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Preface

The work described in this master thesis is a part of the study program Engineering and ICT

with a specialization within Marine Cybernetics at NTNU. This project thesis is carried out

spring semester of 2017. With backgrounds both in ICT and Marine Technology this thesis is

used to learn necessary theory and methods to extract and analyze information from marine

related data.

The thesis is written for NTNU in cooperation with DNV-GL, who provided the data and

relevant background information.

This thesis assumes the reader has basic knowledge of marine vessels and statistical analysis.
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Summary and Conclusions

In this thesis the relation between vessel performance and various vessel and environmen-

tal variables were investigated using a data-driven approach. A total of 12 variables such as

speed over ground and days since drydock were considered with data for almost three years.

The performance loss of the vessel were calculated by measuring the vessel performance

and comparing it to an expected performance, calculated by the use of computational fluid

dynamics. The relation between performance loss and time were investigated in particular

to assess the hull and propeller performance of the vessel. Statistical models were trained to

predict the performance loss from the 12 variables. The models were analyzed to assess the

relative importance of the different variables.

The relevant data were extracted and put on a suitable format. After this the data were pre-

processed by the use of synchronization, variable redefinitions, outlier removal, mean cen-

tering and normalization. The prepared dataset were analyzed using principal component

analysis to reveal structures in the unlabeled dataset, and to verify known relations.

Performance loss were simulated for three different cases. Several statistical learning meth-

ods as well as outlier removal were preformed on the simulated models. This was done to

verify that the methodology would reveal the relationships in the simulated data and such

that we could compare the simulated models with the real-world data. Both the linear and

non-linear regression models were able to uncover the relationships in the simulated data,

and improved the prediction error rate by as much as 86.8 % for the most complex simulated

model.

The same methodology used on the simulated models were applied to the real-world data. A

second degree polynomial regression model reduced the prediction error rate by 97.8 %, bet-

ter then expected. The non-linear nearest-neighbor regression only reduced the prediction

error rate by 66.2 %. The variables that were most important in the least-squares regression

model were the variables related to the propulsion system of the vessel. When finding the

best subset of variables, the propulsion variables were always present. The time variables

where not able to reduce the prediction error rate significantly and it was impossible to draw

any strong conclusions on the effect of time on the performance of the vessel. Thus, no

prognosis model which can be utilized in maintenance could be made.
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Sammendrag og Konklusjoner

I denne masteroppgaven ble forholdet mellom fartøyets ytelse og diverse fartøy- og miljø-

variabler undersøkt ved hjelp av en datadrevet tilnærming. Totalt ble 12 variabler, som hastighet

over bakken og dager siden tørrdokk, vurdert med data fra nesten tre år. Fartøyets ytelse ble

beregnet ved å måle fartøyets ytelse og sammenligne det med en forventet ytelse, beregnet

ved bruk av numerisk fluiddynamikk. Forholdet mellom ytelsestap og tid ble undersøkt ek-

stra nøye for å kunne vurdere fartøyets skrog- og propellytelse. Statistiske modeller ble trent

til å forutsi ytelsestap fra de 12 variablene. Modellene ble analysert for å vurdere den relative

betydningen av de forskjellige variablene.

De relevante dataene ble hentet ut og satt på et passende format. Etter dette ble dataene

forhåndsbehandlet ved bruk av synkronisering, variable omdefinisjoner, fjerning av uten-

forliggere, gjennomsnittlig sentrering og normalisering. Det forberedte datasettet ble anal-

ysert ved bruk av prinsipal komponent analyse for å avsløre strukturer i datasettet og for å

verifisere kjente relasjoner.

Ytelsestap ble simulert i tre forskjellige tilfeller. Flere statistiske læringsmetoder, samt fjern-

ing av utenforliggere ble utført på de simulerte modellene. Dette ble gjort for å verifisere at

metodene ville avsløre forholdene i de simulerte modellene, slik at vi kunne sammenligne de

simulerte modellene med den virkelige dataen. Både de lineære og ikke-lineære regresjons-

modellene greide å avdekke forholdene i de simulerte modellene, og forbedret prediksjons-

feilraten med så mye som 86.8 % for den mest komplekse simulerte modellen.

Den samme metoden som ble brukt på de simulerte modellene, ble brukt på den virkelige

dataen. En annengrads polynomisk regresjonsmodell reduserte prediksjonsfeilraten med

97.8 %, bedre enn forventet. Den ikke-lineære nærmeste nabo-regresjonen reduserte bare

prediksjonsfeilraten med 66.2 %. Variablene som var viktigste i andregrads regressjonsmod-

ellen var variablene knyttet til fremdriftssystemet til fartøyet. Når vi fant den beste delmeng-

den av variabler var fremdriftsvariablene alltid tilstede. Tidsvariablene var ikke i stand til å

redusere prediksjonsfeilraten vesentlig, og det var umulig å trekke noen sterke konklusjoner

om effekten av tid på fartøyets ytelse. Dermed kunne ingen prognosemodell i forhold til

vedlikehold lages.
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Chapter 1
Introduction

Monitoring vessel performance has been an interest ever since the steam engine. Evaluation

of vessel performance is getting increased attention of ship owners because the bunker ex-

pense is becoming an increasing part of the total service costs (Carlton, 2011). As the service

costs are increasing, together with pollution and environmental aspects becoming a contro-

versial topic in the marine industry, the urge to increase the vessel performance has never

been higher. In IMO (2009) it is estimated that the shipping industry accounted for 3.3 %

of the global CO2 emissions in 2007. If ship owners are given a better understanding of the

vessel performance they might care more and start working actively to reduce their footprint

on the environment. IMO (2009) also states that more than 90 % of global trade is carried by

sea and that this number is only expected to increase, and hence there will be more fuel used

for shipping.

A great deal of fuel can be saved by optimizing the logistics of shipping operations. This can,

for instance, be by optimizing speed, and/or optimizing the route with respect to weather.

Another method to improve vessel performance is by optimizing the trim of the vessel, which

is of increasing interest for ship owners and operators (Larsen et al., 2012).

The performance loss due to fouling varies significantly depending on the vessel, operational

profile, anti-fouling measures, etc. Better knowledge of the fouling growth makes it possible

to determine when a hull or propeller cleaning is economically beneficial. This information

can be very useful for a ship operator.

Another trend in the marine industry is fuel saving methods and products that are being used

in order to reduce the fuel consumption by a few percent. An improved method for detecting
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CHAPTER 1. INTRODUCTION

small changes in vessel performance would give customer and suppliers better confidence

in how these methods and products perform. For example, anti-fouling paint manufacturers

are eager to document their product in service conditions.

1.1 Background

The performance of a vessel in service is an expression of the power consumption to drive

the vessel through the water at a given state (speed, loading, operational and environmental

condition), relative to a previous state or a reference state.

Over the lifespan of a vessel, the power consumption is expected to increase as the vessel

performance efficiency decreases. This means that the power consumption will increase for

a certain speed or that the speed will be reduced for a given power consumption. This perfor-

mance reduction is mainly due to fouling of the hull and propeller, but other attributes can

also affect this performance, like corrosion or damages. While corrosion or damages can be

nearly impossible to repair, fouling of the propeller and hull can be cleaned. However, the

vessel is never fully returned to the same performance condition as the original state.

Using sensory data from an LNG tanker, the relationship between performance loss and var-

ious vessel and environmental parameters is explored. A particular attention will be paid to

the performance loss over time, the hull-propeller performance. The data is available for a

period of approximately three years with some periods of missing data. To investigate the

relationship between performance loss and various parameters, statistical learning will be

used in both an unsupervised and a supervised framework.

Hasselaar (2011) investigates how to develop an advanced vessel performance monitoring

and analysis system. He highlights limitations related to monitoring and analysis of vessel

performance, especially challenges related to the sensor system. There are many and good

reasons to why one want to understand the behavior of the vessel in terms of ship power

consumption and the speed of the vessel (power and speed loss in different loading and

environmental conditions). Understanding this is useful in both economical and environ-

mental aspects. Some of the benefits from understanding this behavior can be listed as

- Assessment of hull condition: When the speed of a vessel can be obtained with a set power

2



1.1. BACKGROUND

at different stages of hull and propeller performance, the quality of any anti-fouling system

can be assessed. The economically optimum interval for hull cleaning and dry-docking can

be defined and economic delays due to fouling can be reduced by improved voyage plan-

ning.

- Assessment of engine condition: If we can measure a figure of engine efficiency, such as

specific fuel consumption, the effects of any event occurring in the engine can be made visi-

ble. These events can, for example, be broken piston rings, fouled turbocharger, valve timing

changes etc.

- Refinement of charter party agreements: When the capabilities and performance of a ves-

sel can be determined irrespectively of environmental or loading conditions, agreements can

be defined more precisely between ship owners and charter parties.

- Optimizing sailing performance: If the parameters that affect performance are monitored

at frequent intervals, a large database becomes available which can be used to design an

optimization system. Draft, trim, engine and autopilot settings in different operational and

environmental conditions are some of the settings that can be optimized. Also, with frequent

measurements of the vessel performance, the vessel’s crew would be able to see the impact

of their actions.

- Environmental assessment: As a response to the environmental global pressure, classifica-

tion companies have introduced green certificates concerning ship pollution and efficiency.

One example of this is DNV GL’s ’clean’ notation (DNVGL, 2017). To achieve a green certifi-

cate, quantity of emission gasses must be known. Newly built vessels perform their trials on

the basis of calm waters and often without cargo. To find the service conditions, empirical

correction factors are often used. The availability of a continuous performance monitoring

system allows for assessment of emissions and helps in obtaining an environmental nota-

tion.

Pedersen (2014) uses artificial neural networks and Gaussian process regression on data from

several vessels in combination with global atmospheric reanalysis data to analyze the vessel

performance in terms of fuel consumption. He compares the data-driven methods to clas-

sical empirical methods and demonstrates how the data-driven methods can be used for

evaluation of performance without any ship-specific information.
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1.2 Previous Work

This thesis is a continuation of a project thesis carried out the fall semester of 2016. In this

project thesis, sensory data from the vessel in consideration were preprocessed and analyzed

using statistical methods from both an unsupervised and a supervised framework. The fo-

cus of the project thesis was to provide a necessary background for the methodology used in

this thesis and to provide a solid understanding of the sensory data and vessel in considera-

tion. In the project thesis, the vessel performance was not analyzed, as the focus was on the

understanding, demonstration and visualization of the methods applied.

1.3 Objectives

The main objective of this Master’s thesis is to analyze how the available sensory data affect

the performance of our vessel, where extra attention will be put into analyzing the perfor-

mance loss over time to assess the hull-propeller performance. The aim is then to define a

prognosis model which can be utilized in maintenance. The main objectives of this Master’s

thesis are:

1. Evaluate which variables affect the performance loss and the importance of these vari-

ables.

2. Assess the predictive potential of chosen variables on the performance loss compared

to an expected performance.

1.4 Limitations

There are several limitations to the work done in this thesis:

1. Sensory data from only one vessel is considered.

2. No information on the quality of the sensors is available, and sensory data is always

contaminated by noise and faulty values to a certain extent.

3. The total period for which we have available data is limited to about three years, where

the vessel is only dry-docking once.
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4. The data we are handed are already preprocessed to some extent, how this is done is

unknown.

5. Only a small selection of statistical methods are used.

Due to these limitations, the results in this thesis will at best be suggestive for the relation be-

tween selected variables and the vessel performance. We will still provide a solid foundation

for how we one can proceed in further work.

1.5 Approach

To meet the objectives, different methods from the framework of statistical learning and sta-

tistical analysis will be utilized. The preprocessing methodology will be based on a set of

predefined steps consisting of observation and variable selection, variable redefinitions, fil-

tering and scaling. To assess the steps taken along the way, their strengths and limitations

will be of high importance.

The data will be analyzed using statistical learning methods in both an unsupervised and a

supervised framework, keeping in mind important limitations along the way. Extensive plot-

ting and visualization of the data and results will be central to our approach. The approach

can be summarized by the following steps:

1. The relevant data is extracted, preprocessed and analyzed in an unsupervised frame-

work.

2. Virtual performance loss is simulated for three different cases.

3. The chosen statistical learning methods are performed on both the simulated and the

real-world data, and the results are analyzed.

Using this approach will allow us to verify the applied methodology on simulated data be-

fore it is applied to the real-world data. It also allows for comparison of results between the

simulated and the real-world data.
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1.6 Structure of the Report

The rest of the report is organized as follows. Chapter 2 gives necessary information about

the vessel, the available data and a brief understanding of the hull and propeller perfor-

mance problem. In Chapter 3 an introduction to methods in statistical learning is given.

Methods in both an unsupervised and a supervised framework will be covered, as well as rel-

evant preprocessing. Model validation will also be discussed briefly. Chapter 4 will cover the

database preparation in its entirety, from raw data to a synchronized, preprocessed dataset

ready to be analyzed. In Chapter 5 we analyze the data using techniques from Chapter 2 and

present our results for both the simulated and the real-world data. Chapter 6 will summarize

and discuss our results and present some recommendations for further work.
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Chapter 2
Vessel and System Description

The objective of this chapter is to provide necessary information about the vessel and de-

scribe the available data. This chapter also provides the theory on hull-propeller perfor-

mance and the background assumption on which this theory is built. Section 2.1 gives a

brief description of the vessel and how the vessel operates. In Section 2.2 the hull-propeller

performance problems are discussed. Section 2.3 goes into detail about the available data

and in Section 2.4 the software platform used in this thesis is discussed.

2.1 Vessel description

The vessel in consideration is a 300-meter long Liquefied Natural Gas (LNG) carrier designed

to transport the LNG over long distances. Some common measurements of the vessel are

presented in Table 2.1.

Name Parameter Value [unit]

Overall length LO A 295.0 m

Perpendicular length LPP 284.0 m

Breadth BM 43.4 m

Depth DM 26.0 m

Design draft dD 11.5 m

Transverse projected area At 1547.3 m2

Table 2.1: Common measurements of the vessel.

The vessel is equipped with four dual fuel generators from Wärtsilä, four cargo tanks, and has

a twin screw propulsion system. Two of the generators has an output of 11000 kW and the
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other two has an output of 5500 kW, giving the vessel a maximum of 33000 kW. The engines

can run either on natural gas, light fuel oil or heavy fuel oil and are designed to provide the

same output regardless of the fuel. This allows the engines to use the excessive boil-off gas

(BOG) from the LNG-tanks for propulsion.

When the ship operates at low speeds it is not able to use all the BOG for propulsion and the

remaining BOG is handled by a gas combustion unit (GCU). The GCU burns the excessive

BOG and releases the by-products into the atmosphere. For this particular vessel, during

a laden voyage, as much as 4 tons of BOG is burnt and released into the atmosphere every

hour. In cases where the need for propulsion exceeds that of available BOG, LNG can be

taken from the tanks, often referred to as forced boil-off gas.

The paint used on the hull is a self-polishing paint delivered by Jotun. The self-polishing

effect means that the hull efficiency will slightly increase for some time after a repaint before

the efficiency starts to decrease Jotun (2017).

2.2 Hull and Propeller Performance Overview

Hull and propeller performance (HPP) refers to the relationship between the condition of a

vessel’s underwater hull and propeller and the power required to move the vessel through

water at a given speed. Measurements of changes in vessel specific HPP over time makes it

possible to indicate the impact of hull and propeller maintenance, repair and retrofit activ-

ities on the overall energy efficiency of the vessel in question. The decrease we see in HPP

over time is mainly caused by fouling which is a general term to describe marine growth

that attaches to a vessel. Biologically the fouling can be divided into micro-fouling (algae at-

tachments such as "slime") and macro-fouling (barnacles and seaweed) (Callow and Callow,

2002). Fouling start to develop the moment an object is immersed in water. According to a

study done by Eniram (2012), there are many parameters that influence the fouling process.

These can be seen in Figure 2.1.
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Figure 2.1: Parameters that effect the fouling process divided into three categories

Based on MARINTEK experience, the hull fouling of tank ships typically results in speed re-

ductions of 5 % between dockings, corresponding to a power increase of 15 % and an in-

crease in frictional resistance of 20 %. By increasing the docking frequency, the average loss

could be reduced, resulting in a net power saving of about 5 % (IMO, 2009).

According to ISO (2015), the hull and propeller performance is closely linked to the vessel

performance and vessel resistance. The performance of the vessel can be modeled based on

the relation between the delivered shaft power and the total resistance where the delivered

shaft power, Pd , can be expressed as

Pd = RT ×V

ηQ
(2.1)

where RT is the total resistance of the vessel, V is the vessel speed through water and nQ is

the quasi-propulsive efficiency. The total resistance consists of multiple components and

can be written as

RT = RSW +RA A +RAW +RAH (2.2)

where RSW is the still-water resistance, RA A is the added resistance due to wind, RAW is the
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added resistance due to waves and RAH is the added resistance due to changes in hull and

propeller condition (fouling, mechanical damages, bulging, paint film blistering, paint de-

tachment etc.). Likewise, the quasi-propulsive efficiency consists of different efficiency com-

ponents

ηQ = η0ηHηR (2.3)

where η0 is the open-water propeller efficiency, ηH is the hull efficiency and ηR is the relative

rotative efficiency. From this we can then express the hull and propeller added resistance as

RAH = PD ×ηQ

V
− (RSW +RA A +RAW ) (2.4)

The vessel speed through water, V , can be measured while delivered power, PD , must be ap-

proximated. One way to do this is through calculations of the shaft power, PS , by measuring

the shaft torque and shaft revolutions as seen below:

PS = 2π

60
(Qsns +Qp np ) (2.5)

where Q is the torque [kNm] and n is the shaft speed [min−1]. The subscripts are indicating

starboard or port as we have a twinscrew vessel.

For a vessel in service, both environmental conditions and operational profile (e.g. speed,

loading, trim) vary. In order to measure changes in the speed-power relation for a vessel in

service, one must compare two periods (a reference period and an evaluation period) where

the environmental conditions and the operational profile are adequately comparable (filter

the observed data) and/or apply corrections (normalize the observed data).

If we do not have measurements of certain variables, they can be estimated through various

methods. These methods introduce additional uncertainty.

Measurements of ship specific changes in hull and propeller performance can be used in a

number of relevant performance indicators to determine the effectiveness of hull and pro-

peller maintenance, repair and retrofit activities. In Table 2.2 you can see 4 different perfor-

mance indicators and their definition, as defined by ISO (2015).
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Performance Indicator Definition

Dry-docking performance: Change in hull and propeller performance

Determining the effectiveness of the dry-

docking (repair and/or retrofit activities)

following present out-docking (Evaluation pe-

riod) as compared with the average from pre-

vious outdockings (Reference periods).

In-service performance: Average change in hull and propeller

Determine the effectiveness of the under-

water hull and propeller solution (including

any maintenance activities that have occurred

over the course of the full dry-docking inter-

val)

performance from a period following out-

docking (Reference period) to the end of dry-

docking interval (Evaluation period).

Maintenance trigger: Change in hull and propeller performance

Trigger underwater hull and propeller main-

tenance, including propeller and/or hull in-

spection

from the start of the dry-docking interval (Ref-

erence period) to a moving average at a given

point in time (Evaluation period)

Maintenance effect: Change in hull and propeller performance

Determine the effectiveness of a specific

maintenance event, including any propeller

and/or hull cleaning

from before (Reference period) to after a

maintenance event (Evaluation period).

The four leading sources of uncertainty in the performance indicator are

• Model Uncertainty

• Human Error

• Instrumental Uncertainty

• Sampling Error

If there are no other losses than HPP, changes in vessel performance are fully due to fouling of

the hull and propeller. The change in the vessel performance is now called the performance

loss (PL). The PL is defined as the percentage loss of speed between a measured value Vm

and an expected speed Ve for a given power consumption.
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PL = 100
Ve −Vm

Ve
(2.6)

Using this formula, positive values implies worse performance than expected. The expected

speed at a given power consumption can be calculated using:

1. Computational fluid dynamics (CFD).

2. Found when the vessel is sailing in calm conditions (little wind and waves) before any

significant fouling has taken place.

3. By scaling model experiments using empirical formulas.

In ISO (2015), a method for calculating the PL of a vessel is suggested. This method includes

relevant sensors, minimum logging frequencies for these sensors, filtering methods and nec-

essary calculation and assumptions. One of the main assumption for this methods is that the

vessel speed, preferably speed through water, is logged no less than once every 15 seconds.

This is no way close to the average logging frequency for our data of once every third hour.

Hence I cannot follow this method to calculate the PL.

Ideally, we should use speed through water as both the measured and expected speed of the

vessel when calculating the performance loss (Hasselaar, 2011). Speed over ground can be

used as a substitute if we assume little current and no sideways drifting during turns.

Normally we see quite a lot of scatter in the performance loss of the vessel, there are several

reasons why this might be, some of them are listed below:

1. Leeway drift is the drift caused by the component of the wind vector that is perpendic-

ular to the object’s forward motion.

2. Changes in boundary layer which may be caused by

• Speed

• Draft and Trim

• Hull fouling

3. Stratified current layers

4. Excessive ship motion (mainly pitch)
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One example of how the performance loss might develop over time can be seen in Figure 2.2

as assumed by Gundermann and Dirksen (2016). Here they assume that under normal con-

ditions and when no husbandry actions are taking place, the level of the added resistance

(RAH ) develops as the second part of an S-shaped growth curve as seen in Figure 2.2.

Figure 2.2: Example development of the performance loss over a dry-docking period given
that no intermediate husbandry actions are taking place. Time is in days and noise is added.

The vessel hull and propeller performance can be estimated by comparing the actual mea-

sured power consumption with the theoretically determined value given the same condi-

tions. In Carlton (2011), a comprehensive overview and discussion of vessel performance

monitoring methods are presented. One crude method is to calculate the Admirality Coeffi-

cient, AC as seen in Equation (2.7), where ∆ is the displacement of the vessel, V is the speed

and PS is the total shaft power. This method does not account for environmental conditions

and should only be used to compare loading conditions.

AC = ∆
2/3V 3

PS
(2.7)

2.3 Vessel Data

All data about the vessel is extracted from three different datasets,

1. Measured vessel data, 338 parameters logged at different sampling frequencies from

May 2014 to December 2016. Do notice that there are missing data for several periods

in some or all sensors in this period.

2. Automatic identification system (AIS) data. Includes information of global positioning

system (GPS) position of the vessel every couple of hours.
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3. Computational fluid dynamics (CFD) information about the speed-power relation of

the vessel in calm water.

In addition to this, information about the maintenance and retrofit activities are available.

These activities can be seen in Table 2.2. Hopefully, we will be able to see the impact of these

activities in the data.

Activity Date

Repainting and propeller-polishing 2014-05-27

Propeller-polishing 2015-04-19

Propeller-polishing 2016-03-15

Table 2.2: Maintenance and retrofit activities

The data starts from right after the vessel was at dry-dock, being repainted. Due to this, the

performance of the vessel is not expected to decrease significantly in the start.

2.3.1 Variable Selection

Depending on the topic to be investigated the variables that are of interest will vary a lot.

Since this thesis is focused on the propulsion system of the vessel, a total of 25 variables has

been selected from the 338 possible variables. This was mainly done to reduce the amount

of data to a suitable amount such that analyzing the data would take shorter time and not

exceed the computer capacity.

The selected variables with names, units, and number of observations can be found in Ta-

ble 2.3. The selected variables are chosen based on experience, conversations with supervi-

sors and DNV GL. There are of course other variables that could be of interest that are kept

out, but to get a database suitable for analysis in the given time frame the amount of data

had to be reduced.
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Name Unit Observations
Cargo Level - Tank 1 m 16765
Cargo Level - Tank 2 m 20277
Cargo Level - Tank 3 m 20438
Cargo Level - Tank 4 m 24417

Sea Water Temperature C 33577514
Atmospheric Temperature C 25674429

Speed Over Ground kts 7581
Speed Through Water kts 7950

Wind Speed kts 17982810
Wind Relative Direction deg 2840350

Rudder Angle Port deg 7062
Rudder Angle Starboard deg 6629

Draft Forward m 19809289
Draft Aft m 16694584

Main Generator Engine 1 Power kW 22809012
Main Generator Engine 2 Power kW 19072520
Main Generator Engine 3 Power kW 22044693
Main Generator Engine 4 Power kW 17336655

Shaft Torque Port kNm 47719517
Shaft Torque Starboard kNm 47879705

Shaft Speed Port rpm 13323090
Shaft Speed Starboard rpm 12645440

Total Fuel Gas Flow to Main Generators kg/h 1465695
Water Depth m 2897521

Heading deg 3089545

Table 2.3: Selected variables from the original dataset

From the variable selection seen in Table 2.3, we see that the number of observations for

each variable range between a couple of thousand observations, to as much as 47 million ob-

servations. The rudder angles, speed over ground and speed through water are only logged

roughly 7000 times over the full period. This means that on average they are only logged once

every third hour. By inspecting the speed over ground and speed through water parameters

we often see that they are logged with as much as 7-hour intervals.

Periods with missing data can be found by investigating how many kilobytes of data is stored

each day for the full period, assuming a constant sampling frequency for all variables, and,

in some extent, that all variables are logged. This can be seen in Figure 2.3.
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Figure 2.3: Kilobytes per day for the measured vessel data

In addition to this, there are periods where some variables behave strangely. One example of

this is the wind speed seen in Figure 2.4. In the first year of data the wind speed is behaving

as expected, but after May 2015 the wind speed is scaled down, then after November 2015,

the wind speed is scaled up. Due to this, several periods of the data has to be completely

disregarded for some or all of the variables.

Figure 2.4: Measured wind speed
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2.3.2 AIS Speed

In Table 2.3 we see that there are few speed over ground measurements from the original

data. To obtain estimates of the speed it is possible to use the AIS data for the vessel. This

data has information about the GPS position of the vessel as seen in Table 2.4. With this

information, it is possible to calculate the estimated average speed of the vessel between

two timestamps.

Variable Unit

Latitude Decimal degrees

Longitude Decimal degrees

Table 2.4: Variables from the AIS data

To find the distance traveled between two GPS locations, we can use Vincenty’s formulae

described in Vincenty (1975). The formulae have been widely used in geodesy because they

are accurate to within 0.5 mm on the Earth ellipsoid.

In Figure 2.5 the location of the vessel for the period we have data is shown. As we see, the

vessel travels over long distances and possibly all sorts of weather. The GPS position of the

vessel further makes it possible to use global reanalysis atmospheric data at a given time and

position of the vessel.
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Figure 2.5: Vessel location for the available period

2.3.3 CFD Curves

Speed-power curves have also been calculated by DNV GL using computational fluid dy-

namics (CFD) for both laden (draft of 11.5 m) and ballast (draft of 9 m) conditions. These

curves should be quite accurate for the case when the vessel is sailing in calm sea before any

significant fouling has taken place (the only resistance on the vessel is the still-water resis-

tance RSW ).

Based on these CFD curves we can make a polynomial curve-fit such that we obtain a for-

mula which can give the expected speed for a given power consumption. If we then compare

the measured speed to the expected speed as in Equation (2.6) we will have a PL to see the

efficiency of the vessel. In Figure 2.6 the CFD speed-power curve is plotted with a second-

degree polynomial curve fitted to the points. Both the fitted polynomials have an R-squared

value above 0.995. The values from which these plots are made can be seen in Appendix B.1.
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Figure 2.6: Speed-power curves for two different drafts calculated by CFD. X-axis represents
the speed of the vessel [kts], Y-axis represents the shaft power consumption [kW].

2.4 Software Platforms

Handling large amounts of data and performing exploratory data analysis can be done by a

variety of programming languages, Interactive Development Environments (IDEs) and soft-

ware suites. Some popular languages include R, Python, C/C++, Java and Matlab and a com-

monly used software is Statistical Analysis System (SAS). In this work, I will utilize Python as

the main platform for implementation and data analysis. This is due to several factors:

• Python is a free, interpreted, open-source platform with a large community (Python

Foundation, 2017).

• Python can be augmented by a huge variety of free, open-source libraries and packages

such as:

– Pandas, an open-source Python library with powerful tools for handling and ma-

nipulating large amounts of data in an efficient manner (Pandas, 2017).

– SciPy, a collection of numerical algorithms and domain-specific toolboxes, in-

cluding signal processing, optimization, statistics and much more (SciPy, 2017).
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– SciKit-Learn, an open-source Python library for machine learning and data min-

ing (SciKit-Learn, 2017).

– Matplotlib, an extensive plotting library which produces publication quality fig-

ures in a variety of hardcopy formats and interactive environments across plat-

forms (Matplotlib, 2017).

When working with Python we will utilize Spyder, a free, open-source IDE for scientific pro-

gramming in the Python language (Spyder, 2017).

There are of course several disadvantages with Python compared to other languages and

tools. Since Python is a high-level interpreted language it is much slower than compiled

languages like C and C++, but Python programs are in general shorter and more compact

(Python Foundation, 1997). R was specifically developed for statistical use and has a richer

set of libraries and packages for data science and more novel visualization possibilities than

Python (DataCamp, 2017). However, R has a steep learning curve and gives little thought to

memory management (Mwitondi, 2013), and was hence not chosen for this work.
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Chapter 3
Statistical Learning Methods

In this chapter, several methods from the field of statistical learning are presented. The the-

ory and interpretation are presented as well as simple examples for some of the methods.

This chapter only presents a small subset of important methods from the broad field of sta-

tistical learning, and the selected methods based on practical use, interpretation and visual-

ization. A brief introduction to statistical learning is given in Section 3.1. Section 3.2 covers

preprocessing methods which are normally done on a dataset before any statistical analysis

is carried out. In Section 3.3 unsupervised learning is presented. Learning in the supervised

framework is discussed in Section 3.4. Section 3.5 presents methods and metrics for model

assessment and selection.

3.1 Introduction

With statistical learning, we are talking about the ability to learn from data. Given a set of m

observations, also called samples or objects,

X = [x1,x2, · · · ,xm]T , (3.1)

where each observation xi is a row vector of n variables, also called features or attributes,

xi = [xi 1, xi 2, · · · , xi n], (3.2)

Alternatively we could say we have a set of n variables,
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X = [x1,x2, · · · ,xn], (3.3)

where each variable xi is a column vector of m observations,

xi = [x1i , x2i , · · · , xmi ]T (3.4)

We want to be able to extract valuable information from the dataset X ∈ Rm×n , represented

as a matrix. As n gets larger than say 3, it becomes increasingly difficult to investigate and

analyze the parameter interactions and underlying structure only by comparing one variable

against another. Then it would be more beneficial to perform a multivariate analysis, which

refers to statistical techniques used to analyze data that arises from more than one variable.

The general goal of the techniques would be to discover natural groupings in the data, vari-

able correlations or to understand underlying dynamics. In the unsupervised framework

described in Section 3.3, we discuss the case when only one set of data X and its internal

structures are analyzed. Methods that are as transparent as possible have been chosen, al-

lowing us to interpret and understand the results. Thus linear methods have been preferred

over non-linear ones, avoiding black-box models. In the supervised framework described in

Section 3.4, we discuss the case when the data is separated into two matrices X and Y, and

one wants to uncover the fundamental relationship between variables in X and variables in

Y. This can lead to models used for regression or classification.

In the literature, the unsupervised problem is less developed than the supervised one. With

supervised learning there is a clear measure of success and you can more easily compare the

effectiveness of different methods. With unsupervised learning there is no such direct mea-

sure of success (Hastie et al., 2001).

When performing exploratory data analysis on a large set of complex, real-world data, it is

common to first explore the data using an unsupervised framework. This can reveal the

structures and patterns of the data itself, often providing some important preliminary in-

sight into the problem at hand. Then a supervised approach can be taken to establish and

train models for regression and classification.

Many of the well-established data mining methods are designed to deal with data where the

order of the observations has nothing to do with the pattern of interest. By adding the time
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dimension to the data, a new set of aspects and challenges arise as discussed by Last et al.

(2004). This is kept in mind when applying the different methods since our observations are

temporal sensory data.

3.2 Preprocessing

A central problem in exploratory data analysis on large datasets is the excessive amount of

data. In many cases, there can be several hundred variables and millions of observations, or

the opposite way around. Reducing the amount of data is often a necessary part of the pre-

processing, to get a dataset that contains relevant information and that our computers can

handle. For instance, in the Large Hadron Collider, there are more than 150 million sensors,

delivering data 40 million times a second. 99.99995 % of this data is removed and they are

left with 100 collisions per second of interest (CERN, 2009). As we have large amounts of raw

data with high temporal resolution, we will need to reduce the amount of data while limiting

the amount of information loss.

A crucial step in the analysis is to prepare the dataset for analysis. This usually involves

mean-centering and scaling of the different variables, as well as proper outlier detection and

handling. Various methods to reduce noise is also usually done. In some cases selecting

samples and variables of interest is also important.

Outlier detection and handling are especially important since a percentage of the data will

contain faulty values due to sensor failure, erroneous data storage and so on. By obtaining

a clean dataset with a reduced amount of noise and anomalies one can greatly increase the

effectiveness of the methods applied to the data.

3.2.1 Mean Centering

One of the most common preprocessing methods is mean centering. For each variable in the

dataset, we want to center the column around zero by subtracting the mean of the column

from each value. Mean centering can be defined for a data set X ∈Rmxn

x̄ = 1

m
XT 1 (3.5)
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Xc = X−1x̄T , (3.6)

where Xc is the mean centered dataset, 1 ∈ Rm is a vector of ones and x̄ ∈ Rn is a vector

containing the mean value for each variable.

3.2.2 Scaling

Scaling methods are used to standardize the range of the variables in the dataset. It is also

known as data normalization. This is useful when the variables are measured in different

units or have different magnitudes. This allows each variable an equal opportunity to influ-

ence the result.

One common method is to scale each variable to have zero-mean and unit-variance. For

each variable ci we subtract its mean and divide by its standard deviation,

c̃i = ci − c̄i

σi
, i = 1,2, . . . ,n, (3.7)

to obtain the scaled variable vector c̃i with zero-mean and unit-variance.

3.2.3 Missing Values

For various reasons, many datasets generated from sensors have missing values. These miss-

ing values are often stored as Not-a-Number (NaN), zeros or blanks. Data sets with many

missing values are incompatible with several data mining methods, like Principle Compo-

nent Analysis using Single Value Decomposition (Martens and Martens, 2001). There are

three methods to handle missing values:

1. Remove entire observations or variables containing missing values

2. Impute the missing values, i.e., to infer them from the known parts of the data

3. Use algorithms that can work with missing data

The second approach is preferable when there are few, unstructured missing values without

too much variation in the data set. When there are many structured missing values simply

inserting the mean, median or interpolating between known values might give unwanted

results. There are of course more sophisticated methods available. In Statistical Analysis
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with Missing Data, Little and Rubin (2014) discusses several methods for imputing missing

values, for instance, a maximum likelihood estimation. Using algorithms that can work with

missing data might be a good choice in some cases. For instance, Principle Component

Analysis can be run on a data set with < 5 % missing values of the data, by using a modified

version of the NIPALS algorithms (Martens and Martens, 2001).

When you are logging time series from various sensors the sampling frequency of the sensors

can often vary. If we were to put several sensors in a matrix form, with rows as instances

of time, the matrix might become sparse, meaning there are might only be a few sensors

that logged at the exact same timestamp. These are not missing values but simply an effect

of having different sampling frequencies for the sensors. To avoid the problem of a sparse

matrix there are different approaches. One can divide the data set into groups based on the

frequency of the sensors, or simply round the timestamps to a specific nearest value, thus

trying to align different measurements on one timestamp. An implementation of this is done

in Section 4.4

3.2.4 Noise

Noise is variance or random error occurring in the data. Noise is often assumed to have a

Gaussian distribution. It can often be useful to remove noise by smoothing the data signal.

For smoothing the data there are many methods that can be used. I will explain one of them

in this section.

Moving average is a method to reduce both the size and the noise of a vector. The method

can be viewed as a low-pass filter essentially removing high-frequency noise. Moving average

creates series of averages of different subsets of the full dataset. One way to do this is the

centered moving average (CMA). In CMA one uses a window of length k, which is centered

around each data point. Each data point is then replaced by the unweighted average of the

points within its respective window. Suppose we have a vector x with m values. The centered

moving average is then given by,

CMA = 1

2m +1

m∑
i=−m

xi (3.8)

where n = (k −1)/2. In the start and end of the vector, the window around the data points
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is not fully defined. Due to this the CMA is either not computed or computed by only using

the available values within the window. In Figure 3.1 an example of centered moving average

is shown on a noisy sine-function with four different window sizes and 200 data points. We

clearly see the influence of the choice for k. If we choose k too small the noise does not get

filtered enough, choose k to large and we loose information about the signal.

Figure 3.1: Moving average with four different window sizes.

There are various methods one can use to calculate the moving average, for instance, weighted

moving average or exponential moving average as explained in Wikipedia (2017). By using

a central window instead of a backward looking window, we do not introduce a phase lag in

the time series. Other methods to reduce noise are for instance the Kalman filter described

in Kalman (1960). The Kalman filter does not make any assumption that the errors are Gaus-

sian. However, the filter yields the exact conditional probability estimate in the special case

that all errors are Gaussian-distributed.

3.2.5 Outliers

An outlier is an observation that deviates so much from other observations as to arouse sus-

picion that it was generated by a different mechanism (Breunig et al., 2000). Outlier detec-

tion, also known as anomaly detection is the detection of outliers in the dataset. This must

not be confused with novelty detection where we have a clean dataset and wish to detect

anomalies in new observations. Outliers are often categorized into three different types (Han

et al., 2011):
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1. Global outliers, where an observation deviates significantly from the rest of the data

2. Contextual outliers, where an observation deviates significantly based on a given con-

text

3. Local outliers, where an observation deviates significantly from the other observations

in the neighborhood

Both detection and handling of outliers is a task that has no universal method that works

perfectly in all situations. Outlier detection algorithms can be grouped into two categories:

1. Model-based algorithms

2. Data-based algorithms

Model-based methods often assume that observed data are governed by some statistical dis-

tribution (e.g., Gaussian, Poisson etc.) with appropriate parameters describing the distribu-

tion. We then identify outliers based on how unlikely the given data is, based on the chosen

distribution. Data based techniques, on the other hand, attempt to avoid model assump-

tions; relying on the concepts of distance, density of points or other concepts like the angle

based approach described by Kriegel et al. (2008).

We will not go into detail on outlier methods, but one simple model based algorithm is the

box plot described by Tukey (1977). This is a simple way of finding and removing outliers

from the dataset. A simple data-based method to filter outliers in a high-dimensional dataset

is the k-Nearest Neighbor algorithm described by Ramaswamy et al. (2000). The method

ranks each observation on the basis of the distance to its k nearest neighbors (kNN) and de-

clares the top n points in this ranking to be outliers, where n has to be specified. One of the

most commonly used outlier detection methods is simple min-max filters, where all values

outside a given range are considered outliers.

3.3 Unsupervised Learning

The unsupervised learning problem is the machine learning task concerned with revealing

internal structures in unlabeled data. In the unsupervised framework, we observe only the

data itself with no relation to a measured outcome. Our task is rather to describe how the

data is organized.

27



CHAPTER 3. STATISTICAL LEARNING METHODS

3.3.1 Latent Variable Analysis

Latent variable methods are used to reduce the dimensionality of a dataset X with minimal

loss of information. The method identifies the directions of maximum variance in a high-

dimensional data set and projects it onto a smaller dimensional subspace while retaining

most of the information. This can make the data easier to explore and visualize.

We can illustrate this with an example. Assume we have a dataset X ∈Rm×n , containing infor-

mation about m different cars which we call observations. Let us say we have identified and

measured n different properties like displacement, power, weight and so on. These proper-

ties are called variables. Many of these variables will be correlated and thus redundant in

the context of reducing the dimension of the data set. With latent variable analysis, we want

to reveal latent structures and summarize each car with fewer variables. This is achieved by

constructing new variables using linear combinations, often called latent variables (LVs), of

the old ones, for example, displacement minus power. These variables then span a subspace,

called the LV-space, of the original variable space which has reduced dimensionality.

A bilinear subspace model X̂ of the data set X ∈Rm×n can be expressed as

X̂ = ZPT . (3.9)

The model is expressed in terms of a score matrix Z ∈ Rm×a and a loading matrix P ∈ Rn×a .

Where a is the model complexity, or in other words the dimension of the model subspace.

The error of the model is contained in the residual matrix E = X− X̂.

The rows of the score matrix Z = [z1, ...,za] are called scores and contain coordinates of the

projections of the observations onto the loading vectors. The scores can be used to visualize

relationships among observations. (In the car example, the score could show that one car

has a larger LV, displacement minus power, than the other.)

The rows of the loading matrix P = [p1, ...,pa] are called loadings and contain the axis of a

latent variable in the X-space. The set of loadings constitute a basis for the LV-space. The

loadings are used to visualize relationships between the variables. (In the car example the

loadings could show that power and displacement are correlated and the direction in which

the LV, displacement minus power, is pointing in the X-space.)
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3.3.2 Principal Components

Principal Component Analysis (PCA) is a common unsupervised latent variable analysis used

to reveal internal structures in the dataset. The method goes as far back as 1901, invented

by Karl Pearson (Pearson, 1901), but was independently developed and named by Harold

Hotelling in the 1930s (Hotelling, 1933).

PCA assumes the dataset can be represented as a linear combination of the variables, which

of course will not always be the case. This suggests the results will be best if observations are

selected with similar conditions such that the PCA model is linearized around this operating

condition. Alternatively, several areas of research have explored how applying a nonlinear-

ity prior to performing PCA could extend this algorithm, this has been termed kernel-PCA

(Schölkopf et al., 1997). These nonlinear methods are often difficult to interpret and under-

stand, and will not be explored in this thesis.

Another assumption is that the mean and variance are sufficient statistics, i.e that they en-

tirely describe a probability distribution. The only zero-mean probability distribution being

described by its variance is the Gaussian distribution. In order for this assumption to hold,

the probability distribution of the variables must be Gaussian (Shlens, 2014).

PCA also assumes that large variances have important dynamics, that components with

larger variance correspond to interesting dynamics and lower ones to noise. Several pre-

processing steps should be done prior to the analysis. Mean centering is important since

PCA is based on the covariance matrix which is formed from centered data. The analysis

is also sensitive to the relative scaling of the variables since it is based on the least squares

method. Scaling is useful if we want the variables to have an equal influence on the result,

regardless of magnitude and unit. If we have prior knowledge about the variables and how

much influence we would like them to have, weighting can also be considered.

The PCA procedure consists of finding the a principal components in decreasing order of

explained variance of X, under the constraint that each component is orthogonal to the pre-

ceding components. The maximum number of principal components that can be extracted

from the data is n, the number of variables. The bilinear PCA model can be written (Martens

and Naes, 1992) as
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X = ZPT +E =
a∑

i=0
zi pT

i +E, (3.10)

where the loading matrix P transforms the data set X to the uncorrelated orthogonal basis

set Z, or scores matrix

Z = XP. (3.11)

We now want to project all observations of X onto the i th loading vector pi to get the i th

score vector zi in a way that maximizes the variance of the projections. To achieve this we

maximize

maximize Var[z] = Var[Xp] = pT XT Xp = pTΣp (3.12)

subject to pT p = 1.

By use of Lagrange multipliers it can be shown that the maximization problem reduces to an

eigenvalue problem (Höskuldsson, 1994). Where the i th loading vector pi is the eigenvector

with the i th largest eigenvalue of the covariance matrix Σ. Thus we can find the projections

zi of X onto pi , which is called the scores.

Example

To illustrate PCA we choose to work with a dataset consisting of 10 cars, or observations with

4 variables each. The data is retrieved from US Environmental Protection Agency (2017) and

consists of data on car models for 2017. The selected variables for each car are horsepower,

engine displacement, weight, and CO2 emission. By purpose, five high-end sports cars and

five regular cars have been chosen. The dataset can be seen in Table 3.1. Since PCA is unsu-

pervised it is not aware of this difference, but hopefully, the results will show the difference

between two classes of cars. To cope with different units for the variables the data is mean

centered and scaled to have zero mean and unit variance, as described in Sections 3.2.1 and

3.2.2.
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Car model Power [hp] Engine disp [l] Weight [lbs] CO2 (g/mi)

Audi A4 211 1.984 3875 314

Hyundai Elantra 128 1.4 3125 250.38

Subaru Galaxy 175 2.5 3875 264.27

Toyota Corolla 132 1.798 3125 246.19

Volkswagen Golf 170 1.798 3375 174.55

Aston Martin Vanquish 568 6 4500 309.22

BMW M5 553 4.4 4750 602.28

Chevrolet Corvette 650 6.2 3875 280.2

Mercedes S65 621 5.98 5500 646.63

Porsche 911 Turbo S 572 3.8 3875 264.87

Table 3.1: Data on 2017 car models. Retrieved from US Environmental Protection Agency
(2017).
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Figure 3.2: Cumulative explained variance for principal components

In Figure 3.2 we can see how much of the variance is explained for each principal component

added to the model. We see that the model is able to explain 96.6 % of the variance in the

data using only the first two principal components, which is a strong result. Hence, we plot

the scores and loadings for the for the two first components.

The scores plot seen in Figure 3.3 shows the projection of the cars onto the LV-space. The

cars are colored red and blue for sports cars and regular cars respectively. We can clearly

see a natural grouping of similar cars. The leftmost cluster contains all the regular cars, the

middle cluster contains light sports cars and the right cluster contains the heavy sports cars.

We also note that the normal cars appear in a cluster with higher density than the other,

suggesting that they are more similar to each other than the sports cars.
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Figure 3.3: Scores plot for PC1 and PC2

The loadings plot in Figure 3.4 show the variables spanning the LV-space. Note that the PC1-

axis starts from 0.45, thus all variables give a positive contribution for PC1. This means all

variables are positive correlated to some degree, where displacement and horsepower show

the strongest correlation. In other words, the tendency is that the larger a variable is the

larger the other variables are. A larger engine usually means more weight and more emis-

sions.

PC2 shows that the engine displacement and horsepower are negatively correlated with emis-

sion and weight, however, note that this PC only accounts for 16 % of the explained variance.

More powerful cars with low emissions and less weight will have a larger PC2 than others.
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Figure 3.4: Loadings plot for PC1 and PC2

3.4 Supervised Learning

In supervised learning we are concerned with finding a model that best describes the re-

lationship between some data X and Y. To construct such a model one has to use a set of

training data T , where each sample is said to be a pair consisting of an input observation xi

and a desired output yi . This is often called labeled data. The model is then trained to fit the

data and can be used to perform classification or prediction on new unlabeled samples that

were not used to train the model. In this thesis, we will explore regression models, models

that predict quantitative outcome labels yi .

3.4.1 Linear Regression Methods

Linear models were largely developed in the precomputer age of statistics, but even in today’s

computer era, there are still good reasons to study and use them. They are simple and often

provide an adequate and interpretable description of how the inputs affect the output. For

prediction purposes, they can sometimes outperform fancier non-linear models, especially

in situations with small numbers of training cases, low signal-to-noise ratio or sparse data

(Hastie et al., 2001). Linear regression models assume that the regression function E(y|X)

33



CHAPTER 3. STATISTICAL LEARNING METHODS

is linear in the inputs, x1, . . . ,xn . In addition, various transformations and basis-expansions

of the input can be applied to expand their scope while still retaining the linearity. Such

transformations can for instance be x2,
p

x, and log(x). The mathematical descriptions and

derivations of the linear models for regression presented here are based on Chapter 3 in The

Elements of Statistical Learning by Hastie et al. (2001).

3.4.1.1 Ordinary Least Squares Regression

Suppose the input vector X = [x1,x2, . . . ,xn] of n variables. We want to predict the real-valued

output y ∈R. The linear regression model can be written as

f (X) =β0 +
n∑

j=1
x jβ j , (3.13)

The linear model assumes that the regression function E(y|X) is linear, or that the linear

model is a reasonable approximation. The β j ’s are the unknown parameters of coefficients

to be determined, and β0 will be the intercept of the model. The input variables x j can come

from different sources:

• quantitative inputs

• transformations of quantitative inputs, such as log (x1) or
p

x2

• basis-expansions of quantitative inputs, such as x2 = x2
1, x3 = x3

1

• interactions between quantitative inputs, such as x3 = x1 ·x2

No matter the source of x, the model is still linear in its parameters β j .

With a set of training data (x1, y1) . . . (xm , ym) we can estimate the coefficients β j using the

least squares method. That is, choose the coefficients β j such that the residual sum of

squares (RSS),

RSS(β) =
m∑

i=1
(yi − f (xi ))2

=
m∑

i=1
(yi −β0 −

n∑
j=1

xi jβ j )2,
(3.14)
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is minimized. Equation (3.14) makes no assumptions about the validity of model (3.13) but

simply finds the best linear fit to the data. Least squares fitting is intuitively satisfying no

matter how the data arise; the criterion measures the average lack of fit. Figure 3.5 illustrates

the geometry of least-squares fitting in theRn+1-dimensional space occupied by the pairs (X,

y).

Figure 3.5: Linear least squares fitting with X ∈ R2. We seek the linear function of X that
minimizes the sum of squared residuals from y

If we let X ∈Rm×(n+1) be a matrix where each row is an input vector with a 1 in first position,

and similarly let y ∈ Rm be the vector of outputs in the training set, then the RSS can be

re-written as

RSS(β) = (y−Xβ)T (y−Xβ). (3.15)

This function is quadratic in its n +1 parameters. If we assume that X has full column rank,

we can differentiate (3.15) and set it equal to zero

XT (y−Xβ) = 0 (3.16)

to obtain the unique solution

β̂= (XT X)−1XT y. (3.17)

Now the predicted values of the training inputs are given as
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ŷ = Xβ̂= X(XT X)−1XT y, (3.18)

where x̂i = f̂ (xi ). If the columns of X are not linearly independent (X does not have full

columns rank) then XT X is singular and the least squares coefficients β̂ are not uniquely

defined.

Lets now assume that the observations xi are not random and that the output values xi have

a constant variance σ2 and are uncorrelated. The variance-covariance matrix of the least

squares coefficients estimates β̂ can now be derived from (3.17) as

Var(β̂) = (XT X)−1σ2 (3.19)

where a typical estimate of the variance, σ2, is given by

σ̂2 = 1

m −n −1

m∑
i=1

(yi − ŷi )2. (3.20)

The m −n −1 in the denominator makes σ̂2 an unbiased esitmate of σ2, E(σ̂2) = σ2. If we

further assume that (3.13) is the correct model of the mean and that the deviations of Y

around its expected values are additive and Gaussian, we can write

Y =β0 +
n∑

j=1
x jβ j +ε, (3.21)

where ε ∼ N (0,σ2). Hence, we can see from (3.21) that β̂ ∼ N (β, (XT X)−1σ2). This is a mul-

tivariate normal distribution or multivariate Gaussian distribution which is a generalization

of the one-dimensional (univariate) normal distribution to higher dimensions. Under these

assumptions we can use the distributional properties to form confidence intervals for β j

and hypothesis tests. To test the hypothesis that a particular coefficient β j = 0, we form the

Z-score

z j =
β̂ j

σ̂
p

v j
, (3.22)

where v j is the j th diagonal element of (XT X)−1. Under the null hypothesis, that is β j = 0,

z j is distributed as a t distribution with m −n −1 degrees of freedom. From this we see that

a large absolute value of z j will lead to a rejection of this null hypothesis. If we have large
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enough samples, say m > 100 the tail quantiles of a normal distribution and a t-distribution

becomes negligible, and so we normally use the normal quantiles. By forming a null hypoth-

esis

H0 :β j = 0

H1 :β j 6= 0

we can use z j to reject H0 if the corresponding probability-value is less than a given threshold

α (typically 0.05). In other words, if the probability of attaining a particular β j is very low

under the assumption of H0, say 5 %, we reject H0 and assume H1, and we can say that the

result is significant. Note that this will also give a false rejection of the null hypothesis in 5 %

of the cases.

3.4.2 Nonlinear Methods for Regression

In Section 3.4.1 we assumed that the regression function E(y|X) is linear in the inputs, x1, · · · ,xn .

In regression problems the true function f (X) = E(y|x) is often not linear in its inputs X. The

true function f (X) will often be nonlinear and nonadditive in X. By the use of nonlinear

methods we may get better predictions, but at the cost of interpretability (Hastie et al., 2001).

Many of the nonlinear methods, such as neural networks, have several tuning parameters,

and it can be difficult to get the correct tuning. In this section we will focus on the nearest

neighbor regression, an unstructured method that makes no assumptions on the model of

the true function f (X).

3.4.2.1 Nearest Neighbors Regression

Nearest-neighbor methods use those observations in the training set T closest in input

space to x to form Ŷ . Specifically, the k-nearest neighbor fit for Ŷ is defined as follows:

Ŷ (x) = 1

k

∑
xi∈Nk (x)

yi (3.23)

where Nk (x) is the neighborhood of x defined by the k closest points xi in the training sam-

ple. x and y can be both scalars and vectors in this equation. Closeness implies a metric,
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which for instance can be Euclidean distance. Other metrics for closeness and calculation

of the distance matrix can be found in Appendix A. So, in words, we find the k observations

with xi closest to x in input space, and average their responses.

The k-nearest neighbor estimate of y is the average response of the k closest observations xi

to x. If the observations x are no uniformly distributed, it is normal to weight the xi based

on their distance to x as seen in Equation (3.24)

Ŷ (x) = 1

k

∑
xi∈Nk (x)

yiωi , ωi ∝ 1

di
(3.24)

where di is the distance from x to xi .

The choice of k determines the complexity of the model. If k = 1 each point will only consider

itself as is its own closest neighbor. Hence the error in the training data set will always be 0

for k = 1. The model appears to have only one parameter k. However the effective number

of parameters can be estimated as m/k, and in general, this number is larger than the n

parameters we have in least-squares models as described in Section 3.4.1.1. This also means

that the model complexity decreases when the number of neighbors k increases. Even if our

model (3.23) is simple to understand, and only has one tunable parameter k, we do not get

a good understanding of the nature of the relationship between X and y. Nearest Neighbor

regression has proven good in low-dimensional features but should be avoided for some

high-dimensional features due to the bias-variance tradeoff (Hastie et al., 2001) which we

will discuss further in Section 3.5.1. To find an optimal k we can utilize cross-validation. Here

we pick a k that minimizes the test error, which is a reliable and effective way of selecting k.

Cross-validation will be further discussed in Section 3.5.2.

3.5 Model Assessment and Selection

Model selection refers to estimating the performance of different models in order to choose

the best one. Having chosen a final model, model assessment refers to estimating its pre-

diction error (generalization error) on new data. Model assessment and selection usually

involves finding the optimal model complexity (i.e how many features to include), as well as

estimating the model stability and predictive ability for a statistical model.
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3.5.1 Bias-Variance Tradeoff

Consider a target variable y, an input vector X and a prediction model f̂ (X) which has been

estimated from the training set T . Let L(y, f̂ (X)) measure the loss between y and f̂ (X). Typi-

cal choices for the loss are

L(y, f̂ (X)) =


(y− f̂ (X))2 squared error

|y− f̂ (X)| absolute error.
(3.25)

The performance of a model is often assessed by the test error. The test error is the prediction

error when used on an independent test set where X and y are drawn randomly from their

joint distribution. The test error is conditional on the fixed training set T that were used to

estimate the model and can be expressed as

ErrT = E[L(y, f̂ (X))|T ]. (3.26)

The test error is often called generalization error, as it describes how well the model general-

izes to new data. In most cases, we estimate the expected test error

E [ErrT ] = E[L(y, f̂ (X))] = Err (3.27)

Note that this expression averages over everything that is random, including the randomness

in the training set that predicts f̂ . Additionally, the training error is the average loss over the

training set

err = 1

N

m∑
i=1

L(yi , f̂ (xi )). (3.28)

We now define error due to bias and error due to variance as done by Fortmann-Roe (2012):

• Error due to bias is the difference between the expected value of our prediction and

the true target value. Bias in general measures how far off our prediction is from the

correct value. A high bias can cause a model to miss relevant relationships between

inputs and target outputs, which is called underfitting.

• Error due to variance is the expected squared deviation of a prediction around its

mean, i.e the variability of a model prediction. A high variance can lead to the mod-

elling of random fluctuations in the training data, which is called overfitting.
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We normally see that, as the complexity of a model f̂ increases, the bias decreases while

the variance increases, and vice versa when the complexity decreases. If we assume that

y = f (X)+ ε, where ε ∼ N (0,σ2
ε), we can derive an expression for the expected prediction

error of a regression fit f̂ (X) at an input X = x0, using the squared error loss:

Err(x0) =E [(y− f̂ (x0))2|X = x0]

=σ2
ε + [E [ f̂ (x0)]− f (x0)]2 +E [ f̂ (x0)−E [ f̂ (x0)]]2

=σ2
ε +Bias2( f̂ (x0))+Var( f̂ (x0))

=Irreducible Error+Bias2 +Variance.

(3.29)

The first term is the variance of the target around its true mean and is unavoidable. The

second and third terms are due to the previously explained bias and variance. We then select

a model f̂α that minimizes the expected test error Err. The α denotes a tuning parameter for

the model (for example, α= k in nearest-neighbor regression).

3.5.2 Cross-Validation

Cross-Validation (CV) is a method to determine different characteristics of a model. It can

be used to find a suitable number of components for a model, as well as the reliability and

predictive ability of the model (Martens and Martens, 2001). It is important to have samples

in the training data i.e X and y that contain information explaining all the types of variation

to be modeled, otherwise a seemingly good model for the training data will struggle to give

sound predictions for new samples. This is what CV intends to reveal.

Typically we split the data into three parts: a training set, a validation set, and a test set. The

training set is used to fit the model, the validation set is used to estimate the prediction error

for model selection and finally, the test set is used to assess the test error over an indepen-

dent test set for the final chosen model (Hastie et al., 2001). This way of splitting the data

can be seen at the top of Figure 3.6. Cross-validation uses a slightly different approach in

that it only splits the data into two parts at fist, a training, and a test set. The cross-validation

method is widely used to estimate expected prediction error Err. Specifically, we will con-

sider the K -fold cross-validation.

The approach is simple, instead of setting aside an independent validation set to estimate

40



3.5. MODEL ASSESSMENT AND SELECTION

the prediction error, we split the data pseudo-randomly into K equally sized parts. Each of

the K parts is then used as a validation set once. In other words, for each part k we use the

remaining K −1 parts to create our model and then use k to validate the model. This process

is then repeated K times such that all data is used for both training and validation. This gives

us K estimates of the prediction error and K estimates of the training error. This will again

give us the possibility to calculate the mean and standard deviation of the estimated predic-

tion errors. The way cross-validation splits the data into segments is visualized in Figure 3.6.

Stable estimates through iterative processes suggest the model is reliable, whereas well pre-

dicted hidden samples suggest the model has a good predictive ability. However, it is im-

portant to note that the reliability and predictive ability only holds for samples similar to the

ones in the training set.

Figure 3.6: Illustration of how Cross-Validation divides the data into a training and a valida-
tion set

The choice of K is not straight forward. Choosing a low K , say K = 2, we get a low variance but

the bias can be high depending on how the performance of the model varies with training

size. The benefit of having a low K is that it is computationally cheap. Choosing K between

5 and 10 are common practices and considered as a good compromise (Kohavi, 1995) and

(Breiman and Spector, 1992). With K = m, known as leave-one-out cross-validation, the es-

timate of Err is approximately unbiased but can have high variance. Also, the computational
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cost can be very high. Leave-one-out cross-validation is considered an exhaustive method

as it learns and tests in all possible ways to divide the original sample into a training and a

validation set.

3.5.3 Goodness of Fit

The goodness of fit of a statistical model describes how well it fits with a set of observations.

A goodness of fit measure usually summarize the differences between observed values and

values given by the model in question. For regression models, there are several measures to

assess the goodness of a fit. These measures are generally divided into two categories:

• How well the model fits the training data.

• How well the model fits new, unseen test data.

To calculate the differences between observed values and values given by the model we nor-

mally use a loss function as previously explained, or we can use cross-validation to estimate

the prediction error. In words, we are measuring the error of the model, and the test error

over an independent test set can be compared with a base error rate. However, we also want

to assess how well our model fits the training data. A typical measure of the goodness of fit

is the coefficient of determination, also known as R2, or extensions of it such as adjusted R2.

These measures are only valid for linear regression models and we need a measure to com-

pare non-linear methods such as nearest-neighbors to our linear models. We also want to

take the model complexity into account. One such measure is the Akaike information cri-

terion (AIC), introduced by Akaike (1974). AIC is derived from the log-likelihood function

and offers a relative estimate of the information lost when a given model is used to represent

the process that generates the data. Doing this, AIC provides a compromise between the

goodness of fit of a model and the model complexity.

3.5.4 Variable Selection

We are often faced with the problem of variable selection in machine learning and statistical

learning. The problem is how to select a subset of the input variables that best explains the

variability or best reduces the prediction error, in our target value. There are mainly four

reasons we use variable selection:
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• simplification of models to make them easier to interpret (Hastie et al., 2001),

• shorter training times,

• to avoid the curse of dimensionality (Bellman and Roth, 1986),

• enhanced generalization by reducing overfitting (reduction of variance).

A central premise when using variable selection is that the input data contains variables that

are either redundant or irrelevant and can thus be removed without incurring much loss of

information (Bermingham et al., 2015). The variable selection process is no different from

model selection based on parameter tuning. However, as the number of variables m get suf-

ficiently large, the number of possible subsets increases exponentially as 2m −1. This causes

algorithms that check all possible combinations to become computationally exhaustive.

Especially in linear regression one may want a simple model with few variables for easy in-

terpretation of the results. Again we are faced with the bias-variance tradeoff. We want a

good model in terms of generalization and goodness of fit while keeping the complexity of

our model low to avoiding overfitting.

Backward-stepwise selection is a greedy algorithm that starts with all input variables. For

each iteration, the algorithm removes the variables that decrease the fit of the model the

least. This means that we remove the variables that add the least to the residual sum of

squares. This process leads to a sub-optimal search through all the possible subset of vari-

ables. However, this method is often preferred due to the computational efficiency com-

pared to an exhaustive search through all possible combinations. Since the residual sum of

squares will increase for each variable added, we need some other criterion to choose the

optimal subset size k. Hastie et al. (2001) discourages the use of F-statistics to select vari-

ables based on their significance and proposes the use of cross-validation as a way to choose

the optimal subset size k. Forward-stepwise selection is a similar approach to the backward-

stepwise selection. In this algorithm, you start with zero variables, only the intercept, and

add the variables that best improves the fit of the model.

As the stepwise selection methods do only test a sub-optimal set of all possible combinations

they are often discouraged to use. Both Briggs (2008) and Flom and Cassell (2007) address

known problems with the stepwise methods, discourage the use of level of significance to
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add or drop variables and stress the importance of cross-validation and using independent

test sets.

3.5.5 Example

To provide an example of cross-validation, least-squares regression and the interaction be-

tween bias and variance error we generate data according to Equation 3.30.

y = x +3sin(x)+ε (3.30)

where ε is normally distributed noise with zero mean and a variance of 2, that is ε∼ N (0,2).

We generate 200 points using this function with x-values between 0 and 20. We divide the

generated data randomly into a training set of 80 % and an independent test set of 20 %. The

training and test data can be seen in Figure 3.7.

Figure 3.7: Data generated for regression and cross-validation example

We assume a linear regression model where the inputs variables x j are basis-expansions of

the quantitative input x1. That is x j = x j
1. If we let α denote the highest order of polynomials

to include in our model, α will correspond to our model complexity. We want to find the

optimal model f̂α that minimizes the estimated test error Err.

We will use 5-folds in our cross-validation for eachα from 0 (constant model) to 15. The MSE

is used as the loss function. The estimated training error E[err] and estimated test error Err

as a function of α can be seen in Figure 3.8.
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Figure 3.8: 5-fold cross-validation used on polynomial regression for polynomial of degree 0
to 15.

When α = 0 we have a constant model and only one parameter β0. With a constant model

there is no variability in the model predictions and the expected values of our predictions are

far off the target values. This gives us a high bias and a low variance, resulting in underfitting

a high expected prediction error Err. When α= 15 we have a polynomial of degree 15 and 16

parameters to estimate. We now have a high variability in the model predictions around their

means. This comes at the cost that the expected values of a prediction is closer to its target

value, and we get a low bias but a high variance. Thus, we get an overfitting and a higher

expected prediction error Err. The expected training error E[err] decreases as a function ofα

as expected. We see that the optimal complexity of our model is α= 11.

In Figure 3.9 three polynomial regression curves are fitted to generated data for α= 0,11,15

to illustrate the differences between underfitting, overfitting and the optimal model. It is

clear that for α= 0 the model fails to predict the values from x1. For α= 15 the model fits the

variability in the target values due to noise. When α = 11 represents the model with lowest

expected test error and thus is chosen as the optimal model.
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Figure 3.9: Polynomial regression curves for three different α= 0,11,15.
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Chapter 4
Database Preparation

4.1 Introduction

In this Chapter we prepare or preprocess the given data into a dataset suitable for analy-

sis. The given data from DNV GL is already preprocessed to some degree by the storage and

logging system on the vessel, we have no information on how this is done and what has

been done to the data before we retrieve it. In Section 4.2 we briefly go into how the data

was handed to us and how we store the data to make it more accessible and easier to work

with. To remove obvious outliers we apply simple filters, this is done in Section 4.3. In Sec-

tion 4.4 we define a method to handle the difference in temporal resolution of the variables.

In Section 4.5 we redefine multiple variables. The fully preprocessed dataset is shown in Sec-

tion 4.6. Finally, in Section 4.7, we use unsupervised learning to investigate the dataset made

from the preprocessing.

4.2 Data Storage

The data we got from DNV GL were stored in an inefficient manner for doing analysis. Due

to this, the first objective was to transfer the data to a storage format that would be more

efficient for further preprocessing and analysis then the original comma separated values

(CSV) format. The data from DNV GL were transformed to Hierarchical Data Format (HDF)

which is faster to load and takes less space to store large amounts of data (HDFGroup, 2017).

When all files were converted to HDF format, each variable for each 6-hour file was saved in
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one file, giving us a total of 25 files, one for each variable. Saving the data this way made it

easy to investigate each variable separately and only open the variables of interest. This gave

an easy to use and efficient storage system and further preprocessing and analysis could be

carried out without much hassle.

4.3 Data Reduction

When inspecting the unfiltered data it was obvious outliers were present in the data. An

example of this can be seen in Figure 4.1 where we see water depths logged of approximately

−16000 [m], deeper than the deepest point on earth.

Figure 4.1: Unfiltered water depth data with obvious outliers around January 2015

These obvious outliers can be found in several other variables as well. To cope with this,

simple minimum and maximum filters were added to each variable according to Table C.1

in Appendix C.

From speed through water there were removed 684 observations, the reason can be seen in

Figure 4.2. Here we see points reaching as high as 1000 [kts] around February 2015.
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Figure 4.2: Unfiltered speed through water data with obvious outliers around from August to
November 2014

The data is also filtered such that other losses then the RAH can be assumed negligible. This

includes removing incidents where the wind speed is above 4 on the Beaufort scale (BF)

(above 16 [kts]). When the wind speed is BF 4 or lower, the waves are assumed to be less

than 2 meters high, and thus we can also neglect the wave resistance. The Beaufort Scale

can be seen in Appendix D.2. The quality of the wind data is poor as we saw in Figure 2.4

in Section 2.3.1. To filter out the conditions with BF 4 or higher, we use the GPS position of

the vessel matched up reanalysis data from National Center for Environmental Information

(NOAA, 2017).

Finally, a nearest neighbor outlier removal is run set to remove 10 % of the points that are

furthest away from its neighbors. The Performance Loss plotted before and after the nearest

neighbor outlier removal can be seen in C.2. We clearly see that some of the most obvious

outliers are removed.

4.4 Find Nearest

All sensors are logging at different timestamps and variables are rarely logged at the exact

same timestamp. To cope with this we find the values closest to a given timestamp with a
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maximum allowed time delta t∆. The maximum allowed time delta is added to ensure that

values are not several hours away from the timestamp we are interested in. A small example

to visualize this process can be seen in Figure 4.3. Here speed over ground is used as the

main variable such that all the other variables are matched to the timestamps of speed over

ground. We add Not-a-Number (NaN) if there are no values inside the given t∆.

Figure 4.3: A visualization of the find nearest function. Speed over ground is used as the main
variable and a time delta of two minutes is used

If we do this process for all timestamps in one variable and remove the rows with any occur-

rence of NaN we would end up with a full dataframe or matrix. The size of the table would

depend on the t∆ sent to the find nearest function. In Table 4.1 we see the remaining num-

ber of data observations when running the find nearest process on speed over ground with

5 different t∆. As speed over ground has relatively few measurements (7566) it is expected

that we end up with quite a few points after running the find nearest function. However,

when we run this function, we are sure that all other variables are logged within ±t∆ for each

timestamp. By doing this we assume that the variables do not change much within ±t∆ of

each timestamp. For a vessel of this size, this might be a fair approximation most of the time

for t∆ < 10 [min].
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t∆ in minutes Size of remaining dataframe
60 4792
30 4395
10 4062
5 3683
1 2780

Table 4.1: Find nearest function for different timedeltas with speed over ground as main
variable

Speed over ground is used as the main variable as this is arguably the most important vari-

able when inspecting the performance loss. Ideally, speed through water should have been

used, but these measurements were unreliable most of the time as we saw in Figure 4.2.

4.5 Variable Redefinition

Several of the chosen variables essentially measure the same metric for similar subsystems,

such as the shaft torque port and starboard, assuming the vessel is not using the difference

in starboard and port propeller to turn. In this analysis, we are not interested in the indi-

vidual behavior of these subsystems and thus redefine them as one variable by means of

summation or remove the variable. The list of redefined variables is shown in Figure 4.4.

This reduces the amount variables from 25 to 13. For a more in-depth analysis, the indi-

vidual variables should be kept separate if one wants to investigate the differences between

them.

Figure 4.4: List of variable redefinition by summation.

To make use of the dry-dock and propeller polishing dates, we add them as variables, Days

since dry-dock and Days since propeller polishing. This way any temporal changes and drastic

changes due to dry-dock or propeller polishing might be captured by our regression models.
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4.6 Prepared Database

After all the preprocessing steps described in this chapter are done, we are left with what we

from now will refer to as the prepared dataset. The prepared dataset contains 13 variables and

1833 observations. All the variables and their unit can be seen in Table 4.2. The Percentage

Speed Loss (performance loss) will be our target value and the remaining 12 variables will be

our input variables in the regression analysis. All input variables are normalized.

Variable Unit
Atmospheric Temperature C

Speed Over Ground kts
Speed Through Water kts

Sea Water Temperature C
Water Depth m

Shaft Power Total kW
Total Main Generator Power kW

Draft Average m
Days Since Dry-Dock days

Days Since Propeller Polish days
Total Shaft Torque kNm
Total Shaft Speed rmp
Performance Loss %

Table 4.2: Variables in prepared dataset.

4.7 Date Exploration

We now want to explore the prepared dataset using the unsupervised method described in

Chapter 3. There are several correlations and patterns in the dataset we expect to see. If

these correlations and patterns do not show up, it gives an indication the information was

lost during the preprocessing.

4.7.1 Correlation Matrix

Figure 4.5 shows the correlation matrix for the 13 variables. Such a matrix simply presents the

variable-variable correlations ranging from -1 (completely negatively correlated) to 1 (com-

pletely positively correlated). This is a simple method to get an overview of the correlations

between variables or variable clusters. We expect to see correlations between variables such
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as speed over ground and speed through water. This gives an indication that the processed

data still contains relevant and correct information. If the correlations in the matrix make

sense, it gives an indication that we have not lost much information during the preprocess-

ing.

We clearly see that the parameters directly connected to the propulsion system, like shaft

torque, shaft speed and speed over ground, are highly positively correlated which is expected.

The sea water temperature and atmospheric temperature are highly correlated which is also

expected. We are also pleased to see that variables that have no logical relations are insignif-

icantly correlated.

Figure 4.5: Correlation matrix for the chosen 13 variables
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4.7.2 Principal Component Analysis

With the prepared dataset, we use the previously described PCA method (Section 3.3.2) to

reveal the structure in the data and investigate which variables best describe the variation in

the data. It will also indicate how the different variables are correlated similarly to the corre-

lation matrix in Section 4.7.1, but with a clearer representation.

4.7.2.1 Explained Variance

In Figure 4.6 we see how the explained variance develops depending on the number or prin-

cipal components (PCs) included. The explained variance starts out quite low at 46 % but

already increases to 94 % with 6 PCs. The contribution of explained variance by adding an

additional component declines in an exponential fashion. Furthermore, the interpretation

of the higher components become less and less intuitive.

Figure 4.6: Cumulative explained variance after 6 PCs.

4.7.2.2 Scores and Loadings

It is important to view the scores plot in combination with the loadings plot to get an under-

standing of the scores plot and to see which variables influence the different PCs. Only the

fist two components are included in the scores plot as the higher PCs describe less variance
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and there is no clear pattern in these score plots.

The first two components describe the most of the variance in the data, in this case, they

describe 61 % of the variance. It is in these two components we expect to see most of the

already known or expected correlations. Variables that are positively correlated are located

close to each other while the negatively correlated variables are found on opposite sides of

each other. Hence, variables on opposite diagonals will be negatively correlated in both PCs.

In Figure 4.7 the loadings for PC1 and PC2 are plotted together. We start by noticing the

variables close to the origin of the loadings plot, such as the percentage speed loss. These

variables describe little of the variance in these first two PCs. Notice the cluster of points to

the right in the loadings figure. In this cluster, all the variables related to propulsion is lo-

cated. This means that the propulsion variables are highly correlated and this is expected.

We also notice that atmospheric temperature and sea water temperature does not describe

much variance in the first component, but describes much of the variance in the second

component.

Figure 4.7: Variable loadings for PC1 and PC2.

In Figure 4.8 the scores for PC1 and PC2 can be seen. Each of the four plots has been color

coded to the four variables speed over ground, water depth, atmospheric temperature and
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average draft. By coloring the scores according to various variables we can easily see how the

different variables are affecting each principal component. Coloring by water depth is done

to visualize that water depth does not describe much variance in the first two components.

Figure 4.8: Variable scores for PC1 and PC2 color coded by four different variables as indi-
cated by the title for each plot.

An alternative representation of the PCs and its loadings can be seen in Figure 4.9, inspired

by Perera and Mo (2016). Here each variable loading is presented for the first six PCs in a

two-dimensional grid. The magnitudes of the loadings are proportional to the area of the

circles and the color of the circles represents the signed magnitudes of the loadings. This fig-

ure also represents an overview of the correlations among the respective parameters of ship

performance and navigation information.

Presenting the variable loadings for each PC in this manner one can easily visualize the vari-

ables with higher loadings and their positive and negative correlations, resulting in the same

analysis as above for the first two components. We see that percentage speed loss describes

much of the variance in PC 5. In this PC, the other variables are quite small, indicating that

the percentage speed loss is not strongly correlated with any variable. This tells us that pre-

dicting the percentage speed loss might be hard as there is no clear relation with the other

variables.
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Figure 4.9: Variable loadings for the 6 principal components.
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Chapter 5
Analysis

In this chapter, various methods from Chapter 3 will be used to explore the underlying rela-

tionship between the vessel performance and the 12 chosen variables. An extra effort will be

put into analyzing the vessel performance relation with time (hull-propeller performance).

The chapter will be divided into two main parts: In the first part, Section 5.1, we simulate

data to mimic the real data. A methodology for regression will be employed to recover the

relationships in the simulated data. In the second part, Section 5.2, the same methodology

is applied to real-world data. In this way, we are better able to explain why or how the real-

world analysis fails to display the expected results.

5.1 Simulated Data

We now assume three situations where the performance loss due to hull-propeller perfor-

mance can be explained as a function of virtual time tv , that is L = f (tv ). The function f (tv )

will be defined for three cases:

1. Linear model, the loss is a linear function of virtual time, and virtual time is equal to

real time. This means that one day in real time is equal to one day in virtual time,

tv = tr .

2. Non-linear model, the loss is a non-linear function of virtual time. The virtual time is

still equal to real time, tv = tr .

3. Multidimensional non-linear model, the loss is a non-linear function of the virtual

time, and the virtual time is dependent on various variables. That is, tv = f (P ) where
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P is a vector of variables. The variables in P can, for instance, be the sea water temper-

ature and real time.

Noise will be added to all models, and a nearest-neighbor outlier removal algorithm will be

used to remove 10 % of the points, as was done for the real-world data. When we have gener-

ated data from our simulated models, we will perform the methods described in Sections 3.4

and 3.5 to verify that the methods are able to uncover the models used to generate the simu-

lated data. For all simulated models, time (both tr and tv ) is counted in days.

5.1.1 Linear Model

In this case, we simply assume that the speed loss of the vessel is a linear function of real

time and that virtual time is equal to real time such that tv = tr . The speed loss function can

then be defined as

L = atv +L0 +ε (5.1)

where L is the speed loss in percentage, L0 = 5 is the initial loss at tv = 0, a = 100
3650 = 0.0274

(gives a loss of 30 % over approximately three years) and ε ∼ N (0,4). We then generate data

for 1200 days and divide them randomly into a test set of 20 % and a training set of 80 % as

seen in Figure 5.1.

Figure 5.1: Data generated from linear model with added noise and divided into a training
and a test set.

Using this simple linear model, we assume that time is the only parameter that affects the
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speed loss. There are no events that affect the speed loss such as propeller polishing or dam-

aging of the propeller. Linear least squares regression, polynomial least squares regression,

and nearest neighbor regression will now be used on this linear model to test these methods

on data which we know the underlying equations.

5.1.1.1 Linear Least Squares Regression

We start out by testing linear least-squares regression. Since the data is generated from a lin-

ear model, the linear regression is expected to find regression coefficients β0 and β1 similar

to L0 and a. However, they might be slightly off due to the added noise. In Figure 5.2 the

linear regression line is plotted together with the generated data.

Figure 5.2: Data generated from linear model together with the linear regression line gener-
ated from least squares regression.

This regression line has the coefficients β0 = 4.61 and β1 = 0.028. These coefficients are

similar to those coefficients used to generate the data (L0 = 5 and a = 0.027), we see that the

linear regression method is well suited to find relations from linear interactions, as expected.

The base error is reduced by 86.5 %.

5.1.1.2 Polynomial Least Squares Regression

We now want to use polynomial regression in combination with cross-validation to find an

optimal degree of polynomials to include in the regression. As mentioned in Section 3.4.1,

polynomial regression is still linear in that the inputs can be basis-expansions of quantitative

61



CHAPTER 5. ANALYSIS

inputs, such as x2 = x2
1. As the model used to generate the data is linear, it is expected that

we might get the best prediction error by only using a polynomial of degree one. If this is the

case, the regression coefficients will be the same as the previously tested linear regression

line. However, due to the noise added, we might also get that polynomials of higher degrees

get a better estimated prediction error. We use polynomials from degree 0 to 7 such that the

regression model looks like

f (X) =β0 +
a∑

j=1
x jβ j , (5.2)

whereα ∈ 0,1, · · · ,7 and x j = x j . We will then perform a 5-fold cross validation for each of the

8 cases to find the optimal degree for α. The case when α = 0 means taking the average of

the data and use this as a prediction for new values. This is the worst prediction model and

is often referred to as the base error. The cross-validation process can be seen at the top of

Figure 5.3.

Figure 5.3: Top: Cross Validation to find optimal polynomial degree. Vertical black-dotted
line represents the optiaml degree. Bottom: Polynomial regression line for optimal degree.

As we see in Figure 5.3 a polynomial of degreeα= 2 gives the lowest estimated test error. The

regression line for α= 2 can be seen at the bottom of the figure.
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α Estimated Test Error (Err) Standard Deviation

0 109.82 4.30

1 15.889 0.058

2 15.887 0.064

3 15.952 0.091

4 16.040 0.124

5 16.039 0.114

6 16.015 0.115

7 15.990 0.122

Table 5.1: Estimated test error and standard deviation for polynomial regression on linear
model for different α

In Table 5.1 we see that the error for α = 1,2, . . . ,7 does not differ much and they all have

low standard deviations. Since the error when α = 1 is within one standard deviation from

α= 2 we would choose a polynomial of degree 1. This makes the regression model easier to

interpret. By choosing α= 1 the test error on the independent test set ErrT becomes 14.86,

and the base error is reduced by 86.5 %, same as the linear least squares regression. We

notice that ErrT = 14.86 is lower than the expected test error Err = 15.899. This is due to the

relatively low number of folds (K = 5) in the cross-validation and how the data is randomly

divided into a test and training set.

5.1.1.3 Nearest-Neighbor Regression

We now use the uniform weighted nearest-neighbor regression described in Section 3.4.2.1.

To find the optimal number of neighbors we use a 5-fold cross-validation. This process is

seen in the top of Figure 5.4. We have tested for neighbors k = 1,2, · · · ,70. For nearest-

neighbor regression it is hard to predict which k will give the optimal fit. Since the model

used to generate the data is quite simple, it is expected that the number of neighbors should

be quite high, as a large k gives a simpler model then a small k.
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Figure 5.4: Top: Cross Validation to find optimal number of neighbors. Vertical black-dotted
line represents the optimal k. Bottom: nearest-neighbor regression line for optimal k.

From the figure we see that the optimal number of neighbors k = 62 is quite high as expected.

There is only a small change in MSE when k > 20. In the bottom of the figure the regression

line is plotted for k = 62, this regression model gives ErrT = 14.94 on the independent test

set. This is a base error reduction of 86.4, very similar to the linear regression methods.

5.1.2 Non-Linear Model

In this case we assume that the speed loss of the vessel is a non-linear function of virtual time

tv and that virtual time is equal to real time, tr = tv . We assume that the development of the

added resistance on the vessel (the performance loss) is given as assumed by Gundermann

and Dirksen (2016)

RAH = A tanh(B tr ) (5.3)

where A is the asymptotic amplitude, B is the growth rate and tr is the time. The coefficients

A and B depends on the increments of tr (whether it is in seconds, hours, months or years).

If we further assume that time is the only effect on speed loss of the vessel we can make a

non-linear loss function as
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L = A tanh(B tv )+L0 +ε (5.4)

where L is the speed loss in percentage, L0 = 5 is the initial loss at tv = 0, A and B is chosen to

30 and 0.0018 respectively. This gives a speed loss of 35 % as tv → inf. The noise is assumed

gaussian, ε∼ N (0,4). We then generate data for 1200 days and divide them randomly into a

test set of 20 % and a training set of 80 % as seen in Figure 5.5.

Figure 5.5: Data generated from non-linear model with added noise, divided into a training
and a test set.

Using this non-linear model, we assume that time is the only parameter that affects the speed

loss. There are no events that affect the performance loss such as damaging of the hull or

propeller polishing.

5.1.2.1 Least Squares Regression

We now want to use polynomial least squares regression in combination with cross-validation

to find an optimal degree of polynomials to include in the regression. As the model used to

generate the data is non-linear, it is expected that some higher degree polynomial will give

the best estimated test error. We use polynomials from degree 0 to 7 such that the regression

model looks like

f (X) =β0 +
a∑

j=1
x jβ j , (5.5)

where a = 0,1, · · · ,7 and x j = x j . We will then perform a 5-fold cross validation for each of
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the 8 cases to find the optimal degree for α. The cross-validation process can be seen in the

top of Figure 5.6, where a polynomial of degree three gives best estimated test error.

Figure 5.6: Top: Cross Validation to find optimal polynomial degree. Vertical black-dotted
line represents the optiaml degree. Bottom: Polynomial regression line for optimal degree.

In the bottom of Figure 5.6 the regression line for α= 3 is plotted together with the data. In

Table 5.2 we see that the error forα= 2, . . . ,7 does not differ much and they all have relatively

low standard deviations. Since the error when α = 2 is within one standard deviation from

the optimal degree α = 3 we would choose a polynomial of degree 2 since this makes the

regression model easier to interpret. By choosing α = 2 the test error on the independent

test set becomes ErrT = 14.89, and the base error is reduced by 83.5 %.

α Estimated Test Error (Err) Standard Deviation

0 90.34 3.83

1 23.44 0.20

2 16.03 0.14

3 15.91 0.12

4 16.01 0.12

5 16.02 0.11

6 16.01 0.11

7 15.99 0.12

Table 5.2: Estimated test error and standard deviation for polynomial regression on non-
linear model for different α
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5.1.2.2 Nearest-Neighbor Regression

We now use the uniform nearest-neighbor regression. To find the optimal number of neigh-

bors we use a 5-fold cross-validation. This process is seen in the top of Figure 5.7. We have

tested for neighbors k = 1,2, . . . ,70. Since this model is slightly more complicated than the

linear model in Section 5.1.1 we expect a fewer number of neighbors to be chosen for the

optimal model.

Figure 5.7: Top: Cross Validation to find optimal number of neighbors. Vertical black-dotted
line represents the optimal k. Bottom: nearest-neighbor regression line for optimal k.

From the figure we see that the optimal number of neighbors is 30 which is less than for the

linear model, as expected. In the bottom of Figure 5.7 the regression line for k = 30 is plotted

together with the data. For k = 30 the test error is ErrT = 14.71. This means that the base

error is reduced by 83.7 %, slightly better than a second degree polynomial.

5.1.3 Multidimensional Non-Linear Model

In this case we assume that the speed loss of the vessel is a non-linear function of virtual

time tv and that virtual time is a function of speed over ground (sog), sea water temperature

(sw) and real time tr . That is
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L = f (tv )+ε= f (tr , sw,sog)+ε (5.6)

where ε ∼ N (0,4). By doing this we assume that the speed of the vessel (sog) and sea water

temperature (sw) affects how much loss is added each day, i.e. affect the virtual time such

that one virtual day is shorter or longer than one real day. For example, if the vessel is sailing

in cold water, it is expected that the fouling is not as rapid as it would be in warmer waters

and one virtual day become less then a real day.

How it is assumed sog and sw affect the virtual time can be seen in Figure 5.8. From the

figure we see that a temperature of 25◦C would speed up the fouling process by two days,

such that one real day becomes three virtual days. The sog of the vessel can also be seen in

this figure, and can increase or decrease the virtual time by maximum ±0.5 days. If we follow

this model, a vessel sailing constantly at 10 [kts] in 5◦C sea water, we would have that tr = tv .

Figure 5.8: Model of how the sea water temperature and speed over ground affect the virtual
time.

The full function for the virtual time at day i is then given by

tv,i = tv,i−1 + tr + Aswsw2 +Bswsw−Csw − Asogtanh(Bsog(sog−Csw)) (5.7)

where tr = 1 (one day increments) and the parameters A, B and C are chosen as seen in

Table 5.3.

Parameter Value Parameter Value
Asog -0.5 Asog -0.007167
Bsog 0.2 Bsog 0.29917
Csog 10 Csog 1

Table 5.3: Parameters chosen for the multidimensional non-linear model
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To generate sea water temperatures for 1200 days, we divide the into three periods of 400

days each. For each period a random walk (Pearson, 1905) will be started at different starting

points. This is done to keep the continuity of real sea water temperature. The random walk

used to generate sea water temperature timeseries can be seen at the top of Figure 5.9. We

use the normalized cumulative density function of the real speed over ground to generate

data similar to that of the real vessel. The generated speed over ground timeseries can be

seen at the bottom of Figure 5.9. This generated data actually contains negative sea water

temperatures, which is unlikely in the real world.

Figure 5.9: Generated sea water temperature from a random walk and generated speed over
ground from real data speed distribution. The red dotted lines divides the data into three
equally sized periods.

We further assume that the vessel has self-polishing paint, such that the performance loss

is slightly decreasing the first 200 days. This is done by having a different function when

tr < 200.

We generate data from Equation (5.8) and divide them randomly into a test set of 20 % and a

training set of 80 %. In the top of Figure 5.10 the generated data can be seen before noise is

added. In the bottom of the figure the data with added noise and divided into a training and

a test set can be seen. We notice the clustering of points around tv = 1500 and tv = 2200, this
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is effects of the virtual time being a function of several variables.

L =


15tanh(0.0015tv −2)+13.2, if tr < 200

−2.5tanh(0.025tv −2)+2.5, otherwise
(5.8)

Figure 5.10: Performance loss without (top) and with noise (bottom) for multidimensional
non-linear model. When the noise is added the data is divided into a training and a test set.

In this model, it is assumed that the speed over ground and sea water temperatures are mean

values for each day, as the time is increased by 1 day each step. In Figure 5.10 we can see that

for our model because the vessel is often sailing at low speed and at relatively warm water,

approximately 2300 virtual days has passed when only 1200 real time days have passed. In

other words, the fouling process of the vessel has doubled compared to a vessel sailing con-

stantly at 10 [kts] and only sailing in waters of 5◦C.

5.1.3.1 Linear Least-Squares Regression

We start by using linear least-squares regression on the multidimensional non-linear model

we have created. There are three input variables, tr , sog and sw. The target value is the per-

formance loss L. As the data is generated from a non-linear model with three input variables

the linear regression is not expected to get a good test error, but we still expect some reduc-

tion of the base error. By using linear least-squares we will find a regression function on the
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form

L =β0 +βt tr +βsw +βsog (5.9)

As this is a multidimensional function with three inputs, it is not easy to visualize the re-

gression plane in a good way. Due to this, we plot the residuals versus fitted values and the

distribution of the residuals. This way we get an impression on how well the regression line is

predicting new values and if there are any pattern in the residuals. To the left in Figure 5.11,

the residuals are plotted against the fitted values from the training set. We see that the resid-

uals appear to follow an s-shaped line. This is an indication that the non-linear relationship

between the input variables and the target values was not explained by the regression model.

To the right in Figure 5.11, the standardized residuals are plotted against the theoretical

quantiles. This plot gives us information on whether the residuals are normally distributed.

As we see the R2-value is high and the plots follow a straight line, indicating that the residu-

als are quite normally distributed. Keep in mind that this just a visual check, not an air-tight

proof, so it is somewhat subjective.

Figure 5.11: Left: Residuals plotted against the fitted values from the training set. Right:
Standardized residuals plotted against the theoretical quantiles.

Using this linear regression line, the β’s in Equation (5.9) becomes β0 =−0.853, βt = 0.0278,

βsw = −0.0763 and βsog = 0.0251. The test error ErrT = 19.48 and the base error is 117.68,

which gives a base error reduction of 83.4 %, not bad for a simple linear regression.
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5.1.3.2 Polynomial Regression

We want to use polynomial least squares regression in combination with cross-validation

to find an optimal degree of polynomials to include in the regression. It is expected that

a high degree of polynomials will give the lowest estimated test error. However, if a lower

degree polynomial only has a slightly higher expected error, the lower degree polynomial

will be favored for easier interpretation. It is also expected that tr will be the most important

variable and will hence have higher coefficients then the other variables. We use polynomials

from degree 0 to 7 such that the regression model looks like

f (X) =β0 +
a∑

j=1
x jβ j , (5.10)

where a = 0,1, · · · ,7 and x j = x j . We will then perform a 5-fold cross validation for each of

the 8 cases to find the optimal degree for α. The cross-validation process can be seen in

Figure 5.6, where a polynomial of degree 4 gives best estimated test error.

Figure 5.12: Cross-validation for polynomial regression on multidimensional non-linear
model. Vertical black-dotted line represents the optimal polynomial degree.
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α Estimated Test Error (Err) Standard Deviation

0 118.48 2.59

1 23.22 1.22

2 21.40 1.23

3 17.15 0.54

4 16.25 0.50

5 16.32 0.50

6 16.42 0.50

7 16.63 0.52

Table 5.4: Estimated test error and standard deviation for polynomial regression on multidi-
mensional non-linear model for different α

The expected test errors can be seen in Table 5.4 together with their standard deviation. For

a polynomial of degree 4, we have that ErrT = 15.34. This is an expected reduction of 86.9 %

compared to the base error.

As we did for the linear regression model, we investigate how the residuals are behaving. To

the left in Figure 5.13, we can no longer see a clear pattern for the residuals as we did in

the linear regression model. This suggests that the non-linear relationship between input

variables and target values are somewhat described by our regression model. However, we

see many points for low and high values on the fitted values-axis. This means that the model

is struggling to fit high and low values for the performance loss L. This suggests that the

assumption of constant variance may not hold. The normal Q-Q plot gives a high R2-value,

suggesting that the residuals are normally distributed.

Figure 5.13: Left: Residuals plotted against the fitted values from the training set. Right:
Standardized residuals plotted against the theoretical quantiles.

We want to investigate which variables describes the most variance in the fourth-degree re-
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gression polynomial. To do this we test all subsets of variables and choose the subset of size

k that gives the lowest expected test error by the use of cross-validation. In Figure 5.14 the

residual sum of squares and the expected test error for a 5-fold cross-validation is plotted.

Each RSS and MSE is plotted for the best subset of the given subset size k.

Figure 5.14: Cross-validation used to find the best subset of variables to include in our fourth
degree regression polynomial.

We see from the figure that a subset of size k = 5 gives the lowest Err. In Table 5.5 the RSS,

MSE (Err) and the chosen variables for each best subset of size k = 1,2, . . . ,5 can be seen. We

see that tr is clearly the most represented variable in the model as expected. By using the 5

optimal variables we can create a regression model which gives a test error of 15.52, which

reduces the base error by 86.8 %. This is very close to when all variables were in the model,

suggesting that sog and sw are almost insignificant in this linear regression model or that

this linear regression model is not able to capture the relation between performance loss, sw

and sog. We will probably see similar problems in the real-world data.
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Subset size k RSS MSE Variables
1 21065 23.28 tr

2 15753 17.43
t 2

r
t 3

r

3 15482 17.15
tr

t 2
r

t 3
r

4 14455 16.04

tr

t 2
r

t 3
r

t 4
r

5 14359 15.97

tr

t 2
r

t 3
r

t 4
r

sog4

Table 5.5: Subset selection table for multidimensional non-linear model for k = 1,2, . . . ,5.

From the table, we notice that the sub-optimal stepwise subset selection methods would give

a wrong subset for k = 2. The stepwise method would first find tr then add the variable that

decreases the CV error the most of the remaining variables. For k = 2, tr is not included in

the optimal subset. The regression coefficients from the polynomial regression model with

5 optimal variables can be seen in Appendix E.1.

5.1.3.3 Nearest-Neighbor Regression

Finally, we apply the uniform nearest-neighbor regression to our multidimensional non-

linear model. To find the optimal number of neighbors we use a 5-fold cross-validation.

This process is seen in Figure 5.15. We have tested for neighbors k = 1,2, · · · ,50. The number

of neighbors is expected to be relatively low as the model is quite complex.

Figure 5.15: Cross-validation for nearest-neighbor regression on multidimensional non-
linear model. Vertical black-dotted line represents the optimal number of neighbors k
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From the Figure we see that the optimal number of neighbors is quite low as expected k = 11.

This gives a test error ErrT = 16.52, slightly worse than the best least-squares regression

model. Even if the nearest-neighbor regression models gives a good test error, it is hard to

understand the model and assess the importance of various variables.

5.2 Real-World Data

In Figure 5.16 the performance loss from the real-world prepared dataset is plotted. The

mean loss for each month can be seen in the box to the right of the figure. The grey boxes

in the figure indicate the mean ±1 standard deviation. The performance loss is calculated as

a percentage loss compared to the expected performance calculated from CFD as discussed

in Section 2.2. Again the data is split randomly into a training set of 80 % and a test set of

20 %. There is not a clear pattern of the performance loss like we saw in the simulated data.

Hopefully, our regression models will still be able to make models that can predict our test

set with low error. Since this is the real-world data, a more in-depth analysis will be carried

out then for the simulated data.

Figure 5.16: The performance loss in the real-world data for the available period. Right box
indicates the mean for each month of sailing. Gray boxes in the plot indicates mean ±1
standard deviation.
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5.2.1 Least Squares Regression

We start out by taking all variables to the power of 1,2, . . . ,7 such that we have a maximum

of 12×7 = 84 variables. To choose which degree of polynomial to include in our regression

model, we use cross-validation and choose the degree that gives the lowest expected test

error Err as seen in Figure 5.17.

Figure 5.17: Cross validation to choose optimal degree of polynomial regression.

We see that we get the lowest CV error for α= 3, but already when α= 2 the CV error is quite

low. The base error for the real data is 95.85. In Table 5.6, the estimated test errors, as well

as standard deviations can be seen. For further analysis, we choose a polynomial of degree

2 for easier interpretation. A polynomial of degree two is able to reduce the error by 97.8 %

compared to the base error. This is a significant reduction in error, and better than expected.

α Estimated Test Error (Err) Standard Deviation

0 95.93 3.64

1 17.15 1.21

2 2.14 0.18

3 1.31 0.16

4 1.32 0.16

5 1.34 0.16

6 1.33 0.15

7 1.32 0.15

Table 5.6: Estimated test errors for polynomial regression on real-world data

When choosing a seconds degree polynomial we have a regression model with 24 variables

and coefficients, 25 coefficients if we count the intercept β0. These coefficients can be seen

in Table E.2 in Appendix E.1.
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Figure 5.18: Top left: Residuals plotted against the fitted values from the training set. Top
right: Standardized residuals plotted against the theoretical quantiles. Bottom left: Proba-
bility density of residuals. Bottom right: Observed versus fitted values.

In Figure 5.18 four different plots that give information about the regression model is plotted.

To the top left, the residuals are plotted against the fitted values. There is a clear parabolic

shape in this shape, which tells us that there are non-linear relationships between input vari-

ables and target values that are not described fully by our regression model. This is verified

by the Q-Q plot to the top right where we see that the residuals are not normally distributed

and seems to be negative or left-skewed. In the bottom left of the Figure the probability den-

sity of the residuals is plotted. We can confirm that the residuals are slightly left-skewed. To

the bottom right, the predicted versus observed values can be seen. They seem to follow

quite a straight line, indicating a clear relation between predicted and observed values.

As we are interested in how time affects the performance loss we make a regression model

using only days since drydock and days since propeller polish as input variables. We add these

two variables to the power of α = 0,1,2, . . . ,7 to see if the relation between the performance

loss and time might be of higher order. We use 5-fold cross-validation to find the degree of

input variables that gives the lowest estimated test error. This can be seen in Figure 5.19. A

polynomial of degree 6 gives the lowest expected test error, but we can see that for all α, the

standard deviations are large, as indicated by the vertical lines. We see that taking the mean

of the input variables (α = 0) is very close to being within one standard deviation from the

optimal degree (α = 6). The estimated test error for α = 6 is 92.04±3.68, which only gives a
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base error reduction of about 4 %.

For α = 1 we get the coefficients (β) related to days since drydock and days since propeller

polish as 0.734 and 0.598, suggesting that there is a slight increase in performance loss as the

time increases. For higher degree polynomials it is more complicated to see the impact of

the input variables as one variable squared might cancel out the same variable cubed.

Figure 5.19: Cross validation to choose optimal degree of polynomial regression when the
time is the only variables in the input data.

In Figure 5.20 four different plots that give information about the regression model can be

seen. We can see that the residuals seem to be normally distributed. In the residuals versus

fitted values plot to the top left, we see some values far away from the large cluster of points.

This indicates that some outliers have not been removed during the preprocessing of the

data. In the Q-Q plot to the top right, we see that the residuals start to swing off at the high

and low quantiles, suggesting that the tails of our distribution are not normally distributed.
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Figure 5.20: Top left: Residuals plotted against the fitted values from the training set. Top
right: Standardized residuals plotted against the theoretical quantiles. Bottom left: Proba-
bility density of residuals. Bottom right: Observed versus fitted values.

By investigating the relation between the time and the performance loss it is clear that there

is no significant relation that can be found using linear regression models. The small relation

between the time and the performance loss could as well be random or due to the uncertain-

ties and assumptions made.

5.2.2 Variable Assessment

We want to investigate which variables describes the most variance in our data. We will

first use the best subset selection on the 12 variables. Then we will square every variable

and find the best subset when we have 24 variables. To do this we test all subsets of vari-

ables and choose the subset of size k that gives the lowest expected test error by the use of

cross-validation. Ideally, we should run polynomial cross-validation in loop with best sub-

set selection, such that all possible combinations for both polynomial degree and subset of

variables are tested together. This is computationally costly, even for as few as 24 variables.

First, we use the 12 chosen variables in the prepared dataset. In Figure 5.22, the residual sum

of squares and the expected test error for a 5-fold cross-validation is plotted. RSS and MSE

(Err) are plotted for the best subset of the given subset size k.
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Figure 5.21: Cross-validation used to find the best subset of variables to include from our 12
variables.

From the Figure, we see that a subset of 9 variables gives the lowest CV error. The RSS, CV

error and the optimal variables for each subset of size k = 1,2, . . . ,12 can be seen in Table 5.7.

The best subset, k = 9, gives a CV error of 17.06 which decreases the base error by 82.2 %. We

notice that a stepwise subset selection would produce the same results as we got here since

one variable is added for each k. We also notice that the CV error drops slowly after k = 2

suggesting that speed over ground and total shaft torque is the two clearly most important

variables in this linear regression model. For k ≥ 4, days since drydock is chosen as a part of

the best subset of variables. For k = 4 the coefficients (β) related to speed over ground and

total shaft torque calculated by the least-squares regression is -25.3 and 34.5 respectively. The

coefficient related to days since drydock is only -0.99. This suggests that the performance

loss is decreasing slightly as the days increase, the opposite of what one would expect. All

coefficients for the optimal subset for k = 9 can be seen in Appendix E.1.
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Subset size k RSS MSE Variables
1 119669 90.82 Speed over ground

2 24503 18.90
–
Total shaft torque

3 23225 17.87
–
Total mg power

4 22490 17.32
–
Days since drydock

5 22138 17.15
–
Water depth

6 22064 17.14
–
Total shaft power

7 21968 17.09
–
Average draft

8 21905 17.08
–
Total shaft speed

9 21848 17.06
–
Atmospheric temp

10 21796 17.07
–
Days since propeller polish

11 21782 17.09
–
Sea water temp

12 21779 17.15
–
Speed through water

Table 5.7: Subset selection for the real-world data for k = 1,2, . . . ,12. ’–’ means the variables
for the previous k.

We now square all our 12 variables and add them to the input variables, such that we have 24

variables. Again we use best subset selection in combination with cross-validation to find the

optimal subset of variables. However, this is only done for k = 1,2, . . . ,8 due to computational

cost. The subset selection process can be seen in Figure 5.22.

Figure 5.22: Cross-validation used to find the best subset of variables to include in our sec-
ond degree regression polynomial.
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From the Figure, we see that the CV error still decreases when the subset size is k = 8. This

suggests that we might get lower CV error if we use a larger subset. The computational cost

of increasing the subset size increases exponentially, and we would have to calculate around

17 million combinations of subsets if we were to calculate for k up to 24. Like for our mul-

tidimensional non-linear model, the stepwise subset selection methods would not give the

optimal subsets for some of the k’s as some variables that were in the lower k subsets are not

in the higher ones. In Table 5.8 the RSS, MSE and the chosen variables for each best subset of

size k = 1,2, . . . ,8 can be seen. We see that the only variables represented are the propulsion

variables and draft of the vessel. With the 8 optimal variables, the test error becomes 2.48,

which reduces the error by 97.4 %.
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Subset size k RSS MSE Variables
1 119669 90.82 Speed over ground

2 24503 18.90
Speed over ground
Total shaft torque

3 12851 9.91
Speed over ground
Total shaft power
Total shaft power squared

4 5204 4.00

Speed over ground
Speed over ground squared
Total shaft power
Total shaft power squared

5 3908 3.02

Speed over ground
Speed over ground squared
Total shaft power
Total shaft power squared
Average draft

6 3432 2.68

Speed over ground
Speed over ground squared
Total shaft power
Total shaft power squared
Average draft
Total shaft torque

7 3238 2.55

Speed over ground
Speed over ground squared
Total shaft power
Total shaft power squared
Average draft
Total shaft torque
Total shaft torque squared

8 2963 2.35

Speed over ground
Speed over ground squared
Total shaft power
Total shaft power squared
Average draft
Total shaft speed
Total shaft speed squared
Total shaft torque squared

Table 5.8: Subset selection table for real-world data for k = 1,2, . . . ,8.

In Appendix E.1 the coefficients from using all 24 variables in the regression model, and the

coefficients using the subset of the 8 optimal variables in the regression model is listed.
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5.2.3 Nearest Neighbor Regression

We apply the uniform nearest-neighbor regression to the real-world data. To find the optimal

number of neighbors we use a 5-fold cross-validation. This process is seen in Figure 5.23. We

have tested for neighbors k = 1,2, · · · ,50. The expected number of neighbors is expected to

be relatively low as it is expected that the real-world dynamics are quite complex.

Figure 5.23: Cross-validation for uniformly weighted nearest-neighbor regression on real-
world data. Vertical black-dotted line represents the optimal number of neighbors k

From the Figure, we see that the optimal number of neighbors is quite low as expected k = 2.

This gives a test error 35.45 and reduces the base error by 63.0 %, way worse than for the

least-squares regression. We also try the distance weighted nearest-neighbor regression. The

cross-validation for this can be seen in Figure 5.24. We the optimal number of neighbors is

still k = 2 but the test error is slightly better, 32.37 (base error reduction of 66.2 %).

Figure 5.24: Cross-validation for distance weighted nearest-neighbor regression on real-
world data. Vertical black-dotted line represents the optimal number of neighbors k

Both nearest-neighbor regressions performed poorly compared to even the simplest least

squares regression. This was unexpected, as the nearest-neighbor regression performed

equally good as linear regression on our simulated data. As discussed in Section 3.4.2.1,

there is no way we can interpret the models made by nearest-neighbor regressions.
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Chapter 6
Summary and Recommendations for

Further Work

In this Chapter the work done is summarized, and the results are discussed before we provide

recommendations for further work. Section 6.1 summarizes the work done, how it was done

and whether it was implemented me or not. Section 6.2 presents a brief summary of the

work done and the main results. In Section 6.3 the findings are discussed in terms of their

strengths and limitations. Finally, Section 6.4 provides recommendations for further work.

6.1 Contributions

All work done in this thesis was done by the use of Python scripts. Originally there were

over 3000 CSV-files with more than 1 TB of sensory data stored in an inefficient way. These

files were opened and restored as HDF5 files, which reduced the total amount of data to 10.5

GB after the initial variable selection. All handling, conversion, and extraction of data were

done by the use of Pandas and NumPy. The find nearest method described in Section 4.4

was implemented by me. The nearest-neighbor outlier removal was done by the help of

Scikit-Learn. Scaling (normalization) of the data was done using Scikit-Learn. A self-made

implementation of PCA was made to get an understanding of the algorithm, but the imple-

mentation from Scikit-Learn was later used due to its simplicity. Scikit-Learn were used for

all regression analysis. However, the least-squares regression was implemented indepen-

dently to get a full understanding of the algorithm. Cross-validation was done by the use

of Scikit-Learn. Best subset selection was implemented by me. All plots were made using

87



CHAPTER 6. SUMMARY

Matplotlib. All methods, algorithms and their parameters have been selected by me, and

datasets were made by me to get a full understanding of the methods, algorithms and their

parameters.

6.2 Summary and Conclusions

Using sensory data from an LNG tanker combined with CFD curves, the relation between

vessel performance and various vessel and environmental variables were investigated using

a data-driven approach. A total of 12 variables were considered with data for almost three

years. The performance loss was calculated by measuring the performance at a given time

and comparing it with the expected performance, calculated using CFD. A particular atten-

tion was put into investigating the performance loss over time to assess the hull and pro-

peller performance. For analyzing the performance loss, various statistical learning methods

were used, such as PCA, linear and non-linear regression.

In Chapter 2 we provided necessary information about the vessel and the available data. The

chapter also gave a theory foundation on hull-propeller performance and the background

assumptions on which this theory is built. We chose a total of 24 variables from the 338

available variables, based on own experience and discussions with DNV GL and supervisors.

Chapter 3 presented several methods from the field of statistical learning. The theory and in-

terpretation were presented and for some of the methods, a simple example was presented.

This chapter also gave a short introduction to preprocessing of data. Outliers and missing

values were discussed as well mean centering and scaling of variables. Only a small subset

of methods from the broad field of statistical learning were presented. The selected meth-

ods were chosen based on practical use, interpretation, and visualization. In the end of this

Chapter we discussed methods for model assessment and selection, such that we could mea-

sure the performance of various regression models.

In Chapter 4 we preprocessed the given data into a suitable dataset for analysis. All steps

and assumptions made along the way were discussed. We ended up with a small number

of observations for the final prepared dataset (only 1833 observations), this is a relatively

small number of observations and should ideally be much larger. The difference in tem-
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poral resolution among the variables forced us to align observations within 20 minutes to

one timestamp. By this, we assumed that the state of the vessel and environment does not

change within 20 minutes. In the end of this Chapter we did an unsupervised analysis of the

prepared dataset. This revealed the variable correlations and which variables described the

most of the variance in the dataset. We saw that the variables related to the propulsion sys-

tem were highly correlated, as we expected. What we also saw was that the performance loss

and variables related to time described little variance in the first two components. This told

us that it might be hard to find a reliable relation between the performance loss and time.

In Chapter 5 the methods described in Chapter 3 were used to explore the underlying re-

lationship between the vessel performance and the 12 chosen variables. We first simulated

data to mimic the real-world data for three different cases. A methodology for regression was

employed to recover the relationships in the simulated data. Here we saw that the regression

models were able to uncover the relation between the input variables and the performance

loss well. We also saw that the linear regression models performed equally or better than the

non-linear nearest neighbor regression. The linear models also allowed us to interpret the

results and find the importance of the input variables on the regression model. When inves-

tigating the importance of variables for the multidimensional non-linear model, we saw that

the speed over ground and sea water temperature were almost neglected in the regression

model. This revealed that the linear regression model might struggle to find complex interac-

tions. In the second part of this chapter, we applied the same methodology on the real-world

data. The linear regression models gave strong results. A second-degree polynomial reduced

the base error by 97.8 %, higher than expected. The non-linear regression models performed

much worse, where the best nearest-neighbor regression only reduced the base error by 66.2

%. From the least-squares regression, we saw that the coefficients related to the propulsion

system were clearly more important than the rest of the coefficients. When we tried to inves-

tigate the relation between time and performance loss, we got insignificant results. Thus, for

this data, the time had an insignificant relation to the performance of the vessel and no prog-

nosis model in a context of maintenance operation could be defined. However, the results

suggested that the right operational profile can reduce the performance loss significantly.
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6.3 Discussion

In this section, we will further discuss some of the results highlighting different limitations

and strengths in our methodology.

We have tried to discuss all the known limitations with our methodology in Chapter 3. In the

preprocessing of data, we assumed that the parameters of our vessel do not change much

within a 20-minute interval. This was done to get our sparse data into a matrix such that

we could perform analysis. Due to this assumption, there will be situations where parame-

ters are put on the same timestamp when in reality the operational profile of the vessel has

changed, giving a false relationship between variables. We used simple methods for remov-

ing outliers, and there are most likely observations in the prepared dataset that should have

been removed. However, there is no universal method to remove outliers that work on all

datasets, so to limit the scope some methods had to be preferred over others. In general, the

removal of data were done carefully due to the relatively small amounts of speed measure-

ments.

Many variables were removed due to strange behavior or because they were thought to be

unnecessary. For instance, the rudder angles were removed, they could have been used to

indicate drift compensation or turning of the vessel. Due to few measurements and poor

resolution of the rudder variables, they were removed. If the speed through water measure-

ments were reliable, this could have improved the results as the speed over ground can be

wrong if the speed relative to the water is large as discussed in Section 2.2.

A redefinition of some variables were also done, ignoring variations and differences between

subsystems. In this analysis the specific behavior of the different generators, differences

between starboard and port shaft etc. were not of interest. This reduced the number of vari-

ables and made the interpretation of the results easier. Some effects are lost by doing these

redefinitions, for instance, if the vessel is delivering more power to one propeller to compen-

sate for sideways current.

As discussed in Chapter 2 there are many things that can affect the performance loss of a ves-

sel. The data was filtered to find conditions where wind and waves should be of minor im-

portance, but there is no guarantee for this filtering removing all the situations where waves
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and wind were significant. We are using the wind speed to filter out high waves. There can

be high waves even if there is no wind. The ideal would be to have a motion reference uni

(MRU) to measure the motions of the vessel. In addition to this, we should have filtered

on many more conditions to ensure that the vessel is not turning, in heavy current or that

the vessel is not accelerating. More effort should also be put into ensuring relatively same

weather conditions.

As mentioned in Chapter 3 there is no statistic or direct measure of success of the results of

an unsupervised analysis. The unsupervised methods rely on interpretation, such that with

more knowledge and understanding of the system, one could interpret and understand the

results better. However, using PCA it was pleasant to find expected correlations. In general, it

shows the potential of such methods to provide insight into the data, for example, to get a ba-

sic understanding of the system before proceeding with supervised methods. As mentioned

in Section 3.3.2 the PCA assumes that the variables are described by Gaussian distribution,

which could prove to be an invalid assumption. With this in mind, nonlinear methods like

kernel-PCA could be investigated.

The focus of this thesis was more on linear regression methods rather than non-linear. As

discussed in Chapter 3 this can make it hard to find any non-linear interactions between

variables. However, the linear regression models showed better test errors then the nearest-

neighbor regression for the real data by a large margin. The linear methods also made it

possible to investigate the importance of the variables to see which variables affect the per-

formance loss. Keep in mind that we did not consider interactions between quantitative

inputs and transformation of quantitative inputs. Including more terms like x2 = exp(x1) or

x3 = x2 ×x1 could improve the regression models. To find the variable importance of a more

complex regression model, a variable sensitivity analysis should be carried out.

As we saw in Chapter 5 the time was an insignificant variable to describe the performance

loss for the real-world data. In the multidimensional non-linear model we saw that the speed

over ground and sea water temperature were almost non-existent in the linear regression

models. It could be the case that the same is happening in the real-world data, where the

effects of time are smaller or equal to the noise and being ignored or assigned very small co-

efficients.

The expected speed for a given power consumption is calculated from CFD curves. These
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might not be completely accurate. If this is the case then a deviation from the expected

speed at a given power consumption would be related to the propulsion. This might be a

good reason to why the propulsion variables are overly represented in the regression models

compared to the time and environmental variables.

If we fully trust the results found in this regression analysis, the propulsion variables are or

much greater importance than time and environmental variables and the time when one

wants to reduce the performance loss of a vessel. The data is clearly showing that a combi-

nation of the variables and the variables squared are able to explain the performance loss.

One reason why we see such a high importance of the propulsion variables could be because

the fouling process is slower for a sailing vessel than for a vessel at dock. Another reason the

performance loss is not decreasing over the full period might also be due to the hull-paint

which is a self-polishing paint delivered by Jotun.

No significant change in performance was seen by the propeller polishing. One good reason

for this might be because there is almost no data in between the two propeller polishes. This

gives us no data after the first propeller polish and no data before the second propeller pol-

ish.

A huge limitation to these results is the lack of data, especially for certain variables like speed.

The lack of observations causes the results to be biased. Some of the results might be specific

to this relatively short period of three years. The data is also only gathered from one vessel,

making it vessel specific. A larger database of several vessels for a longer period would most

certainly increase the reliability of the results found in this thesis. In general, the data-driven

approach using multivariate analysis and statistical learning proves to be useful when ana-

lyzing high-dimensional data with complex variable interactions.

6.4 Recommendations for Further Work

The current work can lead to improvements and exploration in several direction.

Improvement of data quality

When using real-world sensory data an increased amount and/or better quality of data is

expected to increase the prediction performance of statistical methods. Subsequently, it will
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be possible to draw more reliable conclusions. Introducing more data from several vessels,

longer periods and more parameters is expected to increase the performance of the method-

ology in this thesis. Adding more environmental or MRU data could be done to ensure that

there is no resistance to overcome wind and waves. This would make the assumption that

fouling and calm water resistance is the only forces acting on the vessel stronger. Higher

frequency data would make it possible to detect dynamics like turning or accelerating of the

vessel.

Methodology improvements and exploration

The detection of positive and negative events, such as a propeller polishing or damaging of

the propeller, could be studied as a classification problem. This may give a better way to see

the effects of such events as these events vary significantly. The methods applied to the data

is also a very small subset of all possible methods available, more sophisticated methods,

such as neural-networks, might make a better regression model if tuned properly. One could

also use Gaussian process regression, this non-linear method still allow for variable inspec-

tion to see the importance of various variables. More effort could be put into analyzing the

variables, for instance, by the use of Monte Carlo simulation.
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Appendix A
Distance Metrics and Proximity Matrix

This appendix provides a mathematical description of the proximity matrix and some of the

most frequently used distance metrics in statistical learning.

A.1 Metrics

In mathematics, a metric is a function that defines the distance between two observations

a and b, where a,b ∈ Rn . Table A.1 gives a functional description of some frequently used

metrics in machine learning and pattern recognition.

A.2 Proximity Matrix

The data X ∈ Rm×n can be directly represented in terms of the proximity between pairs of

observations (xi ,xk ). This can either be similarities or dissimilarities. The proximity data

can be represented by a matrix D ∈Rm×m , where m is the number of observations.

Names Function

Euclidean distance ‖a−b‖2 =
√∑

i
(ai −bi )2

Manhattan distance ‖a−b‖1 =∑
i
|ai −bi |

Maximum distance ‖a−b‖∞ = max
i

|ai −bi |

Mahalanobis distance
√

(a−b)T S−1(a−b)

Table A.1: Frequently used distance metrics.
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Most algorithms presume a symmetric proximity matrix of dissimilarities with zero diagonal

elements and nonnegative elements CITE

D = (
di j

) ∈Rm×m , di i = 0, di j ≥ 0, (A.1)

where the dissimilarity between two observations D (xi ,xk ) is determined by a weighted

combination of the d attribute dissimilarities d j
(
xi j , xk j

)
, j = 1,2, . . . ,d ,

D (xi ,xk ) =
n∑

j=1
w j ·d j

(
xi j , xk j

)
. (A.2)

When computing the dissimilarity between two observations it is usual to give all attributes

equal influence in characterizing dissimilarity. However, as CITEdiscusses, if the goal is to

discover natural groupings in the data, variables that affects group separation more should

be assigned a higher influence in defining observation dissimilarity. Specifying an appropri-

ate dissimilarity measure is far more important in successful clustering than the choice of

clustering algorithms.
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Appendix B
Vessel Information

B.1 CFD Curves

Speed-power curves calculated using CFD software calculated by DNV GL. Valid for the case

when the vessel is sailing at calm sea (low wind and small waves) and no significant fouling

has taken place.

Speed [kts] Extended sea trial curve [kW]
7 895.39
8 1410.40
9 2121.29

10 3014.29
11 4075.64
12 5291.56
13 6648.29
14 8132.05

15.81 11087.64
18.67 15708.78
20.52 20357.13
21.03 22021.57

Table B.1: Expected power consumption for a given speed at 9 m draft calculated by CFD
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APPENDIX B. VESSEL INFORMATION

Speed [kts] Extended sea trial curve [kW]
7 916.295664
8 1528.92761
9 2164.458411

10 2857.679257
11 3643.381339
12 4556.355847
13 5631.39397
14 6903.286899

16.5 11172.57618
17 12229.79967
18 14526.10031

19.77 19667.23658
20.5 22248.83719

Table B.2: Expected power consumption for a given speed at 11.5 m draft calculated by CFD
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Appendix C
Preprocessing

In this chapter various information from the preprocessing (Chapter 3) can be seen.

C.1 Simple Filters

Filters used for preprocessing. Table includes the minimum and maximum limit for each

variable as well as the number of observations removed for each filter.
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APPENDIX C. PREPROCESSING

Name Lower limit Upper limit Points removed
Cargo Level - Tank 1 0 27 19
Cargo Level - Tank 2 0 27 18
Cargo Level - Tank 3 0 27 20
Cargo Lever - Tank 4 0 27 28

Sea Water Temperature 0 50 10
Atmospheric Temperature -20 50 2

Speed Over Ground 0 28 15
Speed Through Water 0 28 684

Wind Speed 0 100 15
Wind Relative Direction 0 360 0

Rudder Angle Port -40 40 0
Rudder Angle Starboard -40 40 0

Draft Forward 0 50 0
Draft Aft 0 50 0

Main Generator Engine 1 Power 0 12000 84
Main Generator Engine 2 Power 0 12000 111
Main Generator Engine 3 Power 0 12000 324
Main Generator Engine 4 Power 0 12000 36

Shaft Torque Port -800 2000 8
Shaft Torque Starboard -800 2000 12

Shaft Speed Port -50 100 16
Shaft Speed Starboard -50 100 21

Total Fuel Gas Flow to Main Generators 0 10000 0
Water Depth -2000 0 99

Heading 0 360 13

Table C.1: Simple min-max filters used on real-world data

C.2 Nearest Neighbor Filter

Nearest-neighbor outlier used to remove 10 % of the observations furthest away from its

neighbors can be seen in Figure C.1 (before filtering) and in Figure C.2 (after filtering). The

data is normalized before the outlier removal is done. The mean for each month is plotted

and the value for each mean can be seen to the right of the figures. The grey boxes in the

plots indicates the mean ±1 standard deviation. It is clear that the nearest neighbor outlier

removal removes some obvious outliers and also reduces the standard deviations.
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C.2. NEAREST NEIGHBOR FILTER

Figure C.1: Unfiltered performance loss.

Figure C.2: Performance loss after filtered with nearest-neighbor outlier removal.
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Appendix D
Wind

D.1 Calculation of True Wind Speed and Direction

True wind velocity, vw t [m/s], and true wind direction,ψw t [radians], at height of the anemome-

ter is computed from the relative wind velocity, vwr [m/s], the vessel speed over ground, vg

[m/s], the direction of the relative wind (ψwr [radians]) and the vessel heading,ψ0 [radians],

according to Formulae (D.1) and (D.2). To the left in Figure D.1 I illustrate the sign convention

for directions relative to the vessel heading. To the right in Figure D.1 the true and relative

wind speed can be seen, as well as the vessel speed over ground, the true and relative wind

direction and heading of the vessel.

vw t =
√

v2
wr + v2

g −2vwr vg cos(ψwr ) (D.1)

ψw t = t an−1
(

vwr si n(ψwr +ψ0)− vg si n(ψ0)

vwr cos(ψwr +ψ0)− vg cos(ψ0)

)
(D.2)
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APPENDIX D. WIND

Figure D.1: To the left: Sign convention. To the right: Relevant variables shown on the vessel.

D.2 Beaufort Scale

The Beaufort wind force scale can be seen in Table D.1.

Beaufort Number Wind speed [kts] Wave height [m] Description
0 < 1 0 Calm
1 1-3 0-0.2 Light Air
2 4-6 0.2-0.5 Light breeze
3 7-10 0.5-1 Gentle breeze
4 11-16 1-2 Moderate breeze
5 17-21 2-3 Fresh breeze
6 22-27 3-4 Strong breeze
7 28-33 4-5.5 High wind
8 34-40 5.5-7.5 Gale
9 41-47 7-10 Strong/severe gale

10 48-55 9-12.5 Storm
11 56-63 11.5-16 Violent storm
12 ≥ 64 ≥ 14 Hurricane Force

Table D.1: Beaufort Scale as described by Wikipedia (2017).
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Appendix E
Regression Analysis

This appendix lists tables of coefficients, plots and regression stats that were not included in

Chapter 5.

E.1 Least-Squares Regression Coefficients

Regression coefficients from the 5 most important variables for the multidimensional non-

linear model.

β Value

β0 15.765

βt1 -24.13

βt2 133.17

βt3 -160.21

βt4 59.75

βsog4 0.326

Table E.1: Regression coefficients from variable subset selection for multidimensional non-
linear model.

Regression coefficients from the real-world data polynomial regression. A total of 25 coeffi-

cients are calculated, one for each variable, one for each variable squared and one intercept.
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APPENDIX E. REGRESSION ANALYSIS

Variable β Value

Intercept β0 8.915

Atmospheric temp β1 0.495

Speed over ground β2 -52.573

Speed through water β3 -1.929

Sea water temp β4 0.341

Water depth β5 -0.057

Total shaft power β6 90.785

Total mg power β7 -8.795

Average draft β8 4.179

Days since drydock β9 -0.306

Days since propeller polish β10 -0.361

Total shaft torque β11 9.605

Total shaft speed β12 4.855

Atmospheric temp squared β13 -0.593

Speed over ground squared β14 26.548

Speed through water squared β15 0.964

Sea water temp squared β16 -0.155

Water depth squared β17 -0.0158

Total shaft power squared β18 -27.817

Total mg power squared β19 8.653

Average draft squared β20 -3.262

Days since drydock squared β21 -0.076

Days since propeller polish squared β22 0.108

Total shaft torque squared β23 -29.695

Total shaft speed squared β24 -23.444

Table E.2: Regression coefficients from variable subset selection for real-world.

Regression coefficients from optimal subset selection on the real-world data of size k = 9. All

12 variables are used as input variables in least squares regression (Table E.3).
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E.1. LEAST-SQUARES REGRESSION COEFFICIENTS

Variable β Value

Intercept β0 8.915

Atmospheric temp β1 0.219

Speed over ground β2 -25.265

Water depth β5 -0.495

Total shaft power β6 6.278

Total mg power β7 -13.719

Average draft β8 0.348

Days since drydock β9 -0.986

Total shaft torque β11 34.481

Total shaft speed β12 -2.515

Table E.3: Regression coefficients from variable subset selection for real-world.
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