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Abstract

In this work, we construct spatial statistical models for interpolation of precipi-
tation in areas characterised by orographic precipitation. The models are built
as latent Gaussian models. We use the stochastic partial differential equation
(SPDE) approach to spatial modelling to reduce the computational cost. The
methodology integrated nested Laplace approximation (INLA) is used for infer-
ence and interpolations. The aim of the study is manifold. Firstly, the study has
applied purposes. We aim to construct a good model for interpolation of precipi-
tation in areas characterised by orographic precipitation, and for prediction of the
total precipitation in catchment areas, i.e., the areal precipitation. Such a model
should be able to quantify the uncertainty of the interpolations, and have a good
predictive performance. It is also desired to get a better understanding of the
physical precipitation process in this kind of terrain, e.g., how precipitation varies
with elevation. Secondly, the study has a statistical purpose. We aim to obtain a
better knowledge about non-stationary and stationary modelling of spatial pro-
cesses. In particular, we wish to examine how large degree of non-stationarity
there has to be in a process, before it is detectable and relevant for the predictive
performance. We compare a stationary model and a non-stationary model with
dependency structure varying with elevation. Simple toy examples are used to
explore the consequences of having dependency structure that varies with ele-
vation. A case study is carried out, using annual observations of precipitation
in Hordaland. It is also performed a simulation study, in order to further ex-
plore the effect of non-stationarity, and its impact on predictions of precipitation.
The results showed that a non-stationary model has a slightly better predictive
performance when doing interpolations of precipitation in areas characterised by
orographic precipitation. However, there are still some large errors when using
the non-stationary model to predict areal precipitation in catchments located
at high elevations. The results also showed that the predictive performance of
both models became noticeably better when an observation was included in-
side the catchment areas. Further, the results showed that when the degree of
non-stationarity in the process is small, a stationary model has good predictive
performance.
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Sammendrag

I denne oppgaven lager vi romlige statistiske modeller for årlig nedbør i om-
råder hvor klimaet er preget av orografisk nedbør. Modellene er av typen latente
Gaussiske modeller. Vi bruker en stokastisk partiell differensialligning (SPDE)
som tilnærming til romlig modellering, for å redusere de beregningsmessige kost-
nadene. Metoden integrert nøstet Laplace approximering (INLA) benyttes til å
gjøre statistisk inferens og interpoleringer. Målet med oppgaven er flerfoldig. For
det første, har oppgaven anvendte formål. Vi ønsker å lage gode modeller som kan
benyttes til interpolering av nedbør i områder preget av orografisk nedbør, samt
til predikering av den totale nedbøren i avrenningsområder, arealnedbøren. Det
fokuseres på at slike modeller skal klare å estimere usikkerhetene i interpolerin-
gene. Det er også ønskelig å oppnå en bedre forståelse av den fysiske prosessen
nedbør i denne typen terreng, for eksempel hvordan nedbør varierer med høyde.
For det andre har oppgaven statitiske formål. Vi ønsker å øke kunnskapen innen
stasjonær og ikke-stasjonær modellering av romlige prosesser. Spesielt ønsker vi
å utforske hvor stor grad av ikke-stasjonæritet det må være i en prosess, for at det
skal oppdages og være relevant for prediksjonsevnen til modellene. Vi sammen-
ligner en stasjonær modell og en ikke-stasjonær modell med avhengighetsstruktur
som varierer med høyden. Vi bruker enkle eksempler til å utforske konsekvensene
av å ha avhengighetsstruktur som varierer med høyden. Vi analysere ekte ob-
servasjoner av nedbør i Hordaland, og i tillegg utfører vi et simuleringsstudium.
Resultatene viste at en ikke-stasjonær modell har en noe bedre prediksjonsevne
og usikkerhetsestimering, når det gjøres interpolering av nedbør i områder preget
av orografisk nedbør. Det er likevel fortsatt noen store feil når man bruker den
ikke-stasjonære modellen til å predikere arealnedbør. Resultatene viste også at å
inkludere en observasjon inni avrenningsområdet hvor arealnedbøren predikeres,
fører til bedre prediksjonsevne for begge modellene. Videre viste resultatene av
når graden av ikke-stasjonæritet i prosessen er liten, har en stasjonær modell god
prediksjonsevne.
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Chapter 1

Introduction

Statistics is the scientific field of learning from available data (Ingebritsen, 2014).
In some sense, one can say that to do statistics is to collect numbers and deduce
convenient summaries of these (Ripley, 1981). By applying accessible informa-
tion about some phenomenon or process, one can build stochastic mathematical
models. These models can be used to gain insight about the process through
statistical inference and to make predictions. Spatial statistics occurs when the
process is spatially referenced. This means that the process is connected to spa-
tial locations, which contributes directly to the stochastic model (Gelfand et al.,
2010). Such a stochastic process is called a random field.

One important characteristic of a random field, is its dependency structure, often
modelled through a covariance function. A covariance function is a measure of
how two stochastic variables vary together. Loosely speaking, a larger covariance
between two stochastic variables means that the variables tend to show more
similar behaviour. If two variables are independent, the covariance of the variables
is zero.

A random field can be stationary or non-stationary. If it is stationary, the mean
of the field is the same in the whole domain, and the covariance between two
locations depends only on the vector distance between them. For a non-stationary,
the mean and the covariance can vary with the spatial locations. In general,
stationary fields are easier to model and work with. However, for many processes,
a stationary model makes a poor fit, and a non-stationary model might be better
and more realistic.

One of the applications of spatial statistics, is spatial interpolation. This means
that available observations of a random field at some locations are used to make
estimations at locations where the values are unknown.
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CHAPTER 1. INTRODUCTION

In this thesis, we investigate the spatial process precipitation in mountainous
areas. The benefits of having good models for precipitation are many. One arises
by the possibility to interpolate precipitation in catchment areas. By measuring
the precipitation at a few weather stations, one can use interpolation to estimate
the runoff from large areas. In particular, this is desired by the hydro power
industry, which is the main source of electricity in Norway (Statkraft, 2009). It
is a great advantage for this industry, to be able to estimate the expected inflow
to dams. Another important advantage, is the possibility to make reliable flood
warnings (NVE, 2015).

It is challenging to estimate the runoff in mountainous areas. One reason for
this is precipitation’s dependency on topography. It has been known for a long
time that there is a close relation between orography and precipitation (Roe,
2005). Anyone with some experience from mountainous areas has observed the
increase in intensity and frequency of precipitation as the mountains get higher
and steeper. This can also be seen by the vegetation: On the windward flank of
the mountain there is a humid local climate. Plants are affected by the soil water
levels, as well as humidity of the air, and these areas have therefore a rich diversity
of plants. On the lee side of the mountain, it is much dryer, which gives a shortage
of water in the soil, and consequently there is less vegetation. The cause of these
differences is the phenomenon orographic precipitation, which arises when moist
air moves over a mountain. As the air rises against the mountain side, it gets
cooled down, and looses its ability to keep water. The water condensates and
falls out as precipitation. A further introduction to orographic precipitation can
be found in Roe (2005).

Another complication when predicting runoff, is that the weather stations closest
to the catchment areas in general lie at a lower altitude than the lowest points
in the catchment area (Ingebritsen, 2014). This is due to easier and cheaper
maintenance of the weather stations. Hence, the effect on precipitation by moving
towards the higher peaks may not always be detected in the data.

In order to handle the difficulties with orographic precipitation, and the high
located catchment areas, it seems reasonable to consider a model that includes
elevation. In Ødegård (2017), this was tested by comparing a model including
elevation as an explanatory variable with a model without any elevation term.
Both models were stationary. The study showed that when doing interpolations
at locations with higher elevations than the closest weather stations, a model
including elevation gives a better fit. However, the interpolations were still not
as good as desired, and needed improvement. In particular, the model seemed
to underestimate the runoff from a catchment area considered in the case study.
In Ingebritsen (2014), a study of interpolating precipitation in southern Norway
is carried out. The study compares a non-stationary model with a stationary
model, both including elevation. The study shows that the non-stationary model
gives a better fit in mountainous terrain.
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CHAPTER 1. INTRODUCTION

This thesis is a continuation of the studies in Ødegård (2017), and the objec-
tive is to make a model for interpolating precipitation in areas characterised by
orographic precipitation. We apply the results from Ingebritsen (2014) by consid-
ering a non-stationary model with dependency structure varying with elevation,
and comparing it with a stationary model. We wish to further investigate the
differences between a stationary and non-stationary model when the considered
domain is smaller, and the whole area is characterised by orographic precipita-
tion. The aim of the study is manifold. Firstly, the study has applied purposes.
We aim to make a good model that can be used to interpolate precipitation in
areas characterised by orographic precipitation, and to predict the total precip-
itation in the area. Such a model should be able to quantify the uncertainty of
the interpolations, and have a good predictive performance. It is also desired to
get a better understanding of the precipitation process in this kind of terrain,
e.g., how precipitation varies with elevation. We intent to investigate weather
a stationary or non-stationary model, with dependency structure varying with
elevation, is preferred in this kind of terrain and climate. Secondly, the study has
a statistical purpose. We aim to obtain a better knowledge about non-stationary
and stationary modelling of spatial processes. In particular, we wish to explore
how large degree of non-stationarity there has to be in a process, before it is
detectable and relevant for the model-fitting.

In order to accomplish this, we do a case study, using real observations of pre-
cipitation, and a simulation study. In addition, we use simple toy examples to
further explore the consequences of having dependency structure that varies with
elevation. In the studies, the models are tested by doing interpolations of pre-
cipitation to points, based on point observations of precipitation. They are also
tested by doing predictions of the total precipitation in catchment areas, based on
point observations of precipitation. We refer to the total amount of precipitation
as areal precipitation. Our study region is the county Hordaland, which is located
south-west in Norway. The south-western and south-eastern parts of Norway are
separated by the mountain range Langfjella (Ingebritsen, 2014), and Hordaland
is located on the eastern, windward side of the mountains. The climate there is
characterised by orographic precipitation, and is therefore well-suited for testing
our models.

When making our models, there are certain properties that need to be included.
One is a general spatial concept, known as Tobler’s first law of geography: ”Every-
thing is related to everything else, but near things are more related than distant
things” (Tobler, 1970). This law simply states that random variables that are
located spatially closer to each other tend to have a higher dependency than
locations further apart. To include this property in our models, we consider ran-
dom fields with appropriate dependency structures. Another property we need
to include, is the dependency of precipitation on elevation. In both models we
assume a linear relation, and include elevation as an explanatory variable. In the
non-stationary model we also include elevation in the dependency structure.

3



CHAPTER 1. INTRODUCTION

We build our models as latent Gaussian models, which is a subclass of hierarchical
models, within a Bayesian framework. Due to their flexibility, hierarchical models
are very applicable and nice to work with (Blangiardo and Cameletti, 2015). The
models consist of several components, or levels. At each level, the models can
be simple or complex, which give rise to the variety of models in this class.
At the first level, we have the data model, which specifies the likelihood of the
observation, given some latent (unobserved) variables and some hyperparameters.
At the next level, we have the process model, which is a probability model for
the spatial process, given some parameters. At the lowest level, we have the
parameter model, which specifies the prior distributions of the hyperparameters.
As we are using a Bayesian framework, we need to assign prior distributions to
all variables, and the aim is typically to make inference about their posterior
distributions or do predictions.

We use the stochastic partial differential equation (SPDE) approach to spatial
modelling, and the methodology integrated nested Laplace approximation (INLA)
to do inference about our models, and to do interpolations. This is a deterministic
algorithm for Bayesian inference, specially designed to effectively handle latent
Gaussian models. Traditionally, Markov chain Monte Carlo (MCMC) has been
used to do inference about Bayesian hierarchical models. The reason for choos-
ing INLA, is that this method is computationally more efficient, with the same
accuracy. We use the R-package R-INLA to do all model fitting, inference and
interpolation. The package is available at www.r-inla.org, and information
about the package can be found in Lindgren and Rue (2013).

We now give a short introduction to some of the notation used throughout the
thesis. In general, bold symbols are used to denote vectors and matrices. We
use s to denote a set of locations, and si to denote location i. Every location
is represented by two coordinates, i.e., si = (si,1, si,2). The true precipitation
at location i in year j is denoted ηj(si), whereas the observed precipitation is
denoted Yij. We use π(·) to denote a probability distribution.

The thesis is outlined as follows: In Chapter 2, we introduce the study region
and the observations. In Chapter 3, we introduce some of the background and
underlying theory. In Chapter 4, we build our models and choose the prior
distributions. In Chapter 5, we present a simple toy example, illustrating the
relevance of the dependency structure. In Chapter 6, we perform a case study,
using real observations of precipitation. In Chapter 7, we do a simulation study.
In Chapter 8, we discuss the results from the studies.

4
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Chapter 2

Study region, data and explanatory
analysis

In this chapter, we present our study region and the data set of annual precipi-
tation. Further, we do some simple explanatory analysis.

2.1 Study region and geographical data

We consider observations of annual precipitation in the county Hordaland in
Norway. Hordaland is a mountainous county, mainly located on the western,
windward side of Langfjella, where the climate is characterised by orographic
precipitation. As the aim of this thesis is to make good models for precipitation
in mountainous areas characterised by orographic precipitation, Hordaland is a
suited area to perform our investigations. However, there is a watershed on
the mountain plateau Hardangervidda, and the areas on the eastern side of the
watershed have much drier climatology than the rest of the county. In Ødegård
(2017), it was shown that the different climatology at the east side leads to a
poor fit for the weather stations located in this area. Parts of the municipality
Ulvik lie in this eastern area, and is excluded from this study.

We consider 60 weather stations, located in Hordaland. Information about the
weather stations, such as coordinates, elevation and annual precipitation, has
been provided by the Norwegian Water Resources and Energy Directorate (NVE).
The observations are public accessible at the climate database of the Norwegian
Metrological Institute, through the web portal eKlima.no. An overview of the
weather stations, with name, station number, elevation, coordinates and aver-
age annual precipitation, is given in Appendix C. Figure 2.1a displays a map of

5
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CHAPTER 2. STUDY REGION, DATA AND EXPLANATORY ANALYSIS

Hordaland, including the 60 weather stations represented by coloured dots. The
colour scale of the dots gives the elevation in meters above sea level (m.a.s) of
the weather stations.

(a) Elevation ([m]) at the weather
stations.

(b) Average annual precipitation
([m/years]) at the weather sta-
tions.

Figure 2.1: Maps of Hordaland, including dots representing the 60 weather stations.
The colour scale of the dots, gives the elevation ([m]) and average annual precipitation
([m/year]) at the weather stations.

Because our models include elevation, we need to know the elevation at all loca-
tions where we do inference and interpolation. As a part of the SPDE approach,
we use a mesh (see Section 3.3), thus we also need to know the elevation at the
mesh nodes. The elevation at the weather stations is known. The elevation at
other locations is found using Google Maps Elevation API, which is an online
service offered by Google. The service provides elevation at every location at the
surface of the earth. At locations where Google does not posses the exact eleva-
tion, the service interpolates the elevation using the four nearest locations. For
more information about Google Maps Elevation API, see Google (2017).

In the study, we consider a grid covering Hordaland. Figure 2.2a presents a map
of Hordaland, including the grid. The red dots represent the weather stations.
Figure 2.2b displays boxplots of the elevation at the weather stations and at the
grid nodes. The plot shows that the mean elevation is much higher at the grid
nodes, and there is a larger variance in the elevation there. The elevation is given
in m.a.s.

2.2 Annual precipitation data

We use observations of annual precipitation at the weather stations from the
period 1981-2015. Annual precipitation is given in [m/year]. We use hydrological

6



CHAPTER 2. STUDY REGION, DATA AND EXPLANATORY ANALYSIS

(a) Grid covering Hordaland, in-
cluding the 60 weather stations
(red dots).

(b) Boxplot of the elevation at the
weather stations and grid nodes.

Figure 2.2: Illustration of a grid covering Hordaland, and a boxplot of the elevation
[m] at the weather stations and at the grid nodes.

years, which go from 1st September to 31st August, such that the year 1981
starts 1st September 1980 and ends 31st August 1981. The data are given in
a monthly format, and we have obtained annual precipitation by adding the
monthly observations. Most of the weather stations do not have data from all the
years, and there are differences in which weather stations that have observations
from which years. In the case study, we use all available data each years. If a
weather station misses data from one or more months a given year, the whole
year is left out. The total number of observations we use is N = 984.

Figure 2.1b displays a map of Hordaland, including dots representing the 60
weather stations, where the colour scale of the dots gives the average annual
precipitation ([m/year]) at the stations. The average precipitation of all weather
stations is 2.4 m/year.

2.3 Catchment areas

We consider three catchment areas in Hordaland. A map of Hordaland, including
the catchment areas, is displayed in Figure 2.3. The blue areas represent the
catchments, and the red dots represent the weather stations. We consider the to-
tal precipitation in the catchments, which we refer to as areal precipitation.

We use observations of annual runoff and evaporation, to obtain observations of
areal precipitation. Table 2.1 gives the area [m2], mean elevation [m], annual
runoff [108 m3] per square meter and annual evaporation [108 m3] per square
meter of the catchment areas. The mean elevation is found by considering a

7



CHAPTER 2. STUDY REGION, DATA AND EXPLANATORY ANALYSIS

grid inside the catchment areas and take the mean of the elevation at the grid
nodes. The grid has a resolution of 1 grid node/km2. The areas, mean annual
runoff mean annual evaporation is provided by NVE. We do not consider the
measurement error of the observations of runoff and evaporation. This is because
these errors are very small, compared to the errors we obtain when estimating
the areal precipitation (Roksvåg, 2016).

Table 2.1: Area [m2], mean elevation [m], mean annual runoff [108 m3] per square meter
and mean annual evaporation [108 m3] per square meter of the catchment areas. The
mean elevation is found by considering a grid inside the catchment areas and take the
mean of the elevation at the grid nodes. The grid has a resolution of 1 grid node/km2.

Catchment area Area [m2] Mean
elevation [m]

Mean annual
runoff/m2

Mean annual
evaporation/m2

1. Fjellanger 12.8 903 0.316 0.20
2. Svartavatn 72.3 715 2.20 0.27
3. Slondalsvatn 41.9 1197 0.99 0.15

Figure 2.3: A map of Hordaland, including the weather stations (red dots) and catch-
ment areas (blue areas). The numbers correspond to the following catchment areas: 1:
Fjellanger, 2: Svartavatn, 3: Slondalsvatn.

2.4 Explanatory analysis

Figure 2.4 displays a boxplot of the annual precipitation at all weather stations
for each year in the period 1981-2015. The plot shows that the average annual
precipitation of all weather stations varies in the period, and also that the variance
in annual precipitation at different weather stations varies.

8



CHAPTER 2. STUDY REGION, DATA AND EXPLANATORY ANALYSIS

Figure 2.4: Annual precipitation at every weather station for each year in the period
1981-2015.

Figure 2.5 displays a boxplot of the annual precipitation for all years in the
period 1981-2015 at each weather station. The plot shows that there are large
variations in the average annual precipitation at different weather stations. It
also shows that the variance in annual precipitation at different weather stations
varies, and, in particular, it seems to increase as the average annual precipitation
increases.

Figure 2.6 shows the average annual precipitation at each weather station, plot-
ted against the elevation of the weather station. A simple linear regression is
performed on the data set, and the regression line is plotted in red. The line is
slightly increasing, i.e., there seem to be a linear increase in annual precipitation
with elevation.

Figure 2.7 presents the correlation between the different weather stations, plotted
against the distance [km] between them. The plot only shows correlations between
weather stations that have observations for more than 10 of the same years. The
plot shows that when the distance between weather stations is both small and
large, the correlation might be small or large.

Figure 2.8 displays a plot of the annual precipitation [m] at six weather stations,
along with a map, showing the locations of the weather stations. The plot illus-
trates that the weather stations seem to vary in the same way, indicating some
correlation.

9



CHAPTER 2. STUDY REGION, DATA AND EXPLANATORY ANALYSIS

Figure 2.5: Annual precipitation for every year in the period 1981-2015 at each weather
station. The weather stations are represented by their station number, and an overview
of the weather stations with station number is given in Appendix C.

Figure 2.6: Average annual precipitation at each weather station, plotted against the
elevation of the weather station. The red line is a linear regression line.
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Figure 2.7: Correlation between annual precipitation at the different weather stations,
plotted against the distance [km] between them.
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(a) Annual precipitation [m] at six weather stations.

(b) A map showing the location of the 6 weather sta-
tions.

Figure 2.8: Annual precipitation [m] at six weather stations. The map displays the
location of the weather stations.
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Chapter 3

Background and underlying
theory

In this chapter, we introduce some of the background and underlying theory
needed to build our models and do inference about them. For readability, we
name references at the beginning of each section, instead of naming them during
the text.

3.1 Gaussian random fields

We start out with an introduction to random fields and, in particular, Gaussian
random fields. The section is based on Gelfand et al. (2010) and Lindgren et al.
(2011).

A random field is a probability model for a stochastic variable that varies over
a continuous domain , D ⊆ Rd. Here, d is the dimension of the domain, which
typically is 2 or 3. In this work, we consider a two-dimensional domain, i.e.
d = 2. At any location s ∈ D, we consider Y (s) a random variable, and at
any fixed, finite set of locations [s1, ..., sn] ∈ D we consider [Y (s1), ..., Y (sn)] a
random vector, with spatial dependency given by its multivariate distribution.
A random field {Y (s) : s ∈ D ⊆ Rd} is specified by the finite-dimensional joint
distributions

F (y1, ..., yn; s1, ..., sn) = P (Y (s1) ≤ y1, ..., P (Y (sn) ≤ yn), (3.1)

for any n and every finite set of locations s1, ..., sn in D.
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A special case of random fields, is Gaussian random fields, GRFs, which is a
popular and common model class for spatial phenomena. For GRFs, the joint
probability distributions (3.1) are multivariate normal, i.e., {Y (s) : s ∈ D ⊆ Rd}
is a GRF if

[Y (s1), ..., Y (sn)] ∼ Nn(µ,Σ),

where µ is the mean vector and Σ is the covariance matrix which characterise the
GRF. For a definition and some properties of the multivariate normal distribution,
see Appendix A.

A random field is said to be strictly stationary if the joint probability distributions
(3.1) are invariant under spatial shift, i.e., if

F (y1, ..., yn; s1 + h, ..., sn + h) = F (y1, ..., yn; s1, ..., sn),

for any vectors h in Rd. It is said to be second order stationary, or weakly
stationary, if the mean and covariance are invariant to spatial shift. This means
that the mean is constant in the whole domain, and the covariance between two
locations si and sj in the domain only depends on the vector difference si − sj,
i.e.

E[Y (si)] = E[Y (si + h)] = µ

and
Cov[Y (si), Y (sj)] = Cov[Y (si + h), Y (sj + h)] = C(si − sj),

where the function C(·) is a covariance function. A covariance function may
be any positive definite function. In the case of GRFs, weak stationarity also
implies strict stationarity, due to properties of the Gaussian distribution. This
is a special property for GRFs, and it is not true in general. In the following we
refer to strictly and weakly stationary GRFs, as simply stationary GRFs.

When the covariance between two locations in the domain only depends on the
Eucledian distance between the locations, i.e.,

Cov[Y (si), Y (sj)] = C(||si − sj ||),

we have an isotropic GRF and an isotropic covariance function C(·).

The most popular and commonly used family of isotropic covariance functions, is
the family of Matérn covariance functions. We now give a short introduction to
the Matérn covariance functions, due to the application they have in the stochas-
tic partial differential equation (SPDE) approach to spatial statistics, which we
introduce in Section 3.3.

14
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Consider two locations si and sj in D. The Matérn covariance function between
the locations is defined as

C(si, sj) =
σ2

Γ(ν)2ν−1
(κ||si − sj||)νKν(κ||si − sj||) ν > 0, κ > 0. (3.2)

Here, ||·|| is the Euclidean distance, Γ(·) is the gamma function,Kν is the modified
Bessel function of second kind and order ν, ν is a shape parameter which controls
the smoothness of the field, κ is a scale parameter and σ2 is the marginal variance.
The scale parameter κ has a more natural interpretation when considering the
range instead. The range is the Euclidean distance between two locations si and
sj where Y (si) and Y (sj) are almost independent. For the Matérn covariance
functions the range is empirically derived to be

ρ =

√
8ν

κ
. (3.3)

At this distance the correlation is approximately 0.1.

Due to the dependency structure of GRFs, both the covariance matrix, Σ, and
the precision matrix, Q = Σ−1, are typically dense. This gives matrix operations,
such as inversion and factorisation, a computational cost of O(n3), where n is the
dimension of the matrix. As this is computationally expensive, it is desired to
reduce the computational cost. This gives the motivation to consider Gaussian
Markov random fields, which we in the next section shall see are much faster to
work with.

3.2 Gaussian Markov random fields

In this section, we give an introduction to Gaussian Markov random fields, GM-
RFs, motivated by their computational benefit. The following introduction is
based on Rue and Held (2005) and Rue et al. (2009). We have adopted the defi-
nition of a GMRF from Rue and Held (2005), and the use of graphs to represent
the conditional independence structure in a GMRF. Before we can present GM-
RFs, we start out with a short introduction to graphs, followed by an explanation
of the notation we use.

An undirected graph is a pair G = (V , E), where V is a set of vertices, or nodes,
and E is a set of edges, {i, j}, where i, j ∈ V and i 6= j. There is an edge
between nodes i and j in the graph if, and only if, {i, j} ∈ E . If we assume
V = {1, ..., n}, we have a labelled graph. An example of an undirected, labelled
graph can be seen in Figure 3.1. This graph has nodes V = {1, 2, 3, 4} and edges
E = {{1, 2}, {2, 3}, {3, 4}, {4, 2}}.
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Figure 3.1: An undirected, labelled graph, with nodes V = {1, 2, 3, 4}
and edges E = {{1, 2}, {2, 3}, {3, 4}, {4, 2}}.

Let Y = [Y1, ..., Yn] be a Gaussian distributed random vector with mean µ and
covariance matrixΣ. Denote by Y−ij all the elements of Y , except the elements Yi
and Yj. Furthermore, let Yi ⊥ Yj|Y−ij denote conditional independence between
Yi and Yj given Y−ij. Conditional independence is implied if and only if the
following is true:

π(Yi, Yj,Y−ij) = π(Yi,Y−ij)π(Yj,Y−ij).

Now, let G = (V , E) be an undirected, labelled graph, with V = 1, ..., n and with
E such that there is no edge between i and j if, and only if, Yi ⊥ Yj|Y−ij. Then
we say that Y is a GMRF with respect to G.

An important result about GMRFs is about the precision matrix, Q = Σ−1. It
can be proven that if Y is Gaussian with mean µ and positive definite precision
matrix Q, then

Yi ⊥ Yj|Y−ij ⇐⇒ Qij = 0 for i 6= j.

A proof is given in Rue and Held (2005), and is reproduced in Appendix A. This
result simply says that if Yi and Yj are conditional independent, then Qij = 0.
This brings us to the formal definition of a GMRF:

A random vector Y = [Y1, ..., Yn] ∈ Rn is called a GMRF with respect to a
labelled graph G = (V , E) with mean µ and positive definite precision matrix Q,
if, and only if, its density has the form

π(Y ) = (2π)−n/2|Q|1/2exp
(
−1

2
(x− µ)TQ(x− µ)

)
and

Qij 6= 0 ⇐⇒ {i, j} ∈ E for all i 6= j.

The advantage of GMRFs arises as a result of the Markov property. The local
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Markov property can be stated as

Yi ⊥ Y−iNe(i)|YNe(i) for every i ∈ V .

Here, Ne(i) is the neighbourhood of node i, i.e., all the nodes in G which have an
edge to node i. This property says that π(Yi|Y−i) = π(Yi|Yne(i)), which loosely
speaking means that the conditional distribution of Yi given everything else, only
depends on elements in the neighbourhood of i. Due to the non-zero structure
of the precision matrix, Q, of a GRMF with the Markov property, the precision
matrix is sparse. This makes matrix operations, such as factorisation, much faster
for GMRFs than for GRFs. For two-dimensional GMRFs the computational cost
is O(n3/2) and for three-dimensional GMRFs it is O(n2).

3.3 The stochastic partial differential equation

By now, we have seen how GRFs are preferred when doing spatial modelling,
but that GMRFs are computationally faster. In the following, we shall see how
the stochastic partial differential equation (SPDE) approach lets us do the mod-
elling using GRFs, but by using a GRMF representation of the GRF, it enables
fast computations. The following section is based on Lindgren et al. (2011) and
Ingebritsen (2014).

We start out by introducing the SPDE, which has the following form:

(κ2 −∆)α/2(τx(s)) =W(s), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0. (3.4)

Here, W is spatial Gaussian white noise and ∆ is the Laplacian, defined by

∆ =
d∑
i=1

∂d

∂xdi
.

Further, κ controls the spatial range, τ controls the variance, ν and α control
the smoothness and d is the dimension of the domain. The stationary solutions
to Equation (3.4), are GRFs with Matérn covariance functions. The family of
Matérn covariance functions was defined in Equation (3.2) in Section 3.1. The
parameters of the Matérn covariance function and the SPDE are the same. The
marginal variance is given by

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ντ 2
, (3.5)
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where Γ(·) is the gamma function.

The link between a GRF and GMRF, proposed by Lindgren et al. (2011), is
a finite element representation of the solutions to the SPDE (3.4). The finite
element method is a numerical scheme for approximating solutions of partial
differential equations. The spatial domain D is covered by a triangulated mesh
with m nodes. The solution to the SPDE (3.4) is then given a finite element
representation

x(s) =
m∑
i=1

ψi(s)wi, (3.6)

for some basis functions {ψi} and some Gaussian distributed weightsw. Lindgren
et al. (2011) choose to use basis functions that are piecewise linear in each triangle,
i.e. ψi has value 1 in node i and 0 in all other nodes. Thus, in the nodes, the
value of the field is determined by the weights, whereas in the interior of the
triangles, the value of the field is determined by linear interpolation. Figure 3.2
illustrates a triangulation. Figure 3.2a shows a smooth surface, and Figure 3.2b
shows a linear approximation of the surface, obtained using a triangular mesh
and piecewise linear basis functions. The illustrations are copied from Hu and
Steinsland (2016).

We need to choose the weights w so that the distribution of the representation
(3.6) approximates the solutions to the SPDE (3.4) on the domain. Let the
precision matrix of the Gaussian weights w be denoted Qα,κ2 , where α and κ
are the parameters in the SPDE (3.4), with α = 1, 2, .... By using Neumann
boundary conditions, Qα,κ2 is given by

Q1,κ2 = Kκ2 , for α = 1

Q2,κ2 = Kκ2C
−1Kκ2 , for α = 2

Qα,κ2 = Kκ2C
−1Qα−2,κ2C

−1Kκ2 , for α = 3, 4, ...

(3.7)

The m×m matrix Kκ2 has elements

(Kκ2)ij = κ2Cij +Gij,

and the m×m matrices C and G have elements

Cij = 〈ψi, ψj〉, Gij = 〈∇ψi,∇ψj〉.

The matrix C−1 is dense, which also makes the precision matrix dense, but
C can be approximated by a diagonal matrix C̃, with elements C̃ii = 〈ψi, 1〉.
By using this approximation, the precision matrix Qα,κ2 becomes sparse. This
means we have Gaussian distributed weights with sparse precision matrix, and
hence the weights w are a GMRF with Markov properties determined by the
triangulation.
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(a) A smooth surface. (b) A linear approximation of
a smooth surface.

Figure 3.2: Figure 3.2a displays a smooth surface, and Figure 3.2b illustates a linear
approximation of the surface, obtained using a triangular mesh and piecewise linear
basis functions. The figures are copied from Hu and Steinsland (2016).

In the following we will assume d = 2 and ν = 1, as this will be the dimension and
shape parameter we use in the studies in this thesis. This implies α = 2.

One of the advantages with the SPDE approach, is its flexibility. The properties of
the random field, which usually are determined by a covariance function, are now
characterised by the SPDE. By modifying the SPDE we can obtain the desired
properties of the field. In particular, it is possible to extend the SPDE to model
non-stationarity. The SPDE automatically ensures a valid model with positive
semi-definite non-stationary covariance. An extended version of the SPDE (3.4)
is obtained by allowing the parameter κ, which is linked to the spatial correlation
range, and the parameter τ , which controls the marginal variance of the field, to
vary in space, i.e.

(κ(s)2 −∆)(τ(s)x(s)) =W(s), s ∈ Rd, κ > 0. (3.8)

When one or both parameters are non-constant, we have non-stationarity, because
the variance and range vary in space.

The parameters τ(s) and κ(s) can be represented by log-linear models

logτ(s) = θτ,1 +
∑
j

bτ,j(s)θτ,j and logκ(s) = θκ,1 +
∑
k

bκ,k(s)θκ,k.

Here, {bτ,j(·)} and {bκ,k(·)} are deterministic basis functions, and the θ’s are
weights. Spatial explanatory variables can be used as basis functions.

By letting the parameters τ and κ vary in space, the precision matrix of the
Gaussian weights w from the finite element representation (3.6) change. For
α = 2, the precision matrix QN−S is now given by

QN−S = T (K2CK2 +K2G+GK2 +GC−1G)T . (3.9)
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The m × m matrices T and K are diagonal with elements Tii = τ(si) and
Kii = κ(si), the m × m matrix C is diagonal with elements Cii =

∫
ψi(s)ds

and the m × m matrix G is sparse positive semi-definite, with elements Gij =∫
∇ψi(s)∇ψj(s)ds. Thus, the precision matrix is still sparse, and we still have a

GMRF representation.

The marginal variance defined in (3.5), and the corresponding range given in (3.3),
are only valid in the stationary case. Nominal approximations of the variance and
range are

σ2(s) ≈ 1

4πκ(s)2τ(s)2
(3.10)

and

ρ(s) ≈
√

8

κ(s)
. (3.11)

These approximations are valid for slowly varying κ(s). The approximations help
us interpret the parameters.

3.4 Latent Gaussian models

In this thesis, we use models from the class of latent Gaussian models, LGMs,
which is a special case of Bayesian hierarchical models. This is a popular and
much used class of models, due to its flexibility. We now give an introduction to
Bayesian hierarchical models and LGMs, based on Rue et al. (2009), Ingebritsen
(2014) and Blangiardo and Cameletti (2015).

The name hierarchical models refers to the composition of the models. The
models consist of several components, or levels. At each level the models can be
simple or complex, which give rise to the variety of models in this class. The joint
distribution of all the levels is found by multiplying the conditional distributions
for each level. In this thesis we consider hierarchical models with three levels,
thus, for simplicity, we restrict our introduction to only include models of this
kind.

At the top level of the hierarchical model is the data model, which specifies the
likelihood of the observations, depending on some latent (unobserved) process
and some hyperparameters. On the next level, we have the process model, which
is a probability model for the latent process, given some parameters. Thus, the
latent process is itself a hierarchical model. At the lowest level is the parameter
model, i.e., the prior distribution of the hyperparameters. In the case of Bayesian
hierarchical models, the parameter model is the joint prior distribution for all the
model parameters. The aim is typically to make inference about the latent process
and hyperparameters, based on the observations.
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We now proceed to define an LGM for n observations y1, ..., yn at locations
s1, ..., sn. Assume the observations belong to the exponential family, and that
they have the following data model:

yi|x,θ1 ∼ π(yi|ηi,θ1).

Here, x are some latent (unobserved) parameters and θ1 are hyperparameters,
which not necessarily are Gaussian. We assume that the observations yi are
conditionally independent given x and θ1. The mean µi is defined as a function
of the additive predictor ηi through a link function g(·), such that g(µi) = ηi.
The linear predictor ηi is defined as

ηi = α +

nβ∑
k=1

βkzki

nf∑
j=1

f (j)(uji).

Here, α is the intercept, the {βk}’s are linear effects of the covariates z and the
{f (j)(·)}’s are unknown functions of the covariates u.

The latent parameters of the model are x = [η, α,β,f ]. As we are assuming a
Bayesian model, we assign priors to the latent parameters. By letting the priors
be Gaussian, we have an LGM, with a latent Gaussian field x, i.e.,

x|θ2 ∼ N (0,Q−1(θ2)).

Here, Q(θ2) is a precision matrix, depending on some hyperparameters θ2, which
are not necessarily given Gaussian priors. To simplify the notation in the follow-
ing, we denote θ = [θ1,θ2]. We assume that the latent parameters are indepen-
dent, hence the precision matrix Q(θ2) is sparse, and the latent Gaussian field x
is a GMRF.

It remains to assign priors to the hyperparameters θ, i.e.,

θ ∼ π(θ).

The joint posterior distribution of the latent parameters and the hyperparameters,
given the observations, is now given as the product of the data likelihood, the
density of the latent parameters and the prior of the hyperparameters, i.e.,

π(x,θ|y) ∝ π(θ)π(x|θ)
n∏
i=1

π(yi|xi,θ)

∝ π(θ)|Q(θ|1/2exp

[
−1

2
xTQ(θ)x+

n∑
i=1

log(π(yi|xi,θ))

]
. (3.12)
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3.5 Integrated nested Laplace approximation

In the previous, section we introduced latent Gaussian models (LGMs), with a
Bayesian approach. In this section, we introduce the method integrated nested
Laplace approximation (INLA), and we show how INLA can be used to make
approximate Bayesian inference about LGMs. The following section is based on
Rue et al. (2009) and Ingebritsen (2014).

3.5.1 Approximate Bayesian inference with INLA

Consider a latent Gaussian field x and hyperparameters θ of an LGM. In Section
3.4 the joint posterior distribution of x and θ was given in Equation (3.12).
The aim now, is to approximate their posterior marginal distributions, given the
observations y. The posterior marginal distribution of the latent variables may
be written as

π(xi|y) =

∫
π(xi|θ,y)π(θ|y)dθ i = 1, ..., n, (3.13)

and the marginal posterior distribution of the hyperparameters may be written
as

π(θj|y) =

∫
π(θ|y)dθ−j j = 1, ...,m. (3.14)

The INLA approach consists of three steps; (i) find an approximation to π(θ|y),
(ii) find an approximation to π(xi|θ,y) and (iii) use a numerical integration
scheme to compute the integrals (3.13) and (3.14). To ensure fast computations,
there are some requirements that should be fulfilled. The first is that the num-
ber of hyperparameters, θ, should not be too large. This is because we perform
numerical integration over the parameter space. Another requirement is that the
latent Gaussian field, x, should be given a GMRF prior with a sparse precision
matrix, as sparse matrix algorithms are used. We now give a brief presentation of
the three INLA steps listed above. We refer to Rue et al. (2009) for details.

We start out by approximating the marginal posterior distribution of the hyper-
parameters θ. The following Laplace approximation π̃(θ|y) is used:

π̃(θ|y) ∝ π(x,θ,y)

π̃G(x|θ,y)

∣∣
x=x∗(θ)

, (3.15)

where π̃G(x|θ,y) is the Gaussian approximation of the full conditional distri-
bution of x, and x∗(θ) is the mode of the full conditional of x for a given θ.
The reason for the proportionality sign, is that the normalising constant is un-
known. The mode of π̃(θ|y) is found by optimising log(π̃(θ|y)) with respect to
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θ, using some numerical optimisation algorithm. When performing the numeri-
cal integration, it is sufficient to have some good evaluation points where π̃(θ|y)
is evaluated. These are found by computing the numerical Hessian, evaluated
at the mode, and then the Hessian is used to distribute the evaluation points,
{θk}.

The next step is to approximate π(xi|θk,y) for each of the evaluation points
in {θk}. There are several ways to do this. In Rue et al. (2009), three ap-
proximations are suggested; Gaussian approximation, Laplace approximation and
simplified Laplace approximation. Laplace approximation is a method used to
approximate integrals on the form

∫
f(x)dx, for some function f(·). The idea is

to fit a Gaussian distribution at the maximum x∗ of f(x), and use the cumulative
Gaussian distribution to approximate the integral. The Laplace approximation
is the most accurate approximation of the three suggested above, and in general,
this one is preferred. The simplified Laplace approximation has a slight loss in
accuracy, compared to the Laplace approximation, but it compensates by having
a much smaller cost. The Gaussian approximation is simplest and cheapest, and
it might give reasonable results, but it might also lead to errors.

Using the Laplace approximation to π(xi|θk,y), we obtain

π̃(xi|θ,y) ∝ π(x, θ, y)

π̃G(xi|x−i,θ, y)

∣∣
x−i=x∗

−i(xi,θ)
. (3.16)

Here π̃G is the Gaussian approximation to xi|x−i,θ, y, and x∗−i(xi,θ) is its mode
for a given xi and θ.

The final step is to approximate the integrals (3.13) and (3.14) using numerical
integration and the approximations (3.15) and (3.16).

When the observation likelihood is Gaussian, which is the case for LGMs, the
approximations (3.15) and (3.16) are exact and can therefore be omitted. The
accuracy of the resulting posteriors is then only determined by the accuracy of
the numerical approximations of the integrals (3.13) and (3.14).

The INLA methodology is available in the R-package R-INLA. All inference and
interpolations performed in this work are calculated using R-INLA, and some
examples of INLA code are given in Appendix B.

3.6 Evaluation schemes

So far, we have described an approach for building Bayesian hierarchical models,
making inference about them and doing interpolations. What remains is some
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schemes that can be used to evaluate and compare the models and their pre-
dictive performances. In this section, we give an introduction to the schemes we
use; the root-mean-square error (RMSE), the continuous ranked probability score
(CRPS), coverage probability and cross-validation.

3.6.1 Root-mean-square error

One of the most used evaluation schemes for the predictive performance of a
model, is to measure the average inaccuracy of the estimates produced by the
model, i.e., the average residuals (Willmott and Matsuura, 2005). One type of
such average measure, is the RMSE. Consider a variable Yi, i = 1, ..., n, which
we want to predict. Assume yi is an observation of the variable, and that ŷi is a
predicted estimate of the variable. The RMSE is then defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2.

3.6.2 Continuous ranked probability score

This subsection is based on Hersbach (2000).

Let Yi denote the variable we wish to predict, with yi and ŷi, i = 1, ..., n, denoting
an observation and predicted estimate of the variable, respectively. Further, let
F (ŷi) denote the predictive cumulative probability function of Yi. Then, the
CRPS is defined as

CRPS = CRPS(F, ŷi) =

∫ ∞
−∞

[F (ŷi)−H(ŷi − yi)]2dŷi,

where H is the Heaviside function, defined as

H(x) =

{
0 for x < 0

1 for x ≥ 0.

Thus, the CRPS is a measure of the distance between the predicted and observed
cumulative distributions. This means that a better prediction, leads to a smaller
value of the CRPS. In the case ŷi = yi, i.e., a perfect prediction, the CRPS
becomes 0. Note that for deterministic predictions, where the uncertainty is
zero, the CRPS is the same as the mean absolute error.

24



CHAPTER 3. BACKGROUND AND UNDERLYING THEORY

An advantage of the CRPS, compared to the RMSE, is that the CRPS takes
the whole posterior distribution into account. This is useful, when the aim is to
quantify the uncertainty of predictions and interpolations.

In this thesis, the variable that is to be interpolated is annual precipitation, Yij,
for location i = 1, ..., n and year j = 1, ..., J . When evaluating the models, we are
interested in the mean CRPS at location i over several years, which we denote
CRPSi, and the total mean over several locations and several years, which we
denote CRPS. The total average is calculated as

CRPS =
1

n

n∑
i=1

1

J

J∑
j=1

CRPS(F, ŷij).

In our analysis, we use the R-function crps() from the package verification
to calculate the CRPS. This function assumes that the cumulative distribution
is Guassian. As mean and standard deviation we use the posterior mean and
posterior standard deviation of precipitation.

3.6.3 Paired samples t-test

When comparing the models, we would like to investigate if there is a significant
difference between the CPRS of the models. To do that, we perform a paired
samples t-test. In this section, we give a general introduction to paired samples
t-test, based on Yeager (2017).

The paried samples t-test is a hypothesis test that tests if the mean of the differ-
ences between two related statistics is significantly different from zero. Consider
to stochastic variables X1 and X2, and denote the difference between them D =
X1−X2. Assume the difference is normally distributed, such that D ∼ (µD, σ

2
D).

The hypotheses we test are then

H0 : µD = 0

vs
H1 : µD 6= 0.

Denote a sample of observations x1,1, ..., x1,n, x2,1, ..., x2,n, with corresponding
differences d1, ..., dn. We use the following test statistic:

t =
d√

Var(d)/n
,
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with d = 1
n

∑n
i=1 di and Var(d) = 1

n−1
∑n

i=1(di − d)2.

We have that the test statistic t follows a student t distribution, with n−1 degrees
of freedom. Thus, the hypothesis is rejected if the value of t is greater than the
critical value t1−α,n−1, for a chosen confidence level 1− α.

3.6.4 Coverage probability

The coverage probability of prediction intervals is the proportion of times the true
value of the variable occurs within the prediction interval. Thus, the coverage
probability give an indication of a model’s ability to make prediction, and to
estimate the uncertainty of its predictions.

Let Yi denote the variable we wish to predict, with yi and [ŷi,L, ŷi,U ], i = 1, ..., n,
denoting an observation and prediction interval of the variable, respectively. The
coverage probability is then estimated by

ˆCover =
1

n

n∑
i=1

I[ŷi,L,ŷi,U ](yi).

Here, I[ŷi,L,ŷi,U ](·) is the indicator function, defined as

I[ŷi,L,ŷi,U ](yi) =

{
1 if yi ∈ [ŷi,L, ŷi,U ]

0 if yi 6∈ [ŷi,L, ŷi,U ]
.

3.6.5 Cross-validation

Cross-validation is an old, but useful, method for evaluation of the predictive per-
formance of a model. k-fold cross-validation, is a general case of cross-validation.
We now give an introduction to k-fold cross-validation, based on Kohavi (1995).

Let D be a data set, to which we want to fit a model. In k-fold cross-validation,
this data set is divided into k non-overlapping subsets, D1, ..., Dk, of approxi-
mately equal size. The following procedure is repeated k times: For each time
t ∈ {1, ..., k}, let Dt be test data, and let the remaining data, D \Dt, be training
data. Fit the model to the training data, and then use the fitted model to pre-
dict the test data based on the training data. The predicted values can now be
compared with the true values, and the model is evaluated, using e.g. RMSE or
CRPS. After this has been done all k times, the mean RMSE or CRPS of the k
times can be used as a measure of the predictive performance of the model.
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Leave-one-out cross-validation is a special case of k-fold cross-validation. In this
case, k is equal to the number of observations in the data set, hence, we only use
one observation as test data each time. This is particularly useful if there are few
observations available.
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Chapter 4

Models and methods

In this chapter, we propose two models for annual precipitation; a stationary
model and a non-stationary model. The models are of the class LGMs, which
were presented in Section 3.4, i.e., the spatial fields are assumed to be stationary
and non-stationary GRFs. We use the subscripts N − S and S to denote non-
stationary and stationary models or model components. When we refer to general
cases, i.e., when what we describe is common for both models, we leave out the
subscript.

4.1 Annual precipitation model

We start out by introducing a general data model and process model for annual
precipitation.

Consider a vector of spatial locations s ∈ D, where D is a spatial domain, which
in our case is the county Hordaland. Let the spatial process {ηj(s) : s ∈ D}
denote the true precipitation in year j at locations s. Further, let yij denote the
observed precipitation at location si in year j, with i = 1, ..., n. We assume the
following data model for our observations:

yij = ηj(si) + εij. (4.1)

Here, εij is the measurement uncertainty at location si in year j. We assume the
measurement uncertainties are independent of the true precipitation, and that
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they are Gaussian iid, with

εj = [ε1j, ..., εnj] ∼ N (0, τ−1ε diag(fj)).

The vectors fj = [f1j, ..., fnj] are annual fixed scales, enabling the variance to
vary at different locations. This is included because the variance is known to
increase as the true precipitation increases. In particular, this was illustrated
in the explanatory analysis in Chapter 2, in Figure 2.5. A reasonable way to
model this, is by using fij = (0.1ηj(si))

2, and this will be done in the simulation
study. In the case study, we don’t know the values of ηj(si), and thus it is not
technically possible in INLA to use these scales. In the case study, we therefore
use fij = (0.1yij)

2 instead.

The process model is assumed to be compounded by several terms. We assume
an annual intercept, αj, and two spatial processes, modelled as GRFs. One of
the spatial processes represents the spatial variations in precipitation that are
the same every year, and which are caused by the climatology. We call this
process the climatology, denoted by c(s). The other spatial process represents
the additional annual spatial variations, which are different each year. We call
this the annual spatial variability, and denote it zj(s). Finally, we assume there
is a linear relation between elevation and precipitation, and we model this as a
term βhh(s), where βh is the linear effect of the elevation h(s) at location s.
This yields the following stationary and non-stationary process model for true
precipitation:

ηj,S(s) = αj + cS(s) + zj,S(s) + βhh(s) (4.2)
ηj,N−S(s) = αj + cN−S(s) + zj,N−S(s) + βhh(s). (4.3)

4.2 The SPDE approach to the annual precipita-
tion model

We now use the SPDE approach, introduced in Section 3.3, to model the GRFs
cS(s), cN−S(s), zj,S(s) and zj,N−S(s) in (4.2) and (4.3). We construct a triangular
mesh with m nodes, which covers our domain, D. We consider the same mesh
for all processes and all years. The mesh is displayed in Figure 4.1. The red dots
represent the weather stations.

By using the stationary SPDE (3.4) and the non-stationary SPDE (3.8), we obtain
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Figure 4.1: A triangular mesh. The red dots represent the weather stations.

the following finite element representations of the GRFs:

cS(si) =
m∑
k=1

ξk(si)uk,S, cN−S(si) =
m∑
k=1

ξk(si)uk,N−S,

zj,S(si) =
m∑
k=1

ξk(si)wkj,S, zN−Sj(si) =
m∑
k=1

ξk(si)wkj,N−S

As explained in Section 3.3, {ξk(·)} are linear basis function, such that each sum
is over three non-zero basis functions. As we are using the same mesh, the basis
functions are also the same for all the processes and all years. The uk’s and wkj’s
are weights. For the climatology the weights are the same each year, whereas for
the annual spatial variation, they are different.

The process models (4.2) and (4.3) can now be written as

ηj,S(si) = αj +
m∑
k=1

ξk(si)(uk,S + wkj,S) + βhh(s)

ηj,N−S(si) = αj +
m∑
k=1

ξk(si)(uk,N−S + wkj,N−S) + βhh(s).

In vector form, this becomes

ηj,S(si) = [1 h(si) Ai][αj βh (uS +wj,S)]T (4.4)
ηj,N−S(si) = [1 h(si) Ai][αj βh (uN−S +wj,N−S)]T , (4.5)

where A is an n×m matrix, with Aik = ξk(si), and Ai is the i’th row of A. A
is called a projection matrix, because it projects the values in the mesh nodes to
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values in the locations si. The expressions (4.4) and (4.5) are used as our linear
predictors for annual precipitation.

We recall that the SPDE depends on some hyperparameters:

θτ (s) = θτ,1 +
∑
j

bτ,j(s)θτ,j and θκ(s) = θκ,1 +
∑
k

bκ,k(s)θκ,k.

For the stationary case, the parameters are constants, and we simply denote them
θ∗S = [θτ,1, θκ,1]. In the non-stationary case, the parameters vary in space. We
assume that the parameters are linearly dependent on elevation, which gives them
the following form:

θτ,N−S(s) = θτ,1 + θτ,hh(s) and θκ,N−S(s) = θκ,1 + θκ,hh(s). (4.6)

We denote the parameters θ∗N−S(s) = [θτ,1, θτ,h, θκ,1, θκ,h].

When we need to distinguish between the parameters corresponding to the cli-
matology, c(s), and annual spatial variability, zj(s), we include the subscript u
(representing the climatology) and w (representing the annual spatial variability)
in the notation of the parameters. Further, if it is not clear from the context if θτ,1
and θκ,1 refers to the stationary or non-stationary model, we add the subscript S
or N − S, respectively.

4.3 Prior assumptions

As we are using a Bayesian approach, we need to assign prior distributions.

We assign Gaussian priors to the intercept αj and elevation coefficient, βh. This
implies that the latent variables, xj = [αj, βh,u,wj], are jointly Gaussian dis-
tributed, given the SPDE parameters θ∗. They thereby fit into the framework of
LGMs, described in Section 3.4. We choose informative priors for the intercept,
αj, and elevation coefficient βh. We choose the intercept mean to be 2 m/year,
which is close to the mean of the observations. The variance is chosen to be 1.
When doing the model-fitting in R, we scale elevation, such that it is given in km.
For the elevation coefficient we choose the mean to be 1 m/year, i.e., an annual
increase of 1 m precipitation, as the elevation increases by 1 km. The variance is
chosen to be 12. The choice of the prior distribution for the elevation coefficient
is based on the results of the investigations in Ødegård (2017). The distributions
become

αj ∼ N (2, 1)
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and
βh ∼ N (1, 1).

Finally, we assign prior distributions to all the hyperparameters, θ = [τε,θ
∗]. For

the measurement uncertainty precision, τε, we choose a gamma distribution,

τε ∼ Gamma(10, 10).

This implies
E[τε] = 1 and Var[τε] = 0.1.

When choosing prior distributions for the hyperparameters of the dependency
structure, θ∗, we need to be careful. Several studies, e.g., Ingebritsen (2014), have
demonstrated that these parameters are very prior sensitive. As the parameters
τ and κ don’t have any clear physical interpretation, it is difficult to choose
informative priors. We follow the procedure demonstrated in Ingebritsen (2014)
when choosing the prior distributions. We use the same prior distributions for
the hyperparameters of the climatology, c(s), and the annual spatial variability,
z(s).

We start out with choosing prior distributions for the parameters in the sta-
tionary case, θ∗S. We assume that the parameters are Gaussian, i.e., θτ,1,S ∼
N (µτ,1,S, σ

2
τ,1,S) and θκ,1,S ∼ N (µκ,1,S, σ

2
κ,1,S), and that θτ,1,S and θκ,1,S are inde-

pendent. In order to specify the parameters µτ,1,S, σ2
τ,1,S, µκ,1,S and σ2

κ,1,S, we
exploit the relationships between the parameters and the marginal deviance of
the field,

σS =
1√

4πτκ
,

and the spatial range,

ρS =

√
8

κ
.

These parameters have a physical interpretation, which can be used to assign
them informative prior distribution. We recall that θτ = log(τ) and θκ = log(κ).
By properties of the log-normal distribution, we have that

ρS ∼ logN (log
√

8− µκ,1,S, σ2
κ,1,S)

and
σS ∼ logN (−log

√
4π − µτ,1,S − µκ,1,S, σ2

τ,1,S + σ2
κ,1,S).

We can now make use of the lognormal quantile functions, which are given
by

ρS(p) =
√

8exp(−µκ,1,S + σκ,1,SΦ−1(p)) (4.7)
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for the range, and

σS(p) =
1√
4π

exp(−µτ,1,S − µκ,1,S +
√
σ2
τ,1,S + σ2

κ,1,SΦ−1(p)) (4.8)

for the marginal deviance. Here 0 < p < 1 is some quantile, and Φ(·) is the cumu-
lative distribution function for the standard normal distribution. By assuming
values for the spatial range and marginal deviance at two chosen quantiles, we can
solve the set of equations (4.7) and (4.8), in order to get values for the unknown
parameters µτ,1,S, σ2

τ,1,S, µκ,1,S and σ2
κ,1,S.

We assume values for the spatial range and marginal deviance at the 0.5 quantile
and 0.9 quantile, when solving the equations (4.7) and (4.8). The domain we
consider is approximately 95km × 140km. We choose the 0.5 quantile of the
spatial range to be 30 km and the 0.9 quantile to be 95 km. Using these values
to solve Equation (4.7), yield µκ,1,S = −2.36 and σ2

κ,1,S = 0.81. For the marginal
deviance, we assume the 0.5 quantile to be 0.2 m and the 0.9 quantile to be 2 m.
Solving Equation (4.8) for these values yields µτ,1,S = 2.71 and σ2

τ,1,S = 2.42.

Also in the non-stationary case we assign Gaussian priors to the hyperparameters,
θ∗N−S, i.e.,

θτ,1,N−S ∼ N (µτ,1,N−S, σ
2
τ,1,N−S), θτ,h,N−S ∼ N (µτ,h,N−S, σ

2
τ,h,N−S)

θκ,1,N−S ∼ N (µκ,1,N−S, σ
2
κ,1,N−S), θκ,h,N−S ∼ N (µκ,h,N−S, σ

2
κ,h,N−S).

Again, we need to specify the unknown parameters, µτ,1,N−S, σ2
τ,1,N−S, µτ,h,N−S,

σ2
τ,h,N−S, µκ,1,N−S, σ2

κ,1,N−S, µκ,h,N−S and σ2
κ,h,N−S. However, in the non-stationary

case, we don’t have exact expressions for the spatial range and the marginal de-
viance. Instead, we use the nominal approximations (3.11) and (3.10). The
log-normal distributions then become

ρN−S(h) ∼ logN (log
√

8− µκ,1,N−S − hµκ,h,N−S, σ2
κ,1,N−S + h2σ2

κ,h,N−S)

and

σN−S(h) ∼ logN (−log
√

4π − µτ,1,N−S − µκ,1,N−S − h(µτ,h,N−S + µκ,h,N−S),

σ2
τ,1,N−S + σ2

κ,1,N−S + h2(σ2
τ,h,N−S + σ2

κ,h,N−S)),

with h = h(s). We require that the distributions fulfil the conditions proposed
in Ingebritsen (2014). The conditions are:

1. ρN−S(0)
d
= ρS and σN−S(0)

d
= σS

2. µτ,h,N−S = µκ,h,N−S = 0
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3. Given a reference elevation h0, cρ is the coefficient of variation for the ra-
tio ρN−S(h0)/ρN−S(0), and cσ is the coefficient of variation for the ratio
σN−S(h0)/σN−S(0)

The first condition defines that the non-stationary distributions of the spatial
range and the marginal deviance at sea-level are the same as the stationary dis-
tributions. The second condition states that the means of the distributions do
not depend on elevation, implying that the prior assumption is that the distribu-
tions are not affected by elevation. The third condition controls how much the
priors vary with elevation, by specifying the coefficients of elevation. We can now
use ρS, σS, h0, cρ and cσ to define the prior distributions of θ∗N−S through the
following equations:

µτ,1,N−S = µτ,1,S, σ2
τ,1,N−S = σ2

τ,1,S,

µτ,h,N−S = 0, σ2
τ,h,N−S =

1

h20
log
(
c2σ + 1

c2ρ + 1

)
,

µκ,1,N−S = µκ,1,S, σ2
κ,1,N−S = σ2

κ,1,S,

µκ,h,N−S = 0, σ2
κ,h,N−S =

1

h20
log(c2ρ + 1),

for a given reference elevation h0, and some coefficients of variation cρ and cσ. In
order to ensure positive variance, we must choose coefficients of variations such
that cσ > cρ.

We choose h0 to be 0.4 km, and we set the coefficients of variation to be cρ = 0.8
and cσ = 1.3. This gives σ2

τ,h,N−S = 3.09 and σ2
κ,h,N−S = 3.09.

4.4 Approximate variance of interpolated precip-
itation

Both when finding the CRPS and when calculating the prediction intervals used
to find coverage probability of interpolated precipitation, we need an estimate of
the variance of the interpolated precipitation. This is not given by R-INLA, so
we need to calculate it.

Denote all the observations of precipitation yobs, and denote an interpolated es-
timate of precipitation at one location given all the observations ŷpred|yobs. The
actual observed precipitation at the location of interpolation is denoted ypred.
What we are interested in, is an estimated of the variance of the interpolated
precipitation, given all observations, i.e., Var[ŷpred|yobs]. We know from our data
model (4.1) that

ŷpred|yobs = η̂pred|yobs + ε̂pred|yobs.
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We approximate Var[ŷpred|yobs] by assuming that η̂pred and ε̂pred are conditionally
independent, given all observations, and that ε̂pred|yobs follow a normal distribu-
tion. This yields

Var[ŷpred|yobs] ≈ Var[η̂pred|yobs] + Var[ε̂pred|yobs] = Var[η̂pred|yobs] + τ−1ε fpred.

The variance of η̂pred|yobs is provided by R-INLA. The precision, τε, is one of
the hyperparameters, and we use the posterior mean, estimated by R-INLA. As
scale, fpred, we use fpred = (0.1ηpred)

2, in the simulation study, where ηpred is
the true precipitation at the location of interpolation. In the case study, we use
fpred = (0.1ŷpred|yobs)2. Generally, η̂pred and ε̂pred are dependent, but due to how
the INLA methodology is set up, this dependency is not quantified.

4.5 Interpolation to area

To be able to estimate the runoff from catchment areas, is a reason why we need a
good model to interpolate precipitation. Therefore, we consider three catchments,
where we estimate the annual areal precipitation. The catchments were presented
in Chapter 2. In the following, we describe the procedure used to estimate the
annual areal precipitation.

We consider the annual areal precipitation in each catchment Di, i = 1, 2, 3, a
stochastic variable, denoted by Aj(Di) for year j. The annual areal precipita-
tion is modelled as the integral of the true precipitation over the area of the
catchments, i.e.,

Aj(Di) =

∫
s∈Di

ηj(s)ds.

We do a numerical approximation to the integral. Inside each catchment, a grid is
constructed, denoted LDi . The true precipitation is assumed known or estimated
in all grid nodes. The approximation becomes

Aj(Di) = ∆Di

∑
si∈LDi

ηj(si).

Here, ∆Di is an area element in catchment Di, obtained by divinding the area of
Di by the number of grid nodes in the grid LDi .

When predicting the annual areal precipitation, the annual precipitation in all the
grid nodes in the catchments are interpolated jointly. The grids have an approx-
imate resolution of 1 grid node/km2. We fit the stationary and non-stationary
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models to observations of annual precipitation at the 60 weather stations, and use
the models to interpolate precipitation at the grid nodes inside the catchments,
based on the weather stations. The predictor becomes

Âj(Di) =
∑
si∈LDi

η̂j(si).

Thus, the predictor for areal precipitation is a linear combination of the interpo-
lated precipitation in the grid nodes.

We compare the predicted areal precipitation to the observations presented in
Chapter 2. We have observations of runoff and evaporation at the catchments,
and obtain observed areal precipitation by adding runoff and evaporation.
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Chapter 5

Toy examples: The relevance of the
dependency structure

In this chapter, we present some simple toy examples. The purpose of the ex-
amples is to further enlighten the consequences of having dependency structure
that varies with elevation. We aim to obtain a better understanding of the model
and the effect of the hyperparameters, and their physical interpretation. The
explorations are carried out by simulating non-stationary data with varying de-
pendency structure parameters, θ∗, and fitting stationary and non-stationary
models to the data.

5.1 Toy example design and analysis

Consider the domain D : {s = (s1, s2) : |s1| ≤ 1, |s2| ≤ 1}, i.e. a square in R2.
Assume there is a table shaped mountain inside the domain, such that

h(s1, s2) =

{
1 if |s1| ≤ 0.5, |s2| ≤ 0.5

0 else,

where h(s1, s2) is the elevation at location s = (s1, s2). Illustrations of the domain
with the mountain can be seen in Figure 5.1.

Consider two locations, sobs,1 and sobs,2, in the domain, where precipitation is
observed. The locations are given coordinates sobs,1 = (−1, 0) and sobs,2 = (0, 0).
Further, consider a location spred, where precipitation is to be interpolated. This
location is given coordinates spred = (−0.5, 0). All three locations are displayed
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(a) The domain, viewed from above. (b) The mountain, viewed from the side.

Figure 5.1: Illustrations of the domain, including a table shaped mountain, used in
the toy examples. The blue area represents the mountain.

in Figure 5.1a. Assume the precipitation at the three locations follow a non-
stationary Gaussian random field with zero mean, where the parameters of the
dependency structure are on the form given in Equation (4.6), i.e., linearly de-
pendent on elevation.

In the following, the precipitation at locations sobs,1, sobs,2 and spred is denoted
Yobs,1, Yobs,2 and Ypred, respectively. Further, a vector of the observed precipitation
is denoted Yobs = [Yobs,1 Yobs,2]

T .

Consider the joint distribution of the variables Yobs,1, Yobs,2 and Ypred. In this
simple example, we have that the variables follow a multivariate normal distri-
bution:

[
Yobs
Ypred

]
∼ N

([
0
0

]
,

[
Σobs Σ
ΣT σ2

pred

])
.

Here, Σobs is the covariance matrix of the observations, σ2
pred is the marginal vari-

ance of Ypred, and Σ is the vector of covariances between Yobs and Ypred. By
properties of the normal distribution (see Appendix A), the conditional distribu-
tion of Ypred|Yobs = yobs is

Ypred|Yobs = yobs ∼ N
(
ΣΣ−1obsyobs, σ

2
pred − ΣΣ−1obsΣ

T
)
.

This implies that the interpolated precipitation Ŷpred is a linear combination of
the observations, and the weights of the linear combinations depend on the de-
pendency structure variables θ∗, i.e.,

Ŷpred = w1(θ
∗)Yobs,1 + w2(θ

∗)Yobs,2, (5.1)

for some weights w1(θ
∗) and w2(θ

∗).
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Next, we consider the physical interpretation of θ∗. Recall that the range of a
non-stationary field is approximately

ρ(s) ≈
√

8

κ(s)
,

with log(κ(s)) = θκ,1 + hθκ,h.

Thus, the range of the model depends on elevation. As an example, assume
now that the values of θκ,1 and θκ,h, are such that the range at sea-level is 0.8,
whereas at elevation h = 1, it is 0.3. Then the correlation between Yobs,1 and
Ypred is approximately 0.2, whereas the correlation between Yobs,2 and Ypred is
approximately 0.01. Thus, there is a considerable correlation between Yobs,1 and
Ypred, whereas there is almost no correlation between Yobs,2 and Ypred. Obviously,
similar results yields for other values of the parameters θκ,1 and θκ,h, when the
range at sea level is higher than the distance between Yobs,1 and Ypred and the
range at the top of the mountain is smaller than the distance between Yobs,2 and
Ypred.

Next, we recall that the marginal variance of a non-stationary field is approxi-
mately

σ2(s) ≈ 1

4πκ(s)2τ(s)2
,

with log(τ(s)) = θτ,1 + hθτ,h and log(κ(s)) = θκ,1 + hθκ,h.

This means that the marginal variance of precipitation also depends on the ele-
vation. If the values of the parameters θ∗ are such that the marginal variance is
much larger or much smaller at elevation h = 1 than at sea level, there might be
large differences in the values of Yobs,1 and Yobs,2, and this amplifies the effect of
the range.

These properties are reflected in the weights w1(θ
∗) and w2(θ

∗), in the linear
interpolation (5.1) of Ypred. If we fit a non-stationary model to observations of a
process where the range varies as just described, Yobs,1 has a higher weight than
Yobs,2. For a stationary model, on the other hand, the correlation only depends
on the distance between the locations, and thus, the weights w1 and w2 are
equal.
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5.2 Toy example simulations

The non-stationary model given in Equation (4.3) is used to simulate precipita-
tion. The model is simplified by leaving out the climatology, c(s), the intercept
and the linear effect of elevation, i.e., we simulate from a Gaussian random field,
z(s).

In the simulations, the constant parts of the dependency structure parameters
are given values θτ,1 = −1.8 and θκ,1 = 1.4. This corresponds to range ρ = 0.70
and marginal variance σ2 = 0.18 at sea level. The explanatory variables in the
dependency structure, θτ,h and θκ,h, are varied. We let θτ,h = −8, ...,−1 and
θκ,h = 2, 3, 4. With these values, we have that at elevation h = 1, the range
decreases as the value of θκ,h increases, and it is smaller than at sea level. The
marginal variance increases as the value of θκ,h increases and as the value of θτ,h
decreases, and it is higher than at sea level.

As prior distributions for the parameters, we use informative Gaussian prior dis-
tributions:

θτ,1 ∼ N (−1.8, 0.5), θτ,h ∼ N (µτ,h, 0.5)

θκ,1 ∼ N (1.4, 0.5), θκ,h ∼ N (µκ,h, 0.5).

with µτ,h and µκ,h equal to the true values of θτ.h and θκ,h, respectively. The
prior distributions of θτ,1 and θκ,1 refer to both the stationary model and the
non-stationary model.

We consider four different toy example designs. In all examples the domain is the
same as described in Section 5.1, i.e., D : {(s1, s2) : |s1| ≤ 1, |s2| ≤ 1}.

5.2.1 Design 1

In Design 1, we consider the same set up as described in Section 5.1, with the same
mountain, the same locations of observations sobs,1 and sobs,2 and the same loca-
tion of interpolation, spred. We simulate precipitation in all three locations, and
fit a stationary and a non-stationary model to the observations Yobs,1 and Yobs,2.
The fitted models are used to interpolate precipitation at location spred.

We consider two versions of the experimental design: Design 1a and Design 1b.
In Design 1a, we consider the hyperparameters θ∗ as known when fitting the
models. In this case, we only use 1 replicate.
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In Design 1b, we estimate the hyperparameters when fitting the models. In this
case, we use 30 replicates, in order to have enough observations to estimate the
parameter values.

To evaluate the performance of the two models, we consider the coverage prob-
ability of a 95% prediction interval. Furthermore, we consider the estimated
posterior mean of the interpolated precipitation Ypred, based on the two models,
and compare it with the true value of Ypred. We do S = 200 simulations, and
we consider the mean of the posterior mean from the simulations. As the mean
is expected to be zero for both models and for the true value, we only consider
the simulations where Yobs,1 < Yobs,2. Ypred is more correlated to Yobs,1 than Yobs,2,
thus we expect the mean from the non-stationary model to be close to the true
mean, whereas the stationary model, which weights Yobs,1 and Yobs,2 equally, is
expected to have a too high posterior mean.

5.2.2 Design 2

In Design 2, we consider the same mountain as described in Section 5.1. In this
example, we estimate the areal precipitation at the mountain. To do so, we
interpolate precipitation at some locations on the top of the mountain. Figure
5.2 displays the mountain, including the locations of observations (black labelled
dots) and the locations of interpolation (black dots).

We follow the procedure described in Section 4.5 when estimating the areal pre-
cipitation. We evaluate the models by considering the coverage probability of a
95% prediction interval and the mean CRPS, CRPS, of S = 100 simulations. The
hyperparameters θ∗ are estimated during the model fitting, and we use J = 5
replicates.

5.2.3 Design 3

In Design 3, we consider a different mountain from the previous designs. The
mountain is now cone shaped, such that the elevation h is given by

h(r(s1, s2)) =

{
0 if r(s1, s2) > 0.5

1− r(s1,s2)
0.5

else

for radius r(s1, s2), at location s = (s1, s2), where |s1| ≤ 1 and s2 ≤ 1, as
before.
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Figure 5.2: Illustration of the domain used in Design 2. The black, labelled dots
represent locations of observations and the remaining black dots represents locations of
interpolation.

Illustrations of the mountain can be seen in Figure 5.3.

We consider two versions of the design, Design 3a and Design 3b. In both designs,
the hyperparameters θ∗ are estimated during the model fitting, and we use J = 5
replicates.

In Design 3a, we assume there is three locations where we observe precipitation;
two are located at the foot of the mountain, with elevation h = 0, such that the
mountain is between the two locations. The third is located a bit higher, with
elevation h = 0.25. Further, we assume there is a location where we interpolate
precipitation, with coordinates spred = (0, 0), i.e. at the top of the mountain.
Figure 5.3a displays Design 3a.

In Design 3b, we consider several locations of observations, all located below
elevation h = 0.25. Further, we consider the same location where we interpolate
precipitation as in Design 3a, i.e., at the top of the mountain. Figure 5.3b displays
Design 3b.

5.2.4 Design 4

In Design 4, we consider the same cone-shaped mountain as in Design 3, with the
same locations of observations as in Design 3b. In this design, we estimate the
areal precipitation at the mountain where the elevation h > 0.25. We estimate
the areal precipitation following the procedure described in Section 4.5. In both
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(a) Design 3a. (b) Design 3b.

(c) The mountain viewed from the side.

Figure 5.3: Illustrations of a cone shaped mountain used in Design 3.
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designs, the hyperparameters θ∗ are estimated during the model fitting, and we
use J = 5 replicates.

We consider two versions of Design 4: Design 4a and Design 4b. In design 4a, the
observations are the same as in Design 3b. In Design 4b, there is an additional
observation with coordinates sobs = (0, 0), i.e., at the top of the mountain, and
we investigate how this affects the estimated areal precipitation from the two
models.

5.3 Toy example results

5.3.1 Design 1

Figure 5.4 displays plots of the coverage probability of a 95% prediction interval
and the estimated posterior mean from Design 1a (crosses) and 1b (circles). The
left column displays the coverage probability, with the red marks representing the
coverage probability of the non-stationary model and the blue marks representing
the coverage probability of the stationary model. The black dashed line shows
where 0.95 is, which is where the coverage of a good model should be.

The plots in the right column display the mean of the interpolated posterior
means from the two models. Red marks represent the non-stationary model and
blue marks represent the stationary model. The mean of the true, simulated
precipitation, is included as green marks. The mean is based on simulations
where Yobs,1 < Yobs,2. The mean is plotted against the corresponding value of θτ,h,
and the different plots are based on different values of θκ,h. Notice the different
scales of the vertical axis for the plots.

For Design 1a, where the hyperparameters θ∗ were assumed known, the plots
demonstrate clearly that the non-stationary model has a good coverage all the
time, and the coverage is close to the 0.95-line in all cases. The stationary model,
has a poor coverage when the values of θτ,h and θκ,h decrease, i.e., when the
range gets smaller and the marginal variance gets higher on the top of the moun-
tain.

The plots of the posterior mean illustrate what we expected; the posterior mean of
the non-stationary model is quite close to the true value, whereas the stationary
model differs a lot from the true value when θτ,h and θτ,h decrease.

For Design 1b, where the hyperparameters θ∗ where estimated during the model
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fitting, the coverage probability of the non-stationary model is close to the 0.95-
line for all values of θτ,h and θκ,h, as in Design 1a. This indicates that the model
has recovered the values of the hyperparameter θ∗. The coverage probability
of the stationary model, is notably better for Design 1b than it was for Design
1a, although it is still not as good as the non-stationary model. This is as ex-
pected, because now the values of θτ,1 and θτ,1 are estimated to fit somewhere
in between the values of the true parameters at sea level and at the top of the
mountain. However, when the underlying process becomes very non-stationary,
the predictive performance of the stationary model is not good enough.

The posterior mean of the non-stationary model is still very close to the true
value, as expected. The posterior mean of the stationary model is closer to the
true value than in Design 1b. However, it is still not as good as the non-stationary
model when the process becomes very non-stationary.

5.3.2 Design 2

Figure 5.5 displays the coverage probability and mean CRPS, CRPS, for the
areal precipitation estimated by the two models. The coverage probability and
the mean are over S = 100 simulations. In all plots, the red circles represent the
non-stationary model and the blue circles represent the stationary model. In the
plots of the coverage probability, the black dashed line represents 0.95, i.e., where
the coverage probability should ideally be. Notice the different vertical axis in
the plots of the CRPS.

The coverage probability of the non-stationary model is good in all cases; it lies
very close to the 0.95-line. The coverage probability of the stationary model is
not as good. The coverage is too low when the field is very non-stationary, and
it is to high when the field gets closer to stationary.

The CRPS of the non-stationary model is better than the CRPS of the stationary
model when the process is very non-stationary. When the process gets closer to
stationary, the CRPS of the two models is quite similar. For both the stationary
and the non-stationary model, the CRPS increases when the non-stationarity
increases.

5.3.3 Design 3

Figure 5.6 and Figure 5.7 display the coverage probability and mean CRPS,
CRPS, for Design 3a and 3b, respectively. The coverage probability and the
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(a) Coverage probability,
θκ,h = 2.

(b) Posterior mean,
θκ,h = 2.

(c) Coverage probability,
θκ,h = 3.

(d) Posterior mean,
θκ,h = 3.

(e) Coverage probability,
θκ,h = 4.

(f) Posterior mean,
θκ,h = 4.

Figure 5.4: Design 1a and 1b. Comparison of the predictive performances of the
non-stationary (red) and stationary (blue) models in the example. The plots in the left
column display the coverage probability of the interpolated precipitation for different
values of θτ,h and θκ,h. The right columns displays the posterior mean of the interpolated
precipitation, for Yobs,1 < Yobs,2, estimated by the non-stationary and stationary models,
along with the true precipitation, for different values of θτ,h and θκ,h.
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(a) Coverage probability,
θκ,h = 2.

(b) CRPS,
θκ,h = 2.

(c) Coverage probability,
θκ,h = 3.

(d) CRPS,
θκ,h = 3.

(e) Coverage probability,
θκ,h = 4.

(f) CRPS,
θκ,h = 4.

Figure 5.5: Design 2. Comparison of the predictive performances of the non-stationary
(red) and stationary (blue) models from Design 2. The plots in the left column display
the coverage probability of the estimated areal precipitation and the plots in the right
column displays the mean CRPS, CRPS, for different values of θτ,h and θκ,h. The
coverage probability and the mean are over S = 100 simulations.
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mean are over S = 100 simulations. In all plots, the red circles represent the
non-stationary model and the blue circles represent the stationary model. Notice
the different vertical axis in the plots of the CRPS.

The plots of the coverage probability from Design 3a, show that the non-stationary
model has good predictive performance in all cases. The stationary model has a
poor coverage when the true process is very non-stationary.

The CRPS of the two models is quite similar for Design 3a. Only when the process
is extremely non-stationary, the non-stationary model has a better CRPS.

In Design 3b, the difference between the two models is larger. The predictive
performance of the non-stationary model is still good in all cases. The predictive
performance of the stationary model is worse than in Design 3a. We recall that in
Design 3b there are more observations than in Design 3a, and all observations are
located below h = 0.25. The increase in observations leads the stationary model
to be more certain about the predictions, and because it is not able to detect the
effect of elevation on the range and the marginal variance, it estimates it to be
too low, with too small uncertainty.

Figure 5.8 and Figure 5.9 display the estimated range and marginal variance by
the stationary model (blue line) and non-stationary model (red line), along with
the true range and marginal variance (green lines) in Design 3b. The estimates
are based on the posterior mean of the hyperparameters θ∗ from one simulation.
In Figure 5.8 the true values of the hyperparameters θκ,h and θτ,h are θκ,h = 2
and θτ,h = −1,−4,−8. In Figure 5.9 the true values of the hyperparameters θκ,h
and θτ,h are θκ,h = 4 and θτ,h = −1,−4,−8.

The plots illustrate that the stationary model, which must estimate a constant
range and marginal variance, estimates it to be too low when the process becomes
very non-stationary, as expected.

Furthermore, we see that the non-stationary model estimates the range very well.
It also estimates the marginal variance quite well. However, when θκ,h = 2, the
non-stationary model does not fully manage to recover the parameters. The
marginal variance is estimated to be too low, especially at low elevations. For
θκ,h = 4, the non-stationary model estimates the marginal variance better. In
this case the data is not as non-stationary as for θκ,h = 2.
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(a) Coverage probability,
θκ,h = 2.

(b) CRPS,
θκ,h = 2.

(c) Coverage probability,
θκ,h = 3.

(d) CRPS,
θκ,h = 3.

(e) Coverage probability,
θκ,h = 4.

(f) CRPS,
θκ,h = 4.

Figure 5.6: Design 3a. Comparison of the predictive performances of the non-
stationary (red) and stationary (blue) models from Design 3a. The plots in the left
column display the coverage probability and the plots in the right column displays the
mean CRPS, CRPS, for different values of θτ,h and θκ,h. The coverage probability and
the mean are over S = 100 simulations.
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(a) Coverage probability,
θκ,h = 2.

(b) CRPS,
θκ,h = 2.

(c) Coverage probability,
θκ,h = 3.

(d) CRPS,
θκ,h = 3.

(e) Coverage probability,
θκ,h = 4.

(f) CRPS,
θκ,h = 4.

Figure 5.7: Design 3b. Comparison of the predictive performances of the non-
stationary (red) and stationary (blue) models from Design 3b. The plots in the left
column display the coverage probability and the plots in the right column displays the
mean CRPS, CRPS, for different values of θτ,h and θκ,h. The coverage probability and
the mean are over S = 100 simulations.
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(a) Range,
θκ,h = 2.

(b) Marginal variance,
θκ,h = 2, θτ,h = −1.

(c) Marginal variance,
θκ,h = 2, θτ,h = −4.

(d) Marginal variance,
θκ,h = 2, θτ,h = −8.

Figure 5.8: Estimated range and marginal variance, based on the posterior mean
of the hyperparamters, estimated by the non-stationary model (red) and stationary
model (blue). The true values of the hyperparameters θκ,h and θτ,h are θκ,h = 2 and
θτ,h = −1,−4,−8. The estimation is done using Design 3b. The green lines represent
the true range and marginal variance.
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(a) Range,
θκ,h = 4.

(b) Marginal variance,
θκ,h = 4, θτ,h = −1.

(c) Marginal variance,
θκ,h = 4, θτ,h = −4.

(d) Marginal variance,
θκ,h = 4, θτ,h = −8.

Figure 5.9: Estimated range and marginal variance, based on the posterior mean
of the hyperparamters, estimated by the non-stationary model (red) and stationary
model (blue). The true values of the hyperparameters θκ,h and θτ,h are θκ,h = 4 and
θτ,h = −1,−4,−8. The estimation is done using Design 3b. The green lines represent
the true range and marginal variance.
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5.3.4 Design 4

Figure 5.10 and Figure 5.11 display the coverage probability and mean CRPS,
CRPS, from estimation of areal precipitation using Design 4a and 4b, respectively.
The coverage probability and the mean are over S = 100 simulations. In all
plots, the red circles represent the non-stationary model and the blue circles
represent the stationary model. Notice the different vertical axis in the plots of
the CRPS.

We see that in Design 4a, where all observations are located below h = 0.25,
the non-stationary model has a good coverage probability in all cases. The cov-
erage probability of the stationary model is poor. When the process is very
non-stationary, it goes as low as approximately 0.1.

The CRPS of the models are more similar, it is only slightly better for the non-
stationary model. For both model, the CRPS gets worse as the non-stationarity
of the data increases. This indicates that the non-stationary model does not fully
recover the hyperparameters.

There is a large difference in the results from Design 4b, compared to the results
from Design 4a. Recall that in Design 4b there is an observation at the top of
the mountain. The most notable difference is in the coverage probability of the
stationary model. It is much higher with this design, lying around the 0.95-line
for many of the cases. The coverage probability of the non-stationary model is
good in all cases, as before.

The CRPS of both models is much better in Design 4b than in Design 4a (no-
tice the different axis). It is a larger difference between the CRPS of the non-
stationary model and the stationary model in Design 4b, it is notably better for
the non-stationary model. Furthermore, for the non-stationary model, there is
only a small increase in the CRPS as the non-stationarity of the data increases,
indicating the model recovers the parameters.

Figure 5.12 and Figure 5.13 display the estimated range and marginal variance by
the stationary model (blue line) and non-stationary model (red line), along with
the true range and marginal variance (green lines) in Design 4b. The estimates
are based on the posterior mean of the hyperparameters θ∗ from one simulation.
In Figure 5.12 the true values of the hyperparameters θκ,h and θτ,h are θκ,h = 2
and θτ,h = −1,−4,−8. In Figure 5.13 the true values of the hyperparameters θκ,h
and θτ,h are θκ,h = 4 and θτ,h = −1,−4,−8.

The plots illustrate that the non-stationary model estimates the range and marginal
variance very well. The estimates of the marginal variance are notably better
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(a) Coverage probability,
θκ,h = 2.

(b) CRPS,
θκ,h = 2.

(c) Coverage probability,
θκ,h = 3.

(d) CRPS,
θκ,h = 3.

(e) Coverage probability,
θκ,h = 4.

(f) CRPS,
θκ,h = 4.

Figure 5.10: Design 4a. Comparison of the predictive performances of the non-
stationary (red) and stationary (blue) models from Design 4a. The plots in the left
column display the coverage probability and the plots in the right column displays the
mean CRPS, CRPS, for different values of θτ,h and θκ,h. The coverage probability and
the mean are over S = 100 simulations.
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(a) Coverage probability,
θκ,h = 2.

(b) CRPS,
θκ,h = 2.

(c) Coverage probability,
θκ,h = 3.

(d) CRPS,
θκ,h = 3.

(e) Coverage probability,
θκ,h = 4.

(f) CRPS,
θκ,h = 4.

Figure 5.11: Design 4b. Comparison of the predictive performances of the non-
stationary (red) and stationary (blue) models from Design 4b. The plots in the left
column display the coverage probability and the plots in the right column displays the
mean CRPS, CRPS, for different values of θτ,h and θκ,h. The coverage probability and
the mean are over S = 100 simulations.
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than in Design 3b, which had the same observations, except the one at the top of
the mountain. The stationary model estimates the range and the variance quite
similar to the estimates in Design 3b.

5.3.5 Summary

These examples illustrate the effect of increasing the non-stationarity of a pro-
cess. When the explanatory variables of the dependency structure both are close
to zero, both a stationary and non-stationary model have good predictive perfor-
mance. However, as the explanatory variables get more extreme, and the range
and marginal variance differs a lot at different altitudes, a stationary model has a
poor predictive performance, and a non-stationary model is necessary. In partic-
ular, this is the case when the locations of interpolation have a higher elevation
than the observations. In this case, the predictive performance of a stationary
model is reduced when the number of observations increases. Furthermore, the
examples illustrate the effect of including an observation at a high elevation in-
side the catchment area. Both for the stationary model and the non-stationary
model, this leads to a large improvement in their predictive performance.
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(a) Range,
θκ,h = 2.

(b) Marginal variance,
θκ,h = 2, θτ,h = −1.

(c) Marginal variance,
θκ,h = 2, θτ,h = −4.

(d) Marginal variance,
θκ,h = 2, θτ,h = −8.

Figure 5.12: Estimated range and marginal variance, based on the posterior mean
of the hyperparamters, estimated by the non-stationary model (red) and stationary
model (blue). The true values of the hyperparameters θκ,h and θτ,h are θκ,h = 2 and
θτ,h = −1,−4,−8. The estimation is done using Design 4b. The green lines represent
the true range and marginal variance.
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(a) Range,
θκ,h = 4.

(b) Marginal variance,
θκ,h = 4, θτ,h = −1.

(c) Marginal variance,
θκ,h = 4, θτ,h = −4.

(d) Marginal variance,
θκ,h = 4, θτ,h = −8.

Figure 5.13: Estimated range and marginal variance, based on the posterior mean
of the hyperparamters, estimated by the non-stationary model (red) and stationary
model (blue). The true values of the hyperparameters θκ,h and θτ,h are θκ,h = 4 and
θτ,h = −1,−4,−8. The estimation is done using Design 4b. The green lines represent
the true range and marginal variance.
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Chapter 6

Case study

In this chapter, we fit the models (4.2) and (4.3) to the annual observations
introduces in Chapter 2. We perform leave-one-out cross-validation, in order to
evaluate the predictive performance of the models. Furthermore, we consider
three catchment areas, where we estimate the areal precipitation, and compare
the estimates to the observations introduced in Chapter 2.

6.1 Estimation and evaluation

We fit the models (4.2) and (4.3) from Chapter 4 to observations of precipitation
from 35 years at the 60 weather stations. The total number of observations
is N = 984. The prior distributions of the parameters were given in Section
4.3.

In order to evaluate and compare the models’ ability to interpolate to points,
we perform leave-one-out cross-validation, as described in Section 3.6.5. In each
iteration, we leave out one weather station, and fit the models to the observations
of annual precipitation at the remaining weather stations. The fitted models are
used to interpolate precipitation at the left out weather station. As evaluation
schemes of the predictive performance of the models, we compare CRPS and cov-
erage probability of a 95% prediction interval. These schemes were introduced in
Section 3.6. We consider both the mean CRPS at each weather station i, taken
over all years, CRPSi, and the mean CRPS taken over all years and all locations,
CRPS. Correspondingly, we consider the coverage probability at the same loca-
tion over all years and the coverage probability over all years and all locations.
Further, in order to investigate if the CRPS of the models are significantly differ-
ent, we do a paired samples t-test to the differences in the CRPS from the two
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models. The paired samples t-test was introduced in Section 3.6. The differences
are computed as dij = CRPSij,N−S − CRPSij,S, for year j = 1, ..., J and location
i = 1, ..., n.

In order to compare the predictive performance of the models when doing in-
terpolation to area, we estimate the areal precipitation of the three catchment
areas presented in Chapter 2. We follow the procedure introduced in Section
4.5. When we estimate the variance of the areal precipitation, we leave out the
measurement error from observed runoff and evaporation. This is because these
errors are very small compared to the errors of the estimated areal precipitation
(Roksvåg, 2016).

6.2 Analysis of results

In this section, we present the results from the case study. We start out with pre-
senting the estimated posterior distributions of the hyperparameters θ, followed
by the results from the cross-validation and the results from estimation of areal
precipitation.

Table 6.1 presents the posterior mean and a 95% credible interval for the pa-
rameters in the models, based on fitting the models to observations of annual
precipitation at all weather stations.

We see that the posterior mean and the 95% credible interval of the precision τε
of the measurement error is the same for the stationary and the non-stationary
model.

We consider the posterior distributions of the hyperparameters of the annual
spatial variation, which we recall have subscript w. From the table, we see that
the posterior mean of the stationary parameters θτ,1,S and θκ,1,S are quite close
to the non-stationary parameters, θτ,1,N−S and θκ,1,N−S. Also, the 95% credible
intervals are quite similar in the stationary and non-stationary case. Further,
the parameters of the explanatory variable of the dependency structure in the
non-stationary case, θτ,h,N−S and θκ,h,N−S, have posterior means 0.51 and 0.71,
respectively. We notice that their credible intervals are wide, both on the positive
and negative side. All these results indicate that the annual spatial variation field
is close to stationary.

In Figure 6.1a and 6.1b, the estimated marginal variance and range for the spatial
annual variation, based on the posterior mean of the hyperparameters, are plotted
against elevation [km]. The red line represents the non-stationary model and the
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blue line represents the stationary model. We see that the marginal variance
is very close to zero in both the stationary and the non-stationary case. The
range of the non-stationary field decreases as the elevation increases. At sea-
level, it is 15.03 km. The range is the same for the two models at elevation
h = 190 m.a.s.

Further, we consider the posterior distributions of the hyperparameters of the
climatology, which we recall have subscript u. We notice that in this case there
is a larger difference between the posterior means and credible intervals of the
stationary parameters θτ,1,S and θκ,1,S and the non-stationary parameters, θτ,1,N−S
and θκ,1,N−S. Furthermore, the posterior mean of θτ,h,N−S is -1.36, and most of
the credible interval is below zero. The posterior mean of θκ,h,N−S is 0.88, and
most of the credible interval is above zero. These results indicate that there is
some non-stationarity in the climatology, and this field is more non-stationary
than the annual spatial variation.

Figure 6.1c and 6.1d display the estimated marginal variance and range for the
climatology, based on the posterior mean of the hyperparameters, plotted against
elevation [km]. The plots show that for the non-stationary model, the marginal
variance increases as the elevation increases. It is 0.19 at sea-level and it is the
same for the two models at elevation h = 500 m.a.s. The range decreases as the
elevation increases. It is 25.5 km at sea level and it is the same for the two models
at elevation h = 720 m.a.s. For both the marginal variance and the range, there
is a quite large difference between sea-level and elevation h = 1500 m.a.s. This
support the indication of non-stationarity in the climatology.

Table 6.1: Posterior mean and a 95% credible interval of the hyperparameters, esti-
mated by fitting the stationary (S) and non-stationary (N-S) model to all observations
of precipitation in Hordaland.

Posterior mean 95% credible interval
Parameter S N-S S N-S

τ 2.72 2.72 (2.48, 2.97) (2.48,2.97)
θτ,1,w 4.19 3.90 (2.20, 6.19) (1.86,6.02)
θτ,h,w 0.51 (-2.61,3.60)
θκ,1,w -1.54 -1.67 (-3.06,0.12) (-3.15,-0.03)
θκ,h,w 0.70 (-2.21,3.61)
θτ,1,u 0.90 1.77 (0.07,1.58) (0.65,2.79)
θτ,h,u -1.36 (-2.81,0.19)
θκ,1,u -1.57 -2.20 (-2.23,-0.76) (-3.26,-1.03)
θκ,h,u 0.88 (-0.59,2.24)
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(a) Marginal variance for annual spatial
variation. (b) Range for annual spatial variation.

(c) Marginal variance for climatology. (d) Range for climatology.

Figure 6.1: Estimated marginal variance and range using a stationary (blue) and non-
stationary (red) model. The upper plots correspond to the annual spatial variation field
and the lower plots correspond to the climatology field.

6.2.1 Results from interpolation to points

Table 6.2 displays a comparison of the predictive performance of the station-
ary model (S) and non-stationary model (N-S), based on leave-one-out cross-
validaton. The table displays the coverage probability of a 95% prediction inter-
val, mean CPRS (CRPS), and mean RMSE (RMSE). The coverage probability
and the means are over all years and all locations.

We see that the coverage probability is quite good for both models, but it is
slightly better for the non-stationary models than for the stationary model. For
the non-stationary model it is 0.95, which is what it ideally should be. The
CRPS and the RMSE are almost the same for both models, indicating that the
predictive performances of the models are very similar.

A paired samples t-test is performed on the difference in the CRPS of the models.
The t-value is t = −5.64. Because we have as much as N = 984 observations, the
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t-statistic approximately follows a normal distribution. Thus, we compare it with
the critical values for the normal distribution at a 95% confidence level, which are
±z0.95 = ±1.96. Hence, we have that t = −5.64 < −z0.95, and we reject the null
hypothesis H0, that the difference between the CRPS of the two models is zero.
Further, the t-value is negative, implying the mean of the differences is negative.
This indicates that the CRPS of the non-stationary model is smaller, i.e. better,
than the CRPS of the stationary model.

Table 6.2: A comparison of the predictive performance of the stationary (S) and non-
stationary (N-S) model. The results are based on leave-one-out cross-validation. The
comparison is of the coverage probability of a 95% prediction interval, mean CPRS
(CRPS), and mean RMSE (RMSE). The coverage probability and the means are over
all years and all locations.

Coverage probability CRPS RMSE
S 0.93 0.475 0.712

N-S 0.95 0.468 0.705

Figure 6.2 displays the coverage probability of a 95% prediction interval and
difference in mean CRPS between the non-stationary and stationary model,
CRPSi,diff , plotted against the elevation of the weather stations. The cover-
age probability and the mean of the CRPS is over all years at each location. The
differences are calculated as CRPSi,diff = CRPSi,NS − CRPSi,S.

Figure 6.2a shows that the coverage probability is quite similar for the two model,
but there are some locations where the non-stationary model is better. Figure
6.2b shows that the CRPSi is quite similar for the two models at low eleva-
tions, but as the elevation gets high (higher than 400 m), the CRPSi of the
non-stationary model is better.

The results from the cross-validation indicate that the predictive performances
of the models are quite similar. However, the non-stationary is slightly better as
the elevation increases.

6.2.2 Results from interpolation to area

Figure 6.3, 6.4 and 6.5 display the posterior predictions of annual areal precip-
itation at the three catchment areas Fjellanger, Svartavatn and Slondalsvatn,
respectively. The catchments were presented in Chapter 2. The blue lines repre-
sent the stationary model and the red lines represent the non-stationary model.
The dashed lines correspond to 95% prediction intervals for the stationary model
(blue) and the non-stationary model (red). The plots also display the observed
annual areal precipitation (green line). The areal precipitation is given in 108m3.
Notice that the vertical axis is differently scaled in the three cases.
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(a) Coverage probability of a 95%
prediction interval, plotted against
elevation [m].

(b) Difference in CRPSi be-
tween non-stationary and station-
ary model, plotted against eleva-
tion [m].

Figure 6.2: Coverage probability of a 95% prediction interval and difference in mean
CRPS, CRPSi,diff , between the non-stationary and stationary model, plotted against
elevation [m]. The coverage probability is over all years at each location. The mean
of the CRPS is taken over all years at each location, and the difference is calculated
as CRPSi,diff = CRPSi,NS − CRPSi,S . The results are based on leave-one-out cross-
validation.

The plots show that at all catchment areas, the estimated mean annual areal
precipitation is very similar for the two models. The prediction intervals of the
models differs; they are wider for the non-stationary model. At Fjellanger and
Svartavatn the prediction intervals of neither of the models cover the observed
areal precipitation very well. At Slondalsvatn the prediction intervals of the
two models are much wider, and they cover all the the observed areal precipita-
tion.

Table 6.3 displays the coverage probability of a 95% prediction interval, mean
CRPS, CRPS, and mean RMSE, RMSE, of the areal precipitation at the three
catchment areas, predicted by the two models. The coverage probability and the
mean of the CRPS and RMSE are over all years. The table shows that there
is very little difference in the predictive performances of the two models. At
Fjellanger, the results are identical. At Svartavatn the coverage probability is
the same for the two models, whereas the CRPS and RMSE are slightly better
for the non-stationary model. At Slondalsvatn, the coverage probability is the
same for the two models, the CRPS is slightly better for the stationary model
and the RMSE is slightly better for the non-stationary model. Furthermore, vi
notice that the coverage probabilities at Fjellanger and Svartavatn are low. In
particular, at Svartavatn it is only 0.47. At Slondalsvatn on the other hand, the
coverage is 1, which is higher than desired. Considering the coverage probability
and the plot in Figure 6.5, it seems the prediction intervals at Slondalsvatn are
too wide.
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Figure 6.3: Estimated areal precipitation at Fjellanger using sta-
tionary model (blue line) and non-stationary model (red line), along
with the observed areal precipitation (green line). The dashed lines
represent 95% prediction interval for the stationary (blue) and non-
stationary (red) model. The areal precipitation is given in 108m3.

One reason for the noticeable large confidence intervals at Slondalsvatn, might
be that this catchment area is located at higher elevation than the two others
(see Table 2.1 in Section 2). This implies large variance for the precipitation
here.

Table 6.3: Comparison of the predictive performance of the stationary (S) and non-
stationary (N-S) model at the catchment areas. The comparison is of the coverage prob-
ability of a 95% prediction interval, mean CPRS (CRPS) and mean RMSE (RMSE).
The predictions are of areal precipitation, and are compared with observed areal pre-
cipitation.

Coverage probability CRPS RMSE
S N-S S N-S S N-S

Fjellanger 0.68 0.68 0.04 0.04 0.06 0.06
Svartavatn 0.47 0.47 0.35 0.34 0.53 0.51
Slondalsvatn 1.00 1.00 0.08 0.10 0.14 0.12
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Figure 6.4: Estimated areal precipitation at Svartavatn using sta-
tionary model (blue line) and non-stationary model (red line), along
with the observed areal precipitation (green line). The dashed lines
represent 95% prediction interval for the stationary (blue) and non-
stationary (red) model. The areal precipitation is given in 108m3.

6.2.3 Summary

To summarise, the case study has shown indications of non-stationarity in the
process. The estimated range and marginal variance of the climatology from the
non-stationary model, varies with elevation. When doing interpolations to points,
the non-stationary model seems to have a slightly better predictive performance
than the stationary model as the elevation gets high. In particular, it is better
at quantifying the uncertainty of the interpolations. When doing interpolations
to area, neither of the models are very good.
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Figure 6.5: Estimated areal precipitation at Slondalsvatn using sta-
tionary model (blue line) and non-stationary model (red line), along
with the observed areal precipitation (green line). The dashed lines
represent 95% prediction interval for the stationary (blue) and non-
stationary (red) model. The areal precipitation is given in 108m3.
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Chapter 7

Simulation study

In order to get a better understanding of the precipitation models described in
Chapter 4, we perform a simulation study. By doing so, we want to further
investigate the effect of non-stationarity, and its impact on the predictive perfor-
mances of the models. An advantage of simulating data, is that the models can
be evaluated for more locations and elevations. In particular, the models can be
evaluated at higher elevations than the elevation of the weather stations.

7.1 Experimental set up

We consider the 60 weather stations introduced in Chapter 2 as locations where
we observe precipitation. Further, we make a grid, covering most of Hordaland,
and the grid nodes are locations where precipitation is interpolated. A map of
Hordaland, including the weather stations and the grid, can be seen in Figure
7.1. In the figure, the grid nodes are represented by black dots and the weather
stations are represented by red dots.

We simulate precipitation from the non-stationary model given in Equation (4.3)
at all locations, both the weather stations and the grid nodes. Denote the total
number of locations, i.e., both weather stations and grid nodes, n. Further,
denote the number of replicates J . The simulation is performed using Algorithm
1, and an example of the R-code used in the simulation can be seen in Appendix
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Figure 7.1: A map of Hordaland, including the 60 weather stations, represented by
red dots, and a grid used in the simulation study.

B.2.

Initialise αj, βh, θ∗N−S;
Make projection matrix A;
Make precision matrix for climatology Qu;
Make precision matrix for annual spatial variability Qw;
Sample weights for climatology u ∼ Nn(0,Q−1u ) (1 sample, repeated J
times);
Sample weights for annual spatial variability w ∼ Nn(0,Q−1w ) (J samples);
Calculate true precipitation: η = α+A(u+w) + βhh;
Sample measurement error: ε ∼ Nn·J(0, τ−1ε 0.1η);
Calculate observed precipitation: y = η + ε;

Algorithm 1: Algorithm used to simulate precipitation

We use J = 5 replicates, i.e., we assume observations from 5 years. We fit the
stationary and non-stationary models given in Equation (4.2) and (4.3) to the
simulated precipitation at the weather stations, and use the models to interpolate
precipitation at the grid nodes, based on the weather stations. This is repeated
S = 100 times.

Furthermore, we consider the three catchment areas presented in Chapter 2. We
simulate annual precipitation from the non-stationary model (4.3) at all weather
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stations and at grids inside the catchment areas, using Algorithm 1. We fit the
non-stationary model (4.3) and the stationary model (4.2) to the annual precipi-
tation at the weather stations, and use the models to interpolate precipitation at
the grids inside the catchment areas, based on the weather stations. We then use
the procedure introduced in Section 4.5 to estimate the annual areal precipitation
in the catchment areas.

We use four different study designs, where the differences between the designs are
the parameter values or the prior distributions of the parameters. In study design
1-3 we use the following values for the intercept, αj, the elevation coefficient,
βh, and the constant parts of the dependency structure parameters, θτ,1 and
θκ,1:

αj = 2, βh = 1, θτ,1 = 2.42, θκ,1 = −2.36.

Here, θτ,1 and θκ,1 are the parameters of both the climatology, c(s), and the annual
spatial variability, z(s), i.e., we assume the same values of the parameters for the
two fields. These are the same values as discussed in Section 4.3 for the prior
means. As prior distribution of these parameters, we also use those suggested in
Section 4.3.

In study design 4, we use the values of the posterior means estimated by the
non-stationary model in the case study as parameter values and means of the
prior distributions for the hyperparameters θτ,1 and θκ,1, i.e.,

αj = 2, βh = 1,

θτ,1,w = 3.90, θκ,1,w = −1.67 θτ,1,u = 1.77 θκ,1,u = −2.20.

The variance of the prior distributions is the same as before.

For the coefficients of the explanatory variables in the dependency structure,
θτ,h and θκ,h, the parameter specifications of the four designs are given in Table
7.1. For study design 1 we simulate non-stationary data, and the prior mean of
θτ,h and θκ,h are the same as the true parameter values. The range decreases
as the elevation increases and the marginal variance increases as the elevation
increases. These are the same tendencies as we saw for the estimated posterior
range and marginal variance for the climatology in the case study in Chapter 6.
The parameter values we use in study design 1 makes the field very non-stationary.
As an example, the range is 30 km and the marginal variance is 0.07 at sea level,
whereas at elevation h = 1000 m, they are 6.7 km and 10.47, respectively. The
reason for these excessive values, is to investigate the behaviour of the models
when there is a known, large non-stationarity in the process, and to compare it
to cases where the non-stationarity is less extreme. In study design 2, the true
values of the parameters θτ,h and θκ,h are the same as in study design 1, but now
the prior means are set to zero. By this design, we investigate the prior sensitivity
of the non-stationary model, and its ability to recover the parameter values which
the data set is based on. In study design 3, the true values of θτ,h and θκ,h are set
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to zero, i.e., we simulate stationary data. In study design 4 all the true values of
the parameters and prior means of the parameters are the same as the posterior
means from the case study. These values make the process non-stationary, but
not as much as for study design 1 and 2.

Table 7.1: Specification of parameter values and prior distributions of the parameters
in the four different study designs.

Study design 1 Study design 2 Study design 3 Study design 4
θτ,h,w -4 -4 0 0.51

π(θτ,h,w) N (−4, 1.76) N (0, 1.76) N (0, 1.76) N (0.51, 1.76)
θκ,h,w 1.5 1.5 0 0.70

π(θκ,h,w) N (1.5, 1.76) N (0, 1.76) N (0, 1.76) N (0.70, 1.76)
θτ,h,u -4 -4 0 -1.36

π(θτ,h,u) N (−4, 1.76) N (0, 1.76) N (0, 1.76) N (−1.36, 1.76)
θκ,h,u 1.5 1.5 0 0.88

π(θκ,h,u) N (1.5, 1.76) N (0, 1.76) N (0, 1.76) N (0.88, 1.76)

When evaluating and comparing the predictive performance of the models, we
use the mean RMSE (RMSE), mean CRPS (CRPS), the standard deviation of
the CRPS (SD(CRPS)) and the coverage probability of a 95% prediction interval
for precipitation over all S = 100 simulations. These evaluation schemes were
introduced in Section 3.6. For the (RMSE), (CRPS) and CRPS (SD(CRPS)) we
use the mean of all S = 100 simulations.

7.2 Analysis of results

7.2.1 Interpolation to points

In this section, we compare the predictive performance of the two models. A
summary of the results using the four study designs, is given in Table 7.2. The
table displays the coverage probability of a 95% prediction interval, over all S =
100 simulations, all grid nodes and all years, the mean CRPS, CRPS, the standard
deviation of the CRPS, SD(CRPS), and the mean RMSE, RMSE. The means
are taken over all simulation, all grid nodes and all years.

We see that for study design 1 and 2, the results are very similar. In both cases,
the non-stationary model has a better coverage probability, a better CRPS and
a better RMSE, than the stationary model. Also, the standard deviation of the
CRPS is lower for the non-stationary model than the stationary model. Thus, in
these cases the non-stationary model has a better predictive performance than
the stationary model. The coverage probability of the non-stationary model is
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0.95 in both designs, which is just what it should be. For the stationary model,
the coverage probability is 0.86, which is too low.

We recall that in study design 1 the prior means of θτ,h and θκ,h were set equal to
the true parameter values, whereas in study design 2 the prior means are set equal
to zero. Considering the similar results from the two designs, it seems that the
choice of prior means does not have a large impact on the predictive performance
of the models.

In study design 3 and 4, we see that the stationary and non-stationary model
have the same predictive performance. In all cases, the coverage probability is
about 0.95, which is as desired. In study design 3, we fit the models to stationary
data. The equally good predictive performance in study design 3, indicates that
the non-stationary model detects that the data is stationary.

In study design 4, the prior means of all parameters were set equal to the pos-
terior means from the case study. By the equal predictive performance of the
models using this design, it seems that the parameters θτ,h and θκ,h are so close
to zero, that the process is almost stationary. Thus, the estimates of the constant
dependency parameters by the stationary model, seem to make a good enough
approximation.

Table 7.2: A comparison of the predictive performance of the stationary (S) and
non-stationary (N-S) model. The comparison is of the coverage probability of a 95%
prediction interval, mean CPRS (CRPS), standard deviation of the CRPS (SD(CRPS))
and mean RMSE (RMSE). The results are based on S = 100 simulations.

Coverage probability CRPS SD(CRPS) RMSE
S N-S S N-S S N-S S N-S

Study design 1 0.86 0.95 1.36 1.13 4.15 2.78 6.70 6.52
Study design 2 0.86 0.95 1.36 1.17 4.16 2.86 6.73 6.67
Study design 3 0.94 0.94 0.22 0.22 0.03 0.03 0.87 0.87
Study design 4 0.94 0.95 0.30 0.30 0.06 0.06 1.24 1.24

In Table 7.3, the same comparison of the predictive performance of the two models
as in Table 7.2 is displayed, but in this case, the evaluation is only based on
locations having a higher elevation than 500 m.

For study design 1 and 2, we have the same tendencies as in Table 7.2, with the
results being the same for the two designs, and with the non-stationary model
having a better predictive performance than the stationary model. The coverage
of the non-stationary model is still 0.95, whereas for the stationary model it has
decreased and is about 0.72, which is low. This shows that the stationary model
performs poorer as the elevation increases, which is as expected.
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For study design 3, the results are very similar as those in Table 7.2. This is
as expected, because the increase in elevation does not have any impact on the
dependency structure in this design.

For study design 4, we notice that the coverage probability has decreased to 0.91
for the stationary model. In Table 7.2 there was no notable difference between
the two models for study design 4, whereas now the non-stationary model has
a better coverage probability. This indicates that even though the values of θτ,h
and θκ,h are quite close to zero, the non-stationarity of the data has some impact
as the elevation increases.

Table 7.3: A comparison of the predictive performance of the stationary (S) and non-
stationary (N-S) model at weather stations having an altitude higher than 500 m. The
comparison is of the coverage probability of a 95% prediction interval, mean CPRS
(CRPS), standard deviation of the CRPS (SD(CRPS)) and mean RMSE (RMSE). The
results are based on S = 100 simulations.

Coverage probability CRPS SD(CRPS) RMSE
S N-S S N-S S N-S S N-S

Study design 1 0.71 0.95 2.29 2.03 6.91 4.17 9.54 9.31
Study design 2 0.72 0.95 2.29 2.10 6.96 4.20 9.53 9.58
Study design 3 0.94 0.94 0.24 0.24 0.03 0.03 0.96 0.97
Study design 4 0.91 0.95 0.37 0.37 0.09 0.08 1.49 1.49

Figure 7.2 and 7.3 display plots of the coverage probability (left column) and
CRPSi (right column) against elevation, for the two models, using the four study
designs. The coverage probability and the mean of the CRPS is over all S = 100
simulations and all years at each location i. In all plots, blue circles corre-
spond to the stationary model and red circles correspond to the non-stationary
model.

For study design 1 and 2, the plotted coverage probability shows that the non-
stationary model has a good predictive performance at all elevations. The sta-
tionary model, has too high coverage probability, at low elevations, indicating
too large variance. As the elevation increases, the coverage probability decreases,
and becomes very low. For study design 3, the coverage probability lies around
the 0.95-line for both models and all elevations. For study design 4, the coverage
probability of the non-stationary model lies around the 0.95-line, as before. For
the stationary model, it is a bit higher for low elevations, and lower for higher
elevation. Thus, we see again that the values of θτ,h and θκ,h has an impact on
the coverage probability as the elevation gets high enough.

The CRPSi increases as the elevation increases for both models and all study
designs. This is as expected, because the simulated measurement error increases
as elevation increases. Furthermore, the grid nodes at higher elevations have in
general a larger distance to the closest weather stations than those with lower
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elevations, which also might cause the higher CRPSi at higher elevations. We see
that for study design 1 and 2 the CRPSi is better for the non-stationary model
than the stationary model, and the difference between the two models increases
as elevation increases. For study design 3 and 4, the CRPSi is about the same
for both models.

Figure 7.5 and 7.4 present maps of Hordaland where the grid nodes are plotted
with a colour scale representing the coverage probability of a 95% prediction
interval at the given location. The coverage probability is over all S = 100
simulations and all years. The left column displays the coverage probability of
the stationary model and the right column displays the coverage probability of
the non-stationary model. The same colour scale is used in all plots.

The maps from study design 1 and 2 show that the coverage probability of the
stationary model decreases when moving away from the cost, towards the more
mountainous areas. The non-stationary model has about the same coverage prob-
ability in all the domain. For study design 3, both models have coverage proba-
bility close to 0.95 all over the domain. For study design 4, the stationary model
has high coverage probability at the flat areas at the cost, but it decreases a bit
as we move towards the more mountainous areas. The coverage probability of
the non-stationary model is close to 0.95 all over the domain, as before.

7.2.2 Interpolation to area

Table 7.4 displays the coverage probability of a 95% prediction interval and mean
CRPS, CRPS, for the posterior prediction of areal precipitation at the three
catchment areas using the stationary and non-stationary model. The coverage
probability and the mean are over S = 100 simulations. With this number of sim-
ulation, a 95% confidence interval of the coverage probability is [0.91,0.99].

For study design 1 and 2, where the process is very non-stationary, the coverage
probability and the CRPS from the non-stationary model is better than from
the stationary model. In particular, we notice the catchment area Slondalsvatn.
Here, the coverage probability is as low as 0.43 and 0.40 for study design 1 and 2,
respectively. For the non-stationary model, it is 0.97 and 0.98, respectively, which
both are inside the 95% confidence interval of the coverage probability.

We notice that the coverage probability is better in study design 1 than in study
design 2 for all catchment areas, and for both the stationary and non-stationary
model. We recall that in study design 1, the prior means of the coefficients of
the explanatory variable in the dependency structure, θτ,h and θκ,h, are the same
as the true values, whereas in study design 2 they are set to zero. This indicates
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(a) Coverage probability (b) CRPSi

(c) Coverage probability (d) CRPSi

Figure 7.2: A comparison of the predictive performances of the non-stationary (red)
and stationary (blue) models for study design 1 and 2. In the left column the coverage
probability of a 95% prediction interval for the models is plotted against the elevation.
In the right column the mean CRPS, CRPSi, is plotted against the elevation. The
coverage probability and the mean of the CRPS is over all S = 100 simulations and all
years at each location i.
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(a) Coverage probability (b) CRPSi

(c) Coverage probability (d) CRPSi

Figure 7.3: A comparison of the predictive performances of the non-stationary (red)
and stationary (blue) models for study design 1 and 2. In the left column the coverage
probability of a 95% prediction interval for the models is plotted against the elevation.
In the right column the mean CRPS, CRPSi, is plotted against the elevation. The
coverage probability and the mean of the CRPS is over all S = 100 simulations and all
years at each location i.
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(a) Stationary model (b) Non-stationary model

(c) Stationary model (d) Non-stationary model

Figure 7.4: Maps of Hordaland, where the grid nodes are plotted with a colour scale,
representing their coverage probability of a 95% prediction interval over S = 100 simu-
lations. The left column displays the coverage probability of the stationary model, and
the right column displays the coverage of the right column. The same colour scales are
used for the non-stationary and stationary models.
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(a) Stationary model (b) Non-stationary model

(c) Stationary model (d) Non-stationary model

Figure 7.5: Maps of Hordaland, where the grid nodes are plotted with a colour scale,
representing their coverage probability of a 95% prediction interval over S = 100 simu-
lations. The left column displays the coverage probability of the stationary model, and
the right column displays the coverage of the right column. The same colour scales are
used for the non-stationary and stationary models. The plots are based on S = 100
simulations.
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that when estimating areal precipitation, the choice of prior distributions for the
hyperparameters is important.

For study design 3, where the simulated data is stationary, the results from the
two models are quite similar, as expected.

For study design 4, where the values of the hyperparameters are the same as the
estimated posterior mean in the case study, the non-stationary model is slightly
better than the stationary model at Fjellanger and Svartavatn. At Slondalsvatn,
the non-stationary model is notably better. Here, the coverage probability of the
stationary model is 0.86, which is low, whereas for the non-stationary model, it
is 0.97, which is inside the 95% confidence interval.

These results coincide with what we saw in the case study; the predictive perfor-
mance of the stationary model is not good enough as the elevation increases. At
Slondalsvatn, which is located at higher elevation than the other catchment ar-
eas, the stationary model has a poor predictive performance. A wider prediction
interval is necessary to cover the uncertainty of the data at this elevation. For
the non-stationary model, the prediction interval is wider.

Table 7.4: Comparison of the predictive performance of the stationary (S) and non-
stationary (N-S) model at the catchment areas. The comparison is of the coverage
probability of a 95% prediction interval and mean CPRS (CRPS) over S = 100 simula-
tions. The predictions are of areal precipitation.

Catchment area Coverage probability CRPS
S N-S S N-S

Study design 1
Fjellanger 0.83 0.96 0.66 0.52
Svartavatn 0.83 0.95 0.54 0.45
Slondalsvatn 0.43 0.97 3.39 2.95

Study design 2
Fjellanger 0.77 0.89 0.69 0.57
Svartavatn 0.77 0.88 0.65 0.50
Slondalsvatn 0.40 0.98 3.34 3.19

Study design 3
Fjellanger 0.91 0.92 0.11 0.11
Svartavatn 0.94 0.94 0.10 0.10
Slondalsvatn 0.92 0.95 0.16 0.17

Study design 4
Fjellanger 0.89 0.91 0.17 0.18
Svartavatn 0.91 0.93 0.12 0.12
Slondalsvatn 0.86 0.97 0.30 0.32

7.2.3 Summary

To summarise, this simulation study has illustrated that when the underlying
process is sufficiently non-stationary, i.e., when the varying part of the depen-
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dency structure, θτ,hh and θκ,hh, differ enough from zero, a non-stationary model
is necessary to make good interpolations. In particular, this is necessary when
the elevation increases. When the data is stationary, the predictive performances
of a stationary and non-stationary model can be equally good, when the prior
means of θκ,h and θτ,h are set to zero.

83



CHAPTER 7. SIMULATION STUDY

84



Chapter 8

Discussion and conclusion

In this thesis, we have investigated the annual precipitation process in the county
Hordaland, Norway. We have fitted a stationary and a non-stationary latent
Gaussian model to observations of annual precipitation using the SPDE approach
to spatial modelling. We used the methodology INLA to do statistical inference
and to make interpolations.

One of the purposes of the thesis was to learn about the precipitation process in
areas characterised by orographic precipitation. Furthermore, we aimed to make
good statistical models for interpolation of precipitation, and the models should
in particular be able to estimate the uncertainty of the interpolations. The re-
sults from the studies have shown that such a model should be non-stationary. By
fitting a model with dependency structure varying with elevation to annual obser-
vations of precipitation, we have seen that the explanatory variables of the depen-
dency structure are significantly different from zero. Further, a non-stationary
model has better coverage and better CRPS than a stationary model when in-
terpolating to points. This is particularly the case when the elevation increases,
indicating that the process becomes more non-stationary at locations with higher
elevation. When doing predictions of areal precipitation for three catchments, the
predictive performance of the two models were quite similar. At two of the con-
sidered catchment areas, both models had a poor coverage probability of a 95%
confidence interval. At a third catchment area, both models made a very wide
prediction interval, especially the non-stationary model. Thus, we have seen that
even though a non-stationary model, with dependency structure varying with
elevation, is slightly better than a stationary model at doing interpolations and
quantifying the uncertainty, it still has some large errors. The errors are most
noticeable when doing predictions of areal precipitation.

Another purpose of this thesis has been to obtain better knowledge about station-
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ary and non-stationary modelling of spatial processes. In particular, we aimed
to explore how large degree of non-stationarity there has to be in a process be-
fore it is detectable and relevant for the predictive performance. This was done
through simple toy examples and through a simulation study. Both the toy ex-
amples and the simulation study showed that when the non-stationarity of the
process is quite small, the stationary model make constant approximations of the
dependency parameters which make quite good interpolations and uncertainty es-
timations. However, when the non-stationarity of the process gets more extreme,
a stationary model does not have a sufficiently good predictive performance.

We also explored how the models perform when there are many observations at
low elevations, whereas the locations of interpolations are higher located. The
results showed that the predictive performance of the non-stationary model was
good in all cases, whereas the stationary model performed poorly. When all
observations where located at low elevations, the coverage probability of a 95%
prediction interval and the CRPS of the stationary model decreased as the number
of observations increased.

Further, we investigated the predictive performance of the models when doing
predictions of areal precipitation at catchments located at higher elevation than
the observations. We explored how the inclusion of one observation inside the
catchment affected the predictive performances of the models. The results showed
that the predictive performance of both models became noticeably better when
an observation was included inside the catchment areas.

The results from the toy examples and the simulation study indicate that one of
the reasons for poor performance of the non-stationary model when doing predic-
tion of areal precipitation at high elevations, might be that almost all the weather
stations are located at low elevations. Most of the weather stations are located
much lower than the catchment areas. Thus, the non-stationary model might not
be able to detect the degree of non-stationarity at higher elevations.
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Appendix A

The multivariate normal
distribution

Throughout this thesis, we have used the multivariate normal distribution when
describing the processes and building our models. Some properties of the normal
distribution was introduced in Chapter 3. In this appendix we introduce some
additional properties of the normal distribution, which we use in the thesis. We
also give a proof to one of the theorems in Section 3.2.

A.1 Definition and properties

In this section we introduce some of the basic properties of the multivariate
normal distribution. The section is based on Tong (1990), and the definitions
and theorems are taken from this book.

A.1.1 Definition

The multivariate normal distribution is defined by the following:

Let Y be an n-dimensional random vector, with mean µ and covariance matrix
Σ. We say that Y follows a multivariate normal distribution if (i) Σ is positive
definite and (ii) the density function of Y has the form

f(y;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
.
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A.1.2 Marginal distribution

We now consider the marginal distributions of a multivariate normal variable. We
partition the variable Y , and the mean and covariance matrix µ and Σ, as

Y =

[
Y 1

Y 2

]
, µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (A.1)

Here, Y 1 and µ1 is of dimension k1, Y 2 and µ2 is of dimension k2 and Σ11, Σ12,
Σ21 and Σ22 are of dimensions k1× k1, k1× k2, k2× k1 and k2× k2, respectively,
and k1 + k2 = n.

For such a partition, the following theorem can be proved:

If Y ∼ Nn(µ,Σ), then for any fixed k1, k2 < n where k1 + k2 = n, the marginal
distributions of Y 1 and Y 2 are

Y1 ∼ Nk1(µ1,Σ11) and Y2 ∼ Nk2(µ2,Σ22)

A proof is given in Tong (1990).

A.1.3 Conditional distribution

Consider again the partitioning given in (A.1). We now consider the conditional
distribution of Y 1|Y 2 = y2. The conditional distribution is given by the following
theorem:

Let Y ∼ Nn(µ,Σ), with Σ being positive definite, and partition Y as in (A.1),
with k1 +k2 = n. Then the conditional distribution of Y 1 given Y 2 = y2 is

Y 1|Y 2 = y2 ∼ Nk1(µ∗,Σ∗),

with
µ∗ = µ1 + Σ12Σ

−1
22 (y2 − µ2) and Σ∗ = Σ11 −Σ12Σ

−1
22 Σ21.

A proof is given in Tong (1990).
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A.2 Proof of the theorem in Section 3.2

In Section 3.2 we stated the following theorem:

If Y is Gaussian with mean µ and positive definite precision matrixQ, then

Yi ⊥ Yj|Y−ij ⇐⇒ Qij = 0 for i 6= j.

We now reproduce the proof provided in Rue and Held (2005) of this theorem.
Before we start, we recall another theorem from Section 3.2:

Conditional independence is implied if and only if the following is true:

π(Yi, Yj, Y−ij) = π(Yi, Y−ij)π(Yj, Y−ij).

This theorem is used in the proof.

Proof: Partition the vector Y as [Yi Yj Y −ij]
T . Fix i 6= j, and assume µ = 0. This

does not lead to any loss of generality. The joint probability of these elements is
then

π(Yi, Yj,Y −ij) ∝ exp

(
−1

2

∑
k,l

YkQk,lYl

)

∝ exp

−1

2
YiYj(Qij +Qji)−

1

2

∑
{k,l}6={i,j}

YkQk,lYl

 .

We see that only the first term in the second line contains YiYj, and the last
sum in the second line is the same as π(YiY−ij)π(YjY−ij). Thus, we have that
π(Yi, Yj, Y−ij) = π(Yi, Y−ij)π(Yj, Y−ij) if and only if Qij = 0, i.e., we have condi-
tional independence if and only if Qij = 0.
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Appendix B

INLA-code

In this appendix we present some of the INLA-code used when doing simulations
and fitting models in R. The functions are from the R-package R-INLA. We refer
to www.r-inla.org for more information about the package, and Lindgren and
Rue (2013) for more examples and demonstrations of the package.

B.1 Making mesh

Both when doing simulations and when fitting models , we use the SPDE-
approach, and we need a triangular mesh. The following INLA-code is used
to construct a mesh:

1 #Making mesh
max.edge=c(1,14); offset=c(1,30); cutoff=4

3 mesh=inla.mesh.2d(loc.domain=as.matrix(all.coords) ,cutoff=cutoff ,
max.edge=max.edge ,offset=offset)

Here, all.coords is a data frame storing the coordinates of all locations where
we observe or interpolate precipitation. The offset variable defines the size of the
inner and outer extensions around the locations, and max.edge specifies the max-
imum length of the triangle edges in the inner and outer extensions. The cutoff
variable prevents too many triangles to be built around clustered locations.
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B.2 Simulation

The following R-code is used to simulate non-stationary precipitation:
1 #Parameter values
bet.0 <- 2; bet.h <- 1; lambda <- 1

3 w.theta.tau.1 <- 2.42; w.theta.tau.h <- -4
w.theta.kap.1 <- -2.36; w.theta.kap.h <- 1.5

5 u.theta.tau.1 <- 2.42; u.theta.tau.h <- -4
u.theta.kap.1 <- -2.36; u.theta.kap.h <- 1.5

7

#Make non-stationary SPDE-object
9 spde=inla.spde2.matern(mesh,alpha=2 ,B.tau=cbind(0,1,elev.mesh,0,0),

B.kappa=cbind(0,0,0,1,elev.mesh))

11 #Make projection matrix
A = inla.spde.make.A(mesh, loc = as.matrix(coords.all),index = rep

(1:n.all, times = n.repl),repl = rep(1:n.repl, each = n.all) )
13

#Make precision matrices for climatology and annual spatial
variability

15 Q.w=inla.spde.precision(spde=spde ,theta=c(w.theta.tau.1,w.theta.tau
.h,w.theta.kap.1,w.theta.kap.h)) #Annual spatial variability

Q.u=inla.spde.precision(spde=spde ,theta=c(u.theta.tau.1,u.theta.tau
.h,u.theta.kap.1,u.theta.kap.h)) #Climatology

17

#Sample weights
19 w=as.vector(inla.qsample(n=n.repl,Q=Q.w))

u=as.vector(inla.qsample(n=1,Q=Q.u))
21 u<-rep(u,n.repl)

23 #Calculate true precipitation
precip.all=bet.0+as.vector(A%*%(w+u))+ bet.h*rep(elev.all,n.repl)

25

#Sample measurement error
27 epsilon<-rnorm(length(precip.all),mean=0,sd=0.1*abs(precip.all))

29 #Calculate observed precipitation
precip.all<-precip.all+epsilon

Here, mesh is a mesh-object constructed using the code in Section B.1, coords.
all is a matrix with coordinates of all locations where precipitation is to be
simulated, elev.mesh and elev.all are vectors of elevation at the locations
of the mesh nodes and the locations where we simulate precipitation, and n.all
and n.repl is the number of locations and replicates.

The function inla.spde2.matern() is used to make an SDPE-object. The
matrices B.tau and B.kap store the basis functions of the SPDE (see Section
3.3). The five columns of the matrices are multiplied with the corresponding
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element of a parameter vector [θ0 θ1 θ2 θ3 θ4], in order to obtain the parameter
space. θ0 is an offset, which we don’t use, and we set the first column to zero.
The next four columns correspond to our hyperparameters; θτ,1, θτ,h, θκ,1 and θκ,h
(Ingebritsen, 2014).

In the stationary case, we only need to specify the first matrix row. The following
code is used to construct an SPDE-object in the stationary case:

1 spde_S<-inla.spde2.matern(mesh=mesh,alpha=2, B.tau=matrix(c
(0,1,0),nrow=1,ncol=3),B.kappa=matrix(c(0,0,1),nrow=1,ncol=3))

B.3 Model fitting

In this section we present the code used to fit models and interpolate precipitation.
We only give the code used to fit non-stationary models.

1 #Making A-matrices
A.obs=inla.spde.make.A(mesh,loc=as.matrix(coords.obs),index = rep(1:

n.obs, times = n.repl),repl = rep(1:n.repl, each = n.obs) )
3 A.pred=inla.spde.make.A(mesh,loc=as.matrix(coords.pred),index = rep

(1:n.pred, times = n.repl),repl = rep(1:n.repl, each = n.pred) )

5 #Assigning priors to kappa and tau
priors.w<-list(mu.t=w.theta.tau.1, sig.t=2.4190, mu.t.h=w.theta.tau.

h, sig.t.h=1, mu.k=w.theta.kap.1, sig.k=0.8089, mu.k.h=w.theta.
kap.h,sig.k_h=1)

7 priors.u<-list(mu.t=u.theta.tau.1, sig.t=2.4190, mu.t.h=u.theta.tau.
h, sig.t.h=1, mu.k=u.theta.kap.1, sig.k=0.8089, mu.k.h=u.theta.
kap.h,sig.k.h=1)

9

#Making SPDE-object
11 spde.w<-inla.spde2.matern(mesh=mesh,alpha=2 ,B.tau=cbind(0,1,elev.

mesh,0,0),B.kappa=cbind(0,0,0,1,elev.mesh),theta.prior.mean = c(
priors.w$mu.t,priors.w$mu.t.h, priors.w$mu.k, priors.w$mu.k.h),
theta.prior.prec = c(1/priors.w$sig.t,1/priors.w$sig.t.h, 1/
priors.w$sig.k, 1/priors.w$sig.k.h))

13 spde.u<-inla.spde2.matern(mesh=mesh,alpha=2 ,B.tau=cbind(0,1,elev.
mesh,0,0),B.kappa=cbind(0,0,0,1,elev.mesh),theta.prior.mean = c(
priors.u$mu.t,priors.u$mu.t.h, priors.u$mu.k, priors.u$mu.k.h),
theta.prior.prec = c(1/priors.u$sig.t,1/priors.u$sig.t.h, 1/
priors.u$sig.k, 1/priors.u$sig.k.h))

15 #Making indexes
s.index.w=inla.spde.make.index(name="field.w",n.spde=spde.w$n.spde,n

.repl = n.repl)
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17 s.index.u=inla.spde.make.index(name="field.u",n.spde=spde.u$n.spde)
s.index.u$field.u=s.index.w$field.w

19 s.index.u$field.u.repl=rep(1,length(s.index.w$field.w.repl))
s.index.u$field.u.group=s.index.u$field.u.repl

21

23 #Intercept
intercept=rep(1:n.repl,each=mesh$n)

25

#Stacks
27 stack.obs=inla.stack(data=list(precip=precip.obs),effects=list(c(s.

index.w,s.index.u,intercept=list(1)),list(elevation=elev.obs.repl
)),A=list(A.obs,1),tag=’obs’)

29 stack.pred=inla.stack(data=list(precip=NA),effects=list(c(s.index.w,
s.index.u,intercept=list(1)),list(elevation=elev.pred.repl)),A=
list(A.pred,1),tag="pred")

31 join.stack=inla.stack(stack.obs,stack.pred)

33

#Priors
35 tau.precision.prior<-list(theta=list(param=c(shape=1,rate=1)))

precip.scale<-1/(0.1*precip.all)^2
37 prior.beta0<-c(2,1)

prior.beta1<-c(1,1)
39

41 #Formula
formula<-precip~-1+intercept+f(field.w,model=spde.w,replicate =

field.w.repl)+f(field.u, model=spde.u)+elevation
43

45 #Model
model<-inla(formula,family = "gaussian",data=inla.stack.data(join.

stack), control.predictor=list(A=inla.stack.A(join.stack),
compute=T),control.fixed = list(expand.factor.strategy = "inla",
mean=list(intercept=prior.beta0[1], elevation=prior.beta1[1]),
prec=list(intercept=prior.beta0[2],elevation=prior.beta1[2])),
control.family=list(hyper=tau.precision.prior),scale=precip.scale
)

Here, coords.obs and coords.pred are data frames storing the coordinates
of locations where we observe and interpolate precipitation. n.obs and n.pred
are the numbers of locations where we observe and interpolate precipitation, and
n.repl is the number of replicates. mesh is a mesh-object constructed using the
code in Section B.1. Again, we construct SPDE-objects, and now we also assign
priors to the hyperparameters when making the SPDE-object. The function
inla.spde.make.index() makes the indexes required by the SPDE model
(Blangiardo and Cameletti, 2015).
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The function inla.stack(), is a tool used to manage the SPDE object, when
many random effects are included in the linear predictor.

When we predict the areal precipitation in catchment areas, we are interested
in linear combinations of the precipitation. This can be included in the model
fitting in R-INLA, using the function inla.make.lincomb(). The following
code demonstrates how it can be used:

1

lc1 = inla.make.lincomb(Predictor = c(rep(NA,n.obs),rep(1,n.pred)))
3

names(lc1) = "lc1"
5

model<-inla(formula,family = "gaussian",data=inla.stack.data(join.
stack), lincomb=lc1, control.predictor=list(A=inla.stack.A(join.
stack),compute=T),control.fixed = list(expand.factor.strategy = "
inla",mean=list(intercept=prior.beta0[1], elevation=prior.beta1
[1]),prec=list(intercept=prior.beta0[2],elevation=prior.beta1[2])
),control.family=list(hyper=tau.precision.prior),scale=precip.
scale)

In the above code, the Predictor argument in the inla.make.lincomb()
function states that the linear predictors should be added. In this code, the linear
predictor is a vector, where the n.obs first elements are observations, and the
next n.pred elements are predictions. Thus, the above code states that linear
combination should be of all the predictions.
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Appendix C

Weather stations

Throughout the thesis we use 60 weather stations located in the county Horda-
land. Information about the weather stations is given in Table C.1. The infor-
mation is provided by the Norwegian Water Resources and Energy Directorate
(NVE), and is also available at the web portal eKlima.no, which gives public
access to the climate database of the Norwegian Metrological Institute.

Station
number Name Elevation [m] Latitude Longitude Average annual

precipitation [m/year]

48780 Mauranger
kraftstasjon 33 60.1322 6.3305 2.21

49070 Kvåle 342 60.2803 6.3778 2.37

49080 Øvre
Krossdalen 342 60.2795 6.3857 2.44

49350 Tyssedal I 32 60.1198 6.5608 1.58
49351 Tyssedal IA 32 60.1218 6.5562 1.71

49490 Ullensvang
Forsøksgård 12 60.3185 6.6538 1.56

49550 Kinsarvik 108 60.3725 6.7382 1.37
49580 Eidsfjord-Bu 117 60.4672 6.8605 1.81
49630 Eidsfjord 5 60.4668 7.0723 1.22
49631 Eidsfjord II 20 60.4647 7.0685 1.22
49750 Liset 748 60.4226 7.2739 1.22
49800 Fet i Eidfjord 735 60.4085 7.2798 1.00
49940 Granvin 352 60.5918 6.8050 2.14
50050 Nedre Ålvik 18 60.4323 6.4190 2.59
50070 Kvamsøy 49 60.3631 6.2805 1.98

50080 Øystese
Borge 108 60.3790 6.1927 2.32

50110 Kvam
Aksneset 13 60.3363 6.2182 2.57

50120 Skulafossen
kraftstasjon 16 60.2747 6.0392 2.76

50130 Omastrand 2 60.2170 5.9837 2.65
50150 Hatlestrand 45 60.0422 5.9057 2.15
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50175 Austevoll 32 60.0167 5.2038 1.61
50250 Tysse 41 60.3690 5.7473 2.76
50300 Kvamskogen 408 60.3933 5.9133 3.37

50310 Kvamskogen
Jonshøgdi 455 60.3887 5.9640 3.05

50350 Samnanger 370 60.4640 5.8938 3.60
50351 Samnanger II 367 60.4640 5.8938 3.78
50450 Fana - Stend 54 60.2728 5.3305 2.16

50460 Fana
forsøksstasjon 48 60.2600 5.3533 2.45

50480 Bergen - Sandsli 45 60.2918 5.2798 2.07
50500 Flesland 48 60.2892 5.2265 1.95

50540 Bergen
Florida 12 60.3830 5.3327 2.41

50560 Bergen
Fredriksberg 41 60.3967 5.3086 2.45

50950 Osterøy
Gjerstad 60 60.5000 5.5500 2.53

51010 Fossmark 10 60.5205 5.7243 3.02
51130 Kaldestad 514 60.5540 6.0255 2.61
51250 Øystedal 316 60.6887 5.9647 3.15
51400 Brekkhus 202 60.7365 6.1438 2.67
51440 Evanger 17 60.6470 6.1105 2.20
51470 Bulken 328 60.6455 6.2220 2.00
51530 Vossevangen 54 60.6250 6.4262 1.40
51590 Voss - Bø 125 60.6450 6.4950 1.41
51670 Reimegrend 590 60.6850 6.7433 1.71
51800 Mjølfjelluh 695 60.7022 6.9373 1.91

51990 Myrkdalen
Vetlebotn 700 60.8655 6.4733 3.61

52110 Fjellanger II 456 60.7992 6.0660 2.62
52170 Eksingedal 450 60.8028 6.1469 2.65
52220 Gullbrå 579 60.8289 6.2645 2.17
52290 Modalen II 114 60.8410 5.9533 3.08
52310 Modalen III 125 60.8562 5.9733 3.06

52400 Eikanger
Myr 72 60.6230 5.3808 2.38

52440 Holsnøy
Landsvik 27 60.6055 5.0590 2.02

52475 Blomvåg
Sele 30 60.5313 4.8933 1.75

52530 Hell i
Søyfyr 20 60.7528 4.7106 1.26

52600 Haukeland 196 60.8248 5.5732 3.76

52601 Haukeland
Storevatn 325 60.8347 5.5833 3.96

52640 Matre
kraftstasjon 7 60.8740 5.5937 2.86

52650 Matre 18 60.8833 5.5833 3.01
52750 Frøyset 13 60.8462 5.2108 2.45

53160 Jordalen
Nåsen 614 60.9004 6.7243 1.98

53180 Brandset 460 60.7950 6.6887 1.60
Table C.1: An overview of 60 weather stations in Hordaland.
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