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SAMMENDRAG

SAMMENDRAG

Adferd hos insekter er tett knyttet sammen med deres evne til å detektere viktig sensorisk 

informasjon fra omgivelsene. Tobakkmøllen Heliothis virescens benytter seg av luftbåret stimuli for 

å lokalisere en partner, mat og egnede vertsplanter for egglegging. I tillegg kan de detektere lyder 

som tillater dem å unnslippe nattlige predatorer som flaggermus. Å forstå de underliggende 

biologiske mekanismene for de adferdsmessige valgene insektene tar, kan bidra til utvikling av 

harmløs biologisk kontroll av nettopp dette skadedyret. I denne oppgaven har tre bilaterale 

protocerbrale nevron fra møllen H.virescens blitt valgt ut på grunnlag av elektrofysiologisk respons 

og farging. Disse nevronene ble rekonstruert med manuell merking i programmet Slicer. Videre ble 

segmenteringene registrert i standardhjernen med landmerkeregistrering i Amira. Nevron N1 

responderte på en odorant (linalool) og nevron N2 responderte på lyden av en klirrende nøkkelring. 

Begge disse nevronene ble foreslått å bidra til resiprok inhibering da de projiserte i 

korresponderende områder i den kontralaterale hjernehalvdelen. Input-områdene til N1 lå i den 

høyre og output i den venstre LAL, mens N2 gikk ned fra VLP via SOG og inn til thoracalgangliet. 

Kontrastforsterking mellom de to sidene kan være nyttig for å lokalisere lyd eller lukt i rommet. 

Nevron N3 innerverte et glomerulus i hver hemisfære før det forgrenet seg inn i ventrale 

protocerebrum, den høyre øyeloben, og et område rett nedenfor CB. Dette nevronet responderte til 

ny stimulering med lys og lyd, og konsistent til stimulering med en odorant. Denne typen deteksjon 

av ny informasjon kan være viktig for å fokusere oppmerksomheten og å detektere viktige biologisk 

relevante stimuli fra bakgrunnstøy i omgivelsene.

   2



ABSTRACT

ABSTRACT

Insect behaviour is tightly connected to their ability to detect important sensory information from 

their environment. The tobacco moth Heliothis virescens moth follows airborne stimuli to acquire 

partners, food and suitable host plants for oviposition, and it is able to detect sounds allowing them 

to escape predation by bats. Understanding the underlying biological mechanisms behind its 

behavioural choices may be of importance in future methods for harmless biological control. In this 

present study, neurons of three bilateral protocerebral neurons in the moth H. virescens were chosen 

based on their electrophysiological responses and successful staining. The neurons were 

reconstructed using the manual labelling software Slicer, and registered into the standard brain atlas 

(SBA) using landmark registering in Amira. The neuron N1 which responded to an odorant 

(linalool) and the neuron N2 which responded to a sound stimulus (keychain) were both suggested 

to participate in reciprocal inhibition. This was due to their projection in corresponding areas in the 

contralateral hemisphere. N1 had its input in the left and output in the right LAL, and N2 descended 

from the VLP through the SOG towards the thoracic ganglion. Contrast enhancement between the 

sides may be important for localising a sound or odor in space. The neuron N3 innervated one 

glomerulus in each hemisphere before branching into the ventral protocerebrum, the right eye lobe 

and an area below the central body. This neuron was found to respond consistently to the major 

pheromone component and to novel stimuli of a sound and a light stimulus. This novelty detection 

may be important for focusing attention, and detecting important biologically relevant stimuli from 

the background noise in the environment. 
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1. INTRODUCTION

1. INTRODUCTION

1.1 The Moth and its behaviour
Insects are interesting model organisms in neuroscience as their simpler nervous systems facilitate 

studying connections between behaviour and the underlying neurophysiology and molecular 

mechanisms. Several insect species are used as models such as moths, honey bees, fruit flies and 

others. In our lab we have particularly studied the sensory system of the moth Heliothis virescenes. 

This heliothine moth belongs to the most important pest species on plants of tobacco, cotton, 

tomato, corn, soy beans and grain (Fitt, 1989). Research regarding both its behaviour and sensory 

perception is of importance in respect to future methods for biological control. 

H. virescens is a nocturnal moth, with a rather short adult life span. In two to three weeks they have 

to eat, avoid predators, locate a suitable partner and mate. The females additionally need to locate a 

suitable host plant for laying eggs (oviposition). Selection of host plants is very important for the 

development of the offspring. The larva hatch on this plant, and seldom move beyond their given 

host. Because of this immobility, it is crucial for their development to hatch on a healthy and 

nutritious plant (Chew and Robbins, 1984). The moth uses several steps in selecting a host plant, 

which involves several senses. It searches and locates a possible plant for nectar feeding or 

oviposition, and then accept or refuse it (Renwick and Chew, 1994). In Lepidoptera in general, 

visual cues such as shape and colour are thought to be important, but less so in the nocturnal species 

of moths. Attractive compounds, host plant attractants, are detected in the air and guide the moths 

towards possible plants (Tabashnik, 1985). Similarly they localize their partners by following 

airborne compounds. Like many other insects, they have developed species-specific compounds, 

pheromones, which the female moths release into the air. By detecting this sexual pheromone in the 

air, the male moth flies against the wind following the pheromone plume until it reaches the female. 

In this way, they actively locate partners through chemical signalling. While olfactory and visual 

cues are important in steering the moth towards the plant, taste is the main determinant of whether 

the plant will be accepted. It is important to distinguish between noxious and beneficial substances. 

While it is advantageous to recognize nutrients and high energy food sources, it is absolutely crucial 

for survival to detect what is toxic. Detection of CO2 may also be important for determining on 
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1. INTRODUCTION

which areas of a chosen plant to oviposit, as it enables them to compare the metabolic activity of the 

different tissues (Renwick and Chew, 1994). 

Although the moths do not communicate by sound, they can hear particular sounds. This is 

connected to protection from predators. They have a specific sound detection system to avoid bats 

which hunt using echo localization. These sounds have very high frequencies beyond the hearing of 

humans in the ultrasonic range between 20 and 80 kHz (Boyan and Fullard, 1986).  Moths in 

general have two main strategies when encountering bats, depending on the distance to the bat. 

They are able to discover a bat at approximately 30 meters away, before the bat is able to notice 

them. At a far distance, their evasive strategy is to fly away from the bat in the opposite direction. If 

however the bat is very close, the moth will instead start flying in loops or dive to the ground in 

order to escape (Roeder and Treat, 1961). These behavioural responses in relation to host plants, 

partners and predation show the importance of the different senses; olfaction, taste, sound and 

vision.

1.2 Detection and processing sensory information
Insects acquire chemical information from their surroundings, both as taste (gustation) and smell 

(olfaction). The two senses are structurally distinguished by their location in vertebrates, with the 

olfactory cells restricted to the nasal cavity and the taste cells to the oral cavity. In addition, the 

stimuli are dissolved in air and in a solvent, respectively. However, in insects these senses are 

distinguished by different criteria as they may have sensory cell types on the same appendages, such 

as the antennae of H. virescens. In insects, the olfactory stimuli are airborne, whereas the taste 

stimuli have to be contacted by the gustatory sensilla, a process called contact chemosensation.

1.2.1 Olfaction
The olfactory sensory organs, the sensilla, in most insects are on the antennae. These sensilla have a 

thick cuticle wall containing numerous pores through which odorants pass by diffusion. The sensilla 

also contain the dendrites of odorant receptor neurons (ORNs) surrounded by receptor lymph (Keil 

and Steinbrecht, 1987). The odorants are transported to the dendritic membrane by odorant-binding 

proteins, where they bind to the membrane receptor proteins (Krieger and Breer, 1999). In general, 

each sensory cell expresses one type of receptor proteins, as well as a co-protein called olfactory 

receptor co-protein (Orco) (Vosshall, 2001). After reaching the receptor protein, the odorant 
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activates the sensory cell. Two principal methods for this transduction has been suggested, one 

involving an intracellular cascade, and the other an ionotropic channel (Sato et.al, 2008). Upon 

activation, the cell membrane depolarizes firing action potentials that are conducted via the axon 

into the antennal lobe, the primary olfaction centre of the moth brain. 

In the antennal lobe, the primary axon projects into specific structures called glomeruli, and each 

glomeruli receive information from receptor neurones expressing strictly the same receptor proteins 

(Vosshall et al., 2000). There are in principle two glomerular structures, the macroglomerular 

complex (MGC) involved in pheromone information and the ordinary glomeruli involved in plant 

odor information. Two ventral glomeruli (one in each lobe) are slightly larger, and mediate 

information about CO2. In moths, CO2 is detected in the labial palps. The Labial Pit Organ contains 

a special type of sensilla with only one receptor neuron. Their axons form the Labial Palp Nerve 

projecting in the antennal lobe, where they terminate in the Labial Pit Organ- Glomerulus, LPOG 

(Guerenstein et al., 2004). 

In the antennal lobe glomeruli, the primary axons form synapses with both local interneurones and 

projection neurones (Tanaka et al., 2004). The local interneurones innervate most of the glomeruli. 

The projection neurones are either uniglomerular innervating one glomerulus, or multiglomerular 

innervating several glomeruli (Homberg et al., 1988; Rø et al., 2007). Information is mediated from 

the antennal lobes by the projection neurones to higher order processing areas, like the mushroom 

bodies, and the lateral protocerebrum. Projection neurones relay the information through three 

separate tracts, the inner (medial), middle (medio-lateral) and the outer (lateral) antennocerabral 

tracts  (Løfaldli et al, 2010; Galzia and Rössler, 2010).  

The axons following the medial tract give off branches to the Calyces and then extend to the lateral 

protocerebrum. The Calyces are the input areas of the Mushroom bodies, which are particularly 

important for learning and memory, while the lateral protocerebrum is considered to be a pre-

motoric area (Menzel, 2001). The axons of the lateral tract innervate the same areas, but in the 

opposite order. The medio-lateral tract however, first projects to the lateral protocerebrum before 

continuing to an area in the superior protocerebrum dorsally of the MB lobes (Galzia and Rössler, 

2010, Rø et al. 2007). Other important areas of the protocerebrum include the lateral accessory 

lobes (LAL) and the Central Complex that contains the protocerebral bridge and the central body 
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(Kanzaki et al., 1991). 

1.2.2 Taste
Tastants in the moth are detected by gustatory receptor neurons (GRNs) in contact chemosensilla 

located in different appendages, such as the wings, ovipositor, antennae, proboscis, and tarsi. The 

axons of GRNs placed on the proboscis and antennae project in the SOG, those on the tarsi to the 

thoracic ganglion and those of the ovipositor to the abdominal ganglion. The sensilla have a simple 

pore on the tip of the hair, through which the tastants reach the dendrite membrane of the GRNs. In 

H.virescens, GRNs were found to respond to six taste qualities and also mechanosensory stimuli. 

The taste qualities are sugars, amino acids, salt, water, bitterness and alcohols (Jørgensen et al., 

2007). Bitter and sugar receptors are never localized together, as shown by electrophysiological and 

molecular biological studies (Wang et.al, 2004; Jørgensen et al. 2007). 

1.2.3 Sound
The moths detect sound by RNs located in simple ears placed in each side of their thorax. The 

sound information is then conveyed to the thoracic ganglion, to the suboesophageal ganglion (SOG) 

and an area ventro-laterally in protocerebrum. The ear contains only two auditory receptor neurons, 

commonly referred to as A1 and A2. They are attached to the tympanic membrane, covering an air 

chamber. When the membrane vibrates due to sound waves, the receptor neurones will be slightly 

stretched, causing an action potential (Surlykke, 1984). In addition a mechanosensory neuron is 

present in each ear.

These receptor neurones relay information to interneurones that modulate the activity within the 

thoracic ganglia, and influence the wing beating and behaviour of the moths. Information is also 

relayed to SOG. There is a difference in the sensitivity of the two cells, A1 being more sensitive 

than A2 that which requires a relative loud ultrasound. In addition, A1 fires more frequently to 

pulses of sounds that the bats use, than to uninterrupted sounds (Roeder and Treat, 1961). This gives 

the moth an indication of how far it is from the bat, as the firing frequency of A1 increases 

proportionally to the loudness of the sound. To localize the bat in space, the moth uses the delay 

between sound information from the different sides of its body. 
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1.3 Intracellular recordings of Interneurons and the Standard Brain Atlas
The research in our lab, Gruppe for Nevrofag at NTNU, has focused on physiological and 

morphological characterisation of central neurons which forms networks involved in the sensory 

systems in the tobacco moth H. virescenes. The research is based on intracellular studies and 

staining of neurons within the moth brain. To be able to compare different reconstructed neurones 

created from confocal scans of different individuals in a common framework, the Standard Brain 

Atlas (SBA) was developed (Kvello et al. 2009) including a map of the antennal lobe glomeruli 

(Løfaldli et al. 2010). Averaged brain atlases have been created for several species, including 

drosophila, the honey bee and our model species, H. virescens. By displaying several different 

neurons in the same brain, possible networks of neurons can be studied. The atlas consists of the 

main neuropile of the brain, and some chosen structures that often are easily identifiable in the 

preparations, like the antennal lobes, the mushroom body calyces and the central complex. In this 

thesis, intracellularly stained neurons in the H.virescens brain were reconstructed in 3D and 

integrated into this standard brain atlas.

1.4 Aim of the Thesis and Hypotheses
The thesis had two main aims regarding 3D-reconstruction of bilateral protocerebral neurons in the 

tobacco moth Heliothis virescens. The first aim was methodological, while the second aim was 

related to interpretation of the data.

1. Methodological Aims

• The aim of the thesis was first to explore a method for 3D-reconstruction using the free 

medical imaging software Slicer of intracellularly stained neurons.

• Secondly to compare Slicer labelling to the previously used method, the Amira hexoskeleton 

tool. 

These two aims lead to the hypothesis that:

1. Slicer is a good method for reconstruction of neurons

2. Slicer is a faster and more accurate method than previously used Amira Hexoskeleton tool

3. The segmentation created using Slicer can be registered into the Standard brain using the 

Amira software.
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2. Aims regarding interpretation of the data

• To select neurons based on successful staining and physiological response, reconstruct them 

and register the 3D models into the Standard Brain.

• Identify the morphology of the three reconstructed neurons, and interpret their function.

 

These two aims lead to the hypothesis that:

1. Reconstructing and registering the bilateral protocerebral neurons into the standard brain 

allows for interpretation of their function in relation to their surrounding areas
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2. MATERIALS AND METHODS

2.1 The Insects
The experimental organism was the moth species Heliothis virescens (Lepidoptera, u. fam. 

Heliothinae). The insects were received as pupae from a culture at Syngenta, Switzerland, and upon 

arrival they were separated according to sex. All insects were kept in a clima chamber at 22oC. They 

had access to a 9.15 M sucrose solution, and when emerging as adults they were kept in separate 

boxes.

2.2 Staining, recordings and preparations
The datasets used for 3D reconstructions consisted of stacks of images of H. virescens brains with 

successfully stained neurones of 3 different individuals. The neurones, N1, N2 and N3 were 

selected after investigating several rough scans of stained brains from various experiments 

performed by Øyvind Høydal and Bente Jacobsen in our lab. Neuron N1 has been previously 

described in the master thesis of Øyvind Høydal (2012) as Neuron N19, while the other two (N2 

and N3) are now described for the first time.

2.2.1 Electro-physiology and preparations 
These particular neurones were stained and recorded 

by electro-physiology routines, performed by Øyvind 

Høydal and Bente Jacobsen. The methods are 

described in closer detail in Høydal's master thesis 

(2012). They immobilized the insects in small tubes 

with dental wax (Kerr Corporation, Romulus, MI) and 

opened a square of the moth head cuticle. Trachea and 

muscles covering the brain was removed to display the 

brain which was kept moist in Ringer solution. The 

set-up can be seen illustrated in figure 1.

A glass electrode containing solutions of micro-ruby 

and 0.2 M potassium acetate was placed into the brain. 

Spike activity was recorded during stimulation with sound, light, air and odorants, using a script for 
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Figure 1: The set-up for electro-
physiological recordings and dye injection in 

a moth brain.
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Spike2. After recording, dye was released inside the same neuron using an electric current over a 

period of 5-15 minutes. This colouration was then left to diffuse over night. After staining, the 

brains were dissected and fixed over night in paraformaldehyde, rinsed in PBS and dehydrated 

using a series of ethanol solutions of increasing purity from 50% and up to 100%. After completion, 

the brains were kept and mounted in methyl salicylate.

2.2.2 Scanning with the Laser Scanning Confocal Microscope
Brains containing the different neurons were scanned several times, using a Leica confocal laser-

scanning microscope (CLSM) (Leica TCS SP5; Leica Microsystems CMS GmbH, Mannheim, 

Germany). They were scanned with dry objectives of different strengths, including 10 and 20 (HCX 

PL APO CS). The laser used was a DPSS laser, which excites at a wavelength of 561 nm. As micro-

ruby has a max fluorescence excitation of 550nm, this is a close match. The brain scans consisted of 

a stack of images in the z-direction. The photos were scanned with a resolution of 1024 x1024, and 

a speed of 200 and 100 Hz. The distance between slices was automatically set by the Leica 

software. The brain containing N1 was only roughly scanned before additional tests in the lab had 

degraded the material. As scanning the brain again in better resolution was not possible, the original 

scan was used instead. To compensate for the bigger voxel size in this dataset, it was re-sampled 

and re-scaled. 

2.2.3 Conversion and creation of files
The datasets were initially scanned in a Leica format as .lif files, and then converted to the more 

common raw format using Amira. In addition to the raw-files, a separate mhd file was written for 

each of the neurones, containing important metadata about the dataset such as the resolution, 

number of images and the voxel size. These mhd-files were then loaded into Slicer, opening the 

datasets. The spacing was adjusted before labelling to give an approximation of the correct 

dimensions, but the final spacing was adjusted in the registration process.

In N1, which consisted only of a rough scan, the spacing between each slice was so big that 

compensating for it with voxel size alone would lead to an inaccurate and stretched model. In the 

rough scan, the gaps in the z direction had an inter-slice interval which was to 6 times larger than a 

normal scan. To fix this problem, the dataset was re-sampled in the z-direction, adding extra slices 

between the original slices to fill out the gap. The new slices were gradually blended from one to 
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the next using interpolation, which increased precision during labelling compared to only copying 

the slices in between.

2.3 Segmentation by Labelling using Slicer
In Slicer 4.2, a free open source program downloaded from www.slicer.org, a 3D segmentation was 

created by labelling the stained parts of the neuron in each slice of a 3D-stack. A rough labelling of 

the most prominent neurites were first created using a “threshold brush” which labelled everything 

in the marked area within a given intensity range. In the smaller and more difficult areas, a paint 

brush was used to label the neuron in each slice. While working, the labels were adjusted from 

different angles (x, y, z). Different areas of the segmentations were given different labels, allowing 

for parts to be turned on and off in the resulting 3D models. 

 

Some of the most distinct anatomical features of the brain were visible in the scans in addition to 

the stained neurons, which appeared brighter than the surrounding brain. The thickest branches and 

those closest to the point of injection were brighter and easier to segment, while thinner branches 

farther away was more open to interpretation. The background noise in the dataset, and additional 

staining in other nearby neurones formed the biggest challenges. Some of the noise was reduced by 

adding a Gaussian blur filter as a separate layer. This allowed to easier distinguish noise from the 

neurons, and especially to see the different anatomical structures. Such a filter did however also 

remove some of the thinnest branches, and was thus only used to compare the blurred and noisy 

datasets with each other. Other enhancements included the light and contrast of the images in the 

stack.

Scanning with a confocal microscope added some additional light in the z-direction of the scan, as 

the laser picks up some light from the area above and below in any given slice. This “shadow of 

light” would cause an unedited segmentation of the datasets to appear extra thick in the z-direction. 

The shadow was particularly wide in the preparation of N1 due to the rough scan and re-sampling. 

Figure 2 shows the first rough segmentation of N1 in a frontal (A) and dorsal view (B). This 

“shadow of light” as clearly seen in figure 2 B was compensated for by adjusting the neuron from 

different angles. Assuming the cross-section of the neuron to be circular, a circular brush with the 

thickness of the branch was used to trace the rough segmentation in another angle, resulting in a the 

wanted width and thickness as seen in figure 2 C (frontal view) and D (dorsal view). 
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2.4 Registration into the Standard Brain
The Standard Brain was originally created in Amira in our lab (Kvello et al. 2009; Løfaldli et al. 

2010), as a label-map in which different anatomical areas were given different labels. The moth 

brains have big individual differences and also often suffer from deformation caused by the softness 

of these brains leading to additional differences caused by mechanical pressure during dissection 

and preparation.

The registration was done in Amira, using landmark warping. At first a manual rigid transformation 

was performed, in which the scanned brains were moved, rotated and scaled to be roughly similar to 

the standard brain. When the brains were approximately the same size and rotation, they were 

shown in different windows where the same areas were marked with landmarks in both brains. The 

LPOG, central body, edges of the brain and other clearly distinguished areas were used as 

landmarks. The algorithm was then run, warping the labelled brain to match the form and size of the 

standard brain. The result was compared to the scan and labels of the brain itself to avoid too drastic 

changes, and the landmarks were adjusted accordingly. 
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Figure 2: the direct rough segmentation of N1 with its “shadow of light” from a frontal (A) and 
dorsal (B) view, as well as the corrected segmentation of N1 in a frontal (C) and dorsal (D) view.



2. MATERIALS AND METHODS

2. 5 Figures
Photos of the segmented brains were created as screen-shots from Amira, while projection views 

were created using Image J. The elecrophysiology results obtained from the Spike software were 

edited in Corel Photopaint X3. All colouration, layering of images or illustrations were drawn or 

adjusted or edited using Corel Photopaint X3. 
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3. RESULTS

The results were based on 3D reconstruction of three selected neurons in Heliothis virescens in 

Slicer 4.2, followed by registration of the neurons into the standard brain atlas using Amira. The 

neurones were selected on the basis of successful staining and physiological responses previously 

obtained by Øyvind Høydal and Bente Jacobsen in our laboratory. (Høydal, 2012; unpublished 

data). The three neurones were bilateral protocerebral neurons and responded to a plant odorant, to 

unspecific novel stimuli and to sound, respectively. 

3. 1 Neuron 1 (N1) responding to odor

3.1.1 Morphology of N1
One of the protocerebral neurons, N1, had its input area in the left hemisphere showing smooth 

arborisations spanning across the lateral accessory lobe (LAL), as well as the ventral and the medial 

protocerebrum. The cell body was in the left hemisphere, posterior-laterally of the arborisations and 

anterior-ventral to the Mushroom body Calyces. From the left hemisphere, the main neurite 

projected via the LAL commisure (LALco) into the right hemisphere terminating in the 

contralateral LAL. This area was assumed to be the output area based on the numerous blebs of the 

terminals. Figure 3 shows stacks of confocal images in a frontal and posterior-dorsal view as well as 

3D models of the reconstructed neuron registered into the standard brain atlas. 

3.1.2 Electrophysiology of N1
The neuron N1, was an odor-responding bilateral neuron, which was excited by antennal 

stimulation with linalool alone. However, it did not respond to a mixture containing 10 odorants, 

one of which was linalool as shown in figure 4.
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Figure 3: The neuron N1 (A) Frontal 3D-image (B) projection view of a frontal confocal scan 
(C) dorso-ventral 3D-view projection of a confocal scan (D) 3D-reconstruction in the standard 
brain from the side (E) dorso-ventral 3D-reconstruction in the standard brain
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3.2 Neuron 2 (N2) responding to sound

3.2.1 Morphology of N2
The second bilateral protocerebral neuron has its cell body in the left hemisphere close to the 

antennal lobe, and the main axon running ventrally of the central body. Extensive arborisations 

appeared in both hemispheres. In the right hemisphere, the thick neurite ran from the protocerebrum 

and towards the SOG. After branching widely in the lateral protocerebrum, a neurite continued 

alongside the primary neurite towards the SOG, while arborising extensively all the way. A third 

branch extended dorsally arborising medially in the right hemisphere. All the branches in the right 

hemisphere contained bleb-like structures indicating output areas. In the left hemisphere, the main 

input area seemed to be in the ventro-posterior protocerebrum, with one branch extending towards 

the middle of the brain. Another branch extended in parallel to the branch with the cell body that 

was located anterior-dorsally of the antennal lobe. Figure 5 and 6 shows the neuron in a confocal 

stack (A), segmented (B) and registered into the standard brain in a frontal view (C) in a frontal and 

dorso-ventral view respectively.
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Figure 4: Recording from neuron N1 during stimulation with control (air puff), linalool, and a 
blend of 10 compounds, including linalool.
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Figure 5: N2 visualised in A: a frontal view in a confocal image stack,  B: reconstructed and 
visualised (blue, green) in an outline of the brain (grey), the antennal lobes (pink) and the central 
body (yellow), C: registered into the standard brain.
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Figure 6:  N2 visualised in A: a dorso-ventral view in a confocal image stack,  B: reconstructed 
and visualised (blue, green) in an outline of the brain (grey), the antennal lobes (pink) and the 
central body (yellow), C: registered into the standard brain.
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Ventrally in the SOG, there seemed to be a stained cell 

body, as indicated by the yellow arrow in figure 7. 

Although the connection of the neurite cannot be fully 

traced, the question is whether the branch displayed in 

green in the segmented figure 5B and 6B belong to this 

neuron. However, the staining can also be arbitrary. 

3.2.2 Electrophysiology of N2
The neuron N2 responded to stimulation with sound. The 

neuron was silent before stimulation and fired upon the 

sound produced by a keychain, as shown in figure 8..

3.3 Neuron 3 (N3) responding to novel stimuli

3.3.1 Morphology of N3
The bilateral neuron N3 is shown in figure 9 and 10 in confocal scans, segmented and registered 

into the standard brain. N3 had its cell body at the periphery of the right SOG and two main neurites 

extending to the left and right antennal lobes. Here, each of them extensively innervated one 

glomerulus. Initially the neuron was thought to innervate the labial pit organ glomerulus (LPOG) in 

both antennal lobes, but scans of higher resolution proved this not to be the case, as seen in figure 

11. Instead, the glomeruli were placed posterior to the (LPOG).  Exactly which one is hard to 

determine due to the distortion of the antennal lobes, but glomerulus 53 is a possible candidate. 
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Figure 7 The arrow indicates what may 
be an additional stained cell body in the 
periphery of the brain.

Figure 8: shows the response to the sound of a key chain.
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Figure 9: Neuron N3 (black, blue) and the most likely distribution of N4 (red) in a frontal view A: 
in a confocal image stack,  B: reconstructed and visualised in an outline of the brain, C: registered 
into the standard brain.
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Figure 10: Neuron N3 (blue), the most likely distribution of N4 (red) in a dorsal view A: in a 
confocal image stack,  B: reconstructed and visualised in an outline of the brain, C: registered into 
the standard brain.
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3.3.2 The Left Hemisphere
In the preparation containing N3, two other neurones were also stained. One of these neurones, N4 

was reconstructed along with N3 and is described in more details below. Both N3, N4 and 

additional neuron N5 is marked by the arrows in the confocal image stacks of figure 12. The 

borders between these three neurons were hard to determine, especially between N3/N4 and N4/N5.
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Figure 11: Two sections of stacked confocal images of the right (A, B, C) and left (D, E, F) antennal 
lobes at different depths. Some sections between these images were not included. The left images A, 
D show the neuron and its arborisation in the antennal lobe, the middle images B, E shows a section 
of the lobe including the distinct LPOG, and the right images C, F the two previous slices merged to 
visualize that the neuron location outside the LPOG.
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In the 3D-reconstruction, both N3 and N4 were segmented as shown in figure 9. N4 (red) was 

entwined with the bilateral neuron N3 (blue), and in several areas they were hard to separate from 

each other. To explore the different possibilities for separating N3 and N4, figure 13 was created.

In the first option regarding what belonged to N3 (blue) and N4 (red), only the main branch was 

ascribed to N3 and everything else to N4 or others. This seems to be the most likely interpretation, 

and is illustrated in figure 13 (A). 

Another possible identification of N4 (red) was that it separated into two main neurites, both 

branching extensively. The first neurite extended towards N5 (not shown), and the other towards N3 

(blue). One single branch from N3 would also run along the closest of the neurites from N4, before 

turning deeper into the brain. This is illustrated in figure 13 (B). 
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Figure 12: 3D-views of a confocal image stack containing N3, N4 and N5. The images have a 
slightly different angle and contrast.
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A third possibility, as shown in 13 (C), is one in which the thick branch extending towards N5 

belong to the bilateral neuron, N3. The blue branches would then first extend towards N5, before 

adding an additional branching point from which a new neurite ran deeper into the brain. 
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  Figure 13: 4 schematic possibilities for branching patterns between N3 and N4.
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Finally, as illustrated in 13 (D) the same branch (purple) might be a combination of branches from 

the two neurons N3 and N4. If this is the case, the green branch would not belong to any of the two 

neurons, but to another weakly stained neuron. Other possible interpretations may also exist. In the 

cases shown in B, C and D, the dotted line indicates the two possibilities in that particular area. 

Either the branches may cross over each other or stay on separate sides. 

3.3.3 The Right Hemisphere
In the right hemisphere, two main branches extended from the main neurite before entering the 

extensively innervated glomeruli. From the glomerulus, two branches further extended dorso-

laterally and turned towards the eye lobe. Because of the extensive ramification in the glomerulus, it 

was not possible to see whether both of the main branches actually contributed to the innervation of 

the glomerulus or one of them just passed through. If the two branches are compared to the pattern 

of the left hemisphere, the same branching through the glomeruli is seen there. The images in figure 

14 show a section of projections in the right hemisphere, the segmentation alone, and registered into 

the standard brain.
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Figure 14: shows the right hemisphere as a confocal Image Stack, as a segmentation, and 
registered into the standard brain.
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3.3.4 Electrophysiology N3
Neuron 3 responded to novel stimuli of light and sound, in which the response appeared to occur 

instantaneously following stimulation. In addition it responded to the major pheromone component, 

with a latency consistent between 120-140 ms measured over 5 trials. Figure 15 shows examples of 

the response of this neuron to the first stimulation with a light, an odorant, and a sound stimulus. 
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Figure 15: The response of N3 to Major component, Light, and a Keychain.
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4. DISCUSSION

4.1. Discussion of the method
The major topic in the present study was to explore the use of labelling in the program Slicer for 

3D-reconstruction of intracellularly stained neurons, based on the assumption that labelling in Slicer 

has several advantages compared to the previously used Amira skeleton tool. N1 was first 

segmented using the Amira skeleton tool for comparison (data not shown), and then completely 

segmented in Slicer. Thus, the final 3D models were created in Slicer and then registered into the 

Standard Brain using Amira. The Slicer method resulted in successful reconstruction of the three 

selected protocerebral neurons. The problems that occurred concerning the interpretation of the data 

were solely due to the staining quality of the preparation and not to the reconstruction method. 

Slicer as a program for reconstruction confirmed its advantages as opposed to the Amira skeleton 

tool in several aspects like the amount of time on each dataset, more manual control, and more 

accurate adjustments of branch attachments, curving and thickness. A main benefit from using 

labelling in Slicer as a method compared to the skeleton tool extension in Amira as previously used, 

is its manual approach which allows for more precise control of the segmentation. Although 

labelling is a less objective method, it gives more accurate results. Because the Amira skeleton tool 

relies heavily upon algorithms and objectivity, other problems arise. Labelling as a method is also 

available in the Amira software, but Slicer is a more intuitive program and also allows for more 

enhancements of the datasets and label sets. 

4.1.1 The Time Aspect
The idea behind the Amira skeleton tool is that the automatic or semi-automatic generation of a 

neuron can be created much faster than with other programs. However, due to the complexity of 

these neurons and often noise in the datasets, the skeletons could in fact not be generated 

automatically. Instead the skeleton was created semi-automatically using a process as time-

consuming as the manual Slicer labelling. Over-correcting by the automatic adjustments leads to 

incorrect shaping of the neuron or branches sometimes being incorrectly attached. This in turn lead 

to additional time spent on correcting or creating these areas anew. 

In Amira the skeleton is built onwards from one point, which means that the light had to be adjusted 
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back and forth while working through the stacks one branch at the time. In Slicer, however, multiple 

branches were marked out at the time when working slice-by-slice, and thus the light and contrast 

did not have to be adjusted as many times. Working slice-by-slice in Slicer may seem time-

consuming. However, the “threshold brush”, in which an entire area can be marked and only 

structures within a given intensity rage would be labelled, creates a rough labelling of the most 

prominent neurites. This method was not sufficient for the thinner and smaller branches, but going 

over these with a paint brush set to a small size was still quicker than the process in the Amira 

hexoskeleton tool. After creating a model that looks correct in the z view, it might be rotated and 

viewed from different angles allowing for corrections, as previously shown in the figure 2. As the 

labels are a direct translation of a 3D-model of the datasets, it does not remove the additional 

“shadow of light” caused by the scanning microscope. The Amira hexoskeleton avoids this problem 

by creating a centerline. In Slicer this problem was overcome by tracing the neuron in different 

angles (x,y,z) using a circular brush of the wanted size, given that the spacing of the neuron is 

approximately correct. 

4.1.2 Centerline versus complete reconstruction 
The major difference between the methods is that the Amira hexoskeleton tool creates a centerline 

which can be adjusted to get a proper thickness in each area, while Slicer labelling creates a 

complete segmentation. A centerline-model may be beneficial if different computer-analyses are to 

be run on the data such as quantification of branch lengths. However, these functions are less 

important for a purely visual purpose. Upon registering the models into the brain, the skeleton 

model and label reconstruction would suffer from different problems. If the model is stretched much 

in the registration process, or the spacing was wrong, the Slicer created label model would be overly 

stretched in different areas. In the skeleton tool, however, the dots will be placed further apart from 

each other, generating a more pixelated view. In the registrations of N1 and N2 the changes in width 

caused by the registration were almost unnoticeable, whereas problems appeared in N3. This was 

due to mechanical distortion of the brain during dissection and preparation. Thus, the antennal 

lobes, pushed into the protocerebrum, suffered structural deformation compared to the standard 

brain. When registering N3 into the standard brain, this mechanical distortion caused certain areas 

to be stretched a little bit more than others. 
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4.1.3 Automatic adjustments of the spatial distribution
Another problem encountered using the Amira semi-automatic hexoskeleton tools, was inaccuracy. 

When the “dots” were marked in the confocal image stack to create the structure, placing the dot 

accurately appeared to be of great importance. The fastest way to create a model is to go through 

the stack while marking out every curve and branching point of the neuron. Afterwards different 

parts could be adjusted to fit better. However, there were limited ways to do this adjusting beyond 

pressing an “adjust” button. This was however drastic, as clicking it too little tended to not correct 

the marked area enough, while clicking too much often over-corrected. In some very distinct areas 

this process worked wonderfully, but in the more difficult parts, the over-correction would at times 

connect branches that did not belong together, or straighten out bumps which were clearly visible to 

our eyes. The problem of using an objective algorithm for these purposes is that they have not yet 

been developed to such a degree that they can compete with a trained eye. These problems were 

avoided when using the manual Slicer labelling.

4.1.4 Thickness
The thickness of the dots in the Amira hexoskeleton tool could either be manually set for a selected 

area, or automatically set by the adjust button. The adjust button is the fastest way, but may also 

generate incorrect results. This is due to the algorithm basing the thickness on the nearby bright 

material, thus often adjusting it to match the thickness of the entire “light shadow” and not just the 

neurite itself. This problem caused when neurons appeared less spherical in the scan was mentioned 

by the developers (Evers et.al., 2005). Another problem with automatically adjusted widths was 

connected to the light intensity. When viewing more weakly stained areas by increasing the light, 

neurites would appear thicker than they actually are. By going back and forth between areas and 

adjusting the light, the thickness would also vary across the segmentation. In other words, the slow, 

manual procedure would yield a decent result, whereas the automatic tool in Amira may result in 

incorrect thickness. The thickness was also an issue in Slicer, but as previously mentioned it was 

compensated for by tracing the segmentations from another angle.

4.1.5 Different Labels
Another benefit of using labelling in Slicer compared to the Amira skeleton tool is the use of 

multiple labels. This enables the different labels to be viewed in multiple colours, and to be turned 

on and off in the 3D model. This was especially an advantage during reconstruction of N3 that 

contained several areas difficult to interpret. By segmenting each single part as a separate label, 
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different branch possibilities could be viewed from all angles as 3D-models. Correcting already 

labelled areas of a neuron was very easy in Slicer with drawing- and erase-tools. In the 

hexoskeleton tool, however, re-attaching an edited area or doing something over again was more of 

a challenge. The skeleton builds on what is already made, which makes the process more focused 

on a section at the time. This leads to less overview of the whole scene, and every area needs to be 

interpreted while it is being segmented. 

4.1.6 Challenges
Regardless of which software was used to create the segmentation, challenges arose from noisy 

datasets, weaker intensity distant to the point of staining, as well as staining in nearby neurons. This 

was particularly the case in the third brain, where two close-by neurons (N4 and N5) were hard to 

distinguish from N3. In the 3D-model, N3 and N4 were reconstructed, enabling the possibility of 

looking at the problem in 3D. As this proved to be a very complex area, several schematic models 

were created in order to discuss and understand the most likely connections in the model.

4.2 The Neurons
The three neurons selected for 3D-reconstruction in Slicer were bilateral protocerebral neurons 

characterised physiologically and morphologically. They belonged to the sensory systems, olfaction 

and hearing as well as one novelty. The olfactory system of H.virescens has been studied 

extensively in our lab by characterising receptor neurons, antennal lobe neurons and protocerebral 

neurons. Bilaterality is an important feature of all animals, including insects. Connecting the two 

hemispheres is a basic feature enabling for instance depth of vision and sound localization. In 

insects, location of the odor source is provided by information from the two antennae. The olfactory 

neurons of each antennae mediate ipsilateral information to the antennal lobe and protocerebrum. In 

the olfaction system of moths, the bilaterality does not appear before the level of the protocerebrum. 

4.2.1 N1
The protocerebral bilateral neuron N1 had both its input and output contralaterally in the LAL. 

These lobes protocerebral are regarded as pre-motoric output areas from the brain, and particularly 

for pheromone information. This particular neuron was unfortunately not tested with pheromone 

stimulation, but it did respond to stimulation with the plant odorant linalool. However, it did not 

respond to the blend containing ten primary plant odorants of which linalool was one. Protocerebral 

neurons responding to this blend, but not to single odorants have previously been found in our lab. 
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A multiglomerular antennal lobe neuron responding to only the blend and not single neurons has 

been found to mediate information to the lateral protocerebrum and the mushroom body (Løfaldli, 

2012). Neurons responding to a blend of ten odorants were found to form a putative network 

between the antennal lobe, the mushroom body and the lateral protocerebrum (Løfaldli, 2012). 

Linalool is a biological relevant odorant typically present in flowers, and is among the identified 

primary plant odorants of H.virescens (Røsterlien et al., 2005). This odorant has been tested in 

many electrophysiology and behavioural studies, and is found to be important in olfactory learning 

in H.virescens (Skiri et al, 2004; Jørgensen et al., 2007). The responses of N1 to linalool suggest 

that LAL is also involved in mediating information about some plant odors in addition to 

pheromone information.

The narrow tuning to linalool seems surprising as information in higher order areas is highly 

processed, whereas fine tuning is more typical for first order ORNs. This selective response to 

linalool might be important for detecting this important odorant in a background of other odors in 

the environment, as suggested by Høydals master thesis, (2012). This concentration based detection 

of single odorants in background could be used during navigation towards the odor plume. By 

comparing the concentration in both sides, the moth would be able to navigate towards the source of 

the odor in a zigzagging pattern. 

4.2.2 N2
The bilateral protocerebral output neuron N2 had its input area in the ventro-posterior 

protocerebrum, and the output area in the corresponding area in the contralateral hemisphere, before 

leaving the brain via the SOG to the thoracic ganglion. Sound information has not been as 

extensively studied in H.virescens as the olfaction and taste. Previous studies in our lab have shown 

the presence of sound neurones in the protocerebrum, but only a few have been identified 

morphologically and physiologically. Previously described neurons in the sound pathways of 

H.virescens include one sound related centrifugal neuron with input area in the superior 

protocerebrum and output area in all the glomeruli in the antennal lobe (Zhao et al, 2012). This 

neuron has been speculated to be important for shutting down olfactory information in the odor 

plume when the moth meets a bat. By ignoring information from the antennal lobes, it can focus 

more solely on sound information and thus escape from the bats. Other central interneurons 

identified in the sound pathways project from the thoracic ganglion and to the ventro-lateral 
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protocerbrum. In addition, the receptor cells A1 and A2 project from the ear to the thoracic 

ganglion, and one of them continued into the ventro-lateral protocerebrum. This ventro-lateral area 

of the brain is also found to be related to sound information in Drosophila, shown by molecular (Lai 

et al, 2012).

As the moths do not to produce any sound themselves, the main purpose for their sound detection 

system is to detect and escape from predators. The output neuron N2 indicates a simple and fast 

sound information circuit to enable efficient responses leading to a successful escape. N2 was an 

output neuron mediating directly to the motor neurons in the thoracic ganglion via the SOG.

The output in the controlateral protocerebrum suggests reciprocal inhibition may be involved in 

coordinating information laterally. In this process, one neuron inhibits its mirrored partner to 

increase the contrast between the two sides, enabling the insects to localise sound in space. A 

similar neuron, the omega neuron, exists in the cricket thoracic ganglia, and is used in sound 

localization (Wohlers et. al, 1982). 

In this preparation with neuron N2 there was also an additional stained cell body in the SOG close 

to the ouput area. This might be an artificial staining, but if it did belong to a part of the 

segmentation, it would most likely be the neurite displayed in green in figure 5 and 6 B. This would 

constrict the output area of N2 between the ventro-lateral protocerebrum and the SOG. As there was 

no sign of any clear connection between this additional cell body and the neuron, they may not be 

connected at all. 

4.2.3 N3
Neuron N3 was a novelty neuron with its cell body in the right peripheral SOG. The neurons main 

neurites ran in each hemisphere where they both innervated one glomerulus. N3 initially appeared 

similar to previously stained neurons innervating the CO2-glomeruli as seen in H.virescens (Dahl, 

Master thesis 2013) and drosophila (unpublished). Because of this, N3 was originally thought to 

innervate the LPOG. However, closer scans revealed that this was not the case, as the neurites 

instead innervated a close by glomerulus. Mechanical distortion of the antennal lobes during the 

preparation process causing the antennal lobes to be pushed into the protocerebrum lead to 

difficulties in interpreting which glomeruli was innervated. The distortion caused the antennal lobes 

to look quite different from each other and also from the SBA, but as the innervated glomerulus was 
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lying posteriorly to the LPOG, glomeruli G53 may be a possible candidate. Another effect of the 

distortion of the brain was that registering it to the SBA caused certain areas to be more stretched 

than others, especially the area between the protocerebrum and antennal lobes.

Two neurites extends to each hemisphere where they both innervate one glomerulus before 

branching narrowly in the antennal lobe, and the ventral protocerebrum. From this point on, the 

paths in each hemispheres differed. In the right hemisphere, two prominent neurites entered the eye 

lobe, while the neurites in the left hemisphere faded into an area below the central body. Entering 

the eye lobe may be connected to the response to novel light stimuli by a flash light. The ventral 

protocerebral arborisations of N3 may be connected to the response to sound by a keychain and the 

projections in the antennal lobe corresponds to the response by the major component odor stimuli. 

Several difficult areas appeared during reconstruction of this particular neuron, due to staining of 

additional neurons in the left hemisphere near what is thought to be the point of dye injection. 

Different possible origins of the branches in that area are shown in figure 13. The first and probably 

most likely option ascribed most of the branches (red) to a nearby stained neuron N4. If different 

parts of the additional branches belong to N3 as shown in the examples 13 B, C and D, the 

protocerebral branching of N3 would be increased. Some possibilities (C, D) includes a branch 

which was closely connected to both N4 and the output area of a neuron N5, which lied in the 

superior lateral protocerebrum as shown in figure 12, an area often connected to processing of 

visual stimuli.

Responding to novel information is important for the moths in relation to predator avoidance, 

mating and feeding. To avoid spending energy on processing a continuous flow of information in 

the environment, a strategy is to increasing the contrast and adapt to the background noise in the 

form of odors, sounds and visual stimuli. Responses to different types of stimuli can be up- and 

down-regulation of responses by modulatory neurons in different contexts. This is an important 

feature for adaptation, learning and memory. One particularily well studied neuron in regards of up-

regulation of responses to conditioned odor stimuli in the honey bee is the modulatory ventral 

unpaired medial neuron of the maxillary palp (VUMmx), which innervated the antennal lobes, the 

lateral protocerebrum and the mushroom bodies (Hammer, 1993; Hammer and Menzel, 1998). In 

H.virescens, similar innervation patterns have been described by Rø et al. (2007), and neurons with 

suggested modulatory functions innervated the antennal lobes in both H.virescens and Helicoverpa 
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armigera (Zhao & Berg, 2009; Zhao et al., 2012). 

The responses of N3 were to important stimuli regarding moth behaviour. The bilateral innervation 

of the antennal lobe glomeruli and the response profile together suggests a modulatory function for 

N3. The responses of the odor information differed from the sound and light stimulus. The latter by 

instantaneous spiking to novel stimuli, while the response to the major pheromone component 

consisted of repeated and consistent spiking with a couple of spikes within a latency range of 120-

140 ms. These differences could be attributed to the behavioural needs connected to the different 

types of stimuli. Light and sound is both related to detection and avoidance of predators and thus 

needs a fast circuit compared to the more slow process of pheromone signalling.

4. 3 Limitations of the study and future studies? 
Reconstruction of neurons stained with intracellular electro-physiology is a time-consuming process 

regardless of which method was used, much because it requires interpretation of complex areas. The 

resulting reconstruction will be strongly affected by the image resolution of the confocal scans, and 

also personal experience and interpretation. Challenges were caused by noise in the datasets, and 

weak staining of thinner branches causing some areas to be hard to separate from the background 

and surrounding structures. While some of these branches could be traced through the stacks after 

enhancing the image quality, they were hard to visualise in the confocal image stacks. In addition to 

the problems caused by weak staining, too much dye was also an issue. This was particularly the 

case in N3, where additional branches (N4, N5) near the point of dye injection had been stained. 

Because of this conflicting area in addition to mechanical distortion of the brain, it was hard to 

understand the exact extent and thus complexity of this particular neuron. 

Much is still left to be studied in relation to both protocerebral networks, modulatory and bilateral 

neurons. Our lab currently runs a project on sound neurons in H. virescenes, which may give 

important insights to their pathways and processing. In addition, it would be very interesting to see 

behavioural experiments in relation to these neurones, which could shed light on their biological 

relevance.
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5. CONCLUSIONS

The reconstructions of three bilateral protocerebral neurons in H.virescens created with manual 

labelling in Slicer were successful. This method had several benefits compared to the semi-

automatic Hexoskeleton tool for Amira, but were more influenced by personal interpretations and 

thus less objectivity. Some of the benefits included more control over the thickness and branch 

attachments leading to increased accuracy. Slicer was found to be a faster method for an 

inexperienced user for reconstruction than the hexoskeleton tool. This was especially the case for 

complex datasets with areas open for interpretation. Using labelling instead of a skeleton tool 

allows for easier corrections and the use of multiple labels. This in turn enables the possibility for 

testing out different options in complex areas in 3D by turning different labels on and off. 

Regardless of method or software used, there were challenges caused by the staining quality, noise 

in the dataset and mechanical distortion of the brain. The segmentations were registered into the 

standard brain.

The bilateral protocerebral neurons responded to three different modalities, namely an odorant, a 

sound stimulus and novelty. The neurons N1 and N2 both projected from one area to the same area 

on the contralateral side. This bilaterality was suggested to indicate reciprocal inhibition, and thus 

contrast enhancement between the two hemispheres. This could enable the insects to orient towards 

the odorant and sound in space. That N1 responded to linalool stimulation, but not a blend 

containing linalool, further support the suggested contrast enhancement. Both neurons resided in 

output areas, N1 in the Lateral Accessory Lobe and N2 in first in the ventro-lateral protocerebrum 

before leaving the brain through the SOG. The last neuron, N3, was found to respond to novel 

stimuli of sound and light, and consistently to the major pheromone component. This novelty 

detection may be important for focusing attention, and detecting important biologically relevant 

stimuli from the background noise in the environment. The neuron innervated one glomerulus in 

each hemisphere before branching into the ventral protocerebrum. From there the neurites turned 

into the eye lobe in the right hemisphere and fading into an area below the central body in the left 

hemisphere. 
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