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faults should be listric, especially if they are rotated. 

Weakly curved surfaces which, if extrapolated, could be described as listric planes are 

visible on both ridge flanks on the interpreted seismic profiles. The fault blocks, especially on 

the western flank, also show signs of rotation, as is evident from the syn-tectonic sediment 

infill. Unfortunately, the seismic profiles do not penetrate through the basement, thus there is 

no imaging of the fault structures beneath. Also, the reflections close to the basement transition 

are often distorted and noisy, making a clear identification of horizons and discontinuities 

challenging.  

On the western flank of Profile B09-24 (Figure 6.17), F5, F2 and F3 are stacked behind 

each other in a half graben arrangement, displaying similar rotation and fault dips. The planes 

have a listric geometry, and one could speculate, although this is not clear from the seismic, 

that the fault plane of F5 may intersect with F2, and perhaps even F3, if extrapolated. In that 

case, they would surely constitute a listric fault system. On the other hand, further north on 

profile B09-25 (Figure 6.18), F5 shows large amounts of rotation and an outward-facing ridge. 

Following Buck (1988), this should imply that its geometry beneath the surface might steepen, 

rather than flatten. As such, it may intersect with the next fault to the east before steepening, 

effectively forming a rafted block. 

F3 displays only little to no rotation on both B09-24 and B09-25, but is weakly curved 

toward its visible termination beneath the ridge axis, and has clearly slipped on the F2 fault 

plane as is evident from the downward drag of the sediments. F2 shows a clear listric fault plane 

and, given the present (and extrapolated) curvature and the slipped F3 block on its surface, F2 

would constitute a listric fault. However, given its position in the tectonically dominated 

segment to the north of AVR1, the fault will probably eventually rotate and move farther off-

axis, just like F5. It is therefore likely, that the now listric planes of F2 and F3 will inverse and 

steepen if the amount of rotation is sufficient. 

It is well documented that outward rotation of normal faults is a common feature at slow 

and ultraslow-spreading ridges (Cann et al., 2015; Dick et al., 2003; Laughton & Searle, 1979; 

Smith et al., 2006, 2008). Large amounts of such rotation, if resulting in an outward-facing 

ridge, are generally explained to be caused by flexural rotation, a process resulting in an overall 

steepening (convex-up) geometry (Buck, 1988; Lavier et al., 1999; Smith et al., 2008). The 

same should also apply to major rotated normal faults, such as F8, F7 and CHF. As they might 

be incipient or aborted detachment faults, they should be steepening rather than flattening at 

depth. This may be especially true if they show signs of basinal structures behind their fault 

ridges, an indicator that flexural rotation is or may have taken place, and thus no predominantly 
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listric faulting should be required to achieve the rotation (Buck, 1988). It is therefore possible 

that the large-scale block rotation at the Troodos Ophiolite, proposed by Verosub & Moores 

(1981) to be caused by listric faulting, could actually be the result of flexural rotation during 

extension. 

The frequent sampling of peridotites and gabbros at spreading center, which Roberts et 

al. (1993) proposed could be explained by extension along listric normal faults during times of 

limited magma supply, is not entirely in accordance with generally accepted knowledge about 

oceanic detachment faults and exhumation of lower crustal and upper mantle lithologies (Lavier 

et al., 1999; Smith et al., 2008; Tucholke et al., 1998). They are indeed likely to be related to 

periods of limited magma supply as Roberts et al. (1993) have proposed (Buck et al., 2005; 

Schouten et al., 2010; Tucholke et al., 2008), but are uplifted by deep-seated and rotated 

detachment faults, instead of listric normal faults. 

The last abundant structure on the ridge are the normal fault-bounded volcanic abyssal 

hills, formed by faulting and cutting of the AVRs in the center valley. They typically show 

steeper inward-facing scarps than outward-facing slopes and their geometries resemble that of 

the AVRs, as can be seen on the elevation profiles. They are also stacked in half graben 

arrangements where the scarp and slope differences, along with similar geometries and 

orientations as the concurrent AVRs, suggest that only minor rotation has taken place. This is 

easily seen on the seismic profiles, where mostly steeper fault scarps and shallower dipping 

outward-facing slopes define the structures on the eastern flank (Figure 6.13 and 6.14). As the 

abyssal hills in the north captured by the seismic profiles are morphologically comparable to 

the ones found on both flanks in the southern study area, it is reasonable to assume that the 

latter will display similar subsurface geometries as the former.  

How faults eventually are terminated at depth is uncertain, but generally they are 

believed to either flatten out into a basal décollement or be simply terminated in the ductile 

rocks, which deform by ductile flow (Harper, 1985; Shelton, 1984). The presence of magma 

chambers beneath the ridge axis would raise the brittle-ductile transition (Harper, 1985), 

potentially favoring a curving of the faults at depth in accordance with the inferred strength 

contrasts resulting from it (Harper, 1985; Jackson & McKenzie, 1983). This could make low-

angle and/or listric faulting possible in the upper few hundred meters of the crust (Karson & 

Rona, 1990). The information about the subsurface is limited, however, and derived 

conclusions about potential geometries and terminations at depths would therefore be largely 

speculative. 

Based on the available data, there is no straightforward evidence that significant listric 
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described by Karson & Rona (1990) have scarp heights of typically < 20 m and are partially 

buried by rubble, meaning that bathymetry resolution is a major factor when analyzing for these 

structures. A discrete faulting zone was also not found on the surface, so it is mostly inferred 

based on mechanical requirements needed for the separation of the two fault segments (Karson 

& Rona, 1990) If, on the other hand, the strike-slip faults cut other structures, such as previously 

formed normal faults, then they can be inferred from the resulting displacement, given that the 

structures are not completely covered by sediments (Dauteuil, 1995). On the MR, however, 

NTOs are potentially relatively simple to identify as they mark the oblique offsets of the AVRs. 

This is relatively easy seen on the central MR, for instance around the two AVRs at Copper 

Hill (Figure 6.20), where the sinistral relationship between the two visible AVRs is caused by 

a non-transform offset. Still, in order to say something more concrete about the potential role 

played by transfer faulting on the MR, more research has to be conducted. 
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