
Visual Detection of Maritime Vessels

Espen Johansen Tangstad

Master of Science in Cybernetics and Robotics

Supervisor: Edmund Førland Brekke, ITK
Co-supervisor: Andreas Lindahl Flåten, ITK

Håkon Hagen Helgesen, ITK

Department of Engineering Cybernetics

Submission date: June 2017

Norwegian University of Science and Technology

Problem Formulation

Thesis Description

Obstacle avoidance is a requirement for autonomous ship operations. Therefore, other
objects in the planned path of the ship need to be identified and tracked. Object detection
with an optical sensor (camera) is one way to detect objects. However, this is challenging
in maritime environments since objects at sea can be hard to distinguish from the waterline
or hidden in waves. Furthermore, cameras have a limited range and objects far from the
camera might be impossible to detect or cluttered by noise or other objects. In this project
detection of marine vessels are the main priority. The algorithms developed in this project
are not required to run in real-time, the focus is on detection performance and evaluation.

The following items should be considered:

1. Perform a literature review over camera detection theory, algorithms and techniques
in maritime context.

2. Evaluate detection algorithms and propose a suitable solution for maritime object
detection.

3. Implement a detection algorithm.

4. Test the detector’s ability to detect objects.

5. Present the results and discuss limitations and challenges.

Start date: 09-01-2017
Due date: 06-06-2017
Thesis performed at: Department of Engineering Cybernetics, NTNU
Supervisor: Associate Professor Edmund Førland Brekke, NTNU
Co-supervisor: Andreas Lindahl Flåten, NTNU
Co-supervisor: Håkon Hagen Helgesen, NTNU

Abstract

Recent years have seen a large increase in the use of optical detection and tracking meth-
ods in autonomous cars. Both Google X’s self-driving car and Tesla’s semi-autonomous
Model S rely heavily on the use of camera systems to help navigate complex environments
on the roads. The camera captures enormous amounts of information from a scene, and
the computer vision community is finding better and better approaches to extracting this
information. The later years have seen an increase in the use of neural networks for the
task of detecting and classifying objects in an image. These neural networks are known as
convolutional neural networks (CNNs).

This thesis investigates how a tailored CNN can aid autonomous surface vehicles (ASVs)
in detecting and classifying maritime traffic for collision avoidance. Several state of the art
CNN models are presented and trained on data sets with relevance to the above-mentioned
objective. Data collected from different sources are used for training these CNN models in
pursuit to obtain a good performing detector. The main data sets are large, general purpose
image sets of ships and boats. A smaller image set is also developed in this thesis. This
custom data set is constructed from images taken along a predefined path at sea from a
video camera. This includes images along docks and of ships in transit at sea. This data
set is then split into training and testing images which are in close relation to each other.
Through experiments, variations of the general purpose data sets are used to train both a 5
layer deep and a 16 layer deep CNN model to detect ships in an image.

The trained models are evaluated for their performance on a large test data set. This gives
a comparable performance benchmark between the different models trained in the experi-
ments on their ability to correctly detect ships in an image. The best performing model is
then trained again, padded with the smaller, custom training data. Finally, all the models
trained in the different experiments are evaluated on the custom test images. This evaluates
the possibility of creating a more robust object detector for an autonomous ferry, travelling
along a predefined path, trained on images from that path. Promising results were shown
for both a general purpose ship detector and the detector developed for traversing a prede-
fined path.

Keywords: Autonomous Surface Vehicle, Collision Avoidance, Vision Based Navigation,
Convolutional Neural Network, Object Detection, Computer Vision, Image Processing

iii

iv

Sammendrag

De siste årene har vist en stor økning i bruk av optiske deteksjons og sporings metoder i au-
tonome kjøretøy. Både Google X sin helautonome bil og Tesla’s semi-autonome Model S
anvender kamerasystemer som hjelpemiddel når de navigerer på veiene. Kameraet fanger
enorme mengder informasjon om omgivelsene i bildet, og forskning innen datasyn gir
stadig bedre metoder for å ekstrahere denne informasjonen. De siste årene har vist en økn-
ing i bruken av nevrale nettverk for deteksjon og klassifisering av objekter i bilder. Disse
nevrale nettverkene er kjent som foldings nevrale nettverk (FNN).

Denne avhandlingen utforsker hvordan tilpassede FNN kan hjelpe autonome skip unngå
kollisjoner ved å detektere og klassifisere den maritime trafikken i omgivelsene rundt
skipet. Her presenteres flere av de nyeste FNN modellene. Disse trenes så på bildedata
med relevans for det overnevnte formålet. Data samlet fra forskjellige kilder er brukt til
trening i jakten på å oppnå en detektor med god ytelse. Hoveddataen kommer fra store
bildesett av skip og båter. I tillegg til dette utvikles et mindre bildesett. Dette tilpassede
bildesettet er bygd opp av bilder fra et videokamera som reiser langs Trondheimsfjorden
og i Trondheim havn. Bildesettet er partisjonert i to data sett, ett for trening og ett for test-
ing, hvor dataen i begge settene er i nær relasjon til hverandre. Gjennom eksperimenter
trenes FNN modellene på forskjellige treningsdata fra de store bildesettene. Det trenes en
5 lags, samt en 16 lags dyp FNN modell til å detektere skip i bilder.

De trente modellene evalueres så for deres ytelse på store test bildesett. Dette gir en sam-
menlignbar ytelsesmåling mellom de forskjellige modellene trent i eksperimentene for
deres evne til å detektere skip i bilder. Den beste modellen blir så trent på nytt, denne
gangen med treningsbildene fra det mindre, tilpassede data settet. Til slutt blir alle model-
lene evaluert på det tilpassede testsettet. Denne evalueringen viser om den siste modellen
som er trent på det tilpassede treningssettet har en forbedret ytelse over de generelle mod-
ellene. God ytelse for denne modellen gir muligheter å utvikle en mer lokal detektor for
en autonom ferje som reiser langs en enkel rute, trent på bilder fra denne ruta. Lovende
resultater presenteres, både for en generell skips-detektor og for en detektor som blir brukt
langs en forhåndsbestemt rute.

Nøkkelord: Autonome Skip, Kollisjonsunngåelse, Kamerabasert Navigasjon, Foldings
Nevrale Nettverk, Objekt Deteksjon, Datasyn, Bildebehandling

v

vi

Preface

This thesis is carried out in the Department of Engineering Cybernetics, at the Norwegian
University of Science and Technology, the spring of 2017. It is submitted as part of the
requirements for the degree of MSc. at the Norwegian University of Science and Technol-
ogy.

For valuable guidance throughout every stage of this thesis, i would like to thank Asso-
ciate Professor Edmund Førland Brekke. In the same regard, this work would not have
been possible without the help from my two co-supervisors, Andreas Lindahl Flåten and
Håkon Hagen Helgesen.

Finally, I would like to thank all of my family for their support.

Trondheim, June 2017

Espen J. Tangstad

vii

viii

Table of Contents

Problem Formulation i

Abstract iii

Sammendrag v

Preface vii

Table of Contents xi

List of Tables xiii

List of Figures xvi

Abbreviations xvii

I Background 1

1 Introduction 3
1.1 Outline . 5

II Theory 7

2 Image Processing 9
2.1 Image acquisition . 9
2.2 Image processing . 9

2.2.1 Smoothing . 10
2.2.2 Edge detection . 11

ix

3 An introduction to Convolutional Neural Networks 13
3.1 Convolutional Neural Networks . 13

3.1.1 A brief history of CNNs . 14
3.1.2 Neurons and Layers . 15
3.1.3 Building a CNN . 17
3.1.4 Activations and classification scores 20
3.1.5 Putting it all together . 21
3.1.6 Training a CNN . 22
3.1.7 Accuracy . 24

3.2 CNN-models for Classification . 25
3.2.1 Zeiler and Fergus model . 25
3.2.2 VGG-16 . 27
3.2.3 Trade-offs . 27

4 Region-based Convolutional Neural Network 29
4.1 R-CNN . 29
4.2 Fast R-CNN . 30
4.3 Faster R-CNN . 30

4.3.1 Training Faster R-CNN . 33

III Method 39

5 Datasets 41
5.1 Visual Object Challenge data sets . 41
5.2 Imagenet . 45
5.3 Data collection . 47

6 Implementation 51
6.1 Overview . 51
6.2 Faster R-CNN . 52

6.2.1 Caffe . 52
6.2.2 Parallel Computing . 53

6.3 Implementation Aspects . 54
6.3.1 Documentation . 54
6.3.2 Rebuilding Caffe . 55
6.3.3 Testing trained models in Faster R-CNN 56
6.3.4 Annotations . 56
6.3.5 Training . 56

7 Experiments 59
7.1 Experiments . 59

7.1.1 Experiment 1: Recreating the ZF VOC0712 model 59
7.1.2 Experiment 2: Padding with Imagenet 63
7.1.3 Experiment 3: Single class training 64
7.1.4 Experiment 4: Padding with the Custom training-set 64

x

7.2 Evaluation on the Custom test-set . 65

IV Results and Discussion 67

8 Results and Discussion 69
8.1 Experiment 1: Recreating the ZF VOC0712 model 69
8.2 Experiment 2: Padding with Imagenet 75
8.3 Experiment 3: Single class training . 78
8.4 Experiment 4: Padding with the custom data set 83
8.5 Evaluation on the Custom test-set . 83
8.6 Video Analysis . 89
8.7 Summary . 91

V Closing Remarks 93

9 Conclusion 95
9.1 Overview . 95
9.2 Findings . 96
9.3 Future Work . 97

Bibliography 99

Appendix 103
Modifying Faster R-CNN for your needs . 103

xi

xii

List of Tables

3.1 Model-parameters of a neural network 16
3.2 Extended model-parameters of a neural network 17
3.3 Relevance representations . 24

5.1 VOC main image sets . 42
5.2 VOC2007 image and object specifications 42
5.3 VOC2012 image and object specifications 43
5.4 Imagenet synsets in thesis . 46
5.5 Camera specifications . 47
5.6 Custom data set partitioning . 48

6.1 Hardware specifications . 51
6.2 Software specifications . 52

7.1 Fast R-CNN model stage AP . 60
7.2 Data sets split between training and validation data. 63
7.3 Boat class representation between data sets 63
7.4 E3: Definition of sub-experiments . 64

8.1 E1: Fast R-CNN model stage AP . 70
8.2 E2: Fast R-CNN model stage AP . 75
8.3 E3: Fast R-CNN model stage AP . 78
8.4 E4: Fast R-CNN model stage AP . 83
8.5 Model stage AP from the Custom test-set 84
8.6 Video Analysis: Video description . 89
8.7 Implementation and data sets . 91
8.8 Results and training aspects . 91
8.9 Training-stage durations . 91

xiii

xiv

List of Figures

2.1 The Bayer filter . 10
2.2 Gaussian blur’s effect on image . 11
2.3 Output of the Sobel edge detector . 12

3.1 Black-box view of classification CNN 14
3.2 Simple feed-forward neural network . 15
3.3 Per-pixel weighted sum of image. Fully connected layer 17
3.4 Convolutional layer . 19
3.5 Example of max-pooling . 20
3.6 Example classification network . 21
3.7 ZF-net model architecture . 25
3.8 ZF-net possible input zero-padding . 26
3.9 VGG-16 model architecture . 27

4.1 R-CNN pipeline . 30
4.2 Fast R-CNN pipeline . 31
4.3 Faster R-CNN architecture . 31
4.4 Visual depiction of Intersection over Union 32
4.5 Faster R-CNN 4-step alternate training 37

5.1 Image samples from the VOC2007 data set 44
5.2 The children of synset Vessel,watercraft 45
5.3 Image samples from the VOC2007 data set 46
5.4 Image samples displaying the 3 camera’s view 47
5.5 Image samples from the custom data set with bounding boxes. 49

6.1 Caffe convolutional layer . 53
6.2 Excerpt from the Caffe log . 55
6.3 Example of a VOC and Imagenet XML annotation 57

7.1 RPN training loss and accuracy . 61

xv

7.2 Fast R-CNN training loss and accuracy 62
7.3 Illustration of euclidean prediction error. 66

8.1 E1: Precision vs. Recall for the boat class 72
8.2 E1: RPN Loss function and accuracy comparison 73
8.3 E1: Fast R-CNN Loss function and accuracy comparison 74
8.4 E2: Precision vs. Recall for the boat class 76
8.5 E2: Output samples from the VOC2007 test-set 77
8.6 E3: Precision/Recall comparison . 79
8.7 E3: RPN Loss function and accuracy comparison 80
8.8 E3: Fast R-CNN Loss function and accuracy comparison 81
8.9 E3: Output detection-samples from the VOC2007 test-set 82
8.10 Precision/Recall for all models on the Custom test-set 85
8.11 Distance error for True Positives on the Custom data set 86
8.12 Output samples from the Custom test-set 87
8.13 Additional output samples from the Custom test-set 88

xvi

List of Abbreviations

AIS Automatic Identification System

AP Average Precision

API Application Programming Interface

ASV Autonomous Surface Vehicle

CCD Charge-Coupled Device

CNN Convolutional Neural Network

COLREGS Convention on the International Regulations for Preventing
Collisions at Sea

ILSVRC Imagenet Large-Scale Visual Recognition challenge

IoU Intersection over Union

NMS Non-Maximum Suppression

R-CNN Region-based Convolutional Neural Network

RADAR RAdio Detection And Ranging

ReLU Rectified Linear Unit

RPN Region Proposal Network

SGD Stochastic Gradient Descent

UAV Unmanned Aerial Vehicle

VGG Visual Geometry Group

xvii

xviii

Part I

Background

1

Chapter 1
Introduction

Detection and tracking at sea have traditionally been based on data from Automatic Iden-
tification System (AIS) and RAdio Detection And Ranging (RADAR). In addition to AIS
and RADAR navigation, it is desirable to investigate the possibility of using a computer
vision system to detect and track maritime vessels. This will then serve as a complement
to RADAR and AIS for maritime collision avoidance. AIS is only required for larger ships
and tankers, which leaves smaller boats like sailboats undetected to the manoeuvring sys-
tem. The position of these smaller vessels will be picked up by the RADAR, but with no
information about the vessels structure or heading. A camera tracking system will provide
this critical data, and help determine if the International Regulations for Preventing Colli-
sions at Sea (COLREGS) is expected to be adhered to or not.

Camera-systems have been employed for many years, in various industrial tasks. As a sen-
sor, the camera gathers a vast amount of information about a scene, and trying to exploit
this data is no trivial task. It has been studied extensively for decades. We see improve-
ments every year, as computers gain more processing power and the knowledge of the field
expands. The exponential growth in computer power has allowed for complex approaches
to extracting information from images, so complex in fact, that they were deemed to be
only theoretical when first thought of. One of these approaches is the Neural Network.

The recent advancements in the field of Neural Networks has sparked the interest of a lot
of people, and the field is expanded upon every year. The industrial applications have
started to become more prominent in recent years. In Computer Vision, Neural Networks
have started to improve upon classical means of extracting information from images. Em-
ploying Neural Networks for collision avoidance at sea, from a moving vessel has not been
studied much. The need here is for a fast algorithm, with robust detection and classifica-
tion, to be employed in real-time. Neural Networks are more or less exclusively trained
and tested on static images, thus there is a need to evaluate the industrial application in
moving camera systems. Artificial Neural Networks are known to be slow from input to
output, solving rudimentary tasks in magnitudes of seconds, or even minutes. The recent

3

Chapter 1. Introduction

rise in Convolutional Neural Networks, sharing parameters between layers, have opened
up for faster image processing, reducing the time to milliseconds performing the same
task. The hypothesis is therefore that, Convolutional Neural Networks trained and eval-
uated on detecting and classifying objects in a static image will be suitable for detecting
and classifying moving objects, in a moving scene, from a moving platform, in real-time.

The subject of extracting maritime vessels from images have been researched extensively,
as can be seen in the survey, covering almost 500 papers in [7]. The general approach
to extracting ship candidates from camera images is to segment the image using some
segmentation algorithm and then doing some form of texture and/or shape analysis. Varia-
tions of this approach is proposed with satisfactory results given good weather conditions
[12],[27]. Another means of achieving detection is using focused image correlation be-
tween two images in a video-stream from a UAV hovering over the sea [20]. In later years,
classification and detection using Neural Networks have gotten increasing attention. Deep
convolutional neural nets are starting to show a substantial improvement upon classical
methods in both classification [21],[28],[34] and object detection [34],[16],[35],[15].

This thesis explores means to extract maritime vessels from images captured with a video
camera at sea. The solution explored is a framework called Faster R-CNN [25]. Faster R-
CNN is an all in one object detection and object classification framework. A image from
the video-stream is extracted and fed through a convolution neural network (CNN) which
proposes regions in the image. This CNN is called the region proposal network (RPN)
and does binary classification on a set of regions in the image to determine if it belongs
to a object or the background. The image, with its positive regions are then fed to another
CNN called Fast R-CNN. Fast R-CNN classifies the regions, if they belong to background,
or a set of classes defined by the user. In this thesis, these CNNs are trained and tested to
provide insight into their applicability for detecting ships in pursuit of providing a robust
detector of ships for autonomous surface vehicles (ASVs).

The contributions to this thesis are as follows:

• Literary study of object detection methods.

• Creating a testbench for training neural networks.

• Training several CNN models in pursuit of optimal performance.

• Creation of a custom data set used for training and testing.

• Defining and implementing a metric to determine the detection error distribution.

• Comprehensive discussion about pitfalls and lessons learned from using and training
a CNN.

4

1.1 Outline

1.1 Outline
This thesis is organized in 9 chapters, as well as a appendix covering some implementation
aspects. The chapters are numbered 1-9. Here is a short description of the contents of each
chapter:

• Chapter 2 presents the camera as well as some fundamental image processing tech-
niques. These include blurs and edge detectors.

• Chapter 3 presents the convolutional neural networks. A breakdown of each com-
ponent substantiating a CNN is presented. This chapter also presents the training
procedure used for optimizing a CNN called backpropagation. The last section ex-
plores some well established CNN models, which have shown high object classifi-
cation score in the literature.

• Chapter 4 presents the framework used for implementation in this thesis, Faster
R-CNN. The chapter presents some of the history leading up to the state of the
art framework that is used in this thesis. Here, some of the main aspects of the
framework is explored and the iterative training procedure is presented at the end.

• Chapter 5 presents the various data sets used to train the CNN models. It also
presents a custom made data set designed specifically for evaluating robustness for
a ASV.

• Chapter 6 covers the implementation of Faster R-CNN using MATLAB and the
Caffe library. The chapter ends with some of the implementation aspects such as
challenges and documentation.

• Chapter 7 describe the experiments conducted to evaluate the robustness of the dif-
ferent object detectors.

• Chapter 8 present the results from the different experiments with a discussion for
each experiment evaluating the obtained results.

• Chapter 9 concludes the report. Here, the main findings are presented, as well as
possible future work related to what has been presented.

• The appendix presents some key aspects for anyone looking to modify Faster R-
CNN to train on their own data set.

5

Chapter 1. Introduction

6

Part II

Theory

7

Chapter 2
Image Processing

Camera systems are used extensively in the industry. It has a wide array of applications
ranging from surveillance (CCTV), to image acquisition in both aerial, space and under-
water scientific explorations. In recent years, camera-systems have been employed to aid
humans and robots alike in detecting and classifying objects in the real world. This chapter
presents a brief introduction to the camera and how it acquires color images. It also gives
an introduction to some important image processing techniques. This chapter is targeted
towards readers with little experience in image processing.

• Section 2.1 introduces the camera and some key aspects of camera operation.

• Section 2.2 presents image processing techniques such as Gaussian smoothing and
edge detectors.

2.1 Image acquisition
The modern camera uses a square array of color filters consisting of red, blue and green.
These filters are positioned over an array of photosensors. When the camera is exposed
to light, the photosensors are excited, converting the photons into current. This current,
in turn, using a ADC-converter may be read by a microcontroller as an intensity-value,
usually 8-bit, ranging from 0-255. The most common structure for the color filter array is
known as the bayer filter. This is shown in Figure 2.1. It consists of a repeated 2x2 pattern
of red, blue and 2 times green. The complimentary green filter is added because the human
eye is more sensitive to green light compared to red and blue [8].

2.2 Image processing
Image processing in the broadest term is the operation of applying some sort of filter to
change image properties. This is done by treating the image as a 3-dimensional signal (in
the case of RGB images) and applying filter convolutions to reduce the complexity of the

9

Chapter 2. Image Processing

Image courtesy: en.wikipedia.org/wiki/Bayer filter

Figure 2.1: The Bayer filter

image. An image from a video-stream may be treated like a four-dimensional input, where
the last dimension is time. Image processing can be an important first step in machine-
vision. This section aims to provide some insight into how filter convolutions change the
properties of images by investigating two distinct image processing operations.

2.2.1 Smoothing
Gaussian smoothing is the operation of convolving a 2-D Gaussian operator with the image
to reduce noise in the image. The continuous 2-D Gaussian operator is given by:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.1)

To discretize, the continuous Gaussian kernel is sampled from its maxima a number of
samples in each direction, circularly to obtain a square u× v matrix. It is then normalized
to obtain a discrete approximation of the Gaussian:

Gd =
1

289


1 4 7 4 1
4 16 28 16 4
7 28 49 28 7
4 16 28 16 4
1 4 7 4 1

 , σ = 1 (2.2)

Equation (2.2) shows a discrete approximation to a continuous Gaussian kernel with σ =
1. Convolving this kernel with an image I of size m×n will produce output the smoothed
image S:

S[m,n] = Gd[u, v] ∗ I[m,n] =
∑
u

∑
v

Gd[u, v]I[m− u, v − j] (2.3)

The process of convolving an image with a kernel can be computationally complex at an
order of O(mnuv). To reduce the complexity in the case for the Gaussian filter, one may
exploit its inherent property of being separable. That is to say:

Gsep
d = fd ∗ gd (2.4)

For our example in Equation (2.2) it can be seen that:

10

2.2 Image processing

Gsep
d =

1

17


1
4
7
4
1

 ∗ 1

17

[
1 4 7 4 1

]
(2.5)

Convolving with image I can now be done in two separate steps, once for each new kernel:

S = I ∗Gd = I ∗ (fd ∗ gd) = (I ∗ fd) ∗ gd (2.6)

This reduces the computational complexity to O(2mnu) when convolving the Gaussian
kernel with an image. Gaussian filtering is not only important for reducing noise in an im-
age, it is also a measure of scale. Convolving an image with a Gaussian kernel eliminates
fine details (high frequencies) in the image, leaving hard edges to be smoothed.

Image courtesy: en.wikipedia.org/wiki/Lenna

A B
C D

A Original image. B σ = 1. C σ = 3.
D σ = 5.

Figure 2.2: Gaussian blur’s effect on image

Figure 2.2 shows the effect of applying the Gaussian filter with different standard devia-
tions to an image, while retaining the kernel size.

2.2.2 Edge detection
Given a noise-free image, one may use another set of filters to find rapid intensity changes
in the image. There are several approaches used for different applications. The simplest,
and least time complex is the separable edge detector Sobel. Like the Gaussian smoothing
filter, it employs convolution of a normalized kernel over an image. This kernel denoted
E, is an approximation of the continuous derivative and is usually a fixed size 3×3 matrix.

11

Chapter 2. Image Processing

In order to obtain both vertical and horizontal edges, this must be computed twice on the
image, once for each kernel (Ex and Ey):

Ex =

−1 0 1
−2 0 2
−1 0 1

 Esep
x =

12
1

 ∗ [−1 0 1
]

Ey = ET
x

(2.7)

Image courtesy: en.wikipedia.org/wiki/Lenna

A B A Original image. B Sobel edge map.

Figure 2.3: Output of the Sobel edge detector

Figure 2.3 shows an example of applying the Sobel edge detector to an image. This figure
presents an example of how filter convolutions extract features from an image. If this oper-
ation was done on a similar image of a face, there would certainly be similarities between
the two, which can be taken advantage of during object classification. Applying filters
of different kinds, some extracting edges, some extracting corners, is the fundamentals to
any feature descriptor. These descriptors can then be matched to calculate the similarity
between two images and score them accordingly. The next chapter presents the convolu-
tional neural network (CNN). The CNN, as any other feature matching procedure is built
on this same fundamental principle.

12

Chapter 3
An introduction to Convolutional
Neural Networks

With the knowledge of filter convolutions from Chapter 2 it is time to investigate how
employing a variable filter kernel can be used for object detection and classification in a
image. This chapter introduce the fundamentals of a neural network, and how they are
constructed. The idea of employing variable filter convolutions in a neural network is
then described called the convolutional neural networks (CNNs). A presentation of how
they are constructed, operate and trained are given. The general notation and derivation is
inspired by Michael A. Nielsen’s book ”Neural Networks and Deep Learning” [2]. The
deduction in Section 3.1.3 is largely based on a online lecture on the subject [4].

• Section 3.1 contains a breakdown of the components substantiating a CNN, starting
with the neurons and layers constituting every neural network. The section aims
to provide the reader with insight into the construction and training-procedure of a
CNN. It also contains some of the important historical milestones in CNN for object
classification.

• Section 3.2 introduces two CNN models which will be investigated further later in
this thesis.

3.1 Convolutional Neural Networks

A convolutional neural network (CNN) is a neural network designed for the task of ob-
ject classification for an image input. It is a deterministic approach to classification where
features in the image are computed in layers. It differs from classical means of classifica-
tion where the feature is extracted from the image i.e., Scale-invariant Feature Transform
(SIFT) used to train a classifier such as k-Nearest Neighbor. The features of a CNN are
hidden, and utilized for classification in one pipeline. Features in a CNN are generated

13

Chapter 3. An introduction to Convolutional Neural Networks

implicitly via one or several layers of filter convolutions. Each layer produces a set of ab-
stract sub-images made from the input image. The optimal structure of the convolutional
layers is problem dependent, and is typically determined iteratively through some cross
validation procedure. In the broadest of sense, a CNN can be seen as a black-box, like
shown in Figure 3.1. The user feeds the network with an image, and the network predicts
the class-score for each class it has been trained on. What is contained in this black-box
is often referred to as hidden layers, as the operations contained inside is not visible to the
user.

CNN
Image
(m x n)

Class 1

Class 2

Class N

...

Figure 3.1: Black-box view of classification CNN

3.1.1 A brief history of CNNs
The CNN has acquired a large history over the relatively short time it has been researched.
One of the first CCNs was the pioneering LeNet5 model from 1998 [23]. The name is de-
rived from its creator Yann LeCun who developed this fundamental CNN for handwritten
digit-recognition in images. By employing learnable filter kernels, pooling methods and
induced non-linearities it decreased the error-rate over state of the art methods at the time
[23].

In 2012, 14 years after LeNet was published, AlexNet was published [21]. This was a
deeper and wider version of LeNet which was developed for a much harder problem. This
deep CNN model was created to classify objects in images. This was previously not pos-
sible, but due to the exponential growth in computing power, this deep model was able to
be trained on a GPU, drastically reducing the training time. It went on to win the annual
Imagenet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 under the team
name ”SuperVision”. AlexNet sparked a huge interest in the computer vision community.
In the following years, improvements were made to increase the robustness of these deep
convolutional models, and the annual ILSVRC have been dominated by CNNs since then.

In 2013, a paper exploring why these CNNs performed so well was published by Matthew
Zeiler and Rob Fergus [34]. This paper provided great insight into these previously ab-
stract models. Based on the findings in the paper it also presents a shallow CNN with good
object classification scores. From 2013 until the present day the most prominent and high-

14

3.1 Convolutional Neural Networks

scoring CNNs for object classification in images are the VGG, ResNet, and Inception-
models [30],[18],[32],[31].

These last years have provided a large variation on the principle that Yann LeCun presented
in 1998. Still, the fundamentals have stayed the same. Learnable filter kernels, pooling
and induced non-linearities are employed in all the papers presented earlier in this section.

3.1.2 Neurons and Layers
To begin to understand the building blocks of a CNN we first look at the most rudimentary,
yet the most important aspect of any neural network, namely neurons and layers. This
gives basis for some of the definitions regarding any neural network.

A B A Single layer, fully connected neural network. B A single neuron.

Figure 3.2: Simple feed-forward neural network

Figure 3.2 displays a simple, 1-dimensional neural network. Figure 3.2A shows a single
input (blue) connected to a set of neurons (orange). These are then fully connected, which
means that all neurons are connected to all output neurons (green). Figure 3.2B shows a
single neuron.

Definition 3.1.1: Neuron: A single instance of one layer of a neural network. It receives
one or several inputs and sum them together to produce a single output that is passed
through an activation function.

Definition 3.1.2: Activation function: A function inducing non-linearity into an otherwise
linear operation at the output of a neuron.

Definition 3.1.3: Layer: A set of neurons, each receiving different weighted varieties of
the same input(s).

15

Chapter 3. An introduction to Convolutional Neural Networks

The input to the network in Figure 3.2A is denoted x and is a 1-dimensional input. In the
sense of images, this might be viewed as a single, monochromatic pixel. In vectorized
form, the input is weighted with the model-parameters W1.

Definition 3.1.4: Model-parameter: The term describes all parameters subject to opti-
mization during training.

These weighted varieties of the input are passed into separate neurons, where they are
summed and subject to an activation function σ(W1x + b1). The function descriptor
σ is usually used to describe the logistic sigmoid activation function. In this thesis, all
activation functions will be using this descriptor. The processed signal gets passed through
a new set of weights w2 before entering the final output layer. In Figure 3.2B a single
neuron is presented. The neuron takes in the weighted activations from the previous layer
Wlal−1 + bl and sum them up. Let the linear operations of a single neuron l be defined
as:

zlj = wl
jka

l−1 + blj (3.1)

This operation can then be expanded to include all activations spanning the whole layer:

zl = Wlal−1 + bl (3.2)

This linear operation is passed to the activation function al = σ(zl) = σ(Wlal−1 + bl).
σ is a row-wise function such that σ(v)j = σ(vj). An additional parameter present here
is the bias bl. This is a model-parameter that determines the horizontal alignment of the
activation function. The details of the activation function is presented later in the chapter.

Model-Parameter Description Vectorized form

wl
jk

Weight-parameter entering
layer l at neuron j from
neuron k

W1 ∈ Rj×k

blj

Bias-parameter of layer l
to neuron j b1 ∈ Rj×1

alj

Activation function (out-
put) of layer l from neuron
j

a1 ∈ Rj×1

Table 3.1: Model-parameters of a neural network

Table 3.1 summarizes the singular and vectorized representation of the inputs and output
in a neural network layer.
Figure 3.3 shows a two-dimensional minimal example of a layer in a Neural Net. Here, a
batch of (N) image-inputs are passed through 3 neurons (columns of the matrix).

16

3.1 Convolutional Neural Networks

1
0

𝑤11 𝑤21 𝑤31

𝑤12 𝑤22 𝑤32

𝑤13 𝑤23 𝑤33

⋮ ⋮ ⋮
𝑤19 𝑤29 𝑤39

10

10

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23
∗

3

3 3 3∗

𝑏1 𝑏2 𝑏3

𝑏1 𝑏2 𝑏3

𝑏1 𝑏2 𝑏3

 +

N

𝑗
𝑗 k =

∗

3
 3

𝑥31 𝑥32 𝑥33

𝑥11 𝑥12 𝑥13 𝑥21 𝑥22 𝑥23 𝑥31 𝑥32 𝑥33

Figure 3.3: Per-pixel weighted sum of image. Fully connected layer (transposed)

Definition 3.1.5: Batch: A stack of inputs of the same spatial dimension. Used to increase
the amount of data for optimization before updating the model-parameters.

Using a batch of inputs, instead of a single input is desirable when training a neural-
network, as it provides control over how often the model-parameters are updated. In order
to do matrix multiplication on the pixels of the image in Figure 3.3, the rows are put end
to end in a one-dimensional array, extending the second dimension to the batch size. It is
evident that in this representation, the size of the bias matrix has to be predefined according
to the batch size input. This would seem limiting from an implementation perspective, as
it predefines the network to a single batch size. This is avoided, however, by defining the
summand of the layer to be a broadcast. A broadcast dynamically changes the size of
the bias matrix by replicating the first row N times. To have a batch of inputs extends
the definition of model-parameters in Table 3.1 to include the extra dimension. Here we
define Al to be the batch output activations from a layer and Bl to be the biases.

Vectorized model-parameter
W1 ∈ Rj×k

B1 ∈ Rj×N

A1 ∈ Rj×N

Al−1 ∈ Rk×N

Table 3.2: Extended model-parameters of a neural network

This allows for a representation of any layer to be given by

Zl = WlAl−1 +Bl (3.3a)

Al = σ(Zl) (3.3b)

where we revert to the original definition of non-capitalized letters if N = 1.

3.1.3 Building a CNN
Section 3.1.2 shows how each input to each neuron has a unique weight. For large images,
this amounts to a great deal of model-parameters for each layer. This becomes a problem
under implementation, when the network undergoes rigorous training and testing. The
training phase optimizes each weight and bias separately over a large amount of images.
The sheer computing-memory needed to contain all model-parameters are infeasible when

17

Chapter 3. An introduction to Convolutional Neural Networks

creating a multi-layer neural network for large image inputs. To tackle this problem, sev-
eral other conditioning layers are used in a CNN. There are in total four types of layers
which CNN architectures are typically built upon.

Convolutional Layer: The core of the CNN is the convolutional layer. It consists of a set
of filters, that are typically small in spatial dimension. As a input is passed through to a
convolutional neuron, it slides (convolves) a filter kernel over the input to create the output.
In reference to Section 2.2.2 describing the edge detector, this is analogous to convolving
the Sobel operator over a very small image. Instead of having a static value for the filter-
kernel however, they are regarded as model-parameters of a neural network. The output
image of this convolution is called an activation map (edges in Sobel analogy). Each con-
volutional layer stacks the amount of filtered activation maps to pass on to the next layer
in the network. What characterizes any respective convolutional layer are hyperparame-
ters. A hyperparameter is a layer-fixed parameter. The term is used to distinguish these
parameters from the model-parameters (weights and biases) and are not subject to any op-
timization. The hyperparameters are of fixed size, set by the user, or purely dependent on
the input size. A convolutional layer can be described by 4 hyperparameters:

1. K number of filters

2. Spatial extent F

3. Stride S

4. amount of zero padding P

Figure 3.4 displays a convolutional layer. Here, as an example, a set of K filter kernels of
spatial extent (F) 3 is convolved over a monochromatic image. There is no jump in the
sliding of the kernel, as its center is displaced one pixel at a time, leading to a stride (S) of
1. In addition to the image input, there is added a 1 pixel wide zero padding to the brim of
the image, resulting in a P of 1. The elements of the filter kernels are the weights in this
case. Each filter down the depth K has unique weights, leading to K different activation
maps. In the general case, the output volume can be described as follows: Given an input
volume of size [W1 ×H1 ×D1] to a convolutional layer, where D1 is the depth or the
color channel (D1 = 3 in the case of an RBG input image), it can be shown that the spatial
size of the output is given by

W2 = 1 + (W1 − F+ 2P)/S (3.4a)
H2 = 1 + (H1 − F+ 2P)/S (3.4b)

in turn, the size of the convolutional layer output volume will be [W2 ×H2 ×K]. The
amount of neurons is given by W2 ∗ H2 ∗ K. If every neuron output had a unique
weight as in a fully connected layer, due to its nature this would make for a total of
W2 ∗H2 ∗K ∗ F ∗ F ∗D1 model-parameters.

18

3.1 Convolutional Neural Networks

3 F = 3

P = 1

S = 1

Filter kernels

Monochromatic image input

Image pixels

Activation maps

K

K

Figure 3.4: Convolutional layer

As an example, take the input image seen in Figure 3.4 of size [6×4×1] to a convolutional
layer with depth K = 3. Setting S = 1, P = 1, F = 3 it is evident that the spatial width of
the output would be

W2 = 1 + (6− 3 + 2 ∗ 1)/1 = 6

H2 = 1 + (4− 3 + 2 ∗ 1)/1 = 4

the convolutional layer would consist of 6 ∗ 4 ∗ 3 = 72 neurons where each neuron has
a total of 3 ∗ 3 ∗ 1 = 9 weights and one bias. This adds up to 9 ∗ 72 + 72 = 720 to-
tal model-parameters for a single layer, given a tiny, monochromatic picture as input. For
larger inputs this results in a large amount of weights. CNNs reduce the necessity of unique
weights by sharing the parameters between neurons throughout the depth of the layer. This
approach leads to a total number of K ∗ F ∗ F ∗D1 unique weights. In our example, this
would lead to a total of K = 3 unique sets of weights for a total of 3 ∗ 3 ∗ 3 ∗ 1 = 27
unique weights, or 27+3 = 30 parameters including the bias. This example shows a 96%
reduction in model-parameters compared to using a fully connected neural layer.

19

Chapter 3. An introduction to Convolutional Neural Networks

Rectified Linear Unit: Creating the activation map essentially means making a new, ab-
stract batch of images from a batch of input images. The weighted filter-kernels used to
create these images are tunable. Implicitly they can take on any real value, even negative.
To determine if a neuron has been activated, this abstract image is subject to a activation
function. A popular activation function used between layers in a CNN the later years is the
Rectified Linear Unit (ReLU) [17]. It is a non-linear activation function that thresholds the
output of the convolutional layer such that σ(Zl) = max(0,Zl), where Zl is as defined in
Equation (3.3a). This is the same step that is done in generic neural nets as is shown with
the single input neuron in Figure 3.2B. The ReLU is specifically optimized for efficient
computation, scale invariance and outputs sparse activations. This makes it ideal for image
activations in a convolutional layer.

Pooling Layer: The pooling layer is a downsampling layer that is periodically inserted
into the network to reduce the computations and the amount of parameters in the net-
work. Downsampling the image leads to fewer activations from the previous convolutional
layer. This is inevitable, but controlled using different downsampling techniques like max-
pooling, which takes the largest value in each neighbourhood to preserve the activation.
The pooling layer requires two hyperparameters: Spatial extent F and stride S as described
earlier in this section.

� � � �

� � � �

�� � � �

� � �� �

� �

�� ��

���������	

Figure 3.5: Example of max-pooling

Fully connected layer: The fully connected layer is presented in Section 3.1.2. Here a
neuron has full connectivity to all activations in its previous layer, as seen in Figure 3.2.
Each neuron is composed of a matrix multiplications between these activations as in Fig-
ure 3.3 to create one new activation. This is a typical final layer in classification, but is
extremely computationally expensive.

3.1.4 Activations and classification scores
Activations are done at each stage of the CNN, inducing non-linearities into a otherwise
linear system via the ReLU function [17]. The user however, only sees the activations
done in the final fully connected layer, like what is shown in the black-box representation
in Figure 3.1. These are the final classification scores. These classification scores typi-
cally lie in the range of 0 to 1. It is a measure of the relative activation strength of a class
compared to the other classes.

20

3.1 Convolutional Neural Networks

To get a relative classification score for a set amount of classes, the output activations for
each layer need to be related to each other in a meaningful way. Take a fully connected
layer whose linear operation for a single image in the batch is given by (zl) consisting of
(j) neurons with different sets of activations. The strength of a neuron in this layer will
depend on the amount of activations relative to the other neurons in the layer. If one neuron
holds all the activations, it will have a 100% classification score. One way of doing this is
running the activations from each neuron through a normalized softmax function [9]. This
function takes the vector (zl) of real values and outputs the vector al = σ(zl). The values
of the output lie in the range of (0, 1) and add up to 1.

σ(zl)k =
ezk∑j
i=1 e

zi
for k = 1, . . . j (3.5)

The softmax function is a widely used activation function in CNNs. There are several
alternatives, but the general idea of normalization to obtain a score is the same.

3.1.5 Putting it all together
We have seen the building-blocks that substantiate any CNN. These blocks can be put
together, trained and tested. The optimal architecture is problem-dependent, and several
articles exploring different configurations have been published [34],[30]. The general ap-
proach however, is a repetition of CONV-ReLU-Pool-CONV..., decreasing the spatial size
of the activations throughout the network with the pooling layer.

Figure 3.6: Example classification network, from [30]

Figure 3.6 shows an excerpt from the hidden layers as a CNN trained to classify objects in
a image performs classification of a car. It consists of 6 convolutional layers, each spaced
with a ReLU activation-layer, and then down-sampled by max-pooling at 3 instances. The
final activation is computed by a fully connected layer with softmax activation.

21

Chapter 3. An introduction to Convolutional Neural Networks

3.1.6 Training a CNN

The process of determining the optimal model parameters for a CNN is called training.
It is a supervised method, matching ground truth classes with the output predictions to
minimize an objective function. This is done by passing annotated templates of the object
that is to be detected. For each input, based on the outcome of the output-layer, adjust
the weights and biases of the network to increase the correct probability for that image
instance according to the ground-truth annotation. Repeating this procedure for a large
amount of images, containing all classes allows the user to evaluate the strength of the
CNN-architecture according to the convergence of the objective function . One way to
go about training a Neural Net is by backpropagating the error function and then optimiz-
ing the weights and biases using gradient descent. For further reading on this visit [26].
This is one of the biggest challenges in employing neural networks, as a large amount of
usually hand annotated inputs are necessary to create a robust classifier. For each tem-
plate input these adjustments are made to all the model-parameters in all layers, which
can be extremely time-consuming, even for modern CPUs. This section gives insight into
the training procedure that is most commonly employed for convolutional neural networks.

Backpropagtion

During the forward-pass of a batch of annotated images through a CNN, the softmax ac-
tivation function (3.5) outputs a normalized exponential distribution for the multi-class
classification score aL = σ(zL). Define the ground truth for each class to be contained in
the vector:

y = {y ∈ Rj×1, 0 ≤ yj ≤ 1} (3.6)

In pursuit of tuning the parameters to obtain better classification, the euclidean distance
between the actual CNN output and the desired output is subject to a quadratic cost func-
tion:

C =
1

2N

∑
x

||y(x)− aL(x)||2 (3.7)

This is an objective function, that we wish to minimize. The term that measures the penalty
in this objective function is often called the loss-function. In this case it is the term ||y(x)−
aL(x)||2. The cost function is therefore, the sum of all loss-functions in the batch. N is
the batch-size of training examples the CNN is subject to. A single sample from this batch
is denoted x. L is the total amount of layers in the network. The change of input variable
is done to avoid confusion regarding intermediate fully connected layers not placed as the
output-layer of the network. There are several cost function candidates tailored to different
optimization purposes. To determine the effect that the weights and biases in the network
has on the output of the cost function we need to compute the partial derivative:

∂C

∂wl
,
∂C

∂bl
(3.8)

22

3.1 Convolutional Neural Networks

To do this, an assumption must be made about the cost function, that is that the total cost
function can be written as an average of all cost functions for each training image in the
batch

C =
1

N

∑
x

Cx (3.9)

where:

Cx =
1

2
||y − aL||2 (3.10)

Under this assumption, backpropagation allows for the computation of

∂Cx

∂wl
,
∂Cx

∂bl
(3.11)

which outputs the partial derivatives for one training sample in the batch. The simple
partial derivatives are then averaged over the whole set of training examples. As the vector
yl is of fixed size, Cx only regards the activations from the output-layer alone, with yl as a
parameter. To do this for each weight and bias in the network, define a small linear change
to the activation functions to determine its effect on the outcome of the cost function.
Equation (3.1) describes the linear operations for a single neuron in a layer. All activation
functions throughout the depth of the network is perturbed such that they can be described
by σ(zlj +4zlj). This change then propagates through the layers causing the overall cost
to change by an amount of ∂C

∂zlj
4zlj . Ddefine the error for a single training-example δx,lj to

be

δx,lj ≡ ∂Cx

zlj
(3.12)

and subsequently in vectorized form δl is the error for layer l. Backpropagation gives a
way of finding δl for each layer, and relating them to the quantities of interest in Equation
(3.8). Four equations describe the backpropagation procedure, and is solved in the order
presented:

δx,L = OaCx ◦ σ′(zL) ◦ : dot product (3.13a)

δx,l = ((wl+1)T δx,l+1) ◦ σ′(zl) (3.13b)
∂Cx

∂bl
= δx,l (3.13c)

∂Cx

∂wl
jk

= al−1k δx,l (3.13d)

From these equations, it is evident why it is called backpropagation. Equation (3.13a)
describes the error on the output-layer of the network. Here, OaCx describes the gradient
whose partial derivatives are with respect to the output activations. σ′(zL) measures the
rate of change for the activation-function with respect to the linear operations. Equation
(3.13b) describes the error in layer l with respect to layer l+1. Equation (3.13c) describes

23

Chapter 3. An introduction to Convolutional Neural Networks

the relationship between the error at any layer to the partial cost-rate for the bias. Equation
(3.13c) describes the relationship between the error at any neuron in a layer to the partial
cost-rate for the weights in the neuron. The last layer is described element wise as to not
cause confusion with the notation. To see proof of the backpropagation procedure refer to
[2]. Now, having a procedure to calculate the cost-function for an input, it is possible to
apply Stochastic Gradient Descent (SGD) to optimize under the cost-function. For each
layer in the network update the biases and weights according to

Wl →Wl − η
∑
x

δx,l(ax,l−1)T (3.14a)

bl → bl − η
∑
x

δx,l (3.14b)

where η is the step-size, or learning rate provided by the user. This is iterated upon until
the system approaches a local minima. Given the nature of the cost-function, the weights
and biases subject to optimization is only updated after the each batch of training-examples
are evaluated. An important aspect of training a CNN, or any Neural Net is deciding the
size of the batch. A small batch-size updates the weights and biases regularly, but may
experience slow convergence, and is more susceptible to noise from outliers in the error-
function. Large batches update the model-parameters at a slower rate, thus increasing
the time of convergence for the cost-function. Choosing a large batch-size may in some
instances not converge the cost-function at all.

3.1.7 Accuracy

Determining the accuracy of a CNN is done by calculating the precision/recall curve for
the network under a set of annotated test-images. The precision represents the relevant
instances of detection. The recall is the amount of relevant instances that are retrieved.
This is described by four distinct output instances.

Full name Abbreviation Description
True Positives tp The amount of positive classifications relative to

ground truth
False Positives fp The amount of positive classifications not identify-

ing with ground truth
False Negatives fn The amount of ground truth not identified by clas-

sifier
True Negatives tn The amount of correct rejections by classifier rela-

tive to ground truth

Table 3.3: Relevance representations

Table 3.3 shows the four relevance representations, given a data set relative to a ground
truth. The ground truth for classification is the annotation contained in the test image.

24

3.2 CNN-models for Classification

With these representations, the precision and recall of the CNN output can be computed
by

p =
tp

tp+ fp
(3.15a)

r =
tp

tp+ fn
(3.15b)

with p denoting the precision and r the recall. Given the precision and recall, the Aver-
age Precision (AP) can be computed according to the VOC2012 documentation [13] as
follows:

1. Sort the output data from the CNN with precision monotonically decreasing, by
setting the precision for recall r to the maximum precision obtained for any recall
r′ ≥ r.

2. Compute AP as the area under this curve by numerical integration.

This definition of AP will be used exclusively throughout this thesis. For multi-class clas-
sification, the term mean Average Precision (mAP) is used, which is simply the mean of
the AP computed for all classes.

3.2 CNN-models for Classification
This chapter concludes with the investigation of two distinct CNNs made explicitly for
classification of objects in an image.

3.2.1 Zeiler and Fergus model

The first model is known as ZF-net, proposed by Zeiler and Fergus in 2013 after attempting
to increase robustness of CNNs by investigating the effects each layer of the network have
on the output prediction [34]. It scored a 79% mAP on the VOC-2012 data set. The
configuration proposed was well received and went on to win the annual Imagenet Large-
Scale Visual Recognition Challenge (ILSVRC) in 2013.

Figure 3.7: ZF-net model architecture [34]

25

Chapter 3. An introduction to Convolutional Neural Networks

Figure 3.7 shows the ZF-net architecture as proposed by Zeiler and Fergus. The input im-
age, of arbitrary size is resized to fit a [W1 ×W2 ×D1] = [224× 224× 3]. The input is
subject to K1 = 96 filter kernels with spatial extent F = 7 and stride S = 2. Calculating
the output spatial dimensions of this volume using Equation (3.4a) gives a output dimen-
sion of [W2×W2×K1] = [109.5×109.5×96]. The output volume has to be all integer
valued. It is likely that an asymmetrical zero-padding has been added to the image. The
most obvious solution is adding 1 pixel wide zero-padding to one of the sides for both the
horizontal and vertical pixel span.

Image size
224 x 224 2

2
4

+1

Figure 3.8: ZF-net possible input zero-padding

Figure 3.8 shows one possible solution, resulting in a correctly sized output volume [W2×
W2 ×K1] = [110× 110× 96]. The output volume from the first layer is max-pooled to
halve the spatial dimension as well as contrast normalized [21]. These activation maps are
then passed through a ReLU layer which is not shown in the illustration. This operation
is mirrored in the next layer, which is generated using K = 256, F = 5 and S = 2 to
generate a new set of activations. The third and fourth layer is pure convolutional layers
with ReLU on the [W3,4 ×W3,4 ×K2,3] = [13× 13× 384]. Layer 5 again max-pools
the activation map to reduce size. This greatly reduces the computational expenses for
the two following 4096-neuron fully connected layers. The final probability distribution
is a C-class softmax function as described in Equation (3.5), with C being the amount of
classes. The model inhabits around 56 Million model-parameters.

26

3.2 CNN-models for Classification

3.2.2 VGG-16
The second model we explore is the deeper Visual Geometry Group (VGG) 16-layer model
[30]. This model was proposed simply to increase accuracy compared to pre-existing
models. It went on to win the ILSVRC-2014 challenge in the category of localization and
classification reaching a mAP of 89.3% and 89% on VOC2007 and VOC2012 respectively.
This was a rather astounding 10% increase in accuracy to the last years winner ZF-net, on
the same data.

Image Courtesy: https://www.cs.toronto.edu/ frossard/post/vgg16

Figure 3.9: VGG-16 model architecture

Figure 3.9 shows the VGG-16 model architecture. The architecture, as ZF-net, resizes the
input-image to fit a [W1 ×W2 ×D1] = [224× 224× 3] window. In contrary to ZF-Net
however, the convolutional layers of VGG-16 is not spatially reduced in size when subject
to convolutional layers. This is done using square F = 3 sized kernels with no skip S = 1
and P = 1 padding. The layers are still max-pooled at 5 instances to reduce the spatial
extent. Again, similar to ZF-Net, they employ the ReLU activation for hidden layers, and
C-class softmax for the probability distribution on the output. The model inhabits around
138 Million model-parameters.

3.2.3 Trade-offs
It is clear from the two models presented in this section that accuracy and model depth
is closely related. The trade-off however, is the computation time for VGG-16, which is
reported to be around 3 times longer than ZF-net. This seems reasonable as the model
consists of about 3 times as many model-parameters. The VGG-16 model also requires a
larger amount of computer memory to store a larger amount of feature-maps and model-
parameters. During the training phase, these feature-maps are constantly subject to change,
which means they need to be cached in RAM or GPU memory.

27

Chapter 3. An introduction to Convolutional Neural Networks

28

Chapter 4
Region-based Convolutional Neural
Network

This thesis investigates a framework for detection and classification called Faster Region-
based Convolutional Neural Networks (Faster R-CNN). The following sections explore the
three dominant papers provided on this approach, leading up to the most recent framework
for region based CNNs. There is a necessity to explore all three papers, as they heavily
refer to its predecessors approach, and even using key parts described in these older works
in the newer approaches.

• Section 4.1 provides a brief insight into R-CNN, the earliest work leading up to the
state of the art framework used in this thesis.

• Section 4.2 looks at the faster approach to R-CNN, called Fast R-CNN.

• Section 4.3 is the most important section of this chapter. Here, a detailed deduction
of the work in Faster R-CNN is provided. Details regarding the construction, loss
and training aspects are investigated.

4.1 R-CNN
A Region-based Convolutional Neural Network is a term used for a single pipeline solving
both a detection and classification problem. Here, regions of any size in an image are
extracted, fed into a CNN and classified. In 2014 Ross Girshick et al. of UC Berkeley
proposed a Regional Convolutional Neural Network (R-CNN) which achieved a 53.3%
mAP on the VOC2012 test-set [16]. This was a 30% improvement over the previous best
results [28]. This was achieved by first using selective search [33] to propose a number of
regions in an image. The top 2000 region-proposals were then fed into a CNN performing
classification. The key to the improved performance lies in the way that R-CNN is trained.
The CNN is pre-trained on a large auxiliary data set not containing any bounding-boxes.

29

Chapter 4. Region-based Convolutional Neural Network

This is done using supervised training. The second stage is fine-tuning each domain in the
training-set to achieve a class-specific AP.

Figure 4.1: R-CNN pipeline [16]

Figure 4.1 shows the R-CNN pipeline, accepting an input image, subjecting it to selective
search to extract regions, and classifying around 2000 of these regions.

4.2 Fast R-CNN

Fast R-CNN is a continuation of the work done by Ross Girshick in R-CNN [15]. In this
paper, Girshick proposes a faster, more accurate approach to R-CNN, achieving a 66%
mAP on the VOC2012 data set. This was achieved by creating a convolutional feature
map of the image with all of its region-outputs from the selective search procedure. This
allowed for pooling the regions of interest (RoIs) in one layer. By passing the pooled RoIs
through two fully connected layers the pipeline outputs a softmax classification score, in
addition to a bounding box regressor, according to the loss function

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lreg(t
u, v) (4.1)

where u is the ground truth class label, p is the predicted class, v is the ground truth
bounding-box dimensions and tu is the predicted bounding-box dimension. The term
[u ≥ 1] evaluates to 1 for positive classes and 0 for negative. A box regression loss
like this minimizes the initial bounding-box estimate to match the feature outputted by
the CNN more precisely. The elements and composition of the loss-functions Lcls and
Lreg are covered in greater detail in the subsequent section, where we look at the details
surrounding the latest R-CNN publication, Faster R-CNN [25].

4.3 Faster R-CNN

The main part of this section is the latest iteration of the R-CNN approach, Faster R-CNN.
This is the framework that will be evaluated and used in the pursuit of robust ship detection
throughout this thesis. Faster Region-based CNN is developed at Microsoft Research by
Shaoqing Ren et. al [25].

30

4.3 Faster R-CNN

Figure 4.2: Fast R-CNN pipeline [15]

The major computational expense of Fast R-CNN in implementation was the use of se-
lective search for region proposal [33]. Faster R-CNN eliminates the need for an exter-
nal region-proposal algorithm by introducing what is called a Region Proposal Network
(RPN). The RPN can be described as a fully convolutional network that takes an image
input and outputs a correspondingly sized segmented output-map containing features in
the image [24]. This feature map, and its corresponding RoIs are subject to a set of k = 9
rectangular anchor-boxes representing 3 scales and 3 aspect ratios. This is done by assign-
ing each pixel in the output layer of spatial width W × H anchors, amounting to WHk
total anchors for the feature map. Each spatial area covered by the RoIs is then passed
to two sibling convolutional layers. The first convolutional layer outputs the classification
score and the second the regression score with reference to these anchors.

Figure 4.3: Faster R-CNN architecture [25]

Figure 4.3 shows an image being fed through convolutional layers to make activation-
maps. The area of activation is then fed into the RPN to determine the strongest bounding-
box. The spatial dimensions contained in these bounding-box proposals are fed into the
classification layers where the classification score is obtained.
Training the RPN is done by assigning a binary class label for being an object or not to
each region of interest. The positive labels are assigned two kinds of anchors: The highest

31

Chapter 4. Region-based Convolutional Neural Network

overlap with the ground truth bounding box and the RoI with the highest overlap with a
Intersection over Union (IoU) with any ground truth box.

IoU =

Figure 4.4: Visual depiction of Intersection over Union

The IoU is a ratio measure of bounding-box strength. It is simply the area of overlap
divided by the area of union between two bounding boxes as shown in Figure 4.4. The
classification loss and regression loss minimized according to the objective function:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i) (4.2)

Here, i is the anchor in a mini-batch and pi is the probability of the anchor being an object.
p∗i is the ground-truth label and is 1 if the anchor is positive and 0 if not. ti is the predicted
bounding box coordinates and t∗i is that of the ground truth. λ in the regression loss is a
balancing parameter. To get a better understanding of how the objective function behaves
we decompose the elements.

Classification score

Let’s define the probability of the network outputting a true classification score as py=1 =
ŷ, leaving the opposite prediction to be py=0 = 1 − ŷ. The equivalent notation for the
annotated ground truth label is then given by p∗y=1 = y and p∗y=0 = 1−y. The distribution
is then contained in {p ∈ R : 0 ≤ ŷ ≤ 1} and {p∗ ∈ N : 0 ≤ y ≤ 1}. The probability
output is a classification score from a softmax activation function as defined in Equation
(3.5) with zl = p. In addition Faster R-CNN assigns these heuristics to the ground truth
annotation:

p∗i =

 1 if IoU > 0.7
0 if IoU < 0.3

excluded if 0.3 ≤ IoU ≤ 0.7
(4.3)

Equation (4.3) gives a clear, dividing line between positive and negative predictions to
minimize the chance of obtaining false objects at the edges of the ground truth bounding-

32

4.3 Faster R-CNN

box. Faster R-CNN defines the classification loss to be a logistic loss function [25]. The
loss function is defined as:

Lcls(pi, p
∗
i) = −log(pi, p∗i) = −[yilog(ŷi) + (1− yi)log(1− ŷi)] (4.4)

It is evident from Equation (4.4) that the function is minimized and penalized under two
instances:

1. Minimized if there is a strong overlap between the anchor and a ground-truth bound-
ing box.

2. Penalized if there is a strong prediction on a false ground-truth bounding-box.

Box regressor

The second part of the RPN objective function is the box-regression loss. This is described
as a smooth absolute loss over all vectorized bounding-box coordinates. The bounding-
boxes are vectorized as follows

tx = (x− xa)/wa, ty = (y − ya)/ha
tw = log(w/wa), th = log(h/ha)
t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha
t∗w = log(w∗/wa), t∗h = log(h∗/ha)

(4.5)

where x, y, w, h denote coordinates, width and height. The variables x, xa, x∗ are the
predicted, anchor and ground truth bounding boxes successively.

p∗iLreg(ti, t
∗
i) = p∗iR(ti − t∗i) (4.6a)

R(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise (4.6b)

The regression loss is only activated for true samples, having a IoU with the ground truth
of over 0.7. It penalizes the objective function via the loss to either increase or decrease
the size of the predicted bounding-box compared to the 9 anchors’ spatial difference to the
ground truth.

4.3.1 Training Faster R-CNN
Faster R-CNN present three training solutions, Alternating training, Approximate join
training and Non-approximate join training. Detailed description of these are for the
reader in the Faster R-CNN article [25]. All experiments in Faster R-CNN are done using
alternate training. This training solution is also used for all experiments presented later on
in this thesis. This section gives a description of Alternate training.

Alternate training treats the training as a four step process, alternating between training
the RPN and the fast R-CNN classifier.

33

Chapter 4. Region-based Convolutional Neural Network

Figure 4.5 depicts the training procedure as described in Faster R-CNN. The first step is
training the RPN. Here, the images in the training set are fed to the network in batches of
256 images at a time. The weights and biases of the network are updated after each batch.
This is iterated over 80.000 image-batches. The learning-rate η decreases from η = 0.001
to η = 0.0001 after 60.000 iterations. The two first steps of training initialize the weights
of the network using a pre-trained model. The paper does not explicitly define the classes
or images used to train these pre-trained models, other than that they are trained using im-
ages from the imagenet repository [11]. In the Faster R-CNN repository, two pre-trained
models are provided, one for VGG-16 and one for ZF [29]. The layer-specific weights
for the RPN in the first step is initialized at random from a zero-mean Gaussian distribu-
tion. All layers of the network is then trained end-to-end on the training-images. The RPN
training outputs a large amount of regions for each image. These regions are subject to
Non-Maximum Suppression(NMS) which only stores the top 2000 regions for any given
image to be used for classification. A region is rejected under the criteria that it has a IoU
overlap with a higher scoring region larger than a learned threshold [16].

The second step in the training procedure is training fast R-CNN on the image regions pro-
posed by the RPN. At this stage, the two networks do not share any layers. Fast R-CNN
is initialized from the same pre-trained model as the RPN at this stage. It is then trained
end-to-end, batching 2 images and 64 random regions at a time. Fast R-CNN is by default
trained over 60.000 iterations, decreasing the learning-rate from η = 0.001 to η = 0.0001
after 30.000 iterations.

The third step is training the RPN again. This time it is initialized from the weights from
step 2, while the RPN specific layers are initialized from the optimized parameters from
step 1. At this stage, the training only fine-tunes the RPN specific model parameters, keep-
ing the stage 2 parameters static. The learning-rate and iterations is the same as for stage 1.

The last training-step is the same as the third in terms of training, keeping the shared lay-
ers static, while fine-tuning the Fast R-CNN layers. The learning-rate and iterations is the
same as for stage 2.

When training is complete, the RPN and Fast R-CNN layers share model-parameters in
the common ”Shared CNN Layers”. At this stage they are merged together to form one
unified network. This network takes one single image and proposes regions from the
RPN, classified with Fast R-CNN. The RPN is ran end-to-end, taking a single image,
proposing regions and applying NMS to reduce the amount of RoIs. These RoIs, along
with the feature-map at the last shared CNN layer is fed into the Fast R-CNN layers for
classification. This eliminates the need to run the image through the shared convolutional
layers twice.

Testing

Testing Faster R-CNN is a task of running single images through the trained network and
computing the precision/recall and its associated AP for each class and mAP for the all
classes according to what is described in Section 3.1.7. During testing it was shown that

34

4.3 Faster R-CNN

keeping 2000 regions after NMS actually gave a poorer outcome during classification. In
the testing-phase, 300 regions were shown to give a slight increase in performance when
sharing the model-parameters between the RPN and Fast R-CNN layers [25].

35

Chapter 4. Region-based Convolutional Neural Network

RPN
Compute WHk anchors

|
256 Sampled anchors

(1:1 Positive/Negative)
|

Compute reg/cls loss
|

Backpropagate->SGD

CNN
Layers

Feature Map

Training-images

Imagenet pre-trained
model

CNN-model Initial model-parameters

Zero-mean Gaussian
distribution (std. 0.01)

Training step

RPN Stage 1

Fast R-CNN
RoI pooling layer

|
2x FCL s

 | |
Softmax bbox regressor

|
Compute reg/cls loss

|
Backpropagate->SGD

Imagenet pre-trained
model

Training-images with
regions from RPN Stage 1

CNN
Layers

Feature Map

Imagenet pre-trained
model

Fast R-CNN
Stage 1

Step 2 model-
parameters

Training-images with
regions from step 3

Step 2 model-
parameters

Step 4

Step 2 model-
parameters

Step 1 model-
parameters

Training-images

Step 3

Batch 256 images

Top 2000 region-
proposals

Top 2000 region-
proposals

Tuning:
60.000 iterations

η = 0.001
20.000 iterations

η = 0.0001

Tuning:
30.000 iterations

η = 0.001
30.000 iterations

η = 0.0001

Training

RPN
Compute WHk anchors

|
256 Sampled anchors

(1:1 Positive/Negative)
|

Compute reg/cls loss
|

Backpropagate->SGD

Shared CNN
Layers

Feature Map

Batch 256 images

Tuning:
60.000 iterations

η = 0.001
20.000 iterations

η = 0.0001

Shared CNN
Layers

Tuning:
30.000 iterations

η = 0.001
30.000 iterations

η = 0.0001

Batch 2 images and
64 random regions
from each image

Fast R-CNN
RoI pooling layer

|
2x FCL s

 | |
Softmax bbox regressor

|
Compute reg/cls loss

|
Backpropagate->SGD

Batch 2 images and
64 random regions
from each image

Feature Map

NMS

36

4.3 Faster R-CNN

RPN
Compute WHk anchors

|
256 Sampled anchors

(1:1 Positive/Negative)
|

Compute reg/cls loss
|

Backpropagate->SGD

CNN
Layers

Feature Map

Training-images

Imagenet pre-trained
model

CNN-model Initial model-parameters

Zero-mean Gaussian
distribution (std. 0.01)

Training step

Step 1

Fast R-CNN
RoI pooling layer

|
2x FCL s

 | |
Softmax bbox regressor

|
Compute reg/cls loss

|
Backpropagate->SGD

Imagenet pre-trained
model

Training-images with
regions from step 1

CNN
Layers

Feature Map

Imagenet pre-trained
model

Step 2
Fast R-CNN Stage 1
model-parameters

Training-images with
 regions from RPN Stage 2

Fast R-CNN Stage 1
model-parameters

Fast R-CNN
Stage 2

Fast R-CNN Stage 1
model-parameters

Fast R-CNN Stage 1
model-parameters

Training-images

RPN Stage 2

Batch 256 images

Top 2000 region-
proposals Top 2000 region-

proposals

Tuning:
60.000 iterations

η = 0.001
20.000 iterations

η = 0.0001

Tuning:
30.000 iterations

η = 0.001
30.000 iterations

η = 0.0001

Training

RPN
Compute WHk anchors

|
256 Sampled anchors

(1:1 Positive/Negative)
|

Compute reg/cls loss
|

Backpropagate->SGD

Shared CNN
Layers

Feature Map

Batch 256 images

Tuning:
60.000 iterations

η = 0.001
20.000 iterations

η = 0.0001

Shared CNN
Layers

Tuning:
30.000 iterations

η = 0.001
30.000 iterations

η = 0.0001

Batch 2 images and
64 random regions
from each image

Fast R-CNN
RoI pooling layer

|
2x FCL s

 | |
Softmax bbox regressor

|
Compute reg/cls loss

|
Backpropagate->SGD

Batch 2 images and
64 random regions
from each image

CNN-model Initial model-parametersTraining step Training

Feature Map

NMS
NMS

Figure 4.5: Faster R-CNN 4-step alternate training

37

Chapter 4. Region-based Convolutional Neural Network

38

Part III

Method

39

Chapter 5
Datasets

Chapter 4 briefly introduced the imagenet and Visual Object Challenge (VOC) data sets.
There are some inherent differences in the images contained in these data sets. The exper-
iments conducted later on in this thesis will be utilizing these data sets for the purpose of
training an object detector. This chapter presents the various data sets and the construction
of a data set specifically designed for the ASV application.

• Section 5.1 presents the 2007 and 2012 Visual Object Challenge data sets. A small
discussion regarding the relevance of the data is presented throughout the section.

• Section 5.2 presents images pulled from the image database imagenet. These are
images chosen for their relevance to the ship detection objective.

• Section 5.3 concludes the chapter with the presentation of a custom data set made
for this thesis.

5.1 Visual Object Challenge data sets
Faster R-CNN comes with pre-trained ZF and VGG-16 models. These models have been
trained on the VOC2007 and VOC2012 data sets, as well as a combination of the two
(VOC0712). These data sets are part of the annual challenge, and are changed and ex-
panded upon every year [13]. The VOC data sets come partitioned in 4 distinct image sets.

In Table 5.1 the four image sets are described. All image sets contain ground-truth bounding-
boxes of the 20 classes that the contest requires researchers to evaluate their CNN over.
There is however a large variation in the amount of objects for each class throughout the
image sets. The contents of these data sets have direct impact on the robustness expected
from the output of the fully trained model. It is therefore desirable to have a closer look at
the images contained here.

41

Chapter 5. Datasets

train Training images used to minimize the objective function and update
model-parameters.

val Validation images for minimizing overfitting. Same as a testset, but parsed
periodically in the training regime to verify accuracy outside the training
images.

trainval A combination of the images contained in the training and validation data
sets.

test Test images used to evaluate the mAP of the CNN after training.

Table 5.1: VOC main image sets

train val trainval
img obj img obj img obj

Aeroplane 112 151 126 155 238 306
Bicycle 116 176 127 177 243 353

Bird 180 243 150 243 330 486
Boat 81 140 100 150 181 290

Bottle 139 253 105 252 244 505
Bus 97 115 89 114 186 229
Car 376 625 337 625 713 1250
Cat 163 186 174 190 337 376

Chair 224 400 221 398 445 798
Cow 69 136 72 123 141 259

Diningtable 97 103 103 112 200 215
Dog 203 253 218 257 421 510

Horse 139 182 148 180 287 362
Motorbike 120 167 125 172 245 339

Person 1025 2358 983 2332 2008 4690
Pottedplant 133 248 112 266 245 514

Sheep 48 130 48 127 96 257
Sofa 111 124 118 124 229 248

Train 127 145 134 152 261 297
Tvmonitor 128 166 128 158 256 324

Total 2501 6301 2510 6307 5011 12608

Table 5.2: VOC2007 image and object specifications

42

5.1 Visual Object Challenge data sets

train val trainval
img obj img obj img obj

Aeroplane 327 432 343 433 670 865
Bicycle 268 353 284 358 552 711

Bird 395 560 370 559 765 1119
Boat 260 426 248 424 508 850

Bottle 365 629 341 630 706 1259
Bus 213 292 208 301 421 593
Car 590 1013 571 1004 1161 2017
Cat 539 605 541 612 1080 1217

Chair 566 1178 553 1176 1119 2354
Cow 151 290 152 298 303 588

Diningtable 269 304 269 305 538 609
Dog 632 756 654 759 1286 1515

Horse 237 350 245 360 482 710
Motorbike 265 357 261 356 526 713

Person 1994 4194 2093 4372 4087 8566
Pottedplant 269 484 258 489 527 973

Sheep 171 400 154 413 325 813
Sofa 257 281 250 285 507 566

Train 273 313 271 315 544 628
Tvmonitor 290 392 285 392 575 784

Total 5717 13609 5823 13841 11540 27450

Table 5.3: VOC2012 image and object specifications

Table 5.2 and Table 5.3 displays the total amount of images contained in the VOC2007
and VOC2012 training and validation data sets. From the tables it is clear that the class of
interest in this thesis, boat, is rather poorly represented relative to the other classes. 4.2%
of the images, and 2.8% of the object bounding-boxes contained in both training-image
sets belong to the class. On the other hand, the person class, which is the most represented
class, hold 36% of the images, and 33% of the objects in the same image sets.

This thesis considers the VOC2007 test-set for benchmarking. These are images used
for calculating the precision and recall, as well as the mAP discussed in Section 3.1.7.
The test-set contains 4952 annotated images that are unavailable during training. There
is no information about the amount of images containing the different classes and their
bounding-boxes, as is presented for the training set in Table 5.2.

43

Chapter 5. Datasets

In Figure 5.1 some excerpts from the VOC2007 and VOC2012 data sets are displayed.
These images do not contain each class explicitly. For instance, in Figure 5.1A a person
is posing in front of a docked ship. In some images, as seen in Figure 5.1E, the boat is
occluded at the far edge of the image, discontinuing the features. If one were to draw
bounding-boxes around these objects, information would certainly be lost. During train-
ing, using images where features from one class overlap the other could possibly induce a
certain degree of error, miss-classifying the one for the other.

A B
...

G H

A-D Excerpts from the VOC2007 data set. E-
H Excerpts from the VOC 2012 data set. All
images including the boat class.

Figure 5.1: Image samples from the VOC2007 data set

44

5.2 Imagenet

5.2 Imagenet
Imagenet is a large scale hierarchical image database created at Princeton University [11].
The aim of imagenet is simply to encompass the largest amount of annotated images for a
vast amount of objects. The hierarchy of imagenet is largely a symantical tree-structure,
where each branch is a sub-category of the parent. These branches are called synonymous
sets, or synsets. The categorization of these synsets is based on a earlier Princeton database
project called wordnet [10]. Wordnet is an English lexical database, where the children
in the tree are synonymous with their parents. Imagenet expands on wordnet, including
annotated images for these synonyms. Upon release, imagenet contained images in around
10% of the wordnet synsets, with 3.2 million images. At this time, imagenet has expanded
to contain 19% of the synsets with 14 million images. There is a key difference between
images from imagenet and those from the VOC image sets. Imagenet images are only
annotated with its respecitve synset class identification. If any other object not belonging
to that synset is in the image, it will be regarded as background. On the other hand, a VOC
image can contain multiple classes.

Figure 5.2: The children of synset Vessel,watercraft from http://image-net.org/.

45

Chapter 5. Datasets

Name Synset-ID Num. annotated images
Boat n02858304 199
Ship n04194289 1022
Sea Boat n04158807 199
Watercraft n04530566 239
Total 1659

Table 5.4: Imagenet synsets in thesis

Figure 5.2 display an instance of the imagenet tree. Here, the parent Vessel,watercraft
is shown to contain children image sets such as boat, ship and yacht. The images in
these synsets are publicly available images, pulled from image hosting webpages such as
www.flickr.com. They are then hand annotated to match their respective synsets.
The imagenet synsets used in this thesis are shown in Table 5.4. All the synsets shown
here contain a total of 1893 bounding-boxes. These synsets were chosen as they largely
represent boats and ships at sea, with minor contamination from other classes. Combining
these four synsets also give a large variety of different water vessels. Good bounding-
boxes on these images will obtain a large amount of sea, terrain and mountains as negative
examples.

A B C D
E F G H

A-B Excerpts from the boat data set. C-D Excerpts from the ship data
set. E-F Excerpts from the sea boat data set. G-H Excerpts from the
watercraft data set.

Figure 5.3: Image samples from the VOC2007 data set

Figure 5.3 shows some excerpts from the imagenet synsets. These imagenet synsets con-
tain little noise from other classes, while containing the class to be detected with little to
no occlusion. This is not true for all the images in the set, but in comparison to the VOC
images, the general features of the objects to be detected are better contained in the image.
One example of contamination can be seen in Figure 5.3F, where a person is included in
the scene.

46

5.3 Data collection

5.3 Data collection
On March 31st 2017, an expedition was conducted to gather data of ships with different
sensors, including RADAR, AIS and camera. The expedition consisted of driving a boat
around the Trondheim harbor and at open sea to gather data in the different scenarios that
an ASV may encounter. The captured footage mainly consists of ships at rest in the harbor,
or ships at sea in transit. The weather conditions were mostly sunny, with some clouds.
There was no precipitation throughout the expedition.

Camera Abbreviation Resolution Position
GoPro HERO 5 Black c1 1920× 1080 Above helm, facing bow
GoPro HERO + c2 1920× 1080 Off the starboard quarter
GoPro HERO + c3 1920× 1080 Off the port quarter

Table 5.5: Camera specifications

Three cameras were used to capture images with different field of views. Table 5.5 shows
the specification of the three cameras attached to the boat. During the expedition, all three
cameras were triggered simultaneously with a GoPro smart remote.

A B
C

A Camera c1. B Camera c2. C Camera c3.

Figure 5.4: Image samples displaying the 3 camera’s view

Figure 5.4 shows images captured at the expedition. The forward facing c1 camera cap-
tures parts of the host-vessel in its image, while the backwards facing cameras capture
a part of the GPS antenna. Samples from these videos were used to create what will be

47

Chapter 5. Datasets

denoted as the custom data set. This image set consists of 177 annotated images from this
expedition and is split into two distinct data sets, one for training and one for testing. The
data sets are split with a small majority contained in the training-set. This can be seen
in Table 5.6. The custom data set is not comparable to the VOC or imagenet data sets in
terms of size. It does, however, contain a large amount of ground-truth bounding boxes per
image, with an average of 4.7 boxes per image. VOC2007 and VOC2012 in comparison,
inhibit an average of 1.7 boxes per image. The aim for these data is to provide data for
training and testing in close relation to each other. When it comes to evaluating the train-
ing and testing procedures later on in this chapter this will be a benchmark for creating
a more local detection model. A local model in this sense is a model where images are
collected on a predefined path, e.g., for an autonomous ferry. These images are then used
to train the network. The hypothesis here is that these images will eliminate some of the
false positives arising from miss-classifying the background or other objects in the images.

Dataset train test gt-boxes
Custom 100 77 834

Table 5.6: Custom data set partitioning

48

5.3 Data collection

c3 c2

c3 c1

c3 c3

c1 c2
A B

...
G H

A-H Sample images from the annotated data set. Ground truth boxes in green.

Figure 5.5: Image samples from the custom data set with bounding boxes.

49

Chapter 5. Datasets

50

Chapter 6
Implementation

The previous part of this thesis aimed provide insight into the theory surrounding CNNs
and the object detection framework Faster R-CNN. This chapter presents the implementa-
tion details of running and training CNN models within this framework.

• Section 6.1 gives an overview of the hardware and software used for implementing
Faster R-CNN in this thesis.

• Section 6.2 presents the Faster R-CNN script, Caffe C++ library and CUDA for
parallel computing.

• Section 6.3 consider some of the implementation aspects to Faster R-CNN. This in-
cludes the comprehensiveness of documentation and challenges of using the frame-
work.

6.1 Overview
This section presents the hardware and software used for training and testing the CNN
models in the experiments presented later on in this thesis.

Computer 1 (Comp1) Computer 2 (Comp2)
Processor Intel(R) Core(TM) i5-4690K

@ 3.50GHz
Intel(R) Core(TM) i5-4690K
@ 3.50GHz

Graphics unit Nvidia GeForce 1080
@ 1607MHz

Nvidia TITAN Xp
@ 1582MHz

GPU Memory 8GB 12GB
Memory (RAM) 8GB 8GB
Architecture 64-bit 64-bit

Table 6.1: Hardware specifications

51

Chapter 6. Implementation

Operative system Windows 10 Home
MATLAB version R2014a
Parallel computing platform Nvidia CUDA 8.0
IDE Microsoft Visual Studio 2015

Table 6.2: Software specifications

The decision to use an older version of MATLAB was done to initially recreate the im-
plementation done as it was in the repository for Faster R-CNN [29]. In later stages it
proved sufficient in the process of training and evaluating self-trained networks. Table
6.1 describes two separate computer builds which are equal in every aspect except for the
graphics unit used. Comp2 was built to provide sufficient GPU memory for the deeper
VGG-16 model, when Comp1 proved insufficient for the task.

6.2 Faster R-CNN
Faster R-CNN is provided under the MIT-license. The license and its condition can be
found at the provided repository [29]. The repository provided for the object detection
framework is a MATLAB implementation of what is described in the original paper [25].
A python implementation is also available. Even though the program uses MATLAB, most
computations are done in C++, which gives access to parallel computing using CUDA.
The interface that allows MATLAB scripts to run C++ headers and subroutines is called a
MATLAB ExeCutable (MEX). Faster R-CNN is compiled in Caffe, a C++ deep learning
framework from Berkeley Vision [19].

6.2.1 Caffe

Caffe is a C++ deep learning framework utilizing Nvidia CUDA for parallel computing.
It is an in-development framework with a large amount of contributors. This thesis will
not directly modify the C++ Caffe framework during implementation, but its structure is
important for understanding the Faster R-CNN framework.

Caffe was made to address the lack of ”off-the-shelf deployment of state-of-the-art mod-
els” [19]. This is done with an all incorporated toolbox which allows researchers to build,
train and ultimately distribute the training-parameters alongside their articles for peer-
review. The framework comes with both Python and MATLAB bindings for constructing
and training neural networks. The framework includes classes for reading data and the
most notable functions for computing any Neural Network spanning from simple fully-
connected networks to more advanced networks such as CNNs and Recurrent Neural Net-
works (RNNs). Caffe is made with consideration for the multi-platform bindings. This is
evident from the way a Caffe NN-model is universally built and trained. All layers and the
solver are defined using text-based file extensions named .PROTOTXT.
Figure 6.1 shows how a convolutional layer is defined in Caffe using the prototxt. Upon
training or running a NN, Caffe will load the appropriate prototxt and the NN is defined

52

6.2 Faster R-CNN

Figure 6.1: Caffe convolutional layer

accordingly. Similarly, the solver can be defined, incorporating the step size and the num-
ber of iterations the NN is subject to during the training and testing phase. In employing
Caffe, there are two outputs to consider: Under training, Caffe updates the model file de-
noted .CAFFEMODEL with the state of the weights and biases at each layer of the network.
In addition Caffe outputs the state of the solver. This is done alongside the updated model-
parameters. This output is denoted .SOLVERSTATE. The solverstate contains information
required to continue training should it have exited at any stage during the training-process,
such as which iteration it is to continue from.

6.2.2 Parallel Computing

Employing a CPU to do all convolutions, activations and general calculations during train-
ing is a tall order, as the way it is designed only allows for the computation of a single
operation at a time, per core. Optimizing the error over several million model-parameters
for tens of thousands of iterations will take a large amount of time, and is not feasible. The
way neural networks are designed allows for multiple sub-routines to be ran in parallel, as
the output of one neuron in a layer is independent from the output of another. A GPU in
comparison to the CPU is designed with a much larger amount of computation-cores. For
instance, the Nvidia GeForce GTX 1080 which is used to provide some of the results in
this thesis is designed with 2560 cores. These cores can each process simple sub-routines
simultaneously. This greatly reduces the training-time for a deep CNNs. Faster R-CNN
and the Caffe framework utilizes Nvidia CUDA for parallel computing.

53

Chapter 6. Implementation

CUDA

CUDA is the parallel computing platform developed by Nvidia. It envelopes libraries such
as Basic Linear Algebra Subprograms (BLAS), Integrated Performance Primitives (IPP),
which include Computer Vision and Image Processing operations as well as Fast Fourier
Transform (FFT). These CUDA libraries replace the standard BLAS, IPP and FFT libraries
found in most programming languages to one that allows users to perform these operations
in parallel using a Nvidia GPU. It supports languages such as C/C++, Python and Fortran.

6.3 Implementation Aspects
Looking at the repository provided for Faster R-CNN, it is presented as a plug-and-play
MATLAB framework, ready to be utilized for testing and training [29]. It contains de-
tailed instructions for hardware and software requirements for both training and testing.
This section contains some of the implementation aspects that any new user of the Faster
R-CNN should keep in mind during setup, testing and training of the framework. The im-
plementation aspects in this section only concern the MATLAB implementation of Faster
R-CNN. Any user of Python should refer to the Python implementation of the framework
which is linked in the repository. This section also provides some of the challenges faced
during implementation.

6.3.1 Documentation
This section covers the documentation aspects of the different frameworks.

Faster R-CNN

Faster R-CNNs complete documentation consists of applying the knowledge gained from
the Faster R-CNN article [25] to the instructions provided in the Faster R-CNN repository
[29]. The code is nicely structured and well commented, but there is a lack of comments
on all functions not in the high-level ”user intended” scripts. Common problems with the
implementation are mostly covered in the issues section for the repository. A good way to
unravel the highly nested code is to use the repository search. This provides all uses of a
given script/function or variables. The lack of official proper documentation is unlikely to
be addressed at any time. At the time of writing, the last official commit to the repository
was 9 months old.

Caffe

Although a Caffe build is provided in the Faster R-CNN repository, interaction with the
framework is done at every step of the way during the training procedure. Caffe is pro-
vided with online documentation [1]. The documentation contains installation instruc-
tions, DIY Deep learning tutorials, Application Programming Interface (API) documen-
tation and several other resources. The API documentation gives a great insight into the
aspects surrounding any Caffe-based implementation. The class list is well annotated,
with mathematical formulations, descriptions and even use-cases. In this thesis, the most

54

6.3 Implementation Aspects

Figure 6.2: Excerpt from the Caffe log

important aspect for Caffe is in initializing training and its logging feature for debugging.
The logging feature can be enabled at any time before the Caffe mex is executed by adding

Caffe.init log(fullfile(pwd, ’Caffe log’));

to provide user with the ability to assess the execution after the mex is terminated. The
Caffe mex is terminated either via clearing the solution (finishing the training/testing),
or via errors terminating the procedure. This is undoubtedly the most important tool to
anyone starting off with training Faster R-CNN or any other MATLAB Caffe based NN
solution. The Caffe debugging log will provide information if dimensionality throughout
the CNN is wrong, the GPU is out of memory, or the input data is wrongly parsed. In
addition to this, the Caffe debug log gives a detailed run-down of how Caffe handles each
layer of the network, the hierarchy of all inputs and outputs through the network, and the
required memory to store model-parameters. This can be seen in Figure 6.2. The last line
in Figure 6.2 shows the dimensionality [N ×K×W1 ×H1] as well as the total storage
required for the input and kernels in parenthesis.

6.3.2 Rebuilding Caffe
An important aspect to the Faster R-CNN MATLAB implementation is the use of CUDA
for parallel computing. The implementation presented here is built on CUDA 6.5 SDK
using Visual Studio 2013. Furthermore, the graphic units used in Faster R-CNN are of the
Nvidia Maxwell and Tesla architecture (Titan, Titan Black, Titan X, K20, K40, K80). The
implementation done in this thesis is on a newer Nvidia GTX 1080 which is built on the
Nvidia Pascal architecture. This is not supported by the older CUDA 6.5, but rather by
the newer CUDA 8.0. Any attempt at running Faster R-CNN in GPU-mode will result in
errors, one in particular to note is the following:

Invalid MEX-file ’.../matlab/Caffe faster rcnn/Caffe .mexw64’

The general solution is rebuilding ’Caffe for Faster R-CNN’ to create a mex that is sup-
ported by whatever software or hardware requirements the user may have. There is a
official repository containing the necessary information and requirements to do this. It
can be found at https://github.com/ShaoqingRen/Caffe/tree/faster-R-CNN. Going into the
details surrounding the building of a new mex this way is of little use. The issues each user

55

Chapter 6. Implementation

might face will largely depend on their specific hardware, pre-installed libraries, OpenCV,
Boost, Visual Studio version and several more factors.

6.3.3 Testing trained models in Faster R-CNN
Any user downloading the content of the Faster R-CNN repository gets access to a ZF-net
model and a VGG-16 model trained on the VOC0712 data set. This is usually the first
insight new users get to the implementation aspect of this framework. This is certainly
fairly straight forward for anyone to use, as users without the proper Caffe build can run
this in CPU mode with a simple change to the parameter:

opts.use gpu = false;

However, as is covered earlier in this chapter, it is not viable to train a new model on a
CPU.

6.3.4 Annotations
One of the challenges in this thesis has been reformatting annotations and modifying Faster
R-CNN to accommodate, and correctly parse annotation-files from various sources. Faster
R-CNN takes mark-up language annotations (XML) as input and parses every character
to a single string. Parsing text this way requires precise delimiting. The wrong amount
of whitespace will corrupt the parsing procedure. Faster R-CNN only parses annotations
correctly if they follow the VOC standard annotation. An example has been provided in
Figure 6.3A. Imagenet annotations follow the VOC annotation standard, however, they do
not serve the correct identification for this training task as they come with the synset folder-
tag and name-tag. This is seen in Figure 6.3B. It is not advised using MATLAB for editing
or creating XML files, as the way MATLAB writes annotation files will lead to corruption,
adding incorrect whitespace and additional heading tags. It is possible however, with some
modifications to the Faster R-CNN framework.

6.3.5 Training
Having covered what is initially required to begin training Faster R-CNN on any data set
it is time to look at the different aspects of the training procedure. It is advised to have
a dedicated computer for the training purpose. At the very least, a dedicated graphics
unit should be used. Variations in memory load from other applications can crash the
training procedure at any time, as memory in the graphics unit is not pre-allocated, only
pre-calculated. The current version (and most likely final version) of the MATLAB Faster
R-CNN framework supports training on ZF-Net and VGG-16. The model structures, their
learning-rates and amount of training iterations are described by the .PROTOTXT files as
discussed in Section 6.2.1.

One of the challenges in employing Caffe for Faster R-CNN is its 4-stage training pro-
cedure. As discussed in the documentation paragraph, Caffe is executed for one single
training procedure. This means that the 4-stage training procedure is accomplished by

56

6.3 Implementation Aspects

A B A VOC annotation example. B Imagenet annotation example.

Figure 6.3: Example of a VOC and Imagenet XML annotation

solving 4 distinct training-solutions. Each solution is done as its own training step, with a
single execution of the Caffe mex, with its own solver. This has an inherent disadvantage.
If an error is done in the solver or input-parsing at a late training-stage, or the GPU lacks
memory for the specific task, this will not be known to the user before hours of training
has gone by. If training is done over night, this will waste a large amount of training time.
The biggest challenge concerning this has certainly been memory control. Some training
procedures require splitting up the data set into smaller chunks to be able to cache all the
required images and their associated data in GPU memory. This in itself is a time consum-
ing task, as all annotations, image-sets, and images have to be correctly split up to ensure
that no errors are induced into the next pass of the training procedure. Due to this, on
average, even with the knowledge obtained throughout the implementation, a single train-
ing procedure may take about 2-4 passes before the final model is obtained, each taking
everything from 9 to 17 hours.

There is an aspect of debugging in parallel computing worth considering. The parallel
computing interface in Faster R-CNN is limited to calling Caffe classes, which in turn
employs CUDA functions. Any error in the parallel computing process is not returned to
neither MATLAB or the Caffe debug logger. Crashes in CUDA functions are therefore
very hard to pinpoint. The times these errors were encountered during the implementation
for this thesis, were when annotations and images did not coincide, e.g., if image sizes did
not correctly correspond to what is described in the annotations, or the annotations had
been badly parsed due to the XML-structuring. These errors may not be completely obvi-
ous, but careful investigation of the image database cache (imdb cache) will surface such
errors. Due to the errors encountered here, a variety of verification scripts were written

57

Chapter 6. Implementation

to keep tally of any badly formatted data sets. These errors were especially prominent in
the imagenet data sets, which often had annotated bounding-boxes spanning outside the
image frames, or were converted TIFF images, which Faster R-CNN is not able to process.
Some imagenet synsets, originally meant for training, had to be completely removed due
to corrupt annotations.

58

Chapter 7
Experiments

This chapter describes the different experiments conducted to evaluate CNN models within
Faster R-CNN for several different data sets and training-regimes.

• Section 7.1 present the four experiments conducted in this thesis.

• Section 7.2 presents an evaluation of all experiments done on the custom test-set in
order to evaluate the robustness of the detectors for the ASV application.

7.1 Experiments
Having covered the various data sets that are going to be used and the theory and im-
plementation concerning Faster R-CNN, it is time to look into the experiments that is
conducted in this thesis. Training a CNN is largely a heuristic and problem dependent
task. It is often necessary to complete a large amount of time-consuming training-regimes
to determine an the best performing CNN model for the task. This thesis does not mod-
ify any of the hyper-parameters for the CNN-models presented earlier, as it is beyond the
scope of the thesis. What is presented here, is training-regimes done on the ZF and VGG-
16 for different combinations of VOC2007, VOC2012, imagenet and the custom data set
collected by the Autosea project and annotated by the author. This is done in pursuit of an
improved detection of the boat class, as it is presented in Faster R-CNN [25].

7.1.1 Experiment 1: Recreating the ZF VOC0712 model
From the Faster R-CNN repository one can download the demo models for both VGG-16
and ZF-net fine-tuned on the different VOC data sets. These can be executed and used
”off the shelf”. However, there are a lot variables in the implementation procedure, in
particular, the CUDA and Visual Studio version. The versions used in this thesis do not
correspond to the one used in the Faster R-CNN repository when training the models. If
there is any change to the classes in CUDA for any reason, this may have implications on

59

Chapter 7. Experiments

the model behavior during training. This experiment aims to validate the results obtained
in Faster R-CNN [25]. This is achieved by fine-tuning a ZF-model from the pre-trained
imagenet model on the VOC0712 data set, while validating on the VOC2007 test-set.

Average Precision (%) Average Precision (%)
Stage 1 Stage 2 Stage 1 Stage 2

Aeroplane 66 67 Diningtable 61 61
Bicycle 68 70 Dog 70 73

Bird 56 60 Horse 75 80
Boat 48 46 Motorbike 70 70

Bottle 33 33 Person 65 65
Bus 70 69 Pottedplant 30 31
Car 74 74 Sheep 63 64
Cat 76 78 Sofa 57 60

Chair 36 37 Train 72 71
Cow 65 70 Tvmonitor 62 62

mAP 61 62

Table 7.1: Fast R-CNN model stage AP, ZF-net, VOC0712 [29]

Faster R-CNN provides the results shown in Table 7.1 for the ZF-Net VOC0712 fine-
tuning procedure, validated on the VOC2007 test-set. These are not published in the Faster
R-CNN article, rather, they are provided in the repository [29]. This table will serve as a
benchmark for the AP surrounding the different classes. A correct replication of these
results are not expected, as the convergence of each class depends on stochastic gradient
descent for thousands of iterations. The ”Main Results” section of the repository shows a
note concerning the random variation that occurs during different training-runs. Here, 5
independent trainings of ZF-net are shown to have a mAP 59.9% with a standard deviation
of 0.39%. The note concerns training purely on the VOC2007 training-set. This is evident
from a statement in the repository that the mAP of 59.9% is the result published in the
Faster R-CNN paper. Table 2 in the Faster R-CNN paper shows that a mAP of 59.9% was
achieved on the VOC2007 data set [25], but do not display similar results for the VOC0712
training-set. What is evident from Table 7.1 is that one instance of training on VOC0712
gives a 2.1% increase over the published results.

Figure 7.1 and Figure 7.2 shows the loss-functions and accuracy-evolution for the afore-
mentioned training regime. The loss functions are as described in Equation (4.4) and
Equation (4.6). These figures will serve as means of evaluating the convergence of the
model that is trained in the experiment. The details of the per-iteration loss are dimly
presented in grey for the reader. The trend between the different trainings however, is
expected to be seen in the filtered moving average that is presented in blue and red. For
comparison between the model trained in the experiments and the model provided in the
repository, only a moving average will be shown.

60

7.1 Experiments

0 1 2 3 4 5 6 7 8

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Loss cls RPN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Loss cls RPN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Regression-Loss RPN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Regression-Loss RPN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy RPN Stage 1

Iteration

A
cc
u
ra
cy

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy RPN Stage 2

Iteration

A
cc
u
ra
cy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Raw Data
Moving Average, 250 Iterations
Moving Average, 1000 Iterations

A D
B E
C F

First Row: Classification Loss, Middle Row: Regression Loss,
Bottom Row: Accuracy.
A-C Stage 1 RPN
D-F Stage 2 RPN

Figure 7.1: RPN training loss and accuracy, ZF-Net, VOC0712, from [29].

61

Chapter 7. Experiments

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

Loss cls Fast R-CNN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

Loss cls Fast R-CNN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Regression-Loss Fast R-CNN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Regression-Loss Fast R-CNN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Fast R-CNN Stage 1

Iteration

A
cc
u
ra
cy

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Fast R-CNN Stage 2

Iteration

A
cc
u
ra
cy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Raw Data
Moving Average, 250 Iterations
Moving Average, 1000 Iterations

A D
B E
C F

First Row: Classification Loss, Middle Row: Regression Loss,
Bottom Row: Accuracy.
A-C Stage 1 Fast R-CNN
D-F Stage 2 Fast R-CNN

Figure 7.2: Fast R-CNN training loss and accuracy, ZF-Net, VOC0712, from [29].

62

7.1 Experiments

7.1.2 Experiment 2: Padding with Imagenet
In pursuit of increased AP for the boat class, this experiment pads the combined VOC0712
data sets with the imagenet data set discussed in Section 5.2. The training regime is the
same as for Experiment 1, with Faster R-CNN running the ZF-net model. Keep in mind
that the only ground-truth label and bounding-boxes in the imagenet images are of the
boat class. Any noise from other classes, positively predicted by the model, will be counted
towards a false positive for that class in the training-phase for these images. In creating the
data set, the imagenet images are, at random, split into one training-set and one validation-
set. Just as for the VOC data sets, these will approximately be split 50/50, with a small
majority towards the validation set. This is to most closely relate the data set to the VOC
data. None of the imagenet images will be used for testing purposes.

Data set train val gt-boxes
VOC2007 2501 2510 12608
VOC2012 5717 5823 27450
Imagenet 794 865 1893

Table 7.2: Data sets split between training and validation data.

Table 7.2 shows how the different data sets are split between training data and validation
data. The ground truth boxes for the total data set is shown in the last column. Padding the
VOC0712 data set with the Imagenet data set increases the total amount of images with
∼ 10%. What is of larger interest here is the representation of the boat-class compared to
the other 19 classes.

Data set train val gt-boxes
VOC2007 81 100 290
VOC2012 260 248 850
Imagenet 794 865 1893

Table 7.3: Boat class representation between data sets

With the addition of the imagenet data set, the boat class has a ∼ 281% increased data-
representation compared to the VOC0712 data set. This can be seen in Table 7.3, where
the amount of boat-images and ground-truth boxes are presented. The experiment will be
evaluated on the VOC2007 test-set, which will give a quantifiable comparison to experi-
ment 1.

63

Chapter 7. Experiments

7.1.3 Experiment 3: Single class training
Experiment 1 and 2 show the training regime of Faster R-CNN performed on all 20 VOC
classes. Experiment 3 deviates from this, training the model only on the boat-class. The
main idea here, is that the model should converge for real, positive, ground-truth cases of
the boat class. In theory, it should give better model-parameters for such a case, if the
training-data are sufficient. Reducing the data set, also means reducing the amount of neg-
ative examples for this class. In fact, all examples have positive ground-truth bounding
boxes in them. However, the RPN network still has to localize the correct bounding-box,
given an image. Here, an assumption is being made: There is such a vast amount of nega-
tive area in the images, and the RPN network does binary classification and bounding box
regression on this negative area in addition to the positive. On these grounds, a smaller
data set should still be sufficient for converging the model.

The data sets used for this experiment are the VOC0712+Imagenet data sets as described
in Experiment 2. Training only on the boat class reduces the total data set to what is
shown in Table 7.3. The experiment is evaluated on a subset of the VOC2007 test-set,
which all contain ships in them. Although this is not officially disclosed in the VOC
documentation [6], there are a total of 172 images in the VOC2007 test-set containing the
class. These annotations are then reduced to only accommodate the boat-class, leaving
any other class from the VOC class-list in the images as background. This experiment
will also evaluate another assumption. Given fewer classes at the output of the CNN, less
iterations of stochastic gradient descent should be necessary to obtain convergence. In
fact, too many iterations may induce overfitting on the data set.

Experiment CNN-Model RPN Iterations Fast R-CNN Iterations
η = 0.001 η = 0.0001 η = 0.001 η = 0.0001

E3A ZF-Net 60k 20k 30k 30k
E3B VGG-16 60k 20k 30k 30k
E3C VGG-16 60k 20k 30k 10k

Table 7.4: E3: Definition of sub-experiments

Table 7.4 shows the different experiments conducted on the single class data set. Here,
Experiment E3A is the original amount of iterations as can be seen in Figure 4.5 for the
ZF-Net model. Experiment E3B has the same amount of iterations on the VGG-16 model,
while E3C decrease the amount of Fast R-CNN iterations to allow for the investigation
of the above-mentioned assumption. The assumption will be confirmed if a significant
increase in AP is observed for E3C over E3B .

7.1.4 Experiment 4: Padding with the Custom training-set
Currently, the experiments presented in this chapter have been limited to images made
and annotated, for the purpose of creating a data set for image classification in the general
case. This experiment investigates the possibilities of creating an object detection net-
work, trained on images from the area that the vessel is to commute. To accomplish this, a

64

7.2 Evaluation on the Custom test-set

baseline data set is still needed. Padding the data sets shown in Experiment 2 with the cus-
tom data set allows for general convergence for the boat-class, and allows us to investigate
the hypothesis of Section 5.3 that data provided from a pre-defined path diminishes the
amount of false positives predicted on the environment in the image. This gives the total
data set VOC0712+Imagenet+Custom. This experiment is trained using the default itera-
tions described in Faster R-CNN and in Experiment E3A. The experiment is conducted on
the VGG-16 model with the binary training regime on the boat class.

7.2 Evaluation on the Custom test-set
So far, Experiment 1-4 have been evaluated on the VOC2007 test-set or a subset of this.
While this certainly gives an indication of the robustness of the different trained models, it
is not necessarily representative of the performance for the ASV application. To evaluate
this, all models are tested on the same set of images. Their mAP will be computed on the
custom test-set described in Section 5.3. This evaluation also provides useful information
concerning testing a CNN on data closely related to the training data. Experiment 4 has
the inherent advantage of being related to this test-set via the custom training-set. This
will evaluate the hypothesis of Section 5.3, that training-data collected on a predefined
path eliminates more false positives in the model.

An addition to this evaluation is the introduction of a metric to determine detection-offset
to ground-truth. Where the precision/recall-curve provides valuable information on ro-
bustness for every detection with IoU > 0.7, the proposed metric will provide information
on the offset for all true-positive detections in every image of the custom test-set. The met-
ric is defined as follows: We define the center of a ground-truth bounding-box to be given
by the coordinates (ug, vg) and the predicted bounding-box (up, vp) in the image plane
spanning (nu, nv) pixels. The error between these two points in the image plane is given
by (ue, ve) = (ug − up, vg − vp). The resulting euclidean distance is e =

√
u2e + v2e . For

each positive detection, store the error with the shortest euclidean distance to a ground-
truth box.

This method allows for multiple detections of a single ground-truth object. It is a metric
that considers the measurement noise that can be expected using this detection method.
This should serve as valuable information for initial gating when modelling measurement
noise in the tracking-problem, employing extended kalman filtering or similar techniques.

65

Chapter 7. Experiments

u

v

ug

up

vg
vp

n
v

nu

Rejected

Ground Truth

Predicted

e2
eu

ev

Boat silhouette Courtesy: https://clipartfest.com

A B
A Illustration showing prediction’s center related to ground truth. B Illustration
of the error-plane, mapping all distances for all true positive predictions.

Figure 7.3: Illustration of euclidean prediction error.

66

Part IV

Results and Discussion

67

Chapter 8
Results and Discussion

This chapter presents the results and discussion for the experiments described in chapter 7.
The results and discussion for each experiment is presented independently, referring only
to preceding experiments.

• Section 8.1 presents the results for experiment 1 described in Section 7.1.1.

• Section 8.2 presents the results for experiment 2 described in Section 7.1.2.

• Section 8.3 presents the results for experiment 3 described in Section 7.1.3.

• Section 8.4 presents the results for experiment 4 described in Section 7.1.4.

• Section 8.5 presents the results for the custom evaluation described in Section 7.2.

• Section 8.6 presents a video of the two best performing detectors, and analyses their
performance.

• Section 8.7 summarizes the results obtain in the various experiments.

8.1 Experiment 1: Recreating the ZF VOC0712 model
This experiment aims to validate the results published in Faster R-CNN for the ZF-net
model on the VOC0712 data set. This is done as a preliminary step towards padding the
data set to increase the accuracy in later experiments.

Notation

The results for the experiment is denoted E1 while the results provided in the repository
for Faster R-CNN will be denoted FZF to distinguish this from the experiments conducted
in the thesis.

69

Chapter 8. Results and Discussion

Results

Table 8.1 shows the results obtained during a single run of training Faster R-CNN on
VOC0712. The results presented are for the classification stages (Fast R-CNN) according
to the 4-stage alternate training regime in Figure 4.5. The mAP obtained is identical for
both stages of the experiment and the provided model. Included in these results are the
precision and recall curve for both stages of Fast R-CNN, shown in Figure 8.1. This is
computed according to Equation (3.15). Figure 8.2 compares the loss and accuracy for the
RPN training to what is published in the Faster R-CNN repository and Figure 8.3 shows
the loss and accuracy for the Fast R-CNN training. Both these figures display the 1000
iteration moving average, and do not concern the raw data as in Figure 7.1 and Figure 7.2.

Average Precision (%) Average Precision (%)
FZF E1 FZF E1 FZF E1 FZF E1

Stage 1 Stage 2 Stage 1 Stage 2
Aeroplane 66 66 67 68 Diningtable 61 58 61 62

Bicycle 68 69 70 70 Dog 70 69 73 71
Bird 56 57 60 60 Horse 75 78 80 77
Boat 48 50 46 49 Motorbike 70 68 70 71

Bottle 33 32 33 33 Person 65 65 65 66
Bus 70 71 69 70 Pottedplant 30 30 31 30
Car 74 73 74 75 Sheep 63 63 64 62
Cat 76 76 78 76 Sofa 57 56 60 60

Chair 36 37 37 38 Train 72 71 71 69
Cow 65 66 70 68 Tvmonitor 62 59 62 59

mAP 61 61 62 62

Table 8.1: E1: Fast R-CNN model stage AP, ZF-net. Comparison between results obtained in Faster
R-CNN repository [29] and the recreation done on the VOC0712 training data.

Discussion

There is a clear similarity in the mAP between the model trained in E1 and the one pro-
vided in the Faster R-CNN repository FZF . Some slight variations, such as the increased
AP for the boat class, and decreased AP for the tvmonitor class is expected using SGD
optimization. From Figure 8.2 and Figure 8.3 it is certainly possible to deduce that both
models converge at the same rate, with the small exception being the classification loss
in the second stage of Fast R-CNN in Figure 8.3D. Here, the model trained in this ex-
periment shows a slightly superior convergence overall throughout the training. It comes
as no surprise that these two models share such similar characteristics. However, validat-
ing this provides a verifiable benchmark for the subsequent experiments which adds and
subtracts from the data sets applied here. There are a lot of variables in play when imple-
menting such a large framework, utilizing several third party softwares. One cannot take
for granted that all training and testing images are the same and all annotations un-revised,
is certainly not good practice going into an experiment handling large amounts of data.

70

8.1 Experiment 1: Recreating the ZF VOC0712 model

There are also other changes, such as software and hardware differences that could come
into play, changing the outcome of the training procedure.

The deviation for the boat class between FZF and E1 in Table 8.1 came as a surprise.
Although this is most certainly a positive outcome, it is a result of the random nature of
the SGD optimization. This in turn becomes evident if we regard the mAP of both the
E1 and FZF model. Both models present the exact same mAP across the board, for both
stages of Fast R-CNN. Evaluating the RPN training procedure is unfortunately not as easy.
The nature of the RPN boils down to its binary classification (object versus not object), as
well as the box-regressor. In each image, these losses are calculated for a vast amount of
bounding-boxes. The top 2000 regions are then computed using Non-Maximum Suppres-
sion. The output of the NMS is not stored in the current version of Faster R-CNN, making
it hard to evaluate which boxes, and what classification score these boxes were chosen for.

Looking at the precision and recall for the two seperate Fast R-CNN stages in Figure 8.1
it can be seen a somewhat larger rate of high precision/low recall classifications for the
boat-class in the first stage. The constituting factor for the lower AP for this class at the
output stage can be due to several factors. It could certainly be attributed to the under-
representation of the class in the data set. The more iterations of back-propagation, the
more of the data set is used. The cause and effect of this, is a bias toward high representa-
tion in the data. This is certainly not the deciding factor, things like geometry and texture
play a major roll in distinguishing the different classes. If one were to train a model on
i.e. humans and boxes, the geometry and textures are more easily distinguishable, from
the large scale of rounded and square edges, to the smaller scales of containing features
like eyes, to not containing any features, or simple textures. In this case, we have boats,
buses, and cars, which are not inherently similar at a large scale, but that share more and
more features at lower scales such as windows. The bus class presents a argument against
poor data representation being the cause of low AP here: It has low data representation in
Table 8.1, but the AP is remarkably good. This in fact that in both the VOC2007 and the
VOC2012 training data the bus class has about the same representation as the boat class.
This is seen in Table 5.2 and 5.3. However, the bus class shares great similarities with the
highly represented car class. This in turn, during optimization, only fine-tunes some of the
weights and parameters that correctly predict the car class to distinguish the features of a
bus to that of a car.

71

Chapter 8. Results and Discussion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re
ci
si
o
n

E1: Precision/Recall for boat class.

E1 Stage 1
E1 Stage 2

Figure 8.1: E1: Precision vs. Recall for the boat class for the ZF-net model trained on VOC0712.

72

8.1 Experiment 1: Recreating the ZF VOC0712 model

0 1 2 3 4 5 6 7 8

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Loss cls RPN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Loss cls RPN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Regression-Loss RPN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

Regression-Loss RPN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy RPN Stage 1

Iteration

A
cc
u
ra
cy

0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy RPN Stage 2

Iteration

A
cc
u
ra
cy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

E1 Moving Average, 1000 Iterations
FZF Moving Average, 1000 Iterations

A D
B E
C F

First Row: Classification Loss, Middle Row: Regression Loss,
Bottom Row: Accuracy.
A-C Stage 1 RPN
D-F Stage 2 RPN

Figure 8.2: E1: RPN Loss function and accuracy comparison between results obtained in Faster
R-CNN repository [29] and the recreation done in E1 for VOC0712 training data.

73

Chapter 8. Results and Discussion

0 1 2 3 4 5 6

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Loss cls Fast R-CNN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Loss cls Fast R-CNN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Regression-Loss Fast R-CNN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Regression-Loss Fast R-CNN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Fast R-CNN Stage 1

Iteration

A
cc
u
ra
cy

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy Fast R-CNN Stage 2

Iteration

A
cc
u
ra
cy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

E1 Moving Average, 1000 Iterations
FZF Moving Average, 1000 Iterations

A D
B E
C F

First Row: Classification Loss, Middle Row: Regression Loss,
Bottom Row: Accuracy.
A-C Stage 1 Fast R-CNN
D-F Stage 2 Fast R-CNN

Figure 8.3: E1: Fast R-CNN Loss function and accuracy comparison between results obtained in
Faster R-CNN repository [29] and the recreation done in E1 for VOC0712 training data.

74

8.2 Experiment 2: Padding with Imagenet

8.2 Experiment 2: Padding with Imagenet
In pursuit of better detection of the boat class, the results presented in this experiment
compares the training on the padded data set to the original results presented in E1.

Notation

The results for this experiment are denoted E2.

Results

Table 8.2 compares the results obtained with the padded data set (E2), to that obtained
in E1 for all VOC classes. Figure 8.5 is an exhibit of two images showing the object
detection performance for both the E1 and E2 model. These images are taken from the
VOC2007 test-set, the data set under which both experiments are validated. The images
were chosen as the two first in the VOC2007 test-set to contain the boat class. This can be
verified through inspection of the VOC2007 devkit image-sets. Figure 8.4 compares the
precision and recall for the boat class in E1 and E2.

Average Precision (%) Average Precision (%)
E1 E2 E1 E2 E1 E2 E1 E2

Stage 1 Stage 2 Stage 1 Stage 2
Aeroplane 66 63 68 66 Diningtable 58 58 62 59

Bicycle 69 68 70 69 Dog 69 70 71 72
Bird 57 56 60 60 Horse 78 75 77 75
Boat 50 51 49 52 Motorbike 68 70 71 72

Bottle 32 31 33 32 Person 65 64 66 65
Bus 71 69 70 72 Pottedplant 30 29 30 30
Car 73 73 75 74 Sheep 63 61 62 63
Cat 76 76 76 77 Sofa 56 57 60 59

Chair 37 35 38 37 Train 71 71 69 72
Cow 66 67 68 71 Tvmonitor 59 59 59 60

mAP 61 61 62 62

Table 8.2: E2: Fast R-CNN model stage AP, ZF-net. Comparison between the model trained on
VOC0712 and the model trained on VOC0712+Imagenet.

Discussion

Although there is uncertainty related to this method, there is a marginal improvement for
the E2 model in Table 8.2. Compared to E1 the boat-class has achieved 3% increased AP
at the output of the last stage of training. Compared to FZF there is a 6% increased AP.
The experiment also gives further indication that increased exposure to the class during
training gives better performance. Even though this might certainly seem like an obvious
assumption, increased exposure may also lead to overfitting, ultimately decreasing the AP.

75

Chapter 8. Results and Discussion

It is also worth noting that this is the first experiment where the stage 2 AP for the boat
class is higher than the first stage. Figure 8.4 shows the precision and recall for the training.
In this experiment it is compared to what was achieved in E1. Initially, after the first stage
of Fast R-CNN training, the E1 model achieves a higher rate of high precision/low recall
detections. After the second stage, however, E2 has retained the high-precision cases over
a larger recall span. This is indicative of a slight performance increase in images contain-
ing multiple ground truth objects.

Also presented here are two images comparing the two experiments done so far shown
in Figure 8.5. These were added to provide the reader a more intuitive understanding of
what such a difference in AP constitutes. This difference is most notable in Figure 8.5A,
where, compared to E1, E2 correctly detects three additional vessels. It is worth noting
that the rightmost detected vessel in this figure is rather poorly classified, with only a 63%
certainty. Figure 8.5B gives a larger, more detailed perception of a ship for the models to
detect and classify. The notable difference in this case is the bounding-box size for both
detections. Although marginal, the E1 model is certainly closer to what a human would
draw for a bounding-box, leaving the centroid of the bounding-box closer to ground-truth.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re
ci
si
o
n

E2: Precision/Recall for boat class. Comparison E1 vs. E2

E1 Stage 1
E2 Stage 1
E1 Stage 2
E2 Stage 2

Figure 8.4: E2: Precision vs. Recall for the boat class comparing the ZF-net model trained on
VOC0712 and the ZF-net model trained on VOC0712+Imagenet.

76

8.2 Experiment 2: Padding with Imagenet

boat : 0.783

boat : 0.763

boat : 0.873

boat : 0.843

boat : 0.796
boat : 0.711

boat : 0.647

boat : 0.634

boat : 0.997

boat : 0.740

person : 0.989

sheep : 0.649

boat : 0.999

boat : 0.742
person : 0.973

sheep : 0.650

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

E1

E2

A
B

Figure 8.5: E2: Output samples from the VOC2007 test-set for the ZF-net model trained on
VOC0712 and the ZF-net model trained on VOC0712+Imagenet.

77

Chapter 8. Results and Discussion

8.3 Experiment 3: Single class training
This section presents and evaluates the results obtained from training various models on a
subset of the VOC and imagenet data sets containing the boat class.

Notation

The results for this experiment is denoted E3. Sub-experiment E3A is ZF-net with default
iterations. E3B is VGG-16 with default iterations. E3C is VGG-16 with reduced Fast
R-CNN fine-tuning.

Results

Table 8.3 displays the AP for the respective sub-experiments. Figure 8.6 compares the AP
for all models evaluated on the VOC2007 test-set. Figure 8.7 compares the three different
RPN training-regimes, with a 2000-iteration moving average for better visualization. Fig-
ure 8.8 compares the Fast R-CNN stages in the same regard. Lastly, Figure 8.9 revisits the
exhibition in Figure 8.5 for a sample comparison between the three sub-experiments.

AP (%)
Stage 1 Stage 2

E3A 57 63
E3B 66 67
E3C 66 65

Table 8.3: E3: Fast R-CNN model stage AP. Comparison between the default iteration ZF-net
model, default iteration VGG-16 model and reduced iteration VGG-16 model.

Discussion

This experiment has investigated three different methods for object-detection using a bi-
nary classifier. The first experiment uses the ZF-net model with default iterations (E3A).
The second uses the deeper VGG-16 model (E3B) and the last is VGG-16 with reduced it-
erations for the Fast R-CNN training stages (E3C). This is the first experiment conducted
on the VGG-16 model. As this experiment is evaluated on a subset of the VOC2007
test-set, it will not be compared to the 20-class models in Experiment E2. For this experi-
ment, VGG-16 certainly outperforms ZF-net in every regard, with a 4% superiority on the
VOC2007 test-set at the output stage. The reduced VGG-16 model trained in Experiment
E3C , although more or less equivalent with E3B after the first stage of training, loses ro-
bustness to the fine-tuning of the fully connected layers in stage 2.

Figure 8.6 shows the rather remarkable increase in AP for the ZF-model between the two
stages. Although not conclusive in any regard, the ZF-net model may have benefited from
a larger amount of iterations in stage 2. Although reduced iteration VGG-16 model has
a decreased AP between the two stages, it does present some interesting results. 8.6B

78

8.3 Experiment 3: Single class training

shows this model having an increased recall at the lower precision range (r >∼ 0.68),
indicating that, even though it does detect a larger amount of false positives, it also de-
tects more ground-truth objects than the full iteration VGG-16 model in E3B . This is
largely overshadowed however by the great precision E3B displays in the mid recall range
(∼ 0.4 < r <∼ 0.62) over E3C .

The training loss and accuracy is also presented for a more general ZF-net versus VGG-16
comparison. The general conclusion here is the same, VGG-16, both with reduced itera-
tions and full iterations has a better convergence in most aspects of the training. There are
some expections, such as the sudden increase in RPN regression loss in both stages for the
VGG-16 models seen in Figure 8.7B and Figure 8.7E.

In Figure 8.9 we again revisit the sample images from E2. Figure 8.9A display a remark-
able difference of precision and recall, and give grounds for not comparing the AP in
this experiment to the ones evaluated on the full VOC2007 test-set. From Table 8.3 we
have an AP of 63% for ZF-net, which is a 9% increase from the 20-class VOC+imagenet
ZF-net model in E2 from Table 8.2. It is however clear that it does not perform nearly
as good as the E2 model on Figure 8.9A. Both E3B and E3C display good results, in
Figure 8.9A, outperforming E2 by detecting an additional ship (leftmost in figure), and
containing all detections within a single bounding-box. Note the increased overall soft-
max classification-score for all detections in Figure 8.9 compared to Figure 8.5. This is
due to the relative nature of the softmax-function as seen in Equation (3.5) and does not
measure any quantifiable increase in robustness by itself, but should be considered when
choosing a classification threshold by heuristics. A heuristic from the images displayed
here and in the E2 results is that accepting detections over 0.9 classification score using
binary detection is approximately equivalent to a lower thresholding of the 20-class model
at 0.65.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re
ci
si
o
n

E3: Precision/Recall for boat class

E3A Stage 1
E3B Stage 1
E3C Stage 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re
ci
si
o
n

E3: Precision/Recall for Boat class

E3A Stage 2
E3B Stage 2
E3C Stage 2

A B A Stage 1 Precision/Recall. B Stage 2 Precision/Recall.

Figure 8.6: E3: Precision/Recall comparison between the default iteration ZF-net model, default
iteration VGG-16 model and reduced iteration VGG-16 model.

79

Chapter 8. Results and Discussion

0 1 2 3 4 5 6 7 8

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Loss cls RPN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Loss cls RPN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0

0.005

0.01

0.015

0.02

0.025

Regression-Loss RPN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Regression-Loss RPN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6 7 8

x 10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Accuracy RPN Stage 1

Iteration

A
cc
u
ra
cy

0 1 2 3 4 5 6 7 8

x 10
4

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Accuracy RPN Stage 2

Iteration

A
cc
u
ra
cy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

E3A Moving Average, 2000 Iterations
E3B Moving Average, 2000 Iterations
E3C Moving Average, 2000 Iterations

A D
B E
C F

First Row: Classification Loss, Middle Row: Regression Loss,
Bottom Row: Accuracy.
A-C Stage 1 RPN
D-F Stage 2 RPN

Figure 8.7: E3: RPN Loss function and accuracy comparison, VOC0712+Imagenet training on
the default iteration ZF-net model, default iteration VGG-16 model and reduced iteration VGG-16
model.

80

8.3 Experiment 3: Single class training

0 1 2 3 4 5 6

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Loss cls Fast R-CNN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Loss cls Fast R-CNN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Regression-Loss Fast R-CNN Stage 1

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Regression-Loss Fast R-CNN Stage 2

Iteration

L
o
ss

0 1 2 3 4 5 6

x 10
4

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Accuracy Fast R-CNN Stage 1

Iteration

A
cc
u
ra
cy

0 1 2 3 4 5 6

x 10
4

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

Accuracy Fast R-CNN Stage 2

Iteration

A
cc
u
ra
cy

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

E3A Moving Average, 2000 Iterations
E3B Moving Average, 2000 Iterations
E3C Moving Average, 2000 Iterations

A D
B E
C F

First Row: Classification Loss, Middle Row: Regression Loss,
Bottom Row: Accuracy.
A-C Stage 1 Fast R-CNN
D-F Stage 2 Fast R-CNN

Figure 8.8: E3: Fast R-CNN Loss function and accuracy comparison, VOC0712+Imagenet training
on the default iteration ZF-net model, default iteration VGG-16 model and reduced iteration VGG-
16 model.

81

Chapter 8. Results and Discussion

boat : 0.980
boat : 0.968boat : 0.865

boat : 0.999

boat : 0.998boat : 0.987

boat : 0.978

boat : 0.968

boat : 0.998

boat : 0.991

boat : 0.988

boat : 0.985

boat : 0.982

boat : 1.000

boat : 1.000

boat : 0.722

boat : 1.000

boat : 0.978

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

E3A

E3B

E3C

A
B

Figure 8.9: E3: Output detection-samples from the VOC2007 test-set for the default iteration ZF-
net model, default iteration VGG-16 model and reduced iteration VGG-16 model.

82

8.4 Experiment 4: Padding with the custom data set

8.4 Experiment 4: Padding with the custom data set
This section presents and evaluates the results obtained from training the best performing
model from the previous experiment (E3B). The difference lies in padding the data set
with the custom data set containing an additional 100 images of boats taken in along the
Trondheim harbor and fjord.

Notation

The results for this experiment is denoted E4. Comparison is done with the best perform-
ing model from the previous experiment with notation E3B .

Results

Table 8.4 compares the results obtained from the model trained on a data set padded
with 100 addition images with that obtained in E3B . The results are from testing on the
VOC2007 test-set.

AP (%)
Stage 1 Stage 2

E3B 66 67
E4 67 67

Table 8.4: E4: Fast R-CNN model stage AP. Comparison between the default iteration VGG-16
model trained on VOC0712+Imagenet and VGG-16 model trained on VOC0712+Imagenet+Custom.

Discussion

Table 8.4 display similar results between the two models. This is due to the fact that the
custom data set do not have a large impact on the general training outcome. On a data
set such as the VOC2007 test-set this will make little difference. The purpose of this
experiment was not to increase the robustness generally, but rather investigate the fixed-
path detector performance. This will be further evaluated in Section 8.5.

8.5 Evaluation on the Custom test-set
So far we have seen the general performance of several different trained Faster R-CNN
models. They have been evaluated on a test-set meant as a general benchmark for re-
searchers to use when competing in the Pascal VOC challenge [5]. This does not inher-
ently constitute good performance for the ASV application. The results presented in this
section are the outcome of testing all models, including the stock models from the Faster
R-CNN repository [29] on the custom test-set.

83

Chapter 8. Results and Discussion

Notation

E#x refers to the experiments conducted in this thesis, with # being the experiment num-
ber, while x denotes possible sub-experiments.

Results

Table 8.5 displays the AP for each model subject to the custom test-set. The graph pre-
sented in Figure 8.10 displays the precision and recall curve for all experiments on this
test-set. Figure 8.11 shows the euclidean distance error for the predicted true positive
bounding-boxes to ground truth in the image plane. Lastly, in Figure 8.12 an exhibition of
images is presented. These images show the detections for all models in this thesis on a
single scene. Figure 8.13 show a variety of scenes for the two best performing models.

AP (%) tp (of 351 total)
Stage 1 Stage 2 Stage 2

E1 6 7 74
E2 5 6 62
E3A 11 11 61
E3B 18 17 101
E3C 17 17 93
E4 52 55 240

Table 8.5: Model stage AP from the Custom test-set, all models.

Discussion

It is evident that this is a challenging task for all the models. Table 8.5 certainly give
means to the hypothesis, with the E4 model outperforming all the prior models. In this
evaluation it also becomes clear that for the ASV task, the single-class models outperform
the 20-class ones. The E3B and E3C experiments show a 10% increased AP over E1.
The distance error in Figure 8.11 gives further grounds for the hypothesis, but should be
analysed with some care. Some of the ships in the custom test-set do also appear in the
custom training-set. This could certainly induce overfitting for the E4 model. The re-
sults shown in 8.4 show that the E4 model performs identically to the E3B model on the
VOC2007 test-set, which is evidence that overfitting on the new data is not the case. The
custom training-set constitutes only 4% of the total training-data for E4, so overfitting is
unlikely. The two 20-class experiments (E1 and E2) display a larger amount of true pos-
itive detections over a wider range of softmax scores. This is due to the relative nature of
the calculation in Equation (3.5). An interesting observation is the inherently wider range
of true positive detections for these two models. True positive cases implies a IoU > 0.7.
For the detections to be displaced by such a large amount, the positive predictions are of
larger objects. Different models may also have positive predictions of different ground-
truth objects, allowing for a degree of uncertainty to the method. Looking at the trends
however, one can conclude that the single-class models generally perform better taking

84

8.5 Evaluation on the Custom test-set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re
ci
si
o
n

Precision/Recall on Custom Test-set

E1
E2
E3A
E3B
E3C
E4

Figure 8.10: Precision/Recall for all models on the Custom test-set

the AP into account. All models exhibit some true positive detections that are at the low
end of the classification score, indicating affiliation to the background, or other classes.
This provides a heuristic for choosing a classification-threshold when using one of these
models.

The exhibitions in Figure 8.12 and 8.13 were provided to give a final insight into how
these models behave. Again, the E4 model stands out with excellent performance. The
other general models show a varying degree of precision. Some of these could have been
considered positive predictions if the masts of the sailboats had been considered when
drawing the ground-truth bounding-boxes in creating the data set. This was a conscious
decision to avoid, as they induce a large amount of background-noise into the ground-truth
boxes, and displace the bounding-box centres off the object. In Figure 8.13F the E4 model
has in fact outperformed the author, detecting ships that were not annotated, but were in
fact ground-truth objects. A small brown vessel that is flush with the background has been
detected at the left side of the image, as well as a larger docked vessel at the right of the
image. This is also the case for Figure 8.13H, which is a zoom of Figure 8.13G. A vessel
is detected at the right side of the image, in front of two annotated vessels.

85

Chapter 8. Results and Discussion

-100 -50 0 50 100 150

u [pixels]

-100

-80

-60

-40

-20

0

20

40

60

80

100

v
[p
ix
el
s]

E1: True Positive Error

-100 -50 0 50 100 150

u [pixels]

-100

-80

-60

-40

-20

0

20

40

60

80

100

v
[p
ix
el
s]

E2: True Positive Error

-100 -50 0 50 100 150

u [pixels]

-100

-80

-60

-40

-20

0

20

40

60

80

100

v
[p
ix
el
s]

E3A: True Positive Error

-100 -50 0 50 100 150

u [pixels]

-100

-80

-60

-40

-20

0

20

40

60

80

100

v
[p
ix
el
s]

E3B : True Positive Error

-100 -50 0 50 100 150

u [pixels]

-100

-80

-60

-40

-20

0

20

40

60

80

100

v
[p
ix
el
s]

E3C : True Positive Error

-100 -50 0 50 100 150

u [pixels]

-100

-80

-60

-40

-20

0

20

40

60

80

100

v
[p
ix
el
s]

E4: True Positive Error

-100 -50 0 50 100 150

u [pixels]

-100

-50

0

50

100

v
[p
ix
el
s]

Softmax Classification Score

0.3 0.4 0.5 0.6 0.7 0.8 0.9

-100 -50 0 50 100 150

u [pixels]

-100

-50

0

50

100

v
[p
ix
el
s]

E3A: True Positive Error

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A B
C D
E F

A E1. B E2. C E3A. D E3B . E E3C . F E4.

Figure 8.11: Distance error for True Positives on the Custom data set, all models.

86

8.5 Evaluation on the Custom test-set

0.861810.85806 0.71324

0.47389

0.35744

0.35304

0.3257

0.31802

0.25949

0.23858

0.23738

0.22672

0.22093

0.94901

0.89039
0.83021

0.64094

0.49036

0.42574

0.40392

0.99385

0.60685

0.089583

0.05376
0.027319

0.019736

0.013709

0.006872

0.99994

0.59479

0.41634
0.38656

0.37528

0.36684

0.279380.26239

0.098951

0.080971

0.99232

0.96933

0.89027

0.79749

0.67248

0.65695

0.45348

0.2378

0.18372
0.14321

0.041121

0.9994

0.969960.95163 0.92104

0.91616

0.761540.72071

0.63137

0.523790.39174

0.99994

0.59479

0.41634
0.38656

0.37528

0.36684

0.279380.26239

0.098951

0.080971

0.9994

0.969960.95163 0.92104

0.91616

0.761540.72071

0.63137

0.523790.39174

A B
C D
E F
G H

A E1. B E2. C E3A. D E3B . E E3C . F E4.
G Zoom of E3B output (D). H Zoom of E4 output (F).

Figure 8.12: Output samples from the Custom test-set, all models.

87

Chapter 8. Results and Discussion

0.99974

0.99352

0.86371

0.8484

0.16529

0.056919

0.99414

0.9581

0.92311 0.80953

0.66844
0.47017

0.98506

0.97866

0.95786

0.95552

0.84071

0.80013

0.47498

0.99564

0.99447 0.99262

0.9923

0.96754

0.92736
0.824880.81147 0.78485

0.67428

0.39914

0.99973

0.99208

0.91176

0.89842

0.860.05676

0.99852

0.998370.99678

0.988820.71683
0.62561

0.5587

0.4868
0.48062

0.99973

0.99208

0.91176

0.89842

0.860.05676

0.99852

0.998370.99678

0.988820.71683
0.62561

0.5587

0.4868
0.48062

A E
B F
C G
D H

A-D E3B . E - H E4.

Figure 8.13: Additional output samples from the Custom test-set for the default iter-
ation VGG-16 model trained on VOC0712+Imagenet and the VGG-16 model trained on
VOC0712+Imagenet+Custom.

88

8.6 Video Analysis

8.6 Video Analysis
The results have shown promising performance for the single class object detectors. The
two best performing detectors on the VOC2007 test-set is the E3B and E4 models, while
the E4 model showed a large performance increase in the custom test-set. This section
analyses a video comparing the two detector’s performance. This is complimentary to the
rest of the results, and sectioned off for readers not able to view the video. The video can
be found following this link:

https://youtu.be/gw7iG3ORMjg

Clip Time span Description
1 0:00 - 0:13 Approaching three docked ships in harbor
2 0:13 - 0:26 Approaching harbor. Docked ships in the right side of the image, oc-

cluded out of frame as video as ship approaches. Small grey dinghy
starting in center of first frame and traversing to the left. Large ship in
center of frame throughout the video.

3 0:26 - 0:40 In harbor. Docked sailboats in the right side of the image.
4 0:40 - 0:53 In harbor. Docked boats on both sides of the view.
5 0:53 - 1:06 Traversing under bridge. Docked boats entering and exiting view from

both sides.

Table 8.6: Video Analysis: Video description

The video is partitioned into 5 different clips, a brief description of the content of these
clips is given in Table 8.6. The video shows the E3B model in the left window and the E4

model in the right window. All the clips in this video is part of what constitutes the custom
data set.

Discussion

Clip 1: At the start of the clip, the E4 model has already detected two out of three of the
docked ships. This points towards the models improved performance due to the training-
images lying in close relation to the images in the video. The E3B model gives a single
correct detection at the end of the video enveloping the two closest ships. At the right side
of the video, a building is shown. The E3B model wrongly classifies this building as a
ship at multiple occasions, while this is never the case for the E34 model. It is this that is
the important difference in the models, especially in pursuit of a robust detector that can
be used on a predefined path.

Clip 2: Both models correctly detect the ships exiting the view on the right. The E3B

model manages to excel here, detecting these ships in more frames than the E4 model. For
the large ship in the centre of the frame theE4 model excels as it is part of a training-image.
The small dinghy traversing from the center and to the left of the frame, both models strug-
gle, as it is low in contrast and color. TheE4 model picks it up in some frames around 0:25
when it approaches the training-image where it was labelled as ground truth. What came

89

https://youtu.be/gw7iG3ORMjg

Chapter 8. Results and Discussion

as a surprise here is that the E4 model picks up more false positives from the surrounding
than E3B . Both models wrongly detect the buildings on the left of the frame. These build-
ings however, seem to have close similarity to a ship behind some docks. In addition to
this, theE4 model detects some red buildings throughout the clip at the middle-right of the
frame. The reason for this is likely the abundance of white boats in the custom training-set.

Clip 3: A lot of correct detections are done for the E4 model throughout the clip due to
ground-truth objects appearing. TheE3B model shows some promising performance here,
for the most part correctly detecting ships in the right area of the image. It does however
wrongly detect some of the stone jetty on the left side of the frame at multiple instances.

Clip 4: Again, a lot of correct detections are done for the E4 model throughout the clip
due to ground-truth objects appearing. The E3B model, while not detecting all the docked
boats, generally have positive detections in the right areas of the image. No false positives
being wrongly detected over a large amount of frames stand out in this clip, which is quiet
remarkable, for both models.

Clip 5: The E4 model performs well throughout the clip, correctly detecting most of the
ships. The E3B model incurs some false positive detections as the vessel is traversing
under the bridge. This again illustrates the point of the E4 model. To eliminate false
positives done on the static environment. E3B picks up a large amount of the ships at a
close range, but struggles to detect vessels at a larger distance.

90

8.7 Summary

8.7 Summary
This thesis has investigated different means of achieving robust detection for the ASV
application. This section gives a summary of the experiments conducted to achieve the
results presented in this paper.

Experiment Classes Data sets Data set size (Ims) Relevant data (Ims) Hardware
FZF 20 VOC0712-trainval 11540 689 -

FV GG 20 VOC0712-trainval 11540 689 -
E1 20 VOC0712-trainval 11540 689 Comp1

E2 20 VOC0712-trainval+Imagenet 13199 2348 Comp1

E3A 1 VOC0712-trainval+Imagenet 2348 2348 Comp1

E3B 1 VOC0712-trainval+Imagenet 2348 2348 Comp2

E3C 1 VOC0712-trainval+Imagenet 2348 2348 Comp2

E4 1 VOC0712-trainval+Imagenet+Custom 2448 2448 Comp2

Table 8.7: Implementation and data sets

Experiment Model RPN Iterations Fast R-CNN Iterations VOC2007 test boat Custom test
η = 0.001 η = 0.0001 η = 0.001 η = 0.0001 AP (%) AP (%)

FZF ZF-Net 60k 20k 30k 30k 46 -
FV GG VGG-16 60k 20k 30k 30k 65 -

E1 ZF-Net 60k 20k 30k 30k 49 7
E2 ZF-Net 60k 20k 30k 30k 52 6
E3A ZF-Net 60k 20k 30k 30k 63∗ 11
E3B VGG-16 60k 20k 30k 30k 67∗ 17
E3C VGG-16 60k 20k 30k 10k 65∗ 17
E4 VGG-16 60k 20k 30k 30k 67∗ 55

∗ Subset of VOC2007 test-set with 172 images containing the boat class.

Table 8.8: Results and training aspects

Table 8.7 displays the total data sets and the hardware used for training the different mod-
els. FZF and FV GG denote the models published in the Faster R-CNN paper [25]. All
VGG-16 models are trained on the comp2 setup with a Nvidia Titan Xp GPU which is
necessary to store all model-parameters in memory. Table 8.8 display the results from all
experiments accompanied by the training aspects to each experiment. The AP for the cus-
tom test-set was not computed for the original models. This is due to the fact that it needs
to be computed during the training-stage, and the Faster R-CNN repository does not con-
tain the model-stages for the different models. While it is possible to accomplish testing
outside of the training stages, heavy modification to the framework is necessary. Verifying
the integrity of such a modification was deemed unnecessary, as E1 performed virtually
the same as FZF , which gave the possibility to test the model on the custom test-set. Thus,
the expected performance of FZF is close or equal to that of E1.

Experiment Model RPN training time (hours) Fast R-CNN training time (hours) Total training time Hardware
Stage 1 Stage 2 Stage 1 Stage 2

E1 - E3A ZF-Net 2 2 3 2 9 Comp1
E3B - E4 VGG-16 4 2 7 4 17 Comp2

Table 8.9: Training-stage durations

91

Chapter 8. Results and Discussion

92

Part V

Closing Remarks

93

Chapter 9
Conclusion

This chapter concludes this thesis, summarizing the most important findings and present-
ing some future challenges.

• Section 9.1 gives a brief overview of the work presented in this thesis.

• Section 9.2 underlines the most important findings of the thesis.

• Section 9.3 presents some future work that might be worth investigating.

9.1 Overview
This thesis has investigated the application of a deep learning approach to ship detection.
This work was carried out to provide robust detection with a optical sensor (camera) with
the purpose of aiding maritime collision avoidance. The detector uses the state of the art
object detection and object classification framework Faster R-CNN [25] as a starting-point.
The framework has been modified by training new models and sampling new and relevant
data for the application.

Regions of interest were defined in images using an RPN. The RPN provided 300 region
proposals for a given image input. This was obtained using a CNN of arbitrary depth.
The image and the regions of interest were then classified using Fast R-CNN. The same
arbitrary CNN model as the RPN network was employed for model-parameter sharing.
The features were subject RoI-pooling and ultimately a C-class softmax, determining the
feature affiliation to the C classes defined by the user.

Data from several sources was used to train these object detection and classification net-
works. Large, general purpose datasets with images of ships and boats from imagenet and
the VOC constituted the main data. In addition, a smaller, custom dataset was made. This
provided training and testing images in close relation to each other.

95

Chapter 9. Conclusion

The two CNN models investigated in this thesis were the 5 convolutinal layer deep ZF-Net
model and the 16 layer deep VGG-16 model [34],[30]. These models were put through
rigorous testing, being trained on the different data sets. The motivation has been to pro-
vide a heuristic for future development using this method of object detection for the ASV
application.

9.2 Findings

The first experiment (E1) was conducted as an attempt to recreated the results obtained in
Faster R-CNN [25]. This was done for the ZF-Net model trained on the VOC0712 data set
and achieved the same mAP as presented in Faster R-CNN. This provided a benchmark for
future experiments, especially when it came to evaluation of the ASV application, as the
training-stages were not provided in the Faster R-CNN repository [29]. Having obtained
this benchmark, it was deemed unnecessary to do the same for the VGG-16 model as it
would produce the same results.

Experiment (E2) investigated how the results would change if the data set was padded
with additional images of boats. As boats are rather poorly represented in the VOC data
sets, it was hypothesized that an increased representation would provide improved overall
performance. At its output, a 3% increased AP was achieved on the VOC2007 test-set,
giving evidence for this hypothesis.

A large amount of redundant classes were present in the default 20-class network. It was
only natural to investigate how the network would perform removing these. Experiment
3 (E3) consisted of a set of sub-experiments, training the network on a single class. This
was also the first time the network was trained on the VGG-16 CNN model. All sub-
experiments were trained on the boat-images from the VOC data sets, as well as the ima-
genet data set. The best performing network used the VGG-16 model, trained on the full
amount of iterations as it is presented in Faster R-CNN [25]. Unfortunately, heavy modi-
fication was necessary to test these on the full VOC2007 test-set, and they were therefore
tested on a subset of these containing only images of ships. It was however later verified
that the performance was superior in all E3 models compared to the E2 model of the same
data set using the custom test-set.

In experiment 4 (E4) a new data set was introduced to the training-regime. This data set
was constructed for the ASV task, with images captured from a video-stream containing
different scenarios that an ASV might encounter. The Custom data set included complex
scenes from inside a harbor, having multiple stationary targets as well as at open sea with
moving targets. The experiment introduced this data set to the best performing model of
E3 and evaluated it on the same test-set as E3. The VOC2007 test-set AP did not increase
particularly in this experiment. The E4 model however outperformed all other models on
the custom test-set, which was the evaluation for the ASV application. This indicates that
a more local robust detector can be built with training-data taken from a predefined-path.
This however, requires further investigation.

96

9.3 Future Work

9.3 Future Work
Applying CNNs for object detection and classification is a field of heavy research, and
every year improved methods appear. What this thesis has investigated is a state of the art
approach at the time of writing. In the field of object classification, a CNN model with
improved performance over the VGG-16 model was published in 2016 called ResNet-
101 [18]. Resnet-101 is a 101 layer deep CNN, and surpassed VGG-16 with 3.2% mAP,
trained on VOC0712 and tested on VOC2007. An attempted implementation was done of
ResNet-101 for this thesis, but due to incompatibility with the Caffe version used it was
discarded. All deploy files can be found in the Resnet repository which is available at the
Caffe model zoo [3].

Concerning the findings in this thesis there are aspects which should be explored further.
Building a larger and more diverse training and test data set is one thing that is necessary
in order to evaluate the true robustness of such a detector. Collecting image data on the
same path at different times of year with different targets would be ideal. In the case of
evaluating robustness, not enough data can be obtained. Another possibility that should be
explored is adding some background-classes to the training-data. Adding classes such as
house, harbor and mountain to name a few, could help eliminate some of the false positive
detections for the 1-class models. Imagenet provides synsets for all the above-mentioned
classes.

In the tracking pipeline it is necessary to estimate the Cartesian coordinates of the detected
vessels. A good first step is the extended Kalman filter estimation of Cartesian coordinates
given image bounding-boxes and calibrated camera parameters [22]. The paper explores
both simulated target estimation as well as real sea trials. A preliminary to this approach
is a calibrated camera, as well as the pinhole camera model for relating world coordinates
to the image plane [14].

97

Chapter 9. Conclusion

98

Bibliography

[1] Caffe. Online Documentation. URL http://web.archive.org/web/
20170101163210/http://caffe.berkeleyvision.org/.

[2] Neural Networks and Deep Learning. URL https://web.archive.org/
web/20160516185148/http://host.robots.ox.ac.uk/pascal/
VOC/.

[3] Model zoo. Online Repository. URL https://web.archive.org/
web/20160713185549/https://github.com/BVLC/caffe/wiki/
Model-Zoo.

[4] Convolutional neural networks (cnns / convnets). Online Lecture. URL
https://web.archive.org/web/20161117211846/http:
//cs231n.github.io/convolutional-networks/.

[5] Pascal visual object classes. Online Repository, . URL https:
//web.archive.org/web/20160516185148/http://host.robots.
ox.ac.uk/pascal/VOC/.

[6] The pascal visual object classes challenge 2012 (voc2012) development kit. Online
Documentation, . URL http://host.robots.ox.ac.uk/pascal/VOC/
voc2012/devkit_doc.pdf.

[7] Tonje Nanette Arnesen and Richard B. Olsen. Literature review on vessel detection.
Technical report, Forsvarets Forskningsinstitutt, 2004.

[8] B.E. Bayer. Color imaging array, July 20 1976. URL http://www.google.
com/patents/US3971065. US Patent 3,971,065.

[9] Christopher M Bishop. Pattern recognition. Machine Learning, 2006.

[10] George A. Miller Christiane Fellbaum. WordNet: An Electronic Lexical Database.
1998.

99

http://web.archive.org/web/20170101163210/http://caffe.berkeleyvision.org/
http://web.archive.org/web/20170101163210/http://caffe.berkeleyvision.org/
https://web.archive.org/web/20160516185148/http://host.robots.ox.ac.uk/pascal/VOC/
https://web.archive.org/web/20160516185148/http://host.robots.ox.ac.uk/pascal/VOC/
https://web.archive.org/web/20160516185148/http://host.robots.ox.ac.uk/pascal/VOC/
https://web.archive.org/web/20160713185549/https://github.com/BVLC/caffe/wiki/Model-Zoo
https://web.archive.org/web/20160713185549/https://github.com/BVLC/caffe/wiki/Model-Zoo
https://web.archive.org/web/20160713185549/https://github.com/BVLC/caffe/wiki/Model-Zoo
https://web.archive.org/web/20161117211846/http://cs231n.github.io/convolutional-networks/
https://web.archive.org/web/20161117211846/http://cs231n.github.io/convolutional-networks/
https://web.archive.org/web/20160516185148/http://host.robots.ox.ac.uk/pascal/VOC/
https://web.archive.org/web/20160516185148/http://host.robots.ox.ac.uk/pascal/VOC/
https://web.archive.org/web/20160516185148/http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/devkit_doc.pdf
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/devkit_doc.pdf
http://www.google.com/patents/US3971065
http://www.google.com/patents/US3971065

[11] Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. In IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2009.

[12] Li Dong, Li Yali, He Fei, and Wang Shengjin. Object detection in image with com-
plex background. In Proceedings of 3rd International Conference on Multimedia
Technology. Atlantis Press, 2013.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[14] David A Forsyth and Jean Ponce. A modern approach. Computer vision: a modern
approach, pages 129–147, 2003.

[15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1440–1448, 2015.

[16] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. CoRR,
abs/1311.2524, 2013.

[17] Richard HR Hahnloser, H Sebastian Seung, and Jean-Jacques Slotine. Permitted and
forbidden sets in symmetric threshold-linear networks. Neural computation, 15(3):
621–638, 2003.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[19] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[20] Alexander Kadyrov, Hui Yu, and Honghai Liu. Ship detection and segmentation
using image correlation. In 2013 IEEE International Conference on Systems, Man,
and Cybernetics, pages 3119–3126. IEEE, 2013.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[22] Dann Laneuville, Adrien Negre, and Pauline Dufour. 4d cartesian state estimation of
sea surface targets with a single camera. In 2016 IEEE Aerospace Conference. IEEE,
2016.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

100

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 91–99. Curran Associates, Inc., 2015.

[26] Raúl Rojas. Neural networks: a systematic introduction. Springer Science & Busi-
ness Media, 2013.

[27] M Uma Selvi and S Suresh Kumar. A novel approach for ship recognition using
shape and texture. International Journal of Advanced Information Technology, 1(5):
23, 2011.

[28] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
Yann LeCun. Overfeat: Integrated recognition, localization and detection using con-
volutional networks. arXiv preprint arXiv:1312.6229, 2013.

[29] Ross Girshick Jian Sun Shaoqing Ren, Kaiming He. Faster r-cnn: Towards real-
time object detection with region proposal networks. https://github.com/
ShaoqingRen/faster_rcnn, 2016.

[30] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2015.

[32] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex A. Alemi. Inception-
v4, inception-resnet and the impact of residual connections on learning. In ICLR
2016 Workshop, 2016.

[33] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. Se-
lective search for object recognition. International Journal of Computer Vision, 104:
154–171, 2013.

[34] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. CoRR, abs/1311.2901, 2013.

[35] Will Y Zou, Xiaoyu Wang, Miao Sun, and Yuanqing Lin. Generic object detection
with dense neural patterns and regionlets. arXiv preprint arXiv:1404.4316, 2014.

101

https://github.com/ShaoqingRen/faster_rcnn
https://github.com/ShaoqingRen/faster_rcnn

102

Appendix

Modifying Faster R-CNN for your needs
This appendix is aimed towards any new user who want to train Faster R-CNN on their
own dataset. These are the modifications done in this thesis for rearranging, and modifying
the code to match the custom dataset.

If you wish to start training with Faster R-CNN outside the VOC datasets there are a cou-
ple of steps that can help you along the way. The answers to the questions that might arise
are typically scattered around the repository of Faster R-CNN [29], or more general prob-
lems arise in caffe discussions on various online platforms. The rest of this appendix will
assume that the user has followed the README.md file of the Faster R-CNN repository
and meet the required specifications both for hardware and software. For instructions on
rebuilding ’caffe for Faster R-CNN’ refer to Section 6.3.2.

Preparing with VOC datasets
The easiest way to get started with Faster R-CNN is to download one or both of the
VOC2007 and VOC2012 datasets [5]. The contents of these datasets need to follow the
VOC hierarchy of the VOC documentation ([6] Section 7.1) with the root for the dataset
being

.../faster rcnn-master/datasets/VOCDevkit20XX

The image-sets and VOCcode should then be contained in

.../faster rcnn-master/datasets/VOCDevkit20XX/VOC20XX/ImageSets

.../faster rcnn-master/datasets/VOCDevkit20XX/VOCcode

Using the VOC hiearchy as a template, the easiest way to create a new dataset is to create
all folders contained in the VOC20XX dataset into a new location, given a new name.
For future reference, the name own will be used to denote the new custom dataset. This
dataset should then contain all folders as per [6] Section 7.1 such that the image-sets and
VOCcode can be found in

.../faster rcnn-master/datasets/OWN/own/ImageSets

.../faster rcnn-master/datasets/OWN/VOCcode

The use of capitalization is certainly up to the user.

103

Class modifications

VOC changes

Changes to classes and amounts of classes outside of Faster R-CNN can now be done for
the new dataset.

OWN/VOCcode/

VOCinit.m

1

2 VOCopts . d a t a s e t = ’OWN’ ;
3

4 % OWN c l a s s e s
5

6 VOCopts . c l a s s e s = { . . .
7 ’ a e r o p l a n e ’
8 ’ b i c y c l e ’
9 ’ b i r d ’

10 ’ b o a t ’
11 ’ b o t t l e ’
12 ’ bus ’
13 ’ c a r ’
14 ’ c a t ’ } ;

Changes to VOCopts.classes is done per demand. It is important to keep tally on cap-
italization, making sure there is a case sensitive match between VOCopts.classes and
the annotation name-tags.

Caffe changes
With the classes defined as above, the Faster R-CNN layers need to be changed to accom-
modate for the change in output dimension. All changes to the model layers is done in the
deploy files in

.../faster rcnn-master/models/XXXXX prototxts/

The above folders hold the deploy folders for both the RPN and Fast R-CNN model stages.
The underscore delimiter in the folder notation such as ZF fc6 implies the first layer sub-
ject to training using the files in this folder. In turn, the deploy folders hold the caffe
.prototxt deploy-files denoted train val.prototxt and test.prototxt aswell as
the solver, which is not configured here.
Independent of which CNN model is used, the following changes need to be made to all
deploy-files in all deploy-folders belonging to the model

104

train val.prototxt

input: "bbox targets"
input dim: 1
input dim: 4*(K+1) for K classes
input dim: 1
input dim: 1
bottom: "fcX"
name: "cls score"

...
inner product param {

num output: K for K classes
bottom: "fcX"
name: "bbox pred"

...
inner product param {

num output: 4*(K+1) for K classes

test.prototxt

bottom: "fcX"
name: "cls score"

...
inner product param {

num output: K for K classes
bottom: "fcX"
name: "bbox pred"

...
inner product param {

num output: 4*(K+1) for K classes

105

Faster R-CNN changes
There are a couple of prerequisites left in the Faster R-CNN Matlab framework that needs
to be addressed in order to start training on a custom dataset. Create a function in the same
fashion as i.e. voc2007 devkit.m pointing to the OWN directory.

faster rcnn-master/experiments/+Dataset/private/

OWN devkit.m

1 f u n c t i o n p a t h = OWN devkit ()
2 p a t h = ’ . / d a t a s e t s /OWN’ ;
3 end

Further changes are needed to correctly create a cache database (imdb) from the images
and annotations in the OWN dataset. The function below shows the modifications dont to
imdb from voc.m

faster rcnn-master/imdb/

imdb from OWN.m

1 f u n c t i o n imdb = imdb from OWN (r o o t d i r , i m a g e s e t , f l i p)
2 %This code s n i p p e t shows t h e n e c e s s a r y m o d i f i c a t i o n s t o
3 %f a s t e r r c n n −m a s t e r / imdb / imdb f rom voc .m
4 c a c h e f i l e = [’ . / imdb / cache / imdb ’ ’ ’ i m a g e s e t] ;
5

6 imdb . name = i m a g e s e t ;

106

Having created the necessary functions, the new dataset can be defined using a modifica-
tion of VOCXXXX trainval

faster rcnn-master/experiments/+Dataset/

OWN trainval.m

1 f u n c t i o n d a t a s e t = OWN tra inval (d a t a s e t , usage , u s e f l i p)
2 % OWN t r a i n v a l s e t
3 % s e t o p t s . i m d b t r a i n o p t s . r o i d b t r a i n
4 % or s e t o p t s . i m d b t e s t o p t s . r o i d b t r a i n
5

6 OWN = OWN devkit () ;
7

8 s w i t c h usage
9 c a s e { ’ t r a i n ’}

10 d a t a s e t . i m d b t r a i n = { imdb from OWN (OWN, ’
t r a i n v a l ’ , u s e f l i p) } ;

11 d a t a s e t . r o i d b t r a i n = c e l l f u n (@(x) x . r o i d b f u n c (x
) , d a t a s e t . i m d b t r a i n , ’ Uni formOutput ’ , f a l s e) ;

12 c a s e { ’ t e s t ’}
13 e r r o r (’ on ly s u p p o r t s one s o u r c e t e s t c u r r e n t l y ’) ;
14 o t h e r w i s e
15 e r r o r (’ usage = ’ ’ t r a i n ’ ’ o r ’ ’ t e s t ’ ’ ’) ;
16 end
17 end

The dataset is now ready to be used in any training with an arbitrary model. It is loaded
the same way as the VOC datasets following the modifications to any training routine

faster rcnn-master/experiments/

script faster rcnn OWN XXX.m

1 %M o d i f i c a t i o n s t o scr ipt fas ter rcnn VOCXXXX XXX .m
2

3 d a t a s e t = [] ;
4 d a t a s e t = D a t a s e t . OWN tra inval (d a t a s e t ,

’ t r a i n ’ , con f . u s e f l i p p e d) ;

107

	Problem Formulation
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	I Background
	Introduction
	Outline

	II Theory
	Image Processing
	Image acquisition
	Image processing
	Smoothing
	Edge detection

	An introduction to Convolutional Neural Networks
	Convolutional Neural Networks
	A brief history of CNNs
	Neurons and Layers
	Building a CNN
	Activations and classification scores
	Putting it all together
	Training a CNN
	Accuracy

	CNN-models for Classification
	Zeiler and Fergus model
	VGG-16
	Trade-offs

	Region-based Convolutional Neural Network
	R-CNN
	Fast R-CNN
	Faster R-CNN
	Training Faster R-CNN

	III Method
	Datasets
	Visual Object Challenge data sets
	Imagenet
	Data collection

	Implementation
	Overview
	Faster R-CNN
	Caffe
	Parallel Computing

	Implementation Aspects
	Documentation
	Rebuilding Caffe
	Testing trained models in Faster R-CNN
	Annotations
	Training

	Experiments
	Experiments
	Experiment 1: Recreating the ZF VOC0712 model
	Experiment 2: Padding with Imagenet
	Experiment 3: Single class training
	Experiment 4: Padding with the Custom training-set

	Evaluation on the Custom test-set

	IV Results and Discussion
	Results and Discussion
	Experiment 1: Recreating the ZF VOC0712 model
	Experiment 2: Padding with Imagenet
	Experiment 3: Single class training
	Experiment 4: Padding with the custom data set
	Evaluation on the Custom test-set
	Video Analysis
	Summary

	V Closing Remarks
	Conclusion
	Overview
	Findings
	Future Work

	Bibliography
	Appendix
	Modifying Faster R-CNN for your needs

