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function is placed carefully in order to generate the desired subapertures. Figure 3.4
shows the spatial filtering scheme in the ( fθ , fφ) plane, where the red circles illustrate
the three subapertures created by filtering the original spatial frequency content of each
image frame.

Figure 3.4: The filtering scheme of the method using three separate ranges of spatial
frequency to generate TOs. The red circles indicate the locations of the subapertures.

The full implementation of the filtering technique based on keeping three separate
ranges of frequency can be found in Appendix A.1.3.

3.1.2 Calculating the Autocorrelation Functions

The autocorrelation technique, where the autocorrelation function is used in ultra-
sound applications to estimate velocities in blood or other tissues, was first developed
for use in applications such as weather radar [80, 81]. The method uses the phase shift
between two RF signals to calculate the velocity of the imaged medium at the corre-
sponding point in time. It is the technique implemented on most commercial ultra-
sound scanners to calculate the axial velocity component [82]. In the motion estimation
procedures presented here, the autocorrelation method will be used in the estimation
of all three velocity components. To do so, the autocorrelation function corresponding
to each subaperture is calculated. The phases of these autocorrelation functions, and
hence the velocity estimates, will be at an angle with respect to the z-axis depending
on the location of the subaperture. An illustration of the receive angles for the veloc-
ity vectors is given in 2D in Figure 2.6. This is the clue for being able to estimate the
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transverse velocity components, as the resulting velocity vectors can be combined in
different ways in order to yield the transverse velocity components.

3.1.3 Spatial Averaging

Doppler signals are stochastic, meaning that estimates of signal parameters vary ran-
domly. To avoid rapid fluctuations and drop-outs in the final estimates, post-processing
techniques such as temporal and spatial averaging are typically applied to the Doppler
parameter data [83]. In the implementation presented here, spatial averaging of the au-
tocorrelation functions is applied before calculating the phases. This implies that each
autocorrelation value is replaced by an average of itself and the surrounding values. It
is likely that adjacent points will behave similarly. Therefore, it can be assumed that
spatial averaging will yield acceptable autocorrelation values. In this implementation,
spatial averaging of 11 pixels in the axial direction and 5 pixels in each transverse direc-
tion was applied. The spatial averaging includes a higher number of pixels in the axial
direction than in the transverse directions, because the axial resolution of the images
is better than the resolution in the azimuth and elevation directions. The resolution is
approximately 1.5 mm in the azimuth direction and 1.8 mm in the elevation direction
at a depth of 6 cm, while in the axial direction the resolution is approximately 0.70 mm.

3.1.4 Obtaining the Displacement Between Consecutive Images

Conventional TDI exploits the entire spatial frequency content of the ultrasound im-
ages to estimate the axial velocity component. Larger bandwidth, improved spatial res-
olution and more efficient spatial averaging can be obtained when utilizing the entire
spatial frequency content compared to using only parts of it. Therefore, TDI tends to
give more accurate estimates of the axial velocity component than a combination of the
contributions from multiple subapertures can give. Hence, conventional TDI is the pre-
ferred method for estimating the axial velocity component and is therefore used in this
implementation. However, the velocity components transverse to the ultrasound beam
cannot be estimated based on the entire spatial frequency content of the unfiltered im-
ages, as discussed in section 2.5. To estimate the transverse velocity components, i.e.
the azimuth and elevation velocity components, the contributions from different sub-
apertures must be combined in two different ways. The transverse velocity components
between each consecutive image frame can be calculated from a combination of the
phases of the autocorrelation functions related to the different subapertures, while the
axial velocity component is calculated from the phase of the autocorrelation function
related to the unfiltered images. To calculate the transverse velocity components, the
phases must be combined in different ways, depending on the method used. The phase
combinations related to the three different methods are given in the following.
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Jensen’s Approach

Azimuth direction: Φθ =ΦUpper −ΦLower

Elevation direction: Φφ =ΦLe f t −ΦRi g ht

Axial direction: Φr =ΦAll

The subscripts are referring to the location of the spatial frequency content of the dif-
ferent subapertures given in Figure 3.2. "All" is referring to the entire spatial frequency
content.

Four Separate Ranges of Frequency

Azimuth direction: Φθ =ΦUpper Ri g ht −ΦLower Ri g ht

Elevation direction: Φφ =ΦLower Le f t −ΦLower Ri g ht

Axial direction: Φr =ΦAll

The subscripts are referring to the location of the spatial frequency content of the dif-
ferent subapertures given in Figure 3.3. "All" is referring to the entire spatial frequency
content.

Three Separate Ranges of Frequency

Azimuth direction: Φθ = ΦLower Le f t+ΦLower Ri g ht

2 −ΦUpper Mi ddl e

Elevation direction: Φφ =ΦLower Le f t −ΦLower Ri g ht

Axial direction: Φr =ΦAll

The subscripts are referring to the location of the spatial frequency content of the dif-
ferent subapertures given in Figure 3.4. "All" is referring to the entire spatial frequency
content.

After combining the phases, the velocities are calculated according to (2.14), (2.15) and
(2.16). The displacements between each consecutive image frame are given by the cor-
responding velocity.

The TOs are dependent on several parameters in the implementation. In addition, the
estimated trajectory of a point is dependent on the size of the region of interest (ROI)
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selected to calculate it. The parameters for the implementation of the TO methods are
given in table 3.1.

Table 3.1: TO parameters

Parameter Value
ROI size (Axial, Azimuth, Elevation) [pixels] (32, 32, 16)
Normalized f0x 0.8, 0.2
Normalized f0y 0.8, 0.2, 0.5
σx [mm] 3.5
σy [mm] 3.5

Here, f0x and f0y are given as normalized frequencies. They determine the location
of the Gaussian function and hence the location of the corresponding subaperture in
each direction. The different values given in the table indicate the different normalized
frequencies where the Gaussian function is placed in order to create upper, lower, left,
right and middle subapertures. σx andσy determine the width of the Gaussian function
and hence the size of the corresponding subaperture in each direction.

3.2 Implementation of Speckle Tracking

3D speckle tracking was implemented using block matching and the SAD approach,
as described in Section 2.6.1. The SAD approach was chosen as it is the least compu-
tationally demanding of the methods described in Section 2.6.1. Interpolation and a
1D Gaussian approximation scheme, as presented in [84], were applied in order to be
able to detect and track sub-pixel motion. Either RF or B-mode images can be used for
speckle tracking [85]. However, B-mode images were used in this implementation.

The block matching algorithm is dependent on several parameters. Table 3.2 gives the
block matching parameters used in the implementation. These can be adjusted to op-
timize the performance of the method. The interpolation factor is applied to all three
directions. In order to obtain a fair comparison of the TO methods to speckle tracking,
the same point and the same ROI were selected for motion estimation using all four
approaches.

Table 3.2: Block matching parameters

Parameter Value
ROI size (Axial, Azimuth, Elevation) [pixels] (32, 32, 16)
Window size (Axial, Azimuth, Elevation) [pixels] (34, 34, 18)
Interpolation factor 5

30



CHAPTER 3. METHODS

3.3 Conversion From Spherical to Cartesian Coordinates

As the motion estimation procedures are aimed at estimating the 3D cardiac motion,
the relevant data will be acquired using a 2D matrix array probe. Consequently, the ac-
quired data is given in spherical coordinates. Thus, the motion is estimated in spherical
coordinates and needs to be converted to Cartesian coordinates in order be comparable
to the true motion. The equations for conversion are given as:

vz = vr dr × cos(φ)− vθdθr × si n(φ) (3.1)

vx = vr dr × cos(θ)si n(φ)− vφdφr × si n(θ)si n(φ)+ vθdθr × cos(θ)cos(φ) (3.2)

vy = vr dr × cos(θ)si n(φ)− vθdθr × si n(θ)si n(φ)+ vφdφr × cos(θ)cos(φ) (3.3)

where vr , vθ and vφ are the velocities in axial, azimuth and elevation directions re-
spectively, dr , dθ and dφ are scaling factors from pixels to mm corresponding to each
direction, r is denoting the radial direction, θ is denoting the azimuth direction and φ

is denoting the elevation direction. Figure 3.5 shows how the azimuth and elevation di-
rections are defined in the 3D image volume. The axial direction is defined to be along
the ultrasound beam axis.

Figure 3.5: The azimuth and elevation directions as defined in the 3D image volume.
The axial direction is defined to be along the ultrasound beam axis. From [86].
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3.4 Calibration of Spatial Frequency

The motion estimation procedures based on TOs are dependent on the spatial frequen-
cies fr , fθ and fφ. In order to produce precise motion estimates, the spatial frequencies
must be calibrated according to the relevant sequence of ultrasound data. The spatial
frequencies can be calculated theoretically from the frequency spectrum. However, in
this implementation, a special calibration procedure was developed. The spatial fre-
quencies were estimated by introducing a known motion, in this case 1 pixel in each
direction, to each frame of ultrasound data. Then, the relevant motion estimator was
used to estimate the known velocity. From the estimated and known velocities, the spa-
tial frequencies were derived using equations (2.14), (2.15) and (2.16). The calibration
of the spatial frequencies was done prior to the motion estimation, and the temporal
average of the spatial frequencies estimated for each frame was used in the motion es-
timators.

3.5 Experimental Trials

In order to be able to verify and compare the motion estimation methods, they were
applied to various sets of ultrasound data. Phantom experiments were performed to
obtain sequences of ultrasound images featuring uniform, known motion. In addition,
the motion estimators were applied to an in vivo example with unknown motion. The
phantom experiments were performed by moving the probe in a known manner. This
enabled the possibility to compare the estimated motion to the ground truth and hence
verify the motion estimation methods. In order to be able to compare the estimators in
a more realistic setting, an in vivo acquisition of a healthy, human heart was obtained.
All acquisitions were performed using a locally modified GE Vivid E95 scanner that en-
abled saving of IQ data.

3.5.1 3D Acquisition of Stepwise Linear Movement in Phantom

An experiment was performed where a phantom was imaged using a 2D matrix array
transducer. The probe was moved stepwise between each image frame using a stepper
motor. The phantom was filled with water on top, in order to facilitate movement of the
probe in the direction perpendicular to the phantom surface. Three different experi-
ments were performed, which in a Cartesian coordinate system can be expressed as:

1. Moving the probe linearly in the x-direction only

2. Moving the probe linearly in the y-direction only

3. Moving the probe linearly in the z-direction only

The introduced inter-frame displacements were 0.1 mm in all directions. A sequence of
20 displacements were introduced in each direction, resulting in a sequence of 21 ultra-
sound image frames. Moving the probe to introduce the motion resulted in a uniform
motion where all points in the image move in the same manner. Table 3.3 gives a list of
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the acquisition parameters used. Figure 3.6 shows the experiment setup.

Figure 3.6: Experiment setup showing the probe, how the probe is attached to the step-
per motor and the phantom. The phantom is filled with water on top.

Table 3.3: Phantom acquisition parameters

Parameter Value
2D matrix array 4V-D
Pitch 230 µm
Element focus 77 mm
Aperture 24 mm × 21 mm
Number of elements 60x48
Center frequency 2.5 MHz
Demodulation frequency 1.6 kHz
Imaging parameters
Ultrasound system Locally modified, university-owned GE Vivid E95
Plane wave compounding No compounding
Number of plane waves 5x4 plane waves
Imaging depth 12 cm
Volume width 60 ◦ × 60 ◦
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3.5.2 3D Acquisition of Stepwise Circular Movement in Phantom

Using the same setup as in the case of the linear motion experiments, an experiment
where the probe was moved in a circular manner was performed. This experiment was
performed in order to be able to test the motion estimators on an induced motion mim-
icking the real motion of the heart. It enabled the possibility to validate the estimators
on three-dimensional motion, i. e. motion in all three directions simultaneously. Fig-
ure 3.7 displays the displacement introduced in each of the three directions. Together,
the movements form a circle in 3D space. The imaging parameters are given in Table
3.3.

Figure 3.7: The displacement introduced in each of the three directions.

A sequence of 20 displacements were introduced, resulting in a sequence of 21 ultra-
sound image frames. Moving the probe to introduce the displacements resulted in a
uniform motion where all points in the image move in the same manner.

3.5.3 In Vivo Acquisition of a Healthy Human Heart Using High Frame Rate

The two previous experiments were performed using using a stepwise motion where
each frame of ultrasound data was stored after introducing one displacement step. As
the motion estimation methods based on calculating the phases of the autocorrelation
functions are restricted with respect to the maximum displacement possible to detect
because of aliasing effects, high frame rate imaging is required in order to obtain accu-
rate estimates in real applications. Therefore, it was desirable to test the motion estima-
tors on an in vivo example where the data was acquired using high frame rate, in order
to test the performance of the estimators in a realistic setting. The imaging parameters
for the in vivo acquisition of a healthy, human heart using high frame rate imaging are
given in Table 3.4.
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Table 3.4: In vivo acquisition parameters

Parameter Value
2D matrix array 4V-D
Pitch 230 µm
Element focus 77 mm
Aperture 24 mm × 21 mm
Number of elements 60x48
Center frequency 2.5 MHz
Demodulation frequency 1.6 kHz
Imaging parameters
Ultrasound system Locally modified, university-owned GE Vivid E95
Plane wave compounding No compounding
Number of plane waves 5x4 plane waves
Imaging depth 12 cm
Volume width 60 ◦ × 60 ◦
Frames per second 820
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4 | Results

In this chapter, the results from motion estimation using the three TO approaches and
speckle tracking will be presented. The motion estimation methods are applied to three
different types of ultrasound data: data from a phantom experiment with 1D linear
motion, data from a phantom experiment with 3D circular motion and in vivo data
acquired from a healthy human heart.

4.1 Introduction of Transverse Oscillations

The first step in the motion estimation procedures based on TOs, is to filter the spatial
frequency content of every 3D image frame in the sequence of ultrasound data. Fil-
tering is done to divide the receive aperture into several subapertures. The first image
frame in the sequence of ultrasound images resulting from the acquisition of the 3D
circular movement is used to show the effect of applying the three different filtering
schemes. Since the data is three dimensional, only the middle slice of the frequency
spectrum in the axial direction is shown. The middle slice of the frequency spectrum
corresponds to the axial frequency of 0 Hz in the IQ-data, which equals the demodu-
lation frequency of the RF data. The spatial frequency content is displayed in the ( fθ ,
fφ) plane. Figure 4.1 shows the unfiltered spatial frequency content of this first image
frame.
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Figure 4.1: The unfiltered spatial frequency content of the first frame of ultrasound data
from the acquisition of the 3D circular movement. The dark blue areas indicate zero
content of the given spatial frequency. The brighter the color, the higher the content of
the given spatial frequency.

Three different schemes have been presented for filtering the spatial frequency content
to introduce TOs. Each of these approaches yields a different frequency spectrum af-
ter applying the relevant filters to the spatial frequency content of the original image
frame. The first approach is based on the work done by Jensen’s research group. It was
implemented using filtering instead of the special beamforming scheme that was used
originally. With this approach, two double-oscillating fields, i. e. fields oscillating in
the axial direction in addition to one transverse direction, were created by filtering the
spatial frequency content in one of the transverse directions at a time. The resulting ( fθ ,
fφ) planes of the two frequency spectra are shown in Figure 4.2.
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Figure 4.2: The spatial frequency content of the first frame of ultrasound data after ap-
plying the filtering scheme as proposed by Jensen’s research group. The dark blue areas
indicate zero content of the given spatial frequency. The brighter the color, the higher
the content of the given spatial frequency.

The figure shows how each frequency spectrum consists of two separate ranges of spa-
tial frequency, resulting in a field featuring oscillations in one transverse direction in
addition to the axial. The location of the frequency ranges determines the wavelength
of the TOs in each direction.
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The second approach is a 3D extension to the method developed by Salles et al. for
introduction of TOs by filtering in 2D. The approach has previously been extended to
3D using a similar beamforming scheme as Jensen’s research group, while in this thesis
it was implemented by applying a filtering scheme. The spatial frequency content of
the image frame was filtered in both transverse directions simultaneously to produce a
3D field oscillating in all three dimensions. The resulting frequency spectrum is shown
in Figure 4.3.

Figure 4.3: The spatial frequency content of the first frame of ultrasound data after ap-
plying the filtering scheme yielding four separate ranges of spatial frequency. The dark
blue areas indicate zero content of the given spatial frequency. The brighter the color,
the higher the content of the given spatial frequency.

It can be observed that the frequency spectrum shows as four separate ranges of spatial
frequency. This results in a field oscillating in both transverse directions simultane-
ously. The wavelength of the TOs in each direction is determined by the location of the
four separate ranges of spatial frequency.
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A new filtering scheme has been described and proposed for introducing TOs. This
approach suggests to produce a field featuring oscillations in three transverse direc-
tions simultaneously by keeping only three separate ranges of spatial frequency in the
frequency spectrum. Figure 4.4 shows the resulting ( fθ, fφ) plane of the frequency spec-
trum after applying the relevant filters.

Figure 4.4: The spatial frequency content of the first frame of ultrasound data after ap-
plying the filtering scheme yielding three separate ranges of spatial frequency.

In order to extract the three separate ranges of spatial frequency, five different filters
were applied to the original spatial frequency content of the image: three to extract the
two lower ranges of frequency, and two to extract the upper frequency range.
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4.2 Linear Motion

As a first step in the validation and comparison of the four motion estimators, they
were applied to a set of one-dimensional, linear motions. The linear motions were in-
troduced mainly in the x-, y- or z-direction separately, and hence these phantom ex-
periments were well-suited to validate the estimates of each component of the motion.
Such one-dimensional motion in either x-, y- or z-direction enabled the estimation of
each velocity component without being influenced by motion in other directions. In
order to be able to compare the three TO methods to the block matching method, the
same point was selected for tracking using all four methods. In addition, the same size
of the ROI was chosen in all cases. Figure 4.5 displays the point selected to track in the
(z, x) plane. The same bright spot in the image was selected to track for all three linear
motion experiments.

Figure 4.5: The point selected to track for the phantom experiments with linear motion,
shown in the (z, x) plane.

4.2.1 Estimated Displacements

The ultrasound images are given in spherical coordinates as a result of the acquisitions
being performed using a 2D matrix array transducer. Therefore, the displacements be-
tween each consecutive image frame are first estimated in spherical coordinates as pix-
els. Then, the motion given in spherical coordinates is converted to Cartesian coordi-
nates and expressed in mm. This conversion to Cartesian coordinates is necessary in
order to be able to compare the estimated motion to the real motion, which was in-
troduced in Cartesian coordinates. In the case of the linear motions, the ground truth
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regarding the motion in each direction is known. Therefore, it is possible to quantita-
tively compare the estimated motions to the real motion.

Figure 4.6 shows the estimated displacements given in Cartesian coordinates when the
real motion is mainly in the z-direction. The black lines indicate the ground truth re-
garding the displacements introduced in each direction.

Figure 4.6: Estimated displacements when the real movement is mainly in the z-
direction.
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Figure 4.7 shows the estimated displacements given in Cartesian coordinates when the
real motion is primarily in the x-direction. As before, the black lines indicate the ground
truth regarding the motion in each direction.

Figure 4.7: Estimated displacements when the real movement is mainly in the x-
direction.
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In Figure 4.8, the estimated displacements when the real motion is mainly in the y-
direction are given in Cartesian coordinates. The black lines illustrate the real displace-
ments introduced in each direction.

Figure 4.8: Estimated displacements when the real movement is mainly in the y-
direction.

It can be noted that the estimates of the z-component from the TO methods seem to be
identical. Another important note is that the block matching method seems to under-
estimate the motion in both transverse directions.

4.2.2 Estimated Velocities

The estimated velocities, given in Cartesian coordinates, are presented in the follow-
ing, and compared to the true, constant velocity. Three sets of estimated velocities are
presented: one where the real motion is mainly in the z-direction, one where the real
motion is mainly in the x-direction and one where the real motion is mainly in the y-
direction.
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Figure 4.9 shows the estimated velocities given in Cartesian coordinates when the real
motion is primarily in the z-direction.

Figure 4.9: Estimated velocities when the real movement is mainly in the z-direction.

It can be observed that the estimated transverse velocities, especially those resulting
from the approach proposed by Jensen’s research group, show large variations. De-
spite the true velocities being constant, the estimated transverse velocities are showing
a distinct zigzag pattern. Another observation is that the TO methods seem to slightly
overestimate the velocity in the x-direction.
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Figure 4.10 shows the estimated velocities given in Cartesian coordinates when the real
motion is primarily in the x-direction.

Figure 4.10: Estimated velocities when the real movement is mainly in the x-direction.

The block matching method is clearly underestimating the x-component of the velocity,
while the TO methods seem to be yielding similar estimates of this particular velocity
component.
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Figure 4.11 shows the estimated velocities given in Cartesian coordinates when the real
motion is mainly in the y-direction.

Figure 4.11: Estimated velocities when the real movement is mainly in the y-direction.

Once again it can be noticed that the block matching method seems to underestimate
the transverse velocity component, this time in the y-direction. The TO methods seem
to slightly overestimate the y-component of the velocity, while all four methods are pro-
viding estimates close to the true velocity in z- and x-directions.

4.2.3 Error Measurements

In order to be able to give a quantitative comparison of the four motion estimators, the
mean errors and standard deviations are presented for all velocity components in each
set of 1D linear motion. Because the errors related to the estimated displacements are
accumulating, the error measurements are calculated from the estimated velocities and
not from the displacements.

As the velocity is constant in each direction, the mean error of the estimated veloc-
ity gives the bias of the estimator, while the square of the standard deviation gives the
variance. The bias and variance of an estimator are common measures to characterize
its performance. Tables 4.1, 4.3 and 4.5 state the mean errors and standard deviations
of each method in each velocity component when the true motion is mainly in the z-,
x- and y-direction, respectively. Tables 4.2, 4.4 and 4.6 give the corresponding relative
mean errors and standard deviations. The smallest mean error and the corresponding
standard deviation in each direction is highlighted in bold.
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Table 4.1: Mean errors and standard deviations for the x-, y- and z-component of the
velocity for the four different methods when the motion is mainly in the z-direction

True motion in the z-direction z-direction x-direction y-direction
BM [mm/frame] 0.0035 ± 0.0019 0.0021 ± 0.0018 0.0018 ± 0.0016

TO Jensen [mm/frame] 0.0012 ± 0.00083 0.0285 ± 0.0159 0.0116 ± 0.0143
TO 3 freq. ranges [mm/frame] 0.0016 ± 0.0011 0.0219 ± 0.0142 0.0075 ± 0.0053
TO 4 freq. ranges [mm/frame] 0.0012 ± 0.00082 0.0219 ± 0.0142 0.0138 ± 0.0075

Table 4.2: Relative mean errors and standard deviations for the x-, y- and z-component
of the velocity for the four different methods when the motion is mainly in the z-
direction

True motion in the z-direction z-direction x-direction y-direction
BM 3.5 % ± 1.9 % 2.1 % ± 1.8 % 1.8 % ± 1.6 %

TO Jensen 1.2 % ± 0.83 % 28.5 % ± 15.9 % 11.6 % ± 14.3 %
TO 3 freq. ranges 1.6 % ± 1.1 % 21.9 % ± 14.2 % 7.5 % ± 5.3 %
TO 4 freq. ranges 1.2 % ± 0.82 % 21.9 % ± 14.2 % 13.8 % ± 7.5 %

Table 4.3: Mean errors and standard deviations for the x-, y- and z-component of the
velocity for the four different methods when the motion is mainly in the x-direction

True motion in the x-direction z-direction x-direction y-direction
BM [mm/frame] 0.0039 ± 0.00056 0.0845 ± 0.0019 0.00099 ± 0.00076

TO Jensen [mm/frame] 0.0055 ± 0.00080 0.0030 ± 0.0021 0.0028 ± 0.0020
TO 3 freq. ranges [mm/frame] 0.0053 ± 0.00090 0.0026 ± 0.0021 0.0030 ± 0.0017
TO 4 freq. ranges [mm/frame] 0.0049 ± 0.00075 0.0026 ± 0.0021 0.0041 ± 0.0030

Table 4.4: Relative mean errors and standard deviations for the x-, y- and z-component
of the velocity for the four different methods when the motion is mainly in the x-
direction

True motion in the x-direction z-direction x-direction y-direction
BM 3.9 % ± 0.56 % 84.5 % ± 1.9 % 0.99 % ± 0.76 %

TO Jensen 5.5 % ± 0.80 % 3.0 % ± 2.1 % 2.8 % ± 2.0 %
TO 3 freq. ranges 5.3 % ± 0.90 % 2.6 % ± 2.1 % 3.0 % ± 1.7 %
TO 4 freq. ranges 4.9 % ± 0.75 % 2.6 % ± 2.1 % 4.1 % ± 3.0 %
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Table 4.5: Mean errors and standard deviations for the x-, y- and z-component of the
velocity for the four different methods when the motion is mainly in the y-direction

True motion in the y-direction z-direction x-direction y-direction
BM [mm/frame] 0.0011 ± 0.0010 0.0012 ± 0.00089 0.0593 ± 0.0032

TO Jensen [mm/frame] 0.0026 ± 0.0017 0.0045 ± 0.0031 0.0168 ± 0.0059
TO 3 freq. ranges [mm/frame] 0.0026 ± 0.0017 0.0066 ± 0.0069 0.0154 ± 0.0063
TO 4 freq. ranges [mm/frame] 0.0026 ± 0.0017 0.0066 ± 0.0069 0.0105 ± 0.0089

Table 4.6: Relative mean errors and standard deviations for the x-, y- and z-component
of the velocity for the four different methods when the motion is mainly in the y-
direction

True motion in the y-direction z-direction x-direction y-direction
BM 1.1 % ± 1.0 % 1.2 % ± 0.89 % 59.3 % ± 3.2 %

TO Jensen 2.6 % ± 1.7 % 4.5 % ± 3.1 % 16.8 % ± 5.9 %
TO 3 freq. ranges 2.6 % ± 1.7 % 6.6 % ± 6.9 % 15.4 % ± 6.3 %
TO 4 freq. ranges 2.6 % ± 1.7 % 6.6 % ± 6.9 % 10.5 % ± 8.9 %
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4.3 Circular Motion

The 3D circular motion was used to compare the performance of the four estimators.
This motion represents a more realistic motion in the sense of being three dimensional,
i. e. it consists of non-zero displacements in all three directions simultaneously. In ad-
dition, the circular motion is built up of displacements of varying magnitudes. Hence,
applying the motion estimators to this data set, enabled a comparison in a more real-
istic setting. The same point was selected to track and the same size of the ROI was
chosen for all four motion estimators. Figure 4.12 displays the point selected to track in
the (z, x) plane.

Figure 4.12: The point selected to track for the phantom experiment with circular mo-
tion, shown in the (z, x) plane.

51



4.3. CIRCULAR MOTION

4.3.1 Estimated Displacements

The displacements were estimated in spherical coordinates before being converted to
Cartesian coordinates. The resulting Cartesian displacement curves are shown in Fig-
ure 4.13, where the black lines indicate the true motion in each direction.

Figure 4.13: The displacement in each direction given in Cartesian coordinates for the
phantom experiment with circular motion.

As can be observed from the figure, the TO methods apparently yield identical esti-
mates of the displacement in the z-direction, while the block matching method seems
to slightly underestimate the z-component of the displacement compared to the true
motion. In the x-direction, the TO methods yield estimates of the displacement curve
that are close to the true motion, while the block matching method seems to underes-
timate the motion. In the y-direction, all methods seem to underestimate the motion.
However, block matching yields the most significant underestimate compared to the
true motion.
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4.3.2 Estimated Velocities

In order to be able to compare the motion estimation schemes without the accumulat-
ing error that is present in the displacements curves, the estimated velocities, given in
Cartesian coordinates, are presented in Figure 4.14. The black lines illustrate the true
velocities according to the motions introduced when carrying out the experiment.

Figure 4.14: The velocity in each direction given in Cartesian coordinates for the phan-
tom experiment with circular motion.

The figure shows that all four methods yield estimates close to the true velocity in the
z-direction. According to the observations from the displacement curves, the block
matching method seems to underestimate the motion significantly in both the x- and
y-direction. However, the TO methods yield estimates of the x-component of the veloc-
ity close to the true motion. All four methods seem to underestimate the velocity in the
y-direction.
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4.3.3 Error Measurements

A quantitative comparison of the motion estimators, when applied to the 3D circular
motion, is given by error measurements. Figure 4.15 gives the deviations between the
estimated and the true velocity in each direction.

Figure 4.15: Error plot showing the deviation between the estimated velocity and the
true velocity in each direction of the phantom experiment with circular motion.

From the figure it can be observed by visual inspection that the errors related to the
TO methods in the z- and y-directions seem to be correlated with the corresponding
velocity curves. For the block matching method, the correlation is most prominent in
the x- and y-directions. The displacement and velocity curves clearly showed that the
block matching method underestimated the motion. This finding is reflected in the
large deviation between the velocity estimated by block matching and the true velocity.
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The mean errors and standard deviations of the four methods are calculated for the 3D
circle experiment and summarized in Table 4.7. The smallest mean error in each direc-
tion and the corresponding standard deviation is highlighted in bold. It can be noticed
that the 3D circle motion has non-constant velocity in each direction. Therefore, the
bias and variance of the estimators cannot be calculated directly from the mean errors
and standard deviations in this case.

Table 4.7: Mean errors and standard deviations for the velocity in the x-, y- and z-
directions for the four different methods

z-direction x-direction y-direction
BM [mm/frame] 0.0071 ± 0.0036 0.0494 ± 0.0255 0.0396 ± 0.0206

TO Jensen [mm/frame] 0.0065 ± 0.0032 0.0032 ± 0.0025 0.0220 ± 0.0106
TO 3 freq. ranges [mm/frame] 0.0062 ± 0.0031 0.0067 ± 0.0099 0.0107 ± 0.0085
TO 4 freq. ranges [mm/frame] 0.0065 ± 0.0034 0.0067 ± 0.0100 0.0183 ± 0.0098

4.3.4 3D Plot

The estimated displacements are visualized in a 3D plot corresponding to each mo-
tion estimation method and shown in Figure 4.16. The black lines indicate the true 3D
displacement curves, and serve as a reference for the estimated displacements. The
estimated displacement curves are color coded according to the mean value of the dis-
placement error in all three directions. The error is accumulating as it is based on the
estimated displacements.
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Figure 4.16: 3D plot of the estimated circular motion, color coded according to the
mean displacement error.
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4.4 In Vivo Example

The motion estimators are aimed at being able to estimate the motion of cardiac tissue.
Hence, it was desirable to test the motion estimators on data from an in vivo example
of a human heart. Since the ultrasound data was acquired from a real, human heart,
the true motion is unknown. Therefore, the motion estimators can only be compared
against each other. The same point in the heart wall was selected to track using all four
motion estimation methods. This point is shown in Figure 4.17.

Figure 4.17: The point in the heart wall selected to track in the in vivo example.
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Figure 4.18 shows the estimated displacements for the selected point in the heart wall
in z-, x- and y-directions, resulting from all four motion estimation methods.

Figure 4.18: Comparison of the estimated displacements resulting from all four motion
estimation methods for the in vivo example.

From the figure it can be observed that all four methods yield similar trajectories in the
z-direction. The TO methods seem to yield similar trajectories in the x- and y-directions
as well. However, the x- and y-trajectories estimated by the block matching method
deviate from the trajectories estimated by the TO methods, especially in the y-direction.
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Figure 4.19 shows a 3D plot of the estimated displacements for the selected point re-
sulting from the TO method based on keeping four separate ranges of spatial frequency.
The motion of the selected point is tracked through almost one full cardiac cycle. There-
fore, it is expected that the point will end up close to its original position. The blue, red
and green coloring indicates different periods of the cardiac cycle.

Figure 4.19: 3D plot showing the estimated displacement curve for the in vivo example,
resulting from the motion estimation method based on keeping four separate ranges of
spatial frequency.

4.5 Computational Efficiency

Table 4.8 gives the computational efficiency of the four motion estimation methods.
The run times were measured for performing the motion estimation and converting
from spherical to Cartesian coordinates for the sequence of 21 frames from the phan-
tom experiment with circular motion. The run times were scaled to yield the run time
per frame. In addition, the run times for 800 frames, which will be a typical number of
frames for an in vivo acquisition of one heart cycle using ultrafast imaging, were calcu-
lated. The execution time for the block matching approach is given for tracking of one
point. The procedures were run on a Windows 7 stationary computer featuring a 3.2
GHz Intel Core i5 processor and 16 GB RAM.
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Table 4.8: Computational efficiency of the motion estimators

Method Run time per frame [s] Run time for 800 frames [h]
Block matching (for one point) 13.05 2.9

Jensen’s approach 3.84 0.85
3 separate frequency ranges 3.39 0.75
4 separate frequency ranges 4.17 0.93

It is important to note that the run time for the block matching method is given for
tracking one point, while the run times of the TO methods are given for calculating
the velocities of all points in the image frame. The measured run times indicate that
the block matching method is slower than the TO methods. The TO method based on
three separate ranges of spatial frequency seems to be the fastest motion estimation
algorithm.
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In this chapter, the results presented in the previous chapter will be discussed. Aspects
such as accuracy, computational efficiency and calibration of spatial frequencies will
be reviewed. In addition, suggestions for further work will be given.

Four motion estimation methods aimed at tracking the 3D motion of cardiac tissue
have been implemented using Matlab. The estimators have been applied to several
sets of ultrasound data featuring different types of motion in order to be able to com-
pare the performance of the estimators. Accuracy and computational efficiency of the
estimators have been considered in the comparison. Three of the estimators are based
on TOs, while the fourth estimator is based on speckle tracking using block matching.
The three estimators based on TOs work in the frequency domain, while the motion
estimator based on speckle tracking works in the spatial domain.

5.1 Introduction of Transverse Oscillations

Three different filtering schemes have been used to produce TOs. Since oscillations are
already present in the axial direction of RF images, the filtering was only applied to the
azimuth and elevation directions. The first method, based on the work done by Jensen’s
research group, was shown to produce two double-oscillating fields. Each field fea-
tures oscillations in one transverse direction in addition to the axial direction. The spa-
tial frequency content of each double-oscillating field consists of two separate ranges
of frequency. The second approach produces a 3D field featuring oscillations in both
transverse directions in addition to the axial direction. This was achieved by filtering in
both transverse directions simultaneously. The resulting frequency spectrum showed
four separate ranges of spatial frequency. The third filtering method produced a 3D
field oscillating in three transverse directions by filtering in both transverse directions
simultaneously to keep only three separate ranges of spatial frequency. The second and
third approach are similar in producing one single 3D field used to estimate all three
velocity components.

The locations of the frequency ranges give the wavelengths of the TOs, while the widths
of the frequency ranges give the bandwidths of the TOs. As the locations and widths of
the frequency ranges are given by the filters, these TO parameters can easily be changed
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by adjusting the filters. This is one of the main advantages of the filtering-based ap-
proach for introducing TOs over the beamforming approach. The development of the
different filtering schemes have shown that the locations of the frequency ranges can
easily be changed. However, it is necessary to choose the wavelengths of the TOs care-
fully. Close to the edges of the frequency spectrum the signal is weak, and hence placing
the subapertures close to the edges will give little information about the images. Placing
the subapertures close to the center of the frequency spectrum yield long wavelengths
of the TOs and will therefore limit the accuracy of the estimates. Therefore, a compro-
mise between placing the subabertures close to the edges and close to the center of the
frequency spectrum must be made.

A drawback of the introduction of the TOs is the reduced spatial resolution in the trans-
verse directions. This can be observed by studying the resulting RF images after filter-
ing. Before filtering, the spatial resolution of the system is approximately 0.7 mm in
the axial direction, and 1.5 mm and 1.8 mm in the azimuth and elevation directions,
respectively, at a depth of 6 cm. After filtering the spatial frequency content using for
instance the method based on keeping four separate ranges of frequency, the resolution
is still approximately 0.7 mm in the axial direction, while in the azimuth direction the
resolution is reduced to approximately 5 mm at a depth of 6 cm. The reduced resolution
is a result of the filtering process that limits the spatial bandwidth of the images.

5.2 Linear Motion Results

In the phantom experiments with linear motion, the displacements introduced were 0.1
mm between each image frame in all directions. The block matching method seemed
to underestimate the motion in both transverse directions. This can be an issue of in-
terpolation, in addition to the resolution being poorer in the transverse directions than
in the axial direction. As previously stated, the axial resolution of the system is approxi-
mately 0.7 mm. At a depth of 6 cm, which will be typical for imaging of the left ventricle,
the resolution in the azimuth direction will be approximately 1.5 mm, while in the ele-
vation direction it will be approximately 1.8 mm. Hence, a displacement of 0.1 mm is
small compared to the spatial resolution of the system. In order to be able to estimate
sub-pixel motion using the block matching method, the data must be interpolated. In-
terpolating by a factor of five in the axial direction showed to yield estimates of the
z-component of the motion close to the true motion. The spatial resolution is signif-
icantly better in the axial direction than in the transverse directions. Therefore, it can
be assumed that a larger interpolation factor is necessary in the transverse directions
in order to obtain acceptable results. However, increasing the interpolation factor, in-
creases the computation time significantly. The interpolation factor is therefore limited
by the increase in computation time.

Another drawback of the introduced displacements being small compared to the spa-
tial resolution of the system, is the uncertainty of such a small motion. Inaccuracy of
the stepper motor and oscillations in the motion of the probe after introducing a step
of the movement are possible sources of uncertainty. Therefore, it is not possible to be

62



CHAPTER 5. DISCUSSION

certain that the introduced displacements were precisely 0.1 mm between each consec-
utive image frame. However, it is necessary that the motion be small, in order to be able
to estimate the displacements using the TO methods. These methods are, as previously
stated, limited by aliasing effects, and can only estimate displacements shorter than
half the wavelength in the corresponding direction. The wavelength in the axial direc-
tion is approximately 0.6 mm, while at a depth of 6 cm the transverse wavelengths are
approximately 3-4 mm. The transverse wavelengths given in mm are increasing with
depth.

In order to introduce displacements purely in either x- y- or z-direction, it was nec-
essary to ensure that the probe was perfectly aligned with the directions of motion for
the stepper motor. A tilting of the probe would cause the motion introduced in one
direction by the stepper motor to influence two or all three components of the motion
displayed in the sequence of ultrasound images. The alignment of the probe was car-
ried out by visual inspection and by the use of the caliper tool on the scanner. These are
not accurate tools, and it is clear that this way of setting up the system introduces uncer-
tainty regarding the true motion. This implies that the error measurements, which are
based on the assumption that the true motion in each direction equals the attempted
introduced motion, are questionable. In order to be able to compare the motion esti-
mators in a setting where the true motion is fully known, a simulated data set must be
provided. However, this was out of the scope of this thesis.

Figures 4.6, 4.7 and 4.8 showed that the estimated motion in the z-direction seemed
to be approximately identical for all TO methods. This behavior can be explained by
the fact that all three TO methods estimate the axial velocity component based on the
unfiltered spatial frequency content, as in conventional TDI. The estimated axial mo-
tion influence the z-component of the estimated Cartesian displacement. In the case
of tracking a point located close to the center of the image in the transverse directions,
which was the case for the results presented in this thesis, the main contribution to the
z-component of the motion is given by the estimated axial component.

Examining the error measurements given in Tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 reveal
that the block matching method yielded accurate estimates of the two velocity compo-
nents not in the direction of motion. However, in the direction of motion, the velocity
estimated by block matching yielded large mean errors, especially in the transverse di-
rections. This can be a consequence of the tendency of underestimation that block
matching showed.

Among the TO methods, the method based on four separate ranges of spatial frequency
seemed to yield the most accurate estimates of the velocity components in the direc-
tion of motion. Considering this method, the average of the relative mean errors for
the three experiments with linear motion can be calculated, yielding an average rela-
tive mean error of 2.9 % in the z-direction, 10.4 % in the x-direction and 9.5 % in the
y-direction. These relative mean errors can be compared to relative mean errors found
in literature in order to evaluate the accuracy of the estimator. For instance in [23],
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the accuracy of 3D block matching is compared to the accuracy of this TO method im-
plemented using the special beamforming approach. The accuracy of the TO method
presented in this thesis seem to perform slightly worse in the transverse directions but
slightly better in the z-direction compared to the TO method considered in [23]. How-
ever, the performance of the filtering-based TO method seems to be better than the per-
formance of block matching presented in the paper. It can be noticed that calculating
the average of the relative mean errors for the TO method based on four separate ranges
of spatial frequency for all experiments yielded a larger mean error of the x-component
than the y-component. This is due to the large errors in the x-component of the velocity
in the experiment where the true motion was mainly in the z-direction. However, the
estimates are expected to be more accurate in the x-direction than in the y-direction
due to the resolution being better in the azimuth direction than in the elevation direc-
tion.

5.3 Circular Motion Results

In the phantom experiment where a known 3D circular motion was introduced, the dis-
placements vary between 0.1 mm and 0.01 mm in magnitude. The spatial resolution of
the system is the same as for the phantom experiment with linear motion. Hence, these
displacements are small compared to the spatial resolution. Such small displacements
and the experiment setup introduce the same challenges as described in the previous
section for the phantom experiment with linear motion: block matching yields under-
estimated motion due to the limited interpolation factor, and uncertainty regarding the
true motion exists.

The error measurements related to the 3D circular motion, as displayed in Figure 4.15,
show that the TO methods yield velocity estimates in the z- and y-directions that seem
correlated with the true motion. This implies that the deviations between the velocity
estimates and the true velocity in each direction seem to follow a similar path as the true
velocity. Because of the underestimates in the transverse directions given by the block
matching method, the deviations between the block matching estimates of the x- and
y-components of the velocity and the true velocity components are clearly correlated
with the true velocity. These systematic errors are related to the bias of the estimators.
In the x-direction, the errors corresponding to the TO estimators are fluctuating about
zero. According to Table 4.7, the TO method based on three separate ranges of spatial
frequency yields the smallest mean errors in z- and y-directions, while the approach
inspired by Jensen et al. gives the smallest mean error in the x-direction. The error
measurements also show that for the TO methods, the error is larger in the y-direction
than in the x-direction. This can be a consequence of the resolution being better in the
azimuth direction than in the elevation direction.
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5.4 In Vivo Results

The results from the in vivo example showed that the TO estimators yield similar esti-
mates of all three motion components, as observed from Figure 4.18. The similarity is
most prominent in the z- and x-directions. All TO methods use conventional TDI to es-
timate the axial velocity component. Therefore it is reasonable that the z-components
of the estimates are similar in the three cases. As the resolution is better in the azimuth
than in the elevation direction, it is expected that the estimates are more accurate in
the x- than in the y-direction. The z-component of the trajectory estimated by block
matching seems to be similar to the estimates given by the TO methods. As was ob-
served in the phantom experiments, block matching yielded estimates of the motion
in the z-direction close to the true motion. However, the phantom experiments also
showed that the block matching method significantly underestimated the motion in the
transverse directions. Therefore, it is likely that the block matching method will yield
erroneous estimates of the x- and y-components of the motion in the in vivo example.
At the same time, the TO methods showed to yield estimates of the transverse motion
components close to the true motion for both phantom experiments. The TO methods
are therefore more likely to yield estimates of the transverse components close to the
true motion in the in vivo example. However, nothing can be concluded regarding the
accuracy of the estimators in estimating the in vivo motion because the true motion is
not known.

The sequence of images does not cover a full cardiac cycle. Therefore, it is not possi-
ble to compare the methods in terms of the trajectory of the selected point returning to
its initial position. However, the 3D plot in Figure 4.19, showing the trajectory estimated
using the TO method based on four ranges of spatial frequency, indicates that the end
point of the estimated trajectory is close to the starting point.

One main difference between the phantom experiments and the in vivo example is that
in the phantom experiments the motion is uniform throughout the entire 3D volume,
while the in vivo motion is non-uniform. Uniform motion implies that all image points
show the same motion from one image frame to the next, or in other words, the struc-
tures in the image are not deforming. In the case of deformation, points will move rela-
tive to each other. This implies for block matching that the kernel size must be reduced
in order to yield accurate estimates. If the kernel is large, it is likely to include points
that move relative to each other from one image frame to the next. The speckle pattern
of the kernel will then change from frame to frame, and yield poorer block matching
estimates. For the TO methods, motion estimation in the case of deformation require
improved spatial resolution. Hence, the bandwidth of the TOs must be increased in or-
der to yield accurate estimates. These considerations show that the kernel in the block
matching method can be viewed as corresponding to the bandwidth of the TOs.
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5.5 Computational Efficiency

The motion estimators were developed to compare the accuracy as a first priority. There-
fore, the implementation was not optimized with respect to the execution time of the
estimation procedures. However, a comparison of the computational efficiency of the
estimators was performed and showed that the TO method based on three separate
ranges of spatial frequency was the most efficient of the four methods. The comparison
also showed that the TO methods performed quite similarly in terms of computation
time. Block matching showed to be the slowest estimator, requiring a run time almost
four times the run time of the fastest TO estimator. It is important to note that the TO
methods estimate the velocity of each point of every image frame in the sequence of ul-
trasound images. The displacement or velocity of any given point can be retrieved from
this information at a later point in time. The run time measurements for the TO meth-
ods give the time required to estimate the velocity maps. The block matching method
is based on the selection of a point desired to track, prior to performing the motion
estimation. Therefore, the run time of the block matching approach gives the time re-
quired for estimating the velocity of one single point. The block matching procedure
must be repeated for each point desired to track. From the run time measurements it
can therefore be concluded that the TO methods are better suited for motion estima-
tion of multiple points than block matching.

The reason for the block matching method being the slowest estimator is likely to be re-
lated to the calculation of the SAD coefficients. Despite the SAD approach being known
as the faster approach to find the best match of the kernel in the search window, the
3D search requires a high number of calculations. The computational load increases
with increasing size of the search window, increasing size of the kernel and increasing
interpolation factor. The reason for the TO method based on three separate ranges of
spatial frequency being the fastest TO approach is likely to be related to the number
of subapertures being lower than for the two other TO methods. Fewer subapertures
leads to less calculations required for computation of autocorrelation functions, spatial
averaging and phases of the autocorrelation functions. This will in turn yield a faster al-
gorithm. Using three subapertures instead of four can be assumed to require 3/4 of the
run time of the method using four subapertures. However, 4.17 s * 3/4 = 3.13 s, meaning
that this assumption is not accurate.

Cardiologists typically use a model consisting of 18 segments for the left ventricle. Hence,
being able to track one point in each segment is useful in the analysis of the left ventric-
ular function. Tracking 18 points with speckle tracking will require 18 times as much
time as the tracking of one point. For a sequence of 800 frames, this total run time will
be approximately 52.5 hours, which is an excessive amount of time. Hence, in order for
block matching to be useful for the cardiologists, the execution time must be signifi-
cantly reduced. The computational efficiency of the block matching algorithm can be
improved by reducing the size of the kernel, the search window and the interpolation
factor. However, reducing these sizes will affect the accuracy of the estimator. The run
times of almost one hour for the TO methods to estimate the motion of 800 frames must

66



CHAPTER 5. DISCUSSION

also be reduced in order for the methods to be useful in clinical applications.

5.6 Calibration of Spatial Frequencies

The motion estimators based on TOs are dependent on the spatial frequencies fr , fθ
and fφ of the ultrasound images to estimate the motion. Therefore, it is necessary to
provide good values for the spatial frequencies in order for the estimators to yield pre-
cise estimates of the motion. Calibration procedures were developed in order to esti-
mate the spatial frequencies. The calibration was performed by reversing the motion
estimation procedures to estimate the spatial frequencies from a known motion, in-
stead of estimating the motion from known spatial frequencies. This implies that a cal-
ibration procedure corresponding to each motion estimation scheme was developed.
The calibration of the spatial frequencies revealed a need to scale the estimated spa-
tial frequencies in order for the motion estimators to provide estimates similar to the
expected motion. It is important to note that the scaling of the estimated spatial fre-
quencies only affects the scaling of the estimated motion, and not the shapes of the
displacement or velocity curves. The need to scale the estimated spatial frequencies
can be caused by a missing factor in the equations used to calculate the spatial fre-
quencies from the known motion and the velocity from the known spatial frequencies.
Another explanation can be that the true motion is in fact different from what was ex-
pected, and the estimated spatial frequencies need not be scaled. The explanation can
also be a combination of the two, where each explanation holds for one or two of the
components of the motion. Instead of applying calibration procedures, the theoretical
values for the spatial frequencies can be calculated from the frequency spectra.

Estimating the spatial frequencies was done by choosing a ROI in the relevant image
frame and introducing a motion of one pixel in each direction by creating a new im-
age frame consisting of the ROI shifted one pixel in each direction. This procedure was
repeated for each frame in the sequence of ultrasound images to calculate the spatial
frequencies corresponding to each image. The temporal averages of the spatial fre-
quencies estimated for all image frames in each direction were calculated to reduce the
variance. The temporal averages of the spatial frequencies were used in the motion es-
timation procedures.

In the calibration procedures it was important that the introduced displacements did
not exceed the limit of half the wavelength of the oscillations in each direction. If the ap-
plied displacements exceed this limit in any of the directions, aliasing effects will occur
and the estimated spatial frequency in the corresponding direction will be erroneous.
Therefore, it was important to be careful when choosing the displacements to be intro-
duced. In order to facilitate displacements smaller than one pixel, interpolation can be
applied. However, interpolation will increase the computational load of estimating the
spatial frequencies.
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5.7 Further Work

There are several aspects of the four motion estimation methods that can be improved
in a future extension to this study. Further improvement of the TO methods by choos-
ing different values for f0x , f0y , σx and σy can be explored. These parameters give the
locations and the widths of the frequency ranges, and hence they affect the wavelengths
and bandwidths of the TOs. Changing the wavelengths and bandwidths of the TOs will
affect the motion estimates. The block matching method is dependent on several pa-
rameters, such as the size of the kernel, the search window and the interpolation fac-
tor. Changing the size of the kernel affects the accuracy of the block matching method,
while the size of the search window determines the maximum displacement possible to
detect in each direction. Interpolation enables the detection of sub-pixel motion, and
is probably the most important parameter to explore regarding improving the block
matching estimates.

Optimizations regarding the execution time are necessary in order to provide motion
estimation tools for clinical use. Such a tool will typically be used in post-processing
of ultrasound images by cardiologists, as it can provide the clinician with quantitative
measurements of the motion of tissue. However, the execution time must be reduced
in order to yield acceptable waiting times for the user.

A further optimization of the calibration procedures by estimating the spatial frequen-
cies from several introduced displacements of different magnitudes, can also be ex-
plored. The mean values of the estimated spatial frequencies in each direction may
offer improved estimates of the spatial frequencies.

Further work may also include the development of an application that enables the user
to select the points desired to track in an ultrasound image, and visualizes the estimated
motions of the selected points. Tracking several points located in the heart wall may en-
able the estimation of strain and strain rate of the tissue. Estimation of the stiffness of
tissue can be performed by estimating the shear wave velocity. This has been described
by Salles et al. in [28], and can be an interesting extension to this study.
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In this thesis, four motion estimation methods aimed at estimating the motion of car-
diac tissue have been explored. Three of the estimators work in the frequency domain
and use transverse oscillations to estimate the motion, while the fourth estimator uses
the block matching technique of speckle tracking. The transverse oscillations are in-
troduced by applying three different filtering schemes, one for each of the three meth-
ods. Two of these filtering schemes are based on previous work and publications, while
the third is a novel approach. The four motion estimators were applied to experimen-
tal phantom data showing 1D linear motions or 3D circular motion. In addition, the
estimators were tested on an in vivo example of the motion of a human heart. The
performance of the estimators was compared in terms of accuracy and computational
efficiency.

It has been shown that the motion estimators based on transverse oscillations are able
to estimate the motion of a selected point at a reasonable speed compared to speckle
tracking. However, the computational efficiency must be improved in order to satisfy
requirements for clinical use. The speckle tracking method showed to underestimate
the motion in the transverse directions of the phantom experiments, both in the case
of linear and circular motion. This underestimation is likely to be caused by the small
motion in the data sets, in combination with the poor resolution in the transverse direc-
tions and the limited interpolation factor. The underestimation, in combination with
the poor performance in terms of computational efficiency, implies that speckle track-
ing might not be well-suited for motion estimation in 3D. The novel filtering approach,
based on filtering the spatial frequency content of the ultrasound images to keep three
separate ranges of frequency, showed to be the most accurate in estimating the z- and
y-component of the velocity for the phantom experiment with circular motion. The x-
component of the velocity in the phantom experiment with circular motion was most
accurately estimated by the filtering approach based on the work done by Jensen’s re-
search group. For the in vivo example, nothing can be concluded regarding the accu-
racy of the estimators because the true motion is unknown. However, the three TO
methods yielded similar estimates of all three components of the motion.
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A | Relevant Source Code

A.1 3D Filtering Methods

A.1.1 Jensen’s Approach

1 [Nr, Nb, Np, Nt]=size(iq);
2 f0 = 0.8;
3 sigma = 0.0035;
4

5 %% Create filters
6 x=linspace(0,1,Nb);
7 f0x=f0;
8 sigmax=sigma;
9 upperAperture=exp(-(x-f0x).^2/(2*sigmax));

10 lowerAperture =fliplr(upperAperture);
11 lowerAperture_mask=repmat(lowerAperture,[Nr,1,Np,Nt]);
12 upperAperture_mask=repmat(upperAperture,[Nr,1,Np,Nt]);
13

14 y = linspace(0,1,Np);
15 f0y=f0;
16 sigmay=sigma;
17 leftAperture=exp(-(y-f0y).^2/(2*sigmay));
18 rightAperture=fliplr(leftAperture);
19 rightAperture_mask=repmat(rightAperture,[Nr,1,Nb,Nt]);
20 leftAperture_mask=repmat(leftAperture,[Nr,1,Nb,Nt]);
21

22 rightAperture_mask=permute(rightAperture_mask, [1 3 2 4]);
23 leftAperture_mask=permute(leftAperture_mask, [1 3 2 4]);
24

25 %% Create subapertures
26 IQ=fft(iq, [], 2);
27 iqLower=ifft(IQ.*lowerAperture_mask,[],2);
28 iqUpper=ifft(IQ.*upperAperture_mask,[],2);
29

30 IQ=fft(iq, [], 3);
31 iqRight=ifft(IQ.*rightAperture_mask,[],3);
32 iqLeft=ifft(IQ.*leftAperture_mask,[],3);
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A.1. 3D FILTERING METHODS

A.1.2 Four Separate Ranges of Frequency

1 [Nr, Nb, Np, Nt]=size(iq);
2 f0 = 0.8;
3 sigma = 0.0035;
4

5 %% Create filters
6 x=linspace(0,1,Nb);
7 f0x=f0;
8 sigmax=sigma;
9 upperAperture=exp(-(x-f0x).^2/(2*sigmax));

10 lowerAperture =fliplr(upperAperture);
11 lowerAperture_mask=repmat(lowerAperture,[Nr,1,Np,Nt]);
12 upperAperture_mask=repmat(upperAperture,[Nr,1,Np,Nt]);
13

14 y = linspace(0,1,Np);
15 f0y=f0;
16 sigmay=sigma;
17 leftAperture=exp(-(y-f0y).^2/(2*sigmay));
18 rightAperture=fliplr(leftAperture);
19 rightAperture_mask=repmat(rightAperture,[Nr,1,Nb,Nt]);
20 leftAperture_mask=repmat(leftAperture,[Nr,1,Nb,Nt]);
21

22 rightAperture_mask=permute(rightAperture_mask, [1 3 2 4]);
23 leftAperture_mask=permute(leftAperture_mask, [1 3 2 4]);
24

25 %% Create subapertures
26 IQ=fft(iq, [], 3);
27

28 iqLeft=ifft(IQ.*leftAperture_mask,[],3);
29 iqRight=ifft(IQ.*rightAperture_mask,[],3);
30 IQLEFT=fft(iqLeft, [], 2);
31 IQRIGHT=fft(iqRight, [], 2);
32

33 iqLowerLeft=ifft(IQLEFT.*lowerAperture_mask,[],2);
34 iqUpperLeft=ifft(IQLEFT.*upperAperture_mask,[],2);
35 iqLowerRight=ifft(IQRIGHT.*lowerAperture_mask,[],2);
36 iqUpperRight=ifft(IQRIGHT.*upperAperture_mask,[],2);
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APPENDIX A. RELEVANT SOURCE CODE

A.1.3 Three Separate Ranges of Frequency

1 [Nr, Nb, Np, Nt]=size(iq);
2 f0 = 0.8;
3 sigma = 0.0035;
4

5 %% Create filters
6 x=linspace(0,1,Nb);
7 f0x=f0;
8 sigmax=sigma;
9 upperAperture=exp(-(x-f0x).^2/(2*sigmax));

10 lowerAperture =fliplr(upperAperture);
11 lowerAperture_mask=repmat(lowerAperture,[Nr,1,Np,Nt]);
12 upperAperture_mask=repmat(upperAperture,[Nr,1,Np,Nt]);
13

14 y = linspace(0,1,Np);
15 f0y=f0;
16 sigmay=sigma;
17 leftAperture=exp(-(y-f0y).^2/(2*sigmay));
18 rightAperture=fliplr(leftAperture);
19 rightAperture_mask=repmat(rightAperture,[Nr,1,Nb,Nt]);
20 leftAperture_mask=repmat(leftAperture,[Nr,1,Nb,Nt]);
21

22 rightAperture_mask=permute(rightAperture_mask, [1 3 2 4]);
23 leftAperture_mask=permute(leftAperture_mask, [1 3 2 4]);
24

25 f01=0;
26 f02=1;
27 sigmay=sigma;
28 middleAperture=exp(-(y-f01).^2/(2*sigmay))+exp(-(y-f02).^2/(2*sigmay));
29 middleAperture_mask=repmat(middleAperture,[Nr,1,Nb,Nt]);
30

31 middleAperture_mask=permute(middleAperture_mask, [1 3 2 4]);
32

33 %% Create subapertures
34 IQ=fft(iq, [], 2);
35 iqUpper=ifft(IQ.*upperAperture_mask,[],2);
36 iqLower=ifft(IQ.*lowerAperture_mask,[],2);
37 IQUPPER=fft(iqUpper, [], 3);
38 IQLOWER=fft(iqLower, [], 3);
39

40 iqUpperLeft=ifft(IQUPPER.*leftAperture_mask,[],3);
41 iqUpperRight=ifft(IQUPPER.*rightAperture_mask,[],3);
42 iqLowerMiddle=ifft(IQLOWER.*middleAperture_mask,[],3);
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Comparison of 3D tissue motion estimation methods using transverse oscillations 
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Medical Imaging, Norwegian University of Science and Technology, Norway 
Background, Motivation and Objective 
Cardiovascular diseases are the leading cause of death globally. Such diseases may affect the left ventricular 
function, which in turn is closely related to the left ventricular stiffness. Estimation of cardiac deformation can 
give information on the myocardial stiffness, and may therefore be important in assessment of cardiovascular 
diseases. A 3D motion estimation scheme is necessary to measure the full cardiac motion. To do so, the use of 
transverse oscillations (TOs), to compute the azimuth and elevation velocity components, has been proposed. The 
objective of this study was to compare three different ways of introducing 3D TOs, in order to find the method 
best suited for cardiac motion estimation. 
Statement of Contribution/Methods 
The three methods use different spatial filters (Figures a-c) to filter the frequency content in order to generate TOs. 
A phase-based motion estimation scheme is used to estimate the 3D motion by calculating the phase of the 
autocorrelation after filtering and combining the phase vectors according to the method used to achieve the true 
velocity components. 
Two experiments were performed using a locally modified, university-owned Vivid E95 scanner and a 4V probe. 
A tissue-mimicking phantom was conventionally scanned using a stepper motor to introduce a known 3D 
trajectory, and the left ventricle of one healthy volunteer was scanned using 3D high frame rate imaging (820 
FPS). 
Results 
Figures a-c show the three filtering techniques used to introduce TOs. Figures d-f show the tracking of a known 
3D circle using the three methods. The color of the estimated trajectories gives the mean error of the displacement 
in relation to the known trajectory. Method b yielded the best result in x-direction with mean error of 0.0204 +/- 
0.0174 mm. Methods b and c gave the best results in y-direction with mean errors of 0.0344 +/- 0.0415 mm and 
0.0344 +/- 0.0336 mm respectively. Method a yielded the best result in z-direction with mean error of 0.0053 +/- 
0.0037 mm. Spatial filtering was used to achieve TOs, hence in all three cases it is possible to apply conventional 
tissue Doppler, using the entire frequency content, to estimate the motion in z-direction. The TO parameters were 
chosen independently for each method to yield the best result possible in each case. As method b gave the best 
result estimating the 3D circle, it was tested on in-vivo data as shown in Figure g.  

	


	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	

	

	
	
	
	
	
	

	
	
	
	
	
	
	


	
	
	
	
	
	

	
	
	
	
	

	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	


	

