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Preface

The work described in this Master’s thesis is part of the study program Engineering and ICT

with a specialization within Marine Cybernetics at NTNU. The thesis is carried out the spring

semester of 2017. With a background in both ICT and marine technology, I wanted to explore

the use of statistical learning methods for data analysis using real-world data from the mar-

itime industry. The thesis is a continuation of previous work carried out the fall semester of

2016.

The thesis is written for NTNU in cooperation with DNV GL, who initially provided the data

together with relevant background information and interesting problems to explore.

The reader is assumed to have basic knowledge of marine vessels, linear algebra, and statis-

tical analysis.
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Summary and Conclusions

The relationship between ambient conditions and the boil-off of liquefied natural gas during

marine transportation has been investigated using a data-driven approach. The data con-

sisted of sensory data collected from a vessel over a three year period coupled with global

measurements of ambient conditions such as temperature and wave height. Statistical mod-

els were trained to predict the change in cargo level from ambient conditions, as the change

in cargo level is a direct effect of boil-off. The models were then analyzed to assess the rela-

tive importance of the different ambient conditions.

The relevant data were extracted and put on a suitable format. The preprocessing consisted

of outlier removal, noise reduction and synchronization of the data. Five datasets were con-

structed; one for each of the four cargo tanks and one for the cargo levels combined. Prepro-

cessing of the cargo levels reduced the amount of data by about 95 %.

A crude polynomial model was used to simulate a virtual cargo level as a function of the real

ambient conditions. The simulated data were inspected using statistical learning methods

to verify that the employed methodology would uncover the relationships in the data. The

models learned from the data showed strong similarities with the true model and improved

the prediction error rate by 87.29 %. Both linear and nonlinear models were trained.

The same methodology was employed on the real-world data. The best linear and nonlin-

ear model reduced the prediction error rate by 45.20 % and 68.45 % respectively. The results

verified that ambient conditions can be used to predict boil-off, although it is unlikely that

true relationship is linear in nature. The parameter sensitivity of the best linear models was

analyzed to assess the importance of the different ambient conditions. The results consis-

tently ranked the ambient temperature and waves as most important, as expected due to

heat leakage and sloshing in the tanks. From the best linear model, the change in cargo level

was found to be varying linearly with ambient temperature, as shown in the literature, and

nonlinearly with waves and wind.
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Sammendrag og Konklusjoner

Sammenhengen mellom vær- og sjøforhold og avdampningen av flytende naturgass under

marin transportasjon ble analysert med en datadrevet fremgangsmetode. Dataen bestod av

sensordata samlet fra et skip over en treårsperiode i kombinasjon med beregninger hentet

fra en atmosfærisk reanalyse. Statistiske modeller ble trent opp til å predikere forandringen

i lastnivået, ettersom avdampning direkte fører til at lasten avtar. Modellene ble så analysert

for å vurdere viktigheten til de forskjellige variablene fra omgivelsene.

Den relevante dataen ble utvunnet og konvertert til et passende format. Forbehandlingen

bestod i å fjerne utenforliggere, redusere støy og synkronisere dataen. Fem datasett ble op-

prettet; ett for hver av de fire tankene og ett for lastnivåene kombinert. Forbehandlingen av

lastnivåene reduserte datamengden med omkring 95 %.

En enkel polynomisk modell ble brukt til å simulere et virtuelt lastnivå som en funksjon av

forholdene i omgivelsene. Den simulerte dataen ble analysert ved hjelp av statisiske metoder

for å verifisere at fremgangsmåten ville avdekke sammenhengene i dataen. Modellene trent

opp på dataen viste store likheter med den ekte modellen og forbedret prediksjonsfeilen med

87.29 %. Både lineære og ulineære modeller ble trent opp på dataen.

Den samme fremgangsmåten ble brukt på den ekte dataen. Den beste lineære og ulineære

modellen reduserte prediksjonsfeilen med henholdsvis 45.20 % og 68.45 %. Resultatene ver-

ifiserte at målinger av omgivelsesforholdene kan brukes til å predikere avdampning, selv

om de underliggende sammenhengene trolig ikke er lineære. Parametersensitiviteten til de

beste lineære modellene ble analysert for å vurdere viktigheten til de forskjellige variablene.

Resultatene viste konsekvent at avdampningen var mest sensitiv til temperatur og bølger,

som forventet på grunn av varmelekkasje og skvulping i tankene. I den beste lineære mod-

ellen ble det avdekket at avdampningen varierer lineært med temperatur, som tidligere vist i

litteraturen, og ulineært med bølger og vind.
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Chapter 1
Introduction

Natural gas (NG) accounts for almost a quarter of the global energy demand, of which 9.8 %

is supplied in its liquid form (LNG) by means of marine transportation1,2. LNG is stored in

heavily insulated tanks as a cryogenic liquid during marine transportation, kept at −162°C

through the process of auto-refrigeration. Due to heat leakage and sloshing in the tanks, boil-

off gas (BOG) is created through the evaporation of LNG at the surface. The excessive BOG

needs to be removed from the tanks to maintain a safe operating pressure. Several methods

exist to take care of the BOG, as it can be (1) released directly into the atmosphere, (2) used

for propulsion by dual-fuel engines, (3) burnt in a gas combustion unit, and (4) reliquefied

and returned to the cargo tanks.

The total LNG trade in 2015 was at 244.8 million tons2. Due to boil-off, as much as 2-6 % of

the total cargo is lost during a typical voyage3. With an average price close to 5 USD per mil-

lion BTU (British thermal unit) worldwide as of April 20174, the cost of boil-off exceeds 1.2

billion USD yearly. Furthermore, if (1) or (3) is used for BOG disposal, a significant amount

of greenhouse gases are released into the atmosphere. Thus there are both economic and

environmental incentives for exploring how ambient conditions, such as wave height and

atmospheric temperature affect the production of BOG.

The relationship between the boil-off phenomenon and ambient conditions is explored us-

ing global atmospheric reanalysis data coupled with sensory data from an LNG tanker. The

considered data spans a period of three years. As the process of boil-off causes the cargo

levels to decrease, the relationship is investigated indirectly through the computed change

in cargo level by means of statistical learning methods such as principal component analysis

(PCA) and linear and nonlinear regression.
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CHAPTER 1. INTRODUCTION

1.1 Background

This thesis is a continuation of a project thesis carried out the fall semester of 2016 where

sensory data from the vessel in consideration were analyzed using several statistical learn-

ing methods. The problem of boil-off was not analyzed specifically, as the project mainly

focused on the understanding, demonstration and visualization of the methods applied.

However, it provided the necessary background for the methodology in this thesis, as well

as a good understanding of the sensory data and vessel in consideration.

To my knowledge, real-world data has not been used to investigate the effect of ambient con-

ditions on the production of BOG in the way presented here. A literature review and a general

background covering the problem of BOG in the LNG supply chain is presented in depth in

Chapter 2.

1.2 Objectives

The main objective is to analyze the relationship between BOG and ambient conditions

through the use of real-world sensory data. The main objective can be split into two parts:

(1) assess the predictive capabilities and relative importance of the ambient conditions on

the change of cargo level, and (2) compare the uncovered relationships with previous work

done.

1.3 Limitations

There are several limitations of importance in the presented work: (1) sensory data from only

one vessel is considered, (2) the exact geometry and measures of the cargo tanks is unknown,

(3) the specific composition and quality of the LNG for each voyage is unknown, (4) boil-off

is investigated through its effect on the cargo levels, (5) the change in cargo level may not

only be contributed to natural boil-off, since the vessel supports the use of forced BOG for

propulsion, and finally (6) real-world sensory data is always to some degree contaminated

by noise and faulty values. Limitations will also be addressed throughout the thesis.

Due to limitations (1)-(6), the results presented here will at best be suggestive of the effect

of ambient conditions on boil-off, but will still provide a solid foundation for how one can
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proceed in future work.

1.4 Approach

The approach is data-driven and can be summarized by the following steps: (1) the relevant

data is extracted, preprocessed and put on a suitable format, (2) a virtual cargo level is sim-

ulated using ambient conditions and a crude model for cargo level change, and (3) both the

simulated and real-world data are analyzed in an unsupervised and a supervised framework

using statistical learning methods. This approach is used to verify the applied methodology

with the simulated data since the underlying model is known. It also allows for comparison

of results between the two cases.

1.5 Structure of the Report

The remainder of the thesis is organized as follows: Chapter 2 gives an overview of the ves-

sel and provides the necessary background for understanding the boil-off phenomenon in

the LNG supply chain. Chapter 3 gives an introduction to methods in statistical learning

and covers the core methods used in the exploratory data analysis. Both supervised and un-

supervised learning will be considered, as well as data preprocessing. Model selection and

validation will also be discussed briefly. Chapter 4 covers the necessary preprocessing of the

data, from raw data to a synchronized, preprocessed dataset ready for analysis. Chapter 5

explores the underlying relationship between the individual cargo levels and the ambient

conditions using methods from Chapter 2. The methods are applied to both ideal, simu-

lated data and real-world data. In Chapter 6 the results are summarized and discussed, and

recommendations for further work are presented.
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Chapter 2
Vessel and Data Description

This chapter gives an overview of the vessel and provides the necessary background for un-

derstanding the boil-off phenomenon in the LNG supply chain. A brief description of the

different datasets is also given. Section 2.1 covers some key aspects of LNG, its properties

and its market, while Section 2.2 presents a literature review of the boil-off phenomenon in

particular. Sections 2.3 and 2.4 describe the vessel and the datasets that will be used. In

Section 2.6 we briefly discuss the temporal coverage of the datasets. Section 2.7 explores

different relevant software platforms.

2.1 LNG Overview

Natural gas (NG) is a nontoxic, colorless, odorless and noncorrosive fossil fuel. It consists

primarily of methane (about 90 %) but commonly contains ethane, propane, butane and

trace amounts of nitrogen and carbon dioxide (CO2). NG is often described as the cleanest

fossil fuel and compared to coal, gas is nearly half as emission intensive on average. In 2014

coal represented 29 % of the total primary energy supply (TPES) and accounted for 46 % of

the global CO2 emissions. Similarly in 2014 NG represented 21 % of the world TPES and ac-

counted for 19 % of the emissions1.

While NG accounts for almost a quarter of the global energy demand, only 9.8 % of the NG

is supplied in its liquid form, LNG as of 20152. Transportation of NG by pipelines is pre-

ferred up to distances of 2000 km, after which the costs grow significantly faster than the

costs of transporting it as LNG5. In its liquid form, the original volume is reduced by a factor

of 600, allowing for more economical transportation over long distances. The LNG supply

chain consists of extraction and production of NG, liquefaction, marine transportation and
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storage of LNG, re-gasification and delivery of NG to consumers5. This thesis will primarily

focus on the marine transportation of LNG. As of January 2016 the global LNG fleet con-

sisted of 410 vessels, with 17 countries exporting and 33 countries importing LNG in 2015.

The global trade of LNG reached 245 million tons in 2015, with an expected growth of 46 %

by 20212.

The composition of the LNG depends on the NG source and the liquefaction pre-treatment

and liquefaction process. Typical thermo-physical properties of LNG are presented in Ta-

ble 2.1. Since the price of LNG depends on its energy content, it is important to determine

the quality and composition of the LNG at the port during unloading and loading. Density is

commonly used for classification of LNG, and we can differentiate between heavy, medium

or light LNG6. The typical composition and density of heavy, medium and light LNG is pre-

sented in Table 2.2.

Parameter Value

Boiling point −160°C to −162°C

Density 425−485 kg/m3

Specific heat capacity 2.2−3.7 kJ/kg°C

Higher heat value 38−44 MJ/m3

Table 2.1: Thermo-physical properties of LNG5.

Composition [%] LNG Light LNG Medium LNG Heavy

Methane 98.00 92.00 87.00

Ethane 1.40 6.00 9.50

Propane 0.40 2.00 2.50

Butane 0.10 0.00 0.50

Nitrogen 0.10 1.00 0.50

Density [kg/m3] 427.74 445.69 464.83

Higher heat value [MJ/m3] 40.64 41.94 44.42

Table 2.2: Classification of LNG by density6.

In general, there exist several types of LNG containment systems. In the International Gas

Carrier Code (IGC Code), Chapter 4 (resolution MSC.370(93)) the International Maritime Or-

ganization (IMO) gives the following classification7:

• Independent tanks: Self-supporting tanks that do not form part of the ship’s hull and
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2.2. THE BOIL-OFF PHENOMENON

are not essential to the hull strength.

• Membrane tanks: Non-self-supporting tanks that consist of a thin liquid and gastight

layer (membrane) supported through insulation by the adjacent hull structure.

• Integral tanks: Tanks that form a structural part of the hull and are influenced in the

same manner by the loads that stress the adjacent hull structure.

• Semi-membrane tanks: non-self-supporting tanks in the loaded condition and consist

of a layer, parts of which are supported through insulation by the adjacent hull struc-

ture.

When carrying liquid low temperature cargo one has to ensure that the cargo is protected

by a partial or complete secondary barrier (except independent tank type C), that proper

insulation is installed to minimize heat flux into the tanks and to prevent cold spots in the

hull structure, and that the vapour pressure P0 in the tanks are kept below a certain limit

(0.025 - 0.07 MPa)7.

During loading, IMO requires a default filling limit of 98 % of the total tank volume at the

reference temperature. This is to prevent the entry of LNG into the ventilation pipeline and

from spilling into the surrounding hull structure. In no case should the filling limit exceed

99.5 % at the reference temperature. During unloading the industry practice is to retain 5 %

of the total tank volume as a heel to maintain the pressure and temperature in the tanks. It

is also normal to use the heel to spray the tanks to keep them cool. Without heel, the tanks

would get warm and excess boil-off would occur at the start of next loading3.

2.2 The Boil-Off Phenomenon

As previously mentioned, LNG is stored as a cryogenic liquid at −162°C in heavily insu-

lated tanks. The liquid remains at its bubble point temperature (BPT), the temperature at

a given pressure where the first bubble of vapor is formed, through a process known as auto-

refrigeration. Due to imperfect insulation and the large temperature differential between

the tank and the ambient, the LNG continuously absorbs heat. The absorbed heat evapo-

rates liquid at the surface with no visible bubble formation3. This is known as boil-off. The

excess BOG is withdrawn from the tank, causing the temperature and pressure to fall. This

reduction again increases the temperature differential and the heat influx. Auto-refrigeration

occurs when the gas is withdrawn at a rate so that cooling exceeds the heat available from
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ambient sources8.

BOG alters the quality of the LNG through a process known as aging or weathering. Table 2.3

presents the boiling point (at atmospheric pressure), higher heat value and molar mass for

the different LNG constituents. From this table, one can see that nitrogen evaporates first if

present in the LNG. Since nitrogen is an inert gas, it causes the higher heating value of the

LNG to increase. The next component to evaporate is methane, which has the lowest molar

mass and highest higher heating value and accounts for roughly 90 % of the volume. As the

lightest constituents of the LNG evaporates first, the LNG becomes heavier over time. Aging

or weathering refers to this process of change in the LNG due to boil-off. Aging is therefore

important in the LNG trade, as it directly affects the quality and thus the pricing of the LNG.

Constituent Boiling point [°C] Higher heat value [MJ/kg] Molar mass [g/mol]

Methane -161.5 55.39 16.04

Ethane -88.8 51.63 30.07

Propane -42.04 50.16 44.10

Butane -0.5 50.34 58.12

Nitrogen -196 N/A (inert gas) 28.01

Table 2.3: Boiling point, higher heat value and molar mass of different LNG constituents9–11.

BOG is present throughout the LNG supply chain. First, LNG is stored in cryogenic tanks with

imperfect insulation both at production plants and receiving terminals. The BOG produced

during storage is called tankage BOG (TBOG). From the production plants, the LNG is loaded

into tankers, and at the other end unloaded to the receiving terminals. BOG produced during

loading and unloading is called jetty BOG (JBOG). BOG is produced in both laden and ballast

conditions during a voyage, called cargo BOG (CBOG) and ballast BOG (BBOG) respectively.

In this thesis, we look specifically into the CBOG and how it relates to ambient conditions.

Most of the BOG in the supply chain is produced during the marine transportation of LNG.

For a 21-day voyage, it is typical with a boil-off rate (BOR) of 0.1− 0.15 % of the full cargo

content per day. While the BOR varies significantly with different voyages, the amount of

BOG produced can be as high as 2− 6 % of the total cargo in a typical voyage3. Dobrota

et al. 5 and Hasan et al. 3 list the following important factors for the production of BOG:

• Heat ingress into cargo tanks due to the large temperature differential.

• Cooling of a ship’s tanks during ballast voyages, achieved by spraying LNG in the upper
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part of the tanks.

• Sloshing of cargo in partially filled tanks due to the action of waves.

• LNG composition and quality, in particular nitrogen content.

• The overall thermal transmittance of the tanks.

• Operating pressure in the tanks.

In particular, Hasan et al. 3 look into the boil-off losses in LNG transportation using an ex-

tensive dynamic simulation of boil-off during loading, unloading, and transportation. By

varying ambient temperature, tank pressure, overall thermal transmittance, LNG composi-

tion and voyage length they provide insightful data on the boil-off dynamics. They show that

nitrogen content has a significant effect on CBOG, with room for optimizing the nitrogen

content for minimized boil-off. Generally, the CBOG reduces as nitrogen content increases.

Furthermore, they show that CBOG increases nonlinearly with operating pressure if nitrogen

is present in the LNG, with stronger nonlinearities for longer voyages. They also show that

CBOG increases linearly with ambient temperature. Sea conditions were neglected in the

simulations due to the complex and stochastic nature of tank sloshing. To our knowledge,

the effect of different sea conditions on boil-off has not been analyzed in the literature.

2.3 Vessel Description

The vessel in consideration is approximately 300 meter long and transports LNG from port

to port. Some common measurements of the vessel are presented in Table 2.4. Here LO A

is the overall length, LPP the length between perpendiculars, BM the molded breadth, DM

the molded depth and dD the design draft. It has four cargo tanks of the membrane type

supported by the adjacent hull structure. The containment system has a total capacity of

162574 m3 and a total primary area of 27526 m2. This roughly translates into a capacity of

around 73000 tons. The capacities and areas of the individual tanks are specified in Table 2.5.

Cargo tank no. 2, 3 and 4 are identical, while tank no. 1 is smaller and has less than half the

capacity of the others. Tank no. 1 is located in the forward part of the ship and tank no. 4

is located in the aft part adjacent to the engine room, as illustrated in Figure 2.1. Figure 2.2

shows a cross-section of the vessel, displaying the octagonal shape of the tank cross-sections.

Unfortunately, we do not have data on the exact geometric measures of the tanks.
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Parameter Length [m]

LO A ≈ 295.0 m

LPP 284.0 m

BM 43.4 m

DM 26.0 m

dD 11.5 m

Table 2.4: Common measurements of the
vessel.

Cargo tank no. Capacity Primary area

1 21395 m3 4529 m2

2 46880m3 7666 m2

3 46880 m3 7666 m2

4 46880 m3 7666 m2

Table 2.5: Cargo tanks capacity and primary
area.

Tank 1Tank 2Tank 3Tank 4Engine
Room

Figure 2.1: Illustration of cargo tank placement on the vessel.

Figure 2.2: Vessel cross-section.

The tanks are protected by the twin-membrane system NO96 developed by GTT12. The

NO96 membrane system is a cryogenic liner directly supported by the vessel’s inner hull.

The liner includes two identical metallic membranes and two independent insulation lay-

ers:
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1. A 0,7 mm thick Invar (36 % nickel-steel alloy) membrane in direct contact with the

LNG.

2. A 230 mm insulation layer made of prefabricated plywood boxes filled with expanded

perlite.

3. A second 0,7 mm thick Invar membrane, causing redundancy in case of leakage.

4. A second 300 mm insulation layer made of prefabricated plywood boxes filled with

expanded perlite.

The insulation space is occupied by nitrogen gas and has a total volume of 10102 m3. The

overall thermal transmittance is U = 0.105 W/m2K. In the capacity calculations for the cargo

handling equipment, it is specified a nominal BOR of 0.150 %/day of the total initial cargo

volume, with a nominal production of 4275 kg/h for 98.5 % tank filling. Furthermore, it is

specified that the LNG filling level should always be between 10 % and 80 % of the cargo tank

height with a normal operating pressure of 1060 mBar. A summary of the LNG containment

system is presented in Table 2.6.

Parameter Value

Tank type Membrane (NO96 by GTT)

Total capacity 162574 m3

Total insulation thickness 0.53 m

Overall thermal transmittance 0.105 W/m2K

Nominal BOR 0.150 %/day

Nominal BOG production 4275 kg/h

Maximum allowable filling 98.5 % of total capacity

Operating pressure 1060 mBar

Table 2.6: Summary of LNG containment system.

The vessel is equipped with a dual-fuel propulsion system with four main generator engines

from Wärtsilä. Two of the engines have an output of 11000 kW and the other two have an

output of 5500 kW, with a total of 33000 kW. The engines can run either on natural gas, light

fuel oil or heavy fuel oil and are designed to provide the same output regardless of the fuel.

This allows the engines to use the excessive BOG for propulsion. To analyze the properties

of the BOG entering the engines, a gas chromatograph (GC) has been installed. The GC

measures various properties of the BOG such as composition, density, and heating value.

When the ship operates at low speeds it is not able to use all the BOG for propulsion and the

11



CHAPTER 2. VESSEL AND DATA DESCRIPTION

remaining BOG is handled by a gas combustion unit (GCU). The GCU burns the excessive

BOG and releases the by-products into the atmosphere. For this particular vessel, during

a laden voyage, as much as 4 tons of BOG is burnt and released into the atmosphere every

hour. In cases where the need for propulsion exceeds that of available BOG, forced BOG can

be taken from the tanks.

2.4 Vessel Data

The vessel data provided consist of two different datasets,

1. Automatic identification system (AIS) data, providing the geographical position of the

vessel in decimal degrees roughly three times per hour.

2. General vessel data, providing various parameters such as cargo levels, speed over

ground and atmospheric temperature with varying logging frequency.

Table 2.7 shows the variables extracted from the datasets. By limiting the analysis to a subset

of the available data, the preprocessing and analysis of the data can be carried out more

efficiently. The different variables have been selected based on the nature of the boil-off

phenomenon and the quality of the data together with insights into the datasets given by

DNV GL.

Dataset Variable Unit

AIS data
Latitude Decimal degrees

Longitude Decimal degrees

Vessel data

Atmospheric temperature C

Atmospheric pressure mbar A

Cargo level, tank 1 m

Cargo level, tank 2 m

Cargo level, tank 3 m

Cargo level, tank 4 m

Table 2.7: Selected variables from the general vessel data.

2.5 Atmospheric and Ocean Wave Reanalysis Data

The wave and weather data used throughout the thesis is extracted from the ERA-Interim

dataset. ERA-Interim is the latest global atmospheric and ocean wave reanalysis produced
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by the European Centre for Medium-Range Weather Forecasts (ECMWF). The dataset covers

the period from 1979 until today and is continuously updated in real time13.

Reanalyses are created with an unchanging data assimilation scheme and models which are

fed all available observations at each time step. With an unchanging framework, the reanal-

ysis provides dynamically consistent states at each time step14. Since one need to know the

initial conditions of a model to perform forecasting, data assimilation is used to estimate the

initial conditions from observations. This is usually a sequential process where the previous

model forecast is compared with new observations, which allow for an update of the model

state15. As described by Dee et al. 14 the key strengths of reanalyses are that they provide

global datasets with consistent spatial and temporal resolution over long periods of time

while incorporating millions of observations into a stable data assimilation system. On the

other hand, one should be aware that observational constraints, either temporal or spatial,

can affect the reanalysis reliability.

The ERA-Interim reanalysis dataset has a temporal resolution of six hours with data given at

00:00, 06:00, 12:00 and 18:00 every day. The data is represented on a 0.125°×0.125° latitude-

longitude grid of the Earth’s surface. Figure 2.3 illustrates the resolution of the spatial grid.

The first coordinate represents the longitudinal position in decimal degrees, while the sec-

ond coordinate represents the latitudinal position in decimal degrees. Positive latitudes are

north of the equator and positive longitudes are east of the Greenwich Meridian. At the equa-

tor one degree longitude corresponds to a longer distance than near the poles, leading to

larger grid cells near the equator, and smaller grid cells near the poles. If the vessel is located

between four vertices of the grid near the equator, the maximum spatial error between the

position of the vessel and a data point will be approximately 10 km.
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Figure 2.3: Longitude latitude grid for ERA-Interim.

Eight useful variables from both the atmospheric and ocean-wave model of the ERA-Interim

dataset have been extracted as shown in Table 2.8. The ocean-wave model uses a total of 30

wave frequencies and 24 wave direction at each grid vertex16. All variables are produced by

the analysis and not the forecast model.

Variable Model Unit

2 metre temperature Atmospheric K

2 metre dew point temperature Atmospheric K

10 metre U wind component (northward) Atmospheric m/s

10 metre V wind component (eastward) Atmospheric m/s

Mean sea level pressure Atmospheric Pa

Mean wave direction Ocean-wave degrees

Mean wave period Ocean-wave s

Significant height of combined wind waves and swell Ocean-wave m

Table 2.8: Selected variables from the ERA-Interim dataset.

2.6 Data Availability

As we are combining data from three different sources, the availability of the different datasets

will determine the size of our combined dataset. The data availability for the sets is visual-

ized in Figure 2.4. The reanalysis data are available every day during the full period, while
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2.7. SOFTWARE PLATFORMS

the AIS data are missing some days. The vessel data are available from the end of May 2014

to December 2016 with several periods of missing data, most notably January and February

2016. Figure 2.5 shows the amount of vessel data stored for each day.
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Figure 2.4: Data availability for the different datasets over the full period.
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Figure 2.5: Available vessel data in kilobytes for each day.

2.7 Software Platforms

Processing and analyzing large amounts of data using statistical methods can be performed

using a variety of programming languages, Interactive Development Environments (IDEs)

and software suites. Some popular languages include R, Python, C/C++, Java and Matlab and

a commonly used software suite is Statistical Analysis System (SAS). Especially Python and

R are popular programming languages for data science, with large communities providing

open-source packages and helpful discussion forums online. In this work, we will utilize
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Python as the main platform for implementation and data analysis. This is due to several

factors:

• Python is a free, interpreted, open-source platform with a large community17.

• Python can be augmented by a huge variety of free, open-source libraries and packages

such as:

◦ Pandas, an open-source Python library with powerful tools for handling and ma-

nipulating large amounts of data in an efficient manner18.

◦ NumPy, a fundamental package for scientific computing with Python. It imple-

ments n-dimensional array objects, linear algebra, the Fourier transform and ran-

dom number capabilities among other things19.

◦ SymPy, a Python library for symbolic mathematics, including features such as

symbolic integration and differentiation20.

◦ SciPy, a collection of numerical algorithms and domain-specific toolboxes, in-

cluding signal processing, optimization, statistics and much more21.

◦ SciKit-Learn, an open-source Python library for machine learning and data min-

ing22.

◦ Matplotlib, an extensive plotting library which produces publication quality fig-

ures in a variety of hardcopy formats and interactive environments across plat-

forms23.

When working with Python we will utilize Spyder, a free, open-source IDE for scientific pro-

gramming in the Python language24.

There are of course several disadvantages with Python compared to other languages and

tools. Since Python is a high-level interpreted language it is much slower than compiled lan-

guages like C and C++, but Python programs are in general shorter and more compact25. R

was specifically developed for statistical use and has a richer set of libraries and packages for

data science and more novel visualization possibilities than Python26. However, some com-

mands in R display poor memory management, while the language is known for its steep

learning curve and at times impenetrable documentation27.
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Chapter 3
Statistical Learning Methods

This chapter presents the theory and interpretation of several methods from the broad field

of statistical learning. Statistical learning is heavily rooted in theoretical statistics and only

a small subset of important methods are selected, with a focus on interpretation and prac-

tical use. Section 3.1 will give a brief introduction, while Section 3.2 covers the most im-

portant tasks in data preprocessing. Learning in the supervised framework is discussed in

Section 3.3, with main a focus on regression analysis and model assessment and validation.

Learning in the unsupervised framework is discussed in Section 3.4, covering principal com-

ponent analysis.

Some parts of this chapter are directly taken from my previous project thesis carried out

the fall of 2016 written about multivariate analysis of ship data28. Most of the mathemati-

cal derivations and explanations are based on The Elements of Statistical Learning by Hastie

et al. 29 . References are made in the text where other sources have been used.

3.1 Introduction

Throughout the thesis, we will let uppercase letters, such as X and Y refer to generic aspects

of variables. Observed values are written in lowercase, such that the i th observation of X is

denoted xi , which can either be a scalar or a vector. Bold uppercase letters represent matri-

ces, such that a set of N samples of p variables is denoted X ∈ RN×p . In general, vectors will

not be bold, except when they have N components. This makes a clear distinction between

the p-vector of variables xi for the i th observation and the N -vector of observations x j for

variable X j .
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CHAPTER 3. STATISTICAL LEARNING METHODS

Thus, we have a set of N samples, also called observations or objects,

X = [x1, x2, · · · , xN ]T , (3.1)

where each observation xi is a vector of p variables, also called features or attributes,

xi = [xi 1, xi 2, · · · , xi p ]T . (3.2)

Alternatively, we can say that the set consists of p variables, X = [x1,x2, · · · ,xp ], where each

variable is a column vector of N samples, x j = [x j 1, x j 2, · · · , x j N ]T . We want to be able to

extract information from the dataset X ∈ RN×p , either by inspecting the structure of X alone

or by exploring its relationship to some other dataset Y ∈RN×q .

When performing exploratory data analysis on a large set of complex, real-world data, it is

common to first explore the data in the unsupervised framework. This can reveal structures

and patterns of the data itself, often providing some important preliminary insight into the

problem at hand. Then a supervised approach can be taken to construct and train models for

prediction and classification. The distinction between the two frameworks will be explained

later.

3.2 Preprocessing

Preprocessing is a necessary step in data mining that involves transforming the raw, real-

world data into an understandable, consistent format. Most statistical learning methods

require some sort of preprocessing to effectively learn from the data. In general, the real

world data is often incomplete, noisy and inconsistent and likely to contain many errors.

Low-quality data will lead to low-quality results30.

For our purpose, we separate the preprocessing steps into data cleaning (Section 3.2.1) and

data transformation (Section 3.2.2). Note that these categories are not mutually exclusive

and that some methods may be seen as a form of data cleaning, as well as data transforma-

tion.

Before covering the preprocessing steps we introduce some summary statistics to describe a

data matrix X ∈RN×p . The central tendency of a variable x j can be measured by its arithmetic
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mean over the N observations,

x j = 1

N

N∑
i=1

xi j , j = 1, . . . , p. (3.3)

Similarly the variance of a variable x j over N observations can be written as

σ2
j =

1

N

N∑
i=1

(xi j −x j )2, j = 1, . . . , p, (3.4)

where the standard deviation σ j of the variable is the square root of the variance.

3.2.1 Data Cleaning

Data gathered by sensor systems are likely to contain noise, outliers, erroneous data and

periods of missing values. Data cleaning methods try to fill in missing values, reduce noise,

remove outliers and correct inconsistencies in the data.

3.2.1.1 Missing Values

Missing values in time series data is a common problem; values may not be measured, val-

ues may be measured but get lost or values may be measured but are considered unusable.

Samples with missing values can either be removed from the dataset, or the missing values

can be imputed using simple univariate techniques31:

• Constant insertion: The missing values are replaced by some predefined constant.

• Mean, mode or median insertion: The missing values are replaced by the variable

mean, mode or median.

• Interpolation: The missing values are replaced by interpolation. Either linear or higher

order interpolation can be used.

With few unstructured missing values, one can simply remove samples or impute the values

by one of the techniques above. However, if the missing values structured in time over a

significant period it can hardly be justified to impute the data using any of these methods.

In such cases, the time period with missing data could be removed entirely, or imputed by

more advanced methods taking into account inter-variable correlations, such as imputation

by regression32.
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3.2.1.2 Noise

Noise is a random error or variance in the data, often assumed to be Gaussian by nature.

Given a time series of a variable one often wants to smooth out the time series by removing

noise. For this purpose we will mention two methods:

Moving Average

A moving average is commonly used with time series data to smooth out high-frequency

variations and highlight lower frequency trends and cycles in the data. It is similar to a low-

pass filter. In a central moving average, a window of odd length k is centered around a data

point, and the value is replaced by the unweighted average of the points within the window.

This is repeated for every data point. By using a central window, instead of only a backward

looking window, we do not introduce a phase lag in the time series.

If we let n = (k − 1)/2 and y(t ) be the time series value at time t , then the central moving

average CMA(t ) can be defined as

CMA(t ) = 1

2n +1

n∑
i=−n

y(t + i ). (3.5)

At the tails of the time series, where values are not defined for the full window, CMA(t ) is ei-

ther not computed, or it is computed using the available values within the window. Figure 3.1

illustrates the central moving average on a sine curve with N = 300 samples and noise, for

k = 5,15,51, and 99 respectively.
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Figure 3.1: Example of moving average smoothing for different values of k.

LOWESS

Locally weighted scatterplot smoothing (LOWESS) is a method of local regression that uti-

lizes least squares fitting for local segments of the data29. In general, LOWESS is a non-

parametric method that for each point locally fits a polynomial of order λ to a fraction α of

the N data points. The data points used for the local fit are weighted, such that the points

closest to the point of estimation are given the most weight. α is known as the smoothing

factor and has a typical range of 0.25− 0.5. Usually, it is sufficient to use a local linear fit,

i.e. λ = 1. Using λ = 0 would turn the method into a weighted moving average. Figure 3.2

shows LOWESS smoothing on a sine curve with N = 300 samples and noise, using λ= 1 and

α= 0.02,0.25,0.5, and 0.9 respectively.
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Figure 3.2: Example of LOWESS smoothing for λ= 1 and different values of α.

3.2.1.3 Outliers

Often the data are contaminated by outliers, i.e. observations or clusters of observations

that are distant from other observations. Outliers can occur by chance in any distribution,

but may also indicate erroneous data due to experimental errors or faulty values inserted

during data handling and storage. In some cases, one may be interested in analyzing the

outliers specifically, but often we seek to remove such observations.

Outlier detection is no straightforward task and various methods exist. In this thesis, out-

lier detection will not be considered in any detail and we propose two simple methods of

detection:

• Range check: A variable is constrained to an allowable range where all observations

outside the range are marked as outliers. This is ideal when working with sensory data

where sometimes non-physical values appear, such as negative cargo levels.

• Nearest-neighbors: The distances from an observation xi to its k-nearest neighbors

are computed and used to determine if the observation is marked as an outlier33.

The range check is applicable for one variable at a time, while the nearest-neighbors algo-

rithm can handle multidimensional observations. Box plots or cluster analyses are also com-
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monly used for outlier detection30. For a more advanced approach, taking into account the

local densities of high-dimensional observations, the local outlier factor is proposed34.

3.2.2 Data Transformation

The range of different variables often varies considerably, and many statistical learning meth-

ods assume mean centered or scaled input variables. Rescaling and standardization can en-

sure that variables measured in different units and magnitudes have equal importance in

the transformed dataset. For linear regression models, it makes the regression coefficients

directly comparable. We let x′
j denote the transformed variable x j .

3.2.2.1 Rescaling

Rescaling simply refers to redefining the scale of a variable, typically within [0,1] or [−1,1].

The general formula is given as

x′
j = (b −a)

x j −min(x j )

max(x j )−min(x j )
+a, (3.6)

where the desired new range is [a,b].

3.2.2.2 Standardization

While rescaling can be useful in many situations it does not mean center the data. An effec-

tive method for both mean centering and scaling the data is standardization. The variables

are transformed into z-scores, ensuring zero mean and unit variance. Standardization is

done by

x′
j =

x j −x j

σ j
. (3.7)

3.2.2.3 Basis Expansions

As will be explained in Section 3.3.1, the linear regression models assume a linear relation-

ship between the inputs X and outputs Y . Often this is not the case, and through a basis

expansion of X one can express more complicated regression relationships. The idea is to
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augment the vector of inputs X with additional variables, which are transformations of X 29.

Some common transformations are:

(a) Polynomial transformations such as X 2, X j Xk etc.

(b) Nonlinear transformations such as log(X ) and
p

X .

One can then create a more flexible regression model which is linear in the new basis expan-

sion of X .

3.3 Supervised Learning

In supervised learning, we are concerned with finding a model that best describes the rela-

tionship between some set of independent variables X ∈ RN×p and some set of dependent

variables Y ∈RN×q . The dependent variables represent outcomes whose variations are being

studied, and the independent variables represent causes or potential reasons for variation.

This leads to models used for prediction or classification. To construct such a model one has

to use a set of training data T , where each sample is said to be a pair consisting of an input

observation xi and a desired output value yi . This is often called labeled data. The model is

then trained to fit the data and can be used to perform classification or prediction on new

unlabeled samples that were not used to train the model. In this thesis, we will explore mod-

els that predict quantitative outcome labels yi , namely regression models.

3.3.1 Linear Methods for Regression

A linear regression model assumes that the regression function E[Y |X ] is linear in the inputs

X1, . . . , Xp . Linear models are simple and it is often easy to interpret how the inputs affect

the outputs. For prediction, they can sometimes outperform fancier nonlinear models, es-

pecially in situations with few training samples or low signal-to-noise ratio29.

3.3.1.1 Ordinary Least Squares Regression

Given the input vector X T = [X1, X2, . . . , Xn], we want to predict the real-valued output Y ∈R.

The linear regression model can be written as
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f (X ) =β0 +
n∑

j=1
X jβ j , (3.8)

where β0 is the intercept of the model, while the β j ’s are the unknown parameters of coeffi-

cients to be determined. This model assumes that the regression function E[Y |X ] is linear,

or that a linear model is a reasonable approximation. The input variables X j can be quanti-

tative inputs, or basis expansions of quantitative inputs, as explained above. No matter the

source of X , the model is still linear in its parameters β j .

With a set of training data (x1, y1) . . . (xN , yN ) we can estimate the coefficientsβ= [β0,β1, . . . ,βp ]T

using the least squares method. That is, choose the coefficients β such that the residual sum

of squares (RSS),

RSS(β) =
N∑

i=1
(yi − f (xi ))2

=
N∑

i=1
(yi −β0 −

p∑
j=1

xi jβ j )2,

(3.9)

is minimized. (3.9) makes no assumptions about the validity of model (3.8), but simply finds

the best linear fit to the data by measuring the average lack of fit. If we let X ∈ RN×(p+1) be a

matrix where each row is an input vector with a 1 in first position, and similarly let y ∈RN be

the vector of outputs in the training set, then the RSS can be rewritten as

RSS(β) = (y−Xβ)T (y−Xβ). (3.10)

If we assume that X has full column rank, we can differentiate (3.10) and set it equal to zero

to obtain the unique solution,

XT (y−Xβ) = 0

β̂= (XT X)−1XT y.
(3.11)

Thus the predicted values at the training inputs are given as

ŷ = Xβ̂= X(XT X)−1XT y, (3.12)
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where ŷi = f̂ (xi ). In the case where X not has full column rank, i.e. the columns of X are

not linearly independent, then XT X is singular and the least squares coefficients β̂ are not

uniquely defined. This occurs if two of the inputs are perfectly correlated.

Let us now assume that the observations yi are uncorrelated with a constant varianceσ2, and

that the xi are nonrandom. The covariance matrix of the least squares parameter estimates

can be derived from (3.11) as

Var(β̂) = (XT X)−1σ2. (3.13)

An unbiased estimate of the variance σ2, i.e. E(σ̂2) =σ2, is typically given by

σ̂2 = 1

N −p −1

N∑
i=1

(yi − ŷi )2. (3.14)

Furthermore, by assuming that (3.8) is the correct model for the mean, and that the devia-

tions of Y around its expected value are additive and Gaussian, we can write

f (X ) =β0 +
n∑

j=1
X jβ j +ε, (3.15)

where ε ∼ N (0,σ2). From (3.15) we get that β̂ ∼ N (β, (XT X)−1σ2), a multivariate normal dis-

tribution. Under these assumptions we can use the distributional properties to form hypoth-

esis tests and confidence intervals for β j . By using the Z-score

z j =
β̂ j

σ̂
p

v j
, (3.16)

where v j is the j th diagonal element of (XT X)−1, we can test the hypothesis that a particular

coefficient β j = 0. For a sufficiently large sample size, N ≥ 100 we can use normal quantiles

for z j . By forming a null hypothesis and an alternative hypothesis

H0 :β j = 0

H1 :β j 6= 0,
(3.17)

we can use z j to reject H0 if the corresponding p-value is less than a given threshold α (typ-

ically 0.05 or 0.01). That is, if the probability of attaining a particular β j is very low under

the assumption of H0, say 5 %, we reject H0 and assume H1. We then say that the result is
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significant. Note that this also corresponds to a false rejection of the null hypothesis in 5 %

of the cases.

Furthermore, by assumingα to be the threshold at each tail of the distribution we can obtain

a 1−2α confidence interval for β j ,

[β̂ j − z(1−α)√v j σ̂, β̂ j + z(1−α)√v j σ̂], (3.18)

where z(1−α) = 1.96 amounts to a 95 % confidence interval under the assumption of additive

and Gaussian residuals.

3.3.2 Nonlinear Methods for Regression

In the previous section, we relied on the assumption that the regression function E[Y |X ] was

linear. However, in regression problems, it is highly unlikely that the true function f (X ) =
E[Y |X ] is linear in X . It will typically be nonlinear and nonadditive in X . Representing f (X )

by a linear model is usually a convenient approximation, allowing for easier interpretation

of the model. Extending our model beyond linearity can give better predictions, but at the

cost of interpretability29. Some nonlinear models, such as neural nets can also be difficult

to tune correctly due to overparameterization29. We will focus on a simple nearest-neighbor

method for regression, a highly unstructured and model-free method.

3.3.2.1 Nearest-Neighbors Regression

In nearest-neighbors regression, we use those observations in the training set T that are

closest to an unseen observation x in input space to estimate an output y . A nearest-neighbors

model will not give you an explicit model but relies on the training set for making predictions

of unseen data. Using the k-nearest neighbor fit, Ŷ can be defined as

Ŷ (x) = 1

k

∑
xi∈Nk (x)

yi , (3.19)

where Nk (x) denotes the neighborhood of x of size k. As the method relies on some measure

of distance between pairs of observations we need to define a metric. Table 3.1 lists some fre-

quently used distance metrics, where S denote the covariance matrix between observations

xi and xk .
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Names Function

Euclidean distance ‖xi −xk‖2 =
√∑

j
(xi j −xk j )2

Manhattan distance ‖xi −xk‖1 =∑
j
|xi j −xk j |

Maximum distance ‖xi −xk‖∞ = max
j

|xi j −xk j |

Mahalanobis distance
√

(xi −xk )T S−1(xi −xk )

Table 3.1: Frequently used distance metrics.

While the model appears to have a single parameter k, the effective number of parameters

can be estimated as N /k and is generally bigger than the p parameters in least-squares mod-

els29. Thus, model complexity decreases with k. With the choice of k and a given metric,

(3.19) is simplistic and easy to understand, but not useful for understanding the nature of

the relationship between X and Y . Nearest-neighbors regression works reasonably well for

low-dimensional features, while it should be avoided for high-dimensional features due to

the bias-variance tradeoff35 (see Section 3.3.3.1).

To choose an optimal k one can utilize cross-validation to find the k that minimizes the ex-

pected test error. This is an efficient and reliable method for selecting k. Cross-validation is

defined in Section 3.3.3.2. Generally, a small k will yield low bias and high variance predic-

tions, while a large k will do the opposite, as one is averaging over larger neighborhoods.

3.3.3 Model Assessment and Selection

The performance of a model relates to its prediction capability on independent test data. In

practice, it is important to assess this performance, as it guides the choice of model and gives

a measure of the quality of the chosen model. To better understand the problem of model

selection we investigate the tradeoff between bias and variance as explained in Chapter 7 in

Hastie et al. 29 .

3.3.3.1 Bias-Variance Tradeoff

Let us consider an output variable Y , a vector of input variables X , and a prediction model

f̂ (X ) estimated from a training set T . To measure the error between Y and f̂ (X ) we intro-

duce the loss function denoted by L(Y , f̂ (X )). A typical choice is the squared error
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L(Y , f̂ (X )) = (Y − f̂ (X ))2. (3.20)

The performance of the model can be assessed by the test error, which is the prediction error

over an independent test set where both X and Y are drawn randomly from their population.

The test error is conditional on the specific training set T that was used to estimate the

model and can be written as

ErrT = E[L(Y , f̂ (X ))|T ]. (3.21)

The test error is also called prediction error or generalization error, as it describes how well

the model generalizes to new, unseen data. While we want to estimate ErrT , in reality, most

methods effectively estimate the expected test error E[ErrT ], which we will call Err. Addition-

ally the training error, a measure of how well our model fits the training data, is the average

loss over the training set

err = 1

N

N∑
i=1

L(yi , f̂ (xi )). (3.22)

Let us now define error due to bias and error due to variance36:

• Error due to bias is the difference between the expected value of our prediction and

the true target value. Bias in general measures how far off our prediction is from the

correct value. A high bias can cause a model to miss relevant relationships between

inputs and target outputs, which is called underfitting.

• Error due to variance is the expected squared deviation of a prediction around its

mean, i.e. the variability of a model prediction. A high variance can lead to the model-

ing of random fluctuations in the training data, which is called overfitting.

Typically, as the model complexity of f̂ increases, the bias decreases while the variance in-

creases. Similarly, for a less complex model, the variance typically decreases while the bias

increases. If we assume Y = f (X )+ε, where ε∼ N (0,σ2), we can mathematically decompose

the expected test error at an input point X = x0 as

29



CHAPTER 3. STATISTICAL LEARNING METHODS

Err(x0) = E[(Y − f̂ (x0))2]

=σ2
ε + [E[ f̂ (x0)]− f (x0)]2 +E[ f̂ (x0)−E[ f̂ (x0)]]2

=σ2
ε +Bias2( f̂ (x0))+Var( f̂ (x0))

= Irreducible Error + Bias2 + Variance,

(3.23)

where the squared error loss function has been used. The first term is the variance of the

target around its true mean and cannot be avoided. The second and third terms are due

to the previously explained bias and variance. Thus when selecting a model f̂α, where α

denotes the model complexity, there exists an optimal α that minimizes the expected test

error Err. This is the problem of the bias-variance tradeoff.

Throughout the thesis, we use cross-validation to estimate Err and perform model selection,

while an independent test set is used to compute ErrT to assess the final chosen model. ErrT

is then compared to the base error rate, i.e. the error over the independent test set when the

mean target value over the training set is used for prediction. This allows us to assess the

relative improvement of a statistical learning method over some baseline error.

3.3.3.2 Cross-Validation

In a data-rich situation, one would typically split the data intro three parts: a training set, a

validation set, and a test set. The training set is used to fit the models, the validation set is

used to estimate the prediction error for model selection, and the test set is used to assess

the test error over an independent test set for the final chosen model29.

However, data is often sparse and instead of splitting the data into three parts one can utilize

cross-validation. Cross-validation is a simple and widely used method to estimate the ex-

pected prediction error Err. We consider K -fold cross-validation. The idea is simple: instead

of setting aside an independent validation set to assess the performance of our model, we

pseudo-randomly split the data in K roughly equal-sized parts and use each of the parts as

a validation set once. This implies that for each part k we fit a model on the remaining K −1

parts and validate it using part k. This process is repeated K times until all the data has been

used for training and all the data has been used for validation. This will give us K estimates

of the prediction error, which allows us to compute the mean value and standard error of the
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estimates. In other words, we obtain an estimate of Err, Êrr. The difference between splitting

the data into three parts, and splitting the data into two parts while using cross-validation

on the training set is illustrated in Figure 3.3

Cross-validation...

Train Val Test

TestTrain

TrainVal

ValTrain

Split in three parts

Split in two parts

Figure 3.3: Cross-validation illustration.

Cross-validation is often used to perform model selection. It can be used to determine an

optimal tuning parameter α, such as k in nearest-neighbors methods. Or it can be used to

determine the optimal subset of input variables to be used in the model. The latter will be ex-

plained in Section 3.3.3.3. In both cases the selection is based on the minimization of cross-

validation error, i.e. the model that results in the lowest Êrr. Often the one-standard-error

rule, advocated by Breiman 37 and Hastie et al. 29 , is used to choose the most parsimonious

model. That is, one chooses the simplest model in terms of model complexity within one

standard error of the best model. The standard error can be computed as

SE(α) = σαp
K

, (3.24)

where σα is the standard deviation of the cross-validation errors over all K folds for a given

model complexity α.

The choice of K is not a straightforward problem. With K = N , also known as leave-one-out

(LOO) cross-validation, the estimation of Err is approximately unbiased but can have high

variance. Additionally, the computational costs increase as K increase. With a lower value
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for K , e.g. K = 2, cross-validation has lower variance, but bias can be a problem depending

on how the performance of the model varies with training size. Both K = 5 and K = 10 are

common practices in the community and is recommended by Kohavi 38 and Breiman and

Spector 39 .

3.3.3.3 Variable Selection

In learning tasks, we are often faced with the problem of variable selection. Especially in

linear regression one may want a simple model with only the most important variables for

ease of interpretation. Again we are facing the bias-variance tradeoff: we seek a good model

in terms of generalization and goodness of fit while penalizing model complexity to avoid

overfitting.

In reality, variable selection is no different from model selection based on parameter tuning.

However, when the number of input variables p gets sufficiently large, the number of possi-

ble subsets 2p −1 gets so large that it is computational exhaustive to check them all. Rather

than searching through all possible subsets of p, which become unfeasible for p much larger

than 40, we can use a greedy algorithm to find a good path through them. This will give us a

set of models indexed by the subset size k. Typically we choose the subset size k that mini-

mizes Êrr.

Forward-stepwise selection is a greedy algorithm that starts with no input variables, only the

intercept, and adds to the model the variable that best improves the fit. In other words, the

predictor that reduces the residual sum of squares the most will be added. This leads to a

sub-optimal, constrained search through all possible subsets, but can be preferred due to

computational considerations, since only 1/2p(p + 1) models are evaluated. As the resid-

ual sum of squares will decrease for each new variable added, some criterion to choose the

optimal subset size k has to be used. Hastie et al. 29 criticizes the traditional use of the F-

statistics to select or remove variables based on their significance, and proposes to rather

use cross-validation as a way to choose the best subset size k. Similarly, statistician William

Briggs in his blog post40 and Flom and Cassell 41 address the known problems with stepwise

regression, both discouraging the use of level of significance to add or drop variables, while

stressing the importance of using cross-validation and independent test sets. A more novel

approach for best subset selection is the branch and bound algorithm proposed by Narendra
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and Fukunaga 42 , which guarantees the optimal solution without the need for an exhaustive

search.

Example

Cross-validation, variable selection and the interplay between model complexity, bias and

variance is best illustrated by an example. Let our true model be f (X1) = sin(X1)+ε with ε∼
N (0,0.25) and 100 equidistant points on x ∈ [−π,π]. The observations are seen in Figure 3.4.

Let us now assume a linear regression model as in (3.8), where the input variables X j are

polynomial transformations of X1. If we let α denote the highest order transformation we

include in our model, it will correspond to our model complexity. We want to find an optimal

model f̂α minimizing Êrr.

4 3 2 1 0 1 2 3 4
X1

3

2

1

0

1

2

3

Y

Noisy Sine Wave
Y = sin(X1) +

Figure 3.4: Sine wave with random noise, 100 observations.

To estimate the expected test error we use 5-fold cross-validation for each f̂α. We let α vary

from 0 (constant model) to 18 (polynomial model of order 18), and use the squared error

loss function. Figure 3.5 shows Êrr and E[err] and their standard errors as a function of α.

For α = 0, a constant model with one parameter β0, we have no variability in the model

predictions and the expected values of our predictions are far off from the target values. In

other words we have low variance and high bias, resulting in underfitting and a high Êrr.

On the opposite side, for α = 18, a high order polynomial model with 19 parameters, we

have high variability in our model predictions around their mean, but the expected value

of a prediction is much closer to its target value. Thus we have low bias and high variance,

resulting in overfitting and a high Êrr. We note that E[err] steadily decreases as a function of

α, as expected. For some 0 ≤ α ≤ 18 there exists an optimal tradeoff between the bias and
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variance, resulting in a minimum Êrr, found to be α= 3, a polynomial model of 3rd degree.

In Figure 3.6 we have plotted the regression models fitted to all the data for α = 0, α = 3,

and α= 18 respectively to illustrate the differences between underfitting, overfitting and the

choice of best model. We clearly see that for α = 0 the model fails to capture important

relationships between X1 and Y , while for α = 18 the model has started to fit the variability

in the target values caused by noise. The model with α= 3 represents the optimal tradeoff.
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Figure 3.5: Cross-validation curve as a function of α, showing the bias-variance tradeoff.
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Figure 3.6: Three regression models for α= 0, α= 3 and α= 18 respectively.
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3.4 Unsupervised Learning

Unsupervised learning is concerned with revealing internal structures in unlabeled data X.

In the unsupervised framework, we observe only the data itself with no relation to a mea-

sured outcome. Without an outcome variable to guide the learning process we call it un-

supervised learning. Our task is rather to describe how the data are organized or clustered.

In the literature, the unsupervised problem is less developed than the supervised one. With

supervised learning, there is a clear measure of success and you can more easily compare

the effectiveness of different methods. With unsupervised learning, there is no such direct

measure of success29.

3.4.1 Principal Component Analysis

A powerful unsupervised method is principal component analysis (PCA), which goes as far

back as 1901, invented by Karl Pearson43, and later independently developed and named by

Harold Hotelling in the 1930s44. In situations where we have a set of p possibly correlated

variables X j , we can transform the variables into a set of linearly uncorrelated variables Zm

for m = 1, . . . , M and M ≤ p. Each Zm is a linear combination of the variables X j and is called

a principal component (PC). The PCs are a sequence of projections of the data, mutually un-

correlated and ordered in variance. In other words, the transformation is defined such that

each PC accounts for as much of the variability in the data as possible, under the constraint

that it is orthogonal to the preceding PCs.

If we consider a mean centered data matrix X ∈ RN×p , the best linear approximation of rank

M of the data can be written as

X = XHM +E, (3.25)

where HM ∈ Rp×p is a projection matrix mapping each observation xi onto its rank-M re-

construction HM xi . The residual matrix E is the difference between the data and its rank-M

reconstruction. The model can be fitted to the data by minimizing the reconstruction er-

ror. Several methods exist for extracting the PCs, where eigenvalue decomposition of the

covariance matrix of X is common. We follow Hastie et al. 29 and use the singular value de-

composition (SVD), a standard decomposition used in numerical analysis45, to define the
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PCs. Using SVD

X = UDVT , (3.26)

it can be shown that HM = VM VT
M where VM ∈ Rp×M consists of the first M columns of V29.

Here U ∈RN×p is an orthogonal matrix (UT U = Ip ) whose columns u j are called left singular

vectors, V ∈Rp×p is an orthogonal matrix whose columns v j are called right singular vectors,

and D ∈Rp×p is a diagonal matrix with diagonal elements d1 ≥ ·· · ≥ dp called singular values.

The columns of UD are the principal components of X, that is the projections of the data X

onto the principal directions. This is also known as the PC scores.

As an alternative to (3.25) we can write

X = ZVT
M +E, (3.27)

where Z ∈ RN×M is the scores matrix and VT
M ∈ RM×p is the loading matrix. Here each row of

Z, zi is the observation xi projected onto the M-dimensional space spanned by the loading

vectors v j . Thus Z consists of the M linearly uncorrelated principal components Zm . As we

increase M the complexity of our model increase, and for M = p we get back our original

data exactly and E = 0.

By projecting the data onto a lower-dimensional subspace, defined by an uncorrelated or-

thogonal basis set, one can more easily inspect and visualize the latent structures and cor-

relations in the data. For example, by projecting the data onto the first two PCs one might

discover natural groupings, or clusters within the data, that otherwise would go unnoticed

in the original high-dimensional data. Furthermore, the loading vectors which are of unit

length describe the relative importance of each original variable in the given PC direction,

with a high absolute value corresponding to high relative importance. To give all input vari-

ables X j equal chance to affect the result, they should be standardized before the PCs are

extracted.

PCA assumes that the data can be represented by a linear model, which might be a crude

estimation. However, it is easy to interpret and might still provide valuable information.

Alternatively, several areas of research have explored how applying a nonlinearity prior to

performing PCA could extend the method, which is known as kernel-PCA46. Furthermore,
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PCA assumes that the mean and variance are sufficient statistics to describe the variables,

i.e. that they entirely describe the probability distribution of a variable. The only zero-mean

probability distribution being described by its variance is the Gaussian distribution. In or-

der for this assumption to hold, the probability distributions of the variables must be Gaus-

sian47. At last, since PCA attributes importance to the variability in the data, it assumes that

components accounting for most of the variation in the data are the most important com-

ponents. Thus the first principal components would account for important dynamics in the

data, while latter components would be attributed more and more to noise.

Example

To illustrate PCA with an example, we used the Iris dataset, a multivariate dataset introduced

by statistician and biologist Ronald Fisher48. The dataset consists of 50 samples from each

of the three species of Iris, Iris setosa, Iris virginica and Iris versicolor. For each sample, four

features, the length and width of the sepals and petals in centimeters are measured. To get an

idea of how the four variables vary with the three species of Iris, one could plot one variable

against another and try to find interspecies differences. Instead, we will use PCA to project

the 4-dimensional data onto an M-dimensional subset, where M ≤ 4. The data were stan-

dardized to have zero mean and unit variance before extracting the principal components.

Figure 3.7 shows the cumulative explained variance as a function of M . By projecting the

data onto a two-dimensional subspace spanned by the principal directions, as much as 95.8

% of the variability in the data was still contained.

0 1 2 3 4
No. of PCs

0

20

40

60

80

100

Ex
pl

ai
ne

d 
Va

ria
nc

e 
[%

]

72.8 %

95.8 % 99.5 % 100.0 %

Cumulative Explained Variance
Explained Variance

Figure 3.7: Cumulative explained variance as a function of no. principal components.

Figure 3.8 shows the data projected onto the first two principal directions. The samples are
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colored by their species, displaying a separation between the species, with an overlap be-

tween versicolor and virginica. Thus, PCA clearly reveals important structures in the data

and allows for visualization and interpretation in a low-dimensional subspace.
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Figure 3.8: PC 1 and PC 2 scores for the Iris dataset.

To further investigate how the PCs are constructed as a linear combination of the original

variables, the loading vectors v j were investigated. In Figure 3.9 each loading vector v j is

represented horizontally as a linear combination of the variables, v j = C1ls +C2ws +C3lp +
C4wp , where |v j | = 1. The size of the circles indicates the absolute size of Ci , while the color

indicates the sign. Blue represents negative, while red represents positive.
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Figure 3.9: Graphical representation of the PC loadings.
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Chapter 4
Preprocessing

This chapter summarizes the necessary preprocessing of the data. Section 4.1 covers the AIS

data, Section 4.2 covers the atmospheric reanalysis data and Section 4.3 covers the vessel

data. Section 4.4 presents the resulting datasets.

4.1 AIS Data

The AIS data were given in CSV-format with a total of 88706 data points during the three-year

period. Each row contained the latitudinal and longitudinal position in decimal degrees with

an associated timestamp. Timestamps were given in the OLE automation date format as a

floating point value counting days since midnight 1899-30-12. Hours and minutes are repre-

sented as fractional days. The timestamps were converted to a "YYYY-MM-DD HH:MM:SS"-

format and rounded off to the nearest second. The average value was stored when several

data points were logged within the same second. This resulted in 88070 data points, or a

0.72 % reduction, with an average of 18 minutes between each logging. The maximum and

minimum time difference between two data points were 8.82 days and 1 second respectively.

Similarly, the median time difference was 8.3 minutes.

The data were resampled at a 10-minute frequency using a moving average filter placed at

fixed positions. Missing periods were replaced using linear interpolation. All values at 00:00,

06:00, 12:00 and 18:00 were extracted, resulting in 4384 data point, or a 95.06 % reduction.
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4.2 Atmospheric Reanalysis Data

The atmospheric reanalysis data were downloaded as two separate datasets, one with pa-

rameters from the atmospheric model and one with parameters from the ocean-wave model.

Monthly, global data were downloaded as NetCDF-4-files with a temporal resolution of 6

hours and a spatial resolution of 0.125×0.125 degrees. In total this amounted to 18.7 GB of

data, where only a fraction of it was extracted and used.

4.2.1 Data Extraction

In total for the three year period, 4383 data points were extracted based on the vessel’s posi-

tion at the timestamps specific for the atmospheric reanalysis data.

With a spatial grid of 0.125×0.125 degrees, the maximum longitudinal and latitudinal error

between the vessel and an actual data point was 0.06 degrees, as expected. The ocean-wave

data in the reanalysis is only available for points in the ocean, resulting in missing values

when the vessel is sufficiently close to land due to the finite resolution of the spatial grid.

Figure 4.1 illustrates this problem, with the vessel going from the Red Sea to the Mediter-

ranean Sea through the Suez Canal. In total this occurred for 419 data points. To fill in the

missing values we used the mean value of the neighboring cells, either using the 8 nearest

neighbors in a 3×3 grid, the 24 nearest neighbors in a 5×5 grid or the 48 nearest neighbors

in a 7×7 grid. If the full 7×7 grid was empty, NaN was inserted. In total this yielded 95 cells

with missing data, corresponding to 2.17% of the data. Table 4.1 summarizes the imputation

of the ocean-wave data.
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Figure 4.1: Vessel close to land, rendering ocean-wave data unavailable.

Parameter Value

Total number of data points 4383

Missing values before imputation 419

Imputed with 3×3 grid 305

Imputed with 5×5 grid 86

Imputed with 7×7 grid 28

Missing values after imputation 95

Missing values before imputation 9.56 %

Missing values after imputation 2.17 %

Table 4.1: Summary of ocean-wave data imputation.

4.2.2 Data Transformation

Two transformations were applied on the atmospheric reanalysis data to obtain new vari-

ables. Specifically, temperature and dew point temperature were used to compute relative

humidity, while the U and V wind components were used to compute the true wind speed

and direction.

4.2.2.1 Relative Humidity

From the ambient and dew point temperatures, one can calculate the relative humidity,

which for all pressures and temperatures is defined as
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RH = 100%
Pw

Pw s
, (4.1)

where Pw is the water vapor pressure and Pw s the water vapor saturation pressure over water

at the gas temperature. The relative humidity cannot reach 100 % when the gas temperature

is below 0°C , or when Pw s is greater than the atmospheric pressure in an unpressurized sys-

tem.

Following49, the water vapour saturation pressure over water and ice can be calculated as

Pw s = A ·10( mT
T+Tn

), (4.2)

with a maximum error of 0.083 % when the temperature −20°C ≤ T ≤ 50°C and A = 6.116441,

m = 7.591386 and Tn = 240.7263K . Using (4.2) we can express the relative humidity as

RH = 100% ·10
m

[
Td

Td+Tn
− T

T+Tn

]
, (4.3)

where Td is the dew point temperature and T is the ambient temperature.

4.2.2.2 True Wind

From the northward and eastward wind components, U and V, one can compute the true

wind speed and direction by finding the length r of the vector defined by the two compo-

nents and its angle α relative to the eastward axis.
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Figure 4.2: True wind speed and direction.
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Figure 4.2 illustrates this transformation. The resulting angle α was defined as 0 degrees for

eastward wind and 180 degrees for westward wind.

4.2.3 Data Validation

To validate the data, the ambient conditions from the reanalysis were compared with the

measurements gathered by the vessel. Figures 4.3 and 4.4 compare the ambient tempera-

ture and pressure from the two sources, showing a strong correlation in the variation. The

Pearson correlation coefficients are r = 0.90 and r = 0.84 for the ambient temperature and

pressure respectively.
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Figure 4.3: Atmospheric temperature from the reanalysis compared with atmospheric tem-
perature measured by the vessel.
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Figure 4.4: Mean sea level pressure from the reanalysis compared with atmospheric pressure
measured by the vessel.

In Figure 4.5 the true wind speed is plotted against the significant wave height. It shows a

strong correlation with r = 0.73 as one would expect since a large portion of the waves is
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wind generated. Similarly, Figure 4.6 shows the true wind direction plotted against the mean

wave direction, with a correlation of r = 0.48. The results indicate consistency within the

reanalysis data.

2014-06 2014-10 2015-02 2015-06 2015-10 2016-02 2016-06 2016-10 2017-02
Time

0

2

4

6

8

W
av

e 
He

ig
ht

 [m
]

Wave Height vs. Wind Speed (r=0.73)
Significant Wave Height

0

5

10

15

20

W
in

d 
Sp

ee
d 

[m
/s

]

True Wind Speed

Figure 4.5: True wind speed and significant wave height.
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Figure 4.6: True wind direction and mean wave direction.

4.3 Vessel Data

The available vessel data were given in six-hour CSV-files containing over 300 variables logged

at varying frequency. The data logging system is constructed such that a variable is logged

every time it changes more than a certain threshold, but with no given fixed logging fre-

quency. We have no direct knowledge about the specific sensors, their sampling frequencies

or the onboard data handling system. From the vessel data, the variables previously listed

in Table 2.7 were extracted with the timestamps rounded off to the nearest second. For mul-

tiple values within one second, the average of value was stored. For all the data available
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within the three-year period, Table 4.2 lists the number of data points for each variable after

the timestamps were rounded off.

Variable No. of measurements

Atmospheric temperature 25674573

Atmospheric pressure 209027

Cargo level, tank 1 16764

Cargo level, tank 2 20275

Cargo level, tank 3 20436

Cargo level, tank 4 24418

Table 4.2: Number of data points in the given period for the selected variables.

4.3.1 Cargo Levels

To analyze the change of cargo level as a function of ambient conditions, the laden condi-

tions were extracted and cleaned. The outlined process was applied to all four cargo levels.

Figure 4.7 shows the cargo level for tank 1. We see a clear separation between laden and bal-

last conditions with loading and unloading during the transitions. By inspecting the cargo

levels, it is evident that the levels are always higher than 20 meters when in laden condition.

All points x < 20 m were removed. Several points from loading and unloading conditions

and obvious outliers were still contained in the data.
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Figure 4.7: Cargo level tank 1, original data.

To isolate the laden conditions an outlier removal using a k-nearest neighbors algorithm was

performed. The timestamps of the measurements were transformed from date-time strings

to floating point numbers between 0 and 50, resulting in a dataset X ∈ RN×2, where N is the
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number of observations. The distances from any sample xi ∈ R2 to its 8-nearest neighbors

were computed, a vector denoted di ∈ R8. The samples were sorted by the Euclidean norm

of the distance vector, ||di ||. Samples with a Euclidean norm larger than a tunable threshold

t were marked as outliers. With a low t , too many points from the laden conditions were

removed, while a high t allowed too many obvious outliers to remain in the dataset. In our

case, for all four cargo levels, using t = 0.23 provided a sufficiently clean extraction of the

laden conditions. Figure 4.8 shows the extraction of voyage 9 from tank 4. Table 4.3 summa-

rizes the number of outliers removed.
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Figure 4.8: Cargo level tank 4, voyage 9.

Tank no. No. of Outliers Percentage Removed

1 76 1.41 %

2 81 0.54 %

3 84 0.62 %

4 92 0.71 %

Table 4.3: Summary of cargo level outlier removal.

From the extracted laden conditions the measurements were separated into specific voyages.

Inspecting the distinct voyages revealed a lot of noise (especially in tank 2, 3 and 4) and

large variations in point density. As can be seen in Figure 4.8 there are several segments

of high frequency, high variance data and several segments of low frequency, low variance

data. In order to model the change in cargo level using ambient conditions, we would like a

smoothed cargo level curve with measurements equally spaced in time. This would give us a

time-independent model where each computed change in cargo level is based on the same

time interval.

More specifically, since the atmospheric reanalysis data were available every six hours at 00h,
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06h, 12h, and 18h, it would be convenient to have cargo level measurements every six hours

at 03h, 09h, 15h, and 21h. For every computed change in cargo level ∆yi over six hours, we

would then have the ambient conditions xi at the midpoint during the period of change.

This is illustrated in Figure 4.9.
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Figure 4.9: Spacing of cargo level and ambient conditions.

The mean time period between two consecutive measurements was 1.07 hours for tank 1,

0.47 hours for tank 2, 0.53 hours for tank 3 and 0.55 hours for tank 4. The difference is due to

fewer segments with high frequency and high variance measurements in tank 1 than the rest.

The cargo levels are resampled at a six-hour frequency, using an open interval on the left side

and a closed interval on the right side. The arithmetic mean of the measurements within the

interval was stored at the right side label with a negative offset of three hours. In other words,

all observations from 00:00 to and included 06:00 were averaged and stored at 03:00 etc., as

shown in Figure 4.10. This works as a central moving average filter placed at fixed positions,

resulting in equally spaced measurements and noise reduction. For intervals containing no

measurements, NaN was inserted. Table 4.4 summarizes the number of measurements in

the individual tanks before and after filtering and the number of missing values after filtering.

As there were few missing values, where each missing value indicated more than six hours

without a measurement, the segments were removed from the data.
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00h 03h 06h 09h 12h

Figure 4.10: Illustration of cargo level resampling using central moving average filtering

No. of measurements Tank 1 Tank 2 Tank 3 Tank 4

Before filtering 6534 14889 13380 12688

After filtering 1175 1185 1186 1185

Missing values after filtering 14 14 14 14

Table 4.4: Cargo level measurements before and after six hour moving average filtering.

Figure 4.11 shows the distribution of∆y for each tank after resampling and filtering. The dis-

tribution curves were estimated using kernel density estimation (KDE) and plotted together

with the mean values and standard deviations. The distributions are narrow-banded and

long-tailed, indicating the presence of noise. The mean values represent the mean change

in cargo level over six hours.
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Figure 4.11: Distribution plots of ∆y after moving average filtering.

To illustrate, Figure 4.13 and 4.14 show the cargo level in tank 3 for two selected voyages. A

clear noise reduction is seen after applying the moving average filter (yellow), but with large

variations still remaining in the data.

LOWESS smoothing was applied to capture the local shape of the curves while sufficiently

removing noise. With varying voyage lengths, the smoothing parameter αv , the fraction of

the total number of data points Nv used in each local fit for voyage v = 1, . . . ,14, was chosen

such that the fraction spans 16 measurements. In some cases the resulting α was too large,

and in other cases too low. Due to this αv was constrained such that 0.15 ≤ αv ≤ 0.35. This

yielded a dynamic αv based on the number of points Nv in each voyage. Figures 4.13 and

4.14 illustrate the LOWESS smoothing (red) for two selected voyages. The distribution of

∆y after applying LOWESS smoothing is shown in Figure 4.12. The standard deviations are

reduced by an order of one magnitude after smoothing, removing the previously seen long

tails.
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Figure 4.12: Distribution plots of ∆y after LOWESS smoothing.
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Figure 4.13: Cargo level tank 1, voyage 3, before and after noise reduction.
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Figure 4.14: Cargo level tank 3, voyage 7, before and after noise reduction.
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4.4 Combined Dataset

The extracted atmospheric reanalysis data were combined with the smoothed cargo levels

for laden conditions. With cargo level measurements at 03h, 09h, 15h, and 21h the computed

difference ∆y was combined with the corresponding ambient conditions at the midpoint of

the period of change. As∆y = yk+1− yk , where yk+1 will be a function of yk due to the geom-

etry of the tanks, yk (the previous cargo level) was added to the datasets.

Table 4.5 shows the structure of the resulting datasets, where Patm is the atmospheric pres-

sure, Tatm the atmospheric temperature, H1/3 the significant wave height, T1 the mean wave

period, vwind the wind speed and RH the relative humidity. The voyage number describes

which of the 14 voyages the measurements belong to. Each observation is time independent

in the sense that they represent the change over equal periods of time.

∆y yprev Patm Tatm H1/3 T1 vwind RH Voyage no.

- - - - - - - - -
- - - - - - - - -
- - - - - - - - -
- - - - - - - - -

Table 4.5: Structure of combined dataset.

With four different tanks with different conditions and small variations in voyage lengths,

five datasets with the given structure were constructed, one for each tank and one for the

cargo levels combined. Table 4.6 summarizes the number of observations in each dataset

and the percentage reduction compared to the original cargo level measurements. This will

constitute the available data when applying unsupervised and supervised learning methods

in Chapter 5. In the unsupervised framework, all variables are standardized to have zero

mean and unit variance, while in the supervised framework ∆y is not transformed as it is

considered as a target variable Y .
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Dataset No. of observations Percentage reduction

Tank 1 1098 93.45 %

Tank 2 1108 94.54 %

Tank 3 1109 94.57 %

Tank 4 1108 95.46 %

Intersection 1089 -

Table 4.6: Number of observations in the combined datasets and their intersection.

52



Chapter 5
Analysis

In this chapter, various methods from Chapter 3 are used to explore the underlying relation-

ship between the individual cargo levels and the ambient conditions obtained from the at-

mospheric reanalysis data. The chapter will be divided into two main parts: In the first part,

Section 5.1, a polynomial model is constructed to simulate cargo levels from ambient condi-

tions. A methodology for regression is employed to recover the relationships in the original

model. In the second part, Section 5.2 the same methodology is applied to real-world data.

5.1 Simulated Data

We assume an ideal situation where the boil-off rate, and thus the observed change in cargo

level can be explained by ambient conditions and cargo level height alone. Since we know

that the crew can use forced boil-off for propulsion and that the LNG composition affects the

boil-off rate, the model will fail to encapsulate the true dynamics. Due to the highly complex

nature of the boil-off phenomenon, dependent on computational fluid dynamics, thermo-

dynamics and stochastic tank sloshing, we are forced to consider a crude model displaying

the relationships in their simplest terms.

5.1.1 Modeling

We assume that the cargo level at step k + 1 can be modeled as the cargo level at step k

plus some variation as a function of ambient conditions and the cargo level at step k itself.

Additive Gaussian noise was assumed, such that
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yk+1 = yk + f (yk , xk )+ε
∆yk+1 = f (yk , xk )+ε,

(5.1)

where xk is a vector of relevant ambient conditions at the midpoint between time steps k

and k +1 (see Figure 4.9), and ε∼ N (0,σ2. The time period between two consecutive values

was set to be 6 hours.

Referring to Figure 2.2, we know that the tanks are rectangular in the alongship direction

while having an octagonal shape in the cross-section. Thus, when the tanks are filled to 98.5

% of its capacity the cargo levels will decrease nonlinearly as a function of yk . Furthermore,

using the results from Hasan et al. 3 , the boil-off rate was assumed to increase linearly with

ambient temperature Tatm. It was also assumed that the boil-off rate decreases linearly with

ambient pressure Patm.

According to linear wave theory, the average energy in a sea state is proportional to the wave

height squared, i.e. E ∝ H 2
1/3. By assuming a fully developed sea state and linear wave the-

ory, waves can be represented in the frequency domain by a wave spectrum S(ω). In the sta-

tistical description of waves, a common spectrum is the empirical Pierson-Moskowitz (PM)

spectrum, proposed by Pierson and Moskowitz 50 . Using the PM spectrum S(ω), one can find

that H 2
1/3 is proportional v4

wind. Thus, it was assumed that the cargo level decrease as a func-

tion of H 2
1/3 and v4

wind, attributed to the energy in a sea state. Furthermore, it was assumed

that to decrease as a function of T 2
1 .

Based on the assumptions a polynomial function of 4th order

f (xk ) =−0.0001yk −0.00002y2
k +0.0005Patm −0.002Tatm

−0.001H1/3 −0.0002H 2
1/3 −0.0008T1 −0.00015T 2

1

−0.001vwind −0.00002v4
wind

(5.2)

was used. No cross-term interactions were included due to simplicity. Relative humidity was

not included in the model, allowing for an assessment of the variable selection methodology.

The different coefficients were chosen by trial and error to simulate a well-behaved y . Since

54



5.1. SIMULATED DATA

the simulated cargo level is dependent on its previous value, yk as an input can not be stan-

dardized to have zero mean and unit variance. Thus the coefficients before the yk terms are

not directly comparable to the other coefficients, whose inputs are standardized.

To assess the relative importance of the input variables in the model we performed a one-at-

a-time sensitivity analysis on the input parameters and ranked the inputs by the sensitivity

index, local sensitivity and output variance, as explained in Appendix A. Proper probability

density functions were assigned to each of the input variables, such that random samples

could be drawn. For each ambient condition, an allowable range was set based on physical

consideration and observed values. Then, for each variable several distributions were fitted

to its histogram, and the distribution yielding the lowest residual sum of squares was cho-

sen. For the cargo level, we assume a uniform distribution within the observed range. The

variables, their ranges and their assigned distributions with parameters are summarized in

Table 5.1. As beta distributions are defined on [0,1], they were scaled and shifted to fit the

histograms. For the half-normal distribution, a scaled and shifted standardized distribution

was used. Figure 5.1 shows the histograms of the ambient conditions and their assigned

distributions.

Variable Variable range Best fit distribution Distribution parameters

y [ymin, ymax] [m] Uniform a = ymin,b = ymax

Patm [97000, 105000] [Pa] Beta α= 108771.64,β= 86.55

Tatm [-10, 50] [C°] Beta α= 1043.16,β= 6.55

H1/3 [0, 9] [m] Half-normal σ= 1

T1 [0, 16] [s] Beta α= 2.29,β= 3.10

vwind [0, 25] [m/s] Beta α= 2.41,β= 9.76

RH [60, 100] [%] Beta α= 14.28,β= 2.87

Table 5.1: Assigned distributions for each input variable.
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Figure 5.1: Histograms of the ambient conditions and their assigned distributions.

2000 samples were randomly drawn from the assigned distributions and standardized. Par-

tial derivatives of (5.2) with respect to each variable were evaluated at the mean input vector

to obtain the local sensitivities. Then model outputs were computed using samples drawn

for one variable at a time, while the rest were kept fixed at their mean value. From the com-

puted outputs, the sensitivity indices and output variances were calculated. Figure 5.2 shows

the normalized sensitivity measures for each variable for comparison. The model is not sen-

sitive to RH as it is not a model input. The lowest ranking model input was Patm, with T1

slightly more influential. y , H1/3, and vwind displayed a similar degree of influence, except

for a higher output variance due to changes in y , possibly accounted for by the fact that it

was sampled from a uniform distribution. The overall highest ranking variable was Tatm.
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Figure 5.2: Normalized sensitivity measures for each variable in the simulation model.

5.1.2 Simulation

To simulate the data the initial cargo level y0 was specified for each voyage. Ten voyages

were simulated using real-world ambient conditions in the period January 2016 to Septem-

ber 2016 with 23 m ≤ y0 ≤ 28 m and varying voyage length. The ambient conditions were

standardized before use. Table 5.2 summarizes the initial conditions for the ten voyages.

Voyage no. Start Time Start Level [m] Voyage Length [days]

1 2016-01-01, 03:00:00 27.2 11

2 2016-01-12, 09:00:00 25.6 16

3 2016-01-28, 21:00:00 26 19

4 2016-02-17, 03:00:00 23.8 18

5 2016-03-06, 15:00:00 27.5 32

6 2016-04-08, 03:00:00 24.3 23

7 2016-05-01, 09:00:00 26.6 27

8 2016-05-28, 21:00:00 27.7 27

9 2016-06-28, 03:00:00 24.7 25

10 2016-08-01, 03:00:00 26.3 17

Table 5.2: Initial conditions for the simulated voyages.

The simulated cargo level displayed a clear nonlinear effect as shown in Figure 5.3. By defin-

ing the signal-to-noise ratio (SNR) as the ratio between the variance of ∆y and the variance

of ε,
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SNR =
σ2
∆y

σ2
ε

, (5.3)

the standard deviation of the noise could be computed for a given SNR. Figure 5.5 shows the

distribution of ∆y for SNR =∞ (without noise), SNR = 10, SNR = 7, and SNR = 2. SNR = 7

was chosen for the final model. Figure 5.4 shows the simulated ∆y with and without noise

and its mean value ∆y =−0.0154 m/6 hours.
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Figure 5.3: Simulated cargo level y .
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Figure 5.4: Simulated change of cargo level ∆y .
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Figure 5.5: Distribution of simulated ∆y for different SNR.

5.1.3 Principal Component Analysis

The simulated data were investigated in the unsupervised framework using PCA. A dataset

X containing the ambient conditions and the simulated y and ∆y was standardized and de-

composed into its principal components. Figure 5.6 shows the cumulative explained vari-

ance of the model as a function of principal components included, i.e. the model complex-

ity.
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Figure 5.6: Cumulative explained variance as a function of principal components.

Figure 5.7 visualizes the loadings for all variables over all components. In PC 1 we see a cor-
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relation between waves and wind, which again is negatively correlated to ∆y . Thus rougher

weather is correlated with a higher boil-off rate. Similarly, on PC 2,∆y is correlated with Patm

and negatively correlated with Tatm and y . The results reflect the polynomial model in (5.2).

Less obvious relationships intrinsic to the weather data were found in the higher compo-

nents and not considered in any depth.

Figure 5.7 shows the loadings in the two-dimensional space spanned by PC 1 and PC 2 to

the left, and PC 2 and PC 3 to the right. Together these components explained 70 % of the

variance in the data. In the left figure, we see a separation of the variables into three groups.

The clusters indicate that warmer weather is correlated with calmer sea states, while ∆y is

negatively correlated with both warmer weather and rougher sea states. This seems to in-

dicate a trade-off between atmospheric conditions and sea conditions in terms of boil-off.

On one hand, warm weather and calm sea lead to boil-off due to temperature, while on the

other hand cold weather and rough sea lead to boil-off due to sloshing. The figure on the

right clearly shows the inverse relationship between Patm and Tatm and similarly between∆y

and y .

In Figures 5.9 and 5.10, the samples in X are projected onto the two-dimensional space

spanned by two components. Figure 5.9 shows the scores in PC 1 and PC 2 colored by a selec-

tion of the variables. Similarly, Figure 5.10 shows the scores in PC 2 and PC 3. This was used

to further visualize the relationships explained above. Samples where ∆y is most negative,

i.e. where the BOR is highest, have a large y and low pressure with either high temperature

or rough sea conditions.
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Figure 5.7: PC loadings for all components.
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Figure 5.9: PC 1 and PC 2 scores colored by different variables.
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Figure 5.10: PC 2 and PC 3 scores colored by different variables.
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5.1.4 Regression Analysis

For the regression analysis on the simulated data we considered four cases, as presented in

Table 5.3: In case 1 and 2 the original, untransformed variables were used as inputs, with the

ocean-wave data removed in case 2. In case 3 and 4 the first two cases were repeated with a

polynomial basis expansion of the input variables. while allowing 2nd, 3rd and 4th polyno-

mial transformations of the input variables. 2nd, 3rd, and 4th-degree polynomial transfor-

mations were considered without cross-terms. This resulted in 7 inputs in case 1, 5 in case 2,

28 in case 3 and 20 in case 4.

All variables Ocean-wave data missing

Untransformed
variables

Case 1 Case 2

Polynomial
variables of 4th

degree
Case 3 Case 4

Table 5.3: Four cases used for regression analysis on the simulated data.

All input variables were standardized. The data were shuffled and split into 70 % training

data and 30 % independent test data. Linear regression models were trained for all four

cases with forward-stepwise selection. Nearest-neighbors regression models were trained

only in case 1 and case 2 without variable selection. The training data were used for model

selection by 10-fold cross-validation, and the selected model was trained on the full training

set. The test data were used at the end to evaluate the chosen model. All six chosen models

were compared in the end based on the reduction of the base error rate.

5.1.4.1 Linear Regression

For each of the four cases, we used the one-standard-error rule to choose the subset size k,

as the gain of adding new terms to the model was minimal for k > 4. Note that selecting

the best model instead of the parsimonious model had minimal effects on the reduction of

the base error rate. Moreover, the parsimonious models tended to use fewer variables than

the best models. The differences between the best models and the parsimonious models are

shown in Table 5.4 and provides justification for using the one-standard-error rule in terms

of model performance and simplicity.
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Best model Parsimonious model

Subset size k
Reduction of

base error rate
Subset size k

Reduction of
base error rate

Case 1 6 87.29 % 6 87.29 %

Case 2 5 64.75 % 4 64.92 %

Case 3 10 87.26 % 6 87.29 %

Case 4 16 69.94 % 15 68.84 %

Table 5.4: Differences between parsimonious and best models in the four cases.

The cross-validation training and test errors as a function of subset size k are shown in Fig-

ures 5.11 to 5.14. The prediction error of the best model plus its standard error is plotted

as horizontal broken lines, while the simplest model below this limit, i.e. the parsimonious

model is indicated by the vertical broken lines. The results from the chosen linear regression

models are summarized in Table 5.5.
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Figure 5.11: Case 1: Cross-validation errors as a function of subset size k with parsimonious
model selection.
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Figure 5.12: Case 2: Cross-validation errors as a function of subset size k with parsimonious
model selection.
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Figure 5.13: Case 3: Cross-validation errors as a function of subset size k with parsimonious
model selection.
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Figure 5.14: Case 4: Cross-validation errors as a function of subset size k with parsimonious
model selection.

Case
Subset
size k

CV error
Êrr ·106

Test error
ErrT ·106

Reduction
of base

error rate

Selected variables (in
selected order)

1 6 1.3321±0.0770 1.4333 87.29 % H1/3, Tatm, y , Patm, vwind, T1

2 4 3.9380±0.1381 3.9570 64.92 % Patm, vwind, Tatm, y

3 6 1.3321±0.0770 1.4333 87.29 % H1/3, Tatm, y , Patm, vwind, T1

4 15 3.4344±0.1613 3.5148 68.84 % See (5.4)

Table 5.5: Summary of the linear regression models selected for each of the four cases.

Patm, y4, vwind, Tatm, v2
wind, RH , P 2

atm,

T 2
atm, T 4

atm, RH 2, RH 3, P 4
atm, P 3

atm, y, y3
(5.4)

The difference between case 1 and 2 and case 3 and 4 was 22.4 % and 18.5 % respectively

in terms of the reduction of the base error rate, attributed to the missing ocean-wave data.
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Even though polynomial variables were available in case 3, the parsimonious model selec-

tion resulted in the same model as in case 1. Furthermore, we see that y , Tatm, Patm, and

vwind were selected by all models while H1/3 was selected first when ocean-wave data were

available. Interestingly, Patm was selected first in case 2, despite the low ranking in terms of

sensitivity. In case 4 three RH terms were selected, even though it is not a direct input to the

true model. We keep in mind that the forward-stepwise selection is a greedy algorithm that

does not consider all possible subsets.

For the best model, obtained in case 3, Figure 5.15 shows four diagnostic plots commonly

used to investigate the regression results. The true target values were plotted against the

predicted values for both the training and test set, as shown in the upper left figure. Points

closer to the straight line indicate better predictions.

The upper right figure shows the distribution of the residuals, which are assumed to be Gaus-

sian and additive. However, we can see that the residuals are slightly skewed with a heavy

right tail. To graphically check the normality of the residuals normal Q-Q plot was used, as

shown in the lower right figure. The residual quantiles were compared against the theoretical

quantiles of a normal distribution, illustrated by the red line. The degree of fit between the

two distributions is given by the coefficient of determination R2. In the Q-Q plot, the heavy

right-side tail was identified in the upper right corner.

The residuals were also plotted against the predicted values to investigate the structure of

the residuals. To check for linearity, additivity, and homoscedasticity, i.e. that the variance

of the residuals is constant, we checked for a mean residual of zero with equal spreading on

either side, which seemed to be the case.
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Figure 5.15: Case 3: Residual diagnostic plots.

The best linear model was compared with the original model (5.2). Table 5.6 presents the re-

gression coefficients, their confidence intervals and p-values for the model obtained in case

3. The intercept β̂0 represents the expected value of ∆̂y when all input variables are set to

their means. Thus, the change in cargo level was modeled as a variation around its estimated

mean ∆̂y =−0.015411, which was close to the true mean ∆y =−0.0154. All coefficients were

highly significant at α = 0.05 (colored green). β̂2 and β̂5 were directly comparable to the

coefficients for Tatm and Patm in (5.2) and showed an error of 1.25 % and 2.8 % respectively.

Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.015411 [−0.015502,−0.015319] 0

H1/3 β̂1 -0.001316 [−0.001551,−0.001082] 8.27 ·10−26

Tatm β̂2 -0.002025 [−0.002127,−0.001923] 2.20 ·10−165

y β̂3 -0.001452 [−0.001550,−0.001354] 7.99 ·10−117

Patm β̂4 0.000514 [0.000408,0.000621] 4.82 ·10−20

vwind β̂5 -0.000946 [−0.001116,−0.000775] 2.80 ·10−25

T1 β̂6 -0.000822 [−0.000995−0.000650] 1.60 ·10−19

Table 5.6: Estimated coefficients with 95 % confidence intervals and p-values for case 3. Sig-
nificant variables at α= 0.05 colored green.
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By repeating the same procedure as in Section 5.1.1 we calculated the sensitivity measures

for each input variable in the regression model, as shown in Figure 5.16. The results were very

similar to that of Figure 5.2, with a small decrease for vwind and a small increase for Tatm. The

regression model is further compared to the true model by plotting each variable against

the computed output while the rest are kept at their mean values, as shown in Figures 5.17

and 5.18. Both models displayed similar plots, except for nonlinearities for large values of

H1/3 and vwind in the true model. However, the results strongly suggest that the best linear

regression model is able to capture the relevant relationships in the data.
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Figure 5.16: Normalized sensitivity measures for each variable in the linear regression model.
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Figure 5.17: Input-output plots for the true model while varying one variable at a time.
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Figure 5.18: Input-output plots for the regression model while varying one variable at a time.

5.1.4.2 Nearest-Neighbors Regression

For the nearest-neighbors regression models only case 1 and case 2 with untransformed in-

puts were considered. The optimal number of neighbors k was chosen by 10-fold cross-
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validation. The cross-validation training and test errors as a function of k are shown in Fig-

ure 5.19 and 5.20.
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Figure 5.19: Case 1: Cross-validation errors as a function of subset size k with model selec-
tion.
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Figure 5.20: Case 2: Cross-validation errors as a function of no. of neighbors k with model
selection.

Table 5.7 summarizes the results obtained with the two nearest-neighbors models. Com-

pared to the linear regression models, the nearest-neighbors model was inferior for case 1,

and slightly better for case 2, i.e. when ocean-wave data were missing. However, the nearest-

neighbors models do not offer any mathematical model for further interpretation or analysis.

Furthermore, as the true relationship is linear in the simulated data, the nearest-neighbors

models were not expected to perform significantly better than the linear ones.

Case
No. of

neighbors k CV error Êrr ·106
Test error
ErrT ·106

Reduction of base
error rate

1 6 2.7713±0.3538 2.5416 79.57 %

2 6 3.9973±0.5656 3.9447 68.29 %

Table 5.7: Summary of the nearest-neighbors regression models selected for the first two
cases.
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5.2 Real-World Data

Using the datasets explained in Section 4.4, the same methodology as presented in Sec-

tion 5.1 was applied to investigate the relationship between the real cargo level measure-

ments and the ambient conditions. The voyage lengths for each of the 14 voyages for each

dataset is summarized in Table 5.8, together with the mean change in cargo level over all

voyages. The shortest and longest voyage are colored in red and green respectively, ranging

from 4 to 39 days. The cargo level decreases faster in tank 1, as it is smaller than the other

three, while the differences between tank 2, 3 and 4 are less clear. One hypothesis is that the

steeper change in tank 3 and 4 is due to forced boil-off used for propulsion, as these tanks

are located closer to the engine room. Figure 5.21 shows the position of the vessel during the

three-year period.

Figure 5.21: Vessel position during the three year period.
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Voyage no. Voyage length [days]

Tank 1 Tank 2 Tank 3 Tank 4 Combined
1 30.00 30.25 30.00 30.00 29.50
2 21.00 20.75 20.75 20.75 20.75
3 10.25 10.50 10.50 10.25 10.25
4 24.25 24.00 24.00 24.25 23.75
5 7.25 7.00 7.00 7.00 7.00
6 22.00 22.25 22.25 22.25 22.00
7 32.25 32.25 32.25 32.50 32.25
8 24.50 24.25 24.50 24.50 24.25
9 39.25 39.25 39.25 39.00 39.00

10 16.25 16.00 16.00 16.00 16.00
11 12.25 19.00 19.00 19.00 12.25
12 25.25 25.25 25.50 25.25 25.25
13 17.25 17.25 17.25 17.25 17.25
14 4.50 4.75 4.75 4.75 4.50

∆y [m/6h] -0.017440 -0.011232 -0.013281 -0.014620 -0.056501

Table 5.8: Summary of voyage lengths and mean change in cargo levels for each dataset. The
shortest and longest voyage are colored red and green respectively.

With cargo level measurements from four different tanks, the differences between the indi-

vidual tanks were investigated. Figure 5.22 shows each ∆y plotted together for each voyage.

An overall similarity between the∆y was seen, as expected, but also some deviations such as

∆y1 in voyage 11 and ∆y4 in voyage 14. Figure 5.23 provides pairwise plots between the ∆y

with scatterplots in the upper triangle, univariate distributions on the diagonal and kernel

density estimation curves in the lower triangle. Based on the scatterplots and KDE curves

we see that they tend to vary with each other, although with a significant spreading. Due to

the bimodal nature of the distributions of both∆y3 and∆y4, their corresponding scatterplot

and KDE curves display some separation between the samples. The cause of the bimodal

tendency is unknown, but again it could be due to the forced boil-off mentioned above.
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Figure 5.22: Plots of ∆y for the individual tanks for each voyage
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Figure 5.23: Pair plots of ∆y for the individual tanks. The lower triangle shows bivariate
kernel density estimations, while the upper triangle shows scatterplots. The diagonal shows
univariate distributions.

5.2.1 Principal Component Analysis

For the principal component analysis, the cargo level measurements over all four tanks were

combined, such that∆ytot =∆y1+∆y2+∆y3+∆y4 and ytot = y1+y2+y3+y4. Thus, the overall

effects were investigated rather than differences between the individual tanks. A dataset

X with ∆ytot, ytot, and the ambient conditions was standardized and decomposed into its

principal components. Figure 5.24 shows the cumulative explained variance of the model
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as a function of principal components included. Note that for the six first components the

explained variance was lower than for the dataset with the simulated cargo level.
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Figure 5.24: Cumulative explained variance as a function of principal components.

Figure 5.25 visualizes the loadings for all variables over all components. In PC 1 we see a cor-

relation between the wave and wind variables, but almost no influence from∆ytot in contrast

to the simulated data. In PC 2 we see the same tendencies as in the simulated data, with∆ytot

being correlated with Patm and negatively correlated with ytot and Tatm. The loadings in the

first three components are further visualized in Figure 5.26. Together these components ex-

plained 66.1 % of the variance in the data. The results were similar for that of the simulated

data, except that PC 2 and 3 are reversed.

The samples were projected onto the three first components, as shown in Figure 5.27 and

5.28. Again we see that samples where ∆y is most negative, i.e. where the BOR is highest,

have a large y and low pressure with either high temperature or rough sea conditions.
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Figure 5.25: PC loadings for all components.
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Figure 5.27: PC 1 and PC 2 scores colored by different variables.
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Figure 5.28: PC 2 and PC 3 scores colored by different variables.
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5.2.2 Regression Analysis

Regression analyses were performed on five separate datasets: for each individual tank and

all tanks combined, i.e. with ∆ytot and ytot. For each dataset we considered three cases:

(1) Linear regression with untransformed input variables without variable selection, termed

the simple model. (2) Linear regression with transformed input variables and variable selec-

tion, termed the parsimonious model. (3) Nearest-neighbors regression with untransformed

input variables without variable selection. The transformed input variables consisted of (in

addition to the untransformed variables) 2nd order, 3rd order, inverse and logarithmic trans-

formations of all variables and cross-term interactions between all ambient conditions. Thus

the input set consisted of 7 variables in (1) and (3) and 50 variables in (2).

To limit our scope in this chapter the linear regression models were summarized by the num-

ber of regressors and the reduction of the base error rate. Appendix B presents more detailed

results for each model. The obtained linear models were analyzed and compared using sen-

sitivity analysis to assess the relative importance of each variable.

All input variables were standardized. The data were shuffled and split into 70 % training

data and 30 % independent test data. For (2) and (3) the training data were used for model

selection with 10-fold cross-validation. The final models were trained on the full training set.

The test data were used at the end to evaluate the each model. All models were compared

based on the reduction of the base error rate.

5.2.2.1 Linear Regression

The linear regression models are summarized in Table 5.9, where the simple and parsimo-

nious models are compared for each dataset. The best and worst model of each type is col-

ored green and red respectively. Large differences between the tanks were seen, with specif-

ically poor results for tank 4, but also considerably lower for tank 2. This may indicate that a

linear model was not able to capture the relationships between the change in cargo level and

the ambient conditions, or that important variables were missing, such as forced boil-off or

LNG composition.
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Tank no. Model type No. of
variables

Reduction of
base error rate

Note

1
Simple 7 30.69 % See Appendix B.1.1

Parsimonious 15 44.66 %

2
Simple 7 11.99 % See Appendix B.1.2

Parsimonious 12 19.75 %

3
Simple 7 17.81 % See Appendix B.1.3

Parsimonious 19 45.20 %

4
Simple 7 3.10 % See Appendix B.1.4

Parsimonious 11 5.89 %

Combined
Simple 7 20.70 % See Appendix B.1.5

Parsimonious 14 30.81 %

Table 5.9: Regression summary for each individual tank and combined dataset.

As an initial assessment of variable importance, we looked at the variable selections for the

parsimonious models, as shown in Figure 5.29. Of the cross-terms, H1/3 ·T1 was selected

in all models, while Tatm · H1/3 was selected in three models. Of the transformed variables

y−1, T 3
1 and log(T1) were selected in four models each, while y3, T 3

atm, H 3
1/3, and H−1

1/3 were

selected in three models each. vwind and RH were least frequently selected.
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Figure 5.29: Heatmaps of variable selection for all parsimonious models.

Figures 5.30 to 5.34 present the results of the sensitivity analyses for both model type for each

dataset. All models except tank 4 and the parsimonious model for tank 2 showed a signifi-

cant sensitivity in y , indicating that a lot of the variation in ∆y can be contributed to y . This

was expected due to the geometry of the tanks. Of the ambient conditions, Tatm, H1/3, and

T1 seemed to dominate, while Patm, vwind, and RH were often ranked low. The results are in
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agreement with the heatmaps above.

The three best performing models, the parsimonious models for tank 1, 3 and all tanks com-

bined, were sensitive to y to some extent, while H1/3 and T1 were the dominant ambient

conditions. With the exception of all tanks combined, the models were least sensitive to RH .

The remaining ambient conditions displayed a similar influence. This suggests that tank

sloshing through the action of waves is most important for the overall BOG production on

the vessel.
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Figure 5.30: Sensitivity analysis of simple and parsimonious model for tank 1.
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Figure 5.31: Sensitivity analysis of simple and parsimonious model for tank 2.
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Figure 5.32: Sensitivity analysis of simple and parsimonious model for tank 3.
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Figure 5.33: Sensitivity analysis of simple and parsimonious model for tank 4.
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Figure 5.34: Sensitivity analysis of simple and parsimonious model for all tanks combined.

Figure 5.35 shows the input-output plots for the parsimonious model for tank 3 using ran-

domly sampled input data and varying one variable at a time. The boil-off was found to vary
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linearly with Tatm, as shown by Hasan et al. 3 . It also showed a linear relationship with y ,

Patm, and RH . Both H1/3 and T1 showed strong nonlinearities. If we look at the joint fre-

quency between H1/3 and T1, shown in Table 5.10, the largest values of H1/3 occur for some

intermediate value of T1, before decreasing again for large values of T1. This explains the

shape of T1 in Figure 5.35. vwind also showed a nonlinear relationship with ∆y , but it is not

clear why high wind speeds corresponded to a lower BOR, as vwind is strongly correlated with

H1/3.
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Figure 5.35: Input-output plots for the parsimonious model for tank 3 while varying one
variable at a time.

Significant
wave
height [m]

Mean wave period [s]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sum
1 6 134 363 462 260 128 69 68 22 12 4 1 1 1530
2 97 211 248 277 281 208 138 63 16 19 4 1562
3 3 75 140 154 122 134 89 27 5 749
4 24 100 78 42 38 26 10 1 319
5 11 29 24 15 4 1 84
6 1 7 14 6 1 1 31
7 3 5 8
8 3 3
9 1 1

Sum 6 134 363 559 474 451 510 615 466 367 224 76 36 6 4287

Table 5.10: Joint frequency table of H1/3 and T1. The row and columns headers represent the
upper limits of the intervals.
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5.2.2.2 Nearest-Neighbors Regression

The nearest-neighbors regression models were trained on the untransformed inputs. The

optimal number of neighbors k was chosen by 10-fold cross-validation. Table 5.11 summa-

rizes the obtained models for each dataset, with the best and worst model colored green and

red respectively. Compared to the linear models the nearest-neighbors models consistently

performed better. As before models for tank 2 and 4 showed the poorest results, but with

a significant improvement from the linear models (over 40 % higher reduction of the base

error rate for tank 4). This may confirm the assumption that the real model is nonlinear in

nature.

Tank no.
No. of

neighbors k CV error Êrr ·104
Test error
ErrT ·104

Reduction of base
error rate

1 5 0.1322±0.0107 0.1322 68.45 %

2 4 0.1191±0.0076 0.1087 52.6 %

3 2 0.1672±0.0170 0.1710 61.64 %

4 4 0.1657±0.0111 0.1718 48.27 %

Combined 4 1.6486±0.1129 1.4966 62.95 %

Table 5.11: Summary of the nearest-neighbors regression models selected for each dataset.

83



CHAPTER 5. ANALYSIS

84



Chapter 6
Summary and Recommendations for

Further Work

This chapter summarizes and discusses the results before providing recommendations for

further work. Section 6.1 summarizes the work done, how it was done and clearly states my

own contributions. Section 6.2 presents the main results and conclusions obtained through-

out the thesis, while Section 6.3 discusses the results and possible applications of the work.

Section 6.4 completes the thesis with recommendations for further work.

6.1 Contributions

All the necessary work for this thesis was carried out with scripts written in Python. The nec-

essary extraction, conversion, and handling of data were scripted using mainly Pandas and

NumPy. I converted over 3000 CSV-files with more than 1 TB sensory data from the vessel

to 10.5 GB of h5 files containing the relevant variables. A separate package called netCDF4

was used for reading the reanalysis data on NetCDF-4 format. The preprocessing of the data

was done with Pandas and Scikit-learn, and I implemented nearest-neighbors outlier de-

tection using a nearest-neighbors algorithm from Scikit-learn. LOWESS smoothing was per-

formed with the StatsModels package. All principal component and regression analyses were

carried out using Scikit-learn, but my own implementation of linear regression and one by

StatsModels were used for comparison. The sensitivity analyses were implemented by me,

drawing on SciPy for statistical distributions and random sampling. Furthermore, an ap-

plication for visualizing the location of the vessel on Google Maps was implemented using

the Bokeh package. All plots were made using either Matplotlib or Seaborn. All results were
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acquired by writing scripts and analyzed thereafter. I selected all methods, algorithms and

their parameters and used example data to gain a full understanding of them.

6.2 Summary and Conclusions

The relationship between ambient conditions and the boil-off of LNG during marine trans-

portation has been investigated using a data-driven approach. The data consisted of sensory

data collected from a vessel over a three year period coupled with ambient conditions from

an atmospheric reanalysis. As the process of boil-off causes the cargo levels to decrease,

the relationship was investigated indirectly through the computed change in cargo level by

means of statistical learning methods.

A review of the relevant literature on the boil-off phenomenon was presented in Chapter 2

together with descriptions of the vessel and the different datasets. A review of relevant sta-

tistical learning methods and data preprocessing with examples was presented in Chapter 3.

The necessary preprocessing was covered in Chapter 4. Six vessel specific variables mea-

suring cargo levels and atmospheric conditions were successfully coupled with atmospheric

reanalysis data using the available AIS data. Consistency was checked for within the reanal-

ysis data and between the datasets. The laden conditions were extracted and cleaned using

nearest-neighbors outlier removal, central moving average filtering and LOWESS smooth-

ing to obtain equally spaced and smoothed measurements. The preprocessing reduced the

amount of AIS data and cargo level measurements by about 95 %. The changes in cargo level

over six hours were computed and combined the ambient conditions. Five datasets were

constructed: one for each of the four tanks, and one for all tanks combined. The datasets

spanned 14 distinct voyages, containing 9 variables and about 1100 data points.

In Section 5.1 a crude polynomial model was used to simulate a virtual cargo level using the

real ambient conditions. The simulated data were inspected in the unsupervised framework

using PCA to verify the relationships in the model. Both linear and nearest-neighbors regres-

sion models were trained on a portion of the data and assessed on an independent test set.

Model selection was performed with 10-fold cross-validation. The best linear model reduced

the base error rate with 87.29 % and successfully uncovered the important relationships in
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the model, but without accounting for higher order terms. Sensitivity analysis was used to

compare the best regression model against the true model, and effectively showed strong

similarities between the models. The nearest-neighbors models did not outperform the lin-

ear ones, as the true model was linear.

The same methodology was employed on the real-world data in Section 5.2. Compared to

the simulated data, inspections with PCA revealed lower explained variance in the real-world

data and smaller contributions from ∆y in the first components. However, the results were

overall similar. Linear and nearest-neighbors regression were performed on all five datasets.

Simple linear models using untransformed input variables without variable selection were

constructed and compared to parsimonious models using transformed input variables and

variable selection. Large differences between the tanks were uncovered, with 45.20 % re-

duction of the base error rate for tank 3 and only 5.89 % for tank 4 using the parsimonious

models. The nearest-neighbors models outperformed the linear models overall, with a re-

duction of the base error rate varying from 48.27 % for tank 4 to 68.45 % for tank 1. Overall

the ambient conditions displayed predictive capabilities on boil-off.

The variable selection during model training showed that cargo levels, waves, and ambient

temperature were most frequently selected. To further assess the relative importance sen-

sitivity analyses were performed on the obtained linear models. The cargo level was found

to be overall important in tank 1 and 3 while contributing less in explaining the variation in

tank 2 and 4. Waves and temperature were consistently the highest ranking ambient condi-

tions. Of these two, the results suggested that sloshing, either through H1/3 or T1 was more

important than the temperature differential.

6.3 Discussion

The data-driven methodology employed proved effective for the simulated data when the

true model was linear and the signal-to-noise ratio reasonably low. However, the models

trained on the real-world data displayed poorer performance and the nearest-neighbors

models outperformed the linear ones. This could indicate that a linear model of the true

relationship is an oversimplification. Large differences were uncovered between the tanks

but remain unexplained.
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Variable selection was performed using a greedy sub-optimal algorithm, not taking into ac-

count all possible subsets. By using an algorithm for optimal subset selection, more certain

results can be obtained. Sensitivity analyses were performed while varying one variable at

a time to assess the importance of the variables. This method does not take into account

variable correlations or interactions but only look at one variable at a time. This is a limita-

tion, as we know that the ambient conditions are correlated while interaction terms could

be important. Moreover, only a portion of the full input space is sampled using this method.

However, the results gave good indications about variable sensitivity and importance.

The results presented were found to be in agreement with the literature. Waves and ambient

temperature were found to be the most important factors, in agreement with Dobrota et al. 5

and Hasan et al. 3 . A linear relationship between Tatm and boil-off was uncovered, in agree-

ment with Hasan et al. 3 .

Referring to the limitations listed in Section 1.3, only one vessel was considered in this the-

sis. To account for bias, data from several vessels should be analyzed. Moreover, with only

14 voyages during the three-year period and a limited temporal resolution of the reanaly-

sis data, the size of the training data was constrained. More voyages would provide a richer

dataset and possibly reduce voyage specific bias. As boil-off was investigated indirectly through

the change of cargo levels, and tank sloshing indirectly through wave height and wave pe-

riod, the results are prone to uncertainty. By using direct measurements of the boil-off

amount and vessel motions, the same relationships could be uncovered to strengthen the

results.

By investigating the ambient conditions it is clear that rough sea conditions are correlated

with lower temperatures and the other way around. As such, there seems to be a tradeoff be-

tween ambient temperature and waves in terms of boil-off. One possible application of the

type of models presented here would be to incorporate forecast weather data in path plan-

ning to optimize boil-off losses. This would require a significant amount of training data

beforehand, and would only be viable at most one week ahead due to uncertainties in the

forecasts. Nevertheless, as more than 1.2 billion USD are lost due to boil-off each year, it

could prove useful, especially for a future fleet of autonomous LNG tankers.
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6.4 Recommendations for Further Work

For further work, I will differentiate between (1) recommendations with regards to the data,

and (2) recommendations with regards to the methodology.

For (1) I would recommend to

(a) Use data gathered from more than one vessel to varify the relationships across vessels.

(b) Use data of operating pressure and nitrogen content in the tanks, as these are known

to have a significant effect on boil-off.

(c) Use data on vessel motions to assess directly the importance of tank sloshing on boil-

off.

(d) Use data that directly measures the amount of BOG. This would remove the depen-

dency on cargo level as one could use the BOR directly.

For (2) I would recommend to

(a) Implement the bound and branch algorithm for variable selection to ensure that the

optimal subset of variables is selected without the need for exhaustive computation.

(b) Perform global sensitivity analyses of the obtained models using Monte Carlo simula-

tion, as this will sample the full input space and account for higher order interactions.

(c) Assess the performance of other nonlinear regression models such as support vector

machines or neural nets.

For long-term recommendations, it would be interesting to look into the possibilities of us-

ing weather forecast data in path planning for optimizing of boil-off losses.
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Appendix A
Sensitivity Analysis

This appendix provides some simple methods to assess the parameter sensitivity of a model.

Among the reasons to conduct a sensitivity analysis, we highlight the need to determine51:

1. which parameters are insignificant and can be eliminated from the final model.

2. which inputs contribute most to output variability.

3. which parameters are most highly correlated with the output.

4. what consequence results from changing a given input parameter.

In general, sensitivity analyses are conducted by51:

(a) defining the model and its input and output variables.

(b) assigning probability density functions to each input parameter.

(c) generating input data through random sampling and computing output data.

(d) assessing the influences and relative importance of each input/output relationship.

After a sensitivity analysis has been carried out, the input variables can be ranked according

to their measure of sensitivity, i.e. how much influence they have on the model output. Sev-

eral different methods exist to perform such a ranking, and their results may differ. Different

results among the lower ranking variables are not of practical concerns, as it is the variables

that consistently achieve a high ranking that has the highest influence on the model output.

A.1 One-at-a-time Sensitivity Measures

We can distinguish between methods that explore the full parameter space and methods that

explore a subset of the parameter space. A popular variance-based method that explores the
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full input space is given in Sobol 52 , where the Monte Carlo methods are used to estimate

the sensitivity indices. Here we will focus on methods that explores a subset of the param-

eter space by varying one variable at a time (OAT) while keeping the others at their mean

value. Assuming that we have assigned probability density functions to our input variables,

generated input data and computed the corresponding output values, we will look at three

OAT sensitivity measures: the sensitivity index (SI), the local sensitivity (LS) and the output

variance σ2
y .

A.1.1 Sensitivity Index

The sensitivity index for a variable is calculated as the fractional difference in the output

when the input variable is varied from its minimum value to its maximum value. Thus, the

sensitivity index for a variable x j is given as

SI j = Dmax

Dmax −Dmin
, (A.1)

where Dmin and Dmax represent the minimum and maximum output values, resulting from

varying x j over its entire range51.

A.1.2 Local Sensitivity

The local sensitivity determines how small perturbations near a fixed point in input space

x0 = [x0
1 , . . . , x0

p ]T influence the output value53. To obtain the local sensitivities, we compute

the partial derivatives

A j = ∂y

∂x j

∣∣∣∣
x=x0

, (A.2)

and evaluate them at x0. For our purpose the fixed point will be equal to mean input values,

i.e. x0 = [x1, . . . , xp ]. To compare the magnitudes of the local sensitivity, the absolute value of

A j is used.

A.1.3 Output Variance

The output varianceσ2
y j is a measure of the variance of the output when one input at a time is

varied over its entire range while the other variables are kept fixed at their mean values. Thus,
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the output variance for a variable x j provides a measure of how varying x j causes variability

in y .
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Appendix B
Regression Results

This appendix supplements Section 5.2 and presents all the results from both the linear and

nearest-neighbors regression models for all five datasets.

B.1 Linear Regression Results

For the simple models, the coefficients, their confidence intervals and p-values and the re-

gression diagnostic plots are presented. For the parsimonious models, additional plots with

variable selection through cross-validation and input-output plots are presented.
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B.1.1 Tank 1

Simple Model

Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.017469 [−0.017809,−0.017130] 0

y β̂1 -0.003084 [−0.003441,−0.002727] 6.77 ·10−55

Patm β̂2 0.000573 [0.000178,0.000968] 0.00454

Tatm β̂3 -0.000682 [−0.001116,−0.000247] 0.00214

H1/3 β̂4 -0.000969 [−0.001944,0.000007] 0.0518

T1 β̂5 -0.000311 [−0.001017,0.000395] 0.388

vwind β̂6 -0.000170 [−0.000848,0.000507] 0.622

RH β̂7 0.000318 [−0.000046,0.000683] 0.0871

Reduction of base error rate: 30.69 %

Table B.1: Tank 1 simple model: Estimated coefficients with 95 % confidence intervals. Sig-
nificant variables are colored green.
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Figure B.1: Tank 1 simple model: Regression diagnostic plots.

Parsimonious Model
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Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.017469 [−0.017778,−0.017161] 0

y−1 β̂1 26.6276 [20.9373,32.3179] 3.88 ·10−19

Tatm ·H1/3 β̂2 0.001224 [0.000027,0.002421] 0.0450

P−1
atm β̂3 0.000661 [−0.000034,0.001356] 0.0624

T −1
1 β̂4 -0.018141 [−0.028446,−0.007835] 5.80 ·10−4

T1 ·RH β̂5 0.000012 [−0.003827,0.003851] 0.995

H−1
1/3 β̂6 -0.000957 [−0.001559,−0.000355] 0.00186

H1/3 ·T1 β̂7 -0.005352 [−0.007753,−0.002951] 1.38 ·10−5

Tatm ·RH β̂8 -0.000993 [−0.001705,−0.000281] 0.00635

H 3
1/3 β̂9 0.001546 [0.000589,0.002504] 0.00158

T 3
1 β̂10 -0.008899 [−0.014980,−0.002818] 0.00418

log(T1) β̂11 -0.059067 [−0.087667,−0.030468] 5.55 ·10−5

Patm ·T1 β̂12 0.050853 [0.026244,0.075461] 5.50 ·10−5

log(y) β̂13 53.1939 [41.8896,64.4983] 2.53 ·10−19

y3 β̂14 26.7827 [21.1793,32.3862] 7.40 ·10−20

y2 β̂15 -53.3512 [−64.5686,−42.1337] 1.10 ·10−19

Reduction of base error rate: 44.66 %

Table B.2: Tank 1 parsimonious model: Estimated coefficients with 95 % confidence inter-
vals. Significant variables at α= 0.05 are colored green.
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Figure B.2: Tank 1 parsimonious model: Variable selection by cross-validation.



APPENDIX B. REGRESSION RESULTS

0.04 0.03 0.02 0.01 0.00 0.01
Observed

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

0.005

Pr
ed

ict
ed

Predicted vs. Observed
Training data
Test data

0.015 0.010 0.005 0.000 0.005 0.010 0.015
Residual

0

20

40

60

80

100

Co
un

t

Residual Distribution
KDE
Histogram

0.030 0.025 0.020 0.015 0.010 0.005 0.000
Predicted

0.02

0.01

0.00

0.01

0.02

Re
sid

ua
ls

Residuals vs Predicted

3 2 1 0 1 2 3
Theoretical Quantiles

0.010

0.005

0.000

0.005

0.010

Re
sid

ua
ls

Normal Q-Q
R2 = 0.9933

Tank 1 - Regression Diagnostics

Figure B.3: Tank 1 parsimonious model: Regression diagnostic plots.
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Figure B.4: Tank 1 parsimonious model: Input-output plots.



B.1. LINEAR REGRESSION RESULTS

B.1.2 Tank 2

Simple Model

Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.011242 [−0.011538,−0.010946] 0

y β̂1 -0.001410 [−0.001714,−0.001106] 7.76 ·10−19

Patm β̂2 0.000484 [0.000136,0.000832] 0.00646

Tatm β̂3 -0.000250 [−0.000629,0.000129] 0.196

H1/3 β̂4 -0.002122 [−0.002987,−0.001257] 1.77 ·10−6

T1 β̂5 0.000932 [0.000317,0.001546] 0.00302

vwind β̂6 0.000674 [0.000077,0.001272] 0.0270

RH β̂7 0.000091 [−0.000225,0.000406] 0.573

Reduction of base error rate: 11.99 %

Table B.3: Tank 2 simple model: Estimated coefficients with 95 % confidence intervals. Sig-
nificant variables are colored green.
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Figure B.5: Tank 2 simple model: Regression diagnostic plots.
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Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.011242 [−0.011526,−0.010958] 0

y−1 β̂1 0.001492 [0.001198,0.001786] 4.84 ·10−22

H 2
1/3 β̂2 0.000299 [−0.002200,0.002798] 0.815

T 3
atm β̂3 -0.000921 [−0.001402,−0.000441] 1.79 ·10−4

T 3
1 β̂4 -0.035154 [−0.055154,−0.015153] 5.91 ·10−4

T1 β̂5 -0.090304 [−0.13525,−0.045354] 8.76 ·10−5

H−1
1/3 β̂6 0.000407 [−0.000563,0.001378] 0.410

H1/3 · vwind β̂7 0.001652 [0.000308,0.002997] 0.0161

H1/3 ·T1 β̂8 -0.006476 [−0.009975,−0.002978] 2.98 ·10−4

T −1
atm β̂9 -0.000585 [−0.001033,−0.000137] 0.0106

T 2
1 β̂10 0.10298 [0.051998,0.15396] 8.02 ·10−5

log(T1) β̂11 0.025160 [0.010996,0.039323] 5.16 ·10−4

log(H1/3) β̂12 0.002173 [0.000433,0.003912] 0.0145

Reduction of base error rate: 19.75 %

Table B.4: Tank 2 parsimonious model: Estimated coefficients with 95 % confidence inter-
vals. Significant variables at α= 0.05 are colored green.
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Figure B.6: Tank 2 parsimonious model: Variable selection by cross-validation.
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Figure B.7: Tank 2 parsimonious model: Regression diagnostic plots.
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Figure B.8: Tank 2 parsimonious model: Input-output plots.
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B.1.3 Tank 3

Simple Model

Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.013256 [−0.013677,−0.012834] 0

y β̂1 -0.001577 [−0.002015,−0.001138] 3.71 ·10−12

Patm β̂2 0.001172 [0.000671,0.001674] 5.29 ·10−6

Tatm β̂3 -0.001347 [−0.001894,−0.000800] 1.63 ·10−6

H1/3 β̂4 -0.000803 [−0.002019,0.000413] 0.195

T1 β̂5 0.000230 [−0.000625,0.001086] 0.597

vwind β̂6 0.000426 [−0.000420,0.001272] 0.323

RH β̂7 -0.000531 [−0.000977,−0.000085] 0.0198

Reduction of base error rate: 17.81 %

Table B.5: Tank 3 simple model: Estimated coefficients with 95 % confidence intervals. Sig-
nificant variables are colored green.
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Figure B.9: Tank 3 simple model: Regression diagnostic plots.
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Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.013256 [−0.013611,−0.012901] 0

Tatm ·RH β̂1 0.000192 [−0.000344,0.000729] 0.481

y−1 β̂2 -0.667838 [−1.038393,−0.297282] 4.28 ·10−4

y3 β̂3 0.263433 [0.140886,0.385981] 2.74 ·10−5

P 3
atm β̂4 -0.970372 [−3.919349,1.978605] 0.518

log(y) β̂5 -0.932355 [−1.425017,−0.439692] 2.18 ·10−4

H 3
1/3 β̂6 -0.000122 [−0.001330,0.001087] 0.843

P−1
atm β̂7 0.334692 [−0.642450,1.311834] 0.502

P 2
atm β̂8 1.304714 [−2.620813,5.230240] 0.514

v3
wind β̂9 0.000051 [−0.000861,0.000963] 0.912

T 3
1 β̂10 -0.138753 [−0.198992,−0.078514] 7.12 ·10−6

Patm ·T1 β̂11 0.117198 [0.034925,0.199471] 0.00530

H−1
1/3 β̂12 -0.000320 [−0.001129,0.000488] 0.437

T 2
1 β̂13 0.430188 [0.242080,0.618296] 8.25 ·10−6

T −1
1 β̂14 0.050272 [0.019444,0.081101] 0.00143

T1 β̂15 -0.601217 [−0.847707,−0.354726] 2.02 ·10−6

log(T1) β̂16 0.245103 [0.114590,0.375616] 2.43 ·10−4

H1/3 ·T1 β̂17 -0.009696 [−0.015939,−0.003453] 0.00238

H1/3 β̂18 0.128378 [0.058820,0.197936] 3.11 ·10−4

Patm ·H1/3 β̂19 -0.121141 [−0.190095,−0.052187] 5.94 ·10−4

Reduction of base error rate: 45.20 %

Table B.6: Tank 3 parsimonious model: Estimated coefficients with 95 % confidence inter-
vals. Significant variables at α= 0.05 are colored green.
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Figure B.10: Tank 3 parsimonious model: Variable selection by cross-validation.
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Figure B.11: Tank 3 parsimonious model: Regression diagnostic plots.
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Figure B.12: Tank 3 parsimonious model: Input-output plots.

B.1.4 Tank 4

Simple Model

Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.014598 [−0.014959,−0.014238] 0

y β̂1 -0.000282 [−0.000653,0.000090] 0.137

Patm β̂2 0.000013 [−0.000414,0.000441] 0.952

Tatm β̂3 -0.001038 [−0.001501,−0.000574] 1.26 ·10−5

H1/3 β̂4 -0.001431 [−0.002468,−0.000394] 0.00690

T1 β̂5 0.001453 [0.000718,0.002187] 1.12 ·10−4

vwind β̂6 -0.000219 [−0.000936,0.000497] 0.548

RH β̂7 0.000223 [−0.000158,0.000604] 0.251

Reduction of base error rate: 3.10 %

Table B.7: Tank 4 simple model: Estimated coefficients with 95 % confidence intervals. Sig-
nificant variables are colored green.
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Figure B.13: Tank 4 simple model: Regression diagnostic plots.

Parsimonious Model

Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.014598 [−0.014950,−0.014247] 0

Tatm · vwind β̂1 0.006965 [0.004460,0.009470] 6.48 ·10−8

Patm ·RH β̂2 0.000253 [−0.002710,0.003217] 0.867

Tatm ·H1/3 β̂3 -0.010022 [−0.013446,−0.006598] 1.32 ·10−8

T 3
atm β̂4 0.009051 [0.005203,0.012899] 4.57 ·10−6

v2
wind β̂5 -0.000416 [−0.001898,0.001065] 0.518

T 2
atm β̂6 -0.015766 [−0.021032,−0.010500] 6.22 ·10−9

Tatm ·T1 β̂7 0.010591 [0.007051,0.014130] 6.34 ·10−9

log(T1) β̂8 -0.007000 [−0.009423,−0.004578] 1.98 ·10−8

H1/3 ·RH β̂9 0.014341 [0.008987,0.019695] 1.89 ·10−7

vwind ·RH β̂10 -0.007206 [−0.010340,−0.004072] 7.39 ·10−6

H1/3 ·T1 β̂11 -0.005912 [−0.008893,−0.002932] 1.07 ·10−4

Reduction of base error rate: 5.89 %

Continued on next page
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Variable Coefficient Value 95 % confidence interval p-value

Table B.8: Tank 4 parsimonious model: Estimated coefficients with 95 % confidence inter-
vals. Significant variables at α= 0.05 are colored green.
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Figure B.14: Tank 4 parsimonious model: Variable selection by cross-validation.
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Figure B.15: Tank 4 parsimonious model: Regression diagnostic plots.
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Figure B.16: Tank 4 parsimonious model: Input-output plots.

B.1.5 All Tanks Combined

Simple Model

Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.056929 [−0.058080,−0.055778] 0

y β̂1 -0.006665 [−0.007855,−0.005475] 3.43 ·10−26

Patm β̂2 0.001872 [0.000522,0.003221] 0.00661

Tatm β̂3 -0.003196 [−0.004658,−0.001733] 2.03 ·10−5

H1/3 β̂4 -0.006528 [−0.009779,−0.003277] 8.82 ·10−5

T1 β̂5 0.003178 [0.000890,0.005466] 0.00654

vwind β̂6 0.001107 [−0.001158,0.003371] 0.338

RH β̂7 -0.000666 [−0.001887,0.000556] 0.285

Reduction of base error rate: 20.70 %

Table B.9: All tanks combined simple model: Estimated coefficients with 95 % confidence
intervals. Significant variables are colored green.



B.1. LINEAR REGRESSION RESULTS

0.10 0.08 0.06 0.04 0.02 0.00
Observed

0.10

0.08

0.06

0.04

0.02

0.00

Pr
ed

ict
ed

Predicted vs. Observed
Training data
Test data

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Residual

0

5

10

15

20

25

30

Co
un

t

Residual Distribution
KDE
Histogram

0.08 0.07 0.06 0.05 0.04 0.03
Predicted

0.04

0.02

0.00

0.02

0.04

0.06

Re
sid

ua
ls

Residuals vs Predicted

3 2 1 0 1 2 3
Theoretical Quantiles

0.04

0.02

0.00

0.02

0.04

0.06

Re
sid

ua
ls

Normal Q-Q
R2 = 0.9843

All Tanks Combined - Regression Diagnostics

Figure B.17: All tanks combined simple model: Regression diagnostic plots.

Parsimonious Model

Variable Coefficient Value 95 % confidence interval p-value

- β̂0 -0.056929 [−0.058000,−0.055858] 0

y−1 β̂1 30.499 [19.075,41.922] 1.67 ·10−7

P 3
atm β̂2 0.004429 [0.0015954,0.007262] 0.00219

Tatm ·H1/3 β̂3 0.001710 [−0.006144,0.002725] 0.450

T 3
1 β̂4 0.022959 [0.015474,0.030444] 1.84 ·10−9

Tatm · vwind β̂5 0.001863 [−0.000548,0.00427] 0.130

H 3
1/3 β̂6 0.001683 [−0.001678,0.00504] 0.326

T 3
atm β̂7 -0.000232 [−0.002550,0.00209] 0.845

T1 ·RH β̂8 -0.010179 [−0.014850,−0.00551] 1.95 ·10−5

H1/3 ·T1 β̂9 -0.029125 [−0.044830,−0.01342] 2.78 ·10−4

H1/3 β̂10 0.20996 [0.061173,0.35875] 0.00568

Patm ·H1/3 β̂11 -0.19436 [−0.342953,−0.04578] 0.0104

y3 β̂12 97.721 [62.923,132.519] 3.71 ·10−8

Continued on next page
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Variable Coefficient Value 95 % confidence interval p-value

y2 β̂13 -255.96 [−348.228,−163.698] 5.40 ·10−8

y β̂14 188.74 [119.847,257.630] 7.89 ·10−8

Reduction of base error rate: 30.81 %

Table B.10: All tanks combined parsimonious model: Estimated coefficients with 95 % con-
fidence intervals. Significant variables at α= 0.05 are colored green.
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Figure B.18: All tanks combined parsimonious model: Variable selection by cross-validation.
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Figure B.19: All tanks combined parsimonious model: Regression diagnostic plots.



B.2. NEAREST-NEIGHBORS REGRESSION RESULTS
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Figure B.20: All tanks combined parsimonious model: Input-output plots.

B.2 Nearest-Neighbors Regression Results

Figures B.21 to B.25 shows the cross-validation training and test error as a function of neigh-

bors k for all five datasets.
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Figure B.21: Tank 1: Cross-validation errors as a function of subset size k with model selec-
tion.
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Figure B.22: Tank 2: Cross-validation errors as a function of subset size k with model selec-
tion.
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Figure B.23: Tank 3: Cross-validation errors as a function of subset size k with model selec-
tion.
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Figure B.24: Tank 4: Cross-validation errors as a function of subset size k with model selec-
tion.



B.2. NEAREST-NEIGHBORS REGRESSION RESULTS

036912151821
No. of neighbors k

0.00000

0.00005

0.00010

0.00015

0.00020

CV
 E

rro
r

All Tanks Combined - Model Selection

Training
Validation

Figure B.25: All tanks combined: Cross-validation errors as a function of subset size k with
model selection.
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