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Summary

It is anticipated that using distributed electric propulsion (DEP) on conventional ships will in-

crease the total propulsive efficiency. This is mainly due to two reasons; firstly, because the total

propeller disk area can be increased. Secondly, because each propeller can be optimised for the

local wake where it is operating. In this work, the benefits of using DEP has been investigated

for a 14 000 TEU container ship.

Based on a literary study of the present state of propeller modelling methods, it was decided

to use lifting line theory to determine the thrust and torque of propellers in DEP configurations.

The blade section geometry of the Wageningen B-screw series was used.

Emphasis was placed on programming a lifting line code in MatLab that could estimate pro-

peller performance with sufficient accuracy. It was validated against polynomials describing the

open water characteristics of the Wageningen B-screw series. It was found to provide sufficient

accuracy for three- and four-bladed propellers, while relatively large discrepancies was present

for two- and five-bladed propellers.

A built-in optimisation function in MatLab called fmincon was used to find the optimal ge-

ometry of each propeller. Its objective was to minimise the effect delivered to the propellers,

without cavitation and with the propellers providing the required thrust for the ship to main-

tain its operational speed. The latter was achieved by application of a quadratic penalty method

to force the total thrust within 3% of the required thrust.

The rate of revolution was optimised for each propeller, while all propellers were optimised

to have the same blade area relationship in each configuration. The pitch was adjusted for each

propeller by iteration such that the effective angle of attack was sufficiently small to prevent

cavitation.

Configurations of propellers placed in a grid were analysed. The width of the grid was equal
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to BW L and the height was as the diameter of the original propeller. Problems regarding cavi-

tation occurred for configurations with two rows of propellers. Thus emphasis was placed on

configurations with one row.

Based on potential theory, it was expected that five propellers would be most efficient as they

had the greatest total propeller disk area, and hence lightest total thrust loading. However, it

was the configurations with seven propellers that were most efficient for three- and four-bladed

propellers. Influence of nominal wake and relatively small difference in thrust loading between

five and seven propellers are anticipated to be the reason why seven propellers resulted in the

highest efficiency.

Overall it was concluded that application of DEP to conventional ships can increase the total

propulsive efficiency. Results suggests that a DEP configuration of seven four-bladed propellers

in one row can increase the propulsive efficiency by 10.75%. However, more extensive analysis

are recommended and practical challenges remains to be investigated.
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Sammendrag

Det forventes at den totale virkningsgraden på konvensjonelle skip kan økes ved bruk av dis-

tribuert elektrisk fremdrift (DEP). Dette skyldes hovedsakelig to grunner; for det første fordi det

totale propellarealet kan økes. For det andre, fordi hver propell kan optimaliseres i forhold til

hvor den er plassert. I dette arbeidet har fordelene ved å bruke DEP blitt undersøkt for et 14 000

TEU containerskip.

Basert på en litteraturstudie av metoder for propellmodellering, ble det besluttet å bruke

løftelinjeteori til å beregne fremdrift og dreiemoment fra propeller i DEP-konfigurasjoner. Blad-

geometrien til Wageningen B serien ble brukt.

Det ble lagt vekt på å programmere en løftelinjekode i MatLab som kunne estimere pro-

pellenes ytelse med tilstrekkelig nøyaktighet. Den ble validert mot polynomer som beskriver

friprøvediagrammer for Wageningen B-skrueserien. Resultat fra løftelinjekoden viste tilstrekke-

lig nøyaktighet for propeller med tre og fire blad, mens relativt store avvik oppstod for propeller

med to og fem blad.

En innebygd optimaliseringsfunksjon i MatLab kalt fmincon ble brukt til å finne den opti-

male geometrien til hver propell. Målet for optimaliseringen var å minimere effekten som ble

levert til propellene, uten kavitasjon og med nok fremdrift til å opprettholde marsjfart. Sist-

nevnte ble oppnådd ved anvendelse av en kvadratisk straffemetode for å tvinge fremdriften in-

nenfor 3% av nødvendig fremdrift.

Turtallet ble optimalisert for hver propell, mens alle propeller ble optimalisert for samme

bladarealsforhold i hver konfigurasjon. Stigningen på propellene ble justert for hver propell ved

iterasjon slik at den effektive angrepsvinkelen var tilstrekkelig liten til å forhindre kavitasjon.

Konfigurasjoner med propeller plassert i et gitter ble analysert. Gitteret hadde bredde lik

BW L og høyde som diameteren av den opprinnelige propellen. Når to rader av propeller ble
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brukt, oppstod problemer med kavitasjon. Dermed ble det lagt vekt på konfigurasjoner med en

rad av propeller.

Basert på potensialteori var det forventet at fem propeller ville resultere i høyest virknings-

grad da de hadde det største totale propellarealet, og dermed den letteste belastningen. Det var

imidlertid konfigurasjonene med syv propeller som hadde høyest virkningsgrad for propeller

med tre og fire blad. Påvirkning av skipets kjølevann og relativt liten forskjell i belastning mel-

lom fem og syv propeller forventes å være årsaken til at syv propeller resulterte i høyest virkn-

ingsgrad.

Det ble konkludert med at bruk av DEP på konvensjonelle skip kan øke den totale virknings-

graden. Resultatene tyder på at en DEP-konfigurasjon av syv firebladede propellere på rekke kan

øke den totale virkningsgraden med 10.75%. Imidlertid anbefales det mer omfattende analyse,

og det er fortsatt praktiske utfordringer som må løses.
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Chapter 1

Introduction

This first chapter is an introduction to the concept of distributed electric propulsion (DEP) and

the work that has been done investigating the potential benefits of using it on conventional

ships. First, a detailed background description is provided. Then the scope of the work is de-

fined. Lastly is given the structure of this report.

1.1 Background

When designing a modern cargo ship, a propulsion system with single or double screw propeller

is usually preferred. This is mainly due to practical reasons as it is not efficient to have several

small combustion engines. However, with electrical propulsion comes new possibilities of using

configurations of several small engines in strategical locations as they don’t have the same scal-

ing problems as combustion engines. Another benefit of electrical propulsion is that it is likely

to save maintenance cost as electrical engines have less moving parts than combustion engines.

The concept of distributed electrical propulsion is currently of broad interest in the avia-

tion industry. National Aeronautics and Space Administration (NASA) has recently published

some of their work regarding DEP. It is therefore convenient to present a short summary of their

concept in the next subsection. A conceptual description for ships will then follow, as well as

a summary of a pre-study that I conducted in the autumn of 2016. Some paragraphs in this

section originates from the pre-study.

1
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1.1.1 Research by NASA

NASA is currently investigating the use of DEP on small aircrafts with lightly loaded propellers.

The configuration they have used is called Leading Edge Asynchronous Propellers Technology

(LEAPTech) and includes eighteen electric motors mounted in nacelles in the span-wise direc-

tion on small aircraft wings (Stoll et al. 2014). This is illustrated in Figure 1.1. During take-off

and landing, the motors power one propeller each (Stoll 2015). The benefit of this is that the

dynamic pressure over the wings is increased, which results in increased lift. This allows use of

a smaller wing to obtain a given stall speed. A smaller wing is not only beneficial in terms of

resistance reduction, it also improves ride quality as it is less sensitive to gust (Stoll et al. 2014).

Results indicate that a LEAPTech configuration gives an increased efficiency and significantly

reduced noise.

Figure 1.1: LEAPTech configuration of propellers on a small aircraft (Stoll 2015)
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1.1.2 Concept

Inspired by the research done by NASA it is anticipated that DEP can be applied to ships to

increase the propulsive efficiency. During the last 20 years it has been a rapid development

of electrical propulsion on certain ship types, such as offshore ships (Pestana 2014). Due to

increased environmental awareness that leads to stricter regulations, it is reason to believe that

electrical propulsion will be implemented on cargo ships in the future. Therefore a concept like

DEP is most likely feasible. However, it remains to be investigated if it is beneficial, and there

are some obvious practical challenges that must be overcome.

There are mainly two reasons to believe that a DEP configuration can be beneficial. Firstly,

using several small propellers versus one or two large ones will result in a larger total propeller

area, as the diameter of a ship propeller is limited by the presence of the hull itself. Thus, for

a given thrust, the propellers will be lighter loaded, resulting in a higher ideal efficiency and

generally less risk of cavitation.

Secondly, it gives the opportunity to optimise each propeller for operation in a specific part

of the ship wake. Generally, it is desired that a ship propeller should work in a homogenous wake

field. This is favourable with respect to propeller blade design. If there are large wake variations,

the blade design becomes a compromise between the optimal geometry for high and low wake

fractions.

Due to the form of the hull it is impossible to achieve a completely homogenous wake for a

single or double screw conventional propeller. With DEP the location of the propellers are more

flexible. They can be designed to operate in a more homogenous wake field. In theory, this will

lead to an increased total propeller efficiency. It can also be considered to alter the design of the

stern in order to optimise the operating conditions of the propellers.

As previously mentioned there are practical challenges, for example regarding the arrange-

ment of the propulsion system. It is undesirable to have a shaft from each propeller into the

hull. Therefore it is anticipated that the electrical motors must be mounted in nacelles in front

of the propellers. The nacelles will lead to additional appendage resistance and must therefore

be designed as streamlined as possible to minimise drag. However, solving such challenges are

outside the scope of this work.
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1.1.3 Calculation example: airplane propeller versus ship propeller

A calculation example has been conducted in order to compare airplane propellers and ship

propellers. In general, airplane propellers are known to have higher propulsive efficiency than

ship propellers. A calculation example based on simple momentum theory is provided to inves-

tigate this. The airplane used in the example is a Cessna 172 Skyhawk. It has a maximum cruise

speed of 66.4 m/s and is powered by a 119 kW piston engine (Palt 2017). At cruise speed it uses

75% engine power (CessnaAircraftCompany 2004). Thus its cruise power is 89.25 kW. It has a

propeller diameter of 1.9304m, which results in a propeller disk area of 2.9267m2. Typically, air-

plane propellers have a propulsive efficiency of 0.85 (Spakovszky 2009). The Cessna is assumed

to have a propulsive efficiency of 0.85 and a mechanical efficiency of 0.98. Multiplying cruise

power by the efficiencies and dividing by cruise speed, the resulting thrust is 1142.5 N.

The principles of simple momentum theory will be presented in Chapter 2 about propeller

modelling methods. The application of it implies that the ideal efficiency, ηi , can be calculated

by Equation 2.1, where the thrust loading coefficient, CT , is given by Equation 2.2. In the cal-

culations for the Cessna, air density of 0.9633kg /m3 was used. The thrust loading coefficient

and ideal efficiency of a single screw container ship was calculated in the pre-study, prior to this

work. Its propeller data are provided in Table 1.2.

Resulting thrust loading coefficients and ideal efficiencies are presented in Table 1.1. It

should be noted that this is ideal properties, as effects of propeller geometry are not included.

Table 1.1: Comparison of ideal properties for a ship propeller and an airplane propeller

Cessna Container ship

CT 0.1838 0.2749

ηi 0.9578 0.9394

From the results it is seen that the ship propeller are heavier loaded than the airplane pro-

peller, even though its diameter is much larger than the airplane propeller. Consequently, the

ideal efficiency of the airplane propeller is higher than for the ship propeller. Thus the reason

why airplane propellers in reality have higher propulsive efficiency than ships can be explained

by the ship propellers being heavier loaded and limited by cavitation.
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1.1.4 Previous work

The autumn of 2016 I conducted a pre-study aiming to indicate the potential benefits of using

DEP on conventional ships. This work will be further referred to as the project thesis. A summary

of the project thesis will now be given.

A test vessel called Duisburg Test Case was used as reference vessel. Its hull design is of a

typical 14 000 TEU container ship (el Moctar et al. 2012), powered by the use of a single screw

propeller. Specifications of the original propeller is provided in Table 1.2. This vessel was also

used as reference vessel in the analysis of this work, which will be described in Chapter 5.

Table 1.2: Data for original propeller of test vessel

Z [−] 5

(P/D)0.7[−] 0.959

AE /A0[−] 0.8

DM /D[m] 0.150/8.911

In the project thesis simplified calculations were conducted to indicate if application of DEP

could be beneficial in terms of increasing the propulsive efficiency. The calculations were based

on Wageningen B-series propellers. As simplified formulas were applied, the blade geometry

was not accounted for in the analysis. To account for the nominal wake, the average wake frac-

tions within the propeller disks were used. Thus, the results can only be treated as indications.

Two types of configurations were tested for various number of propellers. One configuration

type were a grid configuration with propellers of equal diameter placed in a rectangular grid.

This configuration is illustrated in Figure 1.2.

Figure 1.2: Grid configuration
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Results showed that the magnitude of the wake fraction had great influence on the propul-

sive efficiency. Thus the aim of the second configuration was to exploit the wake better than in

the grid configuration. This was done by placing one large propeller at the location of the origi-

nal propeller, where the wake fractions were large, and use a small rectangular grid of propellers

above. This type of configuration will be further referred to as a T-configuration. It is illustrated

in Figure 1.3.

Figure 1.3: T-configuration

A brute force approach were used to find the combination of advance number, pitch and

blade area relationship resulting in highest propulsive efficiency for two- to five-bladed pro-

pellers. It was anticipated that cavitation would be of great significance. However, the effects of

it was included in a highly simplified manner using a curve fit of a Burrill diagram.

Results indicated that it can be possible to achieve higher propeller efficiency with DEP than

with a conventional propulsion system. However, it should be emphasised that only a rough

analysis was conducted, and that more detailed calculations are required to draw conclusions.

The utilisation of the ship wake and thereby the design of the aft ship, as well as cavitation was

shown to be of great significance. It was therefore concluded that a more extensive analysis

that includes these effects to a larger extent are necessary in this work in order to quantify the

benefits with higher accuracy.
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1.2 Scope of work

The scope of the work is defined in this section to make the reader familiar with objective, meth-

ods, simplifications and limitations that has been applied.

The main objective of this work was to investigate the use of DEP with sufficient accuracy to

conclude whether it can be beneficial or not for conventional cargo ships.

It was concluded in the project thesis that it was necessary to include the effects of wake

field and cavitation with higher accuracy. Hence a more extensive approach for the analysis

had to be used in this work. In order to choose a sufficient method, a thorough literature study

regarding the present state of propeller modelling was conducted. Based on the literary study

it was concluded that within the time frame of this work, application of lifting line theory for

performance calculations would be most appropriate.

An analysis approach of lifting line theory was coded in MatLab. It calculates the propeller

performance in terms of thrust, torque and propulsive efficiency based on that the propeller

blades are straight lines. Wake data from CFD analysis was provided by co-supervisor. In such

a lifting line code, the propeller geometry is required as input. Thus an optimisation algorithm

had to be implemented. The blade section geometry of the Wageningen B-screw series was

applied to limit the number of variables in the optimisation. However, lifting line theory allows

for use of other geometry if desired.

A built-in optimisation function in MatLab called fmincon was used to find the optimal pro-

peller design in terms of blade area relationship and rate of revolutions. The default interior-

point algorithm was used. All propellers in one configuration were given the same blade area

relationship, while the rate of revolution was optimised for each propeller. A particle swarm

algorithm was applied to polynomials representing the open water characteristics of the Wa-

geningen B-series in order to find the initial values required by the interior-point algorithm. To

ensure that the propellers supplied the desired amount of thrust, a quadratic penalty method

was used.

Cavitation was accounted for by running an open source program called Xfoil via MatLab to

determine minimum pressure coefficients. Since a propeller blade is most prone to cavitation

when located in its top position (12 o’clock), the minimum pressure coefficients of the foil sec-
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tions was found for this position. They were then compared with the dimensionless cavitation

number, σ. The pitch of each propeller was adjusted such that the effective angle of attack of the

outermost foil section in top position was close to zero. This was necessary in order to prevent

cavitation.

The limitations that were set in order to complete the work within the time frame of the

master thesis are listed below.

• The foil section geometry of the Wageningen B-series is applicable

• Interaction effects between the propellers are negligible

• Built-in optimization algorithms in MatLab are applicable

• Skew and rake are not included

1.3 Structure of this report

This report is organised as follows. In Chapter 2, is included a literature study of propeller mod-

elling methods. Subsections concerns theoretical descriptions, a state-of-the-art study and con-

cluding remarks. Theoretical background for the optimisation methods used are provided in

Chapter 3, together with an example of application from recent literature. Then in Chapter 4

is included some background theory for the approach of the analysis. This concerns propeller

blade geometry, Xfoil, propeller performance characteristics and the Wageningen B propeller

series.

The approach of the analysis is provided in Chapter 5. In this chapter assumptions are stated

and the test vessel is presented. Thereafter a through review of the lifting line procedure with

associated equations is provided. It is explained with equations and text how effects such as

cavitation and wake were included in the analysis. The optimisation procedure is also explained

in this chapter, which is ended with a list of uncertainties and an overview of the code work. In

Chapter 6 the results of the analysis are presented. They are further discussed in Chapter 7. In

Chapter 8, conclusions and recommendations are provided.



Chapter 2

Propeller modelling methods

A state-of-the-art literature study of propeller modelling methods was conducted in the project

thesis. This chapter originates from the project thesis, but alterations have been made. It con-

tains an overview of different propeller modelling methods that were considered to be used to

analyse the performance of DEP configurations. Concluding remarks, that justifies the choice

of propeller modelling method, are provided in the end of the chapter.

2.1 Numerical propeller modelling methods

The performance of a propeller can be assessed by empirical methods, experiments or numer-

ical analysis. Empirical methods, like the Wageningen B-screw series, are not applicable for

design or analysis of propellers (Steen 2014). They are only useful to determine diameter, pitch

and blade area at early stages of the design process. Much of the knowledge about propeller

performance has, until recent years, been gained through experiments (Kerwin & Hadler 2010).

However, the use of numerical modelling, such as CFD, for marine applications has recently

increased due to the availability of software and more efficient computers. An overview of com-

mon methods for numerical propeller modelling follows. This concerns momentum theory,

blade element momentum theory, lifting line theory, lifting surface theory, Reynolds averaged

Navier Stokes and hybrid methods.

9
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2.1.1 Momentum theory

A propeller can be described as a device that gives a vessel a forward momentum by giving the

fluid a backward momentum. This is directly linked to Newtons 3r d law. An idealisation of

the propeller can therefore be studied by means of momentum theory, where axial momentum

theory is the simplest form (Carlton 2011). It is based on the following three assumptions

• The propeller works in an ideal fluid, and consequently does not experience energy losses

due to frictional drag

• The propeller can be replaced by an actuator disk

• The propeller can produce thrust without causing rotation in the slipstream

As the name implies, this method is derived from the principles of conservation of fluid

momentum. The propeller is modelled as an actuator disk, which is equivalent to a propeller

with an infinite number of blades and zero chord length (Kerwin & Hadler 2010). When ideal

fluid passes through the actuator disk, it introduces a pressure jump to the fluid. The pressure

jump results in an uniform acceleration of the fluid through the disk, which gives a thrust in the

opposite direction through the conservation of fluid momentum.

Applying the simplest form of momentum theory implies that the actuator disk does not

absorb any torque because no tangential velocity components are induced. The efficiency of

an actuator disk can be derived as the relationship between the useful work done by the disk

and the total energy supplied to it. Since no torque is absorbed, the efficiency calculated based

on simple momentum theory is the theoretical maximum efficiency of a propeller. It can be

expressed by means of a thrust coefficient, which implies that the ideal efficiency varies with

the loading of the propeller.

Expressions for thrust coefficient and ideal efficiency derived from momentum theory are

given in Equation 2.2 and 2.1, respectively. As seen in Equation 2.1, the thrust coefficient and

ideal efficiency are inversely proportional. It is further referred to (Steen 2014) for numerical

derivations.

ηi =
2

1+
#

1+CT
(2.1)
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CT = T
ρ
2 AP V 2

(2.2)

The rotational motion of an actuator disk can be accounted for by introducing a rotating

annular stream tube and satisfying the conservation of angular momentum (Kulunk 2011). Then

the third assumption in the above list is invalid. This results in a more realistic description of

the propeller action, and adds a new level of complexity with respect to the simple momentum

theory. It is further referred to (Kulunk 2011) for numerical derivations.

Momentum theory is not able to account for the effects of propeller geometry, and it is there-

fore not applicable for use in propeller design or analysis. Thus it is considered insufficient for

analysis of DEP. However, it is a useful method to calculate the ideal efficiency and estimate

the average velocity induced by the propeller (Steen 2014). A major advantage is that it is rel-

atively easy to use, and clearly depicts the ideal effects of adjusting the propeller diameter. An

illustrative example comparing a ship propeller and an airplane propeller by means of simple

momentum theory is included in Chapter 1.

2.1.2 Blade element momentum theory

Blade element momentum theory (BEMT) is a combination of momentum theory and blade

element theory (BET). The propeller performance is determined by dividing the blade in two-

dimensional foil sections, typically between ten and twenty, and analyse each section separately

(Kulunk 2011). The following additional assumptions applies in combination with those defined

for momentum theory in the previous section.

• No hydrodynamic interaction between blade elements

• The forces on the blade elements are determined by the lift and drag coefficients

The effect of the blade geometry is accounted for in BET. The resulting incident velocity on

each foil section consists of an axial and a rotational component, varying linearly up the blade

(Carlton 2011). Thus, the effective angle of attack and hence the lift varies for each foil section.

The effective angle of attack, and consequently thrust and torque, are obtained by considering

the two-dimensional lift and drag coefficients of each foil section combined with the changes in
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fluid momentum from momentum theory (Amini 2011). At the same time, a balance of angular

momentum with the force on the blade within each strip is applied. This results in a set of non-

linear equations that can be solved by iteration to obtain the thrust and torque of each strip.

Then the total thrust and torque can be calculated by integration along the blade, and sum over

the number of propeller blades.

BEMT is efficient and simple to use as it treats a three-dimensional problem by discretising

one dimension and allows use of two-dimensional considerations. An advantage over more

advanced potential flow methods is that it allows the lift and drag properties of the foil sections

to include viscous effects such as stall and laminar separation at low Reynolds numbers by using

empirically based lift and drag curves for the blade sections.

One important effect that is not included in BEMT is the interaction on one blade section

from the remaining blade sections. Because of this, the accuracy of BEMT is considered to be

too low for it to be used in an analysis of DEP in this work.

2.1.3 Lifting line theory

The radial distribution of lift from a foil section is proportional to the radial distribution of cir-

culation. In lifting line theory the radial distribution of circulation is considered. It can be used

to solve a design problem if the circulation distribution is known, or it can be used to solve an

analysis problem if the propeller geometry is known. The application of lifting line theory to a

propeller implies the following assumptions

• The propeller works in an ideal fluid

• Radial variation of circulation, inflow and propeller blade geometric parameters

• Lightly loaded propeller, which means no contraction of the slip stream

When applying lifting line theory, the propeller blade is modelled as a straight line and dis-

cretised into a number of N foil sections. With each foil section comes a set of one bound and

two free vortex sheets with strength of a certain magnitude. This results in a radial distribution

of bound and free vortex sheets (Kerwin & Hadler 2010). The circulation around each section

is described by a bound vortex of strength Γ(r ), located one quarter from the leading edge. It

is directly linked to the sectional lift force through Kutta Joukowski’s theorem, which is given in
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Equation 2.3. Thus the thrust and torque from each section can be calculated by application

of Kutta Joukowski’s theorem. Total thrust and torque are determined by integration over the

propeller blade.

L = ρV∞Γ (2.3)

Drag contributes to additional torque and reduced thrust. When applying lifting line theory

it can be separated into induced and frictional drag. The induced drag can be directly imple-

mented into Kutta Joukowski’s theorem in terms of tangentially and axially induced velocities.

The induced velocities are calculated using Biot Savart’s law together with a correction method

to account for the effect of finite blade number on the induced velocities. Viscous drag is com-

monly included by means of a drag coefficient, which can be determined using a friction line.

Lifting line theory is computationally simple. Thus, it does not require a lot of computa-

tional time to gain a satisfying accuracy. Unlike in BEMT, the interaction effect between the foil

sections are accounted for. Consequently, it can describe radial pressure variations across the

blade.

It is most suitable for lightly to moderately loaded propellers with thin blades as the blades

are described by straight lines. In a DEP configuration, the propellers are anticipated to be

lightly loaded. Lifting line theory are therefore considered applicable. It is an advantage that

it is computationally simple and extensively used for marine propeller applications. Another

benefit is that it allows for relatively accurate predictions of cavitation as cavitation number can

be calculated and compared with minimum pressure coefficient for each blade section.

2.1.4 Lifting surface theory

Lifting surface theory takes the lifting line theory one step further by including the chord-wise

circulation around the propeller blades (Kerwin & Lee 1978). This is done by placing a distri-

bution of vortices on the camber surface of each blade, together with a distribution of vortices

shed into the wake. Thus, the real blade geometry is included to a larger extent in lifting surface

theory than in lifting line theory, since the blade is represented by a surface instead of a line.

Lifting surface theory is based on the following two assumptions
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• The propeller works in an ideal fluid, and consequently does not experience energy losses

due to frictional drag.

• The propeller blades can be represented by infinitely thin surfaces

Vortex lattice methods are a subclass of lifting surface theory (Carlton 2011). Then a finite

set of straight line elements of constant strength are placed with end points on the blade cam-

ber surface. This results in a lattice of line segments, with control points on the mean camber

surface. Thus the lifting surface is modelled as infinitely thin. A consequence of neglecting the

thickness of foil sections is that the pressure distributions on the leading and trailing edges are

poorly described (Breslin & Andersen 1993).

Another subclass of lifting surface theory is panel methods. Then the distribution of vortices

are placed on the actual camber surface, instead of the mean camber surface. This means that

the effect of thickness is also included. However, the inclusion of thickness in panel codes comes

with a cost in terms of computational time with respect to vortex lattice codes.

In lifting surface theory the fundamental equation of potential flow, called the Laplace equa-

tion, is solved to find the local pressure and velocity components within boundaries defining a

confined fluid domain. The Laplace equation is given in Equation 2.4 where ϕ is the velocity

potential.

∇2ϕ= 0 (2.4)

According to (Breslin & Andersen 1993), all lifting line and lifting surface theorists recog-

nised that including the effects of local trajectories of the trailing vortices were crucial when

estimating flow and forces induced on propeller blades. In a lifting surface analysis not only the

propeller blades are discretised, but also the wake. This leads to a better representation of the

trailing vortices, and the forces on the blades can be calculated with higher accuracy. However,

accuracy usually comes with a cost in terms of computational time and this is no exception.

One great advantage with panel codes is that it is possible to include bodies such as hub,

pods and rudder in the analysis (Steen 2014). According to (Carlton 2011), results from panel

methods has shown to be in good agreement with theoretical and experimental results for blade

pressure distributions and open water characteristics. However, lifting surface methods in gen-
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eral are discarded for further analysis of DEP as it is computationally demanding. In addition, it

is relatively limited access of material needed to generate such a code within the time frame of

this work.

2.1.5 Reynolds averaged Navier Stokes

The Navier Stokes equations gives a complete description of a continuous Newtonian viscous

flow in both space and time. Water can be assumed to be of constant density and viscosity, the

equations can then be written on the compact form shown in Equation 2.6. They can be solved

analytically for highly simplified cases, but must be solved numerically to describe the flow

around a propeller. In a viscous CFD analysis the local velocity components and pressure are

calculated by solving the Navier Stokes equations and the Continuity equation in a grid within

a defined fluid domain. The Continuity equation is given in Equation 2.5. For high Reynolds

number flow, a turbulence model must be applied.

∂ρ

∂t
+∇ · (ρV⃗ ) = 0 (2.5)

ρ · DV⃗
Dt

+∇p −µ∇2V⃗ = ρg⃗ where V⃗ = [u, v, w] (2.6)

The most common CFD approaches for analysis of flow around propellers are the Reynolds

Averaged Navier Stokes (RANS) method, Large Eddy Simulation (LES) techniques and Detached

Eddy Simulations (DES) (Carlton 2011). Due to its computational efficiency, RANS codes are

usually preferred for analysis of marine propellers.

The grid generation is the most time consuming and crucial part of the application of RANS,

as the whole fluid domain must be discretised. This requires highly qualified users to gain suf-

ficient accuracy of the analysis. The grid should be refined and smooth around areas where it

is crucial to capture fluid phenomenas. This implies high grid resolution in boundary layer re-

gions, in the wake and at the blade tips in order to capture tip vortices. According to (Carlton

2011), unstructured grids are favoured since they can easily handle complex geometries and

good clustering of grid cells in regions of the flow where large pressure gradients occur.

Using a coupling between a RANS code and a potential solver is considered as applicable for
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DEP analysis. This is called a hybrid model and will be explained in detail in the next section.

2.1.6 Hybrid models

When a potential flow solver is coupled to a viscous solver, it results in a hybrid model. The main

motivation for using a hybrid solver for performance analysis of marine propellers is that it saves

computational time as the action of the propeller is simplified with a potential approach.

This leads to an iterative procedure that starts with importing the nominal wake from the

viscous solver to the potential solver. The action of the propeller is calculated in terms of thrust

and torque in the potential flow solver, and imported back into the viscous solver. The forces

are then distributed over the volume of the propeller disk. These forces enter the Navier Stokes

equations as body forces (Sánchez-Caja et al. 2014). This is illustrated in Equation 2.7, where

⃗FAD is the body forces.

ρ · DV⃗
Dt

+∇p −µ∇2V⃗ = ρg⃗ + ⃗FAD (2.7)

The viscous solver calculates the velocity components from the Navier Stokes equations,

which is then the effective wake. However, since the input to the potential solver is the wake

without the presence of the propeller, the effective wake must be corrected with propeller in-

duced velocities before it is sent back to the potential solver for the next iteration. Thus, the

induced velocities calculated in the potential solver must be subtracted from the effective wake.

Then the effective wake is used as input to the next iteration where new body forces are calcu-

lated, and the same procedure as described for the first iteration are repeated. In this way, the

interaction between the nominal wake and induced wake are accounted for. The iterations are

conducted until satisfying convergence is achieved.

A hybrid model is considered to be applicable for the analysis of DEP. However, even though

a lot of computational time is saved with respect to using RANS only, the time frame of this work

is considered too short for the implementation of such a method.
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2.2 State-of-the-Art in propeller modelling

The state-of-the art in numerical propeller modelling is dominated by CFD applications. During

the last two decades there has been significant progress on the subject, and a review of its state

will be given in this section. It is then convenient to distinguish between potential flow solvers

and viscous solvers in this chapter.

2.2.1 Potential flow solvers

Potential flow methods have long been a widely used tool for propeller modelling (Dejhalla

& Prpic-Orsic 2006). In general they are relatively affordable and more extensively validated

compared to viscous methods. However, they are gradually loosing their importance as large

progress has been made on the development of CFD in recent years (Szantyr 2008).

Potential flow solvers are mainly based on lifting surface theory, and mostly concerns panel

codes. Panel codes, which is mainly boundary element codes (BEM), are preferred for perfor-

mance analysis due to their good accuracy within a reasonable computational time (Dejhalla &

Prpic-Orsic 2006).

In the early 20th Century the foundation for potential flow solvers was discovered when

Lanchester suggested that the idea of circulation was related to lift (Carlton 2011). Indepen-

dently of his work Kutta and Joukowski came to the same conclusion, and Joukowsi quantified

it by the well-known Kutta-Joukowski’s theorem. This work was extended by Prandtl, who de-

veloped the classical lifting line theory. Around fifty years later, when computers were available,

lifting line theory was further developed. Lerbs, Goldstein and Betz can be mentioned to have

contributed extensively.

In the early 1960, the computational capability had significantly increased, allowing for the

development of lifting surface theory. Even though theoretical foundations for lifting surface

theory was already laid, Pien has been credited as the first to produce the lifting surface theory

subsequent to 1960. Since then, his work has been followed up and further developed by others.

One of them is Kerwin, whom introduced vortex lattice methods. Others are (Hess & Valarezo

1985) who developed the first 3D BEM for marine propellers in steady flow. Since then, BEM has

been further extended to include both unsteady performance and cavitation predictions.
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(Politis 2004) developed a BEM model of a propeller in unsteady flow using a time stepping

approach with vortex filaments. Applications of this method on both steady and unsteady cases

has resulted in good predictions of forces and pressure distributions. According to (Dejhalla &

Prpic-Orsic 2006) the recent improvements in panel method codes shows good agreement with

experimental results.

The free software OpenProp is an open source tool based on vortex lattice lifting line theory.

It can be used for both design and analysis purposes of marine propellers. (Epps et al. 2009)

shows the numerical derivations, as well as some design cases.

In recent literature there are several examples of the application of potential flow solvers

coupled to viscous solvers for design and analysis purposes of marine propellers. An example is

(Sánchez-Caja et al. 2014), who used a coupling between a lifting line code in off-design mode

and a RANS solver to demonstrate a suggested correction procedure for induced velocities cal-

culated by a potential flow solver used in a hybrid model.

2.2.2 Viscous solvers

Today, the majority of propeller flow computations are performed using CFD methods (Szantyr

2008). In most cases, RANS codes are favourable due to their efficiency.

The development of CFD has increased in line with available computational power. Around

1980 computers were powerful enough to solve the Navier Stokes equations. However, initially

the free surface was not included in the codes, as it was made for other applications than naval

purposes. It therefore took some time before the free surface was included and the codes were

validated to be used for propeller flow.

Since 1980 there has been arranged workshops around every 5th year to assess the state-of-

the-art in numerical prediction of viscous flow for naval purposes (Larsson et al. 2014). It was

not before 1990 and onwards that RANS started to dominate the workshops, and on the fourth

workshop in 2000, self-propulsion was included in the test regime.

During the last few years, there has been a significant development in RANS codes for marine

propeller applications (Dejhalla & Prpic-Orsic 2006). It has become a well established method

for analysis of interaction between hull, propeller and rudder. It can be used to accurately

predict the propeller open water characteristics under design conditions, and shows satisfying
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agreement in off-design conditions.

In literature, there are numerous examples of CFD being applied to propellers in order to

gain insight in flow phenomenas and fluid behaviour. (Huuva & Törnros 2016) has applied

RANS to an open propeller and an azimuth thruster in an attempt to capture pressure pulses of

higher order with respect to cavitation. Potential flow methods are generally not able to capture

such pulses, and it is therefore desired to use CFD. Results showed that the method was able to

capture tip vortex cavitation, bubble cavitation, sheet cavitation and root cavitation. However,

tip vortex cavitation was somewhat underestimated. Nevertheless, all the mentioned cavitation

phenomenas are important with respect to noise and vibrations and can not be picked up using

potential flow methods.

At present, there are several programs available for CFD analysis of marine propellers. Ex-

amples are Star CCM+, Fluent and OpenFoam. All programs require skilled users in order to

gain sufficient accuracy of the analysis. In addition the CFD tools are known to be expensive.

However, an exception is OpenFoam which is an open source code.

2.3 Concluding remarks

It has now been presented a thorough literature study regarding numerical propeller modelling.

Based on this, Table 2.1 and 2.2 has been made to summarise the main points with respect to

the analysis of DEP. It is concluded that within the time frame of this work, lifting line theory is

well suited to be used in the analysis.
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Table 2.1: Summary of numerical modelling methods based on potential theory and their ability
to be used in a DEP analysis

Method Pros Cons Conclusion

Momentum

theory

Very simple to

implement

Fails to represent

blade geometry

Too simple to

provide accurate

results, but useful

to calculate ideal

efficiency

BEMT
Simple to

implement

Does not account

for the interaction

effect on one foil

section from the other

sections

Too low

accuracy

Lifting line

theory

Fairly simple

to implement,

includes interaction

effects between

foil sections

Propeller blade is

represented by

line segment so

best accuracy

for thin, lightly

loaded propellers

Applicable within

the scope of this

work

Lifting surface

theory

Includes blade geometry

to a larger extent than

lifting line theory

Not extensively

developed codes

to use as examples

Considered

inapplicable for the

time frame of this

work as it requires

comprehensive

code work
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Table 2.2: Summary of numerical modelling methods including viscosity and their ability to be
used in a DEP analysis

Method Pros Cons Conclusion

RANS

Includes viscous effects,

superior accuracy wrt.

potential solvers

Requires a lot of

CPU and

computational time,

as well as highly

skilled users

Inapplicable within

the time frame of

this work

Hybrid solvers
Includes viscous effects,

high accuracy

Computationally

demanding and requires

skilled users to

handle RANS

Inapplicable within

the time frame of

this work
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Chapter 3

Theoretical background for optimisation of

propeller design

The analysis procedure of DEP implies that the geometry of the propeller blades is optimised.

This becomes a nonlinear, multi-variable, multi-objective optimisation problem where the ob-

jective function should minimise the effect delivered to the propeller(s) and prevent cavitation.

In this work, a built-in algorithm from the optimisation toolbox in MatLab was used. Due

to several bounded constraints of the problem, the function called fmincon was found appro-

priate. An internal-point (IP) algorithm is default and was used. It worked well when combined

with the quadratic penalty method, which was considered important.

This chapter contains fundamental background theory of optimisation algorithms. Firstly

is presented theory regarding IP algorithms, where emphasis has been placed on calculation of

step length. In addition, sections regarding particle swarm algorithms and quadratic penalty

methods are included since they were used in this work. A discussion of an example from liter-

ature where propeller geometry is optimised is also provided in this chapter.

23
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3.1 Interior-point optimisation

IP algorithms was developed for convex nonlinear optimisation problems in the 1960’s, but were

not widely used (Nocedal & Wright 2006). Success of IP algorithms for linear optimisation re-

sulted in renewed interest for nonlinear optimisation in the late 1990’s. IP algorithms have

proven to be a successful tool for nonlinear optimisation, and are currently one of the most

powerful algorithms for optimisation of large scale problems with many free variables.

Generally speaking, optimisation algorithms are used to find an improved solution of an

objective function, based on initial values of its variables. Exceptions are genetic algorithms and

particle swarm algorithms, as they usually don’t require initial values. The objective is improved

using an iterative procedure, where the method used to move from one iteration to the next is

depending on the type of algorithm that is used. An IP algorithm for nonlinear optimisation can

either be based on line search or trust region strategies. They are two fundamental approaches

of optimisation, which both requires differentiation of the objective function, and hence initial

values.

When searching for an objective for their next iteration, both line search methods and trust-

region methods generates steps. However, their treatment of the steps differs. In line search

methods, the steps are used to compute a search direction and then a suitable step length in or-

der to minimise the objective function. Trust-region methods define a region within the optimi-

sation problem where it is trusted that the model is a satisfactory representation of the objective

function. Then the step is chosen to be an approximate minimiser of the model within this trust

region.

The IP algorithm applied in this work uses one of the approaches listed below to generate

steps (MathWorks 2017). If the first approach fails, the second is applied.

• Using a Newton step, which involves solving a linear approximation of the problem.

• Using conjugate gradient method

If the reader is interested in a thorough description of IP algorithms, including mathemat-

ical expressions, it is further referred to (Nocedal & Wright 2006). A more detailed description

regarding the algorithm used in this work is found in (MathWorks 2017).
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3.2 Particle swarm optimisation

In this work, Particle swarm optimisation (PSO) was used to find initial values for the IP algo-

rithm, using polynomial representations of the open water characteristics of the Wageningen B-

screw series. It is a population based, stochastic optimisation technique that is based on group

intelligence and individual intelligence of the members in a population (Hu 2010).

The particle swarm algorithm was firstly introduced by Dr. Eberhart and Dr. Kennedy in

1995. It was developed based on the social behaviour of birds flocking and fish schooling, in

addition to some aspects of human behaviour to prevent collision of the particles (Kennedy &

Eberhart 1995). One of the fundamental principles for the development of PSO was that social

sharing among members in a group offers an evolutionary advantage.

When a population of particles is defined, the particles are programmed to search for the

minimal solution of an objective function, within a confined space. They store their current

best solution, which is usually referred to as pbest. The best global function value is called gbest.

At each time step the particles are accelerated towards pbest. Then, in most cases, the swarm

comes closer and closer to the global best function value, which is the desired function value

of the optimisation. It can also be mentioned that in more complex versions of PSO, there is

included a lbest. This is the best function value in the proximity of a particle.

One of the greatest advantages of PSO is that it is easy to solve complicated nonlinear opti-

misation problems as no differentiation is required. In addition, it is cheap and does not require

a lot of computational power relative to more advanced methods.

3.3 Discussion of Literary Example

In (Mirjalili et al. 2015) the use of a multi-objective particle swarm optimisation (MOPSO) al-

gorithm was used to find the optimal propeller design in terms of maximum blade thickness

and chord length of foil sections. It was estimated ten NACA foil sections along the propeller

blade, which resulted in a total of 20 optimisation parameters as both maximum thickness and

chord length were optimised for each section. The objectives were to minimise cavitation and

maximise efficiency. Optimal number of propeller blades were determined, and for this blade

number the optimal RPM was found. The polynomial representation of KT and KQ in the Wa-



26 CHAPTER 3. THEORETICAL BACKGROUND FOR OPTIMISATION OF PROPELLER DESIGN

geningen B-series was used. (Mirjalili et al. 2015) reports that the MOPSO algorithm was effi-

cient in exploring the search space, and sufficient convergence was achieved.

Comparing the analysis procedure of DEP to the work done by (Mirjalili et al. 2015), the

DEP analysis makes the optimisation problem somewhat more complex as the thrust should

be sufficiently close to the required thrust for the ship to reach its operational speed. In order

to maintain the required thrust, a penalty method is required. The quadratic penalty method is

convenient to implement and results in relatively quick convergence. Thus it was decided to use

in this work. However, it is not directly applicable with swarm optimisers as they are not based

on differentiating the objective function. In addition, the built-in particle swarm algorithm in

MatLab only treats single-objective problems. For these reasons, the use of PSO to find the

optimal propeller geometry in this work was discarded. A description of the quadratic penalty

method is included in the following section.

3.4 Quadratic Penalty Method

Penalty methods are used for constrained optimisation problems (Nocedal & Wright 2006). Then

the objective function is replaced by a penalty function that includes the original objective in

addition to a penalty term. The penalty term should be zero within the feasible region of the

constraint. If the constraint is violated, the objective should be penalised by a penalty. The use

of a penalty function implies an iterative procedure, where the penalty should be increased for

the minimiser to proceed towards the feasible region of the constraint.

In the quadratic penalty, each penalty is a multiple of the square of the constraint violation.

If the original optimisation problem is to minimise a function f (x), subject to the constraint

ci (x) = 0 for i ∈ ε, (Nocedal & Wright 2006) describes the quadratic penalty function as given in

Equation 3.1. Where µ is the penalty that is increased for each iteration.

Q(x;µ)
def= f (x)+ 1

2µ

∑

i∈ε
c2

i (x) (3.1)



Chapter 4

Background theory of propeller modelling

In this chapter is given some fundamental theory and background information required to un-

derstand the analysis procedure that has been used in this work. To begin with, a general de-

scription of propeller blade geometry is given. Emphasis is placed on the phenomena of in-

duced velocities, as it is important to understand when using lifting line theory. The next sec-

tion contains an introduction to Xfoil, which is a program used to determine properties of pro-

peller blade sections. Thereafter, a section regarding propeller performance characteristics is

provided. In this section some essential performance parameters are explained. The chapter is

ended with a section about the Wageningen B-screw propeller series. The foil geometry of this

series has been applied to the propellers in the DEP analysis and is therefore provided.

4.1 Propeller blade geometry

A propeller blade consists of foil sections that are stacked in the radial direction of the blade.

The thrust and torque of the propeller are directly related to the lift and drag forces acting on

the foil sections. Thus some fundamental principles from basic foil theory becomes important

when designing and analysing propellers.

Generally, the force exerted from a foil section is normal to the inflow direction on the foil.

From this it follows that the exerted force can be decomposed in one vertical lift component

and one horizontal drag component. Due to three-dimensional effects there will be alterations

of the inflow when foil sections are stacked together. Then the inflow is altered by an induced

27
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velocity component called downwash, commonly symbolised as wi . The angle between the

two-dimensional inflow velocity and the altered inflow velocity is called the induced angle of

attack, αi . The consequence of the downwash is that the pressure distribution around the foil

section is altered. Thus the exerted force on the foil section can be decomposed in a vertical lift

force and an induced drag force. This is illustrated in Figure 4.1.

Figure 4.1: Induced drag on a foil section (Steen 2014)

For a propeller blade the concept of induced velocity are the same as described above. How-

ever, as the propeller also has a rotational motion, it is convenient to treat the downwash as two

separate components; one axial, UA, and one tangential, UT . The sectional forces, velocities and

angles that are crucial for propeller design and analysis using lifting line theory is illustrated in

Figure 4.2. It is assumed that the induced velocities close to the propeller blade are half of their

values far behind the propeller.

Xfoil is a useful program for design and analysis of propeller foil sections. It is used in this

work to calculate the lift coefficient of the propeller blade sections at zero angle of attack, and to

determine the minimum pressure coefficient to be used in cavitation considerations. The next

section will make the reader more familiar with this tool.
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Figure 4.2: Force and velocity components of propeller blade section

4.2 Xfoil

Xfoil is an open source analysis and design tool for airfoils, written by Mark Drela. The main mo-

tivation for the development of Xfoil was to provide a more efficient tool to predict low Reynolds

number airfoil flow fields (Drela 1989). It has shown to be very useful, and is also applicable to

design and analysis of foil sections for marine propellers. One major benefit is that it is possible

to run Xfoil via other codes, for example written in MatLab.

Xfoil provides complete polars and surface pressure distributions of foil sections for a given

angle of attack, Reynolds number and Mach number. It is an inviscid linear-vorticity panel code,

including a Karman-Tsien compressibility correction. Viscous analysis is made possible by su-

perimposing source distributions on the foil and wake, such that the influence of viscous layers

on the potential flow is included.



30 CHAPTER 4. BACKGROUND THEORY OF PROPELLER MODELLING

Figure 4.3: Command window in Xfoil

The interface of Xfoil is presented in a terminal window. The analysis is conducted by menu

driven routines, where also discretisation and geometry can be altered. The initial menu is il-

lustrated in Figure 4.3 and the discretisation of a foil section is shown in Figure 4.5.

By defining the angle of attack, an inviscid analysis can be performed. Then the pressure

around the foil is illustrated as shown in Figure 4.6, together with the data provided in the top

right corner of the figure. If viscid analysis is desired for marine applications, the Reynolds num-

ber should be defined before the angle of attack. It is possible to export complete polars to text

files. This is convenient when Xfoil is coupled to MatLab. An illustrative example of such a text

file is given in Figure 4.4.

Figure 4.4: Polar exported from Xfoil
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Figure 4.5: Foil section in Xfoil

Figure 4.6: Inviscid analysis in Xfoil for α= 0o
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4.3 Propeller performance characteristics

For marine propellers it is commonly distinguished between open water performance charac-

teristics and behind-hull characteristics. The open water characteristics are defined when the

propeller is working in a uniform fluid stream which is parallel to the shaft centre line (Carlton

2011). From this it follows that the propeller will experience a steady loading. The behind-hull

characteristics are based on the propeller working in the wake of a ship hull, where it experi-

ences unsteady loading due to the non-uniform ship wake.

The open water performance are conveniently used to compare propellers as they are not

affected by a certain hull shape, and can be determined in model scale. Based on an open water

test, all operating conditions of a propeller of a certain geometry can be defined for a variation

of pitch to diameter ratios. Results are usually presented in an open water diagram in terms of

the non-dimensional characters shown in Equation 4.1 - 4.4, where J is advance number, KT

is thrust coefficient, KQ is torque coefficient and σ is cavitation number. The propeller open

water efficiency can then be calculated as a function of thrust and torque coefficients as shown

in Equation 4.5.

J = VA

nD
(4.1)

KT = T
ρn2D4 (4.2)

KQ = Q
ρn2D5 (4.3)

σ= p0 −pv +ρg h
0.5ρV 2 (4.4)

η= KT VA

2πKQ
(4.5)

An open water diagram is given in Figure 4.7. It is desirable to operate the propeller at the

combination of rate of revolution and advance velocity for which the efficiency is as high as
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possible, as this is the most cost efficient. Open water diagrams are generally subject to scale

effects due to boundary layer differences between model and full scale propellers.

0 0.2 0.4 0.6 0.8 1 1.2
Open water advance number, J0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
O

pe
n 

wa
te

r e
ffi

cie
nc

y,
 

0

Open water diagram

KT
10*KQ

0

Figure 4.7: Open water diagram for pitch to diameter ratio of 0.6 and 1.2 for a Wageningen B4-80
propeller

Cavitation affects the propeller performance. Negative effects such as thrust loss, blade ero-

sion and hull vibrations are all results of the pressure around the propeller blades dropping be-

low the vapour pressure. According to (Carlton 2011), if cavitation are kept at a moderate level,

the impact on the open water characteristics will be minor. However, generally it is strongly

desired to completely prevent cavitation.
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4.4 Wageningen B-screw series

The Wageningen B-screw series is a widely used propeller series for understanding of prelim-

inary design and propeller performance. The propellers have fixed pitch and are non-ducted.

The series is formed by varying the pitch to diameter ratio for a number of screw models (Oost-

erveld & van Oossanen 1975). Other characteristics such as the diameter, number of blades,

blade area ratio and shape of blade sections are constant. The series consists of propellers rang-

ing from 2 to 7 blades, with blade area ratios from 0.30 to 1.05 and pitch to diameter ratios from

0.5 to 1.4.

In (Oosterveld & van Oossanen 1975) is given the foil geometry of the Wageningen B-series

as a function of pitch, blade area relationship and blade number. It is convenient within the

time frame of this work to use this geometry as it limits the number of variables to be optimised.

The blade geometry is presented in Table 4.1 and 4.2.

Table 4.1: Dimensions of Wageningen B-screw propellers with two or four to seven blades (Oost-
erveld & van Oossanen 1975)

r
R

C
D · Z

AE /A0

a
c

b
c

tm/D = A−B Z

A B

Z = 2, 4-7

0.2 1.662 0.617 0.350 0.0526 0.0040

0.3 1.882 0.613 0.350 0.0464 0.0035

0.4 2.050 0.601 0.351 0.0402 0.0030

0.5 2.152 0.586 0.355 0.0340 0.0025

0.6 2.187 0.561 0.389 0.0278 0.0020

0.7 2.144 0.524 0.443 0.0216 0.0015

0.8 1.970 0.463 0.479 0.0154 0.0010

0.9 1.582 0.351 0.500 0.0092 0.0005

1.0 0.000 0.000 0.000 0.0030 0.0000
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Table 4.2: Dimensions of Wageningen B-screw propellers with three blades (Oosterveld & van
Oossanen 1975)

r
R

C
D · Z

AE /A0

a
c

b
c

tm/D = A−B Z

A B

Z = 3

0.2 1.663 0.616 0.350 0.0526 0.0040

0.3 1.832 0.611 0.350 0.0464 0.0035

0.4 2.000 0.599 0.350 0.0402 0.0030

0.5 2.120 0.583 0.355 0.0340 0.0025

0.6 2.186 0.558 0.389 0.0278 0.0020

0.7 2.168 0.526 0.442 0.0216 0.0015

0.8 2.127 0.481 0.478 0.0154 0.0010

0.9 1.657 0.400 0.500 0.0092 0.0005

1.0 0.000 0.000 0.000 0.0030 0.0000

As shown in Table 4.1 and 4.2, the maximum blade thickness, tm , can be calculated by means

of the constants Ar and Br when the blade number and diameter is known. The subscript r refers

to the fact that the dimensions of the foil sections varies with their radial position on the blade.

Other dimensions presented in the tables are ar which is the distance between leading edge

and generator line, br which is the distance between the leading edge and location of maximum

thickness and cr which is the chord length.

Table 1
Dimensions of Wageningen B-propeller series.

POSITION OF GENERATOR LI»

Dimensions of four-, five-, six- and seven bladed
B-screw series.

r/R

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

c r Z

1.662
1.882
2.050
2.152
2.187
2.144
1.970
1.582
0.000

a r / c r

0.617
0.613
0.601
0.586
0.561
0.524
0.463
0.351
0.000

b r / c r

0.350
0.350
0.351
0.355
0.389
0.443
0.479
0.500
0.000

sr/D=Ar-BrZ

Ar B r

0.0526 0.0040
0.0464 0.0035
0.0402 0.0030
0.0340 0.0025
0.0278 0.0020
0.0216 0.0015
0.0154 0.0010
0.0092 0.0005
0.0030 0.0000

Dimensions of three-bladed B-screw series.

r / R

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cr z
D AE/AO

1.633
1.832
2.000
2.120
2.186
2.168
2.127

. 1.657
0.000

ar/cr

0.616
0.611
0.599
0.583
0.558
0.526
0.481
0.400
0.000

b r / c r

0.350
0.350
0.350
0.355
0.389
0.442
0.478
0.500
0.000

sr/D=Ar-BfZ

Ar Bf

0.0526 0.0040
0.0464 0.0035
0.0402 0.0030
0.0340 0.0025
0.0278 0.0020
0.0216 0.0015
0.0154 0.0010
0.0092 0.0005
0.0030 0.0000

A B = constants in equation for S /D

a = distance between leading edge and generator
line at r

b = distance between leading edge and location of
maximum thickness

c r = chord length of blade section at radius r

s r = maximum blade section thickness at radius r

p±-1
I E : LEADING EDGE
TE S TRAILING EDGE
HT : LOCATION OF hUXHUM TMCKHEU
O I : LOCATION OF PHECTRIX

r -0

Figure 1. Definitionof geometric blade section parame-
ters of Wageningen B- and BB-series propellers.

for P > 0

(3)

From Figure 1 it follows thai:
yface' yback = v e r t i c a l ordinale of a point on a

blade section on the face and on
the back with respect to the pitch
line,

t = maximum thickness of blade sec-
tion,

t, t, = extrapolated blade section thick-
ness at the trailing and leading
edges,

V,, Vo = tabulated functions dependent on
r/R and P,

P = non-dimensional coordinate along
pitch line from position of maxi-
mum thickness to leading edge
(where P=l), and from position
of maximum thickness to trailing
edge (where P = -1).

Values of V̂  and V2 are given in Tables 2 and
3. The values of tj e and tt e are usually chosen
in accordance with rules laid down by classifica-
tion societies or in accordance with manufactur-
ing requirements. In conjunction with the geo-
metry of this propeller series, it is remarked
that at the Netherlands Ship Model Basin modi-
fied B-series propellers are now used and design-
ed, which have a slightly wider blade contour near
the blade tip. These propellers are denoted as
' B B ' propellers. For the sake of completeness.
Table 4 is included which gives the particulars
of this series. The performance characteristics
of these BB-series propellers may be consider-
ed identical with the original B-series propellers.

Figure 4.8: Geometric sectional parameters of the Wageningen B-screw series (Oosterveld & van
Oossanen 1975)
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The coordinates of the blade sections are defined by Equation 4.6 and 4.7, where the non-

dimensional parameter, P, is given in Equation 4.8. The definitions of the geometric sectional

parameters are illustrated in Figure 4.8. V1 and V2 are constants that are given in Figure 4.9

and 4.10, respectively. They are given as functions of radial position and the non-dimensional

parameter, P.

y f ace =V1(tmax − tt .e.)

yback = (V1 +V2)(tmax − tt .e.)+ tt .e.

⎫
⎪⎬

⎪⎭
for P! 0 (4.6)

y f ace =V1(tmax − tl .e.)

yback = (V1 +V2)(tmax − tl .e.)+ tl .e.

⎫
⎪⎬

⎪⎭
for P! 0 (4.7)

According to (Oosterveld & van Oossanen 1975), the the trailing edge thickness, tt .e., and

leading edge thickness, tl .e., are determined based on rules from classification societies and

manufacturer requirements. However, in early stages of a design process such details are not

always determined. Then tt .e. can be set to zero if no specific value is known, while tl .e. must be

larger than zero for the nose of the foil sections to be a smooth curve. This is important in order

to ensure the leading edge pressure to be of unity. In this work both tl .e. and tt .e. was set to zero.

However, smoothening functions was applied in MatLab to ensure a smooth nose radius of the

blade sections.

P =− (x −b)
b

for 0! x! b

P = x −b
c −b

for b! x! c
(4.8)
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Figure 4.9: Values for the constant V1 of the blade sections in the Wageningen B-screw series
(Oosterveld & van Oossanen 1975)

Figure 4.10: Values for the constant V2 of the blade sections in the Wageningen B-screw series
(Oosterveld & van Oossanen 1975)
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The pitch distribution of all propellers in this work was assumed as given in (Steen 2014) for

the Wageningen B-screw series. This is illustrated in Figure 4.11.

Figure 4.11: Pitch distribution of the Wageningen B-screw series, applied to all propellers in this
work (Steen 2014)

(Oosterveld & van Oossanen 1975) has developed polynomials describing the open water

characteristics of the Wageiningen B-screw series. This was done by regression analysis of the

120 propeller models of the B-screw series. KT and KQ can be calculated by Equation 4.9 using

the coefficients presented in Table 4.3 and 4.4 for thrust and torque, respectively.

KT ,KQ =
∑

s,t ,u,v
Cs,t ,u,v · (J )s ·

( P
D

)t
·
( AE

A0

)u
· (Z )v (4.9)

The polynomial coefficients provided in this work are valid for Re = 2 ·106. Corrections for

other Reynolds numbers can be found in (Oosterveld & van Oossanen 1975). However, they

have not been used in this work. The polynomials have been useful for validation purposes

of the lifting line code. They have also been used to find first values of geometrical properties

for the interior-point algorithm. In Chapter 5 about analysis approach is provided more details

regarding the validation process.
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Table 4.3: Coefficients for KT polynomial of the Wageningen B-screw series, valid for Re = 2 ·106

(Oosterveld & van Oossanen 1975)

Thrust coefficient, KT

Cs,t ,u,v s t u v Cs,t ,u,v s t u v

0.00880496 0 0 0 0 0.010465 1 6 2 0

-0.204554 1 0 0 0 -0.00648272 2 6 2 0

0.166351 0 1 0 0 -0.008417228 0 3 0 1

0.158114 0 2 0 0 0.0168424 1 3 0 1

-0.147581 2 0 1 0 -0.00102296 3 3 0 1

-0.481497 1 1 1 0 -0.0317791 0 3 1 1

0.415437 0 2 1 0 0.018604 1 0 2 1

0.0144043 0 0 0 1 -0.00410798 0 2 2 1

-0.0530054 2 0 0 1 -0.000606848 0 0 0 2

0.0143481 0 1 0 1 -0.0049819 1 0 0 2

0.0606826 1 1 0 1 0.0025983 2 0 0 2

-0.0125894 0 0 1 1 -0.000560528 3 0 0 2

0.0109689 1 0 1 1 -0.00163652 1 2 0 2

-0.133698 0 3 0 0 -0.000328787 1 6 0 2

0.00638407 0 6 0 0 0.000116502 2 6 0 2

-0.00132718 2 6 0 0 0.000690904 0 0 1 2

0.168496 3 0 1 0 0.00421749 0 3 1 2

-0.0507214 0 0 2 0 0.0000565229 3 6 1 2

0.0854559 2 0 2 0 -0.00146564 0 3 2 2

-0.0504475 3 0 2 0



40 CHAPTER 4. BACKGROUND THEORY OF PROPELLER MODELLING

Table 4.4: Coefficients for KQ polynomial of the Wageningen B-screw series, valid for Re = 2 ·106

(Oosterveld & van Oossanen 1975)

Torque coefficient, KQ

Cs,t ,u,v s t u v Cs,t ,u,v s t u v

0.00379368 0 0 0 0 -0.0397722 0 3 2 0

0.00886523 2 0 0 0 -0.00350024 0 6 2 0

-0.032241 1 1 0 0 -0.0106854 3 0 0 1

0.00344778 0 2 0 0 0.00110903 3 3 0 1

-0.0408811 0 1 1 0 -0.000313912 0 6 0 1

-0.108009 1 1 1 0 0.0035985 3 0 1 1

-0.0885381 2 1 1 0 -0.00142121 0 6 1 1

0.188561 0 2 1 0 -0.00383637 1 0 2 1

-0.00370871 1 0 0 1 0.0126803 0 2 2 1

0.00513696 0 1 0 1 -0.00318278 2 3 2 1

0.0209449 1 1 0 1 0.00334268 0 6 2 1

0.00474319 2 1 0 1 -0.00183491 1 1 0 2

-0.00723408 2 0 1 1 0.000112451 3 2 0 2

0.00438388 1 1 1 1 -0.0000297228 3 6 0 2

-0.0269403 0 2 1 1 0.000269551 1 0 1 2

0.0558082 3 0 1 0 0.00083265 2 0 1 2

0.0161886 0 3 1 0 0.00155334 0 2 1 2

0.00318086 1 3 1 0 0.000302683 0 6 1 2

0.015896 0 0 2 0 -0.0001843 0 0 2 2

0.0471729 1 0 2 0 -0.000425399 0 3 2 2

0.0196283 3 0 2 0 0.0000869243 3 3 2 2

-0.0502782 0 1 2 0 -0.0004659 0 6 2 2

-0.030055 3 1 2 0 0.0000554194 1 6 2 2

0.0417122 2 2 2 0



Chapter 5

Analysis Procedure

In this chapter, the approach of the DEP analysis is described. Firstly, the assumptions applied

in the calculations are stated. Secondly, the test vessel is presented. Then follows a descrip-

tion of the implementation of lifting line theory, together with some fundamental theoretical

principles. Emphasis was placed on creating a lifting line code with sufficient accuracy. In the

following section is presented the validation of the lifting line. Then follows descriptions of how

the wake, cavitation considerations and optimisation procedure was treated. Uncertainties of

the analysis procedure are listed in the next section. The chapter is ended with a section pre-

senting the structure of the code work.

5.1 Assumptions

The assumptions that follows by using lifting line theory are listed in Section 2.1.3. In addition,

the analysis in this work is based on the following assumptions

• The nominal model wake of the test vessel is assumed unscaled, and can be applied to

full-scale analysis

• The propellers are sufficiently submerged not to disturb the free surface

• The relative rotative efficiency is 1

• Frictional resistance and residual resistance are the only hull resistance components

• The waterline coefficient is 0.84

• Linear foil theory is assumed valid

41
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5.2 Vessel

The test vessel used in this work is the same as in the project thesis. It is called Duisburg Test

Case. The hull design is of a typical 14 000 TEU container ship, powered by the use of a single

screw propeller (el Moctar et al. 2012). Vessel data used in this work are provided in Table 5.1 to-

gether with the sea water density and kinematic viscosity used in this work. Data for the original

propeller is given in Chapter 1 in Section 1.1.4 regarding the project thesis.

Table 5.1: Test vessel data

Model Full scale

LPP [m] 5.976 355

BW L[m] 0.859 51

V [m/s] 1.669 12.861

CB [−] 0.661 0.661

CW A[−] 0.84 0.84

ρ[kg /m3] - 1025

ν[m2/s] - 1.14 ·103

As stated in the assumptions, the waterline area coefficient, CW A was set to 0.84. In this work

it is used for calculating the thrust deduction fractions, t , based on the nominal wake fractions,

w . The equation for t is empirical. Within the time frame of this work it was considered suffi-

cient to assume a realistic value of CW A, rather than spending time on finding its accurate value.

The rest of the vessel data originates from (el Moctar et al. 2012).

5.3 Lifting line implementation

In the literature study in Chapter 2 was given an overview of the main principles concerning

lifting line theory used in propeller design and analysis. In this section follows a more detailed

explanation of the analysis approach used to determine the performance of DEP configurations.

(John D. Anderson 2011) has outlined a numerical iterative solution for finite-wing properties

using fundamental aspects of lifting line theory. There are differences between applying lifting
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line theory to marine propellers and finite wings. The main difference is the that the downwash

is treated as two induced velocity components, which alters the incoming flow to the lifting line.

(van Oossanen 1974) has approximated this effect by induction factors in a lifting line approach.

Thus in this work, the procedure of (John D. Anderson 2011) has been applied together with the

induction factors presented in (van Oossanen 1974).

As previously mentioned in the literature study in Chapter 2, the circulation around each

foil section of a propeller blade is, in lifting line theory, lumped into a bound vortex located one

quarter from the leading edge. The bound vortices of all foil sections of a propeller blade forms

a straight line in the radial direction of the blade. The strength of the bound vortices reduce

gradually to zero at the blade tip (Steen 2014). This is illustrated in Figure 5.1.

Figure 5.1: Lifting line of propeller blade

The section-wise variation of circulation results in shedding of free vortices with the same

strength as the reduction in the bound vortices. This is expressed mathematically in Equation

5.1, where r is in the radial direction of the propeller blade. This behaviour is necessary in order

to fulfil Kelvin’s theorem.
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γF = ∂Γ(r )
∂r

(5.1)

The free trailing vortex sheets forms helical patterns behind the propeller. A consequence of

this is that axial and tangential velocity components are induced. In other words; the section-

wise variation of circulation are a three-dimensional effect that leads to induced velocity com-

ponents, as mentioned in Section 4.1 about propeller geometry.

The propeller induced velocities on the position of a bound vortex can be expressed in terms

of Biot Savart’s law as Equation 5.2. As seen from the expression, the induced velocity at one

section depends on contributions from the free vortices of all the other sections. The coordinate

of a fixed position is symbolised r0, while r represents running points.

UA,T (r0) = 1
2π

∫R

rh

I A,T (βi , Z ,r0)
γF

r0 − r
dr (5.2)

Induction factors, I A and IT , were included in Equation 5.2. They account for the fact that

due to the propeller having a finite blade number, the induced velocities increase close to the

blades compared with calculations for an actuator disk. Other alternatives to using induction

factors are Prandtl’s method, Goldstein factors and lifting surface methods. The former two al-

ternatives are mainly for simple calculations, and their accuracy was considered too low for this

work. Lifting surface methods was discarded for use as they are computationally demanding.

(van Oossanen 1974) has defined the induction factors in his work. They can also be found in

Appendix A.

In this work Equation 5.2 was solved numerically. Cubic spline interpolation was used to

fit the circulation, Γ, to each section of the lifting line, represented by radial position, r0. Then

the resulting values were used to define Γ as a function of r0, and differentiated once to find the

strength of the free vortices, γF .

Contributions to the induction factors from all radial positions, r, were calculated at each

radial position r0. When calculating the integrand of 5.2, a singularity occurs when r0 is equal

to r. This was treated by averaging the previous value of the integrand with the next value and

extrapolate at the ends. The trapezoidal rule was used to solve the integral numerically. The

integration was executed from the hub to the propeller blade tip.
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When the induced velocities were calculated with Equation 5.2, the resulting inflow velocity

to the propeller and the induced hydrodynamic pitch angle was found using Equation 5.3 and

5.4, respectively.

V∞ =
√

(VA +UA)2 + (2πr n −UT )2 (5.3)

βi = arctan
( VA +UA

2πr n −UT

)
(5.4)

Knowing the induced hydrodynamic pitch angle, βi , the effective angle of attack was calcu-

lated by subtracting βi from the pitch angle, φ, as seen in Equation 5.5.

αe =φ−βi (5.5)

Since linear foil theory was assumed valid, the contributions to lift from camber and angle

of attack was superimposed as shown in Equation 5.6.

CL = 2παe +CLc (5.6)

The lift coefficient due to camber was calculated in Xfoil via MatLab. The input foil geometry

files and command files needed in Xfoil was generated in MatLab as text files. Xfoil exported

polars to text files. They were processed in MatLab such that CLc was obtained for each foil

section. In order to save computational time, it was found sufficient to analyse sections from

0.2R to 0.9R, with 0.1R between each section, in Xfoil. At R, the camber lift coefficient was set to

zero. CLc were then interpolated to all N foil sections, using shape-preserving piecewise cubic

interpolation.

When CL was determined, the corresponding circulation was obtained using Kutta Joukowski’s

theorem and the definition of the lift coefficient. This yields

Γ= 1
2

V∞cCL (5.7)

Since the circulation distribution is input to Equation 5.2 and βi was required to calculate

the induction factors, an iterative procedure was imposed. The values of Γ and βi used as input
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for the next iterations were updated according to Equation 5.8 and 5.9, respectively.

Γ= Γold +δΓ(Γnew −Γold ) (5.8)

βi =βi ,new (5.9)

δΓ is a damping factor that was determined such that the iteration procedure was stable and

efficient. It was found that δΓ = 0.005 was sufficient.

When the circulation distribution and hydrodynamic pitch angle was found by iteration with

an accuracy of four decimals, the thrust and torque could be calculated.

The viscous drag was included in terms of a drag coefficient, calculated by Equation 5.10. It

will be shown that induced drag was accounted for by directly including the induced velocities

in Kutta Joukowski’s theorem. In Equation 5.10, the term 2tm
c represents the form factor of the

foil sections (Steen 2014). The lift coefficient was included in the equation to account for the

fact that the foil sections of a propeller is asymmetric, i.e. they are producing lift due to camber

and angle of attack. Due to the asymmetric shape of the foil sections, the velocity on the pres-

sure side is higher than on the suction side. Since the drag force is proportional to the velocity

squared, the increase in drag force due to increased velocity on the pressure side is larger than

the reduction on the suction side. Thus, the contribution in the second brackets in Equation

5.10 are increasing the drag coefficient as the lift of the foil sections increases.

CD = 2CF

(
1+ 2tm

c

)(
1+

C 2
L

8

)
(5.10)

The frictional resistance coefficient used in Equation 5.10 was calculated using the ITTC’57

friction line as shown in Equation 5.11.

CF = 0.075
(log (Re )−2)2 (5.11)

The drag force of each foil section was then calculated according to Equation 5.12.

dD = 1
2
ρV 2

∞CD cdr (5.12)
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Thrust and torque from each foil section were determined according to Equation 5.13 and

5.14, respectively. In Equation 5.13, the thrust of each foil section is reduced by ρΓUT dr . This

represents the induced drag. Similarly is ρΓUAdr the addition of torque due to the induced

drag.

dT = ρΓ(2πr n −UT )dr −dDsi n(βi ) (5.13)

dQ = ρΓ(VA +UA)dr · r −dDcos(βi ) · r (5.14)

In circumferentially uniform flow, all blades have the same circulation distribution (Kerwin

& Hadler 2010). Thus, the resulting thrust and torque from the propeller equals the sum over

the lifting line and number of propeller blades.

T =
∑

dT (5.15)

Q =
∑

dQ (5.16)

The performance of each propeller were added together and the total efficiency was cal-

culated. The calculation procedure for the efficiency will be further explained in Section 5.5

regarding the implementation of the wake.

In order to save computational time, a convergence test was conducted for the number of

foil sections to be used in the lifting line. A propeller design was chosen randomly, and the lifting

line analysis was conducted for various numbers of foil sections. The results are shown in Figure

5.2.
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Figure 5.2: Convergence plot for number of foil sections required in lifting line. N is the number
of foil sections

The number of foil sections used in the lifting line has not only great influence on the ac-

curacy, but also the computational time. It is highly desired to find the number of foil sections

that gives satisfying accuracy within a reasonable time frame. The maximum difference in the

resulting thrust fraction of neighbouring points in Figure 5.2 is 1.9 % if calculated for 30 foil sec-

tions and above. If results from all numbers of foil sections are included, the difference is 10.2

%. It was therefore considered sufficient to divide the propeller blade into 30 foil sections in the

analysis.

Prior to the wake implementation, the lifting line code was validated against the Wageningen

B series. The resulting open water diagrams are provided in Appendix B.
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5.4 Validation of lifting line

As mentioned in Section 4.4 about the Wageningen B-screw series, the lifting line code was val-

idated against the open water characteristics of the propeller series. The polynomial properties

given in (Oosterveld & van Oossanen 1975), was implemented in MatLab, allowing for complete

open water diagrams to be plotted. Since the polynomials are valid for Re = 2 ·106 at 0.7R, the

same Reynolds number had to be assured in the lifting line code. To find the Reynolds numbers

of the remaining sections, the rate of revolution was first calculated using the Reynolds number

of the section at 0.7R.

As induced velocities shall not contribute to the Reynolds number, the inflow velocity to be

used in the validation calculations was defined as

V =
√

V 2
A + (2πr n)2 (5.17)

where VA is equal to VS as effects of the hull are not included in open water characteristics.

Rearranging Equation 5.17 yields

V = n ·
√

(JD)2 + (2πr )2 (5.18)

Solving Equation 5.18 for n and using that V = (Reν)/c gives

n = (Rnν)/c
√

(JD)2 + (2πr )2
(5.19)

When the rate of revolution was known, the Reynolds number of the remaining sections was

calculated as

Re =
n

√
(JD)2 + (2πr )2 · c

ν
(5.20)

From the lifting line code KT , KQ and η0 was calculated for a range of rate of revolutions. The

properties were plotted against the open water advance numbers, J0, together with the open

water diagrams based on the Wageningen polynomials. J0 was calculated with Equation 4.1

using the ship velocity, VS , not the advance velocity, VA. Validation plots comparing the two

open water diagrams were made for the propellers given in Table 5.2 for pitch to diameter ratios
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of 0.6 and 1.2.

Table 5.2: Propellers from the Wageningen B-screw series that has been used for validation of
lifting line code (Carlton 2011)

Z AE /A0

2 0.30

3 0.35 0.50 0.65 0.80

4 0.40 0.55 0.70 0.85 1.00

5 0.45 0.60 0.75 1.05

A complete set of the validation plots are provided in Appendix B. In Figure 5.3 and 5.4 is

presented validation plots for a single screw B4-55 Wageningen propeller for pitch to diameter

ratios of 0.6 and 1.2, respectively. The validated results from the lifting line code are subscripted

with v.

From the validation plots it is evident that the thrust and torque are somewhat underesti-

mated by the lifting line code. It is also seen that for low pitch, the open water efficiency curve

is somewhat offset. This trend was continuous for most of the propellers that were validated.

However, some inconsistency was expected and accepted as empirical equations and other sim-

plifications has been used in the lifting line code.

It was expected that the results would deviate from the polynomials for low values of the

advance number, J0. This is noticeable from Figure 5.4 and 5.3. The reason for this is that lifting

line theory are more accurate for lightly to moderately loaded propellers. Thus it was anticipated

that the propellers would be too heavily loaded at low advance numbers for lifting line theory to

provide results with sufficient accuracy.

The deviations at low advance numbers were not considered to be a problem with respect

to the DEP analysis as the propellers were expected to be lighter loaded than a single screw

propeller. Since the efficiency were indirectly maximised by minimising the effect delivered to

the propellers, the operational point of the propellers were likely to be close to the peak of the

efficiency curve. For these advance numbers, the accuracy of the lifting line is considered to be

sufficient.
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Figure 5.3: Validation plot for Wageningen B4-55 single screw propeller with (P/D)0.7 = 0.6
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Figure 5.4: Validation plot for Wageningen B4-55 single screw propeller with (P/D)0.7 = 1.2
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From the validation plots it is evident that the deviations in open water efficiencies calcu-

lated by the lifting line code and polynomials varies with the geometrical properties of the pro-

pellers. This is illustrated in Figure 5.5 and 5.6 for blade area ratios of 0.5 and 0.9, respectively.

In the figures, the deviations are presented as functions of pitch to diameter ratios for propellers

with blade numbers from two to five. In Equation 5.21 is given the deviation, ∆η0 . Most likely,

the operating point will be close to the peak of the efficiency curve. Therefore the deviations are

calculated as the difference between the maximum open water efficiencies.

∆η0 =
max(η0)−max(η0v )

max(η0v )
(5.21)

In Figure 5.5 it is seen that the accuracy of the open water efficiency is varying from highly

overestimated to underestimated as the number of blades increases. This is because the pro-

pellers becomes lighter loaded as the number of blades increases. Since lifting line theory is

most accurate for moderately to lightly loaded propellers, the underestimation of open water

efficiency for two- and three-bladed propellers are likely to be because they are heavily loaded.

It is the four-bladed propellers that are most accurately analysed for this blade area ratio. The

reason why the open water efficiency of five-bladed propellers are overestimated is likely to be

a consequence of the simplifications and empirical relations applied in the lifting line code.

The deviations shows a different behaviour in Figure 5.6, compared to the previous figure.

In Figure 5.6, the behaviour from Figure 5.5 is reversed; the open water efficiencies are over-

estimated for the two-bladed propellers while it is underestimating as the number of blades

increases from three to five. The reason for this is that the bade area ratio has been increased,

leading to heavier loaded propellers for a given pitch and number of blades.

The original propeller had a blade area relationship of 0.8. It was expected that propellers

in DEP configurations would have lower blade area relationship as they would be less loaded.

Therefore it was decided, based on the results of Figure 5.5, that emphasis should be placed on

analysing four-bladed propellers. It was concluded that comparing results of the same configu-

rations with different number of blades are inappropriate due to the variations in the accuracy

between the blade numbers. It is expected to be relatively large variations in pitch for propellers

in DEP configurations. Due to large variations in accuracy with pitch for two-bladed propellers,

their results are discarded and will not be presented or further discussed in this work.
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Figure 5.5: Difference between open water efficiencies for AE /A0 = 0.5
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Figure 5.6: Difference between open water efficiencies for AE /A0 = 0.9
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It should be emphasised that ideally both thrust and torque values should be analysed with

respect to accuracy, since the open water efficiencies don’t deviate if both the thrust and torque

are inaccurately predicted by the same factor. However, it is seen from the validation plots that

there are no unacceptable deviations between thrust and torque around the peak of the open

water efficiency curve. Therefore the analysis presented in Figure 5.5 and 5.6 are considered to

be sufficient.

After validating the lifting line procedure, the nominal wake was implemented in the analy-

sis. This will be explained in the following section.

5.5 Wake implementation

The propeller(s) rotates in a non-uniform wake field behind the ship hull. The model scale

nominal wake is illustrated in Figure 5.7. It has been used for full scale analysis in this work,

in lack of suitable scaling methods for nominal wake. As the wake fractions alters the inflow to

the propeller(s), the performance of the blades varies with their angular position in the wake.

This implies that more than one lifting line should be applied to capture the effects of the non-

uniform wake and gain sufficient accuracy of the analysis.

Figure 5.7: Unscaled wake

In order to estimate the wake fractions of the lifting lines of each propeller, the diameter and

centre coordinates had to be known. A general equation to determine maximum diameter of

each propeller in a grid configuration was derived in the project thesis, and has also been used
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in this work.

The number of propellers vertically and horizontally was input to the equation. The grid

dimensions was adjusted by visual inspection of the wake. The width was set to yli m = BW L

and the height was zli m = 8.91 m in full scale, which corresponds to the diameter of the original

propeller.

Figure 5.8: Diameter calculation of six propellers where col=3 and row=2

The maximum diameter was limited by either yli m or zli m , depending on how many pro-

pellers that were placed horizontally and vertically. Equation 5.23 and 5.24 was used to deter-

mine the propeller diameter. A safety factor of σS = 0.1 ·D was applied between the propellers.

The variable called row is the number of rows in the grid, while col is the number of columns.

In other words row is the number of propellers vertically while col is the number of propellers

horizontally. Figure 5.8 illustrates properties of the diameter calculation.

D y =
yli m

col + (col −1) ·σS
(5.22)

Dz =
zli m

r ow + (r ow −1) ·σS
(5.23)

D = mi n(D y ,Dz) (5.24)

The centre coordinates, (y, z) = (ycentr e , zcentr e ), was found by equation 5.25 and 5.26, where
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zmax is the coordinate of the highest point of the grid.

ycentr e =
D y

2
+ (col −1) · (D y +σSD y )− yli m

2
(5.25)

zcentr e =−
(
zmax +

Dz

2
+ (r ow −1) · (Dz +σSDz)

)
(5.26)

When the centre and diameter of all propellers were known, the y- and z-coordinates of the

lifting lines was found as

yn = ycentr e + r · cos(θ)

zn = zcentr e + r · si n(θ)

⎫
⎪⎬

⎪⎭
For 0! θ! 2π (5.27)

Then the wake fractions corresponding to yn and zn for a given angular position could be

identified from wake data provided by co-supervisor. When the wake fractions of the lifting

line was known, the thrust deduction fractions was calculated by the empirical relation given in

Equation 5.28 and (Steen 2014).

t
w

= 1.57−2.3
CB

CW A
+1.5CB (5.28)

It should be noted that Equation 5.28 is based on single screw propellers. A single screw

propeller is generally located within an area of large wake fractions. Thus the application of this

equation to the outermost propellers of the DEP configurations is conservative as large wake

fractions leads to high thrust deduction, which reduces the propulsive efficiency.

Generally, the wake affects the propulsive efficiency in terms of a hull efficiency as shown in

Equation 5.29 for propulsive efficiency. The hull efficiency can be calculated by Equation 5.30.

ηD = η0 ·ηH ·ηR (5.29)

ηH = 1− t
1−w

(5.30)

In this work the wake was implemented in the lifting line calculations such that the contri-

bution from the wake fractions to the propulsive efficiency was already included. Thus it was
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not the open water efficiency that was calculated from the lifting line analysis. Therefore, only

the contribution from the thrust deduction fractions was multiplied by the efficiency calculated

in the lifting line calculations to yield the propulsive efficiency.

The thrust deduction fraction was assumed constant for each position of the lifting line, and

the values at 0.7R was used. Their average value from the lifting lines and number of propellers

were used in the expression for total propulsive efficiency. The relative rotative efficiency was

assumed to be equal to 1. The equation for the propulsive efficiency, as used in this work, is

given in Equation 5.31.

ηD = Ttot ·VS

Ptot
· (1− t ) (5.31)

The delivered effect to each propeller were calculated as P = 2πr nQ for all angular positions

in the lifting line code. They were averaged and summed over the number of propellers to find

the total value of the propulsion system. This was also done for the thrust of each propeller.

Total values are subscripted with tot in this work.

In order to evaluate the loading of each propeller and the propulsion system in total, a thrust

loading coefficient was introduced. It is given in Equation 5.32 for evaluation of single propellers

and Equation 5.33 for evaluation of the total thrust loading of the DEP configurations.

CT = T

0.5ρApV 2
S

(5.32)

CT,tot =
Ttot

0.5ρnp ApV 2
S

(5.33)

A convergence test was performed to determine how many angular positions of lifting lines

that were necessary to gain satisfying accuracy of the analysis. The results are presented in Fig-

ure 5.9.
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Figure 5.9: Convergence plot for number of angular positions required for lifting line calcula-
tions. nθ is the number of angular positions

As seen from the convergence plot in Figure 5.9, the resulting fraction of thrust and required

thrust is similar when the analysis is conducted with a number of angular positions of five and

above. The maximum difference between neighbouring points in the plot is 0.9% if the number

of angular positions are five and higher, while it is 18.3% if all angular positions are included.

The number of angular positions used has great impact on the computational time. Thus it

is desired to use as few angular positions as possible, and still gain sufficient accuracy of the

analysis. It was concluded that five angular positions was sufficient.
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5.6 Cavitation check

In the project thesis it was concluded that cavitation was likely to be a crucial and limiting factor

for the propulsive efficiency of DEP configurations. Thus, in this work emphasis was placed on

describing cavitation with higher accuracy than in the previous work.

A criteria for a non-cavitating foil section is presented in Equation 5.34. It states that in order

to prevent cavitation, the minimum external pressure acting on a foil section must be larger than

the water vapour pressure.

σ>−Cp,mi n (5.34)

The cavitation number σ is given in Equation 4.4 in Section 4.3 about propeller performance

characteristics. It was in this work calculated with a vapour pressure of 1500 Pa. The submer-

gence of the foil sections was found by subtracting their radial position with respect to the hub

from the absolute value of the submergence of the hub.

The minimum pressure coefficient, Cp,mi n , was determined in Xfoil. The procedure of the

Xfoil analysis was the same as described for lift coefficient due to camber in Section 5.3. In

general, the pressure coefficient increases with increasing effective angle of attack. Thus the ef-

fective angle of attack determined in the lifting line code had to be included. At the time when

the camber lift coefficient was found, it had not yet been determined. Therefore the cavitation

predictions involved that Xfoil had to be run two times during the analysis; one to find the lift

coefficient due to camber and one to find the minimum pressure coefficient to be used in pre-

dictions of cavitation.

Running Xfoil two times increased the computational time significantly. In order to make the

analysis more efficient it was found sufficient to check for cavitation when the blade was placed

in top position (12 o’clock) only. This is conservative as the submergence of the foil sections are

lowest for this angular position. Then the analysis became more efficient since Xfoil was not run

for the remaining four angular positions included in the analysis.

The minimum pressure coefficient was determined for foil sections from 0.2R to 0.9R, with

0.1R between each section, and then interpolated to all N foil sections using shape-preserving

piecewise cubic interpolation. Thus all N sections were checked for cavitation, and the total
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measure of cavitation was the sum of all cavitating sections of all propellers.

An attempt of including cavitation in the quadratic penalty function in this work failed. The

reason for the failure was that the effective angle of attack of the blade sections were relatively

large, resulting in an unacceptable amount of cavitation on the blade tips. Thus it was con-

cluded that in order to prevent cavitation, the pitch of each propeller had to be adjusted such

that the effective angle of attack of the outermost foil section was close to zero when the blade

was in top position. This was done in an iterative procedure.

The initial value of the pitch angle in the analysis was calculated by Equation 5.35. It was

first attempted to force the effective angle of attack of the section at 0.7R to be close to zero. This

improved with respect to cavitation. However, in order to prevent it, the effective angle of attack

of the outermost section had to be forced close to zero instead of the section at 0.7R. The pitch

to diameter ratio of the outermost section is given by Equation 5.36.

φ1.0 = t an−1
( VS

2πRn

)
(5.35)

( P
D

)

1.0
= 2πR · t an(φ)

D
(5.36)

From Figure 4.2 in Chapter 3 about theory for analysis it is clearly depicted that for the effec-

tive angle of attack to be zero, the pitch angle, φ, must equal the hydrodynamic pitch angle, βi . It

was decided that if the pitch angle was within 1% of the induced hydrodynamic pitch angle cal-

culated in the lifting line analysis, the iteration procedure was completed. If the requirement for

the pitch angle was not met, the pitch angle for the next iteration was set equal to the induced

hydrodynamic pitch angle calculated in the current iteration. This procedure was successful

with respect to cavitation. The iterative procedure was relatively efficient, requiring around six

iterations per propeller to converge.

The effect of requiring the effective angle of attack of the outermost foil section to be zero is

illustrated in Figure 5.10. These figures are from the pitch iteration procedure of a four-bladed

single screw propeller. They depict the minimum negative pressure coefficient and the cavita-

tion number resulting from the first and last iteration, respectively.
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Figure 5.10: Cavitation plots before and after reducing αe of the outermost blade section 12
o’clock, for a single screw four-bladed propeller
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Figure 5.11: Cavitating part of cavitation plot for a single screw four-bladed propeller, when αe

has been reduced

Even though in this case cavitation could not be prevented, it is clearly seen that it is sig-

nificantly reduced in the last iteration with respect to the first. The slightly higher minimum

negative pressure coefficients for radial positions around 0.8R to 0.9R resulted in cavitation of

three foil sections. This is illustrated on Figure 5.11
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5.7 Optimisation procedure

As previously mentioned in Chapter 3 about optimisation theory, optimisation algorithms was

used in order to determine the most efficient propeller designs for the DEP configurations. In

MatLab, there are various built-in optimisation algorithms in the optimisation toolbox. In this

work, it was decided to make use of these as it allowed for more time to be spent on other parts

of the code work.

The objective of the optimisation was to minimise the effect delivered to the propellers, with-

out any cavitation on the blades and with the propellers providing the required thrust to main-

tain the operational speed of the ship. In the project thesis, the required thrust was calculated

by Froude scaling. It was assumed that frictional resistance and residual resistance was the only

resistance components. The required thrust was then 1453.3 kN, which has been used in this

work.

The thrust was decided to be sufficient within an interval of 3% of the required thrust. This

constraint was imposed using the quadratic penalty method. It implied that the optimisation

had to be part of an iterative procedure, which was completed when the thrust was within the

feasible region of the constraint. Mathematically the objective function, including the penalty

term, was formulated on dimensionless form as

ob j = mi n
(

P
Tr eq ·VS

+µT
(
1− T

Tr eq

)2
)

(5.37)

where µT is the penalty for not choosing the required thrust. For each iteration where the

thrust constraint was violated, the penalty were increased by a factor of 15. The process of defin-

ing the penalty was cumbersome, as it was based on trial and failure, as well as experience.

Firstly setting a low penalty and then increasing it to check if the number of iterations required

could be lowered, was a time consuming process. It was found that starting with a penalty of

0.02 was satisfactory as it resulted in around four iterations for most DEP configurations.

The function fmincon in MatLab was used for optimisation of propeller geometry. This im-

plied that initial values of the optimisation variables had to be determined. A particle swarm

algorithm was used to find the initial values from the Wageningen B-screw open water polyno-

mials given in (Oosterveld & van Oossanen 1975). The particle swarm algorithm was chosen as
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it does not require any initial values and was convenient to implement. Since the initial values

were based on open water data, it was found by trial and failure that more appropriate initial

values was achieved by reducing the values from the particle swarm algorithm by 30%.

The fmincon function can be used on constrained, non-linear, multi-variable optimisation

problems. As mentioned in Chapter 3 about the theoretical background for the optimisation

procedure, it is especially useful for large scale problems. This was considered an advantage

as the optimisation problem for DEP configurations with many propellers becomes relatively

large. When the particle swarm algorithm was used, a built-in function named particleswarm

was called in MatLab. It was decided to use a swarm of 100 particles as a larger swarm was not

necessary to provide sufficient initial values.

The rate of revolution was optimised for each propeller, while all propellers were optimised

to have the same blade area relationship in each configuration. For simplicity, the rate of revo-

lution was made non-dimensional by the open water advance number as this was convenient

with respect to the initial values. Bound constraints were imposed on the variables to ensure

that they were determined within realistic values. Lower boundaries for blade area relationship

and open water advance number was 0.3 and 0.4, respectively. The upper boundaries were 1.05

and 5 for blade area relationship and open water advance number, respectively. If values very

close to the boundary were chosen for the optimal solution, it would most likely have been a

more optimal solution outside the boundaries. Therefore, it was checked that no resulting ge-

ometry was at the ends of the boundaries. Thus they were considered sufficient.

The symmetry of the wake was exploited to make the optimisation process more efficient.

This means that propellers placed within the same wake fractions were set to have the same

geometry. An example of this is the configuration of three propellers, shown in Figure 5.12.

Propeller number 1 and 3 are located within the same wake fractions. Thus in the analysis of

this configuration only the propeller geometry for propeller number 1 and 2 was optimised, as

the optimal geometry for propeller number 3 is the same as for propeller number 1.
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Figure 5.12: Outline of three propellers placed in the ship wake

Generally speaking, the number of iterations required for convergence of the IP algorithm

was between 10 and 20. The optimisation process could be monitored graphically. Then the

value of the objective function was plotted for each iteration as the optimisation was proceed-

ing. In Figure 5.13 is given an example of such a plot. This is the last iteration of the quadratic

penalty procedure for seven four-bladed propellers in one row. Thus the function value of iter-

ation number 20 is the resulting objective value of the complete analysis of this DEP configura-

tion.
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Figure 5.13: optimisation procedure for seven four-bladed propellers in one row
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The optimisation worked well for most configurations. However, for some configurations

of propellers with two and five blades the algorithm failed to converge. Then the step size was

decreased from 1 ·10−3 to 1 ·10−4. This increased the computational time significantly, but the

algorithm converged. It has been shown in Section 5.4 regarding validation of the lifting line

that the results for two- and five-bladed propellers are somewhat uncertain. Thus, since these

results alone were not decisive when evaluating the effects of DEP, the step size was not reduced

for the configurations that converged with 1 ·10−3.

An attempt to use an unconstrained line search algorithm to check if the results corresponded

with those from the IP algorithm, failed after a couple of iterations. It was also noticed that the

computational time of each iteration was long compared to the interior point algorithm. Thus

it was concluded that the IP algorithm was preferable within the time frame of this work.

5.8 Uncertainties

Based on the analysis procedure that has been presented in this chapter, the following uncer-

tainties are likely to affect the resulting efficiencies of the DEP configurations:

• There are discrepancies in the open water diagrams from the lifting line and Wageningen

B-screw polynomials. Thus the use of the lifting line itself provides some uncertainty. An

attempt of quantifying this is given in Section 5.4 for number of blades varying from two

to five

• The thrust deduction fractions were calculated based on an empirical relation for single

screw propellers. It depends on the water plane area coefficient, CW A, which was assumed

to be 0.84. The use of an equation aimed at single screw propellers are conservative for

propellers in DEP configurations

• The variations of the thrust deduction across the lifting lines was neglected

• No convergence test regarding properties such as step length was conducted for the opti-

misation algorithm. Consequently, there may be solutions that are more optimal
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5.9 Code structure

In this section follows a description of the code work. This is to provide a better understanding of

how the parts mentioned in the above sections are coupled together. In Appendix C is provided

the codes with the lifting line analysis that has been used in this work. A complete set of codes

has been attached in a digital appendix. Figure 5.14 is an overview over how these are coupled

together. Each code are saved as .m-files as they are programmed in MatLab.

From the optimisation.m script, the optimisation is initiated. This script contains the par-

ticle swarm algorithm that finds the initial values, as well as a while-loop where the functions

runnested.m and main_no_opt.m are called, and the quadratic penalty is adjusted. The while-

loop is completed when the thrust is within 3% of the required thrust. The runnested.m function

is a so-called nested function, which means that a function is completely defined within another

function. This was necessary in order to pass the quadratic penalty and the required thrust into

the objective function from the optimisation.m script. In runnested.m the optimisation algo-

rithm are called by the built-in function called "fmincon" and all the optimisation properties

are defined. The main_no_opt.m function contains the same codes as the runnested.m func-

tion, except those who are optimisation related. Thus this is not a nested function. After the

optimisation is completed, this function is called in order to get the output required for the

while-loop in optimisation.m to continue.

In the functions runnested.m and main_no_opt.m are properties independent of which pro-

peller that is analysed firstly defined. Such properties are input data of the test vessel and envi-

ronment, diameter of the propellers, variables and nominal wake. Then a for-loop is introduced

around all the functions with outputs that depends on which propeller in the configuration that

is analysed. Firstly is the initial pitch angles introduced. Then a while-loop is initiated. It ad-

justs the pitch in order to achieve a sufficiently low effective angle of attack. Within this loop,

the geometry of the propellers is obtained and used as input in the xfoil.m function to calculate

the lift coefficient due to camber. In the xfoil.m function, the foil coordinates of each foil section

is calculated and then Xfoil is ran from the script to calculate the camber lift coefficient based

on the foil coordinates.

The analysis_nested.m is called in the runnested.m function while the analysis.m is called
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in the main_no_opt.m function. When they are completed, the induced hydrodynamic angle

of attack, βi , are compared with the pitch angle, φ, to check if the effective angle of attack is

small enough. If φ is outside the range of 1% of βi , the effective angle of attack is considered too

high and a new iteration is initiated. This is done by setting the variable called search_pitch to

0. φ is then updated to be equal to the βi calculated in the previous iteration. If φ are within

the acceptable range of βi , the effective angle of attack is considered sufficiently low and the

iteration procedure is completed by setting search_pitch to 1.

In the analysis.m and analysis_nested.m function, the performance of each propeller is anal-

ysed. The difference between them is that cavitation predictions are included in analysis.m. The

reason why it is not in analysis_nested.m is that cavitation are implicitly included in the opti-

misation by adjusting the pitch to force the effective angle of attack close to zero. Thus non of

the output variables from the cavitation check are required in the objective function, and signif-

icantly computational time is saved as the cavitation_check.m function involves running Xfoil.

The analysis.m and analysis_nested.m functions analyses the propeller performance at each

angular position, θ. The analysis contains the function LL_wake.m which extracts the wake frac-

tions of the lifting line located at the angular position that is evaluated. Then the wake fractions

are input to the LL_iter.m which contains the lifting line code that analyses the propeller per-

formance in terms of thrust and torque. In this function, the induction_factors.m function con-

taining the induction factors are called. The factors are calculated for all radial positions when

located at a specific position. Thus a double for-loop is required.

As previously mentioned, it is only in the analysis.m function that it is checked for cavita-

tion using the cavitation_check.m function. The function is called for the first angular position,

which is when the blade is in its top position (12 o’clock). In cavitation_check.m, Xfoil is ran

for radial positions up to the blade tip and minimum pressure coefficient, Cp , is imported into

MatLab. The number of foil sections that are cavitating are determined in this function.

The thrust and delivered power to each propeller are evaluated in the runnested.m and

main_no_opt.m functions. When imported from the analysis_nested.m or analysis.m they are

matrices with values for each angular position for each propeller. Their resulting values are

taken as the average over angular positions for each propeller, and the sum over all propellers.

Then the resulting propulsive efficiency can be calculated based on these values.
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Figure 5.14: Code structure



Chapter 6

Results

In this chapter is presented the results of the analysis of DEP configurations. Emphasis was

placed on analysing grid configurations distributed over one row. In Table 6.1 is presented an

overview of the configurations that were analysed, as well as the resulting diameter and pro-

peller disk area of the propellers. The propeller disk area, Ap , was calculated as π
4 ·D2. The

configurations in Table 6.1 were analysed for propellers with number of blades varying from

three to five.

Table 6.1: Grid configurations analysed for propellers with three to five blades

Row 1 1 1 1 1 1 1 1 1

Col 1 2 3 4 5 6 7 8 9

D [m] 8.91 8.91 8.91 8.91 8.91 7.85 6.71 5.87 5.21

Ap [m2] 62.36 124.72 187.08 249.44 311.80 290.43 247.84 216.15 191.65

In addition, further analysis of four-bladed propellers was conducted for the following con-

figurations:

• two rows, with two and three propellers horizontally in each row

• five propellers in one row, within a compressed horizontal domain

• T-configuration with seven propellers above one large

This chapter is organised as follows; firstly is presented results based on potential theory

for the configurations presented in Table 6.1. Secondly, resulting propulsive efficiencies and
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hull efficiencies are presented for three- to five-bladed propellers. Then is given the results of

additional configurations of four-bladed propellers, mentioned in the above list. The chapter is

ended with a detailed presentation of the most efficient configuration. This includes propeller

geometry, performance details of each propeller and cavitation considerations.

6.1 Potential theory

Total thrust loading coefficient and ideal efficiency was calculated with Equation 5.33 and 2.1,

respectively, for the configurations presented in Table 6.1. It should be noted that effects of pro-

peller geometry are not included in potential theory. Thus these results are for comparison only.

In Figure 6.1 and 6.2 is plotted the total thrust loading coefficient, CT,tot , versus total propeller

disk area and number of propellers, respectively. According to potential theory, the configura-

tion with five propellers has the lightest loading, with a thrust loading coefficient of 0.0537. This

is 26% lower than the configuration with four propellers, 10% lower than the configuration with

six propellers and 28% lower than the configuration with seven propellers.
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Figure 6.1: Thrust loading versus total propeller disk area
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Figure 6.2: Thrust loading versus number of propellers
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Figure 6.3: Ideal efficiency versus number of propellers
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In Figure 6.3, the ideal efficiency is plotted against the number of propellers. It is increasing

with reduced loading. Thus the configuration of five propellers has the highest ideal efficiency,

which is slightly below 99%. It should be noted that there is a difference of 4.75% between the

ideal efficiency of the single screw propeller and the maximum ideal efficiency.

6.2 Grid configurations with three- to five-bladed propellers

In this section is presented the resulting efficiencies of the grid configurations in Table 6.1, for

three- to five-bladed propellers. Lifting line theory and an optimisation algorithm was used in

the analysis to determine performance and optimal geometry, respectively. The procedure is

explained in the previous chapter. Total propulsive efficiencies of the configurations are plotted

against the number of propellers in Figure 6.4. The hull efficiencies are given in Figure 6.5. They

were calculated according to the definition given in 5.30. As it is independent of the number of

propeller blades, only one curve is displayed.
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Figure 6.5: Hull efficiency versus number of propellers

For three- and four-bladed propellers it is the configurations with seven propellers that is

most efficient. Three propellers is most efficient for five-bladed propellers. The results shown

graphically in the above figures, are provided numerically in Table 6.2. In addition, the percent-

age of cavitation on the propeller blades when located 12 o’clock is included.

Table 6.2: Resulting efficiencies of grid configurations

Row 1 1 1 1 1 1 1 1 1

Col 1 2 3 4 5 6 7 8 9

ηH [-] 1.1308 1.0397 1.0662 1.0382 1.0534 1.0466 1.0539 1.0487 1.0538

Z = 5
ηD [-] 0.7885 0.8299 0.8670 0.8460 0.8256 0.8489 0.8613 0.8517 0.8597

Cavitation [%] 57 0 0 0 16 0 0 0 0

Z = 4
ηD [-] 0.7814 0.8119 0.7811 0.8384 0.8257 0.8705 0.8889 0.8391 0.8666

Cavitation [%] 10 0 0 0 0 0 0 0 0

Z = 3
ηD [-] 0.7879 0.8121 0.7958 0.8324 0.7887 0.8393 0.8552 0.8252 0.8285

Cavitation [%] 0 0 0 0 0 0 0 0 0
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6.3 Further analysis of four-bladed propellers

In addition to the configurations that has been presented, those described in Table 6.3 was anal-

ysed for four-bladed propellers. The analysis procedure was the same as explained for the grid

configuration in the above section. As cavitation was a problem, the percentage of the blades

that were cavitating is also presented.

Table 6.3: Additional configurations analysed for four-bladed propellers

Type Grid Grid Grid T

Row 2 2 1 2

Col 2 3 5 7/1

D [m] 4.24 4.24 6.96 3.5643/5.94

Ap [m2] 56.56 84.85 190.39 97.56

Cavitation [%] 52 24 0 7

Propulsive efficiencies including configurations of two rows
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Figure 6.6: Propulsive efficiency versus total propeller disk area for four blades
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In Figure 6.6 is presented the propulsive efficiencies of all the four-bladed configurations, plot-

ted against the total propeller disk area. The additional configurations with two rows are high-

lighted. The following sections will further describe the additional four-bladed configurations.

Grid with two rows

Configurations with two rows of propellers were analysed for four and six propellers. Their re-

sulting geometry is presented in Figure 6.7 and 6.8. Due to problems with cavitation and limited

time frame of this work, no further analysis was conducted for such configurations. Their re-

sulting propulsive efficiencies were 74% and 78% for four and six propellers, respectively.

Figure 6.7: Grid configuration of four propellers over two rows

Figure 6.8: Grid configuration of six propellers over two rows
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T-configuration

In the project thesis, it was found that placing seven propellers over one larger propeller could

potentially increase the total propulsive efficiency. Therefore, an analysis of this configuration

was conducted. Due to the large propeller having a different diameter than the above propellers,

the computational time of the analysis was significantly increased. Thus, when this configura-

tion was found to be cavitating, no further analysis of such configurations was prioritised within

the time frame of this work.

In Figure 6.9 is plotted the propellers of this configuration. The resulting propulsive effi-

ciency was 80%.

Figure 6.9: T-configuration including propeller geometry

Compressing the configuration of five propellers

The outermost propellers of the configuration with seven propellers are lightly loaded and lo-

cated within relatively low wake fractions. It was anticipated that they did not contribute much

to the propulsive efficiency. Therefore a configuration with five propellers was analysed, with

the horizontal domain, Yli m , reduced from BW L to BW L −2 ·6.71.

In Table 6.4 is given some propulsive properties for comparison. The resulting propeller ge-

ometry is given in Figure 6.10 for grid width equal to BWL and in Figure 6.11 for reduced grid

width. The hull efficiency and propulsive efficiency have increased by 0.9% and 6.7%, respec-

tively, relative to the configuration of five propellers with BW L as grid width.
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Table 6.4: Properties of grid configuration with five propellers

Yli m BW L BW L −2 ·6.71

AE /A0 0.59269 0.58367

ηH 1.0534 1.0632

ηD 0.8257 0.8812

Figure 6.10: Configuration of five propellers including propeller geometry

Figure 6.11: Configuration of five propellers with compressed domain including propeller ge-
ometry
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6.4 Most efficient configuration

In this section is presented geometrical properties and performance, as well as details regarding

cavitation, of the propellers in the most efficient configuration. Firstly, an overview of the ge-

ometry and performance are provided. Secondly, more detailed results of the cavitation check

is given.

The geometry of the propellers are illustrated in Figure 6.12. The centre propeller has the

lowest pitch angle, which is why the blades look fuller in the figure.

Figure 6.12: Configuration of seven propellers including propeller geometry

In Table 6.5 is presented the geometry and performance of each propeller. Number one

refers to the outermost propeller and number four is the centre propeller. Due to symmetry it

is only the four first propellers from left to right that are presented. Propeller number seven has

the same geometry and performance as number one, and so on.

The centre propeller are far heavier loaded than the other propellers. Roughly speaking, it is

around three times heavier loaded than the rest of the propellers. In order to study the loading

of the propellers more detailed, the lift coefficients were plotted against radial positions on the

propeller blades for all propellers. The plots are given in Figure 6.13 and 6.14.
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Table 6.5: Geometry of propellers in grid configuration with seven propellers horizontally

Propeller

number
RPM P/D0.7 φ0.7[◦] AE /A0 Thrust [kN] Cavitation [%]

1 42.36 2.7133 31.67 0.4960 188.4 0

2 41.28 2.5345 29.95 0.4960 128.5 0

3 41.26 2.5260 29.87 0.4960 127.4 0

4 97.80 0.8594 11.06 0.4960 553.9 0
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Figure 6.13: Lift coefficients for propeller number 4 and 5
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Figure 6.14: Lift coefficients for propeller number 6 and 7

The propellers were checked for cavitation by comparing the negative minimum pressure

coefficient of the foil sections with the cavitation number, σ. In order to prevent cavitation,

the effective angle of attack was forced close to zero in an iterative procedure. Figure 6.15 to 6.18
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contains the cavitation curves for both the first and last iteration. Thus it can be seen the impact

on cavitation from the effective angle of attack.
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Figure 6.15: Cavitation plot from first and last iteration of αe for propeller number 4
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Figure 6.16: Cavitation plot from first and last iteration of αe for propeller number 5
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Figure 6.17: Cavitation plot from first and last iteration of αe for propeller number 6
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Figure 6.18: Cavitation plot for propeller number 7, no iteration was necessary for αe
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Chapter 7

Discussion of results

In this chapter, the results presented in the previous chapter are discussed. The discussion is

organised such that the results that was first presented in the previous chapter is discussed first

in this chapter.

7.1 Potential theory

Since the total thrust can be distributed over a larger area, the thrust coefficient was expected

to decrease when the total propeller disk area increases. This is evident from Figure 6.1. It is the

configuration with five propellers in one row that has the largest propeller disk area. Hence it

has the lowest thrust loading. This is shown in Figure 6.2. It follows that this configuration has

the highest ideal efficiency.

7.2 Grid configurations with three- to five-bladed propellers

In Figure 6.4 is presented the efficiencies for DEP configurations of propellers with three to five

blades. Analysis of two-bladed propellers were discarded due to poor results in the validation

process. According to polynomials representing the open water characteristics of the Wagenin-

gen B-screw series, the open water efficiency increases with decreasing number of propeller

blades. From Figure 6.4 it is seen that the opposite behaviour is present. However, from the

validation work it was concluded that results for propellers with different blade numbers are in-
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comparable as their accuracy is varying. More information regarding the validation is found in

Section 5.4 about validation of the lifting line code.

It was expected that the configurations with five propellers in one row would be most effi-

cient, as they have highest ideal efficiency. However, from Figure 6.4 it is evident that the expec-

tations was not met. Based on potential theory, the difference in loading between the configu-

rations of five and seven propellers are relatively low. Thus the influence of the wake fractions

are likely to be the reason why seven propellers are most efficient for three- and four-bladed

propellers.

For five-bladed propellers it is the configuration with three propellers that has the greatest

efficiency. Numerical difficulties of the lifting line analysis, for example with regards to treat-

ment of singularities, are likely to be the reason of this sudden increase of efficiency. Further-

more, it should be noted that from the validation of the lifting line code it was found that the

open water efficiency of five-bladed propellers was overestimated by around 5% for a blade area

relationship of 0.50. As the blade area relationship of the five-bladed configuration with three

propellers is 0.53, there is reason to believe that its efficiency is overestimated as a consequence

of simplifications applied to the lifting line analysis.

For four-bladed propellers, the propulsive efficiency of the most efficient configuration is

10.75% higher than for a single screw propeller. This is over twice as high as the difference in

ideal efficiency between a single screw and the lightest loaded propeller disk. Thus, the results

suggests that optimising each propeller for the local wake it is operating in is increasing the

propulsive efficiency. However, it should be emphasised that the simplifications made in this

work must be taken into account when interpreting the results.

From Figure 6.4 it is seen that the configuration of three four-bladed propellers does not

improve the propulsive efficiency with respect to the four-bladed single screw propeller. This

can be a consequence of using a coarse step size in the optimisation algorithm.

In general, the hull efficiency increases with increasing wake fractions. Thus it was expected

to be higher for the configurations containing odd numbers of propellers in each row. This is

evident in Figure 6.5. However, the difference between odd and even numbers of propellers

becomes less profound as the number of propellers increases. The hull efficiency is highest for

the single screw configuration. The reason for this is that it is located in the area of the highest
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wake fractions. From Figure 6.5 it is evident that as the number of propellers increases, the wake

becomes less exploited as the hull efficiency is decreasing.

It is likely that it is the affection of the wake that leads to the choppy behaviour of the curves

in Figure 6.4. However, the peaks are not consistent with the peaks of the hull efficiency curve.

Thus it is anticipated that the affection of the wake fractions on the advance velocity has larger

influence on the total propulsive efficiency than the hull efficiency itself.

From Figure 6.5 it is seen that it is the configurations with even numbers that have the best

performance for low numbers of propellers. As the number of propellers increases, the effect

becomes less profound. Since the nominal wake used in this work is a model wake, the effects

of the wake fractions are anticipated to be less profound for the full scale wake. The reason for

this is that models in general have higher frictional wake fractions due to boundary layer effects.

As it was evident from the results of the configurations with one row that the propulsive effi-

ciency can be increased significantly if DEP is applied, it was not prioritised within the scope of

this work to make alterations of the stern design. However, as results indicate that the propul-

sive efficiency are highly dependent on exploiting areas of large wake fractions, it is anticipated

that it can be further increased if the stern is optimised for application of DEP. This remains to

be investigated.

7.3 Further analysis of four-bladed propellers

Since it was found in the validation of the lifting line code that the four-bladed propellers could

be analysed with relatively high accuracy, further analysis of other configuration types was con-

ducted for this blade number. The grid configurations of two rows and the T-configuration was

cavitating. This was anticipated as the propellers have relatively small diameter and low sub-

mergence.

Cavitation was expected to decrease with decreasing loading of the propellers. This is be-

cause when the propeller loading decreases, the pressure on the suction side of the blades is

increased. As mentioned in Section 5.6 about the cavitation check, the single screw propeller

of four blades was slightly cavitating at the blade tip when located in top position. Non of the

other four-bladed configurations with one row of propellers were cavitating. However, for the
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configurations with two rows, cavitation became a problem. There are two main reasons for

this; firstly, since the propellers are distributed over two rows, the propellers on the top row will

be located higher than if the configurations had only one row. Secondly, the diameter of the

propellers becomes smaller as a safety factor between the vertical propellers are required. Thus

the total propeller disk area is relatively low for the configurations that were analysed.

It was found that the propellers in both rows were cavitating for both the grid configurations.

Thus the latter is most likely the reason for cavitation. To avoid it, the two row grid configura-

tions should therefore be analysed with a larger number of propellers. For example ten pro-

pellers on each row in order to decrease the thrust loading of each propeller. However, as the

computational time of the analysis is increasing significantly when the number of propellers in

the configurations are increasing, this was not prioritised within the time frame of this work.

In the T-configuration it was only the propellers in the top row that were cavitating. Thus

cavitation might be avoided if the submergence of the top propellers are increased. On the other

hand, this limits the disk area of the lower propeller. As a consequence, its loading will increase

and the risk of cavitation will be higher. It was therefore not conducted any further analysis of

this type of configuration.

The increase in propulsive efficiency of the additional configurations with four-bladed pro-

pellers were low compared to the grid configurations with one row. This is because the total pro-

peller disk area was relatively low for the additional configurations. This can be seen from Figure

6.6 where the total propulsive efficiency of all four-bladed configurations are plotted against the

total propeller disk area. In addition, it is seen from Figure 6.7 and 6.8 that the wake is poorly

exploited for grid configurations with two rows.

From the analysis it was noticed that the outermost propellers in the most efficient configu-

ration, i.e. seven propellers with four blades, was relatively lightly loaded. Thus it was interesting

to see how the propulsive efficiency changed when the outermost propellers were removed. If

the efficiency are still maintained relatively high, it can be beneficial from a cost point-of-view

to remove these propellers. In addition, it confirms that the propellers located within an area of

low wake fractions has low affection on the total propulsive efficiency.

The results confirms that removing the outer propellers does not affect the propulsive effi-

ciency significantly as it is reduced from 0.8889 to 0.8812. This is a very small reduction taken in
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to consideration the uncertainties of the analysis. Comparing this modified configuration of five

propellers with the original configuration of five propellers, there is a significant improvement

in the propulsive efficiency when the width of the grid is reduced. It can be seen from Figure

6.10 and 6.11 that it is the pitch of the centre propellers that are the most noticeable difference

between the propeller geometries. Therefore, the reason why one configuration has notably

higher efficiency than the other is that the wake is better exploited, allowing the pitch of the

centre propeller to be higher.

7.4 Most efficient configuration

In this section, details regarding performance and geometry are discussed for the configuration

of seven four-bladed propellers.

From Table 6.5 it is evident that the centre propeller is relatively heavy loaded with respect

to the other propellers. This is likely because it is located within an area of high wake fractions.

As the analysis has been conducted with an unscaled nominal wake, it is anticipated that the

importance of the centre propeller would have been less if the full-scale wake was used.

In Figure 6.13 and 6.14 the lift coefficients of the propellers are plotted against radial posi-

tion. It is seen that the slopes of the lift curves are quite similar for all propellers, except the

centre propeller. Most of the lift of the centre propeller is provided by the inner foil sections of

the blades, around 0.3R. For the other propellers, the lift distribution are somewhat more evenly

distributed. The reason why the centre propeller has such a large drop in the lift coefficient at

the blade tip is that the effective lift coefficient has been reduced at the tip in order to prevent

cavitation. This was done by adjusting the pitch angle. The lift from the inner foil sections are

provided by both camber and angle of attack, this was confirmed by plotting the effective angle

of attack across the blades. For the other propellers, the lift is provided mainly by camber. How-

ever, the slight drop from 0.6R and outwards on the blades is due to reduction of effective angle

of attack.

It is seen from the figures with the lift coefficients that there are some inconsistency of the

lift slope next to the hub. This is due to a computational simplification. In order to ensure finite

induced velocities close to the hub, the velocities induced by the inner foil section was extrap-
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olated. However, due to computational problems with the extrapolation, the induced velocities

of the inner foil sections was set equal to the induced velocities by the adjacent section. Hence

the slope of the lift curve is deviating at these sections.

The cavitation curves for both the first and last iteration of the pitch is provided in Figure 6.15

to 6.18. From the figures it can be seen that the blades of all propellers, except the outermost,

was initially cavitating when placed in top position. Then by reducing the effective angle of

attack, cavitation was prevented. The large amount of initial cavitation on the centre propeller

explains the steep reduction in the lift curve that can be seen in Figure 6.13.

On the other propellers, cavitation is not initially as profound as for the centre propeller.

However, it can be seen that the blade tips were initially cavitating. When the effective angle of

attack has been forced close to zero, the blades are relatively far from cavitating compared to the

middle propeller. Reasons for these variations can be that the wake fraction within the centre

propeller is large compared to the other propellers, and it spins much faster. The effective angle

of attack of the outermost propellers are initially close to zero. Thus no cavitation was present

and there was no need for iteration.



Chapter 8

Conclusions and recommendations for

further work

In this chapter is presented conclusions and recommendations for further work. Firstly, a brief

summary is given together with a list of conclusions. Then is presented recommendations for

further work.

8.1 Summary and conclusions

Based on a literature study of the present state of propeller modelling methods, lifting line the-

ory was chosen to analyse the potential benefits of using DEP on conventional ships. The ar-

guments for using lifting line theory was the ability to include effects of propeller geometry and

nominal wake within reasonable work load and computational time. In addition, it allowed for

cavitation to be included with sufficient accuracy, which was considered important.

Thrust and torque of each propeller was calculated by lifting line theory. An optimisation

algorithm was applied to find the optimal geometry of each propeller. Within the time frame of

this work it was considered sufficient to use one of the algorithms in the optimisation toolbox in

MatLab. The blade section geometry of the Wageningen B-screw series was used, as it limited

the number of variables to be optimised.

The objective function was reduced from a multi-objective problem to a single-objective

problem by the use of a quadratic penalty method. It forced the total thrust to be within 3% of
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the required thrust, leaving the effect delivered to the propeller(s) as the remaining objective.

An interior-point algorithm was used for the optimisation.

Emphasis was placed on programming a lifting line code that could determine propeller

performance with sufficient accuracy. This involved extensive validation against the polynomi-

als of the Wageningen B-screw open water characteristics. It was found that some inconsistency

between the open water diagrams could not be avoided within the time frame of this work. How-

ever, the accuracy of the lifting line was considered sufficient to predict the potential benefits of

using DEP with three- to five-bladed propellers.

Based on the discussion provided in the previous chapter, conclusions are listed below.

• Lifting line theory is to some extent providing results with sufficient accuracy for three- to

five-bladed propellers

• Configurations with propellers of different number of blades are incomparable

• Due to affection of nominal wake, it is not the configuration with highest ideal efficiency

that results in highest propulsive efficiency

• DEP with propellers located at one row can increase the propulsive efficiency of a conven-

tional cargo ship

• Results suggests that a DEP configuration of seven four-bladed propellers in one row can

increase the propulsive efficiency by 10.75%

• When the number of propellers increase, the wake becomes less exploited as the hull effi-

ciency is decreasing

• The effects of wake fraction on advance velocity is highly influencing the propulsive effi-

ciency

• Propellers located within an area of low wake fractions have low affection on the propul-

sive efficiency

• Cavitation is a decisive factor for the propeller design, even if the number of propellers are

increased

• Due to cavitation, the wake close to the hull can not be exploited by the propellers in a

DEP configurations

• Propeller blade sections with large angle of attack are most prone to cavitation
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8.2 Recommendations for further work

The analysis conducted in this work has evaluated the benefits of using DEP on ships. How-

ever, more extensive analysis are highly recommended as the results in this work are based on

simplifications and contains uncertainties. It is recommended that the lifting line approach of

this work is improved such that the effects of blade number can be evaluated. There is also a

potential of improving the general accuracy of the lifting line code.

For further work it is recommended that the following are included in the analysis:

• Lifting surface correction factors if lifting line theory is applied

• If lifting line theory is applied, the singularity of the integration should be treated more

accurately

• Other blade section geometries than the Wageningen B-screw series. This is possible using

the lifting line code from this work

• Convergence tests to determine parameters, such as step size, of the optimisation algo-

rithm

• The interaction effect between propellers, and between propeller and hull should be ac-

curately accounted for

• Locations of the propellers should be determined more strategically with respect to the

ship wake

• Skew and rake should be included in the propeller geometry

• The added resistance due to propeller nacelles should be accounted for

• Practical challenges regarding design should be investigated and solved

• Benefits of optimising the stern design for DEP should be investigated

• Noise and vibrations from DEP should be analysed
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Appendix A

Induction Factors

The induction factors are calculated according to (van Oossanen 1974).

I A =
(

y0
y −1

)
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Validation Plots
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Appendix C

MatLab Codes

The codes for the lifting line analysis are provided in this section. A complete set of the codes

used in this work is attached in a digital appendix.

main.m

1 % Preparation

2 clc

3 clear all

4 close all

5

6 % Importing input data

7 input;

8

9 % Defining number of spanwise stations

10 N = 30;

11

12 % Defining radial variables

13 R = D/2;

14 R_boss = R/5;

15 dr = (R−R_boss)/N;

16 r = linspace(R_boss, R, N);

IX
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17 y = r./R;

18 y_boss = R_boss/R;

19

20 % Importing the Wageningen open water diagram to be used for validation

21 [KT, KQ, J, eta_0] = wag_openwater(PD_07, AEA0, Z);

22

23 % Importing geometry

24 [tm, c, fi, tm_interp, c_interp, b_interp, r_R_interp] = wag_geo(D, Z, y, r,

AEA0, PD_07);

25

26 % Running Xfoil to determine camber lift coefficient

27 [C_Lc_wag] = xfoil(b_interp, tm_interp, c_interp, r_R_interp);

28

29 % Defining rate of revolutions

30 J_val = J(12:1:40);

31 n_rev = V_s./(J_val.*D);

32

33 % Preallocation

34 eta_0_val = zeros(1, length(J_val));

35 KT_val = zeros(1, length(J_val));

36 KQ_val = zeros(1, length(J_val));

37 U_A = zeros(length(J_val), N);

38 U_T = zeros(length(J_val), N);

39

40 % Analyzing for all advance numbers

41 for i = 1:length(J_val)

42

43 % Lifting line calculations

44 [eta_0_val(i), KT_val(i), KQ_val(i)] = LL_iter(N, R, dr, r, y, tm, c, fi,

n_rev(i), V_s, R_boss, Z, rho_s, D, C_Lc_wag, Re_wag, nu_s);
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45

46 end

47

48 %% The difference in open water efficiency between the plynomials and lifting

line results

49 %The difference in open water efficiency

50 diff_eta = max(eta_0)−max(eta_0_val);

51

52 % The fraction of the deviation with respect to lifting line results

53 diff_eta_ratio = diff_eta/max(eta_0_val);

54

55 %% Validation plot

56 % Open water diagram

57 ow=figure;

58 plot(J, eta_0);

59 hold on

60 plot(J_val, eta_0_val, '−o');

61 hold on

62 plot(J, KT);

63 hold on

64 plot(J_val, KT_val, '−o');

65 hold on

66 plot(J, 10.*KQ);

67 hold on

68 plot(J_val, 10.*KQ_val, '−o');

69 axis equal

70 grid minor

71 xlabel('Advance number, J_0')

72 ylabel('K_T, K_Q, \eta_0')

73 title('Open water diagram AE/A0=0.55, Z=4, P/D=0.6')
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74 legend('\eta_0','\eta_0_v','K_T', 'K_T_v', '10*K_Q', '10*K_Q_v')

75 set(ow,'Units','Inches');

76 pos = get(ow,'Position');

77 set(ow,'PaperPositionMode','Auto','PaperUnits','Inches','PaperSize',[pos(3),

pos(4)])

input.m

1 % Input data

2 % Environment

3 g = 9.81; % Acceleration of gravity [m/s^2]

4 rho_s = 1025; % Sea water density [kg/m^3]

5 nu_s = 1.19E−6; % Sea water kinematic viscosity [m^2/s]

6 pv = 1500; % Vapor pressure [Pa]

7 pa = 101325; % Atmospheric pressure [Pa]

8

9 % Ship speed

10 V_s = 25*0.514444444; % Ship speed [m/s]

11

12 % Propeller blade

13 D = 1; % Blade diameter [m]

14 Z = 4; % Number of propeller blades [−]

15 AEA0 = 0.7; % Expanded blade area relationship [−]

16 PD_07 = 1; % Pitch to diameter ratio (0.5−1.4) [−]

17

18 % Wageningen Reynolds number

19 Re_wag = 2*10^6;

wag_openwater.m
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1 function[KT, KQ, J, eta_0] = wag_openwater(PD_07, AEA0, Z)

2 % This function calculates open water performance based on polynomials.

3 % Polynomial coefficients are imported from .csv files

4

5 % KQ coefficients

6 filename = 'KQ.csv';

7 KQ_mat = csvread(filename,1,0);

8 B_abcd = transpose(KQ_mat(:,1));

9 a_kq = transpose(KQ_mat(:,2));

10 b_kq = transpose(KQ_mat(:,3));

11 c_kq = transpose(KQ_mat(:,4));

12 d_kq = transpose(KQ_mat(:,5));

13

14 % KT coefficients

15 filename = 'KT.csv';

16 KT_mat = csvread(filename,1,0);

17 A_abcd = transpose(KT_mat(:,1));

18 a_kt = transpose(KT_mat(:,2));

19 b_kt = transpose(KT_mat(:,3));

20 c_kt = transpose(KT_mat(:,4));

21 d_kt = transpose(KT_mat(:,5));

22

23 % Advance numbers, J, are defined in a vector

24 J = linspace(0, 1.7, 100);

25

26 % Preallocation

27 KT = zeros(length(PD_07), length(J));

28 KQ = zeros(length(PD_07), length(J));

29
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30 %Calculating KT and KQ

31 for p = 1:length(PD_07)

32 for i = 1:length(J)

33 KT(p,i) = sum(A_abcd.*(J(i).^a_kt).*(PD_07(p).^b_kt).*(AEA0.^c_kt).*(

Z.^d_kt));

34 KQ(p,i) = sum(B_abcd.*(J(i).^a_kq).*(PD_07(p).^b_kq).*(AEA0.^c_kq).*(

Z.^d_kq));

35

36 % Negative KT are outside the range of the Wageningen B

37 % experimental results, correcting this by setting KT = NaN where KT

38 % is negative

39 if KT(p,i) < 0

40 KT(p,i) = NaN;

41 else

42 KT(p,i) = KT(p,i);

43 end

44

45 if KQ(p,i) < 0

46 KQ(p,i) = NaN;

47 else

48 KQ(p,i) = KQ(p,i);

49 end

50 end

51 end

52

53 %Open water efficiency

54 eta_0 = (KT.*J)./(2.*pi.*KQ);

55

56 end
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wag_geo.m

1 function [tm, c, fi, tm_interp, c_interp, b_interp, r_R_interp] = wag_geo(D,

Z, y, r, AEA0, PD_07)

2 % In this function, the geometrical properties of the Wageningen B series

3 % are calculated. Subscript interp indicates shorter vectors that are to be

4 % used in Xfoil. They corresponds to r_R_interp which is radial position on

5 % the blade from hub to tip, with length 9.

6

7 if Z==3

8 % Table 1 page 4 Oosterveld & Oossanen

9 r_R_interp = [0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];

10 cr_D_Z_AEA0 = [1.663 1.832 2.000 2.120 2.186 2.186 2.127 1.657 0];

11 br_cr = [0.350 0.350 0.350 0.355 0.389 0.442 0.478 0.500 0.000];

12 Ar = [0.0526 0.0464 0.0402 0.0340 0.0278 0.0216 0.0154 0.0092 0.0030];

13 Br = [0.0040 0.0035 0.0030 0.0025 0.0020 0.0015 0.0010 0.0002 0.0000];

14

15 else

16 % Table 1 page 4 Oosterveld & Oossanen

17 r_R_interp = [0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];

18 cr_D_Z_AEA0 = [1.662 1.882 2.050 2.152 2.187 2.144 1.970 1.582 0];

19 br_cr = [0.350 0.350 0.351 0.355 0.389 0.443 0.479 0.5 0];

20 Ar = [0.0526 0.0464 0.0402 0.0340 0.0278 0.0216 0.0154 0.0092 0.0030];

21 Br = [0.004 0.0035 0.0030 0.0025 0.002 0.0015 0.001 0.0005 0];

22 end

23

24 % Max section thickness

25 tm_interp = (Ar−(Br.*Z)).*D;

26 tm = interp1(r_R_interp, tm_interp, y, 'pchip');

27



XVI APPENDIX C. MATLAB CODES

28 % Radial chord length

29 c_interp = (AEA0/Z).*D.*cr_D_Z_AEA0;

30 c = interp1(r_R_interp, c_interp, y, 'pchip');

31

32 % Chordwise length from leading edge to position of maximum thickness

33 b_interp = br_cr.*c_interp;

34

35 % Pitch distribtion

36 P_table = [0.822 0.887 0.95 0.992 1 1 1 1 1].*PD_07.*D;

37 pitch = interp1(r_R_interp, P_table, y, 'pchip');

38 fi = atan(pitch./(2.*pi.*r));

39

40 end

xfoil.m

1 function [C_Lc_wag] = xfoil(b_interp, tm_interp, c_interp, r_R_interp)

2 % This function calculates the lift coefficient due to camber. Based in the

3 % geometrical properties subscripted with interp, the boordinates of the

4 % corresponding blade sections are calculated and imported into Xfoil.

5 % In Xfoil, their lift coefficients due to camber are calculated and

6 % interpolated to all N radial positions

7

8 % NOTE: This script contains one command where file paths have to be

9 % defined. These must be specified before running the optimization.

10

11 % NOTE2: The program Xfoil should be in the same folder as this

12 % script

13

14 % NOTE3: An empty text file called xfoilCMD.txt should be placed
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15 % in the same folder as this function, prior to the analysis is initiated

16

17 % NOTE4: As this script enters the operating system of the computer,

18 % the codes depends on which operating system that is used. This script

19 % is for Mac. If Windows is used, use dos instead of system and

20 % \r\n for space when writing to text files

21

22 fclose('all');

23

24 % Deleting previous files

25 for i = 1:length(r_R_interp)−1

26 delete(['xfoil_' num2str(i) 'cl.txt'])

27 end

28

29 % Creating a text file and importing it to Xfoil for each foil section. The

30 % outermost section is not included, as it is assumed to be small enough

31 % for its camber lift coefficient to be zero

32 for i = 1:length(r_R_interp)−1

33

34 % Defining an index variable that is needed for the foil_coord function

35 index_r_R = i;

36

37 % Importing the coordinates of the foil section

38 [coord] = foil_coord(b_interp, tm_interp, c_interp, index_r_R, r_R_interp

);

39

40 % Defining the coordinates that are going to be put into the

41 % input text file for Xfoil

42 outputText = transpose(coord);

43
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44 % Defining the name and format of file

45 fname = ['xFoil_' num2str(i) '.txt'];

46

47 % Opening the file in order to start writing

48 fileID = fopen(fname,'w');

49

50 % Writing the foil coordinates into the created text file

51 fprintf(fileID, '%8.4f %12.4f\r\n', outputText);

52

53 % Closing the file id

54 fclose(fileID);

55

56 %The input text file for Xfoil is now completed

57

58 % Opening the text file with commands that are going to be ran in Xfoil

59 fid = fopen('xfoilCMD.txt', 'w');

60

61 % Writing commands into the file. \n is indicating new line

62 % Loading the text file with the foil coordinates

63 fprintf(fid,'%s','load');

64 fprintf(fid,'\n');

65 fprintf(fid,'%s',['/Users/vildenylund/Desktop/FINAL/Validation_codes/

xFoil_' num2str(i) '.txt']);

66 fprintf(fid,'\n');

67

68 % Defining a name of the foil

69 fprintf(fid,'%s',['wag' num2str(i)]);

70 fprintf(fid,'\n');

71

72 % Discretization of foil sections
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73 fprintf(fid,'%s','gdes');

74 fprintf(fid,'\n');

75 fprintf(fid,'%s','cadd');

76 fprintf(fid,'\n');

77 fprintf(fid,'%s','1');

78 fprintf(fid,'\n');

79 fprintf(fid,'%s','1');

80 fprintf(fid,'\n');

81 fprintf(fid,'%s','');

82 fprintf(fid,'\n');

83 fprintf(fid,'%s','');

84 fprintf(fid,'\n');

85 fprintf(fid,'%s','ppar');

86 fprintf(fid,'\n');

87 fprintf(fid,'%s','N');

88 fprintf(fid,'\n');

89 fprintf(fid,'%s','300');

90 fprintf(fid,'\n');

91 fprintf(fid,'%s','');

92 fprintf(fid,'\n');

93

94 % Empty space (enter)

95 fprintf(fid,'%s','');

96 fprintf(fid,'\n');

97

98 % Going into the oper menu

99 fprintf(fid,'%s','oper');

100 fprintf(fid,'\n');

101

102 % Claiming the polar data for the foil
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103 fprintf(fid,'%s','pacc');

104 fprintf(fid,'\n');

105

106 % Creating a file for the polar data

107 fprintf(fid,['xfoil_' num2str(i) 'cl.txt']);

108 fprintf(fid,'\n');

109

110 % Creating a dump file for the polar data

111 fprintf(fid,'%s',['xfoil_' num2str(i) 'dump.txt']);

112 fprintf(fid,'\n');

113

114 % Defining angle of attack of the foil section

115 fprintf(fid,'%s','alfa');

116 fprintf(fid,'\n');

117 fprintf(fid,'%s','0');

118 fprintf(fid,'\n');

119

120 % Empty space

121 fprintf(fid,'%s','');

122 fprintf(fid,'\n');

123

124 % Quit

125 fprintf(fid,'%s','quit');

126

127 % Closing the file id

128 fclose(fid);

129

130 % Running Xfoil

131 system('Xfoil.app/Contents/Resources/xfoil < xfoilCMD.txt');

132
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133 end

134

135 % Deleting unnecessary data

136 for i = 1:length(r_R_interp)−1

137 delete(['xfoil_' num2str(i) 'dump.txt']);

138 end

139

140 C_Lc_wag = zeros(1, length(r_R_interp));

141

142 % Processing the desired data

143 for i = 1:length(r_R_interp)−1

144 fname = ['xfoil_' num2str(i) 'cl.txt'];

145 fid = fopen(fname, 'r');

146 temp1 = textscan(fid,'%s');

147 temp2 = temp1{1};

148

149 size = length(temp2(:,1));

150

151 if size < 48

152 temp2{48,1} = '0';

153 end

154

155 C_Lc_wag(i) = str2num(temp2{48});

156 fclose(fid);

157 end

158

159 end

LL_iter.m
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1 function [eta_0_val, KT_val, KQ_val] = LL_iter(N, R, dr, r, y, tm, c, fi,

n_rev, V_s, R_boss, Z, rho_s, D, C_Lc_wag, Re_wag, nu_s)

2 % This function calculates the performance of the propeller using lifting

3 % line theory. The performance properties are subscripted val, as they are

4 % to be validated aginst the open water polynomials in the main.m script

5

6 % Importing wake data

7 w_s = 0;

8

9 % Calculating advance velocity

10 V_adv = V_s.*(1−w_s);

11

12 % Calculating beta

13 beta = atan(V_adv./(2*pi*r*n_rev));

14

15 % Assuming first value for beta_i to be equal to beta, i.e no induced

16 % velocities

17 beta_i = beta;

18

19 % Assuming first values of circulation to be elliptical

20 gamma_0 = 1;

21 gamma = gamma_0 * sqrt(1−((2.*((r−R_boss)./(R−R_boss))−1).^2));

22

23 % Defining the zero lift coefficient based on results from Xfoil

24 r_R_wag = [0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];

25 C_Lc = interp1(r_R_wag, C_Lc_wag, y, 'pchip');

26

27 % Defining iteration variables

28 iter = 1;

29 iter_max = 1000;
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30 difference_gamma = 1;

31 difference_beta_i = 1;

32 damping_gamma = 0.005;

33

34 while difference_gamma>0.00001 && difference_beta_i>0.00001 && iter<iter_max

35

36 %Numerical differentiation of the circulation using cubic spline fit

37 gamma_spline = csapi(r, gamma);

38 dgamma_dr = fnval(r, fnder(gamma_spline, 1));

39

40 % Inductions factors

41 [I_A, I_T] = induction_factors(y, Z, beta_i);

42

43 % Calculating the induced velocities by numerical integration

44 % Preallocation

45 integrand_A = zeros(N,N);

46 integrand_T = zeros(N,N);

47

48 for n = 1:N

49 for i = 1:N

50 if n ~= i

51 integrand_A(n,i)=(I_A(n,i)*dgamma_dr(i))/(r(n)−r(i));

52 integrand_T(n,i)=(I_T(n,i)*dgamma_dr(i))/(r(n)−r(i));

53 end

54 end

55 end

56

57 % Correcting for singularity when n=i

58 for n = 1:N

59 for i = 1:N
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60 if i−1 == 0

61 integrand_A(1,1) = integrand_A(1,2);

62 integrand_T(1,1) = integrand_T(1,2);

63 elseif i+1 == N+1

64 integrand_A(N,N) = integrand_A(N,N−1);

65 integrand_T(N,N) = integrand_T(N,N−1);

66 elseif i == n

67 integrand_A(n,i) = 0.5*(integrand_A(n,i−1) + integrand_A(n,i

+1));

68 integrand_T(n,i) = 0.5*(integrand_T(n,i−1) + integrand_T(n,i

+1));

69 end

70 end

71 end

72

73 % Integrating with the trapezoidal rule to calculate induced velocities

74 U_A = (1/(4*pi)).*trapz(transpose(integrand_A)).*dr;

75 U_T = (1/(4*pi)).*trapz(transpose(integrand_T)).*dr;

76

77 % Removing singularities at the ends by extrapolating U_A(N) and U_T(N)

78 U_A = interp1(r(2:(N−1)), U_A(2:(N−1)), r, 'pchip', 'extrap');

79 U_T = interp1(r(2:(N−1)), U_T(2:(N−1)), r, 'pchip', 'extrap');

80

81 % Resulting inflow velocity at each foil section of propeller blade

82 V_inf = ((V_adv+U_A).^2 + (2.*pi.*r.*n_rev−U_T).^2).^0.5;

83

84 % New hydrodynamic pitch angle, including the effects of induced

85 % velocities

86 beta_i_new = atan((V_adv+U_A)./(2.*pi.*r.*n_rev−U_T));

87
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88 % Resulting effective angle of attack

89 alpha_e = fi−beta_i_new;

90

91 % Section lift coefficients

92 C_L = 2.*pi.*alpha_e + C_Lc./c;

93

94 % Calculating circulation distribution from lift coefficients and

95 % Kutta−Joukowski theorem

96 gamma_new = 0.5.*V_inf.*C_L.*c;

97

98 %Forcing end values of new gamma to be 0

99 gamma_new(N) = 0;

100 gamma_new(1) = 0;

101

102 % Difference between the circulation distributions

103 difference_gamma = max(abs(gamma_new−gamma));

104 difference_beta_i = max(abs(beta_i_new−beta_i));

105

106 % Updating values for input to the next iteration

107 beta_i = beta_i_new;

108 gamma = gamma + damping_gamma.*(gamma_new − gamma);

109 gamma(N) = 0;

110 gamma(1) = 0;

111 iter = iter+1;

112

113 end

114

115 % Reynolds number

116 % Wageningen series is tested for Re = 2*10^6 at r=0.7R

117 % Finding the index for 0.7R
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118 index_07 = find(round(y,1) == 0.7, 1, 'first');

119

120 % Finding the advance number

121 J = V_adv./(n_rev.*D);

122

123 % Calculation of rate of revolution based on rearranging definition of J

124 % and Re

125 n_rev_07 = ((Re_wag*nu_s)/c(index_07))/(sqrt((J*D)^2 + (2*pi*r(index_07))^2))

;

126

127 % The Reynolds number at all radial positions can then be found as

128 Re_s = (n_rev_07.*(sqrt((J.*D).^2 + (2.*pi.*r).^2)).*c)./nu_s;

129 Re_s(N) = 0;

130

131 % Frictional resistance coefficient according to ITTC'75

132 C_Fs = 0.075./((log10(Re_s)−2).^2);

133

134 % Viscous drag coefficient with ITTC'75 frictional coefficient

135 C_D = 2.*C_Fs.*(1+(2.*tm./c).*(1+(C_L.^2)./8));

136 C_D(N) = 0;

137

138 % Drag of each section

139 dD = 0.5.*rho_s.*(V_inf.^2).*C_D.*c.*dr;

140

141 % Thrust and torque of each section

142 dT = rho_s.*gamma.*(2.*pi.*r.*n_rev − U_T).*dr − dD.*sin(beta_i);

143 dQ = rho_s.*gamma.*(V_adv + U_A).*r.*dr + dD.*cos(beta_i).*r;

144

145 % Summing up over all blades to find total thrust and torque of propeller

146 T = sum(dT)*Z;
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147 Q = sum(dQ)*Z;

148

149 % Resulting performance

150 KT_val = T./(rho_s.*n_rev.^2.*D.^4);

151 KQ_val = Q./(rho_s.*n_rev.^2.*D.^5);

152 eta_0_val = (KT_val.*J)./(2.*pi.*KQ_val);

153

154 % Displaying the resulting thrust and torque

155 disp('Thrust [kN]')

156 disp(T/10^3)

157 disp('Torque [kNm]')

158 disp(Q/10^3)

159

160 end

foil_coord.m

1 function [coord] = foil_coord(b_interp, tm_interp, c_interp, index_r_R,

r_R_interp)

2

3 % Table 2 page 5 Oosterveld & Oossanen

4 r_R_V1 = transpose([0.20 0.30 0.4 0.5 0.6 0.7 0.8 0.9 1]);

5 x_V1 = [1 0.90 0.80 0.70 0.60 0.50 0.40 0.20 0 −0.20 −0.40 −0.50 −0.60 −0.70

−0.80 −0.90 −1];

6

7 V_1 = [...

8 0.3560 0.2353 0.1685 0.1180 0.0804 0.0520 0.0304 0.0049 0 0.0172 0.0572

0.0880 0.1207 0.1570 0.1967 0.2400 0.2826;...

9 0.2923 0.1760 0.1191 0.0790 0.0503 0.0300 0.1048 0.0027 0 0.0033 0.0202

0.0376 0.0623 0.0943 0.1333 0.1790 0.2306;...
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10 0.2181 0.1088 0.0637 0.0357 0.0189 0.0090 0.0033 0.0000 0 0.0000 0.0044

0.0116 0.0214 0.0395 0.0630 0.0972 0.1467;...

11 0.1278 0.0500 0.0211 0.0085 0.0034 0.0008 0.0000 0.0000 0 0.0000 0.0000

0.0012 0.0040 0.0100 0.0190 0.0330 0.0522;...

12 0.0382 0.0067 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000;...

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000;...

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000;...

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000;...

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000];

17

18 r_R_V2 = transpose([0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1]);

19 x_V2 = [1 0.90 0.80 0.70 0.60 0.50 0.40 0.20 0 −0.20 −0.40 −0.50 −0.60 −0.70

−0.80 −0.90 −1];

20

21 V_2 = [...

22 0.0000 0.2840 0.4777 0.6190 0.7277 0.8170 0.8875 0.9750 1 0.9446 0.7984

0.6995 0.5842 0.4535 0.3060 0.1455 0.0000;...

23 0.0000 0.3197 0.5130 0.6505 0.7520 0.8315 0.8920 0.9750 1 0.9583 0.8265

0.7335 0.6195 0.4885 0.3360 0.1670 0.0000;...

24 0.0000 0.3235 0.5220 0.6590 0.7593 0.8345 0.8933 0.9725 1 0.9645 0.8415

0.7525 0.6353 0.5040 0.3500 0.1810 0.0000;...

25 0.0000 0.3056 0.5039 0.6430 0.7478 0.8275 0.8880 0.9710 1 0.9639 0.8456

0.7580 0.6439 0.5140 0.3569 0.1865 0.0000;...

26 0.0000 0.2720 0.4602 0.6060 0.7200 0.8090 0.8790 0.9690 1 0.9613 0.8426

0.7530 0.6415 0.5110 0.3585 0.1885 0.0000;...
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27 0.0000 0.2337 0.4140 0.5615 0.6840 0.7850 0.8660 0.9675 1 0.9600 0.8400

0.7500 0.6400 0.5100 0.3600 0.1900 0.0000;...

28 0.0000 0.2028 0.3765 0.5265 0.6545 0.7635 0.8520 0.9635 1 0.9600 0.8400

0.7500 0.6400 0.5100 0.3600 0.1900 0.0000;...

29 0.0000 0.1900 0.3600 0.5100 0.6400 0.7500 0.8400 0.9600 1 0.9600 0.8400

0.7500 0.6400 0.5100 0.3600 0.1900 0.0000;...

30 0.0000 0.1900 0.3600 0.5100 0.6400 0.7500 0.8400 0.9600 1 0.9600 0.8400

0.7500 0.6400 0.5100 0.3600 0.1900 0.0000;];

31

32 % Coordinates of foil section

33 % Dividing the foil into sections along the chord length

34 xxx = linspace(0, c_interp(index_r_R), 15);

35

36 % Defining non−dimensional coordinate along pitch line

37 P = zeros(1, length(xxx));

38

39 for i = 1:length(xxx)

40

41 if xxx(i) <= b_interp(index_r_R) % For 0<x<b

42 P(i) = −(xxx(i)−b_interp(index_r_R))./b_interp(index_r_R);

43 else % For b<x<c

44 P(i) = −(xxx(i)−b_interp(index_r_R))./(c_interp(index_r_R)−b_interp(

index_r_R));

45 end

46

47 end

48

49 % Interpolating V_1 and V_2 according to P

50 V_1_interp = interp2(x_V1, r_R_V1, V_1, P, transpose(r_R_interp));

51 V_2_interp = interp2(x_V2, r_R_V2, V_2, P, transpose(r_R_interp));
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52

53 % Calculating the y−coordinates of foilprofile

54 y_face = zeros(1, length(P));

55 y_back = zeros(1, length(P));

56

57 te = 0;

58 tl = 0;

59

60 for i = 1:length(P)

61

62 if P(i) <= 0

63 y_face(i) = V_1_interp(index_r_R,i)*(tm_interp(index_r_R)−te);

64 y_back(i) = (V_1_interp(index_r_R,i)+V_2_interp(index_r_R,i)).*(

tm_interp(index_r_R)−te)+te;

65 else

66 y_face(i) = V_1_interp(index_r_R,i).*(tm_interp(index_r_R)−tl);

67 y_back(i) = (V_1_interp(index_r_R,i)+V_2_interp(index_r_R,i)).*(

tm_interp(index_r_R)−tl)+tl;

68 end

69

70 end

71

72 coord_y = [fliplr(y_back), y_face(2:length(P))];

73 coord_x = [fliplr(xxx), xxx(2:length(P))];

74

75 coord_x = transpose(smooth(coord_x));

76 coord_y = transpose(smooth(coord_y));

77 coord_x = transpose(smooth(coord_x, 'lowess'));

78 coord_y = transpose(smooth(coord_y, 'lowess'));

79 coord_x = transpose(smooth(coord_x, 'sgolay'));
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80 coord_y = transpose(smooth(coord_y, 'sgolay'));

81

82 % Scaling after smoothening such that the chord lengths is matching

83 gap_xxx = max(xxx)−min(xxx);

84 gap_coord_x = max(coord_x) − min(coord_x);

85 gap = gap_xxx/gap_coord_x;

86

87 coord_x = coord_x*gap;

88

89 % Forcing leading edge to be at P = 0

90 coord_x = coord_x − min(coord_x);

91

92 % Transpose

93 coord_x = transpose(coord_x);

94 coord_y = transpose(coord_y);

95

96 % Final coordinate matrix

97 coord = [coord_x, coord_y];

98

99 end

induction_factors.m

1 function [I_A, I_T] = induction_factors(y, Z, beta_i)

2 % This function calculates the induction factors according to van Oossanen

3 % page 22

4

5 % Preallocation

6 p = zeros(length(y), length(y));

7 term = zeros(length(y), length(y));
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8 u = zeros(length(y), length(y));

9 g = zeros(length(y), length(y));

10 f = zeros(length(y), length(y));

11 A = zeros(length(y), length(y));

12 B = zeros(length(y), length(y));

13 I_A = zeros(length(y), length(y));

14 I_T = zeros(length(y), length(y));

15

16 for n = 1:length(y)

17 for i = 1:length(y)

18 p(n,i) = 1 + (((y(n)/y(i))^2)/(tan(beta_i(i))^2));

19

20 term(n,i) = (sqrt(p(n,i))−1)*(((1/(sin(beta_i(i))))−1)^(−1))*(y(i)/y(

n));

21 u(n,i) = exp(Z*log(term(n,i)) + sqrt(p(n,i)) − (1/(sin(beta_i(i)))));

22

23 g(n,i) = (sin(beta_i(i))^3)*(2+ (9/(tan(beta_i(i))^2))) + (3*p(n,i)

−5)*p(n,i)^(−3/2);

24

25 f(n,i) = (p(n,i)^(−0.25))*sin(beta_i(i))^(−0.5);

26

27 if y(n)/y(i) > 1

28 A(n,i) = f(n,i)*((1/(u(n,i)−1)) − (1/(24*Z))*g(n,i)*log(abs(u(n,i

)/(u(n,i)−1))));

29 I_A(n,i) = ((y(n)/y(i))−1)*((Z*A(n,i))/(tan(beta_i(i))));

30 I_T(n,i) = (1−(y(i)/y(n)))*Z*(1+A(n,i));

31 elseif y(n)/y(i) == 1

32 I_A(n,i) = cos(beta_i(i));

33 I_T(n,i) = sin(beta_i(i));

34 else
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35 B(n,i) = f(n,i)*((u(n,i)/(1−u(n,i))) + (1/(24*Z))*g(n,i)*log(abs

(1/(1−u(n,i)))));

36 I_A(n,i) = (1−(y(n)/y(i)))*(Z/(tan(beta_i(i))))*(1+B(n,i));

37 I_T(n,i) = ((y(i)/y(n))−1)*Z*B(n,i);

38 end

39

40 end

41 end

42

43 end
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