
Hybrid Collision Avoidance for
Autonomous Surface Vessels

Einvald Serigstad

Master of Science in Cybernetics and Robotics

Supervisor: Morten Breivik, ITK
Co-supervisor: Bjørn-Olav H. Eriksen, ITK

Department of Engineering Cybernetics

Submission date: June 2017

Norwegian University of Science and Technology

Problem Description
Further development of the Dynamic Window (DW) algorithm for ASVs is the
main goal of this master thesis. In particular, a problem escaping the avoidance
region if entered should be investigated.

The DW algorithm should be included in a hybrid COLAV method. A common
deliberate method should be used in the hybrid COLAV method, where an in-
terface between the reactive and deliberate method must be developed.

Any modifications to the DW algorithm proposed in the master thesis should
be compared to the DW algorithm with ASVs.

• Further develop the DW algorithm and enable it to exit the avoidance
region once entered. However, the algorithm should perform at the same
level or better when not inside the avoidance region, compared to the
modified DW algorithm.

• Let the ASV trajectory prediction be defined by multiple (2 or more)
velocity pairs. How does this affect the computational load and perfor-
mance?

• Introduce a deliberate method and an interface between the deliberate
method and DW algorithm to form a hybrid COLAV method.

• Introduce performance metrics to measure the performance level when
simulating and comparing the different algorithms.

i

Preface
This thesis is written as a compulsory part of the Master’s degree in Cyber-
netics and Robotics at the Norwegian University of Science and Technology
(NTNU). The work on this thesis, carried out during the spring semester 2017,
have resulted in an increasing interest and understanding for the field of collision
avoidance.

I want to express my gratitude towards my supervisor Morten Breivik and co-
supervisor Bjørn-Olav H. Eriksen for the feedback and enthusiasm provided
during the semester.

Einvald Serigstad

Trondheim, June 2017

iii

Abstract
When developing autonomous vehicles, collision avoidance (COLAV) methods
are essential. COLAV methods are generally divided into two groups; reac-
tive and deliberate methods. Reactive COLAV methods act solely on sensor
data from the immediate environment, while deliberate methods generate global
paths based on available data of the complete environment. The focus of this
thesis is mainly on a reactive COLAV method named Dynamic Window (DW)
algorithm. The DW algorithm has previously been modified to consider vehicles
with second order nonholonomic constraints, such as autonomous surface vehi-
cles (ASVs). This modification is denoted Algorithm A and is further developed
in this thesis. Algorithm A introduces an avoidance region around obstacles,
which the vehicle is motivated to avoid. If the vehicle is inside the avoidance
region, however, Algorithm A will not be motivated to leave the region and will
lose the ability to evaluate the vehicle distance towards obstacles. Furthermore,
the region may cause problems when travelling through narrow passages.

Two new DW algorithms, Algorithm B and Algorithm C, are introduced in this
thesis to cope with the avoidance region issues. While Algorithm A focuses
purely on reaching the goal without entering the avoidance region, Algorithm B
will also try to exit the region if entered. Algorithm C is less hesitant to enter
the avoidance region but prefers trajectories that has a minimum portion inside
the avoidance region.

To avoid being trapped in a local minima and enable the use of predefined
trajectories, a hybrid COLAV method consisting of a reactive and a deliberate
method is introduced. The DW algorithm is modified to suit the hybrid method,
resulting in the Hybrid Dynamic Window (HDW) algorithm. The algorithm
works both as a reactive COLAV method, and an interface between the reactive
and deliberate method. The Rapidly-Exploring Random Tree (RRT) algorithm,
which is a deliberate method, generates a planned trajectory towards the goal
for the HDW algorithm to track. The HDW algorithm tracks the planned tra-
jectory by inputting a desired ASV trajectory that aligns as good as possible
with the planned trajectory.

A simulation environment and an ASV model are implemented to assess the new
algorithms based on several performance metrics. The algorithms are tested in
various scenarios designed to challenge potential weaknesses of the algorithms.
A new performance metric, integral of distance inside avoidance region (IDI), is
introduced to measure the algorithm performance.

The introduction of Algorithm C greatly improves the performance when oper-
ating close to or inside the avoidance region. Furthermore, applying the modi-
fications introduced in Algorithm C to the HDW algorithm guided by the RRT
algorithm, results in a consistently good ASV behaviour, where the ASV always
keeps a safe distance to obstacles.

v

Sammendrag
N̊ar man utvikler autonome overflatekjøretøy (ASVer) er gode metoder for kol-
lisjonsunng̊aelse (COLAV-metoder) essensielle. COLAV-metoder deles generelt
inn i reaktive og globale metoder. Reaktive metoder handlers basert p̊a sen-
sordata fra de nærmeste omgivelsene. Globale metoder bruker all tilgjengelige
informasjon om hele omgivelsen for å planlegge en global bane til m̊alet. Hov-
edfokuset i denne masteroppgaven er en reaktiv algoritme, Dynamic Window-
algoritmen (DW). DW-algoritmen er tidligere tilpasset kjøretøy med andre or-
dens ikke-holonomiske beskrankninger, som for eksempel ASVer. Den mod-
ifiserte algoritmen vil bli videreutviklet i denne masteroppgaven og er om-
talt som Algoritme A. For å motivere kjøretøy til å holde en viss avstand
fra hindringer, introduserer Algoritme A unng̊aelsesomr̊ader rundt hindringene.
Unng̊aelsesomr̊adet skaper problemer n̊ar kjøretøyet er inne i unng̊aelsesomr̊adet
da Algoritme A ikke har motivasjon for å lede kjøretøyet ut omr̊adet. I tillegg
mister algoritmen evnen til å vurdere avstand til hindringer. Unng̊aelsesomr̊adet
kan ogs̊a skape problemer om man ønsker å kjøre gjennom smale passasjer.

Denne masteroppgaven introduserer to nye DW algoritmer, algoritmene B og C,
for å h̊andtere utfordringene rundt unng̊aelsesomr̊adet. Algoritmene A og B er
identiske n̊ar kjøretøyet er utenfor unng̊aelsesomr̊adet. Hvis kjøretøyet er inne
i omr̊adet, derimot, vil Algoritme B være motivert til å velge baner som leder
ut av omr̊adet. Algoritme C velger bane basert p̊a hvor stor del av banen som
er inne i unng̊aelselsomr̊adet og er derfor mindre p̊avirket av om kjøretøyet er
innenfor ellet utenfor omr̊adet. Alle algoritmene ønsker å velge baner som leder
mot m̊alet.

En hybrid COLAV-metode best̊aende av en reaktiv og en global metode er in-
trodusert for å unng̊a å bli fanget i et lokalt minima. DW-algoritmen er tilpas-
set den hybride metoden, noe som resulterer i en Hybrid Dynamic Window-
algoritme (HDW) som opptrer b̊ade som en reaktiv COLAV-metode og et grens-
esnitt mellom den reaktive og den globale metoden. En global metode, Rapid-
Exploring Random Tree-algoritme (RRT), genererer en planlagt bane til m̊alet
som HDW-algoritmen sporer ved å velge baner som samstemmer mest mulig
med den planlagte ASV-banen.

Et simuleringsmiljø er implementert med en ASV-modell for å vurdere de nye
algoritmene i flere scenarioer, hvor vurderingen er basert p̊a flere prestasjons-
metrikker. En ny presatsjonsmetrikk, integralet av avstanden inne i unng̊aelses-
omr̊adet (IDI), er introdusert for å m̊ale prestasjonene til algoritmene.

Å bruke modifikasjonen som er blitt introdusert i Algoritme C i HDW-algoritmen
og la den bli guidet av den planlagte RRT-banen resulterer i en hybrid COLAV-
metode som gir en jevnt god ASV-oppførsel, hvor ASVen alltid holder en relativt
trygg avstand til nærliggende hindringer.

vii

Nomenclature

η ASV pose
ν ASV velocity
M Mass matrix
C(ν) Coriolis and centripetal matrix
D(ν) Damping matrix
τ Force vector
B Input matrix
f Throttle vector
u Surge speed
v Sway speed
r Yaw rate
X Surge force
Y Sway force
N Yaw moment
lr Rudder arm length
δψ Rudder angle
Kδψ Rudder coefficient
∆ Lookahead distance
C̄free Free configuration space
C̄forb Forbidden configuration space
Ts DW period
Ω Avoidance region
T Antitarget region
α Yaw rate function weight
β Distance function weight
γ Velocity function weight
ᾱ HDW align and distance function weight
c Distance function B weight
κ Distance function C weight
ε RRT bias towards goal
rΩ Avoidance region radius
rT Antitarget region radius
T Simulation runtime
IADC Integral of absolute differentiated control
IAE Integral of absolute error
IDI Integral of distance inside avoidance region
DT Distance to avoidance region
W Energy consumption

ix

Abbreviations

ASV Autonomous Surface Vehicle
AUV Autonomous Underwater Vehicle
COLREGS International Regulations for Avoiding Collisions at Sea
DOF Degrees Of Freedom
DW Dynamic Window
HDW Hybrid Dynamic Window
LOS Line Of Sight
MPC Model Predictive Control
NED North East Down
RRT Rapidly-Exploring Random Tree
TA Trajectory Alignment
UGAS Uniformly Globally Asymptotically Stable
ULES Uniformly Locally Exponentially Stable
VO Velocity Obstacles

xi

Contents

Problem Description i

Preface iii

Abstract v

Sammendrag vii

Nomenclature ix

Abbreviations xi

List of Figures xv

List of Tables 1

1 Introduction 3
1.1 Background and Motivation . 3
1.2 Previous Work . 4
1.3 Contributions . 5
1.4 Outline of the Report . 6

2 Theoretical Background 7
2.1 Vessel Modelling . 7

2.1.1 Reference Frames . 8
2.1.2 Euler Angle Transformations 9
2.1.3 Simplified ASV Model . 9

2.2 Motion Control and Guidance Systems 12
2.2.1 Path Generation Using Waypoint Representation 12
2.2.2 Line-of-Sight Guidance . 13
2.2.3 Path Tracking for Marine Surface Vessels 14

2.3 Spaces In Motion Planning . 17
2.4 Reactive COLAV Methods . 18

2.4.1 Dynamic Window (DW) Algorithm 19
2.5 Deliberate COLAV Methods . 21

xiii

CONTENTS

2.5.1 Rapidly-Exploring Random Trees (RRT) 22
2.6 Hybrid COLAV methods . 24
2.7 COLREGS . 25

3 Modifications to the DW Algorithm 27
3.1 Algorithm A . 27

3.1.1 Modified Search Space and Objective Function 28
3.1.2 Modified Trajectory Prediction 32

3.2 Algorithm B . 34
3.3 Algorithm C . 36

4 Hybrid COLAV Method Using the DW Algorithm 39
4.1 Interface Between DW Algorithm and Deliberate COLAV 39
4.2 Hybrid Dynamic Window (HDW) Algorithm 40

4.2.1 HDW Option 1 - External Trajectory Tracker 40
4.2.2 HDW Option 2 - Trajectory Alignment 42
4.2.3 Comparison of HDW Options 45

5 Simulator Implementation 49
5.1 Simulator Model . 49
5.2 Algorithm Implementations . 52

5.2.1 DW Algorithms . 52
5.2.2 RRT Algorithm . 55
5.2.3 Hybrid COLAV . 56

6 Simulation Scenarios and Results 59
6.1 DW Algorithms . 59

6.1.1 Scenarios and Performance Metrics 59
6.1.2 Results . 62

6.2 Hybrid COLAV . 80
6.2.1 Scenarios and Performance Metrics 80
6.2.2 Results . 80

7 Conclusion and Suggestions for Future Work 103

Bibliography 107

xiv

List of Figures

1.1 C-Worker ASV . 4

2.1 Motion in 6 DOF in the body-fixed reference frame 8
2.2 2-D LOS principle . 14
2.3 2-D path following for marine vessels 16
2.4 Circular approximation of the vessel footprint 18
2.5 Predicted trajectories for the velocity pairs in the discrete search

space . 21
2.6 Randomly-Exploring Random Tree 23
2.7 Hybrid COLAV hierarchy . 25

3.1 Architecture overview of original DW algorithm and Algorithm A 28
3.2 Avoidance and antitarget region 31
3.3 Algorithm B . 35
3.4 Algorithm C . 37

4.1 HDW algorithm . 41
4.2 Architecture of HDW option 1. 42
4.3 Trajectory alignment . 44
4.4 Architecture of HDW option 2. 45
4.5 Comparison of HDW options . 47

5.1 Viknes 830 . 49
5.2 Architecture of DW algorithms A, B and C 52
5.3 Numerical approximated set of possible velocities Vs 54
5.4 Successful RRT with a bias towards goal 57

6.1 Scenario 1 - DW algorithms A, B and C. 62
6.2 Scenario 1 - Performance metrics 63
6.3 Scenario 2 - DW algorithms A, B and C. 64
6.4 Scenario 2 - Performance metrics 65
6.5 Scenario 3 - DW algorithms A, B and C. 66
6.6 Scenario 3 - Performance metrics 67
6.7 Scenario 4 with moving obstacles - DW algorithms A, B and C . 68
6.8 Scenario 4 - Performance metrics 69

xv

LIST OF FIGURES

6.9 Scenario 5 - DW algorithms A, B and C. 70
6.10 Scenario 5 - Performance metrics 71
6.11 Scenario 6 with moving obstacles - DW algorithms A, B and C . 72
6.12 Scenario 6 - Performance metrics 73
6.13 Scenario 7 - DW algorithms A, B and C. 74
6.14 Scenario 7 with moving obstacles - DW algorithms A, B and C . 75
6.15 Scenario 7 - Performance metrics 76
6.16 Scenario 1 - Hybrid method with RRT + HDW 82
6.17 Scenario 1 - Performance metrics 83
6.18 Scenario 2 - Hybrid method with RRT + HDW. 84
6.19 Scenario 2 - Performance metrics 85
6.20 Scenario 3 - Hybrid method with RRT + HDW. 86
6.21 Scenario 3 - Performance metrics 87
6.22 Scenario 4 - Hybrid method with RRT + HDW. 88
6.23 Scenario 4 - Performance metrics 89
6.24 Scenario 5 - Hybrid method with RRT + HDW. 90
6.25 Scenario 5 - Performance metrics 91
6.26 Scenario 6 - Hybrid method with RRT + HDW. 92
6.27 Scenario 6 - Performance metrics 93
6.28 Scenario 7 - Hybrid method with RRT + HDW. 94
6.29 Scenario 7 - Performance metrics 95
6.30 Scenario 8 - Hybrid method with RRT + HDW. 96
6.31 Scenario 8 - Performance metrics 97
6.32 Scenario 9 - DW vs HDW + RRT. 98

xvi

List of Tables

2.1 3 DOF standard notation from SNAME for marine vessels 10

4.1 Pros and cons for HDW option 1 46
4.2 Pros and cons for HDW option 2 46

5.1 Approximated parameters of Viknes 830 50
5.2 Constant values used in simulation for algorithms A, B and C . . 53
5.3 Constant values used in simulation for the hybrid COLAV method 58

6.1 Overview of simulation scenarios 60
6.2 Performance metric values of DW algorithms A, B and C 77
6.3 Overview of simulation results for DW algorithms 78
6.4 Overview of simulation scenarios for the HDW algorithm 80
6.5 Performance metric values of the HDW algorithms TA, B and C 99
6.6 Overview of simulation results for the HDW algorithms 100

1

LIST OF TABLES

2

Chapter 1

Introduction

This chapter introduces the topic and structure of the thesis. In addition, a
review of previous works and contributions of this thesis are presented.

1.1 Background and Motivation
Autonomous surface vessels (ASVs) require a collision avoidance (COLAV) method
when moving through environments with obstacles. In unknown dynamic envi-
ronments, the ASV needs a real-time COLAV method that receives sensor data
of the surrounding environment [9]. However, a reactive method which acts
solely on sensor data is only able to consider the immediate environment, hence
the ASV needs a deliberate path planner to be guaranteed to reach the goal.

Numerous reactive and deliberate COLAV methods exist for vehicles with holo-
nomic constraints and first order nonholonomic constraints. Few results are,
however, presented where marine vessels with second order nonholonomic con-
straints are considered [12]. Holonomicity are further described in Section 2.1.
To employ autonomous marine vessels, a reliable COLAV method is needed.
This motivates a further development of COLAV methods for marine vessels
such as ASVs. Figure 1.1 C-worker shows the C-Worker ASV, which is an ASV
applied for monitoring in oil and gas operations.

The Dynamic Window (DW) approach [17] is a reactive COLAV method in-
tended for robots with first order nonholonomic constraints. The method is
adapted and tested for ASVs in [28], where it is concluded superior compared
to several other reactive COLAV methods, e.g. the potential field method [23,
24]. Further, the DW algorithm is modified in [12, 13] to account for the second
order nonholonomic constraints and time-varying acceleration limits of AUVs.
This modification is simulated for ASVs and compared to the original DW al-
gorithm in [32], which this thesis is a continuation of. The horizontal modelling
and control of AUVs are similar to ASV modelling, hence the modified DW

3

CHAPTER 1. INTRODUCTION

Figure 1.1: The C-Worker is a multiuse offshore ASV developed to conduct
subsea positioning, surveying and environmental monitoring for oil and gas op-
erations. Courtesy of [1].

algorithm is applicable to ASVs as well. The modifications to the DW algo-
rithm presented in [12, 13] greatly improves the COLAV performance of the
DW algorithm used for horizontal COLAV on AUVs. To penalize trajectories
that are close to obstacles, an avoidance region is added around obstacles. The
avoidance region improves the DW algorithm when the vehicle is outside the
region. When the vehicle is inside the region, on the other hand, the chance
of colliding is greatly increased, compared to the original DW algorithm [32].
Furthermore, the algorithm is a reactive COLAV method and can not guaran-
tee that it guides the ASV to the goal. This motivates the development of a
hybrid COLAV method which utilizes both the DW algorithm and a deliberate
COLAV method. Hence, the main focus of this thesis is to modify the DW
algorithm to account for the weaknesses discovered in [32] and to develop an
interface between the DW algorithm and a deliberate method for use in a hybrid
COLAV method.

1.2 Previous Work
Numerous reactive and deliberate COLAV methods are developed over the
years. Reactive methods consider only the immediate environment based on
available sensor data, while deliberate methods generate global path based on

4

1.3. CONTRIBUTIONS

stored environmental data. The Potential field method [23, 24], Vector Field
Histogram [5], Velocity Obstacles (VO) [15] and the Dynamic Window (DW)
[17] algorithm are all examples of popular reactive COLAV methods, while
Rapidly-Exploring Random Trees (RRT) [27], Voronoi Diagram [11], Probabilis-
tic Roadmap (PRM) [22] and A* algorithm [19] are known deliberate methods.
The A*, RRT and PRM algorithms are compared in [40], where it is concluded
that the RRT algorithm is fast and generates smooth paths, while A* and PRM
have are expected to have higher computation cost and return shorter paths.

The DW algorithm is further developed and generalized for use on a greater
variety of vehicles in [9]. Modifications to improve the DW algorithm for use on
marine vessels are presented in [28]. Further, [12, 13] presents a modification
to the DW algorithm which takes the second order nonholonomic constraints of
an AUV into account and introduces the avoidance region around the obstacles.
This modified algorithm is further reviewed and compared to the original DW
algorithm in [32], where suggestions for further developments are presented. A
further review of the DW algorithm is given in Section 2.4.1.

Several hybrid COLAV methods applying the DW algorithm are introduced. In
[29], the DW algorithm is used as a model predictive control (MPC) method
using a control Lyapunov function (CLF), which yields convergence to the goal
position. The DW algorithm is used with a modified RRT algorithm, where the
A* algorithm operates as an RRT guide in [28], and tested for ASVs. The RRT
algorithm is further reviewed in Section 2.5.1 and is used in a hybrid COLAV
method in this thesis. Furthermore, the hybrid COLAV method concept is de-
scribed in Section 2.6

For marine vessels, COLAV methods taking the International Regulations for
Avoiding Collisions at Sea (COLREGS) into account are proposed. A hybrid
COLAV method using the DW algorithm and is compatible with COLREGS
is presented in [28]. Furthermore, the VO method has been modified to take
COLREGS into account and scales well with trafficked environments [25].

1.3 Contributions
The contributions of this report are:
• A review of the DW algorithm and existing extensions.

• A further development of the modified DW algorithm in [12, 13], compen-
sating for algorithm weaknesses addressed in [32]. The weaknesses mainly
concern the avoidance region blinding the DW distance function if the
ASV is close to or inside the region. Two algorithms, algorithms B and
C, which takes this into account are proposed.

• A new Hybrid Dynamic Window (HDW) algorithm enabling the DW al-
gorithm to function as both a reactive method and a trajectory tracker in

5

CHAPTER 1. INTRODUCTION

a hybrid COLAV system. The HDW algorithm simplifies the architecture
and tuning of the system and utilizes the planned trajectory in near future
to assess how well the predicted ASV trajectories align with it.

• Extensive testing through simulations of the new reactive DW algorithms
and the HDW algorithm in a hybrid COLAV method with the RRT algo-
rithm as a deliberate method.

• A new performance metric, integral of distance inside avoidance region
(IDI). The IDI metric offers information of how far and long the vehicle
resides inside the avoidance region.

1.4 Outline of the Report
This thesis is divided as follows: Chapter 2 provides a theoretical background for
vessel modelling and control, guidance systems, and collision avoidance methods
focusing especially on the DW algorithm and RRT algorithm. Three modified
versions of the DW algorithm are presented in Chapter 3. Chapter 4 introduces
the HDW algorithm which functions both as a reactive method and a trajectory
tracker, intended for use in a hybrid COLAV method. Chapter 5 describes the
implementation of a simulator used to test the reactive DW algorithms and the
hybrid COLAV method presented in chapters 3 and 4, respectively. Chapter 6
describes the different simulation scenarios and the simulation results for both
the reactive and the hybrid COLAV method. Finally, Chapter 7 concludes the
thesis and proposes further work.

6

Chapter 2

Theoretical Background

Theoretical background on marine vessel modelling, guidance systems, spaces
in motion planning and COLAV methods are necessary to fully understand the
details of the thesis and the presented results. A brief review is given in this
section.

2.1 Vessel Modelling
The marine craft equations of motion can be written in a vectorial setting as
[16]

η̇ = JΘ(η)ν, (2.1)

Mν̇ +C(ν)ν +D(ν)ν + g(η) + g0 = τ + τwind + τwave. (2.2)

The matrices M , C(ν) and D(ν) denotes the vehicle inertia, Coriolis and
centripetal, and damping matrices, respectively. Generalized gravitational and
buoyancy are given by g(η) and forces and moments due to ballast and water
tanks are given in g0. The vectors

η = [x, y, z, φ, θ, ψ]> ∈ R3 × SO(3) (2.3)

and

ν = [u, v, w, p, q, r]> ∈ R6 (2.4)

describe the vessel pose and velocity, respectively, using the SNAME(1950) no-
tation for marine vessels. The velocity ν is further described in Section 2.1.1 and
illustrated in Figure 2.1. The pose η is further described in sections 2.1.1 and
2.1.2. The actuator forces and moments are given by τ ∈ R6, while τwind ∈ R6

and τwave ∈ R6 are forces and moments caused by wind and waves, respectively.

7

CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Reference Frames
A vessel maneuvers in 6 independent degrees of freedom (DOF), which are
a combination of displacements and rotations. The combination completely
describes the vessel pose [16]. The 6 DOF can be described using the body-
fixed reference frame {b} = (xb, yb, zb). In this frame the xb axis is fixed in the
vessel forward direction, yb axis is fixed in the vessel starboard side, and zb is
fixed in the vessel vertical axis, directed from top to bottom. The translational
speed in the directions of the axes xb, yb, zb are surge, sway and heave speed,
denoted u, v, w respectively. The rotation rates about xb, yb, zb are roll, yaw
and pitch rate, denoted p, q, r, respectively. The vessel velocity is presented in
Figure 2.1.

Figure 2.1: Motion in 6 DOF in the body-fixed reference frame [16].

The body-fixed reference frame gives no information about the vessel pose rela-
tive to the surrounding environment. To relate the body-fixed frame to the sur-
rounding environments, the North-East-Down coordinate system {n} = (x, y, z)
is used as a reference frame, where x points towards true north, y points to-
wards true east, and z points downwards normal to the surface of the Earth.

8

2.1. VESSEL MODELLING

For navigation, we use a flat plane fixed on the surface of the Earth. One can
assume that {n} is inertial such that Newton’s laws apply [16]. Since only local
areas are considered, the NED-frame may be referred to as the world frame.

2.1.2 Euler Angle Transformations
Using two reference frames creates the need for a transformation between the
velocity and pose in one frame to the other. The linear velocity transformation
Rn
b (Θnb) from {b} to {n} is given by

Rn
b (Θnb) = Rz,ψRy,θRx,φ, (2.5)

where Rz,ψ,Ry,θ,Rx,φ are rotational matrices about zb, yb, xb respectively. The
vessel body-fixed velocity vbb/n can now be expressed in {n} as

ṗnb/n = Rn
b (Θnb)vbb/n (2.6)

where pnb/n = [x, y, z]> is the position in the NED coordinate system. In
a similar manner the Euler rate Θ̇nb = {φ̇, θ̇, ψ̇}> can be expressed by the
transformation matrix TΘ(Θnb), and the body-fixed angular velocity vector
ωbb/n = {p, q, r}> as

Θ̇nb = TΘ(Θnb)ωbb/n. (2.7)

Summarizing these results, the kinematic equation can now be expressed as

η̇ = JΘ(η)v, (2.8)

which is equal to [
ṗnb/n
Θ̇nb

]
=
[
Rn
b (Θnb) 03×3
03×3 TΘ(Θnb)

] [
vbb/n
ωbb/n

]
.

2.1.3 Simplified ASV Model
To completely describe the vessel pose one needs to describe it in 6 DOF. For
surface vessels, a normal assumption is that pitch, roll and heave may be ne-
glected [16]. This leads to a 3 DOF representation, using surge, sway and yaw,
which finally yields:

η̇ = R(ψ)ν (2.9)

Ṁν +C(ν)ν +D(ν)ν = τ , (2.10)

where ν = [u, v, r]> ∈ R3 and η = [x, y, ψ] ∈ R2 × SO(2), using SNAME
notation, as presented in Table 2.1 [16]. In addition, R(ψ) is the simplified
velocity transformation Rn

b (Θnb) given in (2.5). The rotation matrix may now
be expressed as

9

CHAPTER 2. THEORETICAL BACKGROUND

Table 2.1: 3 DOF standard notation from SNAME [34] for marine vessels.

DOF Description Forces and
moments

Velocities Position and
Euler angles

1 motions in surge X u x
2 motions in sway Y v y
3 rotation in yaw N r ψ

R(ψ) , Rz,ψ =

cψ −sψ 0
sψ cψ 0
0 0 1

 . (2.11)

Using a propeller and a rudder as actuators, the control input τ may be modeled
as:

τ , Bf , (2.12)

where f are the forces and moments from the propeller and rudder, and B
describes the effect f has in each degree of freedom. The vector f and matrix
B are given as:

f =
[
X
N

]
, (2.13)

and

B =

1 0
0 − 1

lr
0 1

 , (2.14)

where X is the force in surge and N the moment in yaw, caused by the propeller
and rudder, respectively. In addition, lr is the length from the rudder to the
center of origin (CO). We model the yaw moment N as:

N = −Kδψu
2lrδψ, (2.15)

where u is the surge speed, and Kδψ > 0 is a rudder coefficient.

The inertia matrix in 3 DOF can be expressed as

M = MRB +MA =

 m 0 −myg
0 m mxg

−myg mxg Iz

+

−Xu̇ −Xv̇ −Xṙ

−Yu̇ −Yv̇ −Yṙ
−Nu̇ −Nv̇ −Nṙ

 , (2.16)

where MRB ≥ 0 is the rigid body mass of the vessel, MA ≥ 0 is the added
mass, m is the weight of the vessel, and Iz is the inertia in the yaw rotation.
In addition, xg and yg describes the center of gravity in the point (xg, yg, zg)
relative to origin of the body frame. A normal approximation for the added

10

2.1. VESSEL MODELLING

mass of surface vessels is to assume that the surge mode is independent of the
steering dynamics [16]. This results in a simplified added mass matrix:

MA = −

Xu̇ 0 0
0 Yv̇ Yṙ
0 Nv̇ Nṙ

 . (2.17)

We assume xz-plane symmetry and choose the origin of the body frame to be
defined along the centerline of the vehicle. Hence, yg = 0 and the rigid-body
mass matrix can be simplified to

MRB =

m 0 0
0 m mxg
0 mxg Iz

 . (2.18)

Finally, the system inertia matrix can be expressed as:

M =

m−Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ
0 mxg −Nv̇ Iz −Nṙ

 =

m11 0 0
0 m22 m23
0 m23 m33

 . (2.19)

The Coriolis and centripetal matrix C(ν) is then given as :

C(ν) =

 0 0 −m23r −m22v
0 0 m11u

m23r +m22v −m11u 0

 . (2.20)

The damping matrix D(ν) for the system can be given as a sum of a linear
damping matrix DL and a non-linear damping matrix DNL(ν):

D(ν)ν = DLν +DNL(ν)ν. (2.21)

The damping matrix may be defined in several ways, based on which simplifica-
tions are made. The parameters for the vessel in the simulation in Section 5 is
based on Loe’s representation in [28], hence the definition from [28] of DL and
DNL(ν) is chosen. The matrices are defined as

DL =

Xu 0 0
0 Yv Yr
0 Nv Nr

 , (2.22)

and

DNL(ν) =

X|u|u|u|+Xuuuu
2 0 0

0 Y|v|v|v|+ Yvvvv
2 0

0 0 N|r|r|r|+Nrrrr
2

 . (2.23)

The ASV experiences second order nonholonomic constraints also called nonin-
tegrable velocity constraints. If the constraints had been holonomic, this could

11

CHAPTER 2. THEORETICAL BACKGROUND

be verified by showing that the velocity constraints in (2.10) are holonomic (in-
tegrable). Firstly, the constraints must be partially integrable, which is verified
by checking if (2.10) can be integrated into the form

g(ν, ν̇, t) = 0. (2.24)

If this holds, (2.10) further integrability to a constraint on the form

f(ν, t) = 0 (2.25)

is investigated. If such a constraint exists, (2.10) will be considered a holonomic
constraint [30]. This check can be done by using Frobenius Theorem [21], as
further described in [4, 30].

Constraints that are only partially integrable are first order nonholonomic, while
constraints that are not partially integrable are second order nonholonomic.
Parts of the requirements of Theorem 1 in [39] for vessel constraints to be par-
tially integrable is (Cu(ν) +Du(ν)) being constant. Where Cu(ν) and Du(ν)
are the Coriolis and centripetal, and damping matrices of the underactuated
part of the vehicle, respectively. Clearly, this does not hold for (2.20), (2.22) and
(2.23), which proves that (2.10) have second order nonholonomic constraints.

2.2 Motion Control and Guidance Systems
A guidance system is continuously calculating the desired position, velocity or
acceleration of a vehicle. The desired states are used as reference values and will
form either a setpoint, a trajectory, or a path. Based on the desired states a con-
trol objective is determined as a setpoint regulation, trajectory-tracking control,
or path-following control [8]. Based on the control objective, a motion control
system can be designed to satisfy the requirements. In setpoint-regulation the
desired position and attitude are constant. In trajectory-tracking the systems
tries to force the output y(t) to be equal to the time-variant desired output
yd(t). Path-following is following a predefined, time-invariant path.

2.2.1 Path Generation Using Waypoint Representation
A path for surface vehicles represented with waypoints is a set of Cartesian
coordinates containing a start point, an end point and an ordered set of points
in between. The set is expressed as,

WP = {x0.y0, x1, y1, . . . , xn, yn}, (2.26)

where n+1 is the number of waypoints. Waypoints can have a speed and heading
property, which are desired surge speed and heading of the vehicle when passing
the given point. The waypoints are usually generated based on criterias, e.g.
the path being feasible.

12

2.2. MOTION CONTROL AND GUIDANCE SYSTEMS

2.2.2 Line-of-Sight Guidance
A Line-of-Sight (LOS) guidance strategy usually consist of a reference point, an
interceptor and a target. The reference point is usually stationary, while the
target can either be stationary or moving. For this purpose the reference point
and the target will both be waypoints, denoted as (xk, yk) and (xk+1, yk+1),
respectively. This scenario is called a target-tracking, and its control objective
is expressed as

lim
t→∞

[pn(t)− pnt (t)] = 0, (2.27)

where pnt = [xt, yt]> is the position of the target given in the world frame [8].
To define the steering laws in LOS we express the vehicle speed, denoted U(t),
and course angle, denoted χ(t), as

U(t) ,=
√
ẋ(t)2 + ẏ(t)2 ≥ 0 (2.28)

χ(t) , atan2(ẏ(t), ẋ(t)) ∈ S , (−π, π]. (2.29)
The operator atan2(y, x) is the four-quadrant inverse tangent of y and x. By
considering a straight line between the waypoints pk = (xk, yk) and pk+1 =
(xk+1, yk+1), the angle of the straight line with respect to the NED-frame can
be defined as

αk , atan2(yk+1 − yk, xk+1 − xk) ∈ S. (2.30)
The object for the LOS guidance strategy is to calculate the desired course angle
χd, as illustrated in Figure 2.2. Using lookahead based steering the course angle
is expressed as

χd(e) = χp + χr(e), (2.31)
where e is the cross-track error defined by a vector line from the vehicle, normal
to the path line between the two waypoints. The parts of χd, χp and χr, are
expressed as

χp = αk (2.32)
and

χr(e) , arctan
(−e

∆

)
, (2.33)

respectively. This ensures that the vehicle course is directed towards the path,
using the tuning parameter ∆ > 0 as look-ahead distance [8].

For path-following controllers, the desired course angle χd is transformed to the
desired heading angle expressed as

ψd = χd − β, (2.34)
where β is the sideslip angle of the vehicle, expressed as [16]:

β = arcsin
(v
U

)
. (2.35)

Finally, the desired course angle ψd from the LOS-algorithm is used as a refer-
ence in a heading controller.

13

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: 2-D LOS principle [16].

2.2.3 Path Tracking for Marine Surface Vessels
The LOS guidance strategy is dependent on the planned path only containing
straight lines between waypoints. However, in numerous scenarios, it is neces-
sary that planned paths are curved. By using curved and parametrized paths,
it is possible to plan a feasible path for marine surface vessels. A parametrized
path is defined as a geometric curve parametrized by a continuous path variable
[33].

The 2D path following method for marine surface vessels presented in [7] will
be used for tracking globally planned trajectories in Chapter 4. The method is
designed for a fully actuated vessel but is compatible with underactuated vessels
if sideslip compensation and a dynamic controller state are introduced.

A geometrical path defined on a two-dimensional Euclidean plane, parametrized
by a scalar value θ ∈ R, is introduced as the desired path. For any value of θ,
the inertial position of the path is expressed as:

pd(θ) =
[
xd
yd

]
, (2.36)

14

2.2. MOTION CONTROL AND GUIDANCE SYSTEMS

Where xd and yd are desired displacement along the north and east axis, respec-
tively. A point mass particle with inertial position p ∈ R2 and velocity v ∈ R2

is desired to reach the path and stay on it. The size and orientation of v are
denoted as

U =‖v‖2 = (v>v) 1
2 (2.37)

and
χ = arctan

(vy
vx

)
, (2.38)

respectively. By controlling U and χ, the particle p can be forced to converge
to and stay on the desired path.

For a given θ, a new reference frame denoted Path Parallel (PP) frame is defined.
The angle of the reference frame relative to the inertial frame is given as:

χt(θ) = arctan
(
y′d(θ)
x′d(θ)

)
, (2.39)

where x′d(θ) = dxd
dθ and y′d(θ) = dyd

dθ . The error vector between the particle point
p and point pd(θ) expressed in the PP frame is given as:

ε = R>p (χt)(p− pd(θ)), (2.40)

where Rp(χt) ∈ SO(2) is the rotation matrix from the inertial frame to the PP
frame. As seen in Figure 2.3, the error consists of two parts. The cross track
error e and the along-track error s denoted the lateral and longitudinal distance,
respectfully. Hence, the error vector is defined as

ε = [s, e]>. (2.41)

A path tangential speed is introduced as UPP and is given as the velocity of the
PP frame with respect to the inertial frame, given in the PP frame. The path
tangential speed is considered as a virtual input for stabilizing s, and is set by
choosing UPP as:

UPP = Ucos(χ− χt) + γs, (2.42)
where γ > 0 is a gain parameter. Since θ is the controllable path parameter a
relationship between θ and UPP is defined and expressed as:

θ̇ = UPP√
x

′2
d + y

′2
d

= Ucos(χ− χt) + γs√
x

′2
d + y

′2
d

. (2.43)

To stabilize the cross track error e, the course χ of the particle is controlled.
The particle is assumed to be able to change value of U and χ instantaneously,
hence

χ = χd. (2.44)
The angular difference between the desired course path and the path tangential
course is expressed as

χr = χd − χt, (2.45)

15

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: 2-D path following for marine vessels [7].

where we define
χr(e) = arctan

(
− e

∆

)
, (2.46)

where ∆ > 0 is the lookahead distance. The desired course angle χd is expressed
as:

χd(θ, e) = χt(θ) + χr(e). (2.47)

Finally, it is proved in [7] that the origin ε = 0 is uniformly globally asymptoti-
cally and locally exponential stable (UGAS/ULES) if θ is updated by (2.43), χ
is equal to (2.47) and U is non-zero and have a lower bound.
By using the sideslip compensation when calculating the desired heading angle,
we get:

ψd = χd − β, (2.48)

where β is the sideslip of the vessel.

The methods introduced in Chapter 4 use a modified version of the introduced
path following method to perform trajectory tracking.

16

2.3. SPACES IN MOTION PLANNING

2.3 Spaces In Motion Planning
In motion planning and collision avoidance, different spaces are used to describe
the state parameters of a vehicle and its surrounding environment. For this pur-
pose, the work space and the configuration space will be utilized.

The work space is a description of the environment the vehicle is in, and the ob-
stacles in the environment. A two-dimensional environment may be expressed
by the work space W ∈ R2 [3]. Obstacles in W may be defined as the set
O = {O1, O2, . . . , On}, where Oi is an obstacle in the workspace. For collision
avoidance a space named the free work space is defined Wfree = {η ∈ W | η /∈
O}. By denoting the footprint of a vehicle in W as A(η), any configuration
η = [x, y, ψ]> where A(η) ∈ Wfree will be a safe position. The vehicle is inter-
secting an obstacle if A(η) ∩ O 6= ∅ is true, and any configuration where this
holds will therefore be forbidden.

In general, the configuration of a vehicle with a certain number DOFs is given
by at least a corresponding number of parameters [36]. To describe this in a
space, it is not sufficient to use the workspace notation. E.g. for the 3 DOF
vessel used in (2.9), one would at least need a three-dimensional space to fully
describe the configuration. The configuration space expressed as C ∈ R2×SO(2)
[36] completely describes the ASV pose.

Compared to the work space where a vehicle is described by its extent, a config-
uration in the configuration space is given as a single point η, specified by the
vehicle state parameters [3]. As in the work space, there are forbidden configura-
tions. In the configuration space, these are defined as the set of all configurations
where the vehicle intersects with the obstacle set O, and is expressed as

Cforb =
{
η ∈ C | A(η) ∩ O 6= ∅

}
. (2.49)

Any other point in C will be free, and will define the set

Cfree = {η ∈ C | A(η) ∩ O = ∅}. (2.50)

The extent of a vehicle might be complex and Cfree are therefore hard to cal-
culate. By approximating the vehicle footprint as a circle with radius equal to
the largest distance from the center of the vehicle to any other point, we can
simplify the configuration space (inspired by [3, 13]).

If a vehicle is represented as a single point, the configuration space is inde-
pendent of the vehicle heading. Hence, a simplified configuration space can be
defined as C̄ ∈ R2. A surface vehicle with position (x, y) and heading ψ may
therefore be represented in the simplified configuration space in two dimensions,
only using position parameters (x, y). Configurations in the new configuration
space may now be defined as p = [x, y]>. Any point p closer to an obstacle Oi
than the radius length l are considered to be part of C̄forb, as shown in Figure

17

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4: Circular approximation of the vessel footprint, extending the for-
bidden area around the obstacle Oi with the radius l of the circle.

2.4. The footprint of the vehicle with configuration p may now be given by
Ā(p), and will define the circle with radius l, centered in p. The new free and
forbidden space in R2 may now be expressed as

C̄free =
{
p ∈ C̄ | Ā(p) ∩ O = ∅

}
(2.51)

and
C̄forb =

{
p ∈ C̄ | Ā(p) ∩ O 6= ∅

}
, (2.52)

respectively. The simplified configuration space C̄ with points p and footprint
Ā(p) is used for the simulations in Chapter 5.

2.4 Reactive COLAV Methods
Reactive COLAV methods, also called local or sense-act methods, base their
actions on currently available sensor data. These methods are memoryless and
consider only the immediate environment, which leads to a low computational
cost. This makes the local methods excellent for real-time systems and dynamic
environments [28].

A major drawback for reactive methods is the lack of ability to produce an
optimal path to the goal [17]. They are less likely to find a path to the goal if
there exist one, compared to global methods. This is due to the reactive meth-
ods significant risk of getting stuck in a local minima, and the lack of stored

18

2.4. REACTIVE COLAV METHODS

environment data.

The most commonly used reactive COLAV approaches can be divided into direc-
tional and velocity space based methods [31]. The directional method searches
for direction for the vehicle to head in without taking the vehicle dynamics into
account. Vector Field Histogram [5] and Potential field method [23] are exam-
ples of common directional COLAV methods. The velocity COLAV approaches
searches in the velocity space, which makes the methods able to take the dy-
namic and kinematic constraints into account. The Dynamic Window (DW)
algorithm [17] and Velocity Obstacles [15] are examples of velocity space based
reactive COLAV methods.

2.4.1 Dynamic Window (DW) Algorithm
The DW algorithm, presented by Fox [17] in 1997, is a reactive COLAV algo-
rithm searching for an optimal solution within the velocity space. The velocity
space is formed by the vehicle translational speed and rotational rate. For an
ASV, a point in the velocity space consists of the surge speed u and the yaw rate
r, which form a velocity pair (u, r), while the sway speed v is not considered.
The algorithm generates a search space considering multiple sets of constraints
in the velocity space. The search space is discretized into a finite set of veloc-
ity pairs. For every velocity pair within the search space, the DW algorithm
predicts what trajectory the pair will lead to for the vehicle. Finally, an ob-
jective function finds the optimal velocity pair based on the predicted trajectory.

The original DW algorithm is intended for vehicles with first-order nonholo-
nomic constraints. The search space of the algorithm is generated by the union
of the following sets:

The DW algorithm considers only admissible velocities. For a velocity pair to
be considered admissible, the vehicle has to be able to stop before colliding
with the closest obstacle along the predicted trajectory defined by the pair. By
defining u̇min and ṙmax as the accelerations for breakage, the set Va of admissible
velocities for a ship is defined as:

Va =
{

(u, r) | u ≤
√

2 · dist(u, r) ·|u̇min|

∧ |r| ≤
√

2 · dist(u, r) ·|ṙmax|
}, (2.53)

where dist(u, r) is the distance to the closest obstacle on the curvature [17].

The physical constraints on the vehicle motors cause the acceleration within
a short time step to be limited. These constraints form the dynamic window,
which is a set of all velocity pairs reachable from the vehicle current velocity
within a given short time interval. Let (u∗, r∗) be the current velocity and let

19

CHAPTER 2. THEORETICAL BACKGROUND

u̇max and ṙmax be the maximum possible accelerations applied during a time
step Ts. Then the dynamic window Vd is defined as:

Vd =
{

(u, r) | u ∈ [u∗ + u̇min · Ts, u∗ + u̇max · Ts]∧ r ∈ [r∗ ± ṙmax · Ts]
}
. (2.54)

The maximum possible translational and rotational velocities, umax and rmax,
respectively, creates a static window Vs in the velocity space. This set of possible
velocities is defined as:

Vs =
{

(u, r) | u ∈ [0, umax] ∧ r ∈ [−rmax, rmax]
}
. (2.55)

Lastly, the search space Vr is defined by the union of the three sets

Vr = Vs ∩ Va ∩ Vd, (2.56)

and discretized into a finite set of velocity pairs.

The trajectory prediction for each velocity pair is made by assuming that the
vehicle accelerates instantly to the velocity given by the pair (u, r). The velocity
pair creates a curvature with the radius Cr given as [17]

Cr = u

r
, (2.57)

as shown in Figure 2.5.

An optimized velocity pair will then be chosen by the following objective func-
tion:

max
(u,r)

G(u, r) = σ(α · heading(u, r) + β · dist(u, r) + γ · vel(u, r))

s.t. (u, r) ∈ Vr
, (2.58)

where the three functions, heading, dist and vel are based on the velocity pair
and the corresponding predicted trajectory. The functions will be normalized
to a value in the range [0,1], and weighted by the variables α, β, γ > 0, and σ is
a low pass filter for smoothing the function.

Heading(u, r) is a value based on the vehicle direction towards the goal, given
by 180 ◦ − θ. The angle θ is given by the angle of the goal relative to the vehi-
cle heading direction. This direction changes with different velocity pairs, so θ
must be calculated from a predicted pose, which is determined by assuming that
the vehicle follows the planned trajectory while applying maximal deceleration.
The predicted stopping pose will then be used to find θ. The heading function
leads to a more smooth maneuvering towards goal once the obstacle is passed

20

2.5. DELIBERATE COLAV METHODS

Figure 2.5: Predicted trajectories for the velocity pairs in the discrete search
space. The solid colored lines are predicted trajectories.

[17].

Dist(u, r) is a value based on the distance of the closest obstacle. If there are
any obstacles on the predicted path, then Dist is valued as the distance to the
closest obstacle. If not, dist will be set to a relatively large constant.

Vel(u, r) is the velocity of the vehicle along the predicted trajectory and is
solely determined by u. This value and heading will ensure that the vehicle
values progress towards the goal, even when circumventing an obstacle.

2.5 Deliberate COLAV Methods
Deliberate COLAV methods, also called global or sense-plan-act, are methods
that find a route from a given start to a given goal based on available envi-
ronment data. The goal can either be a vehicle position or a more detailed
description of the end state [28]. Global methods are usually not as prone to
getting trapped in a local minima as reactive methods, and can often guarantee
that a path to the goal will be found if one exists (completeness). However,
numerous methods offer only probabilistic completeness, but will in return offer
a superior asymptotic convergence rate [6] (e.g. RRT).

21

CHAPTER 2. THEORETICAL BACKGROUND

Global methods suffer a major challenge in real-time systems due to long com-
putational time compared to reactive methods. This may cause problems when
unexpected situations occur, and decisions might have to be taken rapidly.

The A* algorithm [19] is a deliberate method that offers optimality and com-
pleteness but does not take the vehicle dynamics into account. The RRT algo-
rithm [27] is only probabilistic complete and likely to generate a less optimal
path than the A* algorithm. Unlike the A* algorithm, the RRT algorithm can
take the vehicle dynamics into account, which enables it to plan a feasible tra-
jectory for the vehicle. The A* algorithm is applied to an ASV in [26], where
it handles collision avoidance for static obstacles. We wish to implement a hy-
brid COLAV method that handles both static and dynamic obstacles, hence
the deliberate method is required to return a feasible trajectory. Consequently,
we use the RRT algorithm as a global trajectory planner in the hybrid COLAV
method.

2.5.1 Rapidly-Exploring Random Trees (RRT)
The Rapidly-Exploring Random Tree path planning algorithm introduced by
LaValle [27] in 1998 can be used as a deliberate COLAV algorithm searching for
a global path leading to the goal. The algorithm is neither complete or optimal
but is, however, probabilistic complete under general conditions and scales well
with high numbers of DOFs. The RRT approach takes the vehicle dynamics into
account and can be directly applied to nonholonomic and kinodynamic planning
to generate paths which are feasible for the vehicle. This makes it well suited
for use on AUVs modeled in 3 DOFs [37], and is in [28] shown to be well suited
for ASVs as well.

The RRT algorithm searches randomly through the state space to obtain paths
leading towards the goal. If the search is finished and a path leading to goal
have been found, the optimal path in the tree is chosen based on chosen met-
rics. Although the search is randomized, it is heavily biased towards unexplored
areas of the state space and is therefore likely to find a path to goal if there
exists one. An example of a complete RRT that considers the ASV dynamics is
displayed in Figure 2.6.

The Rapid-Expanding Random search tree Υ is generated such that all of the
vertices are states in C̄free and the edges are paths lying in C̄free. The initial
vertex is the current state of the vehicle xinit. To expand the tree, a random
state xrand ∈ C̄free is chosen by RANDOM STATE() and a function NEAR-
EST NEIGHBOUR(xrand,Υ) is used to find the vertex xnear ∈ Υ closest to
xrand. A function SELECT INPUT (xrand,xnear) is then used to find the input
u that yields the shortest feasible path from xnear to xrand and ensures that the
vehicle state stays in C̄free. If the path resides in C̄free for a time period ∆t, the
path is collision free and added to Υ. This is done in NEW STATE(xnear,u,∆t)
by applying u to the vehicle for the time ∆t yielding a new vertex xnew and an

22

2.5. DELIBERATE COLAV METHODS

-50 0 50 100 150 200 250 300

-50

0

50

100

150

200

250

300
Start

Goal

Search Paths

Chosen Path

Obstacle

Figure 2.6: Randomly-Exploring Random Tree.

edge from xnear to xnew. If the path does not reside inside C̄free no new vertex
is added to Υ and the next iteration of the loop is started. The loop contin-
ues until a maximum numberK of vertices are added to Υ. A comprehensible
overview of the general RRT algorithm is given in Algorithm 1 [27].

Algorithm 1: Generate RRT
1: Υ← INIT (xinit)
2: for k = 1 to K do
3: xrand ← RANDOM STATE()
4: xnear ← NEAREST NEIGHBOUR(xrand,Υ)
5: x← SELECT INPUT (xrand,xnear)
6: xnew ← NEW STATE(xnear,u,∆t)
7: if COLLISION FREE(xnear,xnew,u,∆t) then
8: Υ← ADD VERTEX(xnew)
9: Υ← ADD EDGE(xnear,xnew,u,∆t)
10: end if
11: end for
12: return Υ

23

CHAPTER 2. THEORETICAL BACKGROUND

The functions COLLISION FREE(xnear,xnew,u,∆t) and
SELECT INPUT (xrand,xnear) make sure the new state of the algorithm is
reachable and feasible, and are hence the most crucial functions in the algorithm.
Due to these functions, any vertices added to Υ are guaranteed to be reachable
from the initial state if the vehicle model is accurate. Note that the feasibility of
the algorithm is dependent on the accuracy of the model, hence the algorithm
may not be able to guarantee completely feasible paths.

Performance Enhancement

By adding a bias towards the goal, the RRT performance can be improved sig-
nificantly [37]. This can be done by letting the RANDOM STATE return the
goal state with a probability based on a bias coefficient. If the function does not
return the goal state, a random state is returned. This guarantees a progress
towards goal when the RRT searches the state space.

To obtain convergence when using randomized algorithms, a hybrid system of a
complete algorithm and a randomized algorithm can be implemented [18]. By
using this method, the algorithm can consider the dynamic constraints of the
vehicle. In [28], the A* algorithm [19] has been used as a guide for the RRT
algorithm, which yields a great performance gain.

2.6 Hybrid COLAV methods

In real-time decision making, the rapid computations of the reactive methods
are needed. However, the lack of knowledge beyond the vehicle’s immediate
environment causes reactive methods to be likely to make poor path choices
when trying to reach the goal. Deliberate methods will exploit knowledge of the
environment and are more likely to make good path choices that do not trap
the vehicle in a local minima.

Hybrid methods exploit the benefits from both reactive and deliberate methods.
The methods are built as a hierarchy with deliberate algorithms in the global
layer at the top to ensure that the vehicle is likely to follow a path leading
towards the goal. A local layer is implemented for rapid real-time responses
on events not planned by the global method. On the lowest level, the vehicle
controllers ensure that the vehicle is following the trajectory planned by the
reactive layer. The goal of the hybrid method is to have a deliberate method
plan trajectories with given desired properties, which will be used as a guide
for the reactive method. The trade-off between probability to find the goal
(completeness) and response time (responsiveness) is illustrated in Figure 2.7.

24

2.7. COLREGS

Figure 2.7: Hybrid COLAV methods exploit the local method’s low computation
time and the completeness of the global method. Courtesy of [28].

2.7 COLREGS
The International Regulations for Preventing Collisions at Sea 1972 (COL-
REGS) are published by the International Maritime Organization. These regu-
lations are set out to be followed by vessels at sea to prevent collisions between
each other. COLREGS consist of 38 rules divided into different parts which are
further divided into subsections [10].

For reactive COLAV methods for ASVs, the most relevant rules are in part B
- Steering and sailing, under Section II (Conduct of vessels in sight of one an-
other). The most relevant rules when considering ASVs may be summarized as
following [10]:

Rule 13. Overtaking - the overtaking vessel should keep out of the way of the
vessel being overtaken.

Rule 14. Head-on situations - Two power-driven vessels meeting on reciprocal
or nearly reciprocal courses each shall alter her course to starboard so that each
shall pass on the port side of the other.

Rule 15. When two power-driven vessels are crossing so as to involve risk of
collision, the vessel which has the other on her own starboard side shall keep
out of the way and shall, if the circumstances of the case admit, avoid crossing
ahead of the other vessel.

COLREGS 13, 14 and 15 are previously applied to COLAV methods using Ve-
locity Obstacle (VO) [25] and by using multiobjective optimization with interval
programming (IVP) [2].

25

CHAPTER 2. THEORETICAL BACKGROUND

26

Chapter 3

Modifications to the DW
Algorithm

The original Dynamic Window algorithm in [17] is intended for vehicles with
first-order nonholonomic constraints. As presented in Section 2.1.3, ASVs has
second order nonholonomic constraints which do not fit with the assumptions
done when designing the DW algorithm.

A modification to the DW algorithm for horizontal collision avoidance for AUVs
is proposed in [12, 13], and denoted Algorithm A. In [13, 32], algorithm A de-
scribed in Section 3.1 is compared with the original DW algorithm for use on
AUVs and ASVs. Through simulations, it was concluded that algorithm A was
the better option for use on AUVs and ASVs. However, suggestions for further
development of the algorithm are proposed.

The distance function in Algorithm A is solely dependent on the time until
reaching the avoidance region (3.13) along a trajectory. Hence, when the vehicle
is inside the avoidance region, the distance function of every velocity pair is zero.
If the distance function is ruled out, the cost function only considers the ASV
speed and progress towards the goal, not whether a trajectory leads towards an
obstacle or not. This motivates modifying Algorithm A so that the vehicle is
desired to leave the avoidance region if entered. Two new algorithms, algorithms
B and C, addressing this problem are presented in this section and compared
through simulations presented in Section 6.1.2.

3.1 Algorithm A
As ASVs, AUVs have second order nonholonomic constraints and time-varying
acceleration limits, due to the non-linear responses caused by the rudder. The
modifications in Algorithm A are proposed for AUVs with a constant depth,
neglecting the roll and pitch angles. The use of a modified search space and a

27

CHAPTER 3. MODIFICATIONS TO THE DW ALGORITHM

new trajectory prediction method reduces the mean square error for AUVs to
approximately one percent, compared to error of the original DW algorithm. It
is argued through mild assumptions that the same representation holds for an
ASV, as for the AUV in [12, 13]. In addition, Algorithm A is tested for ASVs
in [32] and yields significantly better results than the original DW algorithm.
One will therefore expect similar performance improvements for ASVs, as the
improvements Eriksen [12] presented for AUVs. However, the AUV used when
testing the algorithm is modelled with only linear damping, unlike the non-
linear damping matrix (2.21) in the ASV model (2.2). Due to the non-linearity
of the damping matrix, the simulation results might differ from the results in
[12, 13]. A further modification to account for the non-linearity is presented in
this section.

Figure 3.1: Architecture overview of original DW algorithm and Algorithm A.
Courtesy of [12].

Figure 3.1 presents an overview of the architecture of the original DW algorithm
and Algorithm A. One can see that Algorithm A takes a desired velocity pair
(r′d, u′d) as input, where r′d is decided from the output of the yaw controller. The
original DW algorithm, however, depends on desired heading ψd directly. The
desired yaw rate r′d is found by parsing the output ψd of the LOS block into a
yaw-controller by using the control law

r′d = −kψ(ψ − ψd) + ψ̇d, (3.1)

where kψ > 0 is a constant gain. The introduction of r′d and u′d enables external
control of the surge speed and yaw rate.

3.1.1 Modified Search Space and Objective Function
The original search space does not take the actuator model and limitations into
account. To ensure that the velocity pair chosen by the algorithm is feasible,
a small time interval Ta is defined for changing the rudder angle δψ. The time
interval Ta is smaller than the DW period Ts used when calculating the search

28

3.1. ALGORITHM A

space, thus Ta < Ts. The rudder angle and angle rate is constrained by

‖δmax‖∞ ≤ δmax (3.2)

and ∥∥∥δ̇max∥∥∥
∞
≤ δ̇max, (3.3)

respectively, which give the possible values for δψ during the time interval Ta:

δψ ∈ sat
([
δ∗ψ − Taδ̇max, δ∗ψ + Taδ̇max

]
, δmax

)
, (3.4)

where sat(·) is the saturation function, and ψ∗ is the current rudder angle. The
actuation in surge speed has constraints given by

FX ∈ [FX,min, FX,max]. (3.5)

The forces and moments working on the vehicle can then be described by
τ (ν, δψ, FX), given in Section 2.1. The limits on the acceleration ν̇ can be
found from

ν̇i = M−1(τi −C(ν∗)ν∗ −D(ν∗)ν∗), (3.6)

where i ∈ {min,max},

τmin , τ (ν∗,max(δψ),min(FX)), (3.7)

and
τmax , τ (ν∗,min(δψ),max(FX)). (3.8)

By using these limits, the modified Dynamic Window Vd can be expressed as:

Vd =
{

(u, r) | u ∈ [u∗ + u̇min · Ts, u∗ + u̇max · Ts]
∧ r ∈ [r∗ + ṙmin · Ts, r∗ + ṙmax · Ts]

}, (3.9)

which unlike (2.54) is not required to fulfill ṙmax = −ṙmin.

The set of possible velocities Vs is found with respect to the actuator saturation
limits. A function g(u,r) is defined, which is positive semi-definite for feasible
velocities, and negative otherwise. The set of possible solutions is expressed
using the function g(u,r) as:

Vs =
{

(u, r) | g(u, r) ≥ 0
}
. (3.10)

The function g(u,r) is numerically computed by finding the boundaries of the
steady state solution of the dynamics, given as:

Mν̇r = τ (νr, δψ, FX)−C(ν)ν −D(ν)ν = 0, (3.11)

for feasible pairs of rudder position and surge actuation. The set of possible
velocities will now make a cone shape, while the Dynamic Window will still be

29

CHAPTER 3. MODIFICATIONS TO THE DW ALGORITHM

formed as a rectangle. A new set of dynamically feasible velocities Vf is defined
as

Vf = Vd ∩ Vs. (3.12)

To define the new set of admissible velocities Va, two new regions which further
penalizes trajectories leading towards an obstacle are introduced. This is done
by using the circle approximation of the vehicle footprint, described in Section
2.3. The two regions are defined as the avoidance region

Ω ,

{
p ∈ C̄

∣∣∣∥∥p− pforb

∥∥
2 ≤ rΩ

}
, (3.13)

and the antitarget region

T ,

{
p ∈ C̄

∣∣∣∥∥p− pforb

∥∥
2 ≤ rT

}
, (3.14)

where pforb ∈ R2 is the closest point in the forbidden configuration space C̄forb
expressed in (2.52), rT ≥ 0 is the radius of the approximated footprint of the
vehicle and defines the size of T , and rΩ ≥ rT is a scalar defining the size of
the avoidance region Ω. In [12, 13], the antitarget region is interpreted as the
region where a collision may occur, and the avoidance region is a safety region
not desirable to enter. During algorithm testing, any point inside T is consid-
ered to be a collision.

As a result of the new regions, a new distance function ρ′(u, r) is defined as:

ρ′(u, r) = max(ρ(u, r)−∆s, 0), (3.15)

where ∆s is the distance the vehicle will travel until the next iteration of the
algorithm, and ρ(u, r) is the distance to reach T along the following trajectory.
A modified set of admissible velocities using ρ′(u, r) is defined as:

Va =
{

(u, r)
∣∣u ≤√2ρ′(u, r)|u̇min|∧|r| ≤

{√
2ρ′(u, r)|ṙmax|, r < 0√
2ρ′(u, r)|ṙmin|, r ≥ 0

}
, (3.16)

to take the asymmetrical set of possible yaw rates into account.

The modified objective function used in the search space is now defined as:

max
(u,r)

G(u, r) = α · yawrate(r, r′d) + β · dist(u, r) + γ · velocity(u, u′d). (3.17)

The yaw rate function yawrate(r, r′d) replaces the heading function from the
original algorithm. The heading function uses the desired heading ψd, while the

30

3.1. ALGORITHM A

20 40 60 80 100 120 140 160 180
-50

0

50

100

150

Avoidance Region

Antitarget Region

Obstacle

Figure 3.2: Avoidance region Ω and antitarget region T .

yaw rate function uses a desired yaw rate r′d to improve generality and flexibility
[13]. The yaw rate function is given as:

yawrate(r, r′d) = 1−
∣∣r′d − r∣∣

max
r∈Vr

(
∣∣r′d − r∣∣) . (3.18)

The distance function dist(u, r) is now proportional to the approximated time
until a collision occurs along the given trajectory, instead of the distance along
it. The function is now taking the velocity in consideration, and is given as:

dist(u, r) = ρ̄(u, r)∫ T
0
∥∥χ(u, r, t)

∥∥
2 dt

, (3.19)

where ρ̄(u, r) is the distance to reach Ω along the trajectory formed by the pair
(u,r), and χ(u, r, t) is the predicted surge and sway speed of the vehicle along
the trajectory. The distance χ(u, r, t) can be computed by the functions used
for trajectory prediction (3.37) and (3.38):

χ(u, r, t) =
[
1 0 0
0 1 0

]
ν̄(t|ud, rd), (3.20)

where ν̄(y|ud, rd) is the solution of (3.37) and (3.38) at given time t.

31

CHAPTER 3. MODIFICATIONS TO THE DW ALGORITHM

The velocity function velocity(u, u′d) is now considering the difference between
the surge speed, u and the desired surge speed u′d. This makes the objective
function favor velocities that are close to the desired surge speed. The function
is given as:

velocity(u, u′d) = 1−
∣∣u′d − u∣∣

max
u∈Vr

(
∣∣u′d − u∣∣) . (3.21)

3.1.2 Modified Trajectory Prediction
A modified trajectory prediction has been introduced in [13, 12] to account for
second order nonholonomic constraints. Due to the system being nonholonomic
it will not be possible to linearize the system fully by feedback. In the proposed
modification, linearization of the surge and yaw dynamics are done using partial
feedback linearization, while the sway motion is left uncontrolled. To predict
the trajectories, the closed loop dynamics are derived and used for simulation.

By putting ν̇ in (2.10) by itself and inserting (2.12) the system kinetics can be
expressed as

ν̇ = M−1Bf − n(ν), (3.22)

where
n(ν) = M−1(C(ν)ν +D(ν)ν) (3.23)

is introduced to simplify notation. Two matrices Γ1 and Γ2 are introduced to
separate the system:

Γ1 ,

[
1 0 0
0 0 1

]
(3.24a)

Γ2 ,
[
0 1 0

]
, (3.24b)

which have the property Γ>1 Γ1+Γ>2 Γ2 = I. Consequently, (3.22) can be written
as

ν̇ = (Γ>1 Γ1 + Γ>2 Γ2)M−1Bf − n(ν)

= Γ>1 (Γ1M
−1Bf − Γ1n(ν))− Γ>2 Γ2n(ν))

. (3.25)

By using Γ1 to map the surge and yaw dynamics and Γ2 to map the sway
dynamics, the system (2.10) is divided into two parts. The control law is chosen
to be

f = (Γ1M
−1B)−1(Γ1n(ν) + a1d), (3.26)

where a1d is the desired acceleration, selected by using a proportional controller:

a1d =
[
u̇d
ṙd

]
= ν̇1d −Kp(ν1 − ν1d)

= ν̇1d −Kp(Γ1ν − ν1d),
(3.27)

where ν1 = Γ1ν = [u r]>, ν1d = [ud rd]>, and Kp = diag(kpu , kpr) > 0 is the
gain matrix of the proportional controller. It is shown in [13] that (Γ1M

−1B)−1

32

3.1. ALGORITHM A

always exists, by exploiting that M is positive definite and that the system is
controllable in surge and yaw, to prove full rank. Inserting for f from (3.26)
into (2.10) gives

ν̇ = Γ>1 a1d − Γ>2 Γ2n(ν). (3.28)

By defining

ν̃ =

ũv
r̃

 , ν − Γ>1 ν1d , (3.29)

the dynamics in (3.28) can be expressed as

˙̃ν =

 ˙̃u
v̇
˙̃r

 = −Γ>1 KpΓ1ν̃ − Γ>2 Γ2n(ν). (3.30)

From (3.30), the surge and yaw velocity is given as ˙̃u = kuũ and ˙̃r = −kr r̃.
Hence, the selected f in (3.26) yields linearity in surge and yaw. The sway
motion of the system is still nonlinear, expressed as v̇ = −Γ>2 Γ2n(ν). To
achieve linear dynamics in sway, an approximation of n(ν) using first-order
Taylor approximation is introduced as:

n(ν) ≈ n(ν∗) + ∂n(ν)

∂ν

∣∣∣∣
ν=ν∗

(ν − ν∗)

= n(ν∗) +Nν −Nν∗
= Nν + b(ν∗),

(3.31)

where
N = ∂n(ν)

∂ν

∣∣∣∣
ν=ν∗

, (3.32)

is the Jacobian matrix of n(ν), further described in [13], ν∗ is the current
velocity, used as linearization point, and

b(ν∗) = n(ν)−Nν ∗ . (3.33)

By defining
A = −(Γ>1 KpΓ1 + Γ>2 Γ2N)
β = −Γ>2 Γ2NΓ>1

G = −Γ>2 Γ2b(ν∗),
(3.34)

the dynamics in (3.30) can be expressed as:

˙̃ν = Aν̃ + βν1d +G, (3.35)

and the solution is

ν̃(t) = eAtν̃(t0) +
∫ t

t0

eA(t−σ)(βν1d(σ) +G)dσ. (3.36)

33

CHAPTER 3. MODIFICATIONS TO THE DW ALGORITHM

If the initial time t0 is set to zero, (3.36) can be expressed as [20]:

ν̃(t) = eAtν̃(0)−A−1(I − eAt)(βν1d +G). (3.37)
Lastly, the predicted trajectory is found by simulating the kinematics of the sys-
tem (2.9). The simulations are done numerically using modified Euler method,
which gives

η(tn+1) = η(tn) + hk2

k1 = R(η(tn))ν(tn)

k2 = R(η(tn) + h

2k1)ν(tn + h

2),
(3.38)

where h is the time step of the integration.

The approach and deriving of the predicted trajectories are based on Eriksen’s
approach in [12, 13]. However, a different vessel model is used for the simula-
tions in Chapter 6, which might yield different results. Especially, the nonlinear
damping of the ASV model may reduce the accuracy of the linearization in
(3.31).

To reduce the inaccuracy caused by the nonlinear damping matrix, we define a
new trajectory prediction, which updates the linearization point to ν∗ = ν(tn)
at every iteration of the modified Euler method. Accordingly, (3.32), (3.33)
and (3.34) are updated. The frequent matrix updates cause an increase in the
calculation cost when generating trajectory predictions. Originally, the matrices
are only calculated once every DW iteration. Now, however, the matrices are
calculated numerous times for every velocity pair in the search space. Note
that the system which used to be linear time-invariant system now is a linear
time-varying system.

3.2 Algorithm B
Algorithm B is based on Algorithm A but differs in the distance function. A
modification to the distance function is introduced to motivate exiting the avoid-
ance region. In addition to considering the time until entering the avoidance
region, the new distance function distB(u, r) considers the time until reaching
the avoidance region exit along the trajectory. If a trajectory is close to enter or
inside the avoidance region, the algorithm should weight the trajectory based
on how close the exit of the avoidance region is. If the trajectory is not imme-
diately leading to the avoidance region, it should be weighted by the time until
entering the avoidance region, as in Algorithm A. The distance to the closest
avoidance region along the trajectory is given by the function ρ̄(u, r), while the
distance to exit the avoidance region is given by the function ρB(u, r) expressed
as:

ρB =
∫ T

0

∥∥χ(u, r, t)
∥∥

2 dt− ρΩ(u, r), (3.39)

34

3.2. ALGORITHM B

where χ(u, r, t) is the ASV velocity along the predicted trajectory given in (3.20)
and ρΩ(u, r) is the distance until the trajectory exits the avoidance region Ω.
Reaching the antitarget region T before exiting the avoidance region Ω along a
predicted trajectory yields ρB(u, r) = 0. In Figure 3.3a, ρ̄(u, r) and ρB(u, r) are
given by the distance to the marked points where Trajectory A enters and exits
the avoidance region, respectively. To be able to smoothly switch the weighting
between ρ̄(u, r) and ρB(u, r), a switch ζ(ρ̄) using the hyperbolic tangent function
tanh(·) is introduced as:

ζ(ρ̄) = tanh(c‖ρ̄‖) ∈ [0, 1], (3.40)

where c > 0 is a tuning constant deciding how smooth the switching will be, as
presented in Figure 3.3b.

-25 -20 -15 -10 -5 0 5 10 15 20
0

10

20

30

40

50

60

Trajectory A

Trajectory B

Enter Avoidance Region

Exit Avoidance Region

Avoidance Region

Antitarget Region

Obstacle

(a) Trajectory examples A and B.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

‖ρ̄‖

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ζ(ρ̄), c = 1
ζ(ρ̄), c = 2
ζ(ρ̄), c = 10
ζ(ρ̄) Trajectory A
ζ(ρ̄) Trajectory B

(b) Values of ζ(ρ̄) for trajectories A and B
for different values of tuning parameter c,
with‖ρ̄‖ = 0.2 and‖ρ̄‖ = 1 for trajectories
A and B, respectively.

Figure 3.3: Algorithm B examples showing how different values of the tuning
parameter c changes the weighting in distB(u, r).

Finally, a new distance function can be expressed as:

distB(u, r) = ζ(ρ̄) · ρ̄(u, r) + (1− ζ(ρ̄)) · ρB(u, r)∫ T
0
∥∥χ(u, r, t)

∥∥
2 dt

∈ [0, 1]. (3.41)

The new distance function leads to a new cost function expressed as:

max
(u,r)

G(u, r) = α · yawrate(r, r′d) + β · distB(u, r) + γ · vel(u, u′d)

s.t. (u, r) ∈ Vr,
(3.42)

where yawrate(r, r′d) and vel(u, u′d) are the same functions used in the cost func-
tion (3.17) in Algorithm A.

35

CHAPTER 3. MODIFICATIONS TO THE DW ALGORITHM

By choosing a significantly large c in (3.40) Algorithm B will act identically
to Algorithm A when the vehicle is outside the avoidance region. If the ASV
resides inside the avoidance region, however, the algorithm will be able to choose
a velocity pair that leads the ASV out of the region. Having a lower c allows the
algorithm to consider whether trajectories leads through the avoidance region
or towards an obstacle before the ASV is inside the avoidance region.

3.3 Algorithm C
Algorithm B introduces a way for the DW algorithm to exit the avoidance region
once entered. However, the algorithm does not consider where the trajectory
leads past the entrance of the avoidance region unless the distance function
ρ̄(u, r) is small. Furthermore, once the vehicle is inside the avoidance region the
algorithm does not consider where the trajectory leads past the exit point. To
consider the complete predicted trajectory, we introduce a new function ρC(u, r),
which returns the portion of the predicted trajectory that resides outside the
avoidance region. By discretizing the predicted trajectory into N > 0 parts the
new function ρC(u, r) is expressed as:

ρC(u, r) =
∑N
n=1

λ(u,r,n)√
n∑N

n=1
1√
n

∈ [0, 1], (3.43)

where

λ(u, r, n) =
{

0, if part n of the trajectory resides inside Ω

1, otherwise
. (3.44)

Figure 3.4 presents two examples of predicted trajectories, and how the sum-
mation in (3.43) grows along them.

To prevent Algorithm C from choosing trajectories cutting through the avoid-
ance region unnecessarily, ρ̄(u, r) is combined with ρC(u, r) and form a new
distance function distC(u, r) defined as:

distC(u, r) = κ
ρ̄(u, r)∫ T

0
∥∥χ(u, r, t)

∥∥
2 dt

+ (1− κ)ρC(u, r) ∈ [0, 1], (3.45)

where χ(u, r, t) is the predicted velocity (3.20), and κ ∈ [0, 1] is a tuning pa-
rameter deciding the weight between the distant parts ρ̄(u, r) and ρC(u, r). The
new distance function leads to a new cost function:

max
(u,r)

G(u, r) = α · yawrate(r, r′d) + β · distC(u, r) + γ · vel(u, u′d)

s.t. (u, r) ∈ Vr
, (3.46)

36

3.3. ALGORITHM C

-25 -20 -15 -10 -5 0 5 10 15 20
0

10

20

30

40

50

60

Trajectory A

Trajectory B

Enter Avoidance Region

Exit Avoidance Region

Avoidance Region

Antitarget Region

Obstacle

(a) Trajectory examples A and B.

0 5 10 15 20 25 30 35 40 45 50

i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρC , Trajectory A

ρC , Trajectory B

Trajectory A enters Ω

Trajectory A exits Ω

(b) The scaled summation from n = 1 to
n = i in (3.43) along trajectories A and B
for N = 50.

Figure 3.4: Algorithm C examples showing how (3.44) differs when the trajec-
tory is inside or outside of the avoidance region.

where yawrate(r, r′d) and vel(u, u′d) are the same functions used in the cost func-
tion (3.17) in Algorithm A.

The distance function distC(u, r) enables the algorithm to consider what lays
beyond the entrance of the avoidance region and whether a trajectory leads
out of the region. Consequently, the algorithm is less hesitant to enter the
avoidance region, compared to algorithms A and B, if the predicted trajectory
leads through the region.

37

CHAPTER 3. MODIFICATIONS TO THE DW ALGORITHM

38

Chapter 4

Hybrid COLAV Method
Using the DW Algorithm

The algorithms in Chapter 3 return promising results for the DW algorithm
as a reactive COLAV method. The algorithm is, however, a local method and
there is a significant risk that the ASV can be stuck in a local minima, which
is a sufficient motivation to use hybrid COLAV methods. Furthermore, hybrid
methods allows using deliberate algorithms and has other advantages as de-
scribed in Section 2.6.

The proposed hybrid COLAV method consists of a global method (RRT) yield-
ing a planned trajectory, and a Hybrid Dynamic Window (HDW) algorithm
being guided by the predefined trajectory.

4.1 Interface Between DW Algorithm and De-
liberate COLAV

To combine a deliberate and a reactive COLAV method, an interface between
the methods is necessary. Considering that the deliberate method is intended
to guide the reactive method, the HDW algorithm has to be motivated to fol-
low the planned path or trajectory. In algorithms A, B and C, the desired
yaw rate r′d is chosen based on LOS guidance, and the desired surge speed u′d
is set to a constant value. Following the desired velocity will cause the ASV
to smoothly converge towards the LOS path. However, it may be desirable
when guiding ASVs to allow for curved paths or trajectories from the deliber-
ate method, hence a LOS based guidance method does not hold. Note that by
using deliberate methods which generate trajectories, moving obstacles can be
avoided.

Instead of having a straight path between two waypoints, we now have a curved

39

CHAPTER 4. HYBRID COLAV METHOD USING THE DW ALGORITHM

trajectory which contains information about the complete planned vessel state
ppp(t) at any time t ≥ 0. The planned vessel state ppp(t) describes the full pose
and velocity of the vessel along the trajectory as:

ppp(t) = [xpp(t), ypp(t), ψpp(t), upp(t), vpp(t), rpp(t)]>. (4.1)

By applying an interface between the reactive method and deliberate method,
the ASV can be guided towards the trajectory using a trajectory tracking
method.

4.2 Hybrid Dynamic Window (HDW) Algorithm
The HDW algorithm is intended to select velocity pairs that follow the planned
trajectory. However, a single velocity pair may not yield a fitting trajectory since
the desired turn rate may change along the planned trajectory. To account for
this, trajectories are defined using multiple velocity pairs (2 or more). The
trajectories are generated by first making predictions based on single velocity
pair within the search space as in the original DW algorithm. By using the end
state of every predicted trajectory from the original search space, a new search
space is generated in the same way. For each new search space, new trajectory
predictions are generated based on the velocity pairs within it. This enables the
algorithm to consider trajectories where the desired surge speed and yaw rate
changes along the trajectory. Figure 4.1 illustrates the use of double velocity
pairs, where the first search space contains three velocity pairs, while the new
search space at the end of the trajectory predictions consists of five different ve-
locity pairs each. A related modification is implemented for the DW algorithm
in [29]. Lastly, the HDW algorithm will choose the optimal trajectory based on
a cost function. Note that by using multiple velocity pairs to define trajectories,
the computation load increases exponentially with the numbers of velocity pairs.

To be able to follow the planned trajectory, the cost function has to be motivated
to do so. By using an external trajectory tracker, the cost functions in DW
algorithms A, B and C can be applied directly in the hybrid COLAV method.
However, by modifying the DW algorithm, it can be used directly as a trajectory
tracker, which will make an external guidance system redundant. Two different
cost function options are proposed for use in the HDW algorithm.

4.2.1 HDW Option 1 - External Trajectory Tracker
The first HDW option has a similar structure as algorithms A, B and C. It
differs by having varying desired surge speed u′d and yaw rate r′d based on a
planned trajectory. In addition, the predicted trajectories are defined by multi-
ple velocity pairs.

40

4.2. HYBRID DYNAMIC WINDOW (HDW) ALGORITHM

Figure 4.1: HDW algorithm using double velocity pairs following a planned
trajectory.

A method for tracking curved paths is described in Section 2.2.3. The method
returns a desired surge speed ud and heading ψd based on the difference between
the ASV state p(θ) and the planned state ppp(θ), where θ is a controllable path
parameter. Since the deliberate methods in the hybrid COLAV method will
return trajectories, the path parameter is set to be equal to the time t. The
desired heading from (2.48) in the tracking method is then used in a controller
to find the desired yaw rate r′d for the DW algorithm. The control law is defined
as

r′d = −kψ(ψ − ψd) + ψ̇d, (4.2)

where kψ > 0 is a constant gain. Since the path parameter is given by time,
the path tangential speed UPP is equal to the planned speed. By rearranging
(2.42), the desired speed can be defined as:

u′d = UPP − γs
cos(χ− χt)

. (4.3)

Note that the desired speed has a singularity if the ASV course is perpendicular
to the planned trajectory course.

41

CHAPTER 4. HYBRID COLAV METHOD USING THE DW ALGORITHM

Finally, the desired velocity pair (u′d, r′d) is used in the HDW algorithm cost
function as:

max
(u,r)

G(u, r) = α · yawrate(r, r′d) + β · dist(u, r) + γ · vel(u, u′d)

s.t. (u, r) ∈ V̄r
, (4.4)

where dist(u, r) can be either one of the distance functions in DW algorithm
A, B or C, and yawrate(r, r′d) and vel(u, u′d) are defined in (3.18) and (3.21),
respectively. The search space V̄r ∈ R×R×R×R contains a sub search space
for each of the velocity pairs in (u, r), where (u, r) are sets of multiple velocity
pairs defined as:

u = {u1, . . . , uK̄}
r = {r1, . . . , rK̄}

, (4.5)

where K̄ is the amount of velocity pair used to form each predicted trajectory
in HDW.

If the velocity pair (u′d, r′d) is within the range of the search space, the pair is
added to it so that the algorithm can return the optimal trajectory.

Figure 4.2 presents an overview of the architecture of HDW option 1. The figure
shows how the trajectory tracker uses the ASV state and planned trajectory to
find the desired surge speed u′d and heading ψd.

Figure 4.2: Architecture of HDW option 1.

4.2.2 HDW Option 2 - Trajectory Alignment
The original DW algorithm and algorithms A, B and C are all dependent on an
external guidance system to follow a desired path. This is due to the functions
vel(u, r) and heading(u, r) in the original DW algorithm, and vel(u, u′d) and
yawrate(r, r′d) for algorithms A, B and C. Specifically, the functions need the
desired velocity from the guidance system as input. By replacing these functions
with a function that motivates the ASV to travel along the desired trajectory,
the need of an external guidance system is removed.

42

4.2. HYBRID DYNAMIC WINDOW (HDW) ALGORITHM

To motivate the DW algorithm to return velocity pairs leading the ASV along
the planned trajectory, a new function is introduced in the cost function. The
function returns a value based on how well the predicted trajectory of a velocity
pair aligns with the planned trajectory. The predicted trajectory of a set of
velocity pairs yields a complete vessel state prediction ppt(t) at time t along the
trajectory defined as:

ppt(t) = [xpt(t), ypt(t), ψpt(t), upt(t), vpt(t), rpt(t)]>. (4.6)

By using both the state ppp(t) along the planned trajectory and the predicted
state ppt(t) along the predicted trajectory, a comparison can be performed be-
tween the two curves. The curves are discretized into N > 0 points between the
current time t and t+tpt, where tpt is the time frame of the predicted trajectory.
Note that tpt imparts how far ahead in time the alignment function compares
the trajectories. Finally, a trajectory alignment function is defined as:

align(ppt,ppp) = ka
N

N∑
i=1

d(ppt(ti),ppp(ti)), (4.7)

where ti is expressed as:
ti = t+ i · tpt

N
, (4.8)

ka = 1 1/m to make the align function unitless, and d(ppt(ti),ppp(ti)) is the
Euclidean distance between planned and predicted state at time ti expressed as:

d(ppt(ti),ppp(ti)) =
∥∥ppp(ti)− ppt(ti)∥∥2 . (4.9)

Now, the algorithm favors velocity pairs that will lead the ASV along the
planned trajectory in the near future. Unlike HDW option 1, the algorithm
can take upcoming turns into account in the cost function. Figure 4.3 illus-
trates the distance at each value of ti in the trajectory alignment function.

Any of the distance functions (3.19), (3.41) and (3.45) in algorithms A, B and
C, respectively, can be chosen for implementing dist(u, r). Note that the dis-
tance function use the set of multiple velocity pairs (u, r) defined in (4.5). By
introducing a single tuning parameter ᾱ ∈ [0, 1], a new cost function for the
HDW algorithm can be defined as:

max
(u,r)

G(u, r) = ᾱ · dist(u, r)− (1− ᾱ) · align(ppt,ppp)

s.t. (u, r) ∈ V̄r
, (4.10)

where V̄r ∈ R×R×R×R contains a search space for each of the velocity pairs
in (u, r). The tuning parameter ᾱ sets the weighting between the obstacle dis-
tance and the trajectory alignment in the cost function. Specifically, ᾱ sets how
risk averse the ASV is when tracking the trajectory. By increasing ᾱ towards 1,
the HDW algorithm will favor avoiding the avoidance region over following the

43

CHAPTER 4. HYBRID COLAV METHOD USING THE DW ALGORITHM

0 5 10 15 20 25

East [m]

0

10

20

30

40

50

60

N
o

rt
h

 [
m

]

t
i
=1 s

t
i
=2 s

t
i
=3 s

t
i
=4 s

t
i
=5 s

t
i
=6 s

t
i
=7 s

t
i
=8 s

t
i
=9 s

t
i
=10 s

t
i
=11 s

t
i
=12 s

t
i
=1 s

t
i
=2 s

t
i
=3 s

t
i
=4 s

t
i
=5 s

t
i
=6 s

t
i
=7 s

t
i
=8 s

t
i
=9 s

t
i
=10 s

t
i
=11 s

t
i
=12 s

Planned trajectory

Predicted trajectory

Distance d(p
pp

(t
i
),p

pt
(t

i
))

Figure 4.3: Trajectory alignment for N = 12, where the trajectory prediction
time frame tpt = 12 s. The RRT algorithm generates the planned trajectory.

planned trajectory. If ᾱ = 1, the algorithm cares only about avoiding obstacles
and has no desire to follow the trajectory or reach the goal. If ᾱ = 0 on the
other hand, the algorithm will only care about following the planned trajectory
but will still only consider admissible velocity pairs.

To optimize the search space, the desired velocity pair from the external trajec-
tory tracker presented for HDW option 1 is added. Consequently, the algorithm
has the option to always choose (u′d, r′d) if the pair is within the search space
limits. An architecture overview is presented in Figure 4.4, where the optional
trajectory tracker resides inside the HDW algorithm. Unlike in HDW option 1,
the HDW algorithm takes in the complete planned trajectory directly.

When using multiple velocity pairs in the trajectory predictions, there is a
chance that first part of the trajectory aligns perfectly with the planned trajec-
tory, while the last part does not. To avoid not choosing the perfect velocity
pair, it is possible to only use the first trajectory part in the align function.
Note that how far ahead in time the trajectory prediction covers decides the
lookahead time of the align function. Hence, by only using the part of the pre-
dicted trajectory from the first velocity pair, the lookahead time is significantly

44

4.2. HYBRID DYNAMIC WINDOW (HDW) ALGORITHM

Figure 4.4: Architecture of HDW option 2.

reduced. If the trajectory prediction of the first velocity pair has a sufficiently
long lookahead time, it is reasonable to only use the first velocity pair for the
align function.

The HDW option 2 algorithm enables the use of any deliberate method that
generates a trajectory. Unlike HDW option 1, option 2 is unable to follow
time-invariant paths.

4.2.3 Comparison of HDW Options
Even though both the HDW options are suitable to apply in a hybrid COLAV
method, only one will be used for detailed testing of the method. Therefore, a
comparison is presented between the two.

The guidance of HDW option 1 is similar to the LOS guidance and can easily
be applied to previous implemented DW algorithms. For a planned trajectory
with few sudden turns, this option will smoothly converge to and stay on the
trajectory. The trajectory tracking method does, however, only take the current
planned state into account. Consequently, HDW option 1 can not react to up-
coming turns ahead of time. An overview of the pros and cons of HDW option
1 is presented in Table 4.1.

HDW option 2 compares the predicted trajectory of every velocity pair with
the planned state, and will therefore choose velocity pair based on how well the
resulting trajectory aligns with the planned trajectory. Furthermore, option 2
can receive suggestions from an external trajectory tracker but is not depen-
dent on it. Unlike the cost function of HDW option 1 which has three tuning
parameters, the cost function of option 2 consists of only one. An overview of
the pros and cons of HDW option 2 is presented in Table 4.2.

To evaluate how the HDW options perform, simulation results of the methods
tracking a planned trajectory past obstacles are presented in Figure 4.5. The
figure shows how HDW option 1 leads the ASV smoothly towards the planned
trajectory when the change of yaw rate of the planned state is low. When the
change of yaw rate is higher, the ASV overshoots more and uses some time

45

CHAPTER 4. HYBRID COLAV METHOD USING THE DW ALGORITHM

Table 4.1: Pros and cons for HDW option 1 - External trajectory tracker.

Pros Cons
Similar to previous tested DW algo-
rithms

Only consider planned state at cur-
rent time

Search space contain optimal solu-
tion

Dependent on a good external trajec-
tory tracker

Easily applicable with DW algo-
rithms

Numerous tuning parameters

Can easily be adjusted to fit path
tracking

Table 4.2: Pros and cons for HDW option 2 - Trajectory alignment.

Pros Cons
Few tuning parameters May cut turns some

Search space can get input from ex-
ternal trajectory tracker

Dependent on a good trajectory pre-
diction

Trajectory prediction is already im-
plemented for DW

Can not be applied as path tracker

Takes planned state in near future
into account

Not dependent on external trajectory
tracker

to reach back to the planned trajectory. HDW option 2 leads the ASV more
smoothly through the scenario but cuts the turns some compared to the planned
trajectory. Further details about simulations and testing are described in chap-
ters 5 and 6.

To sum up, option 2 follows the trajectory more smoothly and has a clear advan-
tage compared to option 1 by only having one tuning parameter. Furthermore,
option 2 differs more from previous tested DW algorithms and will therefore be
of more interest for further testing. Consequently, the HDW algorithm will be
based on option 2 in the final simulation results in Section 6.2.2.

46

4.2. HYBRID DYNAMIC WINDOW (HDW) ALGORITHM

0 50 100 150 200 250 300

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

ASV Trajectory Opt 1

ASV Trajectory Opt 2

Planned Trajectory

Start

Goal

Avoidance Region

Antitarget Region

Static Obstacle

Figure 4.5: Comparison of HDW options.

47

CHAPTER 4. HYBRID COLAV METHOD USING THE DW ALGORITHM

48

Chapter 5

Simulator Implementation

This chapter describes the implementation of the DW algorithms, the RRT
algorithm and the hybrid COLAV method. In addition, the chapter introduces
the ASV model used for simulations in Chapter 6.

5.1 Simulator Model
The vessel model in the simulator is based on the simplifications done in Section
2.1.3, and by the approximations done by Loe in [28]. Some parameters of the
vessel depicted in Figure 5.1 are given by [38], while most of them are estimated
properties of Viknes 830, listed in Table 5.1.

Figure 5.1: Viknes 830 [38].

49

CHAPTER 5. SIMULATOR IMPLEMENTATION

Table 5.1: Approximated parameters of Viknes 830.

Parameter Value
Length 8.52 m
Width 2.97 m
Draugth 0.82 m
m 3980 kg
Iz 19703 kg/m2

Xu −50 kg/s
X|u|u −135 kg/m
Xuuu 0 kg s/m
Yv −200 kg/s
Y|v|v −2000 kg/m
Yvvv 0 kg s/m
Nr −1281 kg m/s
N|r|r 0 kg m
Nrrr −3224 kg m s
FX,max 13100 N
FX,min −6550 N
FN,max 2580 N m
umax 10.5 m/s
δψ,max 15 ◦
δ̇ψ,max 15 ◦/s
lr 4 m
Kδψ 98.55 kg/m2 rad

The added mass Ma of the vessel is not defined, hence the added mass and
Coriolis is set to zero:

MA = 0 (5.1a)

CA = 0. (5.1b)

It is argued in [28] that neglecting the added mass is an acceptable approxima-
tion. In addition, the mass distribution of the vessel is not identified. Hence,
the inertia matrix M is simplified as

M =

m 0 0
0 m 0
0 0 Iz

 . (5.2)

The Coriolis and centripetal matrix in (2.20) can be a simplified to

C(ν) =

 0 0 −mv
0 0 mu
mv −mu 0

 . (5.3)

50

5.1. SIMULATOR MODEL

Since several of the estimated parameters in the damping matrix D(ν) is zero,
the damping matrix in (2.21) may now be written as

D(ν) =

Xu +X|u|u|u| 0 0
0 Yv + Y|v|v|v| 0
0 0 Nr +Nrrrr

2

 . (5.4)

The force X is given by the actuation from the propeller and the moment N is
the rudder moment. The lack of a propeller and rudder model in [28] causes the
yaw moment of the rudder to be independent of surge speed. Assuming inde-
pendence between yaw moment and surge speed is a very rough approximation,
and is differing from the realistic model. Hence, a rudder model is needed. To
include the rudder yaw moment dependency on the surge velocity, we propose
to include a rudder model as described in (2.15). By using the parameters listed
in Table 5.1 in (2.15), the rudder coefficient for Viknes 830 can be approximated
as:

Kδψ = FN,max
u2
maxlrδψ,max

. (5.5)

A realistic model of the propeller is dependent on the surge speed, but this has
low impact for the collision avoidance simulation. Hence, the moment in surge
is defined as:

X ∈ [FX,min, FX,max], (5.6)
where X can change instantly, hence X = FX .

The controllers of the system are selected as described in (3.26) to cancel out
the nonlinear components in surge and yaw. Hence, the force and moment
controller laws are given as

FX = (Xu +X|u|u|u|u) +m(−rv +Kpu(ud − u)) (5.7a)

FN = (Nr +Nrrrr
3) + IzKpr (rd − r), (5.7b)

where the gains Kpu and Kpr are positive constants given in Table 5.2. A
desired rudder deflection δψd is found by inserting the yaw moment controller
FN into (2.15). The desired rudder is then used as reference for a low level
proportional rudder controller. The rudder angle and angle rate is saturated by
δψ,max and δ̇ψ,max, respectively. The maximum rudder angular rate is chosen
to be δ̇ψ,max = 15 ◦/s, to make a fairly realistic model. Finally, the forces from
the rudder in the sway direction is given by

Y = lrN. (5.8)

The model used for predicting trajectories in DW algorithms A, B and C is
found by solving the Jacobian matrix N from (3.32) and use this with n(ν)
defined in (3.23) to solve for b(ν) in (3.33). The Jacobian matrix N is found
to be

N =

(Xu + 2X|u|u|u|) 1
m −r −v

r (Yv + 2Y|v|v|v|) 1
m u

0 0 (Nr + 3Nrrrr2) 1
Iz

 , (5.9)

51

CHAPTER 5. SIMULATOR IMPLEMENTATION

and n(ν) is found by solving (3.23), using the simulation model of Coriolis and
damping from (5.3) and (5.4), respectively.

5.2 Algorithm Implementations
This section gives a description of the algorithm implementations, where a step
wise summary is given for each algorithm.

5.2.1 DW Algorithms

Figure 5.2: Architecture of DW algorithms A, B and C implemented in MAT-
LAB Simulink.

The DW algorithm architecture presented in Figure 5.2 consists of a LOS guid-
ance block, a yaw controller, a DW block, a controller, and an ASV block. The
LOS block returns the desired heading ψd based on current state and goal po-
sition. The yaw controller uses ψd and the ASV state to generate the desired
yaw rate r′d, which is utilized by the DW algorithm. Further, the DW algorithm
uses the ASV state, and the desired velocity pair (u′d, r′d) to select a velocity pair
(ud, rd) for the controller. Finally, the rudder and propeller are controlled by
the dynamic controller. The Zero-Order Hold blocks set the iteration frequency
of the DW algorithm. A detailed description of the DW iteration is presented
in Algorithm 2.

Possible Velocity
To find the possible velocity Vs in (3.10) for the search space, the stationary
solutions of the ASV model (2.9) are approximated for surge speed u, yaw rate
r and sway speed v. The stationary yaw rate can be expressed as:

Nrrrr
3 +Nrr +Kδψu

2lrδψ,max = 0. (5.10)

52

5.2. ALGORITHM IMPLEMENTATIONS

Algorithm 2: DW iteration
1: rmax ← found by solving for rmax in (5.10) using current u
2: [u̇min, u̇max, ṙmin, ṙmax]← found by solving (3.6)
3: Vs ← [0, umax], [−rmax, rmax] (2.55)
4: Vd ← [u+ u̇minT, u+ u̇maxT], [r + ṙminT, r + ṙmaxT] (2.54)
5: V ← union(Vs, Vd)
6: for i = 1 to n do
7: for j = 1 to m do
8: disc V ((i− 1)n+ j)← velocity pair [u(i), r(i)] in grid(V)
9: for i = 1 to n ·m do
10: [u, r]←disc V (i)
11: for t = 1 to prediction time/timestep do
12: [x(t),y(t),ψ(t)]← predicted trajectory for [u, r] using (3.38)
13: admissible(i) ← check if velocity pair is admissible using (3.16)
14: yawrate(i)← found from (3.18)
15: dist(i) ← distance to avoidance region found by (3.19), (3.41) or

(3.45)
16: vel(i)← found from (3.21)
17: Cost(i)← α · yawrate(i) + β · dist(i) + γ · vel(i)
18: Find i s.t. Cost(i) = max(Cost) and admissible(i)
19: return disc V (i)

Table 5.2: Constant values used in simulation for algorithms A, B and C. Note
that α, β, γ, c and κ are unitless.

Constant Value Description
Kpu 1 kg/s Surge controller gain
Kpr 2 kg/rad s Yaw controller gain
∆ 200 m Lookahead distance
rT 5 m Antitarget region radius
rΩ 10 m Avoidance region radius
Ts 1 s Dynamic Window period
Ta 0.8 s Time limit for changing rudder angle when calcu-

lating the dynamic window
u′d 9.18 m/s Desired surge speed for the DW algorithms
tpt 12 s Time frame of the DW predicted trajectories
α 1 Weight of yaw rate function in the DW algorithms
β 5 Weight of distance function in the DW algorithms
γ 3 Weight of velocity function in the DW algorithms
c 2 Tuning parameter for distance function B
κ 0.5 Tuning parameter for distance function C

53

CHAPTER 5. SIMULATOR IMPLEMENTATION

The stationary surge speed can be expressed as:

1
m
FX,max + vr + 1

m
(Xuu+X|u|u|u|u) = 0. (5.11)

Lastly, the stationary sway speed can be expressed as:

(Yv + Y|v|v|v|)v +Kδψu
2δψ,max − ur = 0, (5.12)

where the parameters are listed in Table 5.2.

First, the max surge speed is found by setting r = v = 0 in (5.11) and solving
for u. Now, r is increased to a small yaw rate and the succeeding rudder angle,
surge, and sway speed are found while still applying maximum propeller throttle
FX,max. The yaw rate is step wise increased until reaching ±δψ,max, which is
at the point where the circular top of the cone shape in Figure 5.3 ends. The
bottom part of the cone shape is approximated discretely by using numerous
values of u in (5.10).

-50 -40 -30 -20 -10 0 10 20 30 40 50

Yaw Rate [deg/s]

0

1

2

3

4

5

6

7

8

9

10

S
u

rg
e

 S
p

e
e

d
 [

m
/s

]

Max δ
ψ

Max F
X

Figure 5.3: Numerical approximated set of possible velocities Vs. The green and
red line denotes stationary value when applying maximum rudder angle δψ and
maximum propeller throttle, respectively.

54

5.2. ALGORITHM IMPLEMENTATIONS

Path Tracking
The guidance system tracks a set of way points as described in Section 2.2.1,
where the LOS strategy is used to find the desired heading ψd. The lookahead
distance ∆ is a constant listed in Table 5.2. Only two waypoints are used for the
simulations in Section 6.1.2. Start and goal represents the waypoints (xk, yk)
and (xk+1, yk+1) in Section 2.2.2, respectively.

5.2.2 RRT Algorithm
The RRT algorithm is implemented considering the dynamics of the ASV model
described in Section 5.1. The tree is expanded by choosing a random state
xrand. For simplifying the connection of two states, only the ASV position
is considered in the random state xrand, hence the state returned by RAN-
DOM STATE(xgoal, ε) is expressed as:

xrand = [xrand, yrand]>, (5.13)

inspired by the implementation of RRT for ASVs in [28]. The parameter ε ∈
[0, 1] denotes the bias towards making xrand = xgoal. The closest state xnear
is then chosen based on translational and rotational distance. The function
NEAREST NEIGHBOUR(xrand,Υ) returns the existing state with minimum
value of the distance D(xi,xrand) expressed as:

D(xi,xrand) =‖xi − xrand‖ ·
(

1 +
∣∣Θ(xi,xrand)

∣∣
π

)
, (5.14)

where xi ∈ Υ is an existing state in the tree, and Θ(xi,xrand) ∈ (−π, π] is the
rotational distance from the state xi to xrand.

When a the random state xrand and the nearest neighbour xnear are found, the
desired yaw rate rd is chosen as

rd = krd
Θ(xnear,xrand)

π
· rmax(u), (5.15)

where rmax(u) > 0 is the maximum possible ASV yaw rate at surge speed u, and
krd > 0 is a tuning parameter. The desired surge speed ud is set to a constant
value listed in Table 5.3. Based on the desired velocity pair (ud, rd), a trajectory
is generated towards xrand by using the trajectory prediction functions (3.37)
and (3.38). If the trajectory is collision free and reaches xrand within a timestep
∆t, a new state xnew is generated by NEW STATE(xnear,xrand,∆t, traj)
and added to the tree Υ. If trajectory does not reach xrand within ∆t, the
state reached at time t + ∆t is added to the tree if it is collision free. Finally,
REACHED GOAL(xgoal,xnew,∆goal) is called to check if xnear is close enough
to the goal to terminate the function. If the state is close enough, the loop ends
and a trajectory Ῡ leading to goal is returned. A complete algorithm overview

55

CHAPTER 5. SIMULATOR IMPLEMENTATION

Algorithm 3: Generating RRT for ASVs
1: Υ← INIT (xinit)
2: for k = 1 to K do
3: xrand ← RANDOM STATE(xgoal, ε)
4: xnear ← NEAREST NEIGHBOUR(xrand,Υ)
5: rd ← DESIRED ROTATION (Xnear,xrand)
6: traj ← GENERATE TRAJECTORY (xrand,xnear,∆t, rd, ud)
7: xnew ← NEW STATE(xnear,xrand,∆t, traj)
8: if COLLISION FREE(xnear,xnew,∆t, traj) then
9: Υ← ADD VERTEX(xnew)
10: Υ← ADD EDGE(traj)
11: if REACHED GOAL(xgoal,xnew,∆goal) then
12: Ῡ← COMPLETE TRAJECTORY (Υ)
13: end if
14: end if
15: end for
16: return [Υ, Ῡ]

is given in Algorithm 3.

The bias ε towards the goal implemented in RANDOM STATE(xgoal, ε) greatly
improves the expected runtime of the RRT algorithm. However, setting ε too
high will decrease the RRTs ability to discover unexplored areas, and will hence
make it harder to find a way through narrow areas. Figure 5.4 presents an
example of a biased RRT.

The RRT algorithm does not consider the limited rudder angle rate, hence the
generated trajectories do not guarantee feasibility.

5.2.3 Hybrid COLAV
The hybrid COLAV method is implemented based on the HDW algorithm pre-
sented in Chapter 4. The planned path is generated by the deliberate COLAV
algorithm RRT. The HDW algorithm is implemented and tested with the ob-
stacle distance functions from both Algorithm B and Algorithm C. The HDW
algorithm is implemented with trajectory predictions of two and two velocity
pair.

The RRT algorithm generates a new trajectory at the start of every simulation
based on the initial ASV state. The trajectory is sent to the HDW algorithm,
which uses the planned trajectory as guidance. Then a discrete search space
disc V1 of velocity pair is generated based on current ASV state and surround-
ing obstacles. A predicted trajectory traj 1 is generated by using (3.38) for
every velocity pair in disc V1. The final state in every predicted trajectory is

56

5.2. ALGORITHM IMPLEMENTATIONS

-50 0 50 100 150 200 250 300

-50

0

50

100

150

200

250

300
Start

Goal

Search Paths

Chosen Path

Obstacle

Figure 5.4: Successful RRT with a bias ε = 0.1 towards goal.

now used to generate the second discrete search space disc V2.

For every velocity pair in disc V2, a new predicted trajectory traj 2 is generated.
The predicted trajectories traj 1 and traj 2 are merged into a single trajectory,
which is compared with the other predicted trajectories in the cost function
(4.10). Finally, the best trajectory is chosen based on the distance function
and align function, and the corresponding velocity pair is returned as desired
velocity. It is possible to rerun the RRT algorithm during the simulation based
on the current ASV state. The HDW algorithm is summarized in Algorithm 4.

57

CHAPTER 5. SIMULATOR IMPLEMENTATION

Algorithm 4: HDW iteration
1: Ῡ← UPDATE RRT (η,ν)
2: disc V1 ←GENERATE SEARCHSPACE(η,ν,m1, n1)
3: for i = 1 to n ·m do
4: [u1, r1]← disc V(i)
5: traj 1 ← predicted trajectory for [u1, r1] using (3.38)
6: disc V2 ←GENERATE SEARCHSPACE(ηp,νp,m2, n2)
7: for j = 1 to m2 · n2 do
8: [u2, r2]← disc V2(j)
9: traj 2 ← predicted trajectory for [u2, r2] using (3.38)
10: Trajectory(i, j)← MERGE(traj 1,traj 2)
11: disc V(i, j)← MERGE(disc V1(i),disc V2(j))
12: admissible(i)← check if velocity pair is admissible using (3.16)
13: dist ← found using (3.41) or (3.45)
14: align ← found using (4.7)
15: Cost(i, j)← ᾱ · dist− (1− ᾱ) · align, (4.10)
16: end for
17: find (i, j) s.t. Cost(i, j) = max(Cost) and admissible(i, j)
18: end for
19: return dist V(i, j)

Table 5.3: Constant values used in simulation for the hybrid COLAV method.
Note that ᾱ, c, κ and ε are unitless. The constants in the feedback linearizing
controller of the system are equal to the constants listed in Table 5.2.

Constant Value Description
∆ 200 m Lookahead distance
rT 5 m Antitarget region radius
rΩ 10 m Avoidance region radius
Ts 1 s Dynamic Window period
Ta 0.8 s Time limit for changing rudder angle when calculat-

ing the dynamic window
u′d 8.7 m/s Desired surge speed for the HDW algorithm
tpt 12 s Time frame of the DW predicted trajectories
ᾱ 0.98 Weight between the HDW align and distance function
c 2 Tuning parameter for distance function B
κ 0.5 Tuning parameter for distance function C
ε 0.15 RRT bias towards goal

58

Chapter 6

Simulation Scenarios and
Results

The simulation results are divided into two parts. First, the reactive DW algo-
rithms A, B and C are compared to each other in Section 6.1. Then in Section
6.2, Algorithm B and C are adapted to fit the HDW algorithm described in
Chapter 4, and compared to each other.

6.1 DW Algorithms
The algorithms presented in Chapter 3 are simulated in the scenarios described
in Section 6.1.1. Several performance metrics are used to evaluate the perfor-
mance metrics at the end of the section.

6.1.1 Scenarios and Performance Metrics
The scenarios used in the simulations are designed to test the performance of
the algorithms for both general and special cases. All the scenarios consist of
a path from start to goal that the ASV use for LOS guidance. In addition,
the scenarios may have both moving obstacles, which has constant speed and
heading, and static obstacles shaped as polygons. If the ASV enters the antitar-
get region of an obstacle, the simulation assumes it to be a collision. Although
most scenarios are fictionally designed to challenge the algorithms, Scenario 7
is inspired by an actual trafficked area to show that the challenging simulation
scenarios can be realistic. The scenario is based on the narrow ferry passage
around the island Bleikja in Hardangerfjorden. The different scenarios are de-
scribed in Table 6.1.

The size of the avoidance region rΩ and antitarget region rT used in the sce-
narios are listed in Table 5.2, where rT is equal to the estimated radius of the

59

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Table 6.1: Overview of simulation scenarios.

Scenario Type Description
1 Semi-challenging To test multitasking with path tracking

and collision avoidance, the initial head-
ing leads away from the LOS path. The
ASV will now have a significantly large
yaw rate when approaching the obsta-
cles.

2 Narrow paths The start position is inside a narrow en-
vironment, which the ASV must maneu-
ver through to reach the goal. This chal-
lenges the accuracy of the trajectory pre-
diction and will force the ASV to come
close to or enter the avoidance region.

3 Unexpected obstacle To test the algorithms for unexpected ob-
stacles, the ASV starts heading directly
towards a close object.

4 Moving obstacle To test the ability to avoid moving ob-
stacles, a moving obstacle that interferes
with the path is added to a scenario com-
parable to Scenario 3.

5 Avoidance trap A trap is used to test if the avoidance
region may lead to bad decisions in some
scenarios. In addition, a narrow trap is
introduced.

6 Distance blinding The ASV is initiated inside the avoidance
region with an oncoming obstacle. This
challenges the algorithms ability to exit
the avoidance region or avoid moving ob-
stacles while being inside the avoidance
region.

7 Narrow passage A narrow passage with an oncoming ob-
stacle is introduced, inspired by a ferry
passage around the island Bleikja in
Hardangerfjorden. This demonstrates
how the challenges in the scenarios can
be found in realistic situations.

60

6.1. DW ALGORITHMS

vessel footprint and rΩ is chosen as rΩ = 10 m.

To be able to compare the performance of the algorithms, performance metrics
are introduced based on energy consumption, change of control input, and dis-
tance from obstacles along the travelled path.

A control input τ̄(t) is computed as:

τ̄(t) =
√
X(t)2 +N(t)2, (6.1)

where X(t) and N(t) is the propeller and rudder throttle, respectively. Given
this signal, the integral of absolute differentiated control (IADC), previously
used in [14], can be defined as:

IADC(t) =
∫ t

0

∣∣ ˙̄τ(σ)
∣∣ dσ, (6.2)

which penalizes the actuator wear and tear.

The energy consumption of the ASV is used as a performance metric expressed
as:

W (t) =
∫ t

0
P (σ)dσ, (6.3)

where T is the total runtime and P (σ) is the force applied by the engine and
rudder expressed as:

P (t) = τ (t) · ν(t). (6.4)
The integral of the distance inside the avoidance region (IDI) is expressed as:

IDI(t) =
∫ T

0
λ̄(σ)dσ, (6.5)

where λ̄(σ) is defined as:

λ̄(t) =
{

1− DT (t)
rΩ−rT

, if DT < rΩ − rT

0, otherwise
, (6.6)

which gives the distance inside the avoidance region Ω if DT < rΩ − rT is
satisfied, where DT (t) is the distance from the ASV to the closest point in the
antitarget region T . The metric penalizes staying inside the avoidance region
over time and how far inside the avoidance region the ASV is.

The minimum distance Dmin to the antitarget region in the time frame [0, T] is
expressed as:

Dmin = min
t

DT (t), t ∈ [0, T], (6.7)

and is used as a performance metric penalizing the shortest distance from col-
liding through the complete run.

61

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Change of control input IADC, energy consumption E, and distance inside
avoidance region IDI are desired to be as low as possible, while the minimum
distance to obstacles Dmin is desired to be high. Considering that the algorithm
is local, non-optimal, and used as a COLAV algorithm, the minimum distance
and the distance inside avoidance region are weighted the most when considering
the algorithm performance. The metrics are used as a guide towards a final
evaluation of the algorithm performance.

6.1.2 Results

Scenario 1
All the algorithms in Scenario 1 are able to guide the ASV to the goal while stay-
ing clear of the avoidance region. As seen in Figure 6.1, starting with a heading
away from the LOS path does not cause any problems for the algorithms. As
expected algorithms A and B tend to behave identically when not being close to
entering or inside the avoidance region. Algorithm C follows almost the same
path as algorithms A and B, but the trajectory plot and measurement metrics
in figures 6.1 and 6.2 show that it differs slightly from the other algorithms.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

ASV Trajectory A

ASV Trajectory B

ASV Trajectory C

Start

Goal

Goal-Start

Avoidance Region

Antitarget Region

Figure 6.1: Scenario 1 - DW algorithms A, B and C.

62

6.1. DW ALGORITHMS

0 5 10 15 20 25 30 35 40 45

Time [s]

0

20

40

60

80

100

120

140

160

180

200

D
is

ta
n

c
e

 t
o

 a
n

ti
ta

rg
e

t
re

g
io

n
 [

m
]

DW A

DW B

DW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×106

(d) W(t)

Figure 6.2: Scenario 1 - Performance metrics. The blue, green and red lines
denote the DW algorithms A, B, and C, respectively.

63

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 2
In this scenario, all the algorithms are forced to travel through a narrow pas-
sage. As seen in Figure 6.3, algorithm A is blinded by the avoidance region
and chooses the admissible trajectory closest to the desired yaw rate r′d given
by the guidance system. This causes the ASV to travel as close as possible to
the antitarget region without colliding but does not collide due to the admissi-
ble constraint in the search space. Algorithm B is smoothly travelling through
the passage and keeps a relatively good distance to the antitarget. Algorithm
C stays almost clear of the avoidance region at the cost of a small overshoot
when turning around the obstacle. Algorithm B and C keep approximately
equally distances from the obstacles, but Figure 6.4c shows that Algorithm B
had a significant higher IADC value. Considering how the distance Algorithm
B changes behaviour when being close to the avoidance region, it is reasonable
that it causes a greater change in the control inputs.

The minimum distance Dmin between the ASV and the antitarget region for
the different algorithms is 0.11, 3.97 and 3.50 meters for algorithms A, B and
C, respectively. The distance of Algorithm A is unacceptable, while algorithms
B and C are acceptable considering the narrow passage.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

ASV Trajectory A

ASV Trajectory B

ASV Trajectory C

Start

Goal

Goal-Start

Avoidance Region

Antitarget Region

Figure 6.3: Scenario 2 - DW algorithms A, B and C.

64

6.1. DW ALGORITHMS

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

20

40

60

80

100

120

140

D
is

ta
n

c
e

 t
o

 a
n

ti
ta

rg
e

t
re

g
io

n
 [

m
]

DW A

DW B

DW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

1

2

3

4

5

6

×106

(d) W(t)

Figure 6.4: Scenario 2 - Performance metrics. The blue, green and red lines
denote the DW algorithms A, B, and C, respectively.

65

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 3
In Scenario 3, the ASV directly approaches an obstacle at the start but this does
not cause difficulties for the algorithms. The algorithms barely cut through
the avoidance region when passing around the corner of the obstacles. This
is probably caused by the collision check along the predicted trajectory being
discrete. The results are presented in Figure 6.5 and the associated performances
are presented in Figure 6.6. Algorithms A and B has once again identical
trajectories, while Algorithm C has a slightly smoother one.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

ASV Trajectory A

ASV Trajectory B

ASV Trajectory C

Start

Goal

Goal-Start

Avoidance Region

Antitarget Region

Figure 6.5: Scenario 3 - DW algorithms A, B and C.

66

6.1. DW ALGORITHMS

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

50

100

150

D
is

ta
n

c
e

 t
o

 a
n

ti
ta

rg
e

t
re

g
io

n
 [

m
]

DW A

DW B

DW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.05

0.1

0.15

0.2

0.25

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

1

2

3

4

5

6

×106

(d) W(t)

Figure 6.6: Scenario 3 - Performance metrics. The blue, green and red lines
denote the DW algorithms A, B, and C, respectively.

67

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 4
All the algorithms are successfully able to avoid the moving obstacle in Scenario
4. As seen in Figure 6.7, all algorithms behave identically. At time t = 23s the
figure shows how the ASVs barely avoid the avoidance region of the moving
obstacle, which demonstrates the precision of the trajectory prediction.

0 50 100 150 200 250 300

East [m]

0

50

100

150

200

250

300

N
o

rt
h

 [
m

]

t=5 s

t=5 s

t=16 s

t=16 s

t=23 s

t=23 s

t=32 s

t=32 s

ASV A

ASV B

ASV C

Start

Goal

Avoidance Region

Antitarget Region

Moving Obstacle

Figure 6.7: Scenario 4 - Snapshots at time 5, 16, 23 and 32.

68

6.1. DW ALGORITHMS

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

20

40

60

80

100

120

140

D
is

ta
n

c
e

 t
o

 a
n

ti
ta

rg
e

t
re

g
io

n
 [

m
]

DW A

DW B

DW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

1

2

3

4

5

6

×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×106

(d) W(t)

Figure 6.8: Scenario 4 - Performance metrics. The blue, green and red lines
denote the DW algorithms A, B, and C, respectively.

69

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 5
The advantage of Algorithm C being able to consider the trajectories past the
avoidance region is clearly highlighted in this scenario. The ASV is initiated
at a path leading directly to the goal. However, the avoidance region is barely
touching the path, making algorithms A and B choose any other option in the
immediate surroundings where the avoidance region is absent. The path chosen
by the algorithms could be a dead end trapping the ASV. Algorithm C weights
the portion of the trajectory that resides inside the avoidance region, hence the
algorithm does not change direction due to barely sensing the avoidance region.
The results are presented in Figure 6.9.

Figure 6.10a presents how close algorithms A and B are to the antitarget region.
The minimum distance between the ASV and the antitarget region are for the
different algorithms [Dmin,A, Dmin,B , Dmin,C] = [0.4, 0.11, 5.1] and display the
dominance of Algorithm C in this scenario.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o
rt

h
 [
m

]

ASV Trajectory A

ASV Trajectory B

ASV Trajectory C

Start

Goal

Goal-Start

Avoidance Region

Antitarget Region

Figure 6.9: Scenario 5 - DW algorithms A, B and C.

70

6.1. DW ALGORITHMS

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

20

40

60

80

100

120

140

160

180

D
is

ta
n

c
e

 t
o

 a
n

ti
ta

rg
e

t
re

g
io

n
 [

m
]

DW A

DW B

DW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

1

2

3

4

5

6

×106

(d) W(t)

Figure 6.10: Scenario 5 - Performance metrics. The blue, green and red lines
denote the DW algorithms A, B, and C, respectively.

71

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 6
In Scenario 6, the ASV is initiated inside the avoidance region. As Figure 6.11
shows, algorithms B and C exit the avoidance region easily at the start. Once
the ASV is outside the avoidance region, avoiding the approaching obstacle is a
simple task for the algorithms. Algorithm A is, however, stuck in the avoidance
region and is therefore not able to avoid the approaching obstacle. Algorithms
B and C keep the ASV at an approximately equal minimum distance from the
moving obstacle, although Algorithm C follows a smoother trajectory as Figure
6.12c illustrates.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

t=3 s

t=3 s

t=11 s

t=11 s

t=18 s

t=18 s

ASV A

ASV B

ASV C

Start

Goal

Avoidance Region

Antitarget Region

Moving Obstacle

Figure 6.11: Scenario 6 with moving obstacles - Snapshots at time 3, 11 and 18.

72

6.1. DW ALGORITHMS

0 5 10 15 20 25 30 35 40 45

Time [s]

-20

0

20

40

60

80

100

D
is

ta
n

c
e

 t
o

 a
n

ti
ta

rg
e

t
re

g
io

n
 [

m
]

DW A

DW B

DW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

1

2

3

4

5

6

7

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

1

2

3

4

5

6

×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×106

(d) W(t)

Figure 6.12: Scenario 6 - Performance metrics. The blue, green and red lines
denote the DW algorithms A, B, and C, respectively.

73

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 7
Scenario 7 is inspired by a narrow ferry passage in Hardangerfjorden. If the
ASV does not encounter a moving obstacle (ferry), it has no problem moving
through the passage, as seen in Figure 6.13. However, Figure 6.14 demonstrates
how a moving obstacle coming in the opposite direction causes problems if the
ASV is trying to pass at the same time. At time t = 11s, Algorithm A is in
the same state as Algorithm B. However, Algorithm A is unable to consider
the trajectories past the first entrance of the avoidance region, and is therefore
unable to choose the trajectories avoiding the obstacle, as seen at time t = 17s.
When using Algorithm B, the ASV encounters the moving obstacle in the same
state as when using Algorithm A but is able to choose a trajectory leading out of
the avoidance region. Algorithm C does not have to be close to the obstacle to
consider the trajectories past the avoidance region, and can early choose a path
that stays clear of the moving obstacle, at the risk of entering the avoidance
region of another obstacle.

The scenario without moving obstacles is an easy challenge for the algorithms,
although it should once again be noted how the algorithms behave identically
when the ASV keeps some distance to the avoidance region. The minimum dis-
tances for the ASV in the scenario with moving obstacles are [Dmin,A, Dmin,B ,
Dmin,C] = [0, 0.7, 5.3], which shows that Algorithm B leads the ASV danger-
ously close to the antitarget region.

0 50 100 150 200 250

East [m]

-50

0

50

100

150

200

N
o

rt
h

 [
m

]

ASV Trajectory A

ASV Trajectory B

ASV Trajectory C

Start

Goal

Goal-Start

Avoidance Region

Antitarget Region

Figure 6.13: Scenario 7 - DW algorithms A, B and C.

74

6.1. DW ALGORITHMS

0 50 100 150 200 250

East [m]

-50

0

50

100

150

N
o

rt
h

 [
m

]

t=4 s

t=4 s

t=11 s t=11 s

t=19 s

t=19 s

ASV A

ASV B

ASV C

Start

Goal

Avoidance Region

Antitarget Region

Moving Obstacle

Figure 6.14: Scenario 7 with moving obstacles - Snapshots at time 4, 11 and 19.

75

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

0 5 10 15 20 25 30

Time [s]

0

20

40

60

80

100

120

D
is

ta
n

c
e

 t
o

 a
n

ti
ta

rg
e

t
re

g
io

n
 [

m
]

DW A

DW B

DW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) IDI(t)

0 5 10 15 20 25 30 35

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×104

(c) IADC(t)

0 5 10 15 20 25 30 35

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

×106

(d) W(t)

Figure 6.15: Scenario 7 - Performance metrics. The blue, green and red lines
denote the DW algorithms A, B, and C, respectively.

76

6.1. DW ALGORITHMS

Summary of Results
The simulation results presented in this section are evaluated based on the
performance metrics described in Section 6.1.1, and by qualitatively evaluating
the ASV trajectories. A complete overview of the performance metrics at the
end of each simulation is given in Table 6.2.

Table 6.2: Performance metric values of DW algorithms A, B and C at simula-
tion end time T . The bold values represent the best performance in each metric
for every scenario. If the list does not show results for an algorithm, it indicates
that the algorithm collided.

Scenario Algorithm Dmin IDI IADC W

1 A 5.4 0 2.0 · 104 4.8 · 106

B 5.4 0 2.0 · 104 4.8 · 106

C 5.8 0 1.8 · 104 4.8 · 106

2 A 0.1 1.8 4.4 · 104 4.9 · 106

B 4.0 0.2 4.4 · 104 4.8 · 106

C 3.5 0.2 4.0 · 104 5.0 · 106

3 A 3.6 0.2 4.9 · 104 5.0 · 106

B 3.6 0.2 4.9 · 104 5.0 · 106

C 4.3 0.1 4.8 · 104 5.0 · 106

4 A 4.5 0.0 5.4 · 104 5.0 · 106

B 4.5 0.0 5.4 · 104 5.0 · 106

C 4.5 0.0 5.4 · 104 5.0 · 106

5 A 0.4 2.3 4.4 · 104 5.1 · 106

B 0.1 2.4 4.4 · 104 5.1 · 106

C 5.1 0 3.7 · 104 4.6 · 106

6 A - - - -
B 2.7 1.3 5.7 · 104 4.8 · 106

C 2.7 1.7 4.5 · 104 4.8 · 106

7 A 6.0 0 3.3 · 104 3.5 · 106

B 6.0 0 3.3 · 104 3.5 · 106

C 6.0 0 3.3 · 104 3.5 · 106

7 mov A - - - -
B 0.7 0.8 4.5 · 104 3.6 · 106

C 5.0 0 4.2 · 104 3.6 · 106

Based on the performance metrics and qualitatively evaluation, Table 6.3 is
formed to give an overview of the simulation results where every algorithm in
every scenario is rated as either collided, bad, good or perfect. A result is
marked as collided if the ASV enters the antitarget region T . A path leading
to the goal, but barely avoiding a collision is marked as bad, while good and

77

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Table 6.3: Overview of simulation results for DW algorithms. Results are rated
as either collided, bad, good or perfect.

Scenario Algorithm A Algorithm B Algorithm C
1 Perfect Perfect Perfect

2 Bad Perfect Perfect

3 Good Good Good

4 mov Good Good Good

5 Bad Bad Perfect

6 mov Collided Perfect Perfect

7 Perfect Perfect Perfect

7 mov Collided Bad Perfect

perfect denotes increasing performances in the same order.

Considering that Algorithm B always performs equally or better than Algo-
rithm A, Algorithm B is the optimal choice between the two algorithms. This
is emphasized by the fact that choosing a high tuning parameter c in (3.40) for
Algorithm B causes the behaviour outside the avoidance region to be identical
to Algorithm A, but motivates the ASV to exit the avoidance region if entered.
Note that Algorithm B consistently returns a higher or equal IADC value than
Algorithm C. This is reasonable considering that the cost function in Algorithm
B changes behaviour when going close to or inside the avoidance region.

Algorithm C scores significantly better on the metric performance compared to
the other algorithms. Furthermore, the algorithm delivers good results consis-
tently, which is a major deal breaker for COLAV algorithms considering the
potential cost of a collision. Algorithm C is less hesitant to travel through the
avoidance region compared to the other algorithms. Although this may seem
like a bad property for a COLAV algorithm, the algorithm is only less hesitant
to go through the avoidance region if the predicted trajectory leads out of it
again. Hence, if the trajectory going into the avoidance region does not lead
out again, Algorithm C is just as cautious about entering the region as the other
algorithms. This trait appears valuable if the algorithm is merged with a delib-
erate COLAV method leading the ASV safely through the avoidance region to
avoid collisions.

78

6.1. DW ALGORITHMS

Based on the simulation results in the scenarios, Algorithm C is the superior
among the tested algorithms. Both algorithms B and C will, however, be tested
as part of a hybrid COLAV method in Section 6.2.

Algorithms B and C are introduced to cope with the weaknesses of Algorithm
A. Clearly, both algorithms B and C are superior to Algorithm A in the tested
scenario, especially when operating close to or inside the avoidance region.

79

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

6.2 Hybrid COLAV
This section presents simulation results of the hybrid COLAV method with RRT
+ HDW introduced in Chapter 4. The simulations include a few additional
scenarios and performance metrics compared to the reactive DW simulations.

6.2.1 Scenarios and Performance Metrics
In addition to the scenarios used in Section 6.1.1, two new scenarios are in-
troduced for testing the HDW algorithm. A description of the scenarios are
presented in Table 6.4.

Table 6.4: Overview of simulation scenarios for the HDW algorithm.

Scenario Type Description
8 Unknown dynamic obstacle A moving obstacle unknown to

the RRT algorithm is introduced.
Hence, the reactive algorithm is
forced to guide the ASV out of
collision, which may lead it far
from the planned path.

9 Local minima Scenario 9 is introduced solely to
show the advantage of a deliberate
method compared to a reactive
method for avoiding local minima.

Considering that the hybrid method consists of a deliberate method generating
a planned trajectory and a reactive method guided by it, an error e(t) ≥ 0 is
introduced as:

e(t) =
∥∥xd(t)− x(t)

∥∥ , (6.8)
where x(t) denotes the position of the ASV, and xd(t) denotes the desired
position of the ASV at time t. The integral of the absolute error (IAE) used in
[35] is then used as a performance metric expressed as:

IAE(t) =
∫ t

0

∣∣e(σ)
∣∣ dσ. (6.9)

The IAE(t) metric displays the absolute value of the error e(t) during the sim-
ulations.

6.2.2 Results
The HDW algorithm is tested with the distance function from Algorithm B and
Algorithm C. In addition, the HDW algorithm is tested with ᾱ = 0 so that

80

6.2. HYBRID COLAV

only the trajectory alignment (TA) function is weighted, and will be denoted
HDW TA in the simulation results. When ᾱ = 0, the algorithm cares only
about following the planned trajectory but will only select velocity pair that
lies within the search space. This can be compared to a global algorithm using
a trajectory tracker that only chooses velocity pairs that do not directly lead to
collisions. The planned trajectory used in the simulations are generated by the
RRT algorithm.

The main goal is to test the HDW algorithm ability to work as a trajectory
tracker while avoiding collisions.

81

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 1
Scenario 1 ensures that the ASV has a nonzero yaw rate when approaching
the obstacles. The RRT algorithm generates a planned trajectory which turns
smoothly around the obstacles and causes the ASV not to approach the obsta-
cles. The algorithms have slightly different behaviours as presented in figures
6.16 and 6.17, but they are all able to follow the planned trajectory.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

ASV Trajectory TA

ASV Trajectory B

ASV Trajectory C

Planned path

Start

Goal

Avoidance Region

Antitarget Region

Figure 6.16: Scenario 1 - Hybrid method with RRT + HDW.

82

6.2. HYBRID COLAV

0 5 10 15 20 25 30 35 40 45 50

Time [s]

20

40

60

80

100

120

140

160

180

200

D
is

ta
n

c
e

 [
m

]

HDW TA

HDW B

HDW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) IDI(t)

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

×106

(d) W(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

5

10

15

20

25

30

35

40

45

(e) IAE(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

e
(t

)
[m

]

(f) e(t)

Figure 6.17: Scenario 1 - Performance metrics. The blue, green and red lines
denote the HDW algorithms TA, B, and C, respectively.

83

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 2
In Scenario 2, the planned trajectory is turning right away to dodge the narrow
path. The prediction seems to overestimate the responsiveness of the ASV yaw
rate, which causes the ASV to get an overshoot in the turn. This overshoot leads
close to the avoidance region, hence HDW B and HDW C favor dodging the
avoidance region over following the planned trajectory as seen in Figure 6.18.
HDW TA cares only about following the planned trajectory and cuts through
the avoidance region, which causes it to enter the antitarget region and collide.

Although HDW B and HDW C falls far behind from the planned trajectory,
Figure 6.19f shows that the vehicle is able to catch up with the trajectory.
Finally, HDW B and HDW C avoids the avoidance region and are able to catch
up with the planned trajectory, while HDW TA enters the antitarget region.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

ASV Trajectory TA

ASV Trajectory B

ASV Trajectory C

Planned path

Start

Goal

Avoidance Region

Antitarget Region

Figure 6.18: Scenario 2 - Hybrid method with RRT + HDW.

84

6.2. HYBRID COLAV

0 10 20 30 40 50

Time [s]

0

20

40

60

80

100

120

140

D
is

ta
n

c
e

 [
m

]

HDW TA

HDW B

HDW C

Avoidance Region

(a) DT (t)

0 10 20 30 40 50 60

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) IDI(t)

0 10 20 30 40 50 60

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×104

(c) IADC(t)

0 10 20 30 40 50 60

Time [s]

0

1

2

3

4

5

6

×106

(d) W(t)

0 10 20 30 40 50 60

Time [s]

0

20

40

60

80

100

120

(e) IAE(t)

0 10 20 30 40 50 60

Time [s]

0

1

2

3

4

5

6

7

8

e
(t

)
[m

]

(f) e(t)

Figure 6.19: Scenario 2 - Performance metrics. The blue, green and red lines
denote the HDW algorithms TA, B, and C, respectively.

85

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 3
Scenario 3 challenges the algorithms by making the ASV initiate heading directly
towards an obstacle. The planned trajectory turns immediately and overesti-
mates the responsiveness of the ASV yaw rate. Besides from this, all algorithms
leads the ASV safe around the obstacles. Figures 6.20 and 6.21 shows that HDW
algorithms B and C yield identical results and are able to follow the planned
trajectory. HDW TA has a similar trajectory but differs slightly from the other
ASVs.

0 50 100 150 200 250 300

East [m]

0

50

100

150

200

250

300

N
o

rt
h

 [
m

]

ASV Trajectory TA

ASV Trajectory B

ASV Trajectory C

Planned path

Start

Goal

Avoidance Region

Antitarget Region

Figure 6.20: Scenario 3 - Hybrid method with RRT + HDW.

86

6.2. HYBRID COLAV

0 10 20 30 40 50 60

Time [s]

0

20

40

60

80

100

120

140

D
is

ta
n

c
e

 [
m

]

HDW TA

HDW B

HDW C

Avoidance Region

(a) DT (t)

0 10 20 30 40 50 60

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) IDI(t)

0 10 20 30 40 50 60

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×104

(c) IADC(t)

0 10 20 30 40 50 60

Time [s]

0

1

2

3

4

5

6

×106

(d) W(t)

0 10 20 30 40 50 60

Time [s]

0

10

20

30

40

50

60

70

80

90

100

(e) IAE(t)

0 10 20 30 40 50 60

Time [s]

0

1

2

3

4

5

6

7

e
(t

)
[m

]

(f) e(t)

Figure 6.21: Scenario 3 - Performance metrics. The blue, green and red lines
denote the HDW algorithms TA, B, and C, respectively.

87

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 4
Scenario 4 introduces a moving obstacle which crosses the path between start
and goal. The RRT algorithm is able to generate a trajectory that avoids the
obstacle. After the overshoot in the first turn in Figure 6.22, all algorithms are
able to follow the planned trajectory. The planned trajectory leads through the
avoidance region of both the moving and the static obstacle. HDW TA is led
through the avoidance region both places, which Figure 6.23b confirms. HDW
B and HDW C barely enter the avoidance region of the moving obstacle.

0 50 100 150 200 250 300

East [m]

0

50

100

150

200

250

300

N
o

rt
h

 [
m

]

t=5 s
t=5 s

t=16 s

t=16 s

t=22 s
t=22 s

t=30 st=30 s ASV TA

ASV B

ASV C

Planned Path

Start

Goal

Avoidance Region

Antitarget Region

Moving Obstacle

Figure 6.22: Scenario 4 - Hybrid method with RRT + HDW.

88

6.2. HYBRID COLAV

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

20

40

60

80

100

120

140

D
is

ta
n

c
e

 [
m

]

HDW TA

HDW B

HDW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

×106

(d) W(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

10

20

30

40

50

60

70

80

(e) IAE(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

1

2

3

4

5

6

7

e
(t

)
[m

]

(f) e(t)

Figure 6.23: Scenario 4 - Performance metrics. The blue, green and red lines
denote the HDW algorithms TA, B, and C, respectively.

89

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 5
The reactive algorithms A and B had problems evaluating trajectories past
the avoidance region in Scenario 5 in Section 6.1.2. When using the hybrid
COLAV method with RRT and HDW, all the algorithms are able to follow
the planned trajectory and avoid going through the narrow path. By looking
closely on Figure 6.24, we can see that HDW TA slightly crosses the avoidance
region, which is confirmed in the metrics in Figure 6.25. HDW B and HDW C
avoids touching the avoidance region at the cost of a higher value of IADC. The
ASV behaviour varies early in the simulation due to planned trajectory crossing
through the avoidance region.

-50 0 50 100 150 200 250 300

East [m]

-50

0

50

100

150

200

250

300

N
o

rt
h

 [
m

]

ASV Trajectory TA

ASV Trajectory B

ASV Trajectory C

Planned path

Start

Goal

Avoidance Region

Antitarget Region

Figure 6.24: Scenario 5 - Hybrid method with RRT + HDW.

90

6.2. HYBRID COLAV

0 5 10 15 20 25 30 35 40 45

Time [s]

0

20

40

60

80

100

120

140

160

180

D
is

ta
n

c
e

 [
m

]

HDW TA

HDW B

HDW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

×10-3

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.5

1

1.5

2

2.5

×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

×106

(d) W(t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

5

10

15

20

25

30

(e) IAE(t)

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

e
(t

)
[m

]

(f) e(t)

Figure 6.25: Scenario 5 - Performance metrics. The blue, green and red lines
denote the HDW algorithms TA, B, and C, respectively.

91

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 6
In this scenario, the ASV initiates inside the avoidance region with an oncoming
moving obstacle. Both HDW B and HDW C is led out of the avoidance region,
away from the planned trajectory. Distance function B is more motivated to
leave the avoidance region quickly than distance function C, and is therefore
moving further out of the avoidance region. This comes at the cost of travelling
further away from the planned trajectory, compared to HDW C and HDW TA.

Figure 6.26 presents snapshots at different times in the simulation and shows
that HDW TA is close to the antitarget region of the moving obstacle. Figure
6.27b confirms that HDW TA is inside the avoidance region around time t =
18s. The HDW function is equally good at avoiding the moving obstacle when
using either distance function B or C. Distance function C does, however, follow
the planned trajectory more smoothly after exiting the avoidance region in the
beginning and is hence the more favorable in this scenario.

-50 0 50 100 150 200 250 300

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

t=3 s

t=3 s

t=10 s

t=10 s

t=18 s

t=18 s

ASV TA

ASV B

ASV C

Planned Path

Start

Goal

Avoidance Region

Antitarget Region

Moving Obstacle

Figure 6.26: Scenario 6 - Hybrid method with RRT + HDW.

92

6.2. HYBRID COLAV

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

20

40

60

80

100

120

D
is

ta
n

c
e

 [
m

]

HDW TA

HDW B

HDW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

1

2

3

4

5

6

×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×106

(d) W(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

10

20

30

40

50

60

70

(e) IAE(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

e
(t

)
[m

]

(f) e(t)

Figure 6.27: Scenario 6 - Performance metrics. The blue, green and red lines
denote the HDW algorithms TA, B, and C, respectively.

93

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 7
The RRT algorithm generates a path through Scenario 7 that leads the ASV
through the avoidance region, close to both a static and a dynamic obstacle.
HDW B leaves the planned trajectory to avoid entering the avoidance region,
but once the ASV is close to the avoidance region HDW B can see a path lead-
ing trough the region. This leads HDW B closer to the planned trajectory but
causes it to almost enter the antitarget region. HDW C and HDW TA follows
the trajectory at the cost of touching the avoidance region. Considering that
HDW B almost enters the antitarget region, the performance is bad. In addition,
HDW B is never able to fully catch up with the planned trajectory. Algorithm
C is less hesitant to enter the avoidance region if the path leads through it,
which is illustrated in the results in Figure 6.28. Figure 6.29b shows how HDW
TA enters deeper into the avoidance region than HDW C.

To sum up, HDW C avoids the avoidance region as much as possible while still
being able to follow the planned trajectory, hence it performs better than the
other algorithms.

0 50 100 150 200 250

East [m]

-50

0

50

100

150

N
o

rt
h

 [
m

]

t=3 s

t=3 s

t=9 s

t=9 s
t=16 s

t=16 s
ASV TA

ASV B

ASV C

Planned Path

Start

Goal

Avoidance Region

Antitarget Region

Moving Obstacle

Figure 6.28: Scenario 7 - Hybrid method with RRT + HDW.

94

6.2. HYBRID COLAV

0 5 10 15 20 25 30 35 40

Time [s]

0

20

40

60

80

100

120

140

D
is

ta
n

c
e

 [
m

]

HDW TA

HDW B

HDW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40

Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

(b) IDI(t)

0 5 10 15 20 25 30 35 40

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4
×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

×106

(d) W(t)

0 5 10 15 20 25 30 35 40

Time [s]

0

100

200

300

400

500

600

(e) IAE(t)

0 5 10 15 20 25 30 35 40

Time [s]

0

5

10

15

20

25

30

35

e
(t

)
[m

]

(f) e(t)

Figure 6.29: Scenario 7 - Performance metrics. The blue, green and red lines
denote the HDW algorithms TA, B, and C, respectively.

95

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 8
In Scenario 8, the RRT algorithm is unaware of the moving obstacle, and will
therefore lead straight into it. This forces the reactive algorithm to lead the
ASV away from the planned trajectory and makes HDW B and HDW C unable
to follow it. Even though the ASV is lead away from the planned trajectory, it
is able to reach the goal. If the path around the obstacle had been too long, the
algorithm would maybe need to create a new planned trajectory by running the
RRT algorithm an additional time.

While HDW B and HDW C are able to avoid the obstacle, HDW TA only cares
about following admissible paths and the planned trajectory, which in this case
is not sufficient to avoid a collision.

-100 -50 0 50 100 150 200 250 300

East [m]

-50

0

50

100

150

200

250

300

N
o

rt
h

 [
m

]

t=4 s

t=4 s

t=12 s

t=12 s

t=22 s

t=22 s

ASV T

ASV B

ASV C

Planned Path

Avoidance Region

Antitarget Region

Moving Obstacle

Figure 6.30: Scenario 8 - Hybrid method with RRT + HDW.

96

6.2. HYBRID COLAV

0 5 10 15 20 25 30 35 40 45

Time [s]

0

5

10

15

20

25

30

35

40

45

50

D
is

ta
n

c
e

 [
m

]

HDW TA

HDW B

HDW C

Avoidance Region

(a) DT (t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(b) IDI(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5
×104

(c) IADC(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

×106

(d) W(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

100

200

300

400

500

600

700

800

900

1000

(e) IAE(t)

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

5

10

15

20

25

30

35

40

45

e
(t

)
[m

]

(f) e(t)

Figure 6.31: Scenario 8 - Performance metrics. HDW TA stops at 22 seconds
due to collision. The blue, green and red lines denote the HDW algorithms TA,
B, and C, respectively.

97

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Scenario 9
This scenario demonstrates how the ASV easily can be trapped in a local min-
ima and stopping when only using a reactive algorithm. The ASV using HDW
+ RRT algorithm is easily avoiding the local minima and reaches the goal, while
the ASV using only DW algorithm gets stuck as seen in Figure 6.32. These re-
sults are expected based on the properties of deliberate and reactive methods
but are included to underline the need for a hybrid method.

Considering this scenario is solely used to illustrate a reactive method being
method getting stuck in a local minima, no further performance evaluations are
done.

0 50 100 150 200 250 300

East [m]

0

50

100

150

200

250

300

N
o

rt
h

 [
m

]

ASV Trajectory DW

ASV Trajectory HDW

Start

Goal

Avoidance Region

Antitarget Region

Static Obstacle

Figure 6.32: Scenario 9 - DW vs HDW + RRT.

98

6.2. HYBRID COLAV

Summary of Results

The simulation results presented in this section are evaluated based on the
performance metrics described in sections 6.1.1 and 6.2.1, and by qualitatively
evaluating the ASV trajectories. A complete overview of the performance met-
rics at the end of each simulation is listed in Table 6.5. Although a hybrid
COLAV method controls the ASVs in the simulations, the evaluation focus is
on the HDW ability to avoid obstacles and to follow the planned trajectory gen-
erated by the RRT algorithm. Even though the RRT method is not the main
focus of the thesis, it is worth to notice that the algorithm generates trajectories
which in most cases are feasible for the ASV.

Table 6.5: Performance metric values of the HDW algorithms TA, B and C at
simulation end time T . If an ASV has a higher performance metric than the
other ASVs in a scenario, the values are bold.

Scenario HDW Dmin IDI IADC W IAE
1 TA 30.6 0 2.2 · 104 4.4 · 106 43.8

B 28.4 0 2.6 · 104 4.4 · 106 38.8
C 28.4 0 2.6 · 104 4.4 · 106 38.8

2 TA - - - - -
B 5.5 0 4.9 · 104 5.3 · 106 108.1
C 5.5 0 4.9 · 104 5.3 · 106 108.1

3 TA 18.6 0 4.8 · 104 5.0 · 106 97.7
B 18.8 0 3.6 · 104 5.0 · 106 94.6
C 18.8 0 3.6 · 104 5.0 · 106 94.6

4 TA 3.4 0.3 4.2 · 104 4.3 · 106 77.8
B 4.2 0.1 5.0 · 104 4.3 · 106 72.7
C 4.2 0.1 5.0 · 104 4.3 · 106 72.7

5 TA 4.9 0.0 1.8 · 104 4.1 · 106 18.4
B 5.4 0 2.6 · 104 4.1 · 106 26.9
C 5.3 0 2.5 · 104 4.1 · 106 17.6

6 TA 2.4 3.5 4.3 · 104 4.6 · 106 39.4
B 2.7 2.0 5.3 · 104 4.6 · 106 69.0
C 2.7 2.0 4.5 · 104 4.6 · 106 61.8

7 TA 3.3 0.9 2.2 · 104 3.4 · 106 47.0
B 0.9 1.2 3.6 · 104 3.8 · 106 504
C 4.0 0.7 2.3 · 104 3.4 · 106 44.5

8 TA - - - - -
B 5.0 0.0 3.5 · 104 4.4 · 106 952
C 5.0 0.0 3.5 · 104 4.4 · 106 952

99

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

Based on the performance metrics and qualitatively evaluation, Table 6.6 is
formed to give an overview of the simulation results where every algorithm in
every scenario is rated as either collided, bad, good or perfect. A result is
marked as collided if the ASV enters the antitarget region T . A path leading
to the goal, but barely avoiding a collision is marked as bad, while good and
perfect denotes increasing performances in the same order. Since the RRT al-
gorithm may generate infeasible trajectories, the HDW algorithm may perform
well in some scenarios even though the IAE value is high. In addition, some
scenarios make it necessary to leave the planned trajectory to avoid collisions.
Hence, not following the planned trajectory may in some scenarios be the opti-
mal behaviour.

Table 6.6: Overview of simulation results for the HDW algorithms. Results are
rated as either collided, bad, good or perfect.

Scenario HDW TA HDW B HDW C
1 Perfect Perfect Perfect

2 Collided Good Good

3 Perfect Perfect Perfect

4 mov Good Perfect Perfect

5 Perfect Perfect Perfect

6 mov Good Perfect Perfect

7 mov Good Bad Perfect

8 mov Collided Perfect Perfect

HDW TA ignores the avoidance region and focuses only on tracking the planned
trajectory generated by the RRT algorithm. From the HDW TA results, we can
see that the HDW function works well whenever the planned trajectory keeps a
fair distance from obstacles. Hence, using HDW as a trajectory tracking method
works well when not travelling close to obstacles.

By including the results of HDW B and HDW C, it is clear that the HDW
algorithm is able to both follow the planned trajectory and avoid collisions at
the same time. However, to avoid collisions, the ASV may be forced to leave
the planned trajectory, but the HDW algorithm is able to catch up with the
trajectory once it passes the obstacle. Scenario 5 illustrates well how HDW B
and C stay clear of the avoidance region at the cost of slightly moving away

100

6.2. HYBRID COLAV

from the planned trajectory. The results in Scenario 8 indicate that the HDW
algorithm can avoid obstacles which the RRT algorithm is unaware of. Further-
more, this result shows how the ASV is able to reach the goal even when leaving
the planned trajectory.

The HDW C algorithm scores equally or better than HDW B for the perfor-
mance metrics IDI, IADC, W and IAE. There is no scenario where HDW C
causes the ASV to enter further into the avoidance region than HDW B. In
addition, HDW B returns a bad trajectory in Scenario 7, where it is close to
colliding.

To sum up, the HDW algorithm performs well in collision avoidance and is able
to track the planned trajectory when a feasible trajectory is generated by the
RRT algorithm. As in Section 6.1.2, Algorithm C performs consistently well
and outperforms the other methods in most scenarios.

101

CHAPTER 6. SIMULATION SCENARIOS AND RESULTS

102

Chapter 7

Conclusion and Suggestions
for Future Work

The DW Algorithm A adapts the DW algorithm for use on vehicles with sec-
ond order nonholonomic constraints and time varying acceleration limits. The
algorithm greatly improves the ability to avoid collisions but the avoidance re-
gion introduces some new weaknesses. The Algorithm A distance function is
disabled when the vehicle resides inside the avoidance region, which makes the
algorithm unable to evaluate the ASV distance to surrounding obstacles. Fur-
thermore, Algorithm A is unprovoked to leave the avoidance region if entered.
The function is unable to consider trajectories past the region entrance when
the vehicle is not inside of it, which may rule out good trajectory options. In
addition to these drawbacks, Algorithm A has the general weaknesses of reac-
tive algorithms, which can be accounted for by implementing the algorithm in
a hybrid COLAV method.

Two new algorithms, Algorithm B and Algorithm C, are introduced in this the-
sis with the intention to handle the weaknesses of Algorithm A. Algorithm B
is designed to behave identically to Algorithm A when the ASV is far from the
avoidance region but differs when being close to or inside the avoidance region.
If Algorithm B is close to or inside the avoidance region, it values how fast a
trajectory leads out of the avoidance region instead of considering the time be-
fore entering the region. As intended, algorithms A and B behave identically in
the simulation result when the ASV is far from the avoidance region. When the
ASV is close to, or inside the avoidance region, Algorithm B is able to find the
closest exit, while Algorithm A will choose the admissible trajectory that leads
closest to the goal. This results in Algorithm A often colliding or being close to
colliding, while Algorithm B behaves more rationally. Based on these results, it
is clear that Algorithm B is superior to Algorithm A in the tested scenarios.

Algorithm B has to be close to the avoidance region to consider what lies beyond

103

CHAPTER 7. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

the entrance of the region, which may rule out good trajectory options. The
distance function of Algorithm C, however, is based partially on the distance
to the avoidance region and partially on how much of the predicted trajectory
resides inside the avoidance region. Consequently, Algorithm C is able to con-
sider what lies beyond the avoidance region entrance and is less hesitant to
cross through the avoidance region if this is necessary, or the optimal solution.
Algorithm C performs consistently equally as good or better than Algorithm B
in the simulation results. Since Algorithm C is able to early consider trajecto-
ries through the avoidance region, the algorithm has more options when trying
to avoid a dangerous situation. Based on the simulation results, Algorithm C
is superior to algorithms A and B, and greatly reduces the drawbacks of the
avoidance region.

In addition to the simulation study presented in this thesis, Algorithm C was
used in a full-scale test in Trondheim between 15th and 19th of May 2017 on the
Telemetron ASV described in [14]. Both the original DW algorithm and DW
Algorithm C were used, where Algorithm C caused the best algorithm behaviour
among the two. However, the sensor signals and radar signals were noisy, which
caused problems for both the DW algorithms. Hence, no conclusion was made,
even though Algorithm C returned better behaviour than the original DW al-
gorithm.

To adapt the DW algorithm for use in hybrid COLAV methods, the HDW al-
gorithm is introduced. The new algorithm uses the distance function of either
algorithm A, B or C. The algorithm receives a planned trajectory from a de-
liberate method, e.g. the RRT algorithm which is used in the simulations. An
alignment function is used in the HDW algorithm, where the predicted trajec-
tories of velocity pairs are compared to the planned trajectory. Furthermore,
the HDW algorithm use predicted trajectories where the desired surge speed
and yaw rate change along the trajectory. This increases the computational
load significantly, but are still doable when using two velocity pairs for every
trajectory. By evaluating the distance function and the alignment function, the
HDW is able to both track the trajectory and avoid obstacles. Hence, the HDW
algorithm functions as both the reactive method of the hybrid COLAV method
but also as the interface between the reactive and deliberate method. Further-
more, the new algorithm reduces the number of tuning parameters from three
to one.

The HDW method is simulated with distance function B, distance function C
and as a pure trajectory tracker, denoted HDW B, HDW C and HDW TA,
respectively. As for the reactive methods, distance function C causes the al-
gorithms to be less hesitant to go through the avoidance region. When the
deliberate method generates a trajectory that goes through the avoidance re-
gion to avoid a collision, it is important that the HDW algorithm is able to
follow the trajectory. Due to this, HDW C scores the best in the simulation
results and is the superior among the tested algorithms. Finally, it is concluded

104

that the HDW algorithm is successfully able to track the feasible trajectory
given by the deliberate method and avoid collisions in high speed.

The issues of the avoidance region are greatly reduced by the introduction of
Algorithm C. Furthermore, introducing HDW C has significantly improved the
COLAV performance of the DW algorithm for ASVs. The hybrid COLAV
method formed by the RRT and HDW algorithms yields a consistently good
ASV behaviour, which performs well in both open sea and when operating
closer to obstacles.

The following topics should be investigated for further work:

• Adapt the DW and HDW algorithms to follow COLREGS.

• Improve the deliberate method to generate optimal trajectories that are
feasible for the ASV.

• Investigate if modifying distance function C to add costs to the veloc-
ity pairs based on how deep inside the avoidance region each part of a
trajectory resides improves the DW algorithm.

• Simulate a more complete model of the ASV and other ASV models using
different desired surge speeds.

• Investigate the robustness of the algorithm with respect to model uncer-
tainties [13].

• Perform full-scale testing with ASVs.

105

CHAPTER 7. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

106

Bibliography

[1] Autonomous Surface Vehicles (ASV) Ltd. url: http : / / www .
unmannedsystemstechnology . com / 2014 / 02 / asv - launch -
revolutionary- oil- field- services- unmanned- surface- vehicle/
(visited on 05/24/2017).

[2] M. R. Benjamin, J. J. Leonard, J. A. Curcio, and P. M. Newman. “A
Method for Protocol-Based Collision Avoidance Between Autonomous Ma-
rine Surface Craft”. In: Journal of Field Robotics. Vol. 23(5), pp. 333–346.
Wiley-Blackwell, 2006.

[3] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational
Geometry. Springer Nature. Chap. 13. 2008.

[4] A. Bloch, P. Crouch, and J. Marsden. Nonholonomic Mechanics and Con-
trol. Springer. Chap. 5. 2010.

[5] J. Borenstein and Y. Koren. “The Vector Field Histogram - Fast Obstacle
Avoidance for Mobile Robots”. In: IEEE Transactions on Robotics and
Automation. Vol. 7(3), pp. 278–288. 1991.

[6] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang. “Deterministic
vs. Probabilistic Roadmaps”. In: IEEE Transactions on Robotics and Au-
tomation, pp. 1–13. 2002.

[7] M. Breivik and T. Fossen. “Path following for marine surface vessels”. In:
Proceedings of the OTO’04. Kobe, Japan, 2004.

[8] M. Breivik and T. I. Fossen. Guidance Laws for Autonomous Underwater
Vehicles. InTech. Chap. 4. 2009.

[9] O. Brock and O. Khatib. “High-speed Navigation Using the Global Dy-
namic Window Approach”. In: Proceedings 1999 IEEE International Con-
ference on Robotics and Automation (Cat. No.99CH36288C). Detroit,
Michigan, 1999.

[10] Convention on the International Regulations for Preventing Collisions
at Sea, 1972 (COLREGs). url: http : / / www . imo . org / en / About /
Conventions / ListOfConventions / Pages / COLREG . aspx (visited on
11/03/2016).

107

http://www.unmannedsystemstechnology.com/2014/02/asv-launch-revolutionary-oil-field-services-unmanned-surface-vehicle/
http://www.unmannedsystemstechnology.com/2014/02/asv-launch-revolutionary-oil-field-services-unmanned-surface-vehicle/
http://www.unmannedsystemstechnology.com/2014/02/asv-launch-revolutionary-oil-field-services-unmanned-surface-vehicle/
http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/COLREG.aspx
http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/COLREG.aspx

BIBLIOGRAPHY

[11] G. L. Dirichlet. “Über die Reduction der positiven quadratischen Formen
mit drei unbestimmten ganzen Zahlen.” ger. In: Journal für die reine und
angewandte Mathematik. Vol. 40, pp. 209–227. 1850.

[12] B.-O. H. Eriksen, M. Breivik, K. Y. Pettersen, and M. S. Wiig. “A
modified dynamic window algorithm for horizontal collision avoidance
for AUVs”. In: Proc. of 2016 IEEE Conference on Control Applications
(CCA). Buenos Aires, Argentina, Sept. 2016.

[13] B.-O. H. Eriksen. “Horizontal Collision Avoidance for Autonomous Under-
water Vehicles”. MA thesis. Trondheim, Norway: Norwegian University of
Science and Technology, 2015.

[14] B.-O. H. Eriksen and M. Breivik. “Modeling, Identification and Control
of High-Speed ASVs: Theory and Experiments”. In: Sensing and Control
for Autonomous Vehicles: Applications to Land, Water and Air Vehicles.
Lecture Notes in Control and Information Sciences. Springer, 2017.

[15] P. Fiorini and Z. Shiller. “Motion Planning in Dynamic Environments
using Velocity Obstacles”. In: Int. J. Robot. Res. Vol. 17, pp. 760–772.
1998.

[16] T. I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Con-
trol. John Wiley & Sons, Ltd, 2011.

[17] D. Fox, W. Burgard, and S. Thrun. “The Dynamic Window Approach
to Collision Avoidance”. In: IEEE Robotics & Automation Magazine.
Vol. 4(1). Institute of Electrical and Electronics Engineers (IEEE), pp. 23–
33. 1997.

[18] E. Frazzoli, M. A. Dahleh, and E. Feron. “Real-time motion planning for
agile autonomous vehicles”. In: Journal of Guidance, Control and Dynam-
ics. Vol. 25(1), pp. 116–129. 2002.

[19] P. Hart, N. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths”. In: IEEE Transactions on Systems
Science and Cybernetics. Vol. 4(2). Institute of Electrical and Electronics
Engineers (IEEE), pp. 100–107. 1968.

[20] J. P. Hespanha. Linear System Theory. Princeton University Press. New
Jersey, 2009.

[21] A. Isidori. Nonlinear Control Systems. 2nd edition. Berlin: Springer-
Verlag, p. 23. 1989.

[22] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. “Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces”. In: Proceedings of IEEE Transactions on Robotics and Automa-
tion. Vol. 12(4), pp. 556–580. 1996.

[23] O. Khatib. “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots”. In: The International Journal of Robotics Research. Vol. 5(1).
SAGE Publications, pp. 90–98. 1986.

108

BIBLIOGRAPHY

[24] Y. Koren and J. Borenstein. “Potential Field Methods and Their Inherent
Limitations for Mobile Robot Navigation”. In: Proceedings. 1991 IEEE
International Conference on Robotics and Automation, pp. 1398–1404.
Sacramento, California, 1991.

[25] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger. “Safe
Maritime Autonomous Navigation With COLREGS, Using Velocity Ob-
stacles”. In: IEEE Journal of Oceanic Engineering. Vol. 39(1). Institute
of Electrical and Electronics Engineers (IEEE), pp. 110–119. 2014.

[26] J. Larson, M. Bruch, and J. Ebken. “Autonomous Navigation and Obstacle
Avoidance for Unmanned Surface Vehicles”. In: Proceedings of SPIE - The
International Society for Optical Engineering. Orlando,Florida, 2006.

[27] S. M. LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. Tech. rep. Computer Science Dept., Iowa State University, 1998.

[28] Ø. A. G. Loe. “Collision Avoidance for Unmanned Surface Vehicles”. MA
thesis. Trondheim, Norway: Norwegian University of Science and Technol-
ogy, 2008.

[29] P. Ögren and N. Leonard. “A Convergent Dynamic Window Approach
to Obstacle Avoidance”. In: IEEE Transactions on Robotics. Vol. 21(2).
Institute of Electrical and Electronics Engineers (IEEE), pp. 188–195.
Barcelona, Spain, 2005.

[30] G. Oriolo and Y. Nakamura. “Control of Mechanical Systems With
Second-order Nonholonomic Constraints: Underactuated Manipulators”.
In: Proc. of the 30th IEEE Conference on Decision and Control. Brighton,
England, 1991.

[31] M. Seder, K. Macek, and I. Petrovic. “An integrated apporach to real-
time mobile robot control in partially known indoor environments”. In:
31st Annual Conference of IEEE Industrial Electornics Society, pp. 1785–
1790. Raleigh, North Carolina, 2005.

[32] E. Serigstad. Collision avoidance for ASVs using Dynamic Window.
Project report, Norwegian University of Science and Technology: Trond-
heim, Norway, 2016.

[33] R. Skjetne, T. I. Fossen, and P. V. Kokotović. “Robust Output Maneuver-
ing for a Class of Nonlinear Systems”. In: Automatica. Vol. 40(3). Elsevier
BV, pp. 373–383. 2004.

[34] SNAME. Nomenclature for Treating the Motion of a Submerged Body
Through a Fluid. Tech. rep. New York. USA, 1950.

[35] M. E. N. Sørensen and M. Breivik. “Comparing Nonlinear Adaptive
Motion Controllers for Marine Surface Vessels”. In: Proceedings of the
10th IFAC Conference on Manoeuvring and Control of Marine Craft.
Vol. 48(16). Elsevier BV, pp. 291–298. Copenhagen, Denmark, 2015.

[36] M. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Con-
trol. John Wiley & Sons, Inc., 2006.

109

BIBLIOGRAPHY

[37] C. S. Tan, R. Sutton, and J. Chudley. “An incremental stochastic motion
planning technique for autonomous underwater vehicles”. In: Proceedings
of IFAC Control Applications in Marine Systems Conference, pp. 483–488.
Ancona, Italy, 2004.

[38] Viknes B̊at og Service AS. url: http://viknes.no/modell/viknes-
830/ (visited on 05/10/2017).

[39] K. Wichlund, O. Sørdalen, and O. Egeland. Control Properties of Under-
actuated Vehicles. In: Proceedings of 1995 IEEE International Conference
on Robotics and Automation. Nagoya, Japan, 1995.

[40] S. Zaheer, J. M, and T. Gulrez. “Performance Analysis of Path Plan-
ning Techniques for Autonomous Mobile Robots”. In: Proceedings of 2015
IEEE International Conference on Electrical, Computer and Communica-
tion Technologies (ICECCT). Coimbatore, India, 2015.

110

http://viknes.no/modell/viknes-830/
http://viknes.no/modell/viknes-830/

	Problem Description
	Preface
	Abstract
	Sammendrag
	Nomenclature
	Abbreviations
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Previous Work
	Contributions
	Outline of the Report

	Theoretical Background
	Vessel Modelling
	Reference Frames
	Euler Angle Transformations
	Simplified ASV Model

	Motion Control and Guidance Systems
	Path Generation Using Waypoint Representation
	Line-of-Sight Guidance
	Path Tracking for Marine Surface Vessels

	Spaces In Motion Planning
	Reactive COLAV Methods
	Dynamic Window (DW) Algorithm

	Deliberate COLAV Methods
	Rapidly-Exploring Random Trees (RRT)

	Hybrid COLAV methods
	COLREGS

	Modifications to the DW Algorithm
	Algorithm A
	Modified Search Space and Objective Function
	Modified Trajectory Prediction

	Algorithm B
	Algorithm C

	Hybrid COLAV Method Using the DW Algorithm
	Interface Between DW Algorithm and Deliberate COLAV
	Hybrid Dynamic Window (HDW) Algorithm
	HDW Option 1 - External Trajectory Tracker
	HDW Option 2 - Trajectory Alignment
	Comparison of HDW Options

	Simulator Implementation
	Simulator Model
	Algorithm Implementations
	DW Algorithms
	RRT Algorithm
	Hybrid COLAV

	Simulation Scenarios and Results
	DW Algorithms
	Scenarios and Performance Metrics
	Results

	Hybrid COLAV
	Scenarios and Performance Metrics
	Results

	Conclusion and Suggestions for Future Work
	Bibliography

