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Abstract

Natural gas flows in pipelines as a consequence of the pressure difference at

the inlet and outlet. Adjusting these pressures makes it possible to inject

natural gas at one rate and withdraw at a different rate, hence using the

pipeline as storage as well as transport. We study the value of using the

so called pipeline linepack as a short-term gas storage and how this functi-

onality may offset the discrepancy between the low flexibility in take-or-pay

contracts and the high inherent flexibility of a gas fired power plant. To value

the storage option, we consider a cycling power plant facing volatile power

prices while purchasing gas on a take-or-pay contract. We estimate a Markov

regime-switching model for power prices and a mean reverting jump diffu-

sion model for gas prices. Applying Least Squares Monte Carlo simulation

to the operation of the power plant, we find that the storage option indeed

has significant value for the plant, enabling it to better exploit the sometimes

extreme price fluctuations. Finally, we show how power price volatility and
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jump frequency are the main value drivers, and that the size of the storage

increases the value up to a point where no additional flexibility is used.

Keywords: Linepack, Gas storage valuation, Regime-switching models,

Natural gas prices, Electricity prices, Power plant

1. Introduction

Pipelines are the largest infrastructure investment in the natural gas value

chain, accounting for 80 percent of midstream investments [1]. To provide

both security of supply as well as a high standard of safety, the pressure

of the pipelines must be kept within a certain range. By controlling the

pressures, the stored gas in the pipeline (linepack) can increase or decrease

as the withdrawal and injection rates differ from each other. We show that

making part of the linepack available for the market as a storage volume

can be a viable option to increase the flexibility of the energy system. Such

increased flexibility is highly attractive in light of the intermittency of much

of the future electricity generation sources [2].

We take the perspective of a German gas-fired power plant in order to

analyse the value of using e.g. the North Sea pipeline system as a short term

storage volume. This connection is not identified as congested [3], and has

a reliability of “virtually 100%” [4]. The participant with the highest need

for flexibility in its gas flows should be the one with highest willingness to

pay for the storage. Arguably, a gas-fired power plant facing uncertainty in

both electricity and gas prices can be such a participant. In Europe, the

plant will often be committed to a long-term take-or-pay (TOP) contract,

forcing the plant to buy a certain volume of gas per year. The high degree
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of uncertainty in prices with combined with a low degree of flexibility in the

TOP contract makes additional flexibility valuable. Modern gas-fired power

plants are able to ramp production up and down on short time notice. As

most industrial processes that use gas as a primary input do not have the

same degree of operational flexibility nor the same degree of participation in

the gas spot market, we view a cycling gas-fired power plant as the agent

with the highest incentive to pay for storage opportunities. Approximately

35 percent of the natural gas in Europe is consumed by power plants [5],

implying that the sector should be vital in the demand for gas storage capa-

city. We estimate the additional value created by using the linepack to vary

the power plant’s output rate according to swings in the prices of power and

natural gas, without violating the TOP contract.

Conventional storage capacity, consisting of depleted oil and gas reser-

voirs, aquifers, salt mines and liquefied natural gas (LNG) storage plants,

are in most cases constrained by their geographical location and a rather

low inflow and withdrawal rate. Furthermore, LNG plants have high storage

costs since the gas needs to be cooled [6]. The pipeline exit point is usu-

ally situated at a major market hub. Considering the linepack as a separate

storage volume placed at the receiving terminal, the high flexibility makes

it a potentially valuable tool for short-term balancing of natural gas supply

and demand.

We focus only on the value of the linepack, and ignore cost issues rela-

ted to fuel consumption in compressor stations, or a possible loss of supply

reliability, or pipeline capacity. That said, we note that linepack is highly

flexible as long as it is within upper and lower bound based on the technical
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characteristics of the pipeline.

Midthun et al. [7] value the linepack as a natural gas storage facility,

taking the perspective of a natural gas producer. They optimise the value

of the gas sales for the producer both with and without the linepack, and

quantify the size of a pipeline’s possible linepack. Chaudry et al. [8] include

linepack in optimisation of the British gas and electricity network. Our paper

shifts the focus on the value of linepack storage from that of a producer to

that of a consumer of natural gas.

Keyaerts et al. [9] call for a change of the regulatory framework for natu-

ral gas pipeline capacity allocation in Europe, taking linepack into account.

They point out value and cost components of linepack flexibility and identify

the trade-off in its use as storage flexibility and transportation facility.

Storage valuation literature focus either on best practice power price si-

mulation, gas price simulation or on valuing a general storage volume in the

perspective of a commodity arbitrageur. Boogert and de Jong [10] apply the

Least Squares Monte Carlo algorithm, developed by Longstaff and Schwartz

[11], to value a natural gas storage contract. They show that the size of the

effective storage volume as well as injection and withdrawal rates are the

most important value-determinants. Lai et al. [12] value the option to store

natural gas in the form of LNG using a heuristic that incorporates natural

gas prices, LNG shipping models and inventory control. Bjerksund et al. [13]

show that an advanced price process is of greater importance than an advan-

ced optimisation model, when valuing gas storage. Valuation of storage in

connection with CO2 capture plants is considered by [14, 15]. Finally, [16]

value biomass storage in the context of a biomass supply chain.

4



Authors including de Jong [17], Janczura and Weron [18] and Schneider

[19] agree that the power price exhibits mean reversion and spikes. Abadie

and Chamorro [20] show that natural gas spot prices exhibit mean reversion.

Secomandi [21] analyses the pricing of pipeline capacity based on the trading

value of the gas, modeled as a mean reverting process. As an alternative, a

nonstationary process such as geometric Brownian motion can be used for

gas [22] or electricity prices [23], however, these are more suitable for a) long

planning horizons (decades), or b) when analytical solutions are preferred

[24].

The main contribution of this paper is the quantification of the value of

linepack as storage of natural gas, from a gas consumer point of view. For

power systems with increased use of intermittent renewable sources, pointing

out ignored but potentially useful energy storage options is of high value. In

addition, the Markov regime-switching model for electricity prices, incorpo-

rating spikes, mean reversion and possible negative prices, is state of the art.

Finally, we introduce a gas price model with a mean level that depends on

electricity prices, so that a realistic long-term relationship between prices of

electricity and natural gas prevails.

The article is structured as follows: In Section 2 we describe the data used

and estimate models that capture the joint dynamics of natural gas and power

prices. We estimate a Markov regime-switching model with independent

spikes for the power price, and a mean reverting jump diffusion model for the

gas price, where the mean level is dependent on the power price. Simulating

the two price series simultaneously, we essentially model the power plant’s
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dirty spread1. In Section 3, we apply a real option approach and incorporate

the price models in a Least Squares Monte Carlo algorithm to value the

opportunity of storage. Our analysis is confined to valuing the storage option

separately, disregarding the power plant’s intrinsic value. We show numerical

examples to illustrate how parameters such as storage capacity and price

volatility affect the storage value in Section 4. In Section 5 we conclude.

2. Model description

To be able to value a gas storage facility, we need to accurately model

the power price and the gas price. The models must capture the seasonal

patterns, its stochastic behaviour and the way gas and power prices move

together. We first model the power price, and then use it as an explana-

tory variable in the gas price model. These two models will be used in the

simulation based valuation algorithm in Section 3.

2.1. Power price model

The data set used for power prices consists of hourly data from the Eu-

ropean Commodity Exchange (EPEX) in Germany, from 2011-01-03 until

2011-10-23; a total of 7056 data points. In general, the prices exhibit a

strong degree of hour-of-day effects and weekday effects. In addition, sudden

spikes are clearly visible in Figure 1, but they seem to disappear just as soon

as they arrive. There also seems to be a certain degree of clustering of spikes.

1The dirty spread is the spread between the power price and the price of the gas needed

to produce the power before subtracting the CO2 price.
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Figure 1: The time series of hourly power prices at EPEX.

To analyse the stochastic part of the data, we first filter out the determi-

nistic effects by simple dummy variables for hours and weekdays and store

the residuals. The typical daily and weekly pattern of power prices are appa-

rent in the dummy coefficients given in Figure 2, all of which are significant

at the 5% level. In mathematical terms:

Selt = µel0 +
6∑
i=1

δweekdayi θeli +
23∑
j=1

δhourj γelj + qelt (1)

where Selt is the electricity price, µel0 is a constant, θeli are coefficients for

weekdays and γelj are coefficients for hours. The δs are binary variables that

indicate whether a price observation is from a certain weekday or hour. Note

that one day and one hour are left out of the regression to avoid multicolli-

nearity.

After filtering out the deterministic effects, we are left with what we

will denote the stochastic component qelt . It has several spikes, and seems

to be mean reverting. We wish to dampen the extreme values through a
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Figure 2: Coefficients for hour- and weekday effects.

simple transformation, but since qelt is often negative, taking log returns is

not possible. Following Schneider [19], we take the inverse hyperbolic sine of

a transformation of the prices:

xt = sinh−1(zt) = sinh−1(
qelt − ξ
φ

) (2)

Here, ξ is a shifting and φ is a scaling of qelt . For large positive and negative

values of qelt this function behaves approximately like the logarithm, and it

has an almost linear part around zero. This means that it will dampen the

extreme values like the logarithm does, but still allows for negative values.

Instead of choosing the parameters ξ and φ graphically to get a good fit,

as in Schneider [19], we estimate them using Expectation Maximisation as

described below.

Figure 3 shows the distribution of xt within two standard deviations of

the mean compared to a normal distribution, and justifies a regime switching

model for xt where the mean regime follows a normal distribution. The series

is stationary, suggesting that xt may, except from the spiky extreme values,

follow a mean reverting price process with white noise residuals.

The tail values excluded in Figure 3, or the spikes, seem to occur indepen-

dently of the ”regular” price process. We therefore choose a Markov regime-
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Figure 3: The empirical distribution of the capped prices compared to a

normal distribution.

switching (MRS) model with independent spikes, due to de Jong [17]. The

xt from eq. (2) follows a mean reverting process in one regime, and switches

to either a high-spike or a low-spike regime. The independence of regimes

means that if the price at t− 1 was generated by the low-spike regime, and

at t it is generated by the mean reverting regime, the price in time t will not

be influenced by how low it was in the previous period. What regime the

process is actually in is not observable, but we assume that the switching

between regimes is governed by a Markov transition matrix, Π. Recall that

xt = sinh−1(zt) = sinh−1(
qelt −ξ
φ

), to handle negative prices. This renders the

model:

xMt = xMt−1 + αel(µel − xMt−1) + σelMε
el
t , εelt ∼ N(0, 1) (3)

xHt = µel +

nel,H
t∑
i=1

Zel,H
t , nel,Ht ∼ POI(λelH), Zel,H

t ∼ N(µelH , σ
el
H) (4)
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xLt = µel +

nel,L
t∑
i=1

Zel,L
t , nel,Lt ∼ POI(λelL), Zel,L

t ∼ N(µelL , σ
el
L ) (5)

Π =


1− pMH − pML pHM pLM

pMH 1− pHM 0

pML 0 1− pLM

 (6)

where entry pi,j in Π represents the probability of going from state j at

time t, to state i at time t + 1, (i, j) ∈ {1, 2, 3} and 1, 2 and 3 representing

regimes M,H and L respectively. As can be seen from the Markov transition

matrix, it is assumed that a transition from either a high spike to a low, or

the opposite, is impossible. The average xt is denoted µel and the speed

of mean reversion back to this level is αel, while the standard deviation of

residual variation is σelM . Note that the xts in the high-spike regimes consist

of nel,Ht jumps, where each jump is normally distributed with mean µelH and

standard deviation σelH . The number of jumps is assumed to follow a poisson

process with rate parameter λelH , and correspondingly in the low-spike regime.

The parameters above are estimated via the Expectation Maximisation (EM)

algorithm, largely following the original approach in Hamilton [25]. As the

spike regimes are independent of the mean reverting regime, the expected

price in the latter regime at time t is cumbersome to calculate. This is

because we can not observe how many of the previous observations that are

created by spike regimes, so all possible paths between times 0 and t should

be considered, a significant computational burden. To save computational

effort, we adopt the improvements proposed by Janczura and Weron [18] and
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Table 1: Table of estimated parameters.

MRS model

Regime 1 2 3

αel 0.036

φ 7.599

ξ 38.460

µel -0.038 0.311 -0.373

σel 0.210 0.010 0.026

λel 1.842 - 1.899

pMH 0.009

pHM 0.129

pML 0.044

pLM 0.409

recursively approximate the expected price using the equation

E[xMt−1|xt−1] = ζ1,t|txt + (1− ζ1,t|t){αelµel + (1− αel)E[xMt−2|xt−2]}. (7)

Here, ζ1,t|s is the conditional probability of being in regime 1(= M) at time

t given the information available at time s ≤ t (see [18] for details). The

results of the estimation are displayed in Table 1.

This model was compared to a similar model with dependent spikes, se-

veral GARCH-specifications and a parameter-switching model (Janczura and

Weron [18]), and outperformed all in terms of likelihood. Table 2 shows the

average descriptive statistics of 5000 simulations. Our valuation method is

based on Monte Carlo simulation, and the most important trait of our model
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Table 2: Comparison of descriptive statistics from simulation with the actual values.

Actual Simulation

Mean 37.38 37.80

Standard Deviation 8.26 8.47

Skewness -1.22 -0.24

Kurtosis 8.79 9.01

is that the deterministic and stochastic patterns replicate the observed pri-

ces well. We conclude that the MRS-model captures the dynamics in hourly

power prices well enough for our purposes, and that we will continue using

it in the valuation.

2.2. Gas price model

In modelling the gas price, we have used daily data for natural gas day-

ahead prices both in the German and the UK market. Although our mo-

delling is performed on the German market, we have used prices from UK’s

National Balancing Point as this time series has a history back to 1996. Net-

Connect Germany (NCG), Germany’s most liquid gas market, only has data

from 2007 onwards. Due to physical connections, gas prices in Northern

Europe are closely integrated, and the NCG and National Balancing Point

(NBP) prices usually move in tandem. To be sure that this is correct, we

estimated the following model:

SNBPt = β0 + β1S
NCG
t + εNBPt (8)
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where β0 is the difference in price between NBP and NCG and β1 is the

factor explaining how much of the NBP price that can be explained by the

price level of the NCG price. The results show that the coefficient β1 is

not significantly different from one on the 1% level, and that the NBP price

is on average 0.51 EUR/MWh higher than the NCG price. We will in the

following assume that the relationship SNBP = SNCG − 0.51 holds for all

points in time. Analysing the NBP price series in Figure 4, we first note that

there seems to be some trend, or price inflation, in the gas price. We can

also observe higher prices during winter and lower prices during summer.

As can be seen in Figure 4, the natural gas price exhibits mean reversion

and spikes that seem to arrive at random. Supply and demand imbalances

can cause the price to spike up or down, and return to the mean level during

the following days.
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Figure 4: The NBP day-ahead gas price seems to fluctuate along with the

Phelix day-ahead power price. Note the occurrence of spikes in the NBP

price. Price axis in log scale.
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We also note that the gas price moves along with the price of electric

power (see Figure 4).2 For the valuation of our gas storage, it is important

that we incorporate the covariation in the gas and power prices, ensuring that

the gas price does not move unrealistically high or low when compared to

the power price, as market forces likely would take effect and drive the prices

back to a long-term equilibrium. A price disequilibrium should result in gas-

fired power plants either ramping up or scaling down activity, and thereby

providing a counteractive force on the gap between gas and electricity prices.

We propose a process for the natural gas price, taking into account both the

spikes, mean reversion and the price level of electricity. Here, the mean level

for the gas price Sgt is µgt = E[Sgt |Selt ], where Selt is the electricity price. In

contrast to the power price, the gas price reverts more slowly from spikes,

i.e., they are not independent. Two spike functions are therefore added to

the price process with Poisson arrival rates λgH and λgL for the high and the

low spike process:

∆Sgt = αg(µgt − S
g
t−1) +

ng,H
t∑
i=1

Zg,H
t +

ng,L
t∑
j=1

Zg,L
t + σgµgt ε

g
t , εgt ∼ N(0, 1) (9)

µgt = µg0 + κSelt +
11∑
k=1

δmonthk θgk (10)

2One would expect that in situations of cold weather, both electricity and gas demand

are high, and gas might be used as the marginal source of electricity. In such a situation,

one should expect a strong relationship between gas and electricity prices. In other market

conditions where demand is lower, one would expect prices of natural gas and electricity

to be less dependent on each other.
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Here Sgt and Selt are the prices of gas and power at time t, µgt is the

expected gas price and αg is the mean reversion rate. The expected gas

price consists of µg0, a constant, the influence of the power price κSelt and

the seasonal effect θgk if the binary variable δmonthk is one for month k. The

spike terms in eq. (9) are constructed exactly like in the power price model of

equations (4) and (5). Finally, the residual εgt is assumed standard normally

distributed and σg is a volatility parameter.

We thus allow the gas price to fluctuate as a mean reverting process

with spikes, but we set the mean level to be dependent on the level of the

electricity price. This is consistent with the results of de Jong and Schneider

[26]. We allow for high and low spikes, and we also allow for seasonal effects in

the gas price that are not explained by the seasonality of the power price. If

these seasonal variation parameters θgk are found to be statistically significant

(which we find that most of them are), the seasonal patterns in natural gas

differ from those of electricity.

This model is estimated in two steps: we first estimate the relationship

between the gas price and the electricity price, and in the second step we

estimate the mean reversion in the residuals qgt that is not explained by the

power price. The residual qgt is defined as:

qgt = Sgt − µ
g
t (11)

where µgt is the expected mean level for the gas price. The first step is a

regression of the gas price on the power price and seasonal dummy variables

15



to find µgt , according to

Sgt = µg0 + κSelt +
11∑
k=1

δmonthk θgk + qgt (12)

Here we find the long-term relationship between the gas price and the

power price by determining µg0, κ and the different θgk. But as we wish to

model daily gas prices and hourly power prices for the valuation in Section 3,

we need to convert hourly power prices to a daily average given as Selt in

eq. (12). This was done by weighing 24 hourly power prices with the load

curves in Germany3. Also, this average day price is affected by price spikes

that seem to occur independently of the gas price—we therefore use the

arithmetic average of one week as Selt .

We now have an estimate of the expected gas price, E[Sgt |Selt ] = µgt , as

a function of the power price and the time of year, defined by the monthly

effects. The results are given in Table 3, with seasonal parameters θgk omitted.

The second step involves estimating the mean reversion model, where µgt

enters as the expected price:

∆Sgt = αg(µgt − S
g
t−1) + σgµgt ε

g
t , εgt ∼ N(0, 1) (13)

The results of the regression are shown in Table 3, and the residuals qgt

in Figure 5. The reason for allowing the variance to be proportional to the

expected gas price instead of the realised price is that the realised price will

have an added spike element that may cause unrealisticaly high volatility in

3The load of each hour is the average consumption for that hour as a percentage of the

daily total. The load curves are given for each month of the year.
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Table 3: Results from the two regressions performed to estimate the gas price model.

Results from the regression of eq. (10)

Name Coefficient Std.Error t-value t-prob

µg0 1.9280 0.2999 6.43 0

κ 0.3236 0.0052 62.0 0

Results from the regression of eq. (13)

Name Coefficient Std.Error t-value t-prob

αg 0.2697 0.0178 15.2 0

 -40,0  

 -20,0  

 -   

 20,0  

 40,0  

 60,0  

 80,0  

Figure 5: qgt . Residuals of the price of gas after subtracting the deterministic

component given by eq. (10).
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Table 4: Parameters used in modelling natural gas prices.

Fitted parameters

λgH 0.003

λgL 0.003

σgH 19.9

σgL 10.0

µgH 40.1

µgL 0.0

σg 0.065

the days following a spike. We therefore add the spike processes as given in

eq. (9).

To estimate the occurrence of spikes, we need to find the parameters

λgH , λ
g
L, σ

g
H , σ

g
L, µ

g
H and µgL. We also get a very high estimate of σg from the

regression in (13), so we vary these parameters as well as σg in order to get as

close a replication of the mean, variance, kurtosis, skewness and percentiles

of the gas price series as possible. The best fit parameters are shown in Table

4. Table 5 shows how the first four moments from a simulation compared to

the actual data set.

3. Valuation of the linepack

We have developed models for the day-ahead gas price and the hourly

power price, and shown how they capture the observed dynamics. We now

proceed to use these models in a valuation of the linepack, through its eco-
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Table 5: Results of 100 simulations of NBP natural gas prices. The last row, Correlation,

indicates the correlation of the gas price to the 1-week average of the power price.

Period 2000-2011

Actual Simulated

Mean 15.60 16.02

Standard dev. 7.69 7.00

Skewness 2.37 2.14

Kurtosis 12.83 14.72

5% quantile 6.85 7.73

95% quantile 27.4 28.43

Correlation 0.744 0.770

nomic use by a gas fired power plant, as described in the Introduction. The

plant is committed to a long-term gas contract for its input, and depending

on the built-in flexibility of the contract, a plant might find itself in a posi-

tion where there is little flexibility left. It will have to either produce power

with the committed gas volume or sell it in the spot market. We assume a

scenario where the power plant has little flexibility under the TOP contract.

The situation is the same for a plant that has bought gas on a forward con-

tract. In this scenario, a short-term storage facility such as the linepack may

add value to the power plant. It enables the plant to ramp down production

when the dirty spread becomes negative and ramp up again when it gets

positive—without violating the take obligation. The decision at every point

in time is thus whether to produce power, to sell gas in the market, or to
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store it for an a priori unknown time period. The price paid for the gas is

considered a sunk cost, so the gas price used in the decision problem is the

actual spot price at the time of the decision. The stored gas will later be sold

for an a priori unknown price, either as gas or converted to electric power.

The choice between the first two options is simple when the efficiency of the

plant is known: If the dirty spread is positive, a unit of gas has higher value

if converted to power, and vice versa. The third option is more complex, as

we discuss below.

In our setup, we assume that the power plant has a fixed, maximum power

output. We assume that the plant can sell all of its power or gas without

influencing prices in the market, disregarding transaction costs and bid-ask

spreads. We discretise time into hours, and assume that the plant can alter

its production instantanously to respond to hourly price changes. In reality

there will be a short period of continuously increasing or decreasing output

while ramping up or down, and there will be costs related to doing this. We

omit these factors to simplify our analysis. If the plant in one specific hour

wishes to sell gas in the market, we will use the settlement price for that day,

modelled in Section 2.2. The settlement price is the weighted average price

for the day, and in absence of rich data on intraday trading we believe this

is a reasonable approximation. Note that this implies a constant gas price

throughout each 24 hour period. We further assume continuous trading of

natural gas contracts also during weekends. We omit any CO2 emission costs,

because this cost will only weakly influence the value of the storage; assuming

that all stored gas will be converted to electricity at some point in time, the

CO2 cost will be paid for all the gas volumes received regardless of the option
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of storage.

The linepack has some maximum injection and withdrawal rate, ∆vin and

∆vout, as well as a maximum and minimum storage capacity, vmax and vmin.

Taking a real options approach, the value of the option to store gas can be

viewed as a dynamic program. In the Bellman equation (Dixit and Pindyck

[27, p.100]), eq. (14), each state corresponds to a certain point in time, having

a certain volume of gas in the storage, with the prices of gas and power at

a certain level. The control variable is how much to inject or withdraw in

the present state—leading to profits from selling gas or producing power.

For the decision problem of the gas fired power plant, we define the Bellman

equation for the value of the linepack:

Vt(Pt, vt,∆vt) =−∆vtPt + e−ρE[Vt+1(Pt+1, vt+1,∆vt+1)]

Pt ≡max{ηSelt , S
g
t }

(14)

where Vt denotes the value of the storage volume at time t, ∆vt the

injection/withdrawal of gas per hour, ρ the discount rate, and η the efficiency

of the plant. The variable Pt, is defined as the maximum of the electricity

price times the plant efficiency and the gas price, i.e., the most profitable

utilisation of the gas. Note that a positive injection to the storage implies

not producing or selling, thereby incurring an alternative cost of ∆vtPt.

3.1. Valuation method: Least Squares Monte Carlo simulation

Following Boogert and de Jong [10], we use LSMC simulation to compute

the value of the linepack. Boogert and de Jong consider a gas storage facility

with large capacity (250,000 MWh) that exploits seasonal and day-to-day
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arbitrage opportunities. Our case, on the other hand, has lower storage

capacity, two ways to convert gas withdrawals to money, more complex price

processes, and the opportunity to exploit hourly price patterns. We also

perform the storage valuation on the linepack, a volume with more flexible

characteristics than a conventional storage, as discussed in Section 1. We

define a finite period of T hours over which to value the storage. The idea

of LSMC is to simulate M price paths, and at each step along each path

approximate the expected continuation value E[Vt+1(Pt+1, vt+1,∆vt+1)] with

a least squares regression. At time t = 0 and t = T , there must be defined

boundary conditions, for example the volume of gas in the storage at t = 0

and the value of having a certain volume of gas at t = T . To start the

iteration, the values Vt are regressed across all scenarios on the state variables

in the period before. Based on this estimate, the choice is made whether to

inject or withdraw gas, resulting in some realised value Vt−1. The regression

is then repeated for the previous time period.

The regressions used to approximate eq. (14) may have several forms. In

their introduction of the LSMC, Longstaff and Schwartz [11] suggest power

functions, Laguerre polynomials and several other functions of all the state

variables, as well as their cross products. In our application, this would lead

us to regress the values Vt+1 on various terms involving Pt and vt, across

the M price scenarios. However, Boogert and de Jong further discretise the

state space into volume levels, so that Pt is the only independent variable in

the regression. Applying this principle, we are left with a three-dimensional

grid with time t, volume level v and scenario m as the three axes. For a

further discussion of reducing the dimensionality, see Boogert and de Jong
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[10]. Based on scatter plots of Vt+1 and Pt for all scenarios, we choose a

polynomial form of order three in the regression.

A Matlab algorithm was written to calculate the value from all allowed

injections or withdrawals of gas, and the expected value in eq. (14) is approx-

imated with the regression. It starts at time T and moves backwards, where

the allowed injections and withdrawals are constrained by the maximum and

minimum volume allowed in the storage. Given the boundary condition that

the linepack must be empty at time T and time 0, the value of the linepack is

the average value at time 0 across all simulated price scenarios. When choo-

sing the optimal injection rate ∆vt, it will often be the case that vt + ∆vt

is not a defined point in the grid. In such a case, the expected option value

will be computed as an interpolation between the two closest defined points.

4. Results and discussion

In this section we will use the models developed in Sections 2 and 3 to

create some numerical valuation examples. We will first present a reference

case and analyse the results. The reference case will give an indicative value

on which we can base sensitivity analyses. We proceed to demonstrate how

sensitive the value is to various parameters, and how the optimal dispatching

change when the parameters vary. Consider a medium sized combined cycle

plant with a maximum power output of 300MW and efficiency of 53.8%4. We

assume it receives 200MWh of gas per hour, corresponding to the parameter

vin, and that it is allowed to store gas in the linepack for up to 10 hours, i.e.,

4The efficiency corresponds to a General Electric LMS100 combined cycle gas turbine.
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Table 6: Parameters used in reference case.

vmax 2000 MWh

vmin 0 MWh

η 53.8 %

vin 200 MWh

vout -100 MWh

T 504 hours ( = 3 weeks)

ρ 6%

M 1000 simulations

vmax is 2000MWh. The maximum gas withdrawal vout is −100MWh, such

that all the incoming gas and the withdrawals total to the maximum output

of 300MW. We simulate 1000 price scenarios of three weeks length, and use

an annual, exogenous discount rate of 6%. These parameters are summarised

in Table (6).

Recall the assumption that the power plant is in a situation with little

or no flexibility left in the take-or-pay contract, meaning that without any

storage option it has to use or sell all the incoming gas. The prices are

simulated over three weeks, as it is unlikely that a power plant will be in this

situation for very long periods of time. We use a discretisation of N = 100

volume levels, meaning that each volume step will be 20 MWh for vmax =

2000. We first show how the production and storage decisions vary with the

prices of the input variables. Consider Figure 7. We see that whenever the

price is low, production ceases and gas is stored. When either the gas price
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is higher than normal or the storage volume is full, gas is sold on the market.

Notice that at around t = 175 hours, the power price spikes downwards while

the storage volume is full. The power plant will sell no more than the gas

received each hour, as the probability of higher power prices in the future

makes it suboptimal to empty the storage.

The value of a licence to use the linepack over a period of three weeks

is estimated to 249,234 euro. This reference case scenario value is computed

taking the average of ten runs of M = 1000 simulations each run. The

standard deviation of the ten computed values is 427 euro. If we assume

no access to linepack storage, the plant would have to produce power or sell

gas at market prices every hour. Computing the revenue of the same period

without a storage option reveals that the linepack value is about 8.5% of this

revenue. Even more interesting is the increase in profitability. The cost of gas

in take-or-pay contracts is usually confidential, but if we assume a constant

gas price of 22 EUR/MWh and that the plant has no other costs, its profit

would increase by 34% during the period of time in which the plant has a

low flexibility due to commitment to a TOP or forward contract. Converted

to power price terms, this corresponds to an increase of 2.51 EUR/MWh

over the simulated period. The reference case assumes no trading, ramp-

up or ramp-down costs for the power plant. As the algorithm calculates

the isolated value of being able to store gas, we conclude that the increased

flexibility indeed can be considered valuable to a plant in a situation of low

initial flexibility. The storage option allows for better utilisation of gas and

increased profits to the owners of the plant. The results shown imply that

a broader utilisation of the linepack in the pipeline network would enable
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Figure 7: Simulation of three weeks of storage and production. Top: Pro-

duction and gas sales in MW. Positive values imply production, negative

(grey) values imply that gas is sold in the market. Middle: Price series of

power and gas. The grey series is the daily gas price, the dashed line is

the hourly power price corrected for efficiency, and the continuous line is the

P (t), meaning the maximum of these two. Bottom: Storage volume in MWh.

Horizontal axis in hours.

more efficient operation of power plants; potentially even dampening the

extreme spikes seen in today’s power prices. By a no-arbitrage argument,
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if every plant had the same flexibility, some of the variation in prices could

be eliminated. The price volatility is the primary source of profits for the

storage volume as a separate entity, so an increased use of the linepack would

also reduce the marginal value of each MWh of storage volume. However, it

may be a valuable tool for the energy system as a whole.

Below we show some examples of how sensitive the value of the linepack

is to change in parameters of the storage volume or the price processes. In

each simulation we use M = 250 simulations.

 -

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

1 2 4 8 16 32 64 128 256 512 1024 2048

vmax - Maximum storage volume (GWh) 

N = 1000

N = 600

N = 400

N = 200

N = 100

Figure 8: A higher storage volume (vmax) requires a higher volume discre-

tisation (N) to provide a good estimate. For N = 100, the value of a 64

GWh storage volume is estimated to be lower than for a 32 GWh volume.

For N = 1000, the value is equal, as one would expect.

We now analyse how the value changes with increased storage capacity.

When evaluating how the value of the linepack varies with the maximum

storage capacity vmax, one would expect that the value at first increases ra-

pidly with higher capacity, but that it eventually flattens out as the capacity

goes to infinity. One could say that when value goes to infinity, flexibility

only goes to 100%, and asymptotically the value should also reach a max-
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imum. We find that for low values of volume levels N with high values of

vmax, the asymptotic value of the storage volume actually falls (Figure 8).

This is caused by the error of interpolation increasing with higher capacity

as the LSMC algorithm divides the maximum volume into N + 1 levels. An

interpolation is a linear function while our model estimates the value of con-

tinuation by a polynomial function of power 3, rendering the interpolation

inaccurate for large intervals. We observe that for higher volume discretisa-

tion (higher N), the accuracy improves and the value goes asymptotically to

a stable level as the volume rises. We can see from Figure 8 that for N = 100

and vmax = 4000 the error of estimation is small, while for vmax = 8000 it is

visible. We can conclude that the size of N relative to vmax should be around

1
40

.

In Section 2, we estimated the parameters of our price models and noted

some potential estimation errors, most notably in the gas price model. We

now address the sensitivity of the value estimate to changes in different pa-

rameters. None of the parameters in the gas price model showed significant

effect on the value, as it is seldom optimal to sell gas in the market. The

results from gas price sensitivity analyses are therefore omitted. However,

Europe may expect a larger fraction of renewable power generation in the

future. Germany is phasing out its nuclear power plants and the UK has

ambitious goals for wind power. Both solar and wind power have relatively

unpredictable and volatile output, and we therefore analyse how changes in

power price volatility and spike occurrences affect the linepack value. This

corresponds to the parameters σel, λelH and λelL , as well as pML and pMH (the

last two representing the frequency of the power price entering the spike
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regimes).

Figures 9 and 10 show the effect of the variation in parameters on the

estimate of the value. Higher values of both σel and the arrival rates of spikes

increase the overall volatility of the power price, implying that power price

volatility is the main value driver for the linepack. Analysing Figure 11, the

effect from changes in pML, one can see that more spikes to the low regime

increases the value of the linepack more than λH and λL. The implicit price

increases from increases in pMH is not that relevant, because high spikes

increase revenue along with the linepack value.
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Figure 9: Implicit power price increases when varying volatility σel in the

power price. In the reference case, σel = 0.21.

5. Conclusion

Linepack is an under-utilised and under-communicated short-term energy

storage option. Since it uses existing natural gas pipeline infrastructure, it is

cost efficient and environmentally sound. In this article we have analysed its
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Figure 10: Implicit power price increase when varying arrival rates λelH and λelL

for high and low spikes in the power price. In the reference case, λelH = 1.89

and λelL = 1.84.
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Figure 11: Implicit power price increase when varying pML in the power

price. In the reference case, pML = 0.044.

value for a participant in the natural gas value chain. We exemplified the idea

through a gas fired power plant, facing both gas price and electricity price

volatility. We developed models for power and gas prices that can accurately
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capture both regular variations, irregular spikes, and the covariation in the

two prices. The Least Squares Monte Carlo algorithm was employed in the

valuation, and we conclude that the flexibility of having a storage opportunity

was indeed beneficial for the power plant. Specifically, when committed to a

take-or-pay contract, the plant in the reference case could increase the value

of the gas by 34% with the option to store gas for up to ten hours. This

is equivalent to receiving a power price that is 2.51 EUR/MWh higher than

market prices, over the three week period simulated. Further, we showed that

the volatility and spike arrival rates of the power price are the most significant

value drivers, because in most cases storing gas to produce power later is

more profitable than selling gas in the market. The gas price parameters are

therefore of smaller importance. The capacity of linepack storage increases

value up to a limit where no more flexibility is used. In a future with more

output from unpredictable renewable power sources, such as solar and wind

power, the linepack may enable participants in the natural gas value chain

to more efficiently utilise its gas.
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