributions Dms,d,a

are Lévy-
stable in their entireties. At most, there are some regions of Dms,d,a

where there exists
approximate Lévy-stability.

The two figures also illustrate the dependence of Dαs,d,a
on s, d & a. In figure 4.4, the

fitted power-law exponents are typically smaller for closing auctions than the opening
ones, and figure 4.5 illustrates that Dαs,d,a

is largely independent of d for yearly time-
horizons. The influence of s is difficult to discern, but it appears significant; which is
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not surprising, as the stocks traded on NYSEarca are largely ETFs based on wildly
different financial assets; after all, one can not expect an ETF such as SPY, which is
based on a basket of very large, very stable companies, to exhibit the same behaviour
as an ETF like e.g. VXX, which is based on highly speculative futures. Therefore
in conclusion, as a rule of thumb, the scaling properties/fatness of the tails of Dms,d,a

vary by auction type, but are constant through time.

4.2.8 Data Limitation

The investigation was done on about 300 large (in terms of market capitalisation)
NYSEarca stocks, and it covered half a decade of time. Therefore, there is no reason to
believe that these results are not representative of the general behaviour of NYSEarca
auctions (for stocks that are liquid under said auctions) under market conditions
similar to those seen between 2010 and 2014.
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Chapter 5

AGGREGATE PROPERTIES OF

THE AUCTIONS

The aggregate properties of the MOs at the end of the auctions were explored next.
First a theoretical treatment of Vs,d,a was undertaken to see how its distribution
was linked with that of DMs,d,a

. Then, the ratio log10
vs,open,d

vs,close,d
was examined in detail.

Finally, the predictability of vs,a[d] across d was examined thoroughly with forecasting
algorithms.

5.1 Available Data

The available data consist of 840, 379 unique (s, d) datapoints for 2871 stocks traded
on the NYSE, NYSEarca and NASDAQ stock exchanges. The data covers the time-
period of 2009 to 2016.

Each datapoint contains the day’s closing price ps,d,close, the daily MO dollar-volumes
for the open-market trading os,d and the daily MO dollar-volume for both the opening
auction vs,d,open and for the closing one vs,d,close.

5.2 Theoretical Relation between DVs,d,a
and DMs,d,a

As defined in equation (1.4), the empirical daily MO dollar-volume vs,d,a is simply
the sum of the ns,d,a elements in {mk

s,d,a : ∀k}, and so their RV analogues are related
through the same sum:

Vs,d,a =
Ns,d,a
∑

k=1

Mk
s,d,a (5.1)

Therefore, can one link the investigations done on {mk
s,d,a : ∀k} with the investigation

that will now be done on vs,d,close? The answer to this question largely depends on
whether the sum of {mk

s,d,a : ∀k} can be expected to converge towards a distribution
that is not overly messy.

To this end, it would be tempting to assume that Mk
s,d,a was i.i.d. ∀k, as then the

sum would imply that DVs,d,a
was completely defined by just two other distributions;

DMs,d,a
and DNs,d,a

. Further, if Ns,d,a were sufficiently peaked and the variance of Mk
s,d,a
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finite, one would expect DVs,d,a
to converge towards the normal distribution by the

CLT, and if the variance is not finite then at least the tails of DVs,d,a
would converge

towards a single power-law by the generalised CLT (see section 3.2.1).

Alas, the mechanics of the auction defined a mathematical dependency between the
empirical sets {mk

s,d,a : ∀k} with equation (1.2), which means the Mk
s,d,a must be cor-

related with each other through:










Mk
s,d,a :

∑

k∈O
Buy

s,d,a

Mk
s,d,a =

∑

k∈OSell
s,d,a

Mk
s,d,a











(5.2)

with the cardinalities of the list of matched buy orders OBuy
s,d,a and matched sell orders

O
Sell
s,d,a being yet another two RVs with unknown distributions. In addition to this, the

traders are heterogeneous and interact with each other, which implies the possible
presence of yet another significant interdependence between Mk

s,d,a across k. Further,
one cannot assume Mk

s,d,a is identically distributed either, as traders are heterogeneous
and this might well mean that Mk

s,d,a has significantly different distributions across
k. Thus, in conclusion, one can by no means assume i.i.d. In addition to this, it
was clearly established in section 4.2.7 that the realisations mk

s,d,a are heavy-tailed
over several orders of magnitude, and are thus of extreme variance; this makes any
convergence towards the normal distribution, for all practical purposes, impossible.
In addition, section 4.2.7 also established that the heavy-tails can not be considered
Lévy stable either; thus convergence in the tails cannot be expected either. Thus one
must conclude that neither the CLT nor the generalised CLT can be applied on the
sums of Mk

s,d,a.

This means that the statistical properties of Dms,d,a
and Dvs,d,a

are not linked in
any simple, clear way, with the exception of the observed heavy-tailed and complex
behaviour of Dms,d,a

carrying over to Dms,d,a
; this means Dms,d,a

can neither be well-
behaved nor convergent towards any simple distribution. Therefore, the investigation
of vs,d,a was carried out in a completely separate fashion from the investigation of
{mk

s,d,a : ∀k} in the previous chapter.

5.3 Properties of
vs,d,open

vs,d,close

5.3.1 Statistical Regularities of Dlog10
vs,open

vs,close

Preliminary Investigation

When carrying out the preliminary investigations into vs,d,a, it was observed that the
datasets {log10

vs,d,open

vs,d,close
: ∀d} were approximately normally distributed for many s (the

log10 operator had to be employed due to the heavy-tailed nature of vs,d,a). This nor-
mality is illustrated through figure 5.1 for the Apple stock dataset {log10

vAAPL,d,open

vAAPL,d,close
: ∀d}.
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Figure 5.1: A histogram and QQ plot of the opening vs closing auction dollar-volume
ratios aggregated across all dates for the AAPL stock.

If this was a general phenomena, it would mean that Vs,open

Vs,close
would be approximately

log-normally distributed. This would be an interesting statistical regularity, and so
this possible log-normality was investigated next.

Fitting Log-normal Distributions

The indications of log-normality were investigated by using the R::MASS package
to systematically fit normal distributions across s ∈ SE and d to every dataset
{log10

vs,d,open

vs,d,close
: ∀d} with at least 100 datapoints. The fitting parameters µs and σs

were found through MLE, as described in section 3.3.5.

Resulting Fits

This resulted in successful fits for 2779 stocks across, which is illustrated in the two
figures below, which show the distributions of the fit parameters µs and σs.
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Figure 5.2: Density of the parameters of normal distribution fitted to log MO daily
dollar-volume ratios aggregated across stocks, for each exchange. The distribution of
fitted means is on the left, and the distribution of fitted standard deviations is on the
right.

Figure 5.2 shows that the parameters of the fitted log-normals are strongly dependent
on the exchanges. Further, it is clear that, in almost all cases, σs is significantly larger
than 0, which implies the log-ratios are noticeably skewed and kurtotic in shape; this
is unsurprising in light of the heavy-tailed nature of mk

s,d,a.

Aggregation by Exchange

Moving on, aggregation was also done over s and d by exchange. This resulted in
three datasets {log10

vs,d,open

vs,d,close
: ∀d, ∀s ∈ SE}, E ∈ {NYSEarca, NYSE, NASDAQ}, and they

are distributed according to the empirical densities D
log10

vE,open

vE,close

plotted in figure 5.3

below.
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Figure 5.3: Density of the log MO daily dollar-volume ratios aggregated across dates
and stocks for each exchange.

Figure 5.3 underlines the fact that the log-ratios vary significantly across exchanges.

5.3.2 Testing Fits and Comparing Distributions

Testing Procedure

The goodness of fit of the fitted normal distributions had to be investigated, and it
was also of interest to see whether the log-ratios had identical distributions across all
stocks for each exchange. For this the KS test, which is described in section 3.3.3,
was used.

The goodness of fit was evaluated by using the one-sample KS test to test whether
the empirical densities Dlog10

vs,open

vs,close

and their respective fitted normal distributions

N (µs, σ2
s) were significantly different. The null-hypothesis here was that the samples

{log10
vs,d,open

vs,d,close
: ∀d} were indeed drawn from N (µs, σ2

s).

Afterwards, the two-sample version of the KS test was used to check whether the
log-ratios of the stocks were all distributed according to the aggregated distribution
of their exchange, i.e. according to D

log10

vE,open

vE,close

. The null-hypothesis here was that

{log10
vs,d,open

vs,d,close
: ∀d} and {log10

vs,d,open

vs,d,close
: ∀d, ∀s ∈ SE}, E ∈ {NYSEarca, NYSE, NASDAQ}

were indeed drawn from the same distribution.

Testing Results

The distribution of the resulting KS p-values are shown in figure 5.4 below. In the
right plot of the figure, the p-value distributions were scaled instead of normalised for
aesthetic reasons.
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Figure 5.4: p-values of Kolmogorov-Smirnov tests performed on the distribution
of log MO daily dollar-volume ratios aggregated across days for each stock. These
stocks’ distributions were tested against both fitted normal distributions (left) and
the aggregated distribution of log-ratios of the exchange the stock belonged to.

5.3.3 Discussion of Observations

Stylised Facts

Synthesising the information given in figures 5.2 and 5.3 tells us several stylised facts
on the auctions of the exchanges; firstly, the traded dollar-volume during the closing
auctions of NYSE are, typically, several orders of magnitude more than that of its
opening auctions. Further, the ratios of both NYSEarca and NYSE are enormously
spread out, while that of NASDAQ has much less variability. Finally, the trading
volume of the great majority of NASDAQ stocks and all NYSE stocks is larger during
closing than opening auctions.

Dependence of D vs,open

vs,close

on Exchange and Stock

The figures 5.2 and 5.3 clearly show that the stocks’ exchanges affect the ratios, but
they are evidently far from the only effect; because figure 5.4 shows that the KS test
firmly rejected the null-hypothesis of {log10

vs,d,open

vs,d,close
: ∀d} being distributed accord-

ing to D
log10

vE,open

vE,close

. It is therefore concluded that the distributions of the datasets

{ vs,d,open

vs,d,close
: ∀d} are not only dependent on the exchange, but also on the stock itself.

D vs,open

vs,close

and Log-normality

The distributions of p-values in the left plot of figure 5.4 show that the KS test failed
to reject the null-hypothesis of D vs,open

vs,close

being a log-normal distribution. In fact, for

NASDAQ and NYSEarca, the distribution of p-values are roughly what would be
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expected if the null-hypothesis was correct for these exchanges. Therefore, it is con-
cluded that the datasets { vs,d,open

vs,d,close
: ∀d} are, approximately, log-normally distributed.

Explaining the Log-normality & Further Work Assuming that the reached
conclusion on log-normality is correct, one can form hypothesises on why the log-
normality is present for future investigation.

Log-normal distributions arise from the multiplication of many i.i.d. RVs, and so
the first thought that might enter one’s mind is that D vs,open

vs,close

is the affected by one

such multiplicative process. However, decomposing vs,open

vs,close
gives:

vs,d,open

vs,d,close

=
∑ns,d,open

k=1 mk
s,d,open

∑ns,d,close

k=1 mk
s,d,close

=
ps,d,open

ps,d,close

·
∑ns,d,open

k=1 qk
s,d,open

∑ns,d,close

k=1 qk
s,d,close

(5.3)

which is essentially a sum of heavy-tailed variables divided by another sum of heavy-
tailed variables, with both sums being heavily correlated with each-other. There are
only two obvious multiplicative processes present here, namely the division of the vol-
umes by each other and multiplication with the price ratio, which rarely deviates from
unity on a daily time-horizon; and these can obviously not explain the log-normality
by themselves. Thus it is very difficult to see how any multiplication of many i.i.d.
RVs can be involved, and why a hypothesis based on that would be reasonable.

Another possibility is that maximisation of (Shannon) entropy1 is involved. The
log-normal distribution is one of the entropy-maximising distributions, which means
if the expectation value and variance of a RV log10

Vs,open

Vs,close
were constrained for each s

such that:

E[log10

Vs,open

Vs,close

] = µs

Var[log10

Vs,open

Vs,close

] = σ2
s

(5.4)

and some process (e.g. trading activity) forced Vs,open

Vs,close
to tend towards maximum un-

certainty, then it would mathematically follow [37] that Vs,open

Vs,close
must be log-normal. In

physical terms, this process would have to be causing maximum disorder in the MO
dollar-volumes under the constraints of equation (5.4). The success of this section’s
fitting of log-normal distributions to vs,open

vs,close
suggests that the mentioned constraints

are indeed present, though it is remains to be understood why. Further, the alleged
process that maximises the uncertainty of vs,open

vs,close
remains unknown (though due to

equation (5.3), it would have to be related to whatever process causes the heavy-tails
of the individual mk

s,d,a in the first place). In summary then, disorder maximisation
given the constraints remains a viable route of attack, but further work must be done
to understand the system before a rigorous hypothesis can be formulated.

Thus, in conclusion, no rigorous explanation for the observed log-normality can be
offered with the results available. All that can be said, for now, is that it is clear
vs,open

vs,close
is approximately log-normal, but it is a truly hard case to understand why that

is so.
1Which can be interpreted as being equivalent to thermodynamic entropy.
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5.3.4 Data Quality

The data covered all the major (in terms of market capitalisation) stocks of NYSEarca
& NASDAQ and it ran across 8 years, 2009-2016. It should be noted that the data was
unreliable for NYSE, which could explain why the log-normality was less pronounced
for it than the other exchanges. Thus, all in all, the results should be considered valid
in general for NYSEarca and NASDAQ, and dubious for NYSE, for market conditions
of the given time-frame.

5.4 Predictability of vs,a[d]

5.4.1 Autocorrelation of vs,a[d]

It was discovered that the daily volume vs,d,a was strongly autocorrelated across days
for multiple stocks, and that its autocorrelation function varied periodically with
time. See figure 5.5 as an example. The presence of such autocorrelation implied
that log10 vs,a[d] was highly non-independent, and therefore, to some extent, also
predictable through analysis of its previous realisations log10 vs,a[δ], δ < d. The daily
MO dollar-volume are very important as they are closely related to the auction’s
liquidity, and so this was investigated next.
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Figure 5.5: Top: Time-plot of the log-scaled total opening auction MO dollar-volume
for the AAPL stock. Bottom: Autocorrelation function of the same time-series with
a maximum lag of 182 days.

5.4.2 Pre-forecasting Considerations

Forecasting is the art of using historical information to make predictions into the
future (see section 3.5.1 for a more detailed explanation). In our case, this meant
using the available data to construct a model for the dynamics of the time-series
vs,a[d] that could be used for forecasting. The previous paragraph revealed a clear
interdependence between the historical amplitudes of vs,a[d], and so we started by
analysing the vs,a[d] time-series in isolation. Before a statistical model could be found
though, the unique features of the data had to be considered.
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Large Variability

vs,a[d] had an enormous variability due to its heavy-tails, and this would make fitting
models directly to it difficult. Specifically, the residuals of the fits would end up heavy-
tailed instead of Gaussian-shaped, which would imply bias and hence invalidate the
results. Therefore, it was decided to log-transform the dollar-volume from vs,a[d] to
log10 vs,a[d] beforehand to significantly bring down the variability. This is equivalent
to making what is known as a Box-Cox transform in statistics [21]. To illustrate, let
us look at this from the perspective of the random variables.

Let f be the PDF of Vs,d,a, and g be the PDF of its log-transform log10 Vs,d,a. Then,
dropping the subscripts and using conservation of probability we get that

f (V )dV = g(log10 V )d(log10 V ) ⇒ g(log10 V ) =
1

log10 e
V f (V ) (5.5)

and therefore the new mean µlog10 Vs,d,a
and SD σlog10 Vs,d,a

, when dropping the sub-
scripts, become:

µ =
∫ ∞

0
log10 V g(log10 V )d(log10 V ) =

1
log10 e

∫ ∞

0
log10 V f (V )dV

σ =
∫ ∞

0
(log10 V − µ)2g(log10 V )d(log10 V ) =

1
log10 e

∫ ∞

0
(log10 V − µ)2f (V )dV

(5.6)

This mean that the log-transform of vs,a[d] similarly log-transforms its SD, curbing its
extreme variability and make fitting models much easier. The negative consequence
of this though, is that a predictive model found under some criteria to be optimal
for log10 vs,a[d] can not be expected to also be optimal for vs,a[d]. In the end though,
the most important goal was to confirm predictability of the MO volumes and not
necessarily find a perfect predictive model, and so let us continue while using the
log-transformation.

Lack of Stationarity

Second, the time-series log10 vs,a[d] was highly non-stationary, making the modelling
more difficult. The non-stationarity can be both observed empirically from the ir-
regularities in figure 5.5, and understood from theoretical considerations; the volume
is a function of many exogenous variables that are dynamic over time, such as the
performance of the underlying company, market conditions and the dynamical nature
of the traders and their strategies.

3rd Friday of the Month

There was one very important cyclostationary, i.e. seasonal, effect; equity futures (e.g.
options) on our stocks (almost) always expire on the 3rd Friday of every month (with
the exception of when it falls on holidays). This lead to very large jumps in volume
of the underlying stocks, as can be observed by the peaks in figure 5.5. Extreme
events such as this have to be identified and handled manually, thus fixed effects were
employed to handle the 3rd Friday of month jumps (see 3.5.2 for a description of fixed
effects).
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5.4.3 Forecasting log10 vs,a[d]

After taking the above into consideration, automatic statistical learning methods in
conjunction with analytical reasoning was employed to find appropriate models. Three
different methods were used; ARIMA, Facebook Prophet and Random Forest. For
the two former methods, the analytical reasoning revolved around accounting for ef-
fects that would be difficult for the methods to handle, such as the 3rd Friday of the
month phenomena. In the case of Random Forest, the analytical reasoning was used
to identify features (& combinations of features) important for predicting the response.

The methods were applied in practice in R.

Methods Used

ARIMA The family of ARIMA (see section 3.5.2 for theory) models are able to
represent a broad set of linear processes, and the model-finding algorithm used in the
R::forecast package, i.e. the Hyndman-Khandakar algorithm, is computationally
fast and requires little tuning. Therefore, it was decided to start by applying the
ARIMA method from the R::forecast package in combination with 6 fixed effects;
one for each weekday, and one for the 3rd Friday of the month. The latter fixed effect
was absolutely necessary for reasons already explained, and the former 5 fixed effects
were added to remove any non-stationarities present due to the specific weekday, such
as the effect of stock exchange opening after a weekend on a Mondays and closing
before a weekend on Fridays.

It was hoped that some ARIMA model would be able to explain the fluctuations
not explained by the fixed effects, however that turned out not to be the case. After
the fixed effects were accounted for in log10 vs,a[d], ARIMA ended up not being able to
describe the residuals as anything other than white noise. This meant the dynamics
involved were too subtle for ARIMA, and thus more powerful, non-linear models were
required; hence Prophet was tried next.

Facebook Prophet Facebook Prophet (see section 3.5.3 for theory) was advertised
[22] as a powerful forecasting method for time-series analysis, and it was also available
in R through the R::prophet package. Unlike ARIMA, Prophet is able to uncover a
range of non-linear processes. Particular advantages Prophet had over ARIMA was
its claimed robustness against gaps in data and ability to identify weekly and yearly
seasonalities through Fourier transforms.

Therefore, it was decided to employ the Prophet method while accounting for 3rd
Friday phenomena with fixed effects (also known as "holidays" in R::prophet). It
turned out that Prophet did provide more accurate forecasts than ARIMA, albeit at
the cost of being much more computationally intensive and also exhibiting instability
(i.e. it was prone to crashing).

Random Forests It was next decided to use a powerful, fast and versatile machine
learning method; Random Forests (see section 3.5.4 for theory). Random Forests is
in particular very good at finding accurate models in high-dimensional feature-spaces
[23], which gave us two opportunities. Firstly, it allowed us to incorporate a broad
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range of information during modelling, such as historical open-market liquidity or
price movements in the underlying stock. Second, it allowed us to test many different
combinations of features and evaluate their importance for the response.

Random Forests was implemented through the R::randomForest package. Various
combinations of features were used to train models and then use them for forecasting.
While the primary goal was to optimise the forecast, a secondary goal was to under-
stand which features were the most strongly related to the response. The selection of
features was done through trial-and-error, i.e. by adding a feature and see whether it
improves the accuracy, as well as using the Breiman-Cutler importance measure [24]
as a supporting guide.

Implementation in R

Application across (s, a) The algorithms behind the methods were in the R pack-
ages, but there was still the question of calibrating them with the fixed effects/features,
and applying them systematically through the datasets. For this, an algorithm
was written which, for every auction (s, a), moved through its response function
log10 vs,a[d] along d in two intervals simultaneously; an in-sample training interval
where a model was trained, and an out-of-sample prediction interval where the pre-
diction(s) was made. This is illustrated in more detail, albeit still highly simplified
compared to the actual implementation, in the pseudocode below.

It works in the following manner: For each iteration, a method F is first calibrated
by applying fixed effects or defining features, secondly it is used to find a model M
which describes the in-sample interval, and finally M is used to generate a forecast
for the out-of-sample interval. The forecasts are then all combined into a dataset
{v̂F

s,a[d] : ∀d ∈ D̂
F
s,a} and stored.

The user input the algorithm required was the length of the in-sample interval ntrain,
the length of the prediction-interval npred and the machine-learning method F .
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Algorithm 2 Fit & Forecast Algorithm
Input: ntrain, npred, F , Available Data

Output: {v̂F
s,a[d] : ∀d ∈ D̂

F
s,a}

1: for (∀(a, E) ∈ {open,close} × {NYSEarca,NYSE,NASDSAQ}) do

2: for (∀s ∈ SE) do

3: dbegin
train ≡ First element in Ds,a

4: dend
train ≡ ntrain-th element after dbegin

train in Ds,a

5: dbegin
pred ≡ First element after dend

train in Ds,a

6: dend
pred ≡ npred -th element after dend

train in Ds,a

7: {v̂F
s,a[d] : ∀d ∈ D̂

F
s,a} ≡ ∅

8: while (dend
pred is well defined) do

9: Calibrate F
10: M = F({vs,a[d] : ∀d ∈ (dbegin

train ≤ Ds,a ≤ dend
train)})

11: Use M to create the forecast {ṽs,a[d] : ∀d ∈ (dbegin
pred ≤ Ds,a ≤ dend

pred)}
12: Insert {ṽs,a[d] : ∀d ∈ (dbegin

pred ≤ Ds,a ≤ dend
pred)} into {v̂F

s,a[d] : ∀d ∈ D̂
F
s,a}

13: dbegin
train = npred-th element after dbegin

train in Ds,a

14: dend
train = npred-th element after dend

train in Ds,a

15: dbegin
pred = npred-th element after dbegin

pred in Ds,a

16: dend
pred = npred-th element after dend

pred in Ds,a

5.4.4 Evaluating the Forecast

After the algorithm had run its course for all three methods, the resulting forecasts
were plotted and their accuracy was measured.

Measuring Accuracy

The forecasting accuracy was measured with the root mean square of the residuals
between the forecast and empirical response, i.e. with root mean square error (RMSE).
The residuals are defined as:

rF
s,d,a = log10 v̂F

s,a[d] − log10 vs,a[d] = log10

v̂F
s,a[d]

vs,a[d]
(5.7)

Theoretically, the expectation value of the residuals must be 0 if the forecast is un-
biased, and not autocorrelated across d if all the systematic movements have been
captured. Moving on, the RMSE of method F for auction a was defined by:

RMSE2 = 〈(rF
s,d,a)2〉∀(s,d) =

1
∑

∀s∈ŜF |D̂F
s,a|

∑

∀s∈ŜF

∑

∀d∈D̂F

(rF
s,d,a)2 (5.8)

Cross-validation

The mortal danger of forecasting is overfitting. Overfitting, as the name suggests,
occurs when a model follows the dataset it is trained with too closely, leading to the
model becoming optimal at describing the noise of the dataset instead of its underlying
dynamics. Such a model would perform poorly at describing new data and hence also
be bad at forecasting. There exist multiple techniques for avoiding overfitting, but

63



the simplest and most common way is evaluating the model’s performance on a new
dataset with dynamics identical to those of the old one. This is called cross-validation.

Cross-validation was employed in two ways. Firstly, when evaluating the quality
of the fits, only the accuracy of the forecasts were considered - the goodness of fit
of the models to the respective datasets they were trained on was ignored. This can
be considered cross-validation across d. Second, when comparing the fits of different
methods with each other, they were cross-validated across s.

5.4.5 Results of Forecasting

In this section, the results of the forecasts are presented through plots and tables.

Technical Notes

• All the methods were employed on identical data.

• ntrain = 480 training points were chosen, which is nearly 2 years worth of
trading days (252 trading days per year). The training window was this large
because Facebook prophet required well over a year of data to refrain from
regular crashing.

• The predictions were done only one day in advance to maximise the forecasting
accuracy, so npred = 1.

• A significant quantity of stocks had to be dropped because they had less than
the required 480 datapoints available for training. This included all the stocks
in NYSE.

• The set of forecasted datapoints D̂F
s,a were identical for the Random Forests and

ARIMA methods, and of length 198886 for both opening and closing auctions.
The equivalent for Prophet was 153875 datapoints. Therefore, all the results
shown in the tables below are calculated only for the 153875 datapoints which all
three methods managed to fit.

• The cross-validation across s, as mentioned in section 5.4.4, was done by splitting
the forecasts of each method into two segments, and calculating the RMSE for
each of them separately. The splitting was done by alphabetically sorting the
set of stocks forecasted and then cutting them in half down the middle.

• Finally, the naive method, marked as "0. Naive;" is present in the tables 5.1 and
5.2 as a benchmark. The naive method "forecasts" the daily-dollar volume by
simply setting it equal to the previous trading day’s daily dollar-volume.

Comparison between Methods

Across Auctions The two tables below represent the results of the forecasts across
auctions. In the first column, ∆ is the differencing operator, L is the lag operator and
os[d] is the open-market dollar-volume traded on date d for stock s. So, for example,
including L1 log10 os[d] in the rows of the first column means the log of the previous
day’s open-market dollar-volume was one of the variables used to predict the next
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day’s response. The RMSE
′

and RMSE
′′

columns represent the RMSE of the two
cross-validation segments defined in the above list. The RMSEtot is the RMSE of
the whole dataset of forecasts. µr is the mean of the residuals of the forecast.

Opening Auctions

Method & fixed effects/Features RMSE
′

RMSE
′′

RMSEtot µr

0. Naive; New $-volume same as last 0.417 0.400 0.409 0.000

1. ARIMA; d, Weekdays, 3rd Friday 0.330 0.341 0.336 -0.030

2. Prophet; d, 3rd Friday 0.284 0.292 0.288 -0.011

3. RF; d, Weekdays, 3rd Friday 0.283 0.290 0.287 -0.000

4. RF; d, 3rd Friday 0.278 0.285 0.282 0.006

5. RF; Weekdays, 3rd Friday 0.330 0.341 0.336 -0.031

6. RF; d, Weekdays, 3rd Friday,
∆1L1 log10 vs,open[d], L1 log10 vs,open[d]

0.274 0.282 0.278 0.011

7. RF; Weekdays, 3rd Friday,
∆1L1 log10 vs,open[d], L1 log10 vs,open[d]

0.297 0.305 0.300 -0.017

8. RF; d, Weekdays, 3rd Friday,
∆1L1 log10 vs,open[d], L1 log10 vs,open[d],
L1 log10 os[d]

0.269 0.277 0.273 0.010

9. RF; d, Weekdays, 3rd Friday,
∆1L1 log10 vs,open[d], L1 log10 vs,open[d],
L1 log10 vs,close[d]

0.274 0.281 0.278 0.012

Table 5.1: Result of forecasting the log MO daily dollar-volumes for the opening
auction.
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Closing Auctions

Method & fixed effects/Features RMSE
′

RMSE
′′

RMSEtot µr

0. Naive; New $-volume same as last 0.534 0.556 0.543 0.002

1. ARIMA; d, Weekdays, 3rd Friday 0.459 0.489 0.473 -0.103

2. Prophet; d, 3rd Friday 0.413 0.435 0.423 -0.035

3. RF; d, Weekdays, 3rd Friday 0.410 0.430 0.419 -0.030

4. RF; d, 3rd Friday 0.407 0.426 0.415 -0.023

5. RF; Weekdays, 3rd Friday 0.458 0.488 0.472 -0.103

6. RF; d, Weekdays, 3rd Friday,
∆1L1 log10 vs,close[d], L1 log10 vs,close[d]

0.409 0.428 0.417 0.003

7. RF; Weekdays, 3rd Friday,
∆1L1 log10 vs,close[d], L1 log10 vs,close[d]

0.429 0.452 0.439 0.072

8. RF; d, Weekdays, 3rd Friday,
∆1L1 log10 vs,close[d], L1 log10 vs,close[d],
log10 os[d]

0.398 0.417 0.406 -0.001

9. RF; d, Weekdays, 3rd Friday, log10 os[d] 0.398 0.418 0.407 -0.026

Table 5.2: Result of forecasting the log MO daily dollar-volumes for the closing auc-
tion.

Across Exchanges The methods are also illustrated for each exchange, in the ta-
bles below.

Opening Auctions for each Exchange

NYSEarca NASDAQ
Method & fixed effects/Features RMSE µr RMSE µr

1. ARIMA; d, Weekdays, 3rd Friday 0.376 -0.085 0.294 -0.051

2. Prophet; d, 3rd Friday 0.335 -0.001 0.237 -0.021

3. RF; d, Weekdays, 3rd Friday,
∆1L1 log10 vs,open[d], L1 log10 vs,open[d],
L1 log10 os[d]

0.323 0.009 0.217 0.011

4. RF; d, Weekdays, 3rd Friday,
∆1L1 log10 vs,open[d], L1 log10 vs,open[d]

0.327 0.011 0.224 0.011

Table 5.3: Result of forecasting log MO daily dollar-volumes for the opening auction
across exchanges.
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Closing Auctions for each Exchange

NYSEarca NASDAQ
Method & fixed effects/Features RMSE µr RMSE µr

1. ARIMA; d, Weekdays, 3rd Friday 0.589 -0.092 0.369 -0.115

2. Prophet; d, 3rd Friday 0.532 -0.027 0.288 -0.042

3. RF; d, Weekdays, 3rd Friday,
∆1L1 log10 vs,close[d], L1 log10 vs,close[d],
log10 os[d]

0.517 -0.008 0.266 0.006

4. RF; d, Weekdays, 3rd Friday,
∆1L1 log10 vs,close[d], L1 log10 vs,close[d]

0.527 -0.005 0.281 0.010

Table 5.4: Result of forecasting log MO daily dollar-volumes for the closing auction
across exchanges.

Illustrations of Forecasts

In this section, the methods are graphically illustrated through scatterplots of the
forecasted versus empirical response, histograms of the residuals and an autocorrela-
tion chart of the residuals. The autocorrelation charts were produced by calculating
the autocorrelation of the Apple stock from NASDAQ as a demonstrative example,
with a maximum lag δmax = 182 days.

ARIMA As previously mentioned, ARIMA was used in conjunction with the 6
fixed effects; 5 to denote weekdays, and 1 to denote 3rd Friday of the month.

One important result is not showed in these plots; It turned out that ARIMA (with
the 6 fixed effects) without exception only managed to fit ARIMA(0,0,0) models.

Opening Auctions:
Illustration of 1st row in table 5.1
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Figure 5.6: Result of ARIMA prediction of the log MO daily dollar-volumes for the
opening auctions. d, Weekdays and 3rd Friday were used as features.

Closing Auctions:
Illustration of 1st row in table 5.2
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Figure 5.7: Result of ARIMA prediction of the log MO daily dollar-volumes for the
closing auctions. d, Weekdays and 3rd Friday were used as features.

Facebook Prophet Prophet was used in conjunction with a fixed effect to denote
the 3rd Friday of the month.

Opening Auctions:
Illustration of 2nd row in table 5.1
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Figure 5.8: Result of Facebook Prophet prediction of the log MO daily dollar-volumes
for the opening auctions. d and 3rd Friday were used as features.

Closing Auctions:
Illustration of 2nd row in table 5.2
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Figure 5.9: Result of Facebook Prophet prediction of the log MO daily dollar-volumes
for the closing auctions. d and 3rd Friday were used as features.

Random Forests Various combinations of features were used during the RF fore-
casting. To illustrate the effect on the forecasting accuracy of adding/removing fea-
tures, some of the methods are illustrated here.

First, the two methods that achieved the lowest RMSE for each auction are plot-
ted below.

Optimal Features, Opening Auctions:
Illustration of 8th row in table 5.1
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Figure 5.10: Result of Random Forests prediction of the log MO daily dollar-volumes
for the opening auctions. d, Weekdays, 3rd Friday, the previous day’s response, the
previous day’s first difference of response and the previous day’s open market volume
were used as features.

Optimal Features, Closing Auctions:
Illustration of 8th row in table 5.2

72



Figure 5.11: Result of Random Forests prediction of the log MO daily dollar-volumes
for the closing auctions. d, Weekdays, 3rd Friday, the previous day’s response, the
previous day’s first difference of response and the current day’s open market volume
were used as features.

It turned out that the autocorrelation between the residuals could be step-wise re-
duced, and the forecasting accuracy increased, by adding d and then the previous
day’s response combined with the 1st difference of the previous day’s response as fea-
tures. This is illustrated by plotting the effects on the forecasting accuracy by adding
each of these features for the opening auctions.

Only Weekdays & 3rd Friday as Features:
Illustration of 5th row in table 5.1
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Figure 5.12: Result of Random Forests prediction of the log MO daily dollar-volumes
for the opening auctions. Weekdays & 3rd Friday were used as features.

Effect of adding d to the Features:
Illustration of 3rd row in table 5.1
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Figure 5.13: Result of Random Forests prediction of the log MO daily dollar-volumes
for the opening auctions. d, Weekdays, 3rd Friday were used as features.

Effect of adding d, previous day’s response & 1st difference of the previous

day’s response to the Features:
Illustration of 7th row in table 5.1
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Figure 5.14: Result of Random Forests prediction of the log MO daily dollar-volumes
for the closing auctions. d, Weekdays, 3rd Friday, the previous day’s response & the
previous day’s first difference of response were used as features.

5.4.6 Discussion of Forecasting Accuracy

ARIMA

It turned out that after adjusting the data for the weekdays and 3rd Friday fixed ef-
fects, ARIMA was unable to model the time-series as anything other than ARIMA(0,0,0),
which is a white noise process. Therefore, it must be concluded that the dynamics of
log10 vs,a[d] are not generated by any of the family of stochastic processes ARIMA is
able to identify.

In practice, ARIMA(0,0,0) along with the 6 fixed effects works as a rolling condi-
tional average in each fixed factor (as described in theory section 3.5.2). In other
words, the prediction for e.g. Monday is the rolling average of the previous Mon-
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day responses from the in-sample interval, for Tuesday it is the rolling average of
the previous Tuesday responses from the in-sample interval, and so on. This is a
naive method that only captures the variation in the mean of the time-series, and
thus it had, unsurprisingly, a relatively high RMSE and significant autocorrelation of
residuals, as can be seen from all the tables and figures 5.6 and 5.7.

Facebook Prophet

While the RMSE of Prophet was lower than ARIMA, it only managed to find models
for ≈ 3

4
of the datapoints that ARIMA and Random Forests did. In addition, it turned

out to be relatively slow compared to the other methods. Prophet did however capture
significant amounts of the variations in the datapoints it managed to forecast, judging
by its relatively low RMSE and the small autocorrelation of its residuals.

Random Forests

As can be seen from the results, Random Forests turned out to by far be the superiour
method of the ones used. The optimal Random Forests feature combination was found
by incorporating an exogenous feature, the prior open-market dollar-volume, though
Random Forests also beat the other methods on "fair terms", i.e. without needing to
use exogenous information; this can be seen from the surprisingly good forecasts in
line 6 and even 4 of tables 5.1 & 5.2.

The Importance of Using d Figures 5.12, 5.13 and 5.14 show that adding d and
the previous day’s response combined with its 1st difference, strongly reduces the
autocorrelation of the residuals. Tables 5.1 and 5.2 also show that the forecasting
accuracy is particularly improved by adding d. This was at first surprising to us, as d
is a strictly increasing variable and it was at believed that the algorithm was unable to
handle it, because during the prediction phase (line 5 in algorithm 1) all the decision
trees would split every time in the "larger than" direction when they checked d against
the previous days, hence discarding half the tree every time.

However, while this is true, d is in fact very important for two reasons. Firstly,
it is extremely important during the segmentation phase of the data, i.e. when the
trees are being created (line 4 in algorithm 1), as segmenting along the d feature-
dimension allows the model to capture the the fact that the variance and means of
the responses vary by time; so in short, it improves the segmentation of the data and
thus quality of the trees. The second reason is that consistently splitting the trees in
the "larger than" direction is in fact a good thing, as it ensures that each tree uses the
newest, and hence most relevant, data segments it has for forecasting; in other words,
splitting forward means splitting in the correct direction.

Comparing the Methods against Each Other

Prophet versus the Rest As previously mentioned, Prophet only managed to
forecast ≈ 3

4
of the datapoints that ARIMA and Random Forests did, and in addition

it was beat by most of the Random Forests methods. Thus it is concluded that
Prophet performed comparably poorly at this task.
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ARIMA and Random Forests Almost all Random Forests produced significantly
better forecasts than ARIMA, with the exception of one; the Random Forests method
of row 5 in tables 5.1 & 5.2 produced forecasts that had practically identical accuracy
to that of ARIMA (whose results can be seen in the 1st line of the same tables). The
reason for this is that the Random Forests method of interest only used weekdays and
3rd Friday as features, leading to it segmenting the data solely by weekday and 3rd
Friday, and hence to the averaging of its trees simply being a conditional average by
weekday and 3rd Friday; which is equivalent to the rolling conditional average model
ARIMA was able to find. This thus serves as a good reality check that everything is
working as it is supposed to.

5.4.7 Discussion of Results

Predictability of vs,d,a

The results show that vs,d,a is predictable2 up to factors of 100.217 ≈ 1.6 and 100.266 ≈
1.8 for the opening and closing auctions of NASDAQ, and 100.323 ≈ 2.1 and 100.517 ≈
3.3 for the opening and closing auctions of NYSEarca. This means opening auctions
are more predictable than closing auctions, that the difference in predictability be-
tween open and closing auctions is larger for NYSEarca than for NASDAQ, and that
NASDAQ is in general more predictable than NYSEarca. That said, these errors are
far, far smaller than what the naive method gives, and so one can safely conclude
that the daily MO dollar-volume can be readily forecasted. Further, it must be noted
that some stocks are more predictable than others, so the errors given here can be
considered as conservative estimates.

The fact that NYSEarca’s closing auctions are more unpredictable is unsurprising
in the light of the discussion in section 4.2.7. There it was established that the tails of
the MO dollar-volume distributions for NYSEarca are systematically heavier for clos-
ing auctions than opening auctions; and heavier tails means more extreme behaviour
which again means more unpredictability and this is precisely what is observed.

Correlations between the Volumes

Comparing the RMSE of the different Random Forests methods also brings perspec-
tive on the interrelations between the open and close MO dollar-volumes, as well their
relation to the open-market dollar-volume. Adding the current day’s open-market vol-
umes to the features significantly improves the prediction for the closing volume, as
can be seen in rows 8 and 9 of table 5.2; this is unsurprising, as the open-market
trading volume carries fresh information. Further, based on rows 8 and 9 in table 5.1,
information on the previous day’s open-market volume seem to be more valuable than
that of the previous day’s closing volume. These two results imply that the open/close
auction volumes are more closely related to the open-market volumes than they are
to each other.

2To a physicist, such error rates might seem extreme. However, it must be kept in mind that
due to the heavy-tailed fluctuations present in financial systems, accurate forecasting of financial
time-series is very difficult.
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5.4.8 Further Work

The work done so far is extensive, but it can be taken further.

Improving Forecasting Accuracy

Figures 5.10 & 5.11 represent the optimal forecasts achieved. These figures, along with
5.14, reveal that the residuals no longer exhibit statistically significant autocorrelation;
this means the patterns in the time-series have largely been exploited, and so the
only viable way to improve the forecasts is by incorporating exogenous information
in Random Forests. Here are two ways to do that:

• It has been known for many years [28][29] that trading volume and market price
are dependent, so a good place to start is by trying to use the stock price return,
or sign of return, and so on, to improve the prediction of the MO dollar-volume.
On this note, one can also go the other way and see whether the stocks’ price
movements are correlated with the movement of their dolllar-volumes.

• Minor technical improvements can always be done. For example, the first order
difference of the open-market volume, i.e. ∆1 log10 os,d,a, could be incorporated
as a feature for Random Forests. Another improvement could be fine-tuning
the effect of the futures expiration date. The futures expire on the 3rd Friday
only if the 3rd Friday does not fall on a holiday; if it does, the expiration date
is pushed to the earliest date before the holiday.

• New forecasting methods could also be employed; such as for example Deep
Learning, which has seen extensive publicity as of late [30].

Miscellaneous

It was mentioned in section 5.4.3 that the Breiman-Cutler importance measure was
used to aid in the selection of features for Random Forests. One could also use it as
a way to estimate the dependence of the daily MO-dollar volumes with the features
used to predict them (e.g. weekdays, 3rd Friday of the month, open-market volume,
etc.).

As noted, NASDAQ was remarkably more predictable than NYSEarca; this could
be due to differences in the types of stocks they trade, as the bulk of NYSEarca
stocks are ETFs while the bulk of NASDAQ stocks are traditional corporate stocks,
and/or it could also be due to different auction mechanisms. There is great potential
for further investigation here.

Finally, one can always investigate the predictability for individual stocks, or classes
of stocks. For example, one could look at the predictability of stocks with very large
market capitalisations compared to the smaller ones, or try to understand why some
stocks are more predictable than others.

5.4.9 Data Quality

It must be kept in mind that these results are only valid for the stocks traded on
NYSEarca & NASDAQ, as none of the stocks in SNYSE contained enough data for
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forecasting. Other than that, the data covered all the largest (in terms of market
capitalisation) stocks on NASDAQ and NYSEarca over half a decade of time, and
without excessive amounts of gaps in the data; therefore the results are representative
for these two exchanges.
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Chapter 6

PRE-AUCTION DYNAMICS

The final part of this thesis is an exploration of the pre-auction dynamics of NYSEarca
opening auctions. First, statistical regularities in the price-finding and order matching
processes were observed and investigated. Afterwards, the dynamics of order-placing
was investigated with the aim of understanding the price response of sell and buy
orders.

The notation used in this chapter is somewhat different from the rest of the thesis.

• Because the investigation solely concerned opening auctions, the a subscript will
from now on be dropped.

• As explained in section 3.1.3, the opening auctions of NYSEarca start at tstart =
08:00:00 and end at tend = 09:30:00, ET (Eastern Time). However, out of
convenience t will from now on be measured from 08:00, such that tstart = 0
and either tend = 90min, or tend = 90 · 60s= 5400s, depending on whether the
minute or second is the unit used.

• The matching price ps,d,t will be referred to as the indicative matching price
(IMP) if t < 90min and final matching price (FMP) when t = 90min, as per
conventions.

• Analogously to the IMP vs FMP, the daily MO dollar-volume is vs,d,tend
, and

vs,d,t will referred to as the total MO dollar-volume when t < tend.

• Out of convenience, the total dollar-volume imbalance (which is defined in the
section below) will often be shortened to just imbalance.

6.1 Available Data

We had access to data disseminated by NYSEarca during its pre-auction period of
the opening auctions. The data covered 37 stocks over a time-period of 2016-09-29
to 2017-04-07. It consisted of 10, 331, 607 (s, d, t) datapoints, and each datapoint
contained data on three variables; the total MO dollar-volume (at time t) vs,d(t),
matching price ps,d(t) and total dollar-volume imbalance between sell and buy orders
is,d(t). The former two variables are defined in section 3.1.3, and the definition of the
total imbalance is [42]:

is,d(t) ≡ (vbuy,L
s,d (0, t) + vbuy,M

s,d (t)) − (vsell,L
s,d (∞, t) + vsell,M

s,d (t)) (6.1)
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where vbuy,L
s,d (0, t) is the cumulative dollar-volume of all buy limit orders (meaning

every buy order starting at $0 and upwards is counted) and vsell,L
s,d (∞, t) is analogously

the cumulative dollar-volume of all sell limit orders.

6.2 Regularities

6.2.1 Preliminary Considerations

As mentioned in section 1.2, the outcome of an auction (s, d, a) is defined by the FMP
and the distribution of the MO dollar-volumes; therefore the investigation revolved
around the dynamics of vs,d(t) and ps,d(t). is,d(t) was also investigated, as one expects
the total dollar-volume imbalance to be relevant to the dynamics of price formation.
These variables can be considered to be the state-variables of the dynamical, time-
evolving systems that the auctions (s, d, t) are.

The aim here was to find regularities that are independent of stock and date. Af-
ter all, chapter 4 shows that the behaviour of the NYSEarca opening auctions at their
conclusion is reasonably stable across stocks and days, and thus it is not far-fetched to
imagine that the same is true for the pre-auction dynamics. The search for these gen-
eral regularities was carried out by normalising the variables, averaging them across
(s, d) and then studying the time-evolution of the results. The normalisation is nec-
essary to make the stocks comparable with each other.

The time evolution was studied through 1-minute slices. This technically means the
variables’ t-domains were discretised with the flooring function floor(t) = ⌊t⌋ : R ≥
0 → Z ≥ 0, and afterwards for each minute t ∈ [0, 89min] the latest available data-
point was used to set the values of the variables. For example, if for some auction
(s, d) there were two datapoints available at the 3rd minute, at eg times 08:03:29
and 08:03:56, then the "last available one", the one at 08:03:56, would be used to
set the values of the variables for t = 3min. Only using the last available datapoint
was necessary to ensure the results were not biased towards stocks that had more
datapoints/were of higher data-quality

6.2.2 Time-evolution of ps,d[t]

To start off, the IMP was discretised ps,d(t) → ps,d[t], as described above, and then
normalised with the FMP ps,d[tend]:

p̃s,d[t] ≡ ps,d[t]
ps,d[tend]

(6.2)

Afterwards, the average price across all (s, d) was calculated for each minute:

p̄[t] = 〈p̃s,d[t]〉∀(s,d) (6.3)

and plotted. The result revealed that p̃s,d[t] was not fluctuating randomly around 1,
but apparently growing, as figure 6.1 shows.
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Figure 6.1: The time-evolution of the averaged indicative matching price normalised
by the final matching price during the pre-auction period of NYSEarca opening auc-
tions. The grey shade is a two standard error confidence interval for the measured
average normalised indicative matching price.

To check whether this growth was statistically significant, a t-test (see section 3.3.3
for theory) was ran on the underlying datasets {p̃s,d[t] : ∀(s, d)} used to calculate p̄][t],
with the null-hypothesis being that their mean followed Student’s t-distribution and
was equal to 1. The result is plotted in figure 6.2 below.
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Figure 6.2: P-values from the t-test that checked whether the sample mean of the
normalised indicative matching price as a function of time significantly deviates from
1.

The t-test implies that between 65th and the 85th minutes the IMP is roughly 0.05-
0.1% higher than the FMP, but it does not support the notion that the IMP is growing
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throughout the auction.

The t-test is dependent on the sample mean of its observables converging to the
normal distribution, which will happen if the observables are i.i.d. In this specific
case, there is no reason to believe that p̃s,d[t] significantly deviates from i.i.d.; while
the traders are heterogeneous between stocks and days, the auction rules are com-
mon for all stocks and therefore one can expect p̃s,d[t] to be similarly distributed for
each t. Further, every p̃s,d[t] came from a different auction (s, d) and thus their inter-
dependence under regular market conditions is certainly limited, if it at all exists.

6.2.3 Time-evolution of vs,d[t]

The total MO dollar-volume was studied in an analogous way. It was first normalised:

ṽs,d[t] ≡ vs,d[t]
vs,d[tend]

(6.4)

and then averaged across all (s, d) for each minute:

v̄[t] = 〈ṽs,d[t]〉∀(s,d) (6.5)

Plotting v̄[t] by t showed, as can be seen in figure 6.3, that it was increasing almost
linearly. "Almost", because it appears to exhibit slight acceleration during the final
≈ 15 minutes of the auctions.
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Figure 6.3: The time-evolution of the total MO dollar-volume at time t normalised
by the daily MO dollar-volume, along with a least square errors linear fit to the first
80 minutes of the data. The grey shade is two standard errors of confidence interval
for the measured average normalised MO dollar-volume.

The line was generated by fitting the first 80 minutes of the data with a least square
errors linear model, and it is intended to illustrate the upwards curvature of v̄[t] during
the last minutes of the auction.
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6.2.4 Time-evolution of is,d[t]

No clear pattern in the time-evolution of the total imbalance through the 1-minute
slices was found, and no correlation between the imbalance and the other two state
variables in the 1-minute slices was identified either.

However, it should be noted that when the temporal resolution is increased from
1-minute slices to the maximum that the available data allows, one can make ed-
ucated guesses as to whether a new in the money1 buy or sell order was entered,
or cancelled, between two datapoints. Using equations (6.1) along with the pair of
equations (3.1), one must conclude the following:

∆is,d[t] < 0 ∧ ∆vs,d[t] > 0 ⇒ Likely Sell Order at t

∆is,d[t] > 0 ∧ ∆vs,d[t] > 0 ⇒ Likely Buy Order at t

∆is,d[t] < 0 ∧ ∆vs,d[t] < 0 ⇒ Likely Cancelled Buy Order at t

∆is,d[t] > 0 ∧ ∆vs,d[t] < 0 ⇒ Likely Cancelled Sell Order at t

∆is,d[t] < 0 ∧ ∆vs,d[t] = |∆is,d[t]| ⇒ Likely Sell Market Order at t

∆is,d[t] > 0 ∧ ∆vs,d[t] = |∆is,d[t]| ⇒ Likely Buy Market Order at t

(6.6)

and so on, with ∆ being the difference operator acting in time. These results will be
put to use in section 6.3.

6.2.5 Discussion of Observations

Observed Regularities

The results imply that the time-dynamics of vs,d(t) and ps,d(t) contain regularities in
their behaviour during the pre-auction periods of the opening auctions of NYSEarca.
v̄s,d[t] exhibited linear growth through time until the final few minutes, and the IMP,
according to the t-test from figure 6.2, showed largely statistically insignificant price-
fluctuations around the FMP (with the exception of when t ∈ [65, 85]min). These
regularities imply that the time-evolution of the auctions exhibit a degree of stability
and predictability.

The total imbalance, on the other hand, did not exhibit any such clear regularities.
This is, however, not unexpected, because while the matching price and total MO
dollar-volumes are regulated by auction mechanisms, which are represented through
the pair of equations (3.1), the imbalance is just a reflection of whatever orders the
traders have put in. From another perspective; it is much more difficult for a trader
to move the the matching price or MO dollar-volume than it is for her to move the
imbalance2, and so one should expect that the two former variables to exhibit more
stability than the imbalance. Further, it was mentioned that no strong correlation
was found between the imbalance and the IMP and total MO dollar-volume; this is
not surprising for the same reasons, as the total imbalance is a global variable that
can contain LOs far outside the IMP.

1In the money means the orders were entered at a price that allowed the orders to be matched.
2She just needs to send in a large limit order at an outrageous price, which would have a large

effect on the imbalance but no effect on the price or the MO dollar-volume.
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Final Minutes of the Auctions

Around the final minutes, p̄[t] started exhibiting interesting behaviour. As seen in fig-
ure 6.2, p̄[t] showed statistically significant convergence towards the FMP at exactly
the 85th minute. However, while statistically significant, it should still be noted that
the average price deviation was quite small, only 0.05-0.1%. The underlying cause of
this behaviour could be the fact that NASDAQ starts disseminating price informa-
tion at exactly t = 85, i.e. 9:25am [26]. Because ETFs are the main asset class listed
on NYSEarca and many of these funds derive their market-values from the prices of
stocks traded at exchanges such as NASDAQ, then naturally the new information on
the prices of the stocks underlying the ETFs will cause movement in the price and
updates in the trading positions of these ETFs.

Further, v̄[t] was observed to accelerate during the roughly 15 last minutes of the
auctions; the explanation might be human behaviour in the face of deadlines. This
phenomena is reminiscent of how conference participants behave as registration and
fee payment deadlines approach, as observed by V. Alfi, A. Gabrielli & L. Pietronero
[27]. In their paper, it was hypothesised that scientists delay committing to a con-
ference to avoid having to cancel their visit and lose the money that paid for the
registration fee. One could make a similar hypothesis for our system; a trader has
a clear disincentive to commit to a trade too early because that would reveal his
intentions to competing traders, and so it is reasonable for him to delay it for as
long as possible; this latter point would explain the observed acceleration in the MO
dollar-volume.

6.2.6 Further Work

In this section general regularities were studied by normalising and then averaging.
The issue with this approach is that while it finds general behaviour that applies
across stocks and days, significant amounts of information and subtleties are lost
when averaging. Thus, this work can be continued by seeing whether the regularities
in v̄s,d[t] and p̄s,d[t] express themselves differently for individual stocks and during
different time periods.

Further, it must be mentioned that the regularity of v̄s,d[t] can be used to improve the
forecasts of the daily MO dollar-volumes done in the previous chapter. Namely, one
can add the total MO dollar-volume matched at some specified t into the auction as
a feature to Random Forests for predicting the final daily MO dollar-volume of the
auction.

6.2.7 Data Limitations

It must be noted that the regularities were only present in the available sample. As
described in section 6.1, the sample consisted of only 37 stocks across a time-period
lasting little than more than half a year, 2016-09-29 to 2017-04-07, which is far too
little given the variability of market conditions through time. Therefore, while the
results of this section are interesting, they cannot be considered declarative until
reproduced in a broader range of data.
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6.3 Price Response

The simplest way [36] to study market impact (which is the price shift a new order
causes) is by measuring a stock’s price change in response to a new order. Thus as a
first step towards understanding the dynamics of order placing, the price response due
to a new order was studied. This was done by defining the concept of price response,
and then using different price response functions to measure the effect different types
of orders have on the price. First the IMP was measured, and then the much more
important FMP.

6.3.1 Measuring Price Response

A price response function measures the expected fluctuations in stock price condi-
tioned on the sign of a trade (i.e. whether it was a buy or sell order) carried out as
a function of time τ after the trade was entered. The response functions used in this
investigation can be segmented into two types: unsigned response functions R[τ ], and
signed response functions Rη[τ ]. The concept behind both of them is the same, and
in form they are almost identical; the only difference between them is that the signed
variant adds the addition condition of whether the order contributes to the imbalance
or counteracts it.

Unsigned Response Function

In the case of our auctions, the unsigned response can be mathematically formulated
as:

R[τ ] ≡
〈

ǫ(s, d, t)
ps,d[t + τ ] − ps,d[t]

ps,d[t]

〉

∀(s,d,t) : ǫ(s,d,t) 6=0

(6.7)

here t is the timestamp of the order and τ ≥ 0 is the time after an order was entered.
Further, ǫ[s, d, t] is a function that discriminates between new buy and sell orders by
returning +1,−1 or 0 depending on whether it guesses3 [s, d, t] contains a new buy
order, new sell order or neither. It is based on equation (6.6), and its precise definition
follows below:

ǫ(s, d, t) ≡















+1, if ∆is,d[t] > 0 ∧ ∆vs,d[t] > 0

−1, if ∆is,d[t] < 0 ∧ ∆vs,d[t] > 0

0, otherwise

(6.8)

where ∆ is the difference operator applied on the t parameter.

The response function measures the systematic correlation between order sign and
price change. If it is positive, then on average the price largely moves "in the ex-
pected direction"; i.e. buy orders push the price up, and/or sell orders push it down.
If the response function is largely negative however, it means the price moves in the
opposite way one would expect it to; i.e. buy orders in fact push the price down,
while sell orders push it up.4

3The term "guessed" was used because the datapoints were not consistently updated whenever a
new order came in, and so it was impossible to classify every datapoint with complete certainty.

4As a side-note, it should be mentioned that a price-response function is simply a linear response
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Signed Response Function

The signed response Rη[τ ], with the label5 η ∈ [−1, +1] being its sign, is defined as
follows:

Rη[τ ] ≡
〈

ζ(s, d, t, η)
ps,d[t + τ ] − ps,d[t]

ps,d[t]

〉

∀(s,d,t) : ζ(s,d,t,η) 6=0

(6.9)

where the new function ζ(s, d, t, η) is similar to ǫ(s, d, t) except it also discriminates
between the orders that increase the imbalance (i.e. is,d[t]∆is,d[t] > 0) and those that
decrease it (is,d[t]∆is,d[t] < 0) according to η:

ζ(s, d, t, η) ≡















+1, if ∆is,d[t] > 0 ∧ ∆vs,d[t] > 0 ∧ sgn(is,d[t]∆is,d[t]) = η

−1, if ∆is,d[t] < 0 ∧ ∆vs,d[t] > 0 ∧ sgn(is,d[t]∆is,d[t]) = η

0, otherwise

(6.10)

with sgn : R → [−1, +1] being the signum function.

The signed response function measures the systematic correlation between the price
change of an order, and the order type and direction; with η = +1 representing orders
that push the imbalance upwards, and η = −1 those that push it downwards.

6.3.2 Indicative Matching Price Response

The response functions are used here to measure the IMP response. Before continu-
ing, it is worth mentioning that market impact of any new order on the IMP can in
principle be predicted with complete certainty from the pair of equations (3.1), but
only when the order book is known (which we did not have, hence why we were forced
to use the response function).

The effect of an order can rise and fall within seconds (or even less due to high
frequency trading), thus 1-second slices were used to calculate the response functions.
Further, only the latest available datapoints for each second were used to set the
values of vs,d,t,is,d,t and ps,d,t (similarly to what was done in section 6.2) to avoid bias
towards the stocks with most data.

Moving on, as written in section 3.1.3, the NYSEarca opening auctions freeze at
09:29, i.e. at the t = 89 · 60 = 5340th second. Therefore, it was decided to impose the
criterion t+τ < 5340s on the response functions of the IMP, and so the IMP response
functions are defined as:

RIMP[τ ] ≡
〈

ǫ(s, d, t)
ps,d[t + τ ] − ps,d[t]

ps,d[t]

〉

∀(s,d,t) : (ǫ(s,d,t) 6=0∧t+τ<5340)

Rη,IMP[τ ] ≡
〈

ζ(s, d, t, η)
ps,d[t + τ ] − ps,d[t]

ps,d[t]

〉

∀(s,d,t) : (ζ(s,d,t,η) 6=0∧t+τ<5340)

(6.11)

function that measures the average change in relative price (often referred to as "return" in finance)
resulting from new orders of a certain type.

5Please note that η is a label, not an exponent.
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with the averaging being done over all available data.

Measured Price Response for all Stocks

Figure 6.4 below illustrate the above response functions in two cases; in the top
row, the detailed behaviour of the response functions are plotted for the first 60
seconds in τ . In the bottom row, the response function is plotted over the next 10
minutes; plotting over a longer period was not possible due to the nature of the data.
The by-minute plot were created by averaging the response function, whose temporal
resolution was seconds, for each minute and thus make the plots more clear.
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Figure 6.4: The time-evolution of the measured IMP responses averaged across all
data. The shades and error bars are two standard errors of confidence interval for the
measured responses. The two left figures are of the unsigned responses, while the two
right ones are plots of the signed responses. The smooth curves are polynomial fitted
to the data for illustrative purposes.
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A few observations can be made. Firstly, and most importantly, it is clear that the
signed response function segments the data into two groups with significantly different
properties; the imbalance-increasing responses are globally positive and of relatively
large amplitude, while the imbalance-decreasing ones are globally weak and have a
negative price response. Secondly, the upper charts show that the orders immediately
incite a strong, transient peak in the IMP response. For imbalance-increasing orders,
it lasts for roughly 5s, and 10s for the imbalance-decreasing ones. Further, after the
peak has subsided, the amplitudes of Rη,IMP remain stable for the next 5 or so minutes
for both imbalance-increasing and -decreasing orders.

6.3.3 Final Matching Price Response

While the IMP responses are interesting, the FMP response is much more important;
after all, it is at the FMP, not IMP, that the MOs are exchanged at.

The FMP response was investigated differently from the IMP:

• No clear patterns were found by averaging across all stocks, so instead the FMP
response was measured on a stock-by-stock basis.

• Further, it is also easy to measure the FMP response due to the cancellation of
an order; thus the cancellation-responses CFMP[τ ] and Cη,FMP[τ ] were introduced
and studied for the sake of completeness.

• The measurements were done (for aesthetic reasons) with 2-minute slices instead
of 1-second slices. Further, because bias towards stocks with the most data was
no longer an issue due to the investigation being performed on a stock-by-stock
basis, no data was discarded; all available datapoints vs,d,t, is,d,t and ps,d,t were
aggregated for each 2nd minute and used in the calculation of the responses.

The FMP can be measured by imposing the criterion t + τ = tend. Doing this, the
definitions for the cancellation-responses and the new order responses become:

RFMP
s [τ ] ≡

〈

ǫ(s, d, t)
ps,d[t + τ ] − ps,d[t]

ps,d[t]

〉

∀(d,t) : (ǫ(s,d,t) 6=0∧t+τ=tend)

Rη,FMP
s [τ ] ≡

〈

ζ(s, d, t, η)
ps,d[t + τ ] − ps,d[t]

ps,d[t]

〉

∀(d,t) : (ζ(s,d,t,η) 6=0∧t+τ=tend)

CFMP
s [τ ] ≡

〈

ǫC(s, d, t)
ps,d[t + τ ] − ps,d[t]

ps,d[t]

〉

∀(d,t) : (ǫC(s,d,t) 6=0∧t+τ=tend)

Cη,FMP
s [τ ] ≡

〈

ζC(s, d, t, η)
ps,d[t + τ ] − ps,d[t]

ps,d[t]

〉

∀(d,t) : (ζC(s,d,t,η) 6=0∧t+τ=tend)

(6.12)

where the averaging is done over all the available data for stock s at time tend, i.e.
at the end of the auction, and ǫC(s, d, t), ζC(s, d, t, η), analogously to ǫ(s, d, t) and
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ζ(s, d, t), guess on the cancellation of orders:

ǫC(s, d, t) ≡















+1, if ∆is,d[t] > 0 ∧ ∆vs,d[t] < 0

−1, if ∆is,d[t] < 0 ∧ ∆vs,d[t] < 0

0, otherwise

ζC(s, d, t, η) ≡















+1, if ∆is,d[t] > 0 ∧ ∆vs,d[t] < 0 ∧ sgn(is,d[t]∆is,d[t]) = η

−1, if ∆is,d[t] < 0 ∧ ∆vs,d[t] < 0 ∧ sgn(is,d[t]∆is,d[t]) = η

0, otherwise

(6.13)

Both ǫC(s, d, t) and ζC(s, d, t, η) return +1 or −1 if they guess, respectively, a sell order
or buy order being cancelled, and 0 if they guesses on no cancelled order.

The two cancellation response functions are almost identical to the old response
functions, except they measure the effect of cancelling an order instead of the effect
of inserting a new one. More precisely, the unsigned cancellation-response function
measures the expected price fluctuations conditional on the type of cancelled order,
while the signed variant measures the expected price fluctuations conditional on both
the type and direction of the order. Just like with the price response, when the
cancellation-response is positive, then the price moves in the expected direction (e.g.
a cancelled sell order leads to a price increase), and when it is negative the price moves
in the opposite direction of what one would expect.

Measured Price Responses for Select Stocks

The results for the 5 stocks with the most datapoints available, i.e. SPY, IWM, GLD,
EWZ and VXX, are presented below. Note that the y-axes have different ranges for
each figure, and the x-axes is inverted; it was natural for τ to be decreasing along the
x-axis, as τ is equivalent to the time until auction execution and so a lower τ implies
the order was entered at a later point in time.
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The SPY stock represents the SDPR S&P500 ETF.6
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Figure 6.5: The time-evolution of the measured FMP responses averaged across all
data available for SPY. The error bars are two standard errors of confidence interval
for the measured responses. The top left chart shows the unsigned response, top
right shows the signed response, bottom left shows the unsigned cancellation-response
and bottom right shows the signed cancellation-response. The smooth curves are
polynomials fitted to the data for illustrative purposes.

6This ETF tracks the top 500 U.S. registered public companies by market capitalisation.
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The IWM stock represents the iShares Russel 2000 ETF.7
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Figure 6.6: The time-evolution of the measured FMP responses averaged across all
data available for IWM. The error bars are two standard errors of confidence interval
for the measured responses. The top left chart shows the unsigned response, top
right shows the signed response, bottom left shows the unsigned cancellation-response
and bottom right shows the signed cancellation-response. The smooth curves are
polynomials fitted to the data for illustrative purposes.

7This ETF tracks various public companies with small market capitalisations.
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The GLD stock represents the SPDR Gold Shares ETF.8
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Figure 6.7: The time-evolution of the measured FMP responses averaged across all
data available for GLD. The error bars are two standard errors of confidence interval
for the measured responses. The top left chart shows the unsigned response, top
right shows the signed response, bottom left shows the unsigned cancellation-response
and bottom right shows the signed cancellation-response. The smooth curves are
polynomials fitted to the data for illustrative purposes.

8This ETF denotes a share of gold bullion; meaning its underlying asset is gold.
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The EWZ stock represents the IShares MSCI Brazil ETF.9
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Figure 6.8: The time-evolution of the measured FMP responses averaged across all
data available for EWZ. The error bars are two standard errors of confidence interval
for the measured responses. The top left chart shows the unsigned response, top
right shows the signed response, bottom left shows the unsigned cancellation-response
and bottom right shows the signed cancellation-response. The smooth curves are
polynomials fitted to the data for illustrative purposes.

9As the name suggests, this ETF tracks various Brazilian public companies.
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The VXX stock represents the iPath S&P500 VIX ST Futures exchange traded note.10

●●●●
●

●

●
●

●
●

●

●●

●●

●

●

●

●●●
●

●
●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

0e+00

1e−02

2e−02

0102030405060708090
τ (minutes)

R
V

X
X

F
M

P
[τ

]

FMP response of new orders

−1e−02

0e+00

1e−02

2e−02

3e−02

0102030405060708090
τ (minutes)

R
V

X
X

η,
F

M
P
[τ

]

Order Direction
●

●

η = + 1
η = − 1

Signed FMP response of new orders

●

●

●

●

●

●

●
●

●
● ●

●

● ● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●
●

−1.5e−02

−1.0e−02

−5.0e−03

0.0e+00

0102030405060708090
τ (minutes)

C
V

X
X

F
M

P
[τ

]

FMP response of cancelled orders

−2e−02

−1e−02

0e+00

1e−02

0102030405060708090
τ (minutes)

C
V

X
X

η,
F

M
P
[τ

]

Order Direction
●

●

η = + 1
η = − 1

Signed FMP response of cancelled orders

FMP responses; averaged across all datapoints of VXX

Figure 6.9: The time-evolution of the measured FMP responses averaged across all
data available for VXX. The error bars are two standard errors of confidence interval
for the measured responses. The top left chart shows the unsigned response, top
right shows the signed response, bottom left shows the unsigned cancellation-response
and bottom right shows the signed cancellation-response. The smooth curves are
polynomials fitted to the data for illustrative purposes.

10VXX holds a portfolio of various futures.
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The above results are difficult to interpret due to the large amount of noise, but
a handful of clear observations can be made. Firstly, the level of noise progressively
decreases for all the response measures as the pre-auction period progresses. Secondly,
the cancellation response CFMP

s [τ ] typically behaves opposite to what one would expect;
judging from CFMP[τ ], removing buy orders lead to higher prices while removing sell
orders lead to lower ones. Thirdly, as with the IMP response, R+,FMP

s [τ ] is on average
positive and larger in amplitude than R-,FMP

s [τ ]. Further, the η = −1 responses appear
to be negatively correlated with the η = +1 ones. And finally, all measured responses
decrease in amplitude as the auction progresses.

6.3.4 Discussion of Results

IMP Response

The investigation into the IMP response revealed a collection of stylised facts.

Firstly, the signed response function clearly segments the data into two groups with
significantly different price responses; so orders that add to the present imbalance
cause a larger IMP response than the ones that contribute to decreasing the imbal-
ance. This implies that, e.g., in a buy-side imbalance (i[t] > 0) sellers can enter
sell-orders at high prices and so not cause drops in the IMP; which implies a small
price response for their orders. Indeed, if the buy-side imbalance is very heavy, it is
possible for them to push the price upwards by matching with buyers who are willing
to pay a larger price than the IMP. The same reasoning applies to buyers during a
sell-side imbalance.

Secondly, the measured IMP response exhibited a strong, transient response during
the first seconds. The fact that the peak arrives within the first second tells us that
the reaction speed of the system is ≤ 1s. Further, dissipation of the peak tells us that
it takes on average roughly 5s to find a new equilibrium price for imbalance-increasing
orders and 10s for imbalance-decreasing ones.

FMP Response

As already mentioned, it is the FMP that is important, as this is the price the stocks
are actually exchanged at when the auction executes. With regards to this a handful
of stylised facts were found.

Firstly, as with the IMP, orders that increase the imbalance cause larger FMP re-
sponses than those that decrease it. This firmly establishes that counteracting an
imbalance leads to a lower, and sometimes even negative, price response; this im-
plies that liquidity providers, who act to stabilise the imbalance, are systematically
rewarded by the auction mechanism.

Secondly, the cancellation-response appeared to act oppositely to expectations; e.g.
cancelling sell orders leads to lower-prices (and vice versa for buy orders). This might
appear surprising at first glance, but it can be explained by simply traders adjusting
their positions; e.g. if a trader who wishes to sell notices that the FMP will be higher
than he expected, he could simply cancel his current order and insert a new sell order
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at a higher price, which would not decrease the FMP.

And finally, the amplitudes of all responses decrease with the time of the auction;
this reflects that the IMP becomes a better and better predictor for the FMP as the
auction time approaches tend. This is not surprising in light of the fact that the av-
erage MO dollar-volume is known to increase as the auction progresses, as previously
established in section 6.2.3, which makes the IMP more difficult to perturb.

6.3.5 Further Work

The work done in this section has largely established stylised facts on the order-placing
dynamics, and naturally one can go further. The results were achieved by employing
data that was quite limited both in scope and completeness; the data on closing
auctions was not available, and the many gaps in the data that was available caused
much unnecessary noise in the results. Thus the first step to better understand the
order-placing dynamics is to gain access to the whole order book for both opening and
closing auctions, and then repeat the work done here. Once this is sorted, one could
continue the investigation by defining a price impact function by conditioning the
current price response function with the volume of the order, and study the measured
impacts as functions of volume and time. Afterwards, as has already been achieved
by econophysicists in the case of continuous trading [45], it should become possible
to formulate a dynamical model that is able to predict the shift in some stock’s FMP
due to a new order, given a volume and the current state of the auction.

6.3.6 Data Limitations

The data was quite incomplete. In particular, many event updates were missing,
and the updates that we had were often made up of multiple events; e.g. some of
the differences ∆i & ∆v that were assumed to be single orders, were in reality a
combination of several consecutive orders of unknown type. The timeperiod studied
and the number of stocks was also insufficient, as mentioned in section 6.2.7.
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Chapter 7

CONCLUSION

In this project the opening and closing auctions of stock exchanges were analysed.
The work was split into three parts, and each part is summarised below.

7.1 Properties of Individual Auctions

In the first part, individual opening and closing auctions at NYSEarca were studied
by thoroughly investigating the distributions of the MO dollar-volumes. The investi-
gation was done with two goals in mind; (1) check whether the MO dollar-volumes are
distributed as power-laws, or at least heavy-tails, and (2) investigate the tail proper-
ties of the distribution of MO dollar-volumes.

It turned out that the distributions of the MO dollar-volumes are not power-laws,
but they are heavy-tailed. Secondly, it was found that the scaling properties of the
heavy-tails are independent of date, but they are dependent on stock and auction
type; in particular, it was found that the tails are typically heavier for closing auc-
tions than for the opening ones.

In essence, this means the values of the trades done during both opening and closing
auctions of NYSEarca are characterised by heavy-tailed fluctuations, with the closing
auctions exhibiting heavier tails compared to opening auctions.

7.2 Aggregate Properties of Auctions

The second part concerned itself with the properties of the daily MO dollar-volumes.
Here, the opening and closing auctions of NYSE, NYSEarca and NASDAQ were in-
vestigated. There were four goals; (1) ascertain what the properties of the individual
MO dollar-volumes imply for the properties of the daily MO dollar-volumes. Then
(2) check whether the ratio between the daily open-auction MO dollar-volume and
that of the closing-auction is log-normal and (3) understand its statistical properties.
Finally, (4) check whether the time-evolution of the daily MO dollar-volume is pre-
dictable.

It was firstly found that due to the complex behaviour of the individual MO dollar-
volumes, no regularities except heavy-tails can be expected in the distribution of the
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daily MO dollar-volumes. However, interesting statistical regularities in the distribu-
tion of the ratio of the daily MO dollar-volumes were found and investigated; firstly,
the ratios are approximately log-normally distributed, and secondly the statistical
properties of the ratios varies strongly by exchange. Finally, the time-evolution of the
daily MO dollar-volume was studied through forecasting. Three regressive time-series
analysis methods were used; ARIMA, Facebook Prophet and Random Forests, and,
out of these, it turned out that Random Forests was by far the superiour method.
The forecasting was done using the log10 daily MO dollar-volume, and judging from
the resulting RMSE, NASDAQ opening and closing auctions are typically predictable
up to factors of 100.217 ≈ 1.6 and 100.266 ≈ 1.8, respectively, while the equivalent cases
for NYSEarca is 100.323 ≈ 2.1 and 100.517 ≈ 3.3.

The main discoveries here are that the ratio of the daily MO dollar-volumes be-
tween the opening and closing auctions is approximately log-normal, and that the
time-evolution of the daily MO dollar-volume is, to an extent, predictable. The
log-normality is interesting because it was unexpected, and because understanding
its origins would further our theoretical understanding of market behaviour. The
predictability of the daily MO dollar-volumes is, on the other hand, of practical
importance; one can easily imagine [54] that being able to predict the daily MO
dollar-volume is useful for tasks such as scheduling the executions of large orders and
detecting (and hopefully profiting from) abnormal market conditions, as well as for
being useful input to various high frequency trading algorithms [52] [53].

7.3 Pre-auction Dynamics

The final part concerned the pre-auction dynamics of NYSEarca opening auctions.
There were two goals: (1) identify any statistical regularities present, and (2) inves-
tigate the price response of the auction.

Two regularities were found; firstly, the MO dollar-volume grows linearly as a function
of time throughout the first roughly 75 minutes, and secondly the IMP is, on average,
elevated by 0.05-0.1%, relative to the FMP, between the 65th and 85th minutes of the
pre-auction period. Next, by introducing various price response/cancellation-response
functions, the price fluctuations that resulted from a new order, conditional on the
type of order (i.e. new buy, new sell, cancel buy or cancel sell) were measured. This
revealed that imbalance-increasing orders typically have a significantly larger FMP
response than imbalance-counteracting orders, that the FMP cancellation-response
is often negative, that the amplitudes of the FMP response/cancellation-responses
tend towards 0 as the pre-auction period approaches its end, and finally, judging from
the IMP response, that it takes the auction system on average roughly 5s to locate
a new equilibrium price after an imbalance-increasing order and 10 seconds for an
imbalance-decreasing one.

Here the dynamical properties of the pre-auction period of NYSEarca opening auc-
tions were characterised. Once this is also done for the closing auctions, the path
to finding a good dynamical model of the pre-auction period for NYSEarca will be
open. Finding such a model will certainly be a challenge due to the complexity of
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the system, but as can be seen by what has been achieved concerning the dynamics
of continuous trading [45], it is not an insurmountable one for sufficiently motivated
physicists.

7.4 Final Words

The success of this work underlines the viability of a physicist’s approach in finance.
The auctions were approached as unknown physical systems, which means that rather
than using axioms of financial economics to derive how the auctions are supposed to
behave, we instead found patterns in the auction-generated data, and then used these
patterns to draw conclusions on how the auctions actually behave in reality. This has
resulted in a broad overview on the quantitative properties of opening and closing
auctions, which is both of practical relevance to the financial industry, and sets the
stage for further academic work towards properly understanding the observations
made in this project, and creating dynamical models that reproduce them.
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