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Abstract

We present an original proof for solitary-wave solutions of the PDE

−νu+ Lu− n(u) = 0 ,

by the means of variational calculus and functional analysis. Here L is a Fourier
multiplier with a symbol of positive order, and n a nonlinear function. The proof
is constructed by the author with inspiration from [2] and [7].
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Sammendrag

We gir et originalt bevis p̊a soliton-bølge løsninger av følgende PDE

−νu+ Lu− n(u) = 0 ,

ved hjelp av variasjonskalkyl og funksjonell analyse. Her er L en Fourier mul-
tiplikator av positiv orden, og n en ikke-lineær function. Beviset er konstruert
av forfatteren med inspirasjon hentet fra [2] og [7].
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Notation

The notation introduced here will be used extensively throughout the paper.

N0 We write N0 for the set of non-negative integers.

Lp For 1 ≤ p ≤ ∞, we denote Lp for the space of measurable
functions f : R→ C, with finite Lp-norm: ||f ||Lp<∞.

Ck, C∞ For k = 0, 1, ..., Ck is the set of functions f : R→ C, that are

k-times continuously differentiable, and C∞ = ∩∞k=0C
k.

S , S ′ S is the Schwartz space, and S ′ is the set of tempered dis-
tributions (see definition 2.6).

V , V∞ V is the set of tempered functions, and V∞ is the set of func-

tions g so that g(k) ∈ V for k = 0, 1, ... (see definition 2.11).

Ck,α The Hölder space (see definition 2.20).

Hs, Hs(R) Hs is the Sobolev space of order s, and Hs(R) is the set of
real valued functions in Hs (see definition 2.22).

., & For two functions f, g : X → R, we write f . g if there exists a
constant C > 0 so that f(x) ≤ Cg(x) for all x ∈ X. Similarly,
we write f & g if g . f .

' We write f ' g if f . g . f .

f̂ , f̌ For a function f : R→ R, we let f̂ denote its Fourier transform

and f̌ its inverse Fourier transform.

〈·〉 For a real number ξ ∈ R, we define 〈ξ〉 =
√

1 + ξ2.

5



Contents

1 Introduction 7

2 Preliminaries 8
2.1 Some results on functional analysis . . . . . . . . . . . . . . . . . 8
2.2 The Schwartz space S

and the tempered distributions S ′ . . . . . . . . . . . . . . . . . 9
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1 Introduction

Our goal is to find soliton-wave solutions u(x, t), to the PDE

ut + (Lu− n(u))x = 0 . (1)

A coarse description of the terms L and n will now be given; for a detailed
description, see section 3.

– L is a Fourier multiplier with symbol m(ξ); that is to say
F{Lu}(ξ) = m(ξ)û(ξ) for a suitable function u. In addition, m is
continuous and of order 2s, that is, m(ξ) grows like |ξ|2s.

– The term n is the sum of the two continuous functions np and nr. Here
np takes either the form np(x) = cp|x|p with cp 6= 0 or np(x) = cpx|x|p−1
with cp > 0, while nr satisfies nr(x) = O(|x|p+δ) for some δ > 0.

The constants s and p must satisfy p > 1 and 2s > max{1, (p− 1)/2}.
We look for solutions of (1) of the form

u(x, t) = ũ(x− νt) ,

with ũ(λ)→ 0 as |λ|→ ∞; so called solitary-wave solutions. We will refer to ν
in (1) as the velocity of u. Albeit a little abuse of notation, we will for simplicity
not distinguish between u and ũ; a notational convenience. If we insert for u in
(1) and perform an indefinite integral we obtain

−νu+ Lu− n(u) = 0 , (2)

where we have set the integrating factor to zero, in light of the assumption
u(x) → 0 as |x|→ ∞. Note that (2) is a weaker form of (1); any continuously
differentiable solution of (2) must also solve (1). We shall focus on proving exis-
tence of solitary wave solutions of the latter PDE; this is Theorem 1.1. We will
find sufficient criteria on L and n for solutions to be continuously differentiable
(Theorem 9.4); consequently also solving (1).

Similar problems have been studied previously. In work done by Arnesen
[2] and Albert [1], existence of solitary-wave solutions of (2) has been proved,
but the arguments requires nonlinearities of the form n = np. On the other
hand, arguments presented in [7] proves existence of solitary wave solutions
with nonlinearities of the form n = np + nr, but requires negative order (s¡0) of
the symbol m.

In this paper we present an original proof by the means of variational calculus
and functional analysis, inspired by [2] and [7]. Although many of the proofs are
inspired by said sources, they are often simplified by the author or approached
differently. Several results are also original; in particular section 2, 4.2, 7.1, 7.3,
8 and 9, consist of mostly original work. We will devote most of this paper to
prove the following theorem.
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Theorem 1.1 (Existence). There exist µ∗ > 0, ρ > 0, and for every ε > 0 a
constant Cε > 0, so that the following statement holds true:
For every µ ∈ (0, µ∗) there is a continuous function u ∈ Hs(R) and a constant
ν ∈ R satisfying

(i) ||u||2L2= 2µ,

(ii) u is a solution of (2), with velocity ν,

(iii) ν satisfies

ρµβ < m(0)− ν < Cεµ
β−ε ,

where β is given by

β =
2s(p− 1)

4s− (p− 1)
.

2 Preliminaries

We here introduce relevant language and results. Every proof is original (con-
structed by the author), unless otherwise stated.

2.1 Some results on functional analysis

Some familiarity with general topology and Fourier theory is assumed. In the
following definitions and results we let X be a normed vector space (normed
space for short) over C and X ′ its continuous dual.

Definition 2.1. We define the weak-* topology of X ′ as the one generated by
the sub-basis

UV,x = {x′ ∈ X ′ : x′(x) ∈ V } ,

for every x ∈ X and open set V ⊂ C.

By this topology, a net (x′α) will converge to x′ exactly when x′α(x)→ x′(x)
for every x ∈ X. The definition of this topology is motivated by the Banach-
Alaoglu theorem. For convenience we state a special version of this theorem,
whose proof follows by combining theorem 3.1. and 5.1. from [3]. We remind the
reader that a separable topological space is one with a dense countable subset;
in particular L2 is separable as it can be given a countable orthogonal basis (see
[8]).

Theorem 2.2 (Sequential Banach–Alaoglu theorem). If X is a normed space,
then the closed unit ball of X ′ is sequentially compact with respect to the weak-*
topology, if and only if X is separable.
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It is easily seen that both translation and scaling on X ′ behaves like home-
omorphisms in the weak-* topology, thus the preceding theorem holds for any
closed ball in X ′. There is a similar concept of weak convergence in a Banach
space X; a sequence (xn) converges weakly to x, denoted xi ⇀ x if and only if
x′(xn)→ x′(x) for every x′ ∈ X ′; in reflexive spaces, weak convergence coincides
with weak-* convergence, and so we get the following corollary.

Corollary 2.3. Every bounded sequence (xn) in a reflexive separable Banach
space X has a subsequence, again denoted by (xn) which converges weakly in X.

We now show some properties of weak limits. The following proofs are
constructed by the author; they are however very standard calculations.

Proposition 2.4. If a sequence (xn) converges weakly to x in a Banach space
X. Then

||x||X≤ lim inf
n→∞

||xn||X .

Proof. By the Hahn-Banach theorem, there exist x′ ∈ X ′ with ||x′||X′= 1 and
x′(x) = ||x||X . We then get

||x||X = x′(x)

= lim inf
n→∞

x′(xn)

≤ lim inf
n→∞

||x′||X′ ||xn||X

= lim inf
n→∞

||xn||X .

Proposition 2.5. Let X,Y be Banach spaces and T : X → Y a bounded linear
map. Suppose also (xn) is a sequence in X. If xn ⇀ x in X, then Txn ⇀ Tx
in Y .

Proof. Pick y′ ∈ Y ′. As T is a linear mapping, there exist x′ ∈ X ′ so that
x′ = y′ ◦ T . Consequently,

y′(Txn) = x′(xn)→ x′(x) = y′(Tx) ,

as n→∞.

2.2 The Schwartz space S
and the tempered distributions S ′

We start by introducing the Schwartz space; a natural space to work with when
generalizing the Fourier transform.
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Definition 2.6. The Schwartz space S is the topological vector space of in-
finitely differentiable functions ϕ : R→ C satisfying

||ϕ||n,k:= sup
x∈R
|xnϕ(k)(x)|<∞ ,

for all n, k ∈ N0. We equip S with the topology generated by the family of
semi-norms ||·||n,k. Thus a sequence (ϕm) ⊂ S converges to ϕ ∈ S (denoted
ϕm → ϕ) exactly when ||ϕm − ϕ||n,k→ 0 for all n, k ∈ N0.

In the previous definition we gave both a characterization of the open sets
in S and a characterization of convergent sequences. Although the latter can
be constructed from the first, it need not hold the other way around for general
topological spaces. This is however true for first countable spaces; a property
S possesses by the following remark.

Remark 2.7. It can be shown that S is a Fréchet space (see [10]) hence also
first countable. This implies that a function from S is continuous if and only
if it respects limits of sequences.

We give a sufficient criterion for a continuous operator on S .

Proposition 2.8. Let L be a linear operator L : S 7→ S . Suppose for each
pair of numbers (n, k) ∈ N0 × N0 there are a finite pair of numbers, (ni, ki) for
i = 1, ..., N (where the value of N might depend on (n, k)), so that

||Lϕ||n,k.
N∑
i=1

||ϕ||ni,ki , (3)

for every ϕ ∈ S . Then L is continuous.

Proof. Pick a pair (n, k) ∈ N0 × N0 and a corresponding finite pair of numbers
satisfying (3). Pick a sequence (ϕn) ⊂ S converging to ϕ ∈ S . A straight
forward calculation shows

||Lϕn − Lϕ||n,k= ||L(ϕn − ϕ)||n,k.
N∑
i=1

||ϕn − ϕ||ni,ki→ 0 ,

as n→∞. Thus L is continuous.

As a first application of the above proposition we prove that differentiation
and multiplying by monomials are continuous operations on S .

Corollary 2.9. For m ∈ N0, the operations ϕ 7→ (·)mϕ and ϕ 7→ ϕ(m) are
continuous on S .

Proof. A straight forward calculation shows

||(·)mϕ||n,k= ||ϕ||n,k+m and ||ϕ(m)||n,k= ||ϕ||n+m,k ,

and so the result follows from proposition 2.8.
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One of the main reasons the Schwartz space is so useful in Fourier theory, is
the fact that F maps the Schwartz space continuously into itself, as established
by the next proposition.

Proposition 2.10. The Fourier transform F is a linear homeomorphism from
S to itself.

Proof. Pick ϕ ∈ S , then by elementary properties of the Fourier transform we
get

||ϕ̂||n,k = sup
ξ∈R
|ξnϕ̂(k)(ξ)|

= sup
ξ∈R
|x̂kϕ(n)(ξ)|

= sup
ξ∈R

1√
2π

∣∣∣∣ ∫
R
xkϕ(n)e−iξx dx

∣∣∣∣
≤ 1√

2π

∫
R
|xkϕ(n)| dx

=
1√
2π

∫
R

|x|k

1 + |x|k+2

[
|ϕ(n)|+|xk+2ϕ(n)|

]
dx

≤ 1√
2π

∫
R

|x|k

1 + |x|k+2

[
||ϕ||0,n+||ϕ||k+2,n

]
dx

. ||ϕ||0,n+||ϕ||k+2,n .

From this calculation we see that F maps S to itself; continuity follows from
proposition 2.8. That F is invertible follows from the fact that S ⊂ L2 and
the Fourier inversion theorem. The continuity of F−1 can be seen by a similar
calculation as above, or the fact that F3 = F−1.

We wish to study another class of continuous operators on S ; for this we
introduce the tempered functions. We note that the definition here might differ
from other sources.

Definition 2.11. We say a function g : R→ C is tempered if there exist N ∈ N0

so that

g(·)
1 + |·|N

∈ L1 .

We denote the set of tempered functions by V . We also define the subset
V∞ ⊂ V of infinitely differentiable functions g so that g(k) is tempered for each
k ∈ N0.

Remark 2.12. Clearly any function in L1 is tempered, and by multiplication
with (1 + |·|2)−1 it is clear that any function in L∞ also is tempered. When
1 < p <∞ and g ∈ Lp, we exploit Hölder’s inequality to see that∫

R

|g|
1 + |x|N

dx ≤
[ ∫

R

dx

(1 + |x|N )
p
p−1

]1− 1
p

||g||Lp ,
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which clearly is less than infinity for Np
p−1 > 1. Thus for 1 ≤ p ≤ ∞, Lp-functions

are tempered.

We proved earlier that multiplication by monomials defined continuous op-
erators on S ; we now prove a stronger result.

Proposition 2.13. If g ∈ V∞, then the operation ϕ 7→ gϕ is continuous on
S .

Proof. As g(k) is tempered and continuous, there is a Nk ∈ N0 so that g(k) .
(1 + |·|Nk). Consequently

sup
x∈R
|xng(k)ϕ(m)| . sup

x∈R
|xn(1 + |x|Nk)ϕ(m)|

≤ ||ϕ||n,m+||ϕ||n+Nk,m .

We then calculate

||gϕ||n,k = sup
x∈R
|xn
( d
dx

)k
gϕ|

= sup
x∈R

∣∣∣∣xn k∑
j=0

(
k

j

)
g(j)ϕ(k−j)

∣∣∣∣
.

k∑
j=0

sup
x∈R
|xng(j)ϕ(k−j)|

.
k∑
j=0

||ϕ||n,k−j+||ϕ||n+Nj ,k−j ,

where the last inequality follows from the previous calculation. The proof is
now complete by proposition 2.8.

In particular, every monomial x 7→ xn, for n ∈ N0, is an element of V∞.
The following corollary

Definition 2.14. We denote the continuous dual of the Schwartz space by S ′.
This is the space of continuous linear functions T : S → C; by remark 2.7, a
function T is continuous if and only if

ϕm → ϕ =⇒ T (ϕm)→ T (ϕ) ,

for every convergent sequence (ϕm) ⊂ S . We equip S ′ with its corresponding
weak-* topology: a net (Ti) ⊂ S ′ converges to T ∈ S ′ exactly when

Ti(ϕ)→ T (ϕ) ,

for all ϕ ∈ S ′.
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The set S ′ will be referred to as the tempered distributions. We will refer to
a tempered distribution T as real valued, if and only if T (ϕ) ∈ R, for every real
valued ϕ ∈ R. We now show that continuous operators on S naturally extends
to S ′.

Proposition 2.15. If L : S → S is a continuous linear operator, then the
mapping T 7→ T ◦ L must be a continuous linear mapping on S ′.

Proof. Linearity is obvious. To prove that the mapping is continuous we pick a
net (Ti) ⊂ S ′ converging to T . For any ϕ ∈ S we then get

Ti ◦ L(ϕ) = Ti(Lϕ)→ T (Lϕ) = T ◦ L(ϕ) ,

and so by the definition of the topology on S ′ we have Ti ◦ L → T ◦ L; the
mapping is continuous.

Definition 2.16. For a tempered distribution T , we define its Fourier transform
F{T} = T̂ , its derivatives ( d

dx )nT = T (n) and its product Tg = gT with a
function g ∈ V∞, to be the tempered distributions:

T̂ : ϕ 7→ T (ϕ̂) ,

T (n) : ϕ 7→ (−1)nT (ϕ(n)) ,

T g : ϕ 7→ T (gϕ) .

Note that all these three operations on S ′ are continuous by proposition 2.15.

From the definition above, and the fact that the Fourier transform is invert-
ible on S , we get that it is invertible on S ′ too. It is natural to ask how the
Fourier transform on S ′ relates to differentiation and multiplication by mono-
mials. An educated guess would give the correct relationship, as established by
the following proposition.

Proposition 2.17. For T ∈ S ′ we have the two relationships

x̂nT =
(
i
d

dx

)n
T̂ and T̂ (n) = (ix)nT̂ .

Proof. Two straight forward calculations show that

x̂nT (ϕ) = T (xnϕ̂) = (−i)nT
(
ϕ̂(n)

)
=
(
i
d

dx

)n
T̂ (ϕ) ,

T̂ (n)(ϕ) = (−1)nT
(
ϕ̂(n)

)
= inT

(
x̂nϕ

)
= (ix)nT̂ (ϕ) ,

for any ϕ ∈ S .

We next show that every tempered function g has a natural corresponding
tempered distribution Tg.
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Proposition 2.18. If g is a tempered function, then Tg : S → C, defined by

Tg(ϕ) :=

∫
R
gϕ dx ,

is a tempered distribution.

Proof. Linearity is obvious. As g is tempered, there exist a constant N ∈ N0 so
that ||g/(1 + |·|N )||L1<∞. Thus

|Tg(ϕ)| ≤
∫
R
|gϕ| dx

≤
∫
R

g(x)

1 + |x|N
[
|ϕ|+|xNϕ|

]
dx

≤
∫
R

g(x)

1 + |x|N
dx
[
||ϕ||0,n+||ϕ||k,n

]
. ||ϕ||0,n+||ϕ||k,n ,

and so continuity of Tg now follows by proposition 2.8.

Now that V naturally embeds in S ′, one could how the three operations
on S ′ defined by 2.16 relates to corresponding operations on V , whenever the
latter exist in some suitable sense.

For any g ∈ V and f ∈ V∞, it follows straight from definitions and the
observation fg ∈ V that

fTg = Tfg . (4)

To obtain a corresponding result for the derivative, we define a function g ∈ V
is weakly differentiable in V , if there is a function g′ ∈ V so that∫

R
g(x)ϕ′(x) dx = −

∫
R
g′(x)ϕ(x) dx , (5)

for all ϕ ∈ S . Notice that by integration by parts, this definition respects
the classical derivative on functions in S ⊂ V . It now follows immediately by
definitions that if g ∈ V has a weak derivative g′ ∈ V then

T ′g = Tg′ . (6)

Turning to the Fourier transform, we recall that for 1 ≤ p ≤ 2, the Fourier
transform can canonically be defined on Lp by interpolation and density argu-
ments.

Proposition 2.19. For g ∈ Lp and 1 ≤ p ≤ 2, we have T̂g = Tĝ, i.e.

T̂g(ϕ) = Tĝ(ϕ) , (7)

for all ϕ ∈ S .

14



Proof. Pick g ∈ Lp and ϕ ∈ S . We have
∫ N
N
|g| dx < ∞ for every N < ∞

and ϕ ∈ L1. Thus (t, x) 7→ g(t)ϕ(x) is absolutely integrable on [−N,N ] × R
whenever N < 0. We then use Fubini’s theorem to calculate

T̂g(ϕ) =

∫
R
ĝϕ dx

= lim
N→∞

1√
2π

∫
R

∫ N

N

g(t)ϕ̂(x)e−ixt dt dx

= lim
N→∞

1√
2π

∫ N

N

g(t)

∫
R
ϕ̂(x)e−ixt dx dt

=

∫
R
g(t)ϕ̂(t) dt

= Tĝ(ϕ).

In light of the three preceding calculations, we now introduce a useful view-
point. We let T : V → S ′ be the mapping T : g 7→ Tg. We will view V as a
subset of S ′, with T the inclusion map; a viewpoint justified by the calculations
(4),(6) and (7). In particular, we will simply write g instead of Tg; this is slightly
nonsensical, as g and Tg are very different objects, however this is convenient
notation-wise. It is worth mentioning that although Lp ⊂ S ′ as a set, we are
not claiming that the topology of Lp coincides with its subspace topology from
S ′.

2.3 The Hölder space Cn,α

Definition 2.20. For n ∈ N0 and 0 < α < 1 we define the Hölder space
Cn,α to be set of functions f : R → C, with f (k) bounded and continuous for
k = 0, 1, ..., n, and with finite Hölder coefficient

|f (n)|Cn,α := sup
x 6=y

|f (n)(x)− f (n)(y)|
|x− y|α

.

We equip Cn,α with the norm

||f ||Cn,α := ||f ||Cn+|f |Cn,α ,

where

||f ||Cn :=

n∑
k=0

||f (k)||L∞ .

Proposition 2.21. Cn,α is a Banach space.

Proof. See [5].
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2.4 The Sobolev space Hs

Throughout this paper, we shall use the notation

〈·〉 :=
√

1 + (·)2 .

We note that 〈·〉s ∈ V∞ for all s ∈ R.

Definition 2.22. For s ∈ R we define the Sobolev space Hs, to be the vector
space over C, given by

Hs :=

{
f ∈ S ′ : 〈·〉sf̂ ∈ L2

}
.

We also define the real valued Sobolev space, Hs(R) ⊂ Hs, to be vector space
over R of the elements f ∈ Hs that are real valued (in accordance with the
discussion following definition 2.14). Both spaces are equipped with the norm

||f ||Hs := ||〈·〉sf̂ ||L2=

[ ∫
R
〈ξ〉2s|f̂ |2 dξ

] 1
2

.

Remark 2.23. Suppose s ≤ r. From the definition it is immediate that ||·||Hs≤
||·||Hr on S ′ and so we have the continuous inclusion

Hr ↪→ Hs .

This implies in particular that Hs is a function space for s ≥ 0, since Hs ⊆
H0 = L2. Furthermore, one can easily see that Hs(R) is the set of real valued
functions in Hs whenever s ≥ 0.

We recall that for any function f , the Fourier transform satisfies f̌ = f̂ and
f̂(x) = f̌(−x). Since a real valued function f satisfies f = f , we have for such
a function

f̂(x) = f̂(−x) . (8)

With our memory refreshed, we prove the next proposition.

Proposition 2.24. Let s ≥ 0. For f ∈ Hs, let fR := Re f and fI := Im f .
Then

||f ||2Hs= ||fR||2Hs+||fI ||2Hs .

In particular, f ∈ Hs ⇔ fR, fI ∈ Hs.

Proof. By the preceding calculation we calculate

|f̂ |2 = (f̂R + if̂I)(f̂R + if̂I)

= |f̂R|2+|f̂I |2+i

[
f̂Rf̂I − f̂Rf̂I︸ ︷︷ ︸

:= g(ξ)

]
.
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By calculation (8) we have

f̂R(ξ)f̂I(ξ) = f̂R(−ξ)f̂I(−ξ) ,

and so g is an odd function. As 〈·〉 is an even function, we see that also 〈·〉2sg
is an odd function. Then

||f ||2Hs = lim
N→∞

∫ N

−N
〈ξ〉2s|f̂ |2 dξ

= lim
N→∞

∫ N

−N
〈ξ〉2s

[
|f̂R|2+|f̂I |2

]
dξ + i lim

N→∞

∫ N

−N
〈ξ〉2sg(ξ) dξ︸ ︷︷ ︸

= 0

= ||fR||2Hs+||fI ||2Hs .

Note that the reason we restricted s ≥ 0 in the previous proof, is simply
because we have not generalized the concept of the real and imaginary part of a
tempered distribution; Sobolev spaces of order s < 0 will be of little importance
in this paper.

Corollary 2.25. For s ≥ 0, Hs(R) is complete.

Proof. If a sequence of real valued functions (ϕn) ⊂ Hs(R) converges to ϕ ∈ Hs,
then the previous proposition shows that

||ϕn − ϕ||2Hs≥ ||Imϕ||2Hs .

thus Imϕ=0 .

The intention of Sobolev spaces is to measure regularity of tempered distri-
butions; to be an element of a Sobolev spaces of a high degree (s� 1), requires
a ’high’ degree of regularity. This viewpoint reflects remark 2.23, and is justified
even further by the following proposition.

Proposition 2.26. Let d
dx : S ′ → S ′ be the derivative of tempered distribu-

tions (definition 2.16). Then d
dx maps Hs continuously into Hs−1.

Proof. We clearly have

〈x〉s−1x . 〈x〉s ,

(but not &) for all s ∈ R. We now pick f ∈ Hs, and exploit proposition 2.17 to
see that

||f ′||Hs−1 = ||〈·〉s−1f̂ ′||L2

= ||〈·〉s−1(·)f̂ ||L2

. ||〈·〉sf̂ ||L2

= ||f ||Hs .

Thus the claim is proved.
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Proposition 2.27. Hs is a Hilbert space.

Proof. For s ∈ R we define the linear continuous operator Λs : S ′ → S ′ by

Λs(f) = F−1{〈·〉sf̂} ,

Linearity of Λs is obvious and continuity follows from the discussion after def-
inition 2.16 and the fact that 〈·〉 ∈ V∞. We also note that the inverse of Λs is
Λ−s. We calculate

Λ−sL2 =

{
Λ−sf : f ∈ L2

}
=

{
f ∈ S ′ : Λsf ∈ L2

}
=

{
f ∈ S ′ : 〈·〉sf̂ ∈ L2

}
= Hs ,

where we in the third equality used that F is a unitary operator on L2. Thus
ΛsHs = L2 and Λs is an isomorphism between Hs and L2. The claim is proven
if Λs is isometric; a simple calculation shows for f ∈ Hs that

||f ||Hs= ||〈·〉sf̂ ||L2= ||F−1{〈·〉sf̂}||L2= ||Λsf ||L2 .

It is a well known fact that S is dense in L2 (see [9]), it is also easy to see
that Λs defined in the previous proposition is a continuous mapping from S to
S (this follows from proposition 2.10 and 2.13). With this observation and the
fact that Λs is an isometric isomorphism between Hs and L2, we immediately
get the following proposition.

Proposition 2.28. S is dense in Hs.

As S contains complex valued functions, we have S 6⊂ Hs(R). However, by
denoting S (R) for the real valued functions of S , we easily see that S (R) ⊂
Hs(R).

Corollary 2.29. For s ≥ 0, S (R) is dense in Hs(R).

Proof. An elementary calculation shows that ϕ ∈ S implies that Reϕ ∈ S (R).
As Hs(R) is a subspace of Hs it follows from the previous proposition that for
any element f ∈ Hs(R) there is a sequence (ϕn) ⊂ S so that ϕn → f in Hs.
By proposition 2.24 we have ||Reϕn − f ||Hs≤ ||ϕn − f ||Hs , and so we conclude
Reϕn → f in Hs(R).

Again we note that the requirement s ≥ 0, is because we have not generalized
concept of real and imaginary part of tempered distributions; the proof given
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above requires these definitions. Next, we pick arbitrary functions ϕ,ψ ∈ S .
By Hölder’s inequality we observe that∫

R
ϕψ dx =

∫
R

ϕ̂ψ̌ dξ

=

∫
R
〈ξ〉sϕ̂〈ξ〉−sψ̌ dξ

≤ ||ϕ||Hs ||ψ||H−s .

By this observation, it follows from density that elements of Hs (viewed as
tempered distributions) can be extended to accept element of H−s as input,
and vice versa. This next proposition should then not be too surprising.

Proposition 2.30. The dual space of Hs is H−s.

Proof. Denote X = (Hs)′ for the continuous dual of Hs. By the discussion prior
to this proposition it is clear that elements of H−s behave as bounded linear
functionals onHs. If we assume that T ∈ H−s vanish onHs, that is T (f) = 0 for
all f ∈ Hs, then it must also vanish on S ⊂ Hs, and so T = 0. Thus H−s ⊆ X.
It remains to show that X ⊆ H−s. Pick T ∈ X, and notice that T ◦ Λs is a
continuous linear function on L2. By Riesz representation theorem, there exist
f ∈ L2 so that T ◦ Λs = f (when f is viewed as a tempered distribution). We
rewrite Λs in the fashion Λs = FMsF−1, where Ms : S ′ → S ′ is the continuous
operation of multiplying by 〈·〉s. Note that Λs is still the same operator; 〈·〉s is
symmetric about zero. We now see that the equation T ◦Λs = T ◦FMsF−1 = f
is equivalent to

T̂ = T ◦ F = f ◦ FM−s = 〈·〉−sf̂ , (9)

where we used that the distributional Fourier transform of f coincides with its
Fourier transform as an L2 function: f ◦ F = f̂ , by proposition 2.19. Equation
(9) shows that T ∈ Hs, and we are done.

Corollary 2.31. For s ≥ 0, the dual space of Hs(R) is H−s(R).

Proof. Denote X = (Hs(R))′ for the continuous dual of Hs(R). Together with
the previous proposition, and the density of S (R) in Hs(R) it is clear that
any T ∈ H−s(R) defines a bounded linear map from Hs(R) to R. Pick T ∈
H−s(R) and assume that it vanish on Hs(R); it consequently vanish on S (R) ⊂
Hs(R). As earlier, an elementary calculation shows that ϕ ∈ S if, and only if,
Reϕ,Imϕ ∈ S (R). Then for any ϕ ∈ S , we have

T (ϕ) = T (Reϕ) + iT (Imϕ) = 0 ,

and so T vanish on all of S . Thus H−s(R) ⊆ X. Similarly, any T ∈ X extends
naturally to a bounded linear functional on Hs; pick any f ∈ Hs, then

T (f) = T (Ref) + iT (Imf) ,

where continuity follows from continuity of T together with proposition 2.24.
Thus X = H−s(R) and we are done.
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This next theorem establishes regularity properties of Sobolev spaces with
rank s > 1

2 . The proof is inspired by [10], which assumed 1
2 < s < 3

2 ; this proof
however is carried out in greater detail, simplified and generalized to s > 3

2 by
the author.

Theorem 2.32 (Sobolev embedding). For k ∈ N0 and 0 < α < 1, let
s = k + α+ 1

2 . Then the inclusion mapping

Hs ↪→ Ck,α ,

is continuous.

Proof. We prove this by induction.

Step 1: Proving the claim for k = 0.
Let k = 0, pick 0 < α < 1 and set s = k + α + 1

2 . Pick f ∈ Hs. For the
statement to be true we need

||f ||L∞. ||f ||Hs and [f ]C0,α . ||f ||Hs .

The first part is straight forward; by the Fourier transform and Hölder’s in-
equality we have (almost everywhere)

|f(x)| = 1√
2π

∣∣∣∣ ∫
R
f̂ eixξ dξ

∣∣∣∣
≤ 1√

2π

∫
R
|f̂ | dξ

≤ 1√
2π

[ ∫
R
〈ξ〉−2sdξ

] 1
2

︸ ︷︷ ︸
:= C

[ ∫
R
〈ξ〉2sf̂2dξ

] 1
2

︸ ︷︷ ︸
= ||f ||Hs

.

(10)

As 2s > 1, 〈ξ〉−2s is integrable. Consequently C <∞ and the first part is proved.
To prove the second part we start off similarly; it holds (almost everywhere) that

|f(x+ y)− f(x)| = 1√
2π

∣∣∣∣ ∫
R
f̂ eixξ(eiyξ − 1) dξ

∣∣∣∣
≤ 1√

2π

∫
R
|f̂ ||eiyξ − 1| dξ

. ||f ||Hs
[ ∫

R

|eiyξ − 1|2

〈ξ〉2s
dξ

] 1
2

(by Hölder’s inequality) .

We wish to show that the latter integral is bounded by C|y|2s−1. To do this we
start by noticing the two important bounds

|eit − 1|2≤ 4, and |eit − 1|2≤ t2 ,
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where the latter follows from the mean value theorem. We now make the sub-
stitution yξ 7→ t and exploit the first and second bound above for |t|≥ 1 and
|t|≤ 1 respectively. We calculate

1

2|y|2s−1

∫
R

|eiyξ − 1|2

〈ξ〉2s
dξ =

∫ ∞
0

|et − 1|2[
|y|2+t2

]s dt
≤
∫ ∞
0

|et − 1|2

t2s
dt

≤
∫ 1

0

t2−2s dt+

∫ ∞
1

4t−2s dt

<∞ ,

(11)

where the last inequality is valid as 1 < 2s < 3. Consequently

|f(x+ y)− f(x)|. ||f ||Hs |y|s−1/2 ,

and the proof is complete for the case k = 0 and 0 < α < 1.

Step 2: Proving the claim for the general case k ∈ N0.
Suppose the claim holds for some k ∈ N0 and all 0 < α < 1. Then for s− 1

2 =
k + 1 + α, we get

||f ||Ck+1,α = ||f ||L∞+||f ′||Ck,α
. ||f ||Hs+||f ′||Hs−1

. ||f ||Hs ,

where we used the calculation (10) together with proposition 2.26 . As the claim
is true for k = 0 and all 0 < α < 1 by the previous proposition, our inductive
proof is complete.

As useful as this last theorem seems, we will make little use of its full power;
we will be mostly interested in the continuity properties of functions in Hs

when s > 1
2 . As the inclusion mapping Hs′ ↪→ Hs is continuous for s′ ≥ s the

preceding theorem implies the following result.

Corollary 2.33. For every s > 1
2 , there is a Hölder space C0,α so that the

inclusion map Hs ↪→ C0,α is continuous.

The next proposition will not be of use in this paper, but gives some insight
in how the Sobolev norm measures regularity. The proof is inspired by [4], but
is modified and carried out in greater detail.

Proposition 2.34. For 0 < s < 1 we have ||·||2Hs' ||·||2L2+[·]Hs where

[f ]Hs :=

∫
R

∫
R

|f(y)− f(x)|2

|y − x|1+2s
dx dy ,

that is, the Sobolev norm is equivalent with the norm
√
||·||2L2+[·]Hs .
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Proof. Pick f ∈ Hs. A straight forward calculation shows

[f ]Hs =

∫
R

∫
R

|f(y)− f(x)|2

|y − x|1+2s
dx dy

=

∫
R

∫
R

|f(z + x)− f(x)|2

|z|1+2s
dx dz

=

∫
R

∫
R

|e−izξ − 1|2

|z|1+2s
|f̂(ξ)|2 dξ dz

=

∫
R

|e−it − 1|2

|t|1+2s
dt︸ ︷︷ ︸

:= C

∫
R
|ξ|2s|f̂(ξ)|2 dξ .

We notice that C is the same integral that shows up in (11), whith s shifted
by a half; this coincides with the difference in the restrictions 0 < s < 1 and
1
2 < s < 3

2 . Thus C <∞, and consequently

||f ||2L2+[f ]Hs =

∫
R

(1 + C|ξ|2s)|f̂(ξ)|2 dξ .

As 0 < C <∞, we have 〈ξ〉2s ' 1 + C|ξ|2s. Consequently ||·||2Hs' ||·||2L2+[·]Hs
and we are done.

The remanding theory in this subsection is of less general importance, but
will play an important role in section 7. Before we move on, we define the vector
space H∞ by

H∞ =
⋂
s∈R

Hs .

Combining some Fourier theory with the Sobolev embedding theorem, it is not
hard to see that H∞ is the set of infinitely differentiable functions f : R → C
so that f (n) ∈ L2, for all n ∈ N0. We also define for r ∈ (−∞,∞] the vector
space FHr ⊂ S ′ to be the set

f ∈ FHr ⇔ f̂ ∈ Hr .

If this definition seems asymmetrical to the reader, we recall that 〈·〉 is symmetric

about zero and consequently f̂ ∈ Hr ⇔ f̌ ∈ Hr. We also stress that, the
notation Hs will never represent the space H∞; it is assumed s ∈ R. Note that
by definition, FH∞ is the set of functions ϕ : R → C so that 〈·〉sϕ ∈ L2 for
every s ∈ R. Exploiting Hölders inequality, this implies that 〈·〉sϕ ∈ L1 for
every s ∈ R and ϕ ∈ FH∞. An interesting consequence of the characterization
of H∞ and FH∞ is that H∞ ∩ FH∞ = S .

Proposition 2.35. Suppose ϕ ∈ H∞ and f ∈ Hs. Then ϕf ∈ Hs, and

||ϕf ||Hs. ||〈·〉|s|ϕ̂||L1 ||f ||Hs .
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Proof. A simple calculation shows that

〈x+ y〉2 = 1 + (x+ y)2

= 1 + x2 + y2 + 2xy

≤ 2(1 + x2 + y2 + (xy)2)

= 2(1 + x2)(1 + y2)

= 2〈x〉2〈y〉2 .

By first substituting x = ξ and y = t − ξ, and then x = t and y = ξ − t the
inequality above and the fact that 〈·〉 is symmetric about zero, implies that the
quantities 〈ξ〉/〈t〉 and 〈t〉/〈ξ〉 are both less than or equal to

√
2〈ξ − t〉. And so

since s ∈ R is fixed, we get

〈ξ〉s

〈t〉s
. 〈ξ − t〉|s| . (12)

By factorizing, we can rewrite |ϕ̂(ξ − t)f̂(t)| as

1

〈ξ〉s

[
〈ξ〉s

〈t〉s〈ξ − t〉|s|︸ ︷︷ ︸
. 1

][
〈ξ − t〉|s||ϕ̂(ξ − t)|︸ ︷︷ ︸

:= ψ(ξ − t)

][
〈t〉s|f̂(t)|︸ ︷︷ ︸
:= g(t)

]
. (13)

It is not hard to see that ||ψ||L1= ||〈·〉|s|ϕ||L1 and ||g||L2= ||f ||Hs . By the
factorization in (13), we now calculate implies that

|ϕ̂ ∗ f̂(ξ)| ≤
∫
R
|ϕ̂(ξ − t)f̂(t)| dt

.
1

〈ξ〉s

∫
R
ψ(ξ − t)g(t) dt

=
1

〈ξ〉s
(ψ ∗ g)(ξ) .

(14)

Before we move on, note that both ψ and g are elements of L2. We finally
obtain

||ϕf ||Hs = ||〈·〉s(ϕ̂ ∗ f̂)||L2

. ||ψ ∗ g||L2 (by calculation (14))

= ||ψ̂ĝ||L2

≤ ||ψ̂||L∞ ||ĝ||L2

≤ ||ψ||L1 ||g||L2

= ||〈·〉|s|ϕ̂||L1 ||f ||Hs .
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If we pick ϕ,ψ ∈ H∞, it follows by the previous proposition that ϕψ ∈ Hs

for all s ∈ R, as ψ ∈ Hs for all s ∈ R. We have proved the next corollary.
ϕψ ∈ H∞.

Corollary 2.36. If ϕ,ψ ∈ H∞, then also ϕψ ∈ H∞.

By the Fourier transform, the previous two results implies that f ∗ϕ ∈ FHr,
whenever f ∈ FHr, for r ∈ (−∞,∞], and ϕ ∈ FH∞. It is in this form that
the two results will most often be applied.

Before the next proposition, we refresh our memory. By definition 2.16
we can multiply an element T ∈ S ′ with an element g ∈ V∞ to again get
a tempered distribution Tg ∈ S ′. We restrict our attention to an element
T ∈ Hs ⊂ S ′ and ϕ ∈ H∞ ⊂ V∞; again Tϕ ∈ S ′. As T̂ is a function, we
could ask whether it holds that T̂ϕ coincides with the tempered distribution
represented by the function T̂ ∗ ϕ̂. This is indeed true as we now show.

Proposition 2.37. Viewing T ∈ Hs as a tempered distribution, and picking
ϕ ∈ H∞, then it holds that T̂ϕ = T̂ ∗ ϕ̂, i.e. for any ψ ∈ S we have

T̂ϕ(ψ) := T (ϕψ̂) =

∫
R

(T̂ ∗ ϕ̂)ψ dt =: (T̂ ∗ ϕ̂)(ψ) .

Proof. We start with the calculation

T (ϕψ̂) = T̂ (ϕ̌ ∗ ψ)

=

∫
R
T̂ (x)(ϕ̌ ∗ ψ)(x) dx

=

∫
R

∫
R
T̂ (x)ϕ̌(x− t)ψ(t) dt dx

(15)

Taking the absolute value of the integrand we would get∫
R
|T̂ (x)|(|ϕ̌|∗|ψ|)(x) dx . (16)

Since |ϕ̌|, |ψ|∈ FH∞, it follows from the previous corollary that |ϕ̌|∗|ψ|∈ FH∞,
which in particular implies that 〈·〉−s|ϕ̌|∗|ψ|∈ L2. Since we also have 〈·〉s|T̂ |∈ L2

by definition, it is clear that the integral (16) is finite. Thus we may swap the
integrals in (15) and rewrite ϕ̌(x− t) as ϕ̂(t− x) to obtain

T (ϕψ̂) =

∫
R
(T̂ ∗ ϕ̂)ψ dt =: (T̂ ∗ ϕ̂)(ψ) .

Our final proposition studies how translation of û affect the Hs-norm of u.

Proposition 2.38. For u ∈ Hs we have

||〈·〉sû(· − t)||L2. 〈t〉|s|||u||Hs .
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Proof. By a shift in variables, equation (12) implies that

〈ξ〉s|û(ξ − t)| . 〈t〉|s|〈ξ − t〉s|û(ξ − t)| ,

and so we immediately get the conclusion

||〈·〉sû(· − t)||L2 . 〈t〉|s|||〈· − t〉sû(· − t)||L2= 〈t〉|s|||u||Hs .

2.5 Calculus of variation

We give here the general definition of the Fréchet derivative of a function be-
tween Banach spaces.

Definition 2.39. Let X and Y be Banach spaces and U ⊆ X and open subset.
A function f : U → Y is said to be Fréchet differentiable at x ∈ U if there exist
a bounded linear operator Df(x) : X → Y so that

lim
h→0

||f(x+ h)−Df(x)h||Y
||h||X

= 0 .

The above limit is to be understood to hold for any sequence (hn) ⊂ X con-
verging to 0.

2.6 Strict subadditivity

This section consist of original proofs.

Definition 2.40. We say that f : R → R is strictly subhomogeneous on an
interval (0, x0) if f(tx) < tf(x) whenever x ∈ (0, x0) and t ∈ (1, x0

x ).

Lemma 2.41. Suppose f satisfies the condition for strict subhomogeneity on
(0, x0), when t ∈ (1,min{ε, x0

x }) for some ε > 0. Then f is truly strictly subho-
mogeneous on (0, x0).

Proof. For x ∈ (0, x0) and t ∈ (1, x0

x ), we can find k ∈ N so that t
1
k < ε. For

such a k we get

f(tx) < t
1
k f(t

k−1
k x) < t

2
k f(t

k−2
k x) < · · · < tf(x).

Definition 2.42. We say that f : R → R is strictly subadditive on an interval
(0, x0) if f(x1 +x2) < f(x1)+f(x2) whenever x1 ∈ (0, x0) and x2 ∈ (0, x0−x1).

Lemma 2.43. Suppose f is strictly subhomogeneous on (0, x0), then f is strictly
subadditive on (0, x0).
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Proof. We first assume x1 = x2 ∈ (0, x0

2 ). Then by strict subhomogeneity,
f(x1 + x2) = f(2x1) < 2f(x1) = f(x1) + f(x2). We assume next
0 < x1 < x2 < (x0 − x1). Then by strict subhomogeneity

f(x1 + x2) = f
([

1 +
x1
x2

]
x2

)
<
[
1 +

x1
x2

]
f(x2)

= f(x2) +
x1
x2
f(x2)

< f(x2) + f(x1) ,

where the last inequality also follows from subhomogeneity:

x1
x2
f(x2) =

x1
x2
f
(x2
x1
x1

)
< f(x1) .

By symmetry, we have also proved for the case when x1 > x2.

2.7 Concentration compactness principle

Theorem 2.44 ((Lions [6]) Concentration-compactness). Any sequence (ρn) ⊂
L1(R) of non-negative functions with the property∫

R
ρn dx = µ > 0

admits a subsequence, denoted again by (ρn), for which one of the following
phenomena occurs.

Vanishing: For each r > 0 one has that

lim
n→∞

(
sup
x0∈R

∫
Br(x0)

ρn

)
= 0 .

Concentration: There is a sequence (xn) ⊂ R with the property that for each
ε > 0 there exists r <∞ with∫

Br(xn)

ρn dx ≥ µ− ε ,

for all n ∈ N.

Dichotomy: There exist µ ∈ (0, µ) so that for every ε > 0 there exists a

natural number n0 ≥ 1 and two sequences of positive functions (ρ
(1)
n ), (ρ

(2)
n ) ⊂ L1
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satisfying for n ≥ n0

||ρn − ρ(1)n − ρ(2)n ||L1≤ ε,∣∣∣∣ ∫
R
ρ(1)n − µ

∣∣∣∣ ≤ ε,∣∣∣∣ ∫
R
ρ(2)n − (µ− µ)

∣∣∣∣ ≤ ε,
dist(supp(ρ(1)n ), supp(ρ(2)n ))→∞ .

We also state without proof a corresponding lemma from [6]:

Lemma 2.45 ([6]). Suppose dichotomy occurs when applying the concentration

compactness principle, then the two sequences (ρ
(1)
n ), (ρ

(2)
n ) can be chosen to

satisfy

supp(ρ(1)n ) ⊂ (yn − rn, yn + rn)

supp(ρ(2)n ) ⊂ R \ (yn − 2rn, yn + 2rn)

for two sequences (yn), (rn) ∈ R.

3 Assumptions

The argument used to prove Theorem 1.1, requires the following assumption.

1. Assumptions on the nonlinear term n : R→ R.
We split n up into n = np + nr.

1.1 The function np takes either of the two forms:

(a) np(x) = cp|x|p and cp 6= 0,

(b) np(x) = cpx|x|p−1 and cp > 0,

for some real number p > 1.

1.2 The function nr is continuous.

1.3 The function nr satisfies nr(x) = O(|x|p+δ) for some δ > 0 as x→ 0.

2. Assumptions on the symbol m : R→ R, of the Fourier multiplier L.

2.1 Symmetry about zero: m(ξ) = m(−ξ).
2.2 Non-negative at zero: m(0) ≥ 0.

2.3 We have the the growth bound

m(ξ)−m(0) ' |ξ|2s,

for some real number s satisfying 2s > max{1, p−12 }.
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2.4 There is a symmetric function k ≥ 0, so that

|m(ξ + t)−m(ξ)|≤ k(t)〈ξ〉2s ,

with limt→0 k(t) = 0.

We make some observations. Assumption 1.1 implies that there are numbers
r ∈ R satisfying np(r)r > 0. Assumption 1.1 and 1.2, implies that n is continu-
ous. We also note that assumption 2.2 implies that m(ξ) > m(0) for ξ 6= 0, and
together with assumption 2.3 it also implies m(ξ) + 1 ' 〈ξ〉2s.

4 Strategy and preparation

We will search for solutions of (2) in Hs(R); the set of real valued functions
u ∈ Hs. We equip Hs(R) with the Hs-norm; by corollary 2.25, this space is
complete. The search will be carried out by working on an appropriate con-
straint minimization problem of a functional E : Hs(R)→ R over a set U ∈ Hs.
For practical reasons, it will be important that ||·||L∞ is bounded on the set
U . As we assume s > 1

2 , it follows by Sobolev embedding (Theorem 2.32)
that ||·||L∞. ||·||Hs , and so we will work with the appropriate set U ⊂ Hs(R),
defined by

U =
{
u ∈ Hs(R) : ||u||Hs< R

}
,

where R > 0 is some fixed constant, whose exact size does not affect the main
result. The constraint will be of the form Q(u) = µ, where

Q(u) :=
1

2

∫
R
u2 dx ,

and so we naturally define Uµ by

U =
{
u ∈ U : Q(u) = µ

}
.

Although the functional E is yet to be defined, we present the form of our
constrained minimization problem:

Iµ := inf
u∈Uµ

E(u) .

By the definition of Iµ, there must be a minimizing sequence (un) ∈ Uµ so that

lim
n→∞

E(un) = Iµ .

We will show that there is some µ∗ > 0 so that when µ ∈ (0, µ∗) we can ’build’
a solution u ∈ Uµ, i.e. E(u) = Iµ. The exact value of µ∗ will not be specified;
we will instead discover a finite set of positive upper bounds so that setting
µ∗ smaller than these will suffice in the desired property. An immediety upper
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bound of µ∗ is 2R2; as ||·||L2≤ ||·||Hs< R on U , it is clear that Uµ is empty for
µ ≥ 2R2. We have now introduced the relevant terminology, and so we provide
a coarse overview of how theorem 1.1 will be proved from working with the
corresponding constrained minimization problem.

1. We find lower and upper bounds of Iµ. Functions u ∈ Uµ for which E(u)
are within these bounds will be referred to as near minimizers.

2. We prove properties of near minimizers. These properties will suffice to
show that any minimizing sequence (un) ⊂ Uµ must concentrate in accor-
dance with the Concentration-Compactness principle (lemma 2.7) .

3. From a ’concentrating’ minimizing sequence, we build a function u ∈ Uµ
so that E(u) = Iµ .

4. We prove that any minimizer of the constrained minimization problem
must solve (2).

In addition, we find some sufficient conditions on n(x) to establish regularity of
a solution of (2). This is Theorem 9.4.

4.1 The functionals and the minimizing problem

For x ∈ R we define the functions

Np(x) :=

∫ x

0

np(t) dt, Nr(x) :=

∫ x

0

nr(t) dt.

Note that they are both continuous. As nr(x) = O(|x|p+δ) as |x|→ 0 it follows
that Nr(x) = O(|x|p+1+δ); a similar result obviously holds for Np too. We also
define the corresponding functionals

Np(u) :=

∫
R
Np(u) dx, Nr(u) :=

∫
R
Nr(u) dx,

defined for u ∈ Hs(R). We denote the sum of the two functionals by

N := Np +Nr .

In the next subsection we will prove that L maps Hs(R) continuously into
H−s(R). This, together with proposition 2.31, implies that Lu := L(u) is a
continuous linear map from Hs(R) to R for any u ∈ Hs(R). We will use the
notation Lu[v] for the value of Lu with v as argument. We can now define the
next functional

L(u) :=
1

2
Lu[u] ,

which we will show has the representation

L(u) =
1

2

∫
R
m(ξ)|û|2 dξ,
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on Hs(R); in particular, L is real valued. We finally arrive at the definition of
E ,

E := L −N .

With all the relevant notation, we restate the constrained minimization problem
we wish to solve,

Iµ = inf
u∈Uµ

E(u) . (17)

As will be shown later, any minimizer u ∈ Uµ of Iµ, must also solve (2) for some
velocity ν.

Remark 4.1. From here on, when a function u and µ shows up in the same
calculation, it is implied that Q(u) = µ. We also stress that expressions of the
form f(u) . g(µ) implies that f(u) ≤ Cg(µ), for some C > 0 independent of µ.

4.2 Some preliminary results for the functionals

Every proof in this subsection is original. We here show some general use-
ful properties of the functionals L and N . We will make repeated use of the
boundness of ||·||L∞ on U ; a fact established at the beginning of this section.
We will also exploit simple Fourier theory, similar to what was used to obtain
(8).

Proposition 4.2. L is a bounded linear operator L : Hs(R)→ H−s(R).

Proof. We start by proving linearity. Note that m ∈ V (by the discussion follow-
ing definition 2.11). As the Fourier transform, and multiplication by elements
of V , are linear operations on S ′, we get for u, v ∈ Hs(R),

̂L(u+ v) = m(ξ)(û+ v̂) = mû+mv̂ ,

and by taking the Fourier inverse on each side and exploit its linearity, we obtain
L(u+ v) = L(u) + L(v). To prove boundness we pick u ∈ Hs(R). Then

||Lu||2H−s =

∫
R
〈ξ〉−2s|m(ξ)û|2 dξ

=

∫
R

[
m(ξ)

〈ξ〉2s

]2
〈ξ〉2s|û|2 dξ

.
∫
R
〈ξ〉2s|û|2 dξ (by assumption on m(ξ))

= ||u||2Hs .

It remains to show that L(u)[v] is real valued for all v ∈ Hs(R). We write

Lu[v] = L̂u[v̌] =

∫
R
m(ξ)ûv̌ dξ . (18)
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As the functions u, v are real valued, ûv̌ is conjugate anti symmetric; that is

û(ξ)v̌(ξ) = û(−ξ)v̌(−ξ) .

As m is an even real valued function (by assumption), the integrand in (18) is
conjugate anti symmetric. Consequently L(u)[v] is real valued.

We also get a nice symmetrical property of L, as a consequence of the sym-
metry of m.

Proposition 4.3. For all u, v ∈ Hs(R), we have Lu[v] = Lv[u].

Proof. A straight forward calculations shows that

Lu[v] =

∫
R
m(ξ)ûv̌ dξ

=

∫
R
m(−ξ)û(−ξ)v̌(−ξ) dξ (by the substitution ξ 7→ −ξ)

=

∫
R
m(ξ)ǔv̂ dξ

= Lv[u] .

Proposition 4.4. L has the representation

L(u) =
1

2

∫
R
m|û|2 dξ ,

on Hs(R).

Proof. Exploiting ǔ = û for u ∈ Hs(R), we obtain

2L(u) = Lu[u]

= L̂u[ǔ]

=

∫
R
mûǔ dξ

=

∫
R
m|û|2 dξ .

Proposition 4.5. For all u ∈ Hs(R), we have L(u) > m(0)µ.

Proof. By the assumption, m(ξ) > m(0), for ξ 6= 0. Consequently

L(u) =
1

2

∫
R
m(ξ)|û|2 dξ

>
1

2

∫
R
m(0)|û|2 dξ

= m(0)µ .
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Before the next proposition we note that as ||·||L∞ is bounded on U , then
so is ||·||Lp for 2 ≤ p ≤ ∞; this can easily be seen from the calculation

||f ||pLp=

∫
R
|f |p dx ≤ ||f ||p−2L∞

∫
R
|f |2 dx = ||f ||p−2L∞ ||f ||

2
L2 , (19)

together with the fact that ||·||L2 is bounded on U .

Proposition 4.6. For u ∈ U , we have the inequalities

|Np(u)|. ||u||p+1
Lp+1 |Np(u)|. µ||u||p−1L∞

|Nr(u)|. ||u||p+1+δ
Lp+1+δ |Nr(u)|. µ||u||p−1+δL∞ .

Proof. Note that by the discussion prior to this proposition, the two inequalities
on the right follows from the two on the left. We prove upper left inequality; the
remaining can be proved similarly. As Np is continuous and approaches zero like
|x|p+1, it follows that |Np(x)|. |x|p+1+δ on any compact interval [−K,K], (for
Np in particular, this is true on all of R). Consequently, as ||·||L∞ is bounded
on U , there is some C > 0 so that

|Np(u)|≤ C||u||p+1
Lp+1 ,

for every u ∈ U .

As both ||·||L2 and ||·||L∞ is bounded on U , we immediately get the corollary.

Corollary 4.7. N is bounded on U .

Towards the end of this paper, regularity of E will be important; in particular
we will need the following proposition.

Proposition 4.8. E is uniformly continuous on U .

Proof. We are claiming that for any u, v ∈ U , |E(u) − E(v)| is bounded by a
function f of ||u− v||Hs , with f(h)→ 0 as h↘ 0. We will not prove it directly
for E ; the claim will follow by proving it for both N and L. To structure the
proof, we prove it in two steps.

Step 1: Proving that N is uniformly continuous on U .
For notational convenience, we set N := Np +Nr. We define

g(x, y) :=
N(x+ y)−N(x)

(x+ y)2 + (x)2
,

for (x, y) 6= 0, and g(0, 0) := 0. We have N(x) = O(|x|p+1) as x → 0; con-
sequently N(x) = o(|x|2) as x → 0. By this observation and the fact that N
is continuous, we conclude that g is continuous on R2. Let K ⊂ R2 be any
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bounded neighbourhood of 0. As g is uniformly continuous on K, there is a
modulus of continuity ω : R+ → R+ with ω(h)→ 0 as h↘ 0, so that

|g(x1, y1)− g(x2, y2)|≤ ω
(

dist
(

(x1, y1), (x2, y2)
))

, (20)

whenever (x, y) ∈ K. As all norms on R2 are equivalent, we can assume the func-
tion dist(·, ·) above is the metric induced by the 1−norm: ||(x, y)||1= |x|+|y|. If
we now insert the points (x, y−x) and (x, 0) in (20), and notice that g(x, 0) = 0,
we get the equation

|N(y)−N(x)|≤
(
x2 + y2

)
ω(|y − x|) , (21)

which is valid whenever (x, y−x) ∈ K. We set K to be a disk centered at zero,
whose radius exceeds 2||u||L∞ for any u ∈ U . We then calculate for u, v ∈ U

|N (u)−N (v)| ≤
∫
R
|N(u)−N(v)| dx

≤
∫
R

(
u2 + v2

)
ω(|u− v|) dx

≤
[
||u||2L2+||v||2L2

]
ω(||u− v||L∞)

. ω(||u− v||L∞) ,

(22)

where we assumed (without loss of generality) that ω is non-decreasing, and
the fact that ||·||L2≤ ||·||Hs. 1 on U . As ||·||L∞. ||·||Hs by Sobolev embedding
(Theorem 2.32), the uniform continuity of N follows.

Step 2: Proving that L is uniformly continuous on U .
Turning to L, we start with the observation that for any two complex numbers
z, w ∈ C we have by the triangle inequality |z|−|w|≤ |z+w| and |w|−|z|≤ |z+w|;
consequently ∣∣∣|z|−|w|∣∣∣ ≤ |z − w| . (23)

By this observation, the assumption m . 〈·〉2s and the representation of L on
U , we calculate for u, n ∈ U

|L(u)− L(v)| ≤
∫
R
m(ξ)

∣∣∣|û|2−|v̂|2∣∣∣ dξ
.
∫
R
〈ξ〉2s|û+ v̂||û− v̂| dξ (by (23))

≤ ||u+ v||Hs ||u− v||Hs (by Hölder’s inequality)

. ||u− v||Hs ,

where we in the final step used ||u+ v||Hs≤ ||u||Hs+||v||Hs and the boundness
of ||·||Hs on U .
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We end this section by calculating the Fréchet derivative of Q,L,N and
E . As they are all functions from Hs(R) to R, their derivative at a ’point’
u ∈ Hs(R) will be elements of H−s(R) (in accordance with proposition 2.31).

Proposition 4.9. The Fréchet derivative of Q at u ∈ Hs(R) is given by

Q′(u) = u .

Proof. Viewing u ∈ H−s(R) as a dual element of Hs(R), we have u[v] =∫
R uv dx, for v ∈ Hs(R). Pick v ∈ Hs(R); we observe that

2Q(u+ v) =

∫
R
(u+ v) dx

=

∫
R
u2 dx+ 2

∫
R
uv dx+

∫
R
v2 dx

= 2
[
Q(u) + u[v] +Q(v)

]
.

An immediate calculation then gives

|Q(u+ v)−Q(u)− u[v]|
||v||Hs

=
|Q(v)|
||v||Hs

≤
||v||2L2

2||v||Hs
≤ ||v||H

s

2
→ 0 ,

as v → 0. Thus we have proved that indeed Q′(u) = u.

Proposition 4.10. The Fréchet derivative of L at u ∈ Hs(R) is given by

L′(u) = Lu .

Proof. We start by exploiting the bilinearity of (x, y) 7→ Lx[y], to see that for
v ∈ Hs(R), we have

2L(u+ v) = L(u+ v)[u+ v]

= Lu[u] + Lu[v] + Lv[u] + Lv[v]

= 2
[
L(u) + Lu[v] + L(v)

]
,

where we used the symmetry of L, established by proposition 4.3. A straight
forward calculation then yields

|L(u+ v)− L(u)− Lu[v]|
||v||Hs

=
L(v)

||v||Hs
. ||v||Hs→ 0 ,

as v → 0, where we used that L . ||·||2Hs ; this follows from proposition 4.2. We
conclude that L′(u) = Lu.

Proposition 4.11. The Fréchet derivative of N at u ∈ Hs(R) is given by

N ′(u) = n(u) .
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Proof. By assumption, n is continuous and satisfies n(x) = (|x|p) as x → 0,
with p > 1. By a similar argument as the one used to arrive at the bound (21),
we can for any compact set K ∈ R2, find a modulus of continuity ω : R+ → R+,
with ω(h)→ 0 as h↘ 0, so that

|n(x+ y)− n(x)|≤
(
|x|+|y|

)
ω(|y|) , (24)

whenever (x, y) ∈ K. Note that by the argument used to derive (21), we would
expect the term |x+y|+|y| in (24); this is however dominated by 2(|x|+|y|) and
we can let ω absorb the constant 2. We set K to be a disc centered at zero,
whose radius exceeds ||u||L∞+1. Pick v ∈ Hs(R) with ||v||Hs small enough so
that ||v||L∞< 1. A calculation then yields

|N (u+ v)−N (u)− n(u)[v]|
||v||Hs

=
1

||v||Hs

∣∣∣ ∫
R
N(u+ v)−N(u)− n(u)v dx

∣∣∣
=

1

||v||Hs

∣∣∣ ∫
R
v

∫ 1

0

[
n(u+ tv)− n(u)

]
dt dx

∣∣∣
≤ 1

||v||Hs

∫
R
|v|
∫ 1

0

|n(u+ tv)− n(u)| dt dx

≤ 1

||v||Hs

∫
R

[
|vu|+|v|2

]
ω(||v||L∞) dx

≤
[
||u||L2+||v||L2

]
ω(||v||L∞)

→ 0 ,

as v → 0, in Hs(R) , where we used Hölder’s inequality and that ||·||L∞. ||·||Hs ,
by Sobolev embedding. We conclude that N ′(u) = n(u).

Exploiting the triangle inequality, it becomes obvious that E ′ = L′−N ′, and
so we get the corollary.

Corollary 4.12. The Fréchet derivative of E at u ∈ Hs(R) is given by

E ′(u) = Lu− n(u) .

5 Upper and lower bounds for Iµ

In this section we prove that ∞ < Iµ < m(0)µ − κµ1+β , for some constants
κ and β yet to be determined. The lower bound will turn out to be necessary
when we show that a solution of (17) is a solution of (2). The upper bound will
be used extensively to prove properties of minimizing sequences that which will
guarantee a solution u of (17). We also note that together, the upper and lower
bound implies that Im can not satisfies equations of the form Iµ = Iµ + c for
c ∈ R.

Proposition 5.1. −∞ < Iµ.

35



Proof. Note that L(u) ≥ 0. Also by corollary 4.7, |N | is bounded by some
constant C on U . Consequently, for u ∈ U we have

E(u) = L(u)−N (u) > −C.

Thus Iµ ≥ −C > −∞.

The following proof is inspired by [7], but is carried out in greater detail.

Proposition 5.2. There exist κ > 0 so that Iµ < m(0)µ − κµ1+β, where the
exponent β is given by

β =
2s(p− 1)

4s− (p− 1)
. (25)

Proof. Pick a function ϕ ∈ S satisfying ||ϕ||Hs≤ R, Q(ϕ) = 1 and cpϕ(x) ≥ 0.
This last inequality implies that

Np(ϕ) =
|cp|
p+ 1

||ϕ||p+1
Lp+1 .

We define the function ϕt(x) =
√

µ
t ϕ(x/t) and assume t ≥ 1. We make two

important calculations. First off,

||ϕt||2Hs=
∫
R
〈ξ〉2stϕ̂2(tξ) dξ =

∫
R
〈ξ/t〉2sϕ̂2(ξ) dξ ≤ ||ϕ||2Hs ,

which shows that ϕt ∈ U for all t ≥ 1. Secondly we have for any k ≥ 1 that

||ϕt||kLk =

∫
R
|ϕt|k dx

=

[
µ

t

] k
2
∫
R
|ϕ(x/t)|k dx

= t

[
µ

t

] k
2
∫
R
|ϕ(x)|k dx (by the substitution x 7→ tx)

= t

[
µ

t

] k
2

||ϕ||kLk .

For k = 2, this calculation shows that Q(ϕt) = µ, and so together with the
observation above we have ϕt ∈ Uµ for all t ≥ 1. We wish to see how E = L−N
acts on ϕt. We start by looking at N (ϕt);

Nr(ϕt) = O(||ϕt||p+1+δ
Lp+1+δ) = O(t)

[
µ

t

](p+1+δ)/2

Np(ϕt) =
|cp|
p+ 1

||ϕt||p+1
Lp+1=

|cp|||ϕ||p+1
Lp+1

p+ 1︸ ︷︷ ︸
:= C2

t

[
µ

t

](p+1)/2

.
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Turning to L(ϕt) we find that

L(ϕt) =
µt

2

∫
R

m(ξ)ϕ̂2(ξt) dξ

=
µ

2

∫
R

m(ξ/t)ϕ̂2(ξ) dξ

= m(0)µ+
µ

2

∫
R

(
m(ξ/t)−m(0)

)
ϕ̂2(ξ) dξ

≤ m(0)µ+ C
µ

t2s

∫
R
|ξ|2sϕ̂2(ξ) dξ

= m(0)µ+ C||ξsϕ̂||2L2︸ ︷︷ ︸
:= C1

µ

t2s
.

We now get the bound

Iµ ≤ E(ϕt) ≤ m(0)µ+ C1
µ

t2s
− C2t

[
µ

t

](p+1)/2

+O(t)

[
µ

t

](p+1+δ)/2

= µ

[
m(0) + C1

1

t2s
− C2

[
µ

t

](p−1)/2]
+O(t)

[
µ

t

](p+1+δ)/2

.

We set t−1 = Bµβ/2s where β is given by (25). B is yet to be characterized,
but we require it to be positive and small enough so that t ≥ 1. Our inequality
becomes:

Iµ ≤ m(0)µ−
[
C2B

(p−1)/2 − C1B
s︸ ︷︷ ︸

:= 2κ

]
µ1+β +B(p−1+δ)/2O

[
µ1+β+(1+α)δ/2

]
.

We now pick B small enough so that κ is positive and κµ1+β is greater than
the O term for all values of µ ∈ (0, 2R2). This is possible as 2s > (p− 1)/2 and
δ > 0. We then get the desired result:

Iµ < m(0)µ− κµ1+β .

Remark 5.3. From here on, we assume to have picked a constant κ > 0 as
described in the last proposition.

6 Near minimizers

As a consequence of the preceding proposition, there exist u ∈ U so that

E(u) < m(0)µ− κµ1+β ,

where (as always) it is assumed Q(u) = µ. We will refer to these functions as
near minimizers and denote the set of such functions by Ũ ⊂ U .

The study of near minimizers is motivated by the following proposition.
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Proposition 6.1. For any minimizing sequence (un) ∈ Uµ there is a number
N ≥ 0 so that uk is a near minimizer for k ≥ N .

Proof. This follows immediately from the definition of a minimizing sequence
and the definition of a near minimizer.

This section is devoted to proving important results concerning near mini-
mizers. We list the three most important.

1. Proposition 6.2, shows that the ||u||L∞ is uniformly bounded below for
any near minimizer u ∈ Uµ; this will be sufficient to exclude vanishing
when applying the Concentration-Compactness principle to a minimizing
sequence.

2. Proposition 6.5 shows that theHs-norm is bounded above by the L2−norm
on any near minimizer u ∈ Uµ. This result will be used to show that if a
minimizing sequence concentrates in accordance with the Concentration-
Compactness principle, then a subsequence converges weakly to a mini-
mizer.

3. Corollary 6.10, shows that for µ∗ sufficiently small, µ 7→ Iµ is strictly
sub-additive on (0, µ∗); this will be sufficient to exclude dichotomy when
applying the Concentration-Compactness principle to a minimizing se-
quence.

Proposition 6.2. A near minimizer u satisfies ||u||L∞& µβ/(p−1).

Proof. For u ∈ U , we have

N (u) . ||u||p+1
Lp+1 ,

which can be obtained by proposition 4.6, the calculation (19) and (yet again)
the fact that ||·||L∞ is bounded on U . We then calculate

2||u||p−1L∞ µ ≥ ||u||
p+1
Lp+1

& N (u)

≥ N (u) +m(0)µ− L(u)

= m(0)µ− E(u)

> κµ1+β .

Remark 6.3. In the preceding chain of inequalities we also notice the important
inequality

N (u) > κµ1+β ,

valid for all near minimizers u.

This next lemma is not particularly important but will be used in several
calculations.
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Lemma 6.4. A near minimizer u satisfies∫
R

[m(ξ)−m(0)]û2 dξ . µ||u||p−1L∞ .

Proof. Rewriting the corresponding inequality of a near minimizer u we get
L(u)−m(0)µ < N (u)− κµ1+β . Writing this out in full we get∫

R
[m(ξ)−m(0)]û2 dξ < 2N (u)− 2κµ1+β < 2N (u) . µ||u||p−1L∞ .

Proposition 6.5. A near minimizer u satisfies ||u||2Hs. µ.

Proof. By assumption we have 〈ξ〉2s . 1 +m(ξ)−m(0), and so we calculate for
a near minimizer u:

||u||2Hs =

∫
R
〈ξ〉2sû2 dξ

. µ+

∫
R

[m(ξ)−m(0)]û2 dξ

. µ+ µ||u||p−1L∞ (by lemma 6.4)

. µ (by boundness of ||·||L∞) .

This next remark will be very important towards the end; it will play a vital
role in excluding the possibility of a minimizing sequence to converge to the
boundary of U .

Remark 6.6. By the previous proposition, we can pick µ∗ > 0 small enough so
that for µ ∈ (0, µ∗) and a near minimizer u ∈ Uµ, we have ||u||Hs≤ R/2. From
here on we assume to have picked such a µ∗.

This next lemma is greatly influenced by [7], but the proof is simplified and
carried out in greater detail.

Lemma 6.7. Restricting ||·||L∞ to the set of near minimizers Ũ , we obtain

||·||L∞. µ(1+τ)/2 ,

for every τ satisfying 2sτ < β.

Proof. Combining the assumption on m(ξ) and lemma 6.4 we notice∫
R
|ξ|2sû2 dξ .

∫
R

[m(ξ)−m(0)]û2 dξ . µ||u||p−1L∞ .
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Using this observation together with Hölder’s inequality, we obtain for any τ ∈ R

||u||2L∞ ≤
(∫

R
|û| dξ

)2

≤
∫
R

[
1 +

(
|ξ|
µτ

)2s]−1
dξ

∫
R

[
1 +

(
|ξ|
µτ

)2s]
|û|2dξ

. µ1+τ

[
1 +
||u||p−1L∞

µ2sτ︸ ︷︷ ︸
:= fτ (u)

]
.

(26)

Suppose for fixed τ that fτ is bounded above on near minimizers, then (26)
shows that ||u||2L∞. µ1+τ . We define Q ⊂ R to be the set such that

τ ∈ Q⇔ fτ is bounded on Ũ .

This set is certainly not empty; as ||·||L∞ is bounded on U and thus on Ũ , it
is clear that 0 ∈ Q. Looking at the relation fτ1(u) = µ2s(τ2−τ1)fτ2(u), we can
conclude that if τ1 < τ2, then τ2 ∈ Q =⇒ τ1 ∈ Q. Let τ∗ = supQ. Suppose
2sτ∗ < β; we then pick ε > 0 so that 2s(τ∗ + ε) < β(1− 2ε). As (τ∗ − ε) ∈ Q, a
near minimizer u satisfies ||u||2L∞. µ1+τ∗−ε. We then get the calculation

fτ∗+ε(u) . µ(1+τ∗−ε)(p−1)/2−2s(τ∗+ε) . (27)

Recalling that β = 2s(p−1)
4s−(p−1) , we rewrite the exponent of µ in (27) to obtain

(1 + τ∗ − ε)
(p− 1)

2
− 2s(τ∗ + ε) = [(1− 2ε)β − 2s(τ∗ + ε)]

(p− 1)

2β
> 0 .

Since µ is bounded, we conclude fτ∗+ε is bounded above on Ũ and so (τ∗+ε) ∈ Q;
a contradiction. Thus 2sτ∗ ≥ β and we are done.

Corollary 6.8. ||u||p−1+δL∞ = o(µβ) for u ∈ Ũ .

Proof. For ε > 0, set τ = β
2s − ε = 2β

(p−1) − 1− ε. Then

||u||p−1+δL∞ . µ(1+τ)(p−1+δ)/2 = µβ+[βδ/(p−1)−ε(p−1+δ)/2] .

Picking ε small enough so that

βδ

(p− 1)
− ε (p− 1 + δ)

2
> 0 ,

the result immediately follows.

With the preceding bound on ||·||L∞ , we now build an argument showing
that µ 7→ Iµ is strictly subadditive which will be the main tool when excluding
dichotomy.

We need the following lemma whose proof is original.
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Lemma 6.9. There is exist µ∗ > 0 and γ > 0 so that for any near minimizer
u with Q(u) = µ ∈ (0, µ∗) and t ∈ (1, 2) we have the inequality

Itµ < tE(u)− γ(t− 1)µ1+β

Proof. We start by noticing L(
√
tu) = tL(u) and Np(

√
tu) = t(p+1)/2Np(u). As

Q(
√
tu) = tµWe calculate

Itµ ≤ L(
√
tu)−N (

√
tu)

= tL(u)− t(p+1)/2N (u) + t(p+1)/2Nr(
√
tu)−Nr(

√
tu)

= tE(u)− [t(p+1)/2 − t]N (u)︸ ︷︷ ︸
:= ϕ(t, u)

+ t(p+1)/2Nr(u)−Nr(
√
tu)︸ ︷︷ ︸

:= φ(t, u)

(28)

Using remark 6.3 we perform the calculation

ϕ(t, u) > [t(p+1)/2 − t]κµ1+β

= κt
[t(p−1)/2 − 1]

[t− 1]
(t− 1)µ1+β

> κ
(p− 1)

2
(t− 1)µ1+β

& (t− 1)µ1+β ,

where we exploited that t 7→ t [t
(p−1)/2−1]

[t−1] is strictly increasing on t ∈ (1, 2) with

the limit (p− 1)/2 as t→ 1.
As for φ, we see that φ(1, u) = 0 and so we use the mean value theorem for

some t∗ ∈ (1, t) ⊂ (1, 2) to calculate

φ(t, u) = (t− 1)

[
dφ

dt
(t∗, u)

]
= (t− 1)

[ ∫
R

(p− 1)

2
t
(p−1)/2
∗ Nr(u)− u

2
√
t∗
nr(
√
t∗u) dx

]
. (t− 1)

[
µ||u||p−1+δL∞

]
(by assumption on nr)

= (t− 1)o(µ1+β) (by corollary 6.8)

where the interchange of derivative and integral performed when calculating dφ
dt

is justified by Leibniz integral rule together with the observation

|unr(
√
tu)/2

√
t|< C|u(x)|p+1+δ∈ L1(R) ,

for some C whenever t ∈ (1, 2).
Looking back at (28) we can rewrite the last line in the following manner

Itµ ≤ tE(u)− ϕ
[
1− φ

ϕ

]
. (29)
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By the previous calculations we find[
1− φ

ϕ

]
&

[
1− o(µ1+β)

µ1+β

]
,

and so it should be clear that there is some µ∗ > 0 so that for µ ∈ (0, µ∗), we have[
1− ϕ

φ

]
> r for some r > 0 and consequently that ϕ

[
1− ϕ

φ

]
& ϕ & (t−1)µ1+β .

Adding this last inequality to (29), our lemma is proved.

Corollary 6.10. For a µ∗ as described in the preceding lemma, µ 7→ Iµ is
strictly subadditive on (0, µ∗).

Proof. Fix µ ∈ (0, µ∗). Pick a minimizing sequence (un) from Uµ consisting
solely of near minimizers. Now for t ∈ (1,min{2, µ∗µ }) the sequence (

√
tun) lies

in Utµ. By the preceding lemma there is some γ > 0 so that

Itµ < tE(un)− γ(t− 1)µ1+β ,

and taking the limit we get

Itµ ≤ tIµ − γ(t− 1)µ1+β . (30)

By the bounds obtained in section 5, it is clear that Iµ is a real valued number,
and consequently (30) implies that Itµ < tIµ. As we did not specify µ ∈ (0, µ∗)
or t ∈ (1,min{2, µµ∗ }), it follows from combining lemma 2.41 and 2.43 that

µ 7→ Iµ is strictly subadditive on (0, µ∗).

7 Applying Concentration-Compactness

In this section, we study what happens when we apply concentration-compactness
to minimizing sequences. For a minimizing sequence (un) ⊂ Uµ, it follows by
the Concentration-Compactness principle 2.7, that (|un|2) must admit a subse-
quence with the property vanishing, concentration or dichotomy.

We stress that when studying a minimizing sequence (un) ⊂ Uµ, there is
no harm in assuming (un) to consist solely of near minimizers; by proposition
6.1 we can always remove the finite number of elements un that fail to be near
minimizers.

7.1 Excluding vanishing

This section is completely original. We introduce some notation. For f ∈ U we
define the seminorm

|f |2:=

√∫ 1

−1
|f |2 dx .
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We wish to show that |f |2 is bounded below by the value of f(0). We define
the sets Uh = {f ∈ U : |f(0)|= h}, and the function

g(h) := inf
f∈Uh

|f |22 ,

where we define inf ∅ =∞. We now prove the necessary lower bound on |f |2.

Lemma 7.1. g(h) is a non-decreasing function and positive for h > 0.

Proof. For 0 ≤ c ≤ 1 it is clear that cUh = {cf : f ∈ Uh} ⊆ U ch. Thus for such
c we get

g(ch) = inf
f∈Uch

|f |22≤ inf
f∈cUh

|f |22 = inf
f∈Uh

|cf |22 = c2g(h) ,

implying g is non-decreasing. It remains to show that g(h) > 0 for h > 0. Since
f ∈ U ⇔ ||f ||Hs< R, we conclude from corollary 2.33 that there is some C > 0
and α > 0 so that |f(x)− f(y)|≤ C|x− y|α for all x, y ∈ R and f ∈ U . We pick
h ∈ [0, 2C], and define

ε :=

(
h

2C

)1/α

,

which by construction satisfies ε ≤ 1. We pick f ∈ Uh and calculate∫ 1

−1
|f(x)|2 dx ≥

∫ ε

−ε
|f(x)|2 dx

≥
∫ ε

−ε
|f(x)− f(0)|2−2|f(x)− f(0)|h+ h2 dx

≥
∫ ε

−ε
h2 − 2|f(x)− f(0)|h dx

≥
∫ ε

−ε
h2 − 2C|x|αh dx

=

[
2εh2 − 4Cε1+α

1 + α
h

]
=

[
2α

(1 + α)(2C)1/α

]
h2+1/α ,

and consequently g(h) & h2+1/α for h ∈ [0, 2C]. This, together with the fact
that g is non-decreasing proves the lemma.

Proposition 7.2. Vanishing does not occur.

Proof. By corollary 6.2, for fixed µ, there is some c > 0 so that for any near
minimizer u ∈ Uµ we have ||u||L∞> c. Pick a near minimizer u ∈ Uµ, and a
point x0 ∈ R so that |u(x0)|= ||u||L∞ (this is possible as u is continuous and
u(x)→ 0 as |x|→ ∞). Then by the preceding lemma

sup
y∈R

∫ y+1

y−1
|u|2 dx ≥

∫ x0+1

x0−1
|u|2 dx ≥ g(||u||L∞) ≥ g(c) ,

and since g(c) > 0, it is clear that vanishing can not occur.
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7.2 Excluding dichotomy

This section is inspired by [2], but the proofs are approached differently and in
much greater detail.

Lemma 7.3. Fix ϕ ∈ H∞ and define ϕr(x) = ϕ(x/r) for r ≥ 1. We define the
bilinear function Br : U × U → R by

Br(u, v) := Lϕru[v]− Lu[ϕrv] ,

where u, v ∈ U and L is the Fourier multiplier of (2). Br satisfies

|Br|→ 0 ,

as r →∞.

The key importance of this lemma is that Br tends to zero uniformly on
U × U . An essential part of the proof is that ||·||Hs is bounded on U , or
equivalently that ||·||Hs. 1. We also note that ϕ̂r = rϕ̂(rξ); this together with
the fact that ϕ is fixed, gives us

||〈·〉sϕ̂r||L1 = ||〈·/r〉sϕ̂||L1

≤ ||〈·〉sϕ̂||L1

. 1 ,

(31)

where 〈·/r〉s ≤ 〈·〉s follows as s > 0 and r ≥ 1. This inequality will be used
throughout the proof.

Proof of lemma 7.3. For clear structure, we divide this proof up into steps.

Step 1: Defining the integral E.
We start by rewriting the the quantity Lu[ϕ2

ru] as ϕrLu[ϕru] where ϕrLu is
the product (in accordance with definition 2.16) of the tempered distributions
ϕr ∈ H∞ and Lu ∈ H∞. Exploiting proposition 2.37 we get for u ∈ U

Br(u, v) = Lϕru[v]− ϕrLu[v]

=

∫
R
v̌
[
(ϕ̂r ∗ û)m− ϕ̂r ∗ (mû)

]
dξ

=

∫
R
v̌

∫
R
ϕ̂r(t)û(ξ − t)

[
m(ξ)−m(ξ − t)

]
dt dξ

(32)

We want to interchange the two integrals; by Fubini’s theorem this can be done
if the integral is absolutely integrable. We denote Ir for the quantity obtained
when integrating the absolute value of the integrand above. It is not hard to
see that

Ir ≤
∫
R
|v̌|
[
(|ϕ̂r|∗|û|)m+ |ϕ̂r|∗|mû|

]
dξ .
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We also note that for t ∈ (−∞,∞], the space FHt, is closed under the operations
f 7→ |f |; this together with m . 〈·〉2s and proposition 2.35, implies

|v̌|∈ FHs , and
[
(|ϕ̂r|∗|û|)m+ |ϕ̂r|∗|mû|

]
∈ FH−s .

Consequently Ir is finite, and we may swap the integrals in (32). We get

Br(u, v) =

∫
R
ϕ̂r

∫
R
v̌(ξ)û(ξ − t)

[
m(ξ)−m(ξ − t)

]
dξ︸ ︷︷ ︸

:= E

dt , (33)

where the integral E was named for notational convenience.

Step 2: Obtaining bounds for E.
There are two ways to obtain a bound for E. Firstly, we have the ”coarse”
bound given by

|E| ≤
∫
R
|v̌(ξ)û(ξ − t)|

∣∣∣m(ξ)−m(ξ − t)
∣∣∣ dξ

.
∫
R
|v̌(ξ)û(ξ − t)|

[
〈ξ〉2s + 〈ξ − t〉2s

]
dξ

. 〈t〉s||u||Hs ||v||Hs

. 〈t〉s ,

(34)

where the third inequality exploits Hölder’s inequality, proposition 2.38 and the
symmetry of 〈·〉 about zero. Secondly, we have by assumption that

|m(ξ − t)−m(ξ)|≤ k(t)〈ξ〉2s ,

and so substituting this into E we get

|E| ≤
∫
R
|v̌(ξ)û(ξ − t)|

∣∣∣m(ξ)−m(ξ − t)
∣∣∣ dξ

≤ k(t)

∫
R
|v̌(ξ)û(ξ − t)|〈ξ〉2sdξ

. k(t)〈t〉s||u||Hs ||v||Hs

. k(t)〈t〉s ,

(35)

where we the third inequality uses Hölder’s inequality and proposition 2.38.

Step 3: Obtaining a bound for Br.
We pick 0 < α < 1. Using the bound (34) when |t|≤ r−α and the bound (35)
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when |t|> r−α we get

|Br(u, v)| ≤
∫
R
|ϕ̂rE| dt

.
∫
|t|≤r−α

k(t)|ϕ̂r|〈t〉2s dt+

∫
|t|>r−α

|ϕ̂r|〈t〉2s dt

=

∫
|t|≤r1−α

k(t/r)|ϕ̂(t)|〈t/r〉2s dt+

∫
|t|>r−α

|ϕ̂(t)|〈t/r〉2s dt

≤
[

sup
|t|≤r−α

k(t)

]
||ϕ̂〈·〉s||L1+

∫
|t|>r1−α

|ϕ̂(t)|〈t〉s dt .

By assumption, k(t) → 0 as t → 0, and since |ϕ̂|∈ FH−∞, it follows that
|ϕ̂|〈·〉s ∈ L1. As 0 < α < 1, it should then be clear by the previous calculation
that |Br| tends to zero as r →∞, independently of u, v ∈ U .

Proposition 7.4. Suppose dichotomy occurs on a minimizing sequence (un) ⊂ Uµ.
For µ∗ sufficiently small, there exist 0 < λ < µ and two sequences (u1n) ⊂ Uλ,
and (u2n) ⊂ Uµ−λ so that

E(u)− E(u1n)− E(u2n)→ 0 .

Proof. For clarity, we divide this proof up into steps.

Step 1: Defining the functions ϕ,ψ and φ, and the necessary bound on µ∗.
We pick two symmetrical functions ϕ,ψ ∈ C∞ so that 0 ≤ ϕ,ψ ≤ 1, ϕ2+ψ2 = 1
and

ϕ(x) =

{
1 |x|≤ 1

0 |x|≥ 2 .

We also define φ := 1 − ψ; we note that ϕ, φ ∈ H∞. For r ≥ 1 we define
ϕr(x) := ϕ(x/r), and similarly for ψr and φr. Pick any u ∈ U . By the triangle
inequality and proposition 2.35, we have the bounds

||ϕru||Hs . ||〈·〉sϕ̂r||L1 ||u||Hs
≤ ||〈·〉sϕ̂||L1 ||u||Hs
. ||u||Hs

||ψru||Hs ≤ ||u||Hs+||φru||Hs

.
[
1 + ||〈·〉sφ̂r||L1

]
||u||Hs

≤
[
1 + ||〈·〉sφ̂||L1

]
||u||Hs

. ||u||Hs
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where we exploited that r ≥ 1 and a calculation similar to (31). By proposi-
tion 6.5, ||u||2Hs. µ for any near minimizer u ∈ Uµ; thus we can pick µ∗ > 0
small enough so that whenever µ ∈ (0, µ∗), a near minimizer u ∈ Uµ satisfies
||ϕru||Hs , ||ψru||Hs≤ R/2 for all r ≥ 1. From here on we assume such a µ∗ has
been picked.

Step 2: Constructing the auxiliary sequences (v1n), (v2n) ⊂ U .
We now turn to a minimizing sequence (un) ⊂ Uµ, for which dichotomy occurs.
By the Concentration-Compactness principle, there exist sequences
(xn), (rn) ⊂ R so that when n→∞, we have rn →∞ and

1

2

∫
|x|≤rn

|un(x− xn)|2 dx→ λ > 0 ,

1

2

∫
|x|≥2rn

|un(x− xn)|2 dx→ µ− λ > 0 .

(36)

Without loss of generality we assume xn = 0 for all n; notice that the value of
E(u) and ||u||Hs are unaffected by translation of u. We can also assume without
loss of generality that rn ≥ 1, and that (un) consist solely of near minimizers.

We define ϕn(x) = ϕ(x/rn) and similarly for ψn and φn. We now define two
new sequences (v1n), (v2n) by

v1n := ϕnun , v2n := ψnun ,

Without loss of generality, we assume (un) to consist solely of near minimizers.
By step 1, we consequently have ||v1n||Hs , ||v2n||Hs≤ R/2, for all n.

Step 3: Constructing the sequences (u1n) ⊂ Uλ, (u2n) ⊂ Uµ−λ.
In addition to the two limits (36), we also have

1

2

∫
rn<|x|<2rn

|un|2 dx→ 0 .

As ϕn(x) = 1 for |x|≤ rn, ϕn(x) = 0 for |x|≥ 2rn and 0 ≤ ϕn(x) ≤ 1 for
rn < |x|< 2rn, we calculate

Q(v1n) =
1

2

∫
R
|ϕnun|2 dx

=
1

2

∫
|x|≤rn

|un|2 dx︸ ︷︷ ︸
→ λ

+
1

2

∫
rn<|x|<2rn

|ϕnun|2 dx︸ ︷︷ ︸
→ 0

,

as n→∞. By a very similar calculation, we also have

Q(v2n)→ µ− λ ,
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as n → ∞. By the two limits above, and the fact that 0 < λ < µ, we can
assume without loss of generality that Q(v1n) > λ

2 and Q(v2n) > µ−λ
2 for all n.

We now define the sequences (an), (bn) ⊂ R+ by

an :=
λ

Q(v1n)
, bn :=

µ− λ
Q(v2n)

,

which by assumption satisfies |an|, |bn|< 2 for all n. We can now define the
sub-sequences (u1n), (u2n), by

u1n := anv
1
n, u2n := bnv

2
n ,

where we by construction have ||u1n||Hs , ||u2n||Hs< R and Q(u1n) = λ, Q(u2n) =
µ − λ for all n. Thus (u1n) ⊂ Uλ and (u2n) ⊂ Uµ−λ. We also note that since
an, bn → 1, we have ||v1n − u1n||Hs→ 0 and ||v2n − u2n||Hs→ 0 as n→∞.

Step 4: Proving that E(u1n) + E(u2n)→ Iµ as n→∞.
In this section we will only show directly that E(v1n) + E(v2n) → Iµ as n→∞.
By the uniform continuity of E on U (proposition 4.8) and the fact that both
||v1n − u1n||Hs→ 0 and ||v2n − u2n||Hs→ 0, we must also have E(u1n) + E(u2n)→ Iµ
as n→∞.

We start with the calculation

L(v1n) = Lun[ϕ2
nun] +

[
Lϕnun[ϕnun]− Lun[ϕ2

nun]︸ ︷︷ ︸
:= An

]
.

We recognize that An is exactly the expression studied in lemma 7.3; the quanti-
ties (ϕ, u, v) in lemma 7.3 can be replaced by the quantities (ϕ, un, ϕnun). Thus
An → 0 as n→∞. Similarly

L(v2n) = Lun[ψ2
nun] +

[
Lψnun[ϕrun]− Lun[ψ2

nun]︸ ︷︷ ︸
:= Bn

]
.

By exploiting the bilinearity of (u, v) 7→ Lu[v], we can rewrite Bn as follows

Bn = Lψnun[ψrun]− Lun[ψ2
nun]

= L(1− φn)un[(1− φn)un]− Lun[(1− φn)2un]

= Lun[φnun]− Lφnun[un] .

Again we recognize that Bn is exactly the expression studied in lemma 7.3;
the quantities (ϕ, u, v) in lemma 7.3 can now be replaced by the quantities
(φ, un, un). Thus also Bn → 0 as n→∞.

We then have the calculation

L(v1n) + L(v2n) = L(un) +An +Bn .
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We turn next to N . For notational convenience we define the two sets Vn and
Wn by x ∈ Vn ⇔ rn < |x|< 2rn and Wn := R \ Vn. We now calculate

N (v1n) +N (v2n) =

∫
R
N(v1n) +N(v2n) dx

=

∫
Wn

N(un) dx+

∫
Vn

N(ϕnun) +N(ψnun) dx

= N (un) +

∫
Vn

N(ϕnun) +N(ψnun)−N(un) dx︸ ︷︷ ︸
:= Cn

.

By the fact that N is continuous, N(x) = O(|x|p+1) as x→ 0, and the fact that
||·||L∞ is bounded on U , we get

|Cn| ≤
∫
Vn

|N(ϕnun)|+|N(ψnun)|+|N(un)| dx

.
∫
Vn

|ϕnun|2+|ψnun|2+|un|2 dx

.
∫
Vn

|un|2 dx

→ 0 ,

as n→∞. Putting everything together, and recalling that (un) is a minimizing
sequence for Iµ, we get

E(v1n) + E(v2n) = E(un)︸ ︷︷ ︸
→ Iµ

+An +Bn − Cn︸ ︷︷ ︸
→ 0

,

as n→∞. By the discussion at the start of this step, the proof is complete.

Proposition 7.5. Dichotomy does not occur.

Assuming dichotomy occurs on a minimizing sequence (un) ⊂ Uµ, it follows
from the previous proposition that there is a constant 0 < λ < µ, and sequences
(u1n) ⊂ Uλ, (u2n) ⊂ Uµ−λ so that

E(u1n) + E(u2n)→ Iµ , (37)

as n → ∞. From u1n ∈ Uλ and u2n ∈ Uµ−λ, it follows that Iλ ≤ E(u1n) and
Iµ−λ ≤ E(u2n) for all n. By corollary 6.10 and the fact that 0 < λ < µ, we get
the calculation

Iµ < Iλ + Iµ−λ ≤ E(u1n) + E(u2n) ,

for all n. By now taking the limit as n→∞ on each side we get contradiction

Iµ < Iµ .

Consequently, dichotomy can not occur.
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7.3 Convergence from concentration

This whole subsection is original. By the two preceding subsections we get the
proposition:

Proposition 7.6. For µ∗ > 0 sufficiently small, every minimizing sequence
(un) ⊂ Uµ has a subsequence that concentrates.

We are now prepared to prove existence of a minimizer.

Proposition 7.7. If a minimizing sequence (un) ⊂ Uµ concentrates, then it ad-
mits a subsequence, denoted again by (un), which can be translated by a sequence
(xn) ⊂ R, to satisfy un(· − xn) ⇀ u ∈ Uµ with E(u) = Iµ.

Proof. As the sequence (un) concentrates, it follows from the Concentration-
Compactness principle that there is a sequence of real numbers (xn) ⊂ R so
that ∫ r

−r
|un(x− xn)|2 dx ≥ 2µ− εr ,

where εr → 0 as r → ∞. As in proposition 7.4, we assume without loss of
generality that xn = 0 for all n. As the sequence is bounded with respect to
||·||Hs , we can apply proposition 2.3, to obtain yet another subsequence, again
denoted by (un), which converges weakly in Hs(R); i.e. un ⇀ u for some
element u ∈ Hs(R). By proposition 2.4 and remark 6.6, it follows that

||u||Hs ≤ lim inf
n→∞

||u||Hs≤ R/2 ,

and so u ∈ U . As the inclusion map Hs(R) ↪→ L2 is linear and continuous, it
follows by proposition 2.5 that un ⇀ u in L2 also. For clarity, we divide the
remainder of the proof into steps.

Step 1: We prove that un → u in L2 and that (un) converges uniformly to
u on compact intervals [−r, r].
We now show that un converges strongly to u in L2. For notational convenience
we define

vn := un − u ,

and so un → u if and only if vn → 0 in L2. We begin by proving uniform
convergence on a compact interval [−r, r]. Seeking a contradiction, assume
there exist a sequence (xn) ⊂ [−r, r] so that lim supn→∞|vn(xn)|=: ε > 0. By
compactness, we pick an accumulation point x ∈ [−r, r] of (xn), and without
loss of generality, we assume x = 0. As the Hs(R)-norm of the elements vn
are uniformly bounded, we yet again take use of Sobolev embedding to obtain
constants C,α > 0 so that

|vn(x)− vn(y)|> C|y − x|α . (38)
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With ε as above, we pick ρ > 0 so that

ε− Cρα > 0 .

We wish to show that

lim sup
n→∞

∣∣∣∣ ∫ ρ
2

−ρ
2

vn dx

∣∣∣∣ ≥ c > 0 , (39)

for some c > 0; this will be enough to reach the desired contradiction. As 0 is
an accumulation point of (xn), there is no loss of generality in assuming that
(xn) ⊂ [−ρ/2, ρ/2]; alternatively, we could drop to a subsequence of (xn) and
(vn). Exploiting the triangle inequality, we now calculate∣∣∣∣ ∫ ρ

2

−ρ
2

vn dx

∣∣∣∣ ≥ ∣∣∣∣ ∫ ρ
2

−ρ
2

vn(xn) dx

∣∣∣∣− ∣∣∣∣ ∫ ρ
2

−ρ
2

vn(xn)− vn(x) dx

∣∣∣∣
≥ ρ|vn(xn)|−

∫ ρ
2

−ρ
2

|vn(xn)− vn(x)| dx

≥ ρ|vn(xn)|−C
∫ ρ

2

−ρ
2

|xn − x|α dx

≥ ρ|vn(xn)|−C
∫ ρ

2

−ρ
2

ρα dx

= ρ|vn(xn)|−Cρα+1 .

Now (39) follows immediately, from the calculation

lim sup
n→∞

∣∣∣∣ ∫ ρ
2

−ρ
2

vn dx

∣∣∣∣ ≥ lim sup
n→∞

ρ|vn(xn)|−Cρα+1 = ρ
[
ε− Cρα

]
> 0 ,

where the last inequality follows from the choice of ρ. Next, we define f to be
the function

f(x) =

{
1 |x|≤ ρ

2

0 x > ρ
2 .

Clearly f ∈ L2, and since vn ⇀ 0, it follows by the definition of weak conver-
gence (and the Riesz representation theorem) that∫ ρ

2

−ρ
2

vn dx =

∫
R
vnf dx = 〈vn, f〉 → 0,

as n → ∞. This conflicts with (39), and so we have reach our desired contra-
diction; consequently un must converge uniformly to u on [−r, r]. Combining
this with the concentration of un, we conclude that∫ r

−r
|u|2 dx ≥ 2µ− εr .
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This observation, together with the fact ||u||2L2≤ lim infn→∞||un||2L2= 2µ (by
proposition 2.4) implies that ∫

|x|>r
|u|2 dx < εr ,

which obviously also hold too for all un. Picking r > 0 we calculate

lim sup
n→∞

||un − u||2L2 ≤ lim sup
n→∞

∫
|x|≤r
|un − u|2 dx︸ ︷︷ ︸

= 0

+ lim sup
n→∞

∫
|x|>r

2|un|2+2|u|2 dx︸ ︷︷ ︸
≤ 4εr

.

As εr → 0 as r → ∞, we are done. We now know u ∈ Uµ, and so u is truly a
candidate for a minimizer of Iµ.

Step 2: We show that E(u) = Iµ.
Since u ∈ Uµ it follows that Iµ ≤ E(u). Thus the proposition is proved if we
can establish that E(u) ≤ Iµ. Combining the second inequality in (22) with the
inequality x2 ≤ 2(x− y)2 + 2y2, we have that N satisfies

|N (un)−N (u)|≤
∫
R

(
2(un − u)2 + 3u2

)
ω(|un − u|) dx , (40)

for some modulus of continuity ω. Note that the quantities ||un − u||L2 and
ω(||un − u||L∞) are uniformly bounded in n, as un ∈ U for all n. For fixed
r > 0, we split the integral (40) up into |x|≤ r and |x|> r to get

|N (un)−N (u)| . sup
|x|≤r

ω(|un − u|) + ||un − u||L2+

∫
|x|>r

u2 dx , (41)

where we stress that the implicit constant of . is not dependent on r. As (un)
converges uniformly to u on compact intervals, and strongly in L2, it is clear
that (for fixed r) the first two terms on the right in (41) tends to zero as n→∞.
The last term can be made arbitrarily small as r →∞, and so we conclude that

N (un)→ N (u) ,

as n→∞. It remains to show

L(u) ≤ lim inf
n→∞

L(un) . (42)

We first define the norm ||·||m on Hs(R) by

||u||m:=

∫
R

(m(ξ) + 1)|û|2 dξ .

Since m + 1 ' 〈·〉2s it follows that the norms ||·||m and ||·||Hs are equivalent.
If we define H̃s to be the vector space Hs(R) equipped with ||·||m as norm, it
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follows from the previous observation that the inclusion map Hs(R) ↪→ H̃s is a
continuous linear mapping. Consequently by proposition 2.5, we have un ⇀ u
in H̃s and so∫

R
m|û|2 dξ + 2µ = ||u||2m

≤ lim inf
n→∞

||un||2m (by proposition 2.4)

= lim inf
n→∞

∫
R
m|ûn|2 dξ + 2µ .

Subtracting 2µ on each side in the inequality above, we are left with the rep-
resentation of L on real valued functions (proposition 4.4), and thus we have
established (42). A final calculation gives the desired result

E(u) = L(u)−N (u)

≤ lim inf
n→∞

L(un)−N (u)

= lim inf
n→∞

[
L(un)−N (un)

]
= Iµ .

Thus Iµ ≤ E(u) ≤ Iµ, and so u is a minimizer of Iµ.

8 From minimizers to solutions

This section is completely original, that is, the author has not taken inspiration
from other sources. We now establish the connection between the constrained
minimization problem and our partial differential equation (2).

Proposition 8.1. Any minimizer u ∈ Uµ of Iµ solves (2), with velocity ν given
by

ν =
E ′(u)[u]

2µ
. (43)

.

Proof. By proposition 4.9 we have Q′(u) = u in H−s(R). Pick any real valued
function v ∈ Hs(R), so that Q′(u)[v] =

∫
R uv dx = 0. Then

a(t) :=
Q(u+ tv)

µ
= 1 + ct2 ,

where we have defined c = Q(v)/µ. We next define wt ∈ Hs(R)

wt :=
u+ tv

a(t)
− u ,
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and notice that u+wt ∈ Uµ for t sufficiently close to 0. We can also rewrite wt
to obtain

wt = tv +

[
1− a(t)

a(t)

]
(tv + u) = tv +O(t2)(tv + u) .

A quick calculation shows that

E(u+ wt) = E(u) + E ′(u)[wt] + o(||wt||Hs)

= Iµ + tE ′(u)[v] +O(t2)E ′(u)[tv + u] + o
(
t||v||Hs+t2||u||Hs

)
= Iµ + tE ′(u)[v] + o(t) .

Pick ε > 0 so that u + wt ∈ Uµ, whenever t ∈ (−ε, ε). For such t we have by
definition E(u+wt) ≥ Iµ. If E ′(u)[v] 6= 0, then the above calculation shows that
we can find t ∈ (−ε, ε) so that E(u+ wt) < Iµ; a contradiction. Thus for a real
valued function v ∈ Hs(R) we have

Q′(u)[v] =⇒ E ′(u)[v] . (44)

By proposition 2.24, any function v ∈ Hs(R) can be split up into its real and
imaginary part, v := vR + ivI , where vR, vI are real valued functions in Hs(R).
As u ∈ Uµ, we have that u is real valued; by linearity of Q′(u) we conclude

ReQ′(u)[v] = Q′(u)[vR] , and ImQ′(u)[v] = Q′(u)[vI ] .

These equations imply that Q′(u)[v] = 0 exactly when Q′(u)[vR] = 0 and
Q′(u)[vI ] = 0. By the previous observation, the implication (44), and the lin-
earity of E ′(u) we conclude that

kerQ′(u) ⊆ kerE ′(u) . (45)

We note that 2µ = Q′(u)[u], and calculate for v ∈ Hs(R),

E ′(u)[v] = E ′(u)

[
v − Q′(u)[v]

2µ
u︸ ︷︷ ︸

∈ kerQ′(u)

]
+
E ′(u)[u]

2µ︸ ︷︷ ︸
:= ν

Q′(u)[v] .

As v ∈ Hs(R) was arbitrary, we conclude from (45) that E ′(u) = νQ′(u); by
corollary 4.12, we insert for E ′(u) and Q′(u), and rearrange to obtain

−νu+ Lu− n(u) = 0 .

As a minimizer u ∈ Uµ is also a near minimizer, we can exploit properties
of near minimizers to establish the following corollary.
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Corollary 8.2. For µ∗ > 0 small enough, there exist a constant ρ > 0 satisfying
the following property:

Pick µ ∈ (0, µ∗) and let u ∈ Uµ be both solution of (2) and a minimizer of
Iµ with corresponding velocity ν; then ν satisfies

ρµβ < m(0)− ν < Cεµ
β−ε ,

where β is as in proposition 5.2, ε > 0 is arbitrary and Cε is a constant only
dependent of ε.

Proof. For µ∗ > 0, let u ∈ Uµ be a solution of (2) and a minimizer of Iµ with
corresponding velocity ν. We naturally divide the proof in two.

Step 1: Proving m(0)− ν < Cεµ
β−ε.

For this bound, no requirements need to be put on µ∗. For ε > 0 we set

τ :=
β

2s
− 2ε =

2β

(p− 1)
− 1− 2ε ,

then it follows from lemma 6.7, that

||·||p−1L∞ . µ(p+1)(1+τ)/2 = µβ−ε , (46)

on Ũ . By similar methods used to prove proposition 4.6, we see that∣∣∣ ∫
R
n(u)u dx

∣∣∣ . µ||u||p−1L∞ . µ1+β−ε , (47)

where the use of (46) is justified as u is a near minimizer. Thus, for some Cε > 0
we get

ν =
E ′(u)[u]

2µ

=
1

µ
L(u)− 1

2µ

∫
R
n(u)u dx

> m(0)− Cεµβ−ε ,

where we used (47) and proposition 4.5.

Step 2: Proving ρµβ < m(0)− ν.
By the definition of np and its primitive Np, we see that

np(x)x = (p+ 1)Np(x) ,

and so ∫
R
n(u)u dx = (p+ 1)N (u) +

[ ∫
R
nr(u)u− (p+ 1)Nr(u) dx︸ ︷︷ ︸

:= g(u)

]
.
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By similar methods used to prove proposition 4.6, see that

|g(u)|. µ||u||p−1+δL∞ = o(µ1+β) ,

where the latter equality follows from corollary 6.8 and the fact that u is a near
minimizer. By (43), we then calculate

ν =
1

µ
L(u)− 1

2µ

∫
R
n(u)u dx

=
1

µ
L(u)− p+ 1

2µ
N (u) + o(µβ)

< m(0)− p+ 1

2
κµβ + o(µβ) ,

where the last inequality follows by proposition 4.5 and remark 6.3. By defining
2ρ := κ(p+ 1)/2, we arrive at

2ρµβ + o(µβ) < m(0)− ν .

As ρ > 0 is independent of µ, it is clear from the above inequality, that we
can set µ∗ > 0 small enough so that that the absolute value of the o−term is
dominated by ρµβ whenever µ ∈ (0, µ∗). For such a µ∗ we get

ρµβ < m(0)− ν .

8.1 Proof of Theorem 1.1

We have proved everything that is needed for this theorem to come together.
For µ∗ > 0 small enough, and µ ∈ (0, µ∗), we can sum the proof up as follows:
Proposition 7.6 implies every minimizing sequence in Uµ admits a subsequence
that concentrates. Corollary 7.7 further implies that every concentrating mini-
mizing sequence admits a subsequence that converges weakly to a minimizer of
Iµ. Proposition 8.1 shows that a minimizer of Iµ solves (2), while corollary 8.2
proves the relevant bounds for the corresponding velocity.

9 Regularity of solutions

This section aims to describe regularity of functions described by Theorem 1.1.
For a function g : R→ R, let Pg be the operator

Pg : f 7→ g(f) , (48)

for any function f : R → R. We introduce a sufficient criterion for Pg to map
Hm(R) continuously into Hm(R), when m = 1, 2, .... This result is due to [11];
it is obtained by combining Theorem. (ii) (p.267) and Theorem 1. (p.268),
together with some simplifications (i.e. stronger assumptions).
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Proposition 9.1 ([11]). Let Pg be an operator as described by (48) and suppose
g(0) = 0. If g ∈ Ck+1, for k ∈ N0, then Pg maps Hk+1(R) continuously into
Hk+1(R).

Next we prove an original result.

Proposition 9.2. If m(0) − ν > 0, then the operator L − ν has a bounded
inverse (L− ν)−1, that maps Hr(R) continuously into Hr+2s(R).

Proof. Define m̃(ξ) := m(ξ) − ν, and notice that m̃(ξ) ≥ m(0) − ν for all ξ.
When m(0) − ν > 0, it follows by the assumption on m, that m̃ & 〈·〉2s, and
consequently m̃−1 . 〈·〉−2s. We define the two continuous linear operators
L̃, L̃−1 : S ′ → S ′ by

F{L̃f} = m̃f̂ , and F{L̃−1f} = m̃−1f̂ ,

where linearity and continuity follows from similar arguments as those used to
prove proposition 4.2. From this definition, it is clear that L̃−1 is the inverse
of L̃. Together with the bound m̃−1 . 〈·〉−2s, and the fact that m̃ is a real
valued even function, we can again use similar arguments as those in the proof
of proposition 4.2, we get that L̃−1 maps Hr(R) continuously into Hr+2s(R) for
every r ∈ R. We finally notice that L̃ = L− ν, and the proof is complete.

Before we prove the main theorem of this section, we prove a proposition
which in many ways is just as interesting.

Proposition 9.3. Suppose n ∈ Ck, for some k ∈ {1, 2, ...}. Let s ≥ 1, and
suppose u ∈ Hs(R) is a solution of (2), with velocity ν satisfying m(0)− ν > 0.
Then u ∈ H2s+k(R).

Proof. We rewrite (2), to obtain (L − ν)u = n(u). By proposition 9.2 and the
fact that m(0)− ν > 0, we can further rewrite the preceding equation to obtain

u = (L− ν)−1 ◦ Pn︸ ︷︷ ︸
:= Ψ

(u) , (49)

where Pn is the operator Pn(f) = n(f) for any f ∈ Hr(R) with r > 1
2 . By

assumption, n is continuous and satisfies n(x) = (|x|p−1) as x→ 0;
thus n(0) = 0. Set j = 1. Since n ∈ Ck implies that n ∈ Cj , it follows
by proposition 9.1 and 9.2, that the operator Ψ maps Hj(R) into Hj+2s. As
s ≥ 1, we have the inclusion Hs ↪→ H1 (remark 2.23), and consequently Ψ(u) ∈
H1+2s. By (49), this implies that u ∈ H1+2s. If k ≥ 2, we can repeat the
previous argument for j = 2 and exploit the embedding H1+2s ↪→ H2, to obtain
Ψ(u) ∈ H2+2s which again implies u ∈ H2+2s. Repeating this process until
j = k, we reach the desired conclusion.

We are now ready to prove the main theorem of this section.
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Theorem 9.4 (Regularity of solutions). Assume s ≥ 1 and that n ∈ Ck, for
k ∈ {1, 2, ...}. Write 2s + k = m + α + 1

2 , where m ∈ N0 and 0 < α ≤ 1. The
solutions u ∈ Hs of (2) described by Theorem 1.1, satisfies the following:

(i) If α 6= 1, then u ∈ Cm,α.

(ii) If α = 1, then u ∈ Cm,γ , for every γ ∈ (0, 1).

Proof. By proposition 9.3, u ∈ Hk+2s. The first part now follows directly by
Sobolev embedding (Theorem 2.32). For the second part, we can for every ε > 0
continuously embed Hk+2s ↪→ Hk+2s−ε; we consequently also get the second
part by Sobolev embedding.
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