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Abstract

Linear 2× 2 hyperbolic partial differential equations can be used to describe many
real-world problems and have attracted considerable research interest in later years.
This thesis considers adaptive set-point regulation of such systems by using the
infinite-dimensional backstepping method. Two control methods are proposed.
The first for a system where sensing is restricted to be collocated with actuation
and anti-collocated with two unknown parameters in an affine boundary condi-
tion. The second for a system where sensing is non-collocated with actuation and
where the uncertain boundary parameters, anti-collocated with actuation, appear
in a bilinear form with two unknown parameters. Boundedness in the L2-sense
and point-wise in space are proved. Convergence to the selected set-point at the
left boundary is shown for both methods. Because the boundary parameters are
unknown, the steady state solution achieving this set-point is also unknown, trans-
forming the problem to a tracking problem with a parameter-estimate-dependent
tracking objective. The parameter estimates are generated by a parameter update
law operating on linear parametric models relating the system state estimates,
measurements and boundary parameters.

The theory is applied to the Kick and Loss Detection and Attenuation Problem
in Managed Pressure Drilling, where the goal is to attenuate any sudden inflow
into the well-bore or outflow into the reservoir by controlling the bottom-hole pres-
sure from top-side actuation. In addition, the reservoir pressure and the relation
between pressure difference and net inflow are unknown. Simulations show that
compared to using constant top-side actuation, the derived methods provide a sig-
nificant reduction in total inflow and convergence time before the kick/loss is com-
pletely attenuated. The method using non-collocated sensing performs marginally
better than the method only using collocated sensing and control in terms of less
overshoot and oscillations. The difference, however, is insignificant for the tested
parameter values. Both methods are able to attenuate the kick/loss in a time close
to the theoretical constraint imposed by the bottom-hole – top-side – bottom-hole
propagation time.
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Sammendrag

Lineære 2 × 2 hyperbolske partielle differensialligninger kan brukes til å beskrive
mange fysiske systemer og har vært gjenstand for omfattende forskning i de senere
år. Denne oppgaven omhandler adaptiv setpunkt-regulering av slike systemer ved å
bruke metoden uendelig-dimensjonal-"backstepping". To kontrollmetoder er fores-
lått. Den første for systemer hvor måling er begrenset til å være samlokalisert med
pådraget og anti-samlokalisert med to ukjente grenseparametere i en affin grense-
betingelse. Den andre for systemer hvor måling er tillatt å være ikke-samlokalisert
med pådraget og hvor de ukjente grenseparameterne, ikke-samlokalisert med på-
draget, opptrer i en bilineær form med to ukjente parametere. Begrensethet i
L2 og punktvis i rom er bevist. Konvergens til det valgte settpunktet på venstre
grense er vist for begge metodene. Fordi grenseparameterne er ukjente vil også
stasjonærtilstanden som oppnår dette settpunktet være ukjent, og problemet blir
essensielt transformert til et sporingsproblem med et parameterestimat-avhengig
sporingsmål. Parameterestimatene er generert av en parameter-oppdateringslov
som opererer på en lineær parametrisk modell som relaterer systemtilstandene,
målingene og grenseparameterne til hverandre.

Teorien er anvendt på "Kick" og "Loss" Deteksjons- og Dempings-problemet
i "Managed Pressure Drilling" hvor målet er å dempe enhver plutselig innstrøm-
ming inn i brønnhullet eller utstrømming ut i reservoaret ved å kontrollere trykket
nedhulls ved hjelp av et toppside-pådrag. Reservoartrykket, og forholdet mellom
trykkdifferanse og netto innstrømming er i tillegg ukjent. Sammenlignet med når
et konstant topside-pådrag er brukt, viser simuleringer at begge metoder gir en be-
tydelig reduksjon i total innstrømming og konvergenstid før "kick"-et eller "loss"-et
er fullstendig dempet. Metoden som bruker ikke-samlokalisert måling og pådrag
yter marginalt bedre enn metoden som kun bruker samlokalisert måling og på-
drag i form av mindre oversvingninger og oscilleringer. Forskjellen er imidlertid
ubetydelig med de valgte parameterverdiene. Begge metodene klarer å dempe
"kick"-et/"loss"-et innen en tid som er nærme den teoretiske begrensingen ilagt av
forplantningstiden nedhull – toppside – nedhull.
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Chapter 1

Introduction

1.1 Motivation

This thesis concerns stabilization and adaptive set-point regulation of linear 2× 2
partial differential equations (PDEs) of hyperbolic type. Many real world phys-
ical problems can be described by such systems. Examples include road traffic
systems (Goatin, 2006; Fan et al., 2013), transmission lines (Curró et al., 2011),
open fluid channels (de Halleux et al., 2003; Dos Santos and Prieur, 2008), gas
pipeline networks (Gugat et al., 2011), and leak detection, estimation and local-
ization in pipe flows (Aamo, 2016). Although the theoretical contributions in this
thesis have many potential applications, the development is motivated by a specific
problem encountered in oil and gas drilling operations; the Kick & Loss Detection
and Attenuation Problem in Managed Pressure Drilling.

The drill system consists of a drill string with a drill bit at the bottom-hole
end and a casting around the drill string called annulus. A drilling fluid called
mud is circulated down the drill string, through the drill-bit and up the annulus
to the surface where cuttings are removed and the mud recirculated down the drill
string again. The purpose of the mud is not only to transport the cuttings out,
but to provide pressure control throughout the well. If the pressure is too low, the
well might collapse, and a too high bottom-hole pressure might lead to fracturing
of the formation. Traditionally, pressure is controlled by varying the mud density,
viscosity or circulation rate. In managed pressure drilling (MPD), with applied
back pressure (ABP) in particular, the pressure in the annulus is controlled by
using a back pressure valve top-side to limit the flow and a back-pressure pump
in the case without circulation. The difficulty in MPD comes from the fact that
actuation is located top-side, while the pressure of interest is bottom-hole usually
several kilometers away. Sensing is only available at the boundaries and often only
top-side. In other words, the task in MPD is to estimate and stabilize the pressure
everywhere in the well within some bounds, when the only available measurement
and control authority are at the surface.

Stabilizing the well pressure becomes even more challenging when considering
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Chapter 1. Introduction

the Kick & Loss Detection and Attenuation Problem. A kick is a sudden increase in
flow through the annulus caused by a higher formation pressure than mud pressure.
The result is formation fluids flowing up the annulus which, if not handled, might
lead to uncontrolled blowouts on the surface. In the other case, a loss occur if the
mud pressure is higher than the formation pressure, resulting in the loss of mud
into the formation. Since the reservoir pressure is usually unknown, the problem
is now to stabilize the bottom-hole pressure, using the already challenging MPD
technique, so that both kicks and losses are prevented (or at least attenuated).
This means that the bottom-hole pressure must be both estimated and controlled
while at the same time estimating the reservoir pressure and then regulate the
bottom-hole pressure based on this estimate.

The structure of this problem; with distributed states, and sensing and ac-
tuation only at boundaries, fits perfectly into the control framework of infinite-
dimensional backstepping for PDEs. In addition, the unknown parameter part of
the problem can be handled by combining the backstepping method with some
kind of adaptive scheme. Previous work in the field of control of PDEs, backstep-
ping control and adaptive control of PDEs are presented in the next section. Some
previous work on kick/loss attenuation in MPD is also presented.

1.2 Previous Work
Early efforts in the field of PDE control date back to the late 1960s. The focus was
mainly on optimal control and controllability. Research references include Curtain
and Zwart (2012); Lasiecka and Triggiani (2000); Christofides (2012). Some early
results in control of hyperbolic systems include methods using Riemann invari-
ants along the characteristics (Greenberg and Tsien, 1984) and control Lyapunov
functions (Coron et al., 2007).

The backstepping method was originally developed for ordinary differential
equations, and is especially useful for nonlinear systems (Krstic et al., 1995; Khalil,
1996). The continuum version of the integrator backstepping method for ODEs
uses a Volterra integral operator that "brings" the destabilizing in-domain terms
to the boundary where they can be eliminated by an appropriate control law. An
introduction to the backstepping method is given in the next chapter. Volterra
equations were used as early as in the 1970s to solve PDEs and state controllabil-
ity (Colton, 1977; Seidman, 1984). Using the same Volterra integral operator for
control was not considered until around the year 2000, where an effort to develop
the backstepping control technique for partial differential equations was initiated.
The first attempt in Boskovic et al. (2001) involved a backstepping-like transforma-
tion and an explicit feedback law for a parabolic PDE. The design was, however,
limited to systems with at maximum one open-loop unstable eigenvalue. A dis-
cretization based scheme was considered in Balogh and Krstic (2002); Bošković
et al. (2003); Balogh and Krstic (2004), but this method turned out to be depen-
dent on the discretization scheme and did not give convergent gain kernels. The
infinite-dimensional backstepping method in its current form was first introduced
for parabolic PDEs in Liu (2003) and further developed in Smyshlyaev and Krstic
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(2004, 2005), where the gain kernel was expressed as a solution to a well-posed
PDE.

The first result using backstepping applied on hyperbolic PDEs was for first
order systems in Krstic and Smyshlyaev (2008). The method was later extended
for second order hyperbolic systems in Smyshlyaev et al. (2010), and for two coupled
first order hyperbolic systems in Vazquez et al. (2011). The results in the latter
were used in Aamo (2013) for disturbance attenuation in managed pressure drilling
which is similar to the system considered in this thesis.

While many results exist in the field of adaptive control for parabolic PDEs
(Smyshlyaev and Krstic, 2010), adaptive control of hyperbolic PDEs is relatively
new. Adaptive observers for n + 1 hyperbolic systems using non-collocated sens-
ing can be found in Anfinsen et al. (2016) using swapping filers and in Bin and
Di Meglio (2016) using a Lyapunov approach. The extension to general m + n
systems is given in Anfinsen et al. (2017). An adaptive observer for 2× 2 systems
using only collocated control is developed in Anfinsen and Aamo (2016). Adaptive
stabilization of the same type of systems, but without the additive boundary con-
dition is considered in Anfinsen and Aamo (2017b) and without the multiplicative
boundary condition in Aamo (2013). Adaptive stabilization of the systems consid-
ered in Anfinsen et al. (2016) and Anfinsen et al. (2017) (with some modifications)
are considered in Anfinsen and Aamo (2017c) and Anfinsen and Aamo (2017a)
respectively. Stabilization of the system in Anfinsen and Aamo (2016) with both
multiplicative and additive boundary parameters, i.e. an affine boundary condition,
has to the best of our knowledge not previously been addressed.

Previous results on kick/loss detection and attenuation in MPD have mainly
focused on using lumped drilling models. A lumped ODE model is applied on a gas
kick detection and mitigation problem in Zhou et al. (2011) by using a method for
switched control of the bottom-hole pressure. Another lumped model for estimation
and control of in-/outflux is presented in Hauge et al. (2012) and Hauge et al.
(2013a). An estimation scheme for reservoir influx and pore pressure, also based
on a lumped model, is given in Ambrus et al. (2016). Kick handling methods
for a first-order approximation to the PDE system are presented in Aarsnes et al.
(2016a) using LMI (Linear Matrix Inequality) based controller design. In/out-
flux detection using an infinite-dimensional observer is presented in Hauge et al.
(2013b). Detection and handling of kick & loss using a distributed PDE model
incorporating a model of the reservoir inflow dynamics, has to the best of the
authors knowledge not previously been addressed.

1.3 Contributions, Scope and Outline
The theoretical contribution in this thesis build on the results from Anfinsen and
Aamo (2016, 2017b,a); Anfinsen et al. (2017). Two systems are considered; the
first where sensing is restricted to be collocated with actuation at one boundary,
and the second where sensing is allowed to be non-collocated with control, i.e.
sensing at both boundaries. The first system is a 2 × 2 hyperbolic system with
an affine boundary condition. The theoretical contribution is an adaptive control
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law that together with the observer from Anfinsen and Aamo (2016) stabilizes
the system. The second system is also a 2 × 2 hyperbolic system, but with a
bilinear boundary condition. The theoretical contribution is both a swapping-
based estimation scheme for parameter and state estimation and a control law for
stabilization.

The theory is applied on the kick and loss detection and attenuation problem
in MPD by using a modification of the transformation given in Aamo (2013).
Simulations of both the general 2×2 hyperbolic systems demonstrating the theory,
and the MPD application with simulated kicks and losses, are provided.

The focus of this thesis is entirely on the theoretical development of mathe-
matical estimation schemes, control laws and stability proofs as well as computer
simulations. Implementation aspects for experimental testing are not considered;
no model reduction or discretization schemes are discussed.

The thesis is separated into 5 parts as follows:

I) The first part consists of Chapters 1 and 2. Chapter 2 gives a short introduc-
tion to boundary control of PDEs with special emphasis on the backstepping
method and methods in adaptive control of PDEs. A short description of
different classes and properties of PDEs are also included.

II) The second part, consisting of Chapters 3 and 4, presents the main theoretical
contribution of this thesis with the two control problems given in each chapter.
Stability proofs are included in both chapter.

III) In the third part, the theory derived in Part II is applied to the kick and
loss detection and attenuation problem in MPD. Transformations relating
the drilling model to the systems in Part II as well as stability proofs are
provided in Chapter 5. Simulation results are given in Chapter 6.

IV) The fourth part which consists of Chapter 7, provides some concluding re-
marks and possible areas for further work.

V) Appendix A includes some additional lemmas that are used to prove stability
in Part II. Some additional material used throughout the report is included
for reference in Appendix B. Finally, two conference papers based on the work
in Parts II and III are included in Appendix C.

1.4 Notation
All vectors are column vectors. For a general set F, the notation Fn means the set
of n-dimensional vectors with elements in F, and Fm×n the set of matrices of size
m× n with all elements in F. The set R is the set of all real numbers, R+ the set
of real positive numbers including zero, C the set of continuous functions, and C1

the set of functions with continuous first derivatives. Derivatives are usually stated
using subscripts, i.e. ut(x, t), ux(x, t), etc, or with standard Leibniz notation, i.e.
∂

∂x
u(x, t), ∂

∂t
u(x, t), when using subscripts might be misleading. For monovariable
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1.4 Notation

functions of time, derivatives are stated using Newtons notation, i.e. ẋ and ẍ for the
first and second derivative respectively. For a signal z(x, t) defined for 0 ≤ x ≤ 1,
t ≥ 0, the norm ||z|| denotes the L2-norm, i.e

||z|| =

√∫ 1

0
z2(x, t)dx, (1.1)

if not otherwise specified. The argument of time is dropped when using the norm
notation || · ||. For a time-varying, real signal f(t), the following vector spaces are
used:

f ∈ Lp ↔
(∫ ∞

0
|f(t)|pdt

) 1
p

<∞ (1.2)

for p ≥ 1 with the particular case

f ∈ L∞ ↔ sup
t≥0
|f(t)| <∞. (1.3)

For a multivariable function f(x, t), the notation f(x, ·) ∈ Lp is used to indicate
the integration variable, in this case t.

7



Chapter 1. Introduction

8



Chapter 2

Boundary Control of PDEs

This chapter provides a brief introduction to PDEs and (boundary) control of
PDEs. The design method of backstepping for PDEs is presented and a short
overview of techniques for adaptive control of PDEs. The methods presented in
this chapter will be applied in later chapters.

2.1 Introduction to PDEs
A partial differential equation is an equation involving one or more partial deriva-
tives of an unknown function that depends on two or more variables (Kreyszig,
2011, Section 12.1). The order of a PDE is the order of the highest derivative.

A kth-order PDE for some function u : X → R in the independent variable
x ∈ X ⊂ Rn, can be written on the form (Evans, 2010, Section 1.1)

F
(
Dku(x), Dk−1u(x), ..., Du(x), u(x), x

)
= 0 (2.1)

where Dk denotes the set of all partial derivative of order k and

F : Rn
k

× Rn
k−1
× · · · × Rn × R× U → R. (2.2)

Similarly, a kth-order system of PDEs, informally a collection of several PDEs
with the order being the highest-order derivative occurring in any of its equations
(Olver, 2014, Page 3), for some function u : X → Rm in the independent variable
x ∈ X ⊂ Rn, can be written on the form (2.1) with

F : Rmn
k

× Rmn
k−1
× · · · × Rmn × Rm × U → Rm. (2.3)

A PDE is said to be linear if F is linear in u(x) and its derivatives. It is said
to be homogeneous if each of its terms contains either u(x) or one of its partial
derivatives (Kreyszig, 2011, Section 12.1). In this thesis, only PDEs of two inde-
pendent variables, systems of PDEs of at most 2 equations, and only linear PDEs
are considered. The independent variables are time t and space x.
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Chapter 2. Boundary Control of PDEs

A system of PDEs for some function u(x, t), x ∈ X, t ∈ R+, u : X × R+ → Rn
with only first derivatives in time and space can be written on the form

A(x, t)ut(x, t) +B(x, t)ux(x, t) = C(x, t)u(x, t) (2.4)

where A, B and C are quadratic matrices of dimension n × n. System (2.4) is
therefore refereed to as a linear n × n system. In this thesis, special emphasis is
placed on the linear 2× 2 system

ut(x, t) + λux(x, t) =c1(x)v(x, t) (2.5a)
vt(x, t)− µvx(x, t) =c2(x)u(x, t) (2.5b)

where λ, µ > 0 are termed the transport speed and c1, c2 source terms. In that
sense, u represents information convecting in the right direction (increase in the
spatial variable x) and v information convecting in the left direction (decreasing
x).

A PDE or system of PDEs are well-posed in the sense of Hadamard if (Renardy
and Rogers, 2006, Section 1.1.5)

I) A solution exists.

II) The solution is unique.

III) The solution depends continuously on the data.

The problem is said to be ill-posed if these conditions do not hold.

2.1.1 Classes and Properties of PDEs
In contrast to (linear) ODEs, no general methodology for analysis nor control can
be developed for PDEs (Krstic and Smyshlyaev, 2008, Section 1.5). The methods
and tools used are therefore dependent on the type of PDE considered.

Consider the following general linear, second order PDE for a function u(x, t)
in two independent variables x, t:

a(x, t)uxx + b(x, t)uxt + c(x, t)utt = f(x, t, ux, ut). (2.6)

This PDE can be classified by its discriminant given as

∆(x, t) = b2(x, t)− 4a(x, t)c(x, t). (2.7)

Similarly to how conic equations are classified, the linear second order PDE (2.6),
at a point (x, t), is called (Olver, 2014, Definition 4.12)

I) Hyperbolic if ∆(x, t) > 0,

II) Parabolic if ∆(x, t) = 0,

III) Elliptic if ∆(x, t) < 0,
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2.1 Introduction to PDEs

IV) Singular if a(x, t) = b(x, t) = c(x, t) = 0.

If the sign of the discriminant varies through the domain, the PDE is said to be of
mixed type. Most systems considered in this thesis will be of Type I; hyperbolic.

The complexity of the control problem varies not only by the class, but also by
the following properties identified in Smyshlyaev and Krstic (2010):

I) Stability of the open-loop system. Open-loop unstable systems are more chal-
lenging than open-loop stable systems. In this thesis, both open loop stable
and unstable systems are considered.

II) Location of actuation and sensing. Actuation and sensing can either be dis-
tributed in-domain, or localized, for instance at boundaries. Boundary control
and sensing are considered to be physically more realistic, and also the harder
problem because the input and output operators are unbounded (Krstic and
Smyshlyaev, 2008, Section 1.1). This thesis exclusively considers boundary
control and sensing.

III) Uncertainty structure. In the case of uncertain plant parameters, the structure
of the uncertainty can either be matched or mismatched. A matched uncer-
tainty can be directly canceled by the control input signal, while mismatched
uncertainties require some form of transformation to relate the control gains
to the uncertainties. This thesis focus exclusively on parameter uncertainties
anti-collocated with the control signal, i.e. mismatched uncertainties.

IV) Spatially constant or functional parameters? The parametric uncertainties
can be both spatially constant or varying. Only spatially constant uncertain
parameters are considered in this thesis.

2.1.2 Boundary and Initial Conditions
A PDE problem together with a set of initial conditions (BC), usually at initial
time t = 0, is called an initial value problem (IVP). A PDE problem with a set
of boundary conditions, usually at boundaries of the spatial domain, is called a
boundary value problem (BVP).

Some of the boundary conditions might be associated with an actuation signal.
Within the field of boundary control, several types of actuation exists. Common
types of boundary control are

I) Dirichlet actuation where the boundary value is associated with a state vari-
able. For example in flow control where the actuation can be microjets or
valves (Krstic and Smyshlyaev, 2008, Section 1.7).

II) Neumann actuation where the boundary value is associated with the gradient
of a state variable. For example controlling the heat flux in thermal problems
(Krstic and Smyshlyaev, 2008, Section 1.7).

Combinations of the two types mentioned above are often called Robin or mixed
(Kreyszig, 2011, Page 564). The focus in this thesis is exclusively on Dirichlet
actuation.
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Chapter 2. Boundary Control of PDEs

2.1.3 Control Objectives
Krstic and Smyshlyaev (2008, Section 1.5) identifies the following control objec-
tives: performance improvement, stabilization and trajectory tracking. The se-
lected control objective for a PDE problem is dependent on the specific application.
A first and basic requirement is for the system to be stable (in the sense of some
norm, see the next section). For an unstable open-loop system, stabilization is
usually the first requirement and therefore a basic control objective. If the system
is open-loop stable, the control objective can be performance-improvements; for
instance in transient time or increased robustness margins. Another objective is
stabilization to a pre-selected state trajectory, collectively called trajectory tracking.
In this thesis, all three objectives presented above will be perused.

2.1.4 Lyapunov Stability
Finite dimensional systems, which includes systems of ODEs, have equivalence
between vector norms, meaning that e.g. exponential stability in one norm will
imply exponential stability in all norms. This is not the case for PDEs; when the
state space is infinite-dimensional (in the spatial variable x), the state space is not
Euclidean but a function space and the state norm is a function norm. Contrary
to vector norms, function norms are not equivalent (Krstic et al., 1995, Chapter
2, page 14). No general concept of stability exists for PDEs and hence, stability
must always be considered in the sense of some norm. Examples of common norms
are the L1, L2 or L∞-norm, which are function norms over the spatial domain (see
Section 1.4), or the so-called Sobolev norms, which will not be considered in this
thesis.

Lyapunov functions will usually be constructed for norms of a set of transformed
state variables. Meaning that even if the Lyapunov function is a plain, diagonal,
spatial norm in the transformed state variables, the Lyapunov function in the
original state variables will often be complex and include nondiagonal and cross-
term effects (Krstic et al., 1995, Section 2.4, page 14). The design methodology for
transforming the state variables is presented in the next section.

2.2 Boundary Control by Backstepping
The conventional approach to PDE control is based on spatial discretization (Cur-
tain and Zwart, 2012, Section 1.3), that is transforming the PDEs into finite di-
mensional ODEs for which standard control techniques can be applied. This step
however is not trivial, and even if one is able to successfully transform the PDE
into a set of ODEs, one can in general not guarantee that a control design for
the approximated ODEs will be effective for the original PDE (Smyshlyaev and
Krstic, 2010, Preface, page x). For this reason, control methods appreciating the
distributed structure of PDEs must be considered.

Within the class of controllers in the continuum domain, early efforts includes
optimal control and pole placement control. All of which requires a thorough un-
derstanding of PDEs and functional analysis (see e.g. Curtain and Zwart (2012)
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2.2 Boundary Control by Backstepping

or Lasiecka and Triggiani (2000)). The control method used in this thesis is the
backstepping design method, which is a continuum analog of integrator backstep-
ping for ODEs. In contrast to optimal control that requires solving a Riccati
equation in each iteration, or pole-placement control where the objective is to shift
the location of the eigenvalues to some desirable location, backstepping for PDEs
does not achieve optimally or precise assignment of any eigenvalues. Backstepping
however, achieves Lyapunov stabilization by collectively shifting all eigenvalues in
some desirable direction (Krstic and Smyshlyaev, 2008, Section 1.2), and is in a
sense simpler to use and requires less background in PDE- and functional anal-
ysis. Smyshlyaev and Krstic (2010, Page 4) identifies in addition the following
distinguishing features: First, the question of well-posedness is circumvented by
transforming the plant into a well known, extensively studied PDE. Second, for
many problems, closed form controller kernels and observers can be found avoiding
the need for online calculation of the controller/observer gains. Third, the method
extends naturally to adaptive control, discussed in Section 2.3.

2.2.1 ODE Backstepping
The method of backstepping was first developed for ODEs, in-particular non-linear
ODEs (Kokotovic, 1992). Consider the following third order ODE system from
Khalil (1996, Example 14.9):

ẋ1 =x2
1 − x3

1 + x2 (2.8a)
ẋ2 =x3 (2.8b)
ẋ3 =u (2.8c)

where u is a control signal. This system has some characteristic features. First
of all, the system is open-loop unstable. This can be seen from setting u = 0
and considering the ẋ1 and ẋ2 dynamics for non-zero initial conditions. Second,
the system has a triangular form, meaning that a subsystem is only dependent
on subsystems below. Third, with ẋ3 entering at the last equation, it can be
said to enter at the boundary of the system. Fourth, the control signal u can
only stabilize the ẋ3 dynamics directly; some form of transformation is needed to
relate the control signal to the dynamics of the two other states. This is where
the backstepping transformation is introduced. It can be shown that a specific
change of variable together with an appropriate control law, transforms the system
(2.8) into an equivalent stable target system. The transformation is obtained by
recursively propagating the control law through each integrator, i.e. "stepping
back", until the boundary, which is actuated, is reached.

2.2.2 The Main Idea of PDE Backstepping
The backstepping methodology can be extended to PDEs by considering an infinite-
dimensional equivalent of (2.8). The backstepping procedure will now involve an
infinite number of backstepping iterations, which can be represented as a Volterra
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Chapter 2. Boundary Control of PDEs

equation (see Appendix B.3):

w(x, t) = u(x, t)−
∫ x

0
K(x, ξ)u(ξ)dξ. (2.9)

As an example of the backstepping procedure consider the following reaction-
diffusion equation from Krstic and Smyshlyaev (2008, Section 4.1):

ut(x, t) =uxx(x, t) + λu(x, t) (2.10a)
u(0, t) =0 (2.10b)
u(1, t) =U(t) (2.10c)

where λ is a constant and U(t) the control signal. By using the transformation
(2.9), with an appropriately selected K, along with the control law

u(1, t) =
∫ 1

0
K(1, t)u(ξ, t)dξ, (2.11)

the plant (2.10) can be transformed into the target system

wt(x, t) =wxx(x, t) (2.12a)
w(0, t) =0 (2.12b)
w(1, t) =0 (2.12c)

which is the exponentially stable heat equation. It can be noted that the trans-
formation (2.9) has the same lower triangular structure making it spatially causal,
and with the boundary actuated, the framework of backstepping fits naturally into
the field of boundary control of PDEs. However, the analogy between PDE and
ODE backstepping is not a strict structural analogy; it is not true that the ODE
backstepping method is a spatial discretization of the PDE backstepping method
(Krstic and Smyshlyaev, 2008, Page 49).

2.2.3 Gain Kernel PDE and Solution Methods
The kernel K in (2.9) is called the gain kernel, and with K(1, t) being the analog
of the proportional gain in PID control for ODEs. For the control problem in
Section 2.2.2, the gain kernel is found to satisfy the set of equations given by

Kxx(x, ξ)−Kξξ(x, ξ) =λK(x, ξ) (2.13a)
K(x, 0) =0 (2.13b)

K(x, x) =− λ

2x. (2.13c)

This set is referred to as the gain kernel PDE. It can be shown that this PDE
is well-posed – a necessary condition for the gain kernel PDE. System (2.13) is
independent of time. The control law (2.11) can thus be calculated off-line once,
and stored. This is often the case for control laws derived using backstepping. A
closed form solution can be found for the gain kernel PDE (2.13)(see (Krstic et al.,
1995, Section 4.3-4.4)). For other gain kernel PDEs, a closed form solution might
not exist, and the solution must be found by numerical computations.
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2.3 Adaptive Control of PDEs

2.3 Adaptive Control of PDEs
Many physical, distributed systems have unknown or uncertain parameters varying
with operating conditions. The uncertainty is often much larger than what can be
handled by robust non-adaptive control designs and thus, a need for parameter-
adaptive control techniques exist (Krstic and Smyshlyaev, 2008, Page 145).

Early result in adaptive control of distributed system focused on special classes
of PDEs with relative degree one by high level gain tuning. A survey of the early
efforts can be found in Logemann and Townley (1997). Parameter-adaptive control
involves on-line estimation of the unknown parameters, and in turn re-computation
of the controller gains. If the controller gains are found by solving a Riccati equa-
tion, which is the case in optimal control, a new Riccati equation must be solved
at every iteration with every new parameter estimate. Solving a Riccati equation
on-line is often not practical to do in real time . Backstepping on the other hand,
often result in explicit controller gains or in a rapidly convergent numeric scheme
which can be implemented on-line (Krstic and Smyshlyaev, 2008, Page 145).

Smyshlyaev and Krstic (2010) differentiates between two major classes of adap-
tive control schemes

I) Lyapunov schemes

II) Certainty equivalence schemes

and within the class of certainty equivalence schemes between

I) Passivity-based identifiers

II) Swapping-based identifiers.

The swapping based design methodology is explained by example in the next sec-
tion. A swapping based design will be used in Chapter 4 to generate state and
parameter estimates.

2.3.1 Swapping Identifiers
To introduce the concept of swapping based design, the following example from
Anfinsen and Aamo (2017d) is presented: Consider the first order hyperbolic system

vt(x, t)− vx(x, t) =0 (2.14a)
v(1, t) = θv(0, t) + U(t) (2.14b)

where v is the state variable in x ∈ [0, 1] and t > 0, θ is the unknown parameter
and U(t) a control signal. The signal y(t) = v(0, t) is measured.

The idea behind the swapping method is to transform the dynamic parametriza-
tion given by (2.14) into a static representation by introducing a set of tilters; one
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Chapter 2. Boundary Control of PDEs

parameter filter for each unknown parameter and one input filter. Consider the
filters

ψt(x, t)− ψx(x, t) =0, ψ(1, t) = U(t) (2.15a)
φt(x, t)− φx(x, t) =0, φ(1, t) = v(0, t). (2.15b)

The non-adaptive estimate v̄(x, t) of v(x, t) can be generated from

v̄(x, t) = ψ(x, t) + θφ(x, t) (2.16)

and the non-adaptive estimation error e(x, t) = v(x, t) − v̄(x, t) can be found to
satisfy

et(x, t)− ex(x, t) =0 (2.17a)
e(1, t) = 0 (2.17b)

which is identically equal to zero e(x, t) ≡ 0 for all x ∈ [0, 1] and t > 1. This gives
the linear parametric model

y(t)− ψ(0, t) = θφ(0, t) (2.18)

for t > 1. The linear parametric model can in turn be used together with any
standard adaptive law to generate parameter estimates, for example by using the
gradient method (see Appendix B.1). State estimates can then be obtained from
the adaptive state estimate

v̂(x, t) = ψ(x, t) + θ̂(t)φ(x, t) (2.19)

where θ̂(t) is the parameter estimate. The adaptive state estimation error is
ê(x, t) = v(x, t)− v̂(x, t).
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Part II

Adaptive Set-Point
Regulation
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Chapter 3

Collocated Sensing and
Control

This chapter considers adaptive stabilization and set-point regulation of a 2 × 2
linear hyperbolic system with sensing restricted to be collocated with the control
and anti-collocated with an uncertain affine boundary condition.

3.1 Problem Statement
Consider the linear 2× 2 first-order hyperbolic system

ut(x, t) + λux(x, t) = c1(x)v(x, t) (3.1a)
vt(x, t)− µvx(x, t) = c2(x)u(x, t) (3.1b)

u(0, t) = θ1v(0, t) + θ2 (3.1c)
v(1, t) = U(t) (3.1d)

defined for x ∈ [0, 1], t ≥ 0, where u, v are the system states and

λ, µ > 0, c1(x), c2(x) ∈ C([0, 1]) (3.2)

are known, while
θi ∈

[̄
θi, θ̄i

]
⊂ R (3.3)

for i ∈ {1, 2}, are unknown boundary parameters with known bounds

¯
θ1 ≤θ1 ≤ θ̄1 (3.4a)

¯
θ2 ≤θ2 ≤ θ̄2. (3.4b)

Sensing is restricted to the boundary collocated with actuation, that is

y(t) = u(1, t) (3.5)
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Chapter 3. Collocated Sensing and Control

is the only available measurement. It is assumed that the initial conditions u(x, 0) =
u0(x), v(x, 0) = v0(x) satisfy

u0, v0 ∈ L2([0, 1]). (3.6)

The objective is to design a control input U(t) such that the system (3.1) is adap-
tively stabilized in the L2-sense and such that the objective

lim
t→∞

∫ t+T

t

|rv(0, τ)− u(0, τ)| dτ = 0 (3.7)

with
r /∈

[̄
θ1, θ̄1

]
, (3.8)

is achieved for some arbitrary T > 0.
The result in Aamo (2013) involves stabilization of (3.1) with the additive

boundary parameter θ2 unknown, but known multiplicative parameter θ1. System
(3.1) without the additive boundary parameter θ2 is adaptively stabilized in Anfin-
sen and Aamo (2017b) by using the same observer as in Anfinsen and Aamo (2016).
This is the first observer managing to estimate the unknown boundary parameters
as well as generating on-line estimates of the system states. The design involves
a backstepping technique with time-varying kernels. The same observer will be
used in this chapter and is presented in Section 3.2 with the main result, involving
an adaptive law and some additional properties, formally stated in Theorem 3.2.
An adaptive control law will be derived in Section 3.3 with the main result stated
in Theorem 3.4. Proof of Theorem 3.4, that is L2-boundedness and point-wise
boundedness of all signals in the closed loop system and convergence in the sense
of (3.7), is given in Section 3.4.

3.2 Observer Design
In this section, the observer from Anfinsen and Aamo (2016) will be presented
together with some additional properties needed for solving the adaptive control
problem, that were not proven in Anfinsen and Aamo (2016).

3.2.1 Observer Equations
Consider the observer

ût(x, t) + λûx(x, t) = c1(x)v̂(x, t) + P1(x, t) (y(t)− û(1, t)) (3.9a)
v̂t(x, t)− µv̂x(x, t) = c2(x)û(x, t) + P2(x, t) (y(t)− û(1, t)) (3.9b)

û(0, t) = θ̂1v̂(0, t) + θ̂2 (3.9c)
v̂(1, t) = U(t) (3.9d)

where û, v̂ are estimates of the system states with initial conditions û(x, 0) =
û0(x), v̂(x, 0) = v̂0(x) satisfying

û0, v̂0 ∈ L2([0, 1]). (3.10)
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3.2 Observer Design

The parameters θ̂1, θ̂2 are estimates of the boundary parameters θ1, θ2 respectively,
and P1, P2 are output injection gains to be specified.

Subtracting (3.9) from (3.1) gives the state estimation error dynamics

ũt(x, t) + λũx(x, t) = c1(x)ṽ(x, t)− P1(x, t)ũ(1, t) (3.11a)
ṽt(x, t)− µṽx(x, t) = c2(x)ũ(x, t)− P2(x, t)ũ(1, t) (3.11b)

ũ(0, t) = θ̂1ṽ(0, t) + θ̃1v(0, t) + θ̃2 (3.11c)
ṽ(1, t) = 0 (3.11d)

where ũ = u− û, ṽ = v − v̂, θ̃1 = θ1 − θ̂1 and θ̃2 = θ2 − θ̂2.

3.2.2 Decoupling the Observer Dynamics

The following lemma from Anfinsen and Aamo (2016) presents a backstepping
transformation and corresponding target system that will facilitate the design of
an adaptive law and the injection gains P1, P2 in (3.9).

Lemma 3.1 (Modified from Anfinsen and Aamo (2016, Lemma 1)). The backstep-
ping transformation

ũ(x, t) =α(x, t) +
∫ 1

x

Pu(x, ξ, t)α(ξ, t)dξ (3.12a)

ṽ(x, t) =β(x, t) +
∫ 1

x

P v(x, ξ, t)α(ξ, t)dξ (3.12b)

defined over

T1 = {(x, ξ, t) | 0 ≤ x ≤ ξ ≤ 1 ∩ t ≥ 0}, (3.13)

with Pu, P v satisfying the PDEs

Put (x, ξ, t) + λPux (x, ξ) + λPuξ (x, ξ) =c1(x)P v(x, ξ) (3.14a)
P vt (x, ξ, t)− µP vx (x, ξ) + λP vξ (x, ξ) =c2(x)Pu(x, ξ) (3.14b)

P v(x, x) = c2(x)
λ+ µ

(3.14c)

Pu(0, ξ) =θ̂1P
v(0, ξ), (3.14d)

maps the state estimation error dynamics (3.11) with

P1(x, t) =λPu(x, 1, t) (3.15a)
P2(x, t) =λP v(x, 1, t) (3.15b)
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into the target system

αt(x, t) + λαx(x, t) =c1(x)β(x, t)−
∫ 1

x

D1(x, ξ)β(ξ, t)dξ (3.16a)

βt(x, t)− µβx(x, t) =−
∫ 1

x

D2(x, ξ)β(ξ, t)dξ (3.16b)

α(0, t) =θ̂1β(0, t) + θ̃1v(0, t) + θ̃2 (3.16c)
β(1, t) =0 (3.16d)

where

D1(x, ξ, t) =Pu(x, ξ, t)c1(ξ)−
∫ xξ

x

Pu(x, s, t)D1(s, ξ, t)ds (3.17a)

D2(x, ξ, t) =P v(x, ξ, t)c1(ξ)−
∫ ξ

x

P v(x, s, t)D1(s, ξ, t)ds. (3.17b)

Furthermore, the transformation (3.12) is invertible, the kernel equation (3.14) has
a unique, bounded solution for any bounded θ̂1, θ̂2 and initial states

Pu(x, ξ, 0), P v(x, ξ, 0) ∈ L2(T1), (3.18)

and the Volterra equation (3.17) has a unique solution.

Proof. For the derivation of (3.14)–(3.17), see the proof of Lemma 1 in Anfinsen
and Aamo (2016). For uniqueness and boundedness of (3.14) see Anfinsen and
Aamo (2016, Lemma 4). Following the well-behavedness of Pu, P v, a solution
to the Volterra equation (3.17) is ensured by Anfinsen and Aamo (2016, Lemma
5).

Let

dα = 1
λ

(3.19a)

dβ = 1
µ

(3.19b)

tF = dα + dβ . (3.20)

It should be noted that the β-subsystem in (3.16b) and (3.16d) is independent of α
and will be β ≡ 0 for t > dβ . Thus, for t > dβ , the target system (3.16) is reduced
to

αt(x, t) + λαx(x, t) =0 (3.21a)
α(0, t) =θ̃1v(0, t) + θ̃2. (3.21b)
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3.2.3 Adaptive Law
In Anfinsen and Aamo (2016, Lemma 2), it was shown that for t > tF , the signals

ϑ(t) =y(t)− û(1, t) + θ̂1(t− dα)v̄(t) + θ̂2(t− dα) (3.22a)
v̄(t) =v̂(0, t− dα)

+
∫ 1

0
P v(0, ξ,−t− dα)y(t− ξ

λ
)dξ

−
∫ 1

0
P v(0, ξ,−t− dα)û(1, t− ξ

λ
)dξ (3.22b)

are related to the unknown parameters through the linear parametric model

ϑ(t) = ψT (t)θ (3.23)

where

ψ(t) =
[
v̄(t) 1

]T (3.24a)

θ =
[
θ1 θ2

]T
. (3.24b)

In addition, the relationship

v̄(t) = v(0, t− dα) (3.25)

holds for t > tF .
The linear relationship (3.23) facilitates for the application of any standard

identification law. We use the gradient method with normalization and projection
(see Appendix B.1). State estimates can then be generated by combining the
resulting parameter estimates with the observer (3.9). The adaptive law will be
restated here together with some properties needed for adaptive control design.
This is a modification of Anfinsen and Aamo (2017b, Theorem 3) with the additive
boundary parameter θ2 included.

Theorem 3.2 (Modified from Theorem 3 in Anfinsen and Aamo (2017b)). Con-
sider the adaptive law

˙̂
θ(t) =

{
Proj

¯
θ,θ̄

(
Γϑ(t)−ψT (t)θ̂(t)

1+ψT (t)ψ(t) ψ(t)
)

for t > tF

0 otherwise
(3.26)

for some adaptation gain Γ = ΓT > 0, where

θ̂(t) =
[
θ̂1(t) θ̂2(t)

]T (3.27a)

¯
θ(t) =

[̄
θ1(t)

¯
θ2(t)

]T (3.27b)

θ̄(t) =
[
θ̄1(t) θ̄2(t)

]T
, (3.27c)
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the signals ϑ, ψ generated from (3.22a) and (3.22b) respectively, tF is defined in
(3.20), and Proj(·) is the projection operator defined in Appendix B.1. Suppose
system (3.1) and observer (3.9) have a unique solution u, v, û, v̂ ∈ L2([0, 1]) ∀t ≥ 0
and the initial estimates θ̂0 = θ̂(0) are within the bounds (3.3), then the adaptive
law (3.26) has the following properties:

I)
θ̂(t) ∈ [

¯
θ, θ̄] (3.28)

for all t > 0.

II)
˙̂
θ1,

˙̂
θ2, ∈ L∞ ∩ L2. (3.29)

III)
θ̃1(·)v(0, ·) + θ̃2(·)√

2 + v2(0, ·)
∈ L2. (3.30)

IV) If v̄ ∈ L∞, then
û(x, ·), v̂(x, ·) ∈ L∞ (3.31)

for all x ∈ [0, 1].

V) If ψ(t) is persistently exciting (PE), that is, there exist positive constants
T, T1, k1, k2 so that

k1I ≥
1
T

∫ t+T

t

ψ(τ)ψT (τ)dτ ≥ k2I (3.32)

for t > T1, then the estimates θ̂1, θ̂2, û(x, ·), v̂(x, ·) converge exponentially to
their true values for all x ∈ [0, 1].

Proof. From Ioannou and Sun (2012, Theorem 4.4.1), the gradient adaptive law
(3.26) with the projection retain all properties that are established in the absence of
projection. Therefore, in proving properties I through IV the unprojected adaptive
law

˙̂
θ(t) = Γϑ(t)− ψT (t)θ̂(t)

1 + ψT (t)ψ(t) ψ(t) (3.33)

will be considered. Furthermore, the projection operator will guarantee that the
estimates θ1, θ2 remain within the bounds (3.3) for all t > 0.

Inserting the parametric model (3.23) into the right hand side of (3.33) and
using θ̃ = θ − θ̂ for t > tF give

˙̂
θ(t) = Γ ψT (t)θ̃(t)

1 + ψT (t)ψ(t)ψ(t). (3.34)
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Forming the Lyapunov function

V0 = 1
2 θ̃

T (t)Γ−1θ̃(t), (3.35)

differentiating with respect to time and inserting (3.34) give

V̇0 =− θ̃T (t)Γ−1 ˙̂
θ(t)

=− θ̃T (t) ψT (t)θ̃(t)
1 + ψT (t)ψ(t)ψ(t)

=−
(
ψT (t)θ̃(t)

)2
1 + ψT (t)ψ(t)

≤0. (3.36)

Hence,
V0 ∈ L∞ (3.37)

Noting that
ψT (t)√

1 + ψT (t)ψ(t)
∈ L∞ (3.38)

and using (3.37) imply
ψT (t)θ̃(t)√

1 + ψT (t)ψ(t)
∈ L∞. (3.39)

Integrating (3.36) from t = 0 to t = ∞, using that V0 ≥ 0 is a non-increasing
function of time, gives∫ ∞

0

(
ψT (τ)θ̃(τ)

)2
1 + ψT (τ)ψ(τ)dτ = −

∫ ∞
0

V̇0(τ)dτ = V0(0)− V0(∞) <∞, (3.40)

and therefore
ψT (τ)θ̃(τ)√

1 + ψT (τ)ψ(τ)
∈ L2. (3.41)

From (3.34), one has

|| ˙̃θ|| = || ˙̂θ|| ≤ ||Γ||

∣∣∣∣∣
∣∣∣∣∣ ψT (τ)θ̃(τ)√

1 + ψT (τ)ψ(τ)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ψT (t)√

1 + ψT (t)ψ(t)

∣∣∣∣∣
∣∣∣∣∣ (3.42)

which together with (3.38), (3.39) and (3.41) give ˙̃θ = − ˙̂
θ ∈ L2 ∩L∞ and property

II.
Let γmin, γmax be the smallest and largest eigenvalue of Γ, respectively. Starting

from (3.36), a lower bound for V̇0 can be found as follows:

V̇0 =−
(
ψT (t)θ̃(t)

)2
1 + ψT (t)ψ(t)
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=− θ̃T (t) ψ(t)ψT (t)
1 + ψT (t)ψ(t) θ̃(t)

≥− θ̃T (t)θ̃(t)

≥− 2γmax
1
2 θ̃

T (t)Γ−1θ̃(t)

≥− 2γmaxV0. (3.43)

A lower bound for V0 can now be found by using the method of separation of
variables (see Appendix B.2) as

V̇0 ≥− 2γmaxV0

V̇0

V0
≥− 2γmax∫ V0(t)

V0(t−dα)

dV0

V0
≥−

∫ t

t−dα
2γmaxdτ

ln
(

V0(t)
V0(t− dα)

)
≥− 2dαγmax

(3.44)

and solving for V0(t) to yield

V0(t) ≥ e−2dαγmaxV0(t− dα), (3.45)

which shows that the decay rate of V0 is at maximum exponential. Again, using
the definition of V0 in (3.35) one obtains

θ̃T (t)θ̃(t) ≥2γmin
1
2 θ̃

T (t)Γ−1θ̃(t)

=2γminV0(t)
≥2γmine−2dαγmaxV0(t− dα)

=2γmine−2dαγmax 1
2 θ̃

T (t− dα)Γ−1θ̃(t− dα)

≥ γmin
γmax

e−2dαγmax θ̃T (t− dα)θ̃(t− dα) (3.46)

The relation (3.46) can now be substituted into (3.36) to yield

V̇0 =−
(
ψT (t)θ̃(t)

)2
1 + ψT (t)ψ(t)

≤− γmin
γmax

e−2dαγmax

(
ψT (t)θ̃(t− dα)

)2
1 + ψT (t)ψ(t)

(3.47)
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Integrating (3.47) from t = 0 to t = ∞ and using that V0 ≥ 0 is a non-increasing
function of time give

∫ ∞
0

γmin
γmax

e−2dαγmax

(
ψT (t)θ̃(t− dα)

)2
1 + ψT (t)ψ(t) dτ ≤−

∫ ∞
0

V̇0(τ)dτ

=V0(0)− V0(∞)
<∞, (3.48)

which shows that ∫ ∞
0

(
ψT (t)θ̃(t− dα)

)2
1 + ψT (t)ψ(t) <∞. (3.49)

Inserting (3.24) and (3.25) into (3.49) give property III.
From (3.21), θ̂1, θ̂2 ∈ L∞ and the assumption that v̄ is bounded one gets

α(x, ·) ∈ L∞ for all x ∈ [0, 1]. Boundedness of the kernels, stated in Lemma 3.1,
give property IV.

For the PE property, if ψ(t) is PE, then from Theorem 4.3.2 in Ioannou and
Sun (2012), θ̂ converges exponentially to θ. From (3.21), α(x, ·) will converge
exponentially to zero for all x ∈ [0, 1], and from (3.12) and using that β ≡ 0 for t >
tF , û(x, ·), v̂(x, ·) will converge exponentially to u(x, ·), v(x, ·) for all x ∈ [0, 1].

3.3 Closed Loop Adaptive Control
The main result from this section will be a control law U(t) that, together with
Theorem 3.2, adaptively stabilizes (3.1) in the L2-sense and achieves (3.7). An-
finsen and Aamo (2017b) consider adaptive control of (3.1) without the additive
boundary term θ2 and with control objective u(x, ·) = v(x, ·) = 0 for all x ∈ [0, 1]
asymptotically. This section will start off by restating some of the operators from
Anfinsen and Aamo (2017b) and their properties, before the main theorem is pre-
sented. The stability proof is deferred to Section 3.4.

3.3.1 Backstepping Operators

Consider the operators from Anfinsen and Aamo (2017b)

K,K0 : L2([0, 1])× L2([0, 1])→ L2([0, 1]) (3.50)

given as

K[a, b](x) = b(x)−K0[a, b](x) (3.51a)

K0[a, b](x) =
∫ x

0
Ku(x, ξ)a(ξ)dξ +

∫ x

0
Kv(x, ξ)b(ξ)dξ (3.51b)
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where a(x), b(x) are two signals defined for x ∈ [0, 1] and (Ku,Kv) is the solution
to the time-invariant system

µKu
x (x, ξ)− λKu

ξ (x, ξ) =c2(ξ)Kv(x, ξ) (3.52a)
µKv

x(x, ξ) + µKv
ξ (x, ξ) =c1(ξ)Ku(x, ξ) (3.52b)

Ku(x, x) =− c2(x)
λ+ µ

(3.52c)

Kv(x, 0) =0 (3.52d)

defined over
T2 = {(x, ξ) | 0 ≤ ξ ≤ x ≤ 1}. (3.53)

Consider also the operator from Anfinsen and Aamo (2017b)

G[t],G0[t] : L2([0, 1])→ L2([0, 1]), (3.54)

given as

G[a; t](x) =a(x)− G0[a; t](x) (3.55a)

G0[a; t](x) = 1
µ

∫ x

0
g(x− ξ, t)a(ξ)dξ (3.55b)

where g is the on-line solution to the Volterra equation

g(x, t) = −G[θ̂1H](x, t) (3.56)

where
H(x) = −λKu(x, 0). (3.57)

The kernel (Ku,Kv) is time-invariant and can therefore be calculated off-line, while
g is time-dependent and must be calculated on-line.

In the following lemma, which is taken almost verbatim from Anfinsen and
Aamo (2016), some useful properties regarding the operatorsK0,K,G0,G are stated.

Lemma 3.3 (Lemma 5 and 6 from Anfinsen and Aamo (2017b)). The system
(3.52) has a bounded, continuous and unique solution (Ku,Kv). Moreover, the
mapping (a, b)→ (ā, b̄) given by

ā(x) =a(x)
b̄(x) =K[a, b](x) (3.58)

is invertible with unique and bounded inverse transformation kernels.1
For every bounded θ̂1, equation (3.56) has a unique solution that satisfies

|g(x, t)| ≤ h1|θ̂1(t)| (3.59)
1see Anfinsen and Aamo (2016) for details.
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for some h1 > 0. The time derivative of g satisfies

|gt(x, t)| ≤ h2| ˙̂θ1(t)| (3.60)

for some h2 > 0. The transformation a→ ā given by

ā(x) = G[a; t](x) (3.61)

is invertible with inverse

a(x) = ā(x) +
∫ x

0
G0(x, ξ, t)ā(ξ)dξ (3.62)

where G0 is the solution to the Volterra equation

G0(x, ξ, t) = 1
µ
g(x− ξ) + 1

µ

∫ x

ξ

g(x− s)G0(s, ξ, t)ds (3.63)

which has a bounded, unique solution G0 for every t.
Proof. See Anfinsen and Aamo (2017b).

3.3.2 Main Result
Theorem 3.4. Consider the system (3.1), the observer (3.9) and the adaptive law
(3.26). The control law

U(t) = K0[û, v̂](1, t) + G0[K[û, v̂]; t](1, t) + θ̂2(t)
r − θ̂1(t)

− 1
µ

∫ 1

0
G[H; t](ξ, t)dξθ̂2(t)

(3.64)
where K,K0,G,G0 are the operators defined in (3.51) and (3.55), H is defined
in (3.57), r satisfies (3.8), and θ̂1, θ̂2 are generated from the adaptive law (3.26),
guarantees (3.7). Moreover, all signals in the closed loop system are bounded,∫ t+T

t

|ũ(0, τ)| dτ → 0 (3.65)

and
ṽ(0, t)→ 0. (3.66)

It should be noted that for θ2 = 0 and θ̂2 ≡ 0, the control law (3.64) reduces to
the control law presented in Anfinsen and Aamo (2016, Theorem 4). In that case,
the only solution satisfying (3.7) with r 6= θ1 is u(0, t), v(0, t)→ 0.

Proof of Theorem 3.4 is deferred to Section 3.4. The rest of this section will
present the derivation of the control law (3.64). To improve readability, the control
law U(t) is decomposed into three parts

U(t) = U1(t) + U2(t) + U3(t) (3.67)

where U1 facilitates decoupling of the observer dynamics, U2 eliminates boundary
terms and brings the system into an equivalent target system for which stability
analysis is easier and U3 implements reference tracking so that the objective (3.7)
is achieved. Each term is presented in separate sections and lemmas.
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3.3.3 Decoupling of the Observer Dynamics
Lemma 3.5. Consider the observer (3.9) and the operators K and K0 from (3.51).
The transformation

w(x, t) = û(x, t) (3.68a)
z(x, t) = K[û, v̂](x, t), (3.68b)

and the control law (3.67) with

U1(t) =K0[û, v̂](1, t)
(3.69)

map (3.9) into the target system

wt(x, t) + λwx(x, t) =c1(x)z(x, t) + P1(x, t)α(1, t)

+
∫ x

0
κ1(x, ξ)w(ξ, t)dξ +

∫ x

0
κ2(x, ξ)z(ξ, t)dξ (3.70a)

zt(x, t)− µzx(x, t) =Ω(x, t)α(1, t) + θ̂1H(x)z(0, t) + θ̂2H(x) (3.70b)
w(0, t) =θ̂1z(0, t) + θ̂2 (3.70c)
z(1, t) =U2(t) + U3(t) (3.70d)

where
Ω(x) = K[P1, P2](x), (3.71)

H is defined in (3.57), κ1 and κ2 are given by

κ1(x, ξ) =c1(x)Ku(x, ξ) +
∫ x

ξ

κ2(x, s)Ku(s, ξ)ds (3.72a)

κ2(x, ξ) =c1(x)Kv(x, ξ) +
∫ x

ξ

κ2(x, s)Kv(s, ξ)ds, (3.72b)

α is defined in (3.12), θ̂1, θ̂2 are obtained from (3.26) in Theorem 3.2, and U2, U3
are control signals to be designed.

Proof. From (3.68b) and the definition (3.51), partial differentiation with respect
to time, inserting the dynamics (3.9) and integration by parts give

v̂t(x, t)−
∫ x

0
Ku(x, ξ)ût(ξ, t)dξ −

∫ x

0
Kv(x, ξ)v̂t(ξ, t)dξ

=v̂t(x, t)

−
∫ x

0
Ku(x, ξ) (−λûξ(ξ, t) + c1(ξ)v̂(ξ, t) + P1(ξ, t)ũ(1, t)) dξ

−
∫ x

0
Kv(x, ξ) (µv̂ξ(ξ, t) + c2(ξ)û(ξ, t) + P2(ξ, t)ũ(1, t)) dξ

=v̂t(x, t)
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+Ku(x, x)λû(x, t)−Ku(x, 0)λû(0, t)−
∫ x

0
Ku
ξ (x, ξ)λû(ξ, t)dξ

−
∫ x

0
Ku(x, ξ)c1(ξ)v̂(ξ, t)dξ −

∫ x

0
Ku(x, ξ)P1(ξ, t)ũ(1, t)dξ

−Kv(x, x)µv̂(x, t) +Kv(x, 0)µv̂(0, t) +
∫ x

0
Kv
ξ (x, ξ)µv̂(ξ, t)dξ

−
∫ x

0
Kv(x, ξ)c2(ξ)û(ξ, t)dξ −

∫ x

0
Kv(x, ξ)P2(ξ, t)ũ(1, t)dξ. (3.73)

Similarly differentiating with respect to space and applying Leibniz’ differentiation
rule (see Appendix A.8) give

zx(x, t) =v̂x(x, t)

−Ku(x, x)û(x, t)−
∫ x

0
Ku
x (x, ξ)û(ξ, t)dξ

−Kv(x, x)v̂(x, t)−
∫ x

0
Kv
x(x, ξ)v̂(ξ, t)dξ. (3.74)

Substituting (3.73) and (3.74) into the dynamics (3.9b) and using (3.52), (3.57)
and (3.71) one finds

zt(x, t)− µzx(x, t)

=Ku(x, x)λû(x, t)−Ku(x, 0)λû(0, t)−
∫ x

0
Ku
ξ (x, ξ)λû(ξ, t)dξ

−
∫ x

0
Ku(x, ξ)c1(ξ)v̂(ξ, t)dξ −

∫ x

0
Ku(x, ξ)P1(ξ, t)ũ(1, t)dξ

−Kv(x, x)µv̂(x, t) +Kv(x, 0)µv̂(0, t) +
∫ x

0
Kv
ξ (x, ξ)µv̂(ξ, t)dξ

−
∫ x

0
Kv(x, ξ)c2(ξ)û(ξ, t)dξ −

∫ x

0
Kv(x, ξ)P2(ξ, t)ũ(1, t)dξ

+ µ

(
Ku(x, x)û(x, t) +

∫ x

0
Ku
x (x, ξ)û(ξ, t)dξ

+Kv(x, x)v̂(x, t) +
∫ x

0
Kv
x(x, ξ)v̂(ξ, t)dξ

)
+ c2(x)û(x, t) + P2(x, t)ũ(1, t)

=−
∫ x

0

[
Ku
ξ (x, ξ)λû(ξ, t) +Kv(x, ξ)c2(ξ)û(ξ, t)− µKu

x (x, ξ)
]︸ ︷︷ ︸

=0

û(ξ, t)dξ

−
∫ x

0

[
Ku(x, ξ)c1(ξ)v̂(ξ, t)−Kv

ξ (x, ξ)µv̂(ξ, t)− µKv
x(x, ξ)

]︸ ︷︷ ︸
=0

v̂(ξ, t)dξ

+ [Ku(x, x)λ+ µKu(x, x) + c2(x)]︸ ︷︷ ︸
=0

û(x, t)
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+
[
P2(x, t)−

∫ x

0
Ku(x, ξ)P1(ξ, t)−

∫ x

0
Kv(x, ξ)P2(ξ, t)

]
︸ ︷︷ ︸

=Ω(x,t)

α(1, t)

−

θ̂1K
u(x, 0)λ︸ ︷︷ ︸
−H(x)

−Kv(x, 0)µ︸ ︷︷ ︸
=0

 z(0, t)−Ku(x, 0)λ︸ ︷︷ ︸
H(x)

θ̂2

=Ω(x, t)α(1, t) + θ̂1H(x)z(0, t) + θ̂2H(x) (3.75)

Inserting (3.68) into (3.70a) gives

wt(x, t) + λwx(x, t) =c1(x)v̂(x, t) + P1(x, t) (y(t)− û(1, t))
=c1(x)z(x, t) + P1(x, t)α(1, t)

+ c1(x)
∫ x

0
Ku(x, ξ)û(ξ, t)dξ + c1(x)

∫ x

0
Kv(x, ξ)v̂(ξ, t)dξ

=c1(x)z(x, t) + P1(x, t)α(1, t)

+
∫ x

0
κ1(x, ξ)w(ξ, t)dξ +

∫ x

0
κ2(x, ξ)z(ξ, t)dξ. (3.76)

The relation (3.72) is obtained by subtracting (3.70a) from (3.76):

0 =− c1(x)
∫ x

0
Ku(x, ξ)û(ξ, t)dξ − c1(x)

∫ x

0
Kv(x, ξ)v̂(ξ, t)dξ

+
∫ x

0
κ1(x, ξ)w(ξ, t)dξ +

∫ x

0
κ2(x, ξ)z(ξ, t)dξ

=−
∫ x

0
c1(x)Ku(x, ξ)û(ξ, t)dξ −

∫ x

0
c1(x)Kv(x, ξ)v̂(ξ, t)dξ

+
∫ x

0
κ1(x, ξ)û(ξ, t)dξ

+
∫ x

0
κ2(x, ξ)

(
v̂(ξ, t)−

∫ ξ

0
Ku(ξ, s)û(s, t)ds−

∫ ξ

0
Kv(ξ, s)v̂(s, t)ds

)
dξ

=
∫ x

0
[−c1(x)Ku(x, ξ) + κ1(x, ξ)] û(ξ, t)dξ

+
∫ x

0
[−c1(x)Kv(x, ξ) + κ2(x, ξ)] v̂(ξ, t)dξ

+
∫ x

0
κ2(x, ξ)

(
−
∫ ξ

0
Ku(ξ, s)û(s, t)ds−

∫ ξ

0
Kv(ξ, s)v̂(s, t)ds

)
dξ

=
∫ x

0
[−c1(x)Ku(x, ξ) + κ1(x, ξ)] û(ξ, t)dξ

+
∫ x

0
[−c1(x)Kv(x, ξ) + κ2(x, ξ)] v̂(ξ, t)dξ
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−
∫ x

0

∫ x

ξ

κ2(x, s)Ku(s, ξ)û(ξ, t)dsdξ −
∫ x

0

∫ x

ξ

κ2(x, s)Kv(s, ξ)v̂(ξ, t)dsdξ

=
∫ x

0

[
−c1(x)Ku(x, ξ) + κ1(x, ξ)−

∫ x

ξ

κ2(x, s)Ku(s, ξ)ds
]

︸ ︷︷ ︸
=0

û(ξ, t)dξ

+
∫ x

0

[
−c1(x)Kv(x, ξ) + κ2(x, ξ)−

∫ x

ξ

κ2(x, s)Kv(s, ξ)ds
]

︸ ︷︷ ︸
=0

v̂(ξ, t)dξ. (3.77)

Evaluating (3.68b) at x = 1, and inserting (3.9b) and (3.69) give (3.70d):

z(1, t) =v̂(1, t)−
∫ 1

0
Ku(1, ξ)û(ξ, t)dξ −

∫ 1

0
Kv(1, ξ)v̂(ξ, t)dξ

=U(t)−
∫ 1

0
Ku(1, ξ)û(ξ, t)dξ −

∫ 1

0
Kv(1, ξ)v̂(ξ, t)dξ

=U2(t) + U3(t). (3.78)

The last boundary condition (3.70c) follows from inserting (3.68) into (3.9c).

The significance of Lemma 3.5 is that subsystem (3.70b) is independent of w. If
z, α, θ̂1, θ̂2 are bounded, then it can be noted from the transport equation (3.70a)
and boundary condition (3.70c) that w will be bounded as well. Furthermore,
w(0, t) is uniquely determined by θ̂1, θ̂2, z in (3.70c). The problem of stabilizing
(3.1) is therefore reduced to stabilizing z and α.

3.3.4 Elimination of Boundary Terms
Lemma 3.6. Consider the subsystem (3.70b) and (3.70d) and the operators G,G0
from (3.55). The transformation

ζ(x, t) = G[z; t](x, t), (3.79)

and control law
U2 = G0[z; t](1, t), (3.80)

map the system (3.70b) and (3.70d) into the target system

ζt(x, t)− µζx(x, t) =
∫ x

0
B(x, ξ, t)ζ(ξ, t)dξ + Ω1(x, t)α(1, t) +H1(x, t)θ̂2 (3.81a)

ζ(1, t) =U3(t) (3.81b)

where
Ω1(x, t) = G[Ω; t](x, t) (3.82)

H1(x, t) = G[H; t](x, t) (3.83)
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and
B(x, ξ, t) = − 1

µ
gt(x− ξ, t)−

1
µ

∫ x

ξ

gt(x− s, t)G0(s, ξ, t)ds (3.84)

has the property

||B||2 =
∫ 1

0

∫ x

0
B2(x, ξ, ·)dξdx ∈ L1 ∩ L∞ (3.85)

for all (x, ξ) ∈ T2 with T2 defined in (3.53).

Proof. Differentiating (3.79) with respect to time, inserting the dynamics (3.70b)
and integrating by parts yield

ζt(x, t) =zt(x, t)

−
∫ x

0

1
µ
gt(x− ξ, t)z(ξ, t)dξ −

∫ x

0

1
µ
g(x− ξ, t)zt(ξ, t)dξ

=zt(x, t)

−
∫ x

0

1
µ
gt(x− ξ, t)z(ξ, t)dξ −

∫ x

0

1
µ
g(x− ξ, t)

×
(
µzξ(ξ, t) + Ω(ξ, t)α(1, t) + θ̂1H(ξ)z(0, t) + θ̂2H(ξ)

)
dξ

=zt(x, t)

−
∫ x

0

1
µ
gt(x− ξ, t)z(ξ, t)dξ − g(0, t)z(x, t) + g(x, t)z(0, t)

−
∫ x

0
gξ(x− ξ, t)z(ξ, t)dξ −

∫ x

0

1
µ
g(x− ξ, t)Ω(ξ, t)α(1, t)dξ

−
∫ x

0

1
µ
g(x− ξ, t)θ̂1H(ξ)z(0, t)dξ −

∫ x

0

1
µ
g(x− ξ, t)θ̂2H(ξ)dξ. (3.86)

Similarly, differentiating with respect to space yields

ζx(x, t) =zx(x, t)− 1
µ
g(0, t)z(x, t)−

∫ x

0

1
µ
gx(x− ξ, t)z(ξ, t)dξ. (3.87)

Inserting (3.82), (3.83), (3.86) and (3.87) into (3.70b) give (3.81a):

ζt(x, t)− µζx(x, t) =−
∫ x

0

1
µ
gt(x− ξ, t)z(ξ, t)dξ − g(0, t)z(x, t) + g(x, t)z(0, t)

−
∫ x

0
gξ(x− ξ, t)z(ξ, t)dξ −

∫ x

0

1
µ
g(x− ξ, t)Ω(ξ, t)α(1, t)dξ

−
∫ x

0

1
µ
g(x− ξ, t)θ̂1H(ξ)z(0, t)dξ

−
∫ x

0

1
µ
g(x− ξ, t)θ̂2H(ξ)dξ
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+ µ

(
1
µ
g(0, t)z(x, t) +

∫ x

0

1
µ
gx(x− ξ, t)z(ξ, t)dξ

)
+ Ω(x, t)α(1, t) + θ̂1H(x)z(0, t) + θ̂2H(x)

=−
∫ x

0

1
µ
gt(x− ξ, t)z(ξ, t)dξ

+
[
Ω(x, t)−

∫ x

0

1
µ
g(x− ξ, t)Ω(ξ, t)dξ

]
α(1, t)

+
[
θ̂1H(x) + g(x, t)− θ̂1

∫ x

0

1
µ
g(x− ξ, t)H(ξ)dξ

]
z(0, t)

+
[
H(x)−

∫ x

0

1
µ
g(x− ξ, t)H(ξ)dξ

]
θ̂2

=
∫ x

0

(
− 1
µ
gt(x− ξ, t)−

∫ x

ξ

1
µ
gt(x− s, t)G0(s, ξ, t)ds

)
× ζ(ξ, t)dξ + Ω1(x, t)α(1, t) +H1(x, t)θ̂2

=
∫ x

0
B(x, ξ, t)ζ(ξ, t)dξ + Ω1(x, t)α(1, t) +H1(x, t)θ̂2 (3.88)

Evaluating (3.79) at x = 1, and inserting (3.70d) and (3.80) give (3.81b):

ζ(1, t) =z(1, t)−
∫ 1

0

g(1− ξ, t)
µ

z(ξ, t)dξ

=U2(t) + U3(t)−
∫ 1

0

g(1− ξ, t)
µ

z(ξ, t)dξ

=U3(t) (3.89)

Boundedness and square integrability of B in (3.84) follows from boundedness of
G0 and property (3.60) in Lemma 3.3:

||B||2 ≤ 1
µ

∫ 1

0

∫ x

0
|gt|2dξdx+ 1

µ

∫ 1

0

∫ x

0

∫ x

ξ

|gt(x− s, t)G0(s, ξ, t)|2dsdξdx

≤ 1
µ

∫ 1

0

∫ x

0
|gt|2dξdx+ 1

µ
Ḡ2

0

∫ 1

0

∫ x

0

∫ x

ξ

|gt(x− s, t)|2dsdξdx

≤h2

µ

∫ 1

0

∫ x

0

∣∣∣ ˙̂θ1(t)
∣∣∣2 dξdx+ h2

µ
Ḡ2

0

∫ 1

0

∫ x

0

∫ x

ξ

∣∣∣ ˙̂θ1(t)
∣∣∣2 dsdξdx

=h2

µ

∣∣∣ ˙̂θ1(t)
∣∣∣2 ∫ 1

0

∫ x

0
dξdx+ h2

µ
Ḡ2

0

∣∣∣ ˙̂θ1(t)
∣∣∣2 ∫ 1

0

∫ x

0

∫ x

ξ

dsdξdx

≤h′2
∣∣∣ ˙̂θ1(t)

∣∣∣2 , (3.90)
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for some constant h′2 > 0. By the boundedness and square integrability property
of ˙̂
θ1(t) from Theorem 3.2, property (3.85) is obtained.

3.3.5 Reference Signal and Tracking
The set-point regulation problem of achieving (3.7) for the system (3.1), can be
transformed into a tracking problem for the ζ-system (3.81). Specifically, an equiv-
alent objective is for the ζ-system to track a time-varying reference signal ζ∗(t)
selected as

ζ∗(t) = θ̂2(t)
r − θ̂1(t)

(3.91)

where θ̂1(t), θ̂2(t) are generated using the adaptive law (3.26) in Theorem 3.2. The
following lemma motivates the use of this reference signal.

Lemma 3.7. Consider the reference signal (3.91). If, for some T > 0,∫ t+T

t

|ζ(0, τ)− ζ∗(τ)| dτ → 0 (3.92)

and r satisfies (3.8), then∫ t+T

t

|rv̂(0, τ)− û(0, τ)| dτ → 0. (3.93)

If in addition ∫ t+T

t

|α(0, τ)| dτ → 0 (3.94)

and
||α|| → 0 (3.95)

then the objective (3.7) is satisfied,∫ t+T

t

|ũ(0, τ)| dτ → 0 (3.96)

and
ṽ(0, t)→ 0. (3.97)

Proof. Starting with the integrand of (3.92), using transformation (3.79) and
(3.68b) evaluated at x = 0, rearranging and inserting the boundary condition
(3.9c) give

|ζ(0, τ)− ζ∗(τ)| = |z(0, τ)− ζ∗(τ)|

=

∣∣∣∣∣v̂(0, τ)− θ̂2(t)
r − θ̂1(t)

∣∣∣∣∣
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=
∣∣∣r − θ̂1(t)

∣∣∣
∣∣∣v̂(0, τ)− θ̂2(t)

r−θ̂1(t)

∣∣∣∣∣∣r − θ̂1(t)
∣∣∣

=

∣∣∣v̂(0, τ)r − θ̂1(t)v̂(0, τ)− θ̂2(t)
∣∣∣∣∣∣r − θ̂1(t)

∣∣∣
= |v̂(0, τ)r − û(0, t)|∣∣∣r − θ̂1(t)

∣∣∣ .

(3.98)

Since θ̂1(t) is generated using projection, implying θ̂1(t) ∈
[̄
θ1, θ̄1

]
and since, by

assumption, r /∈
[̄
θ1, θ̄1

]
, there exists a δ > 0 such that

|ζ(0, τ)− ζ∗(τ)| = |v̂(0, τ)r − û(0, t)|∣∣∣r − θ̂1(t)
∣∣∣ ≥ 1

δ
|v̂(0, τ)r − û(0, t)| (3.99)

Integrating both sides from τ = t to τ = t + T , it can be seen that (3.92) implies
(3.94) and the first part of the proof is complete.

For the second part; from the backstepping transformation (3.12), the fact that
β ≡ 0 for t > tβ , boundedness of the kernels Pu, P v from Lemma 3.1, and using
(3.94) and Cauchy-Schwarz’ inequality (see Lemma A.3), one obtains

|ũ(0, t)| ≤|α(0, t)|+
∫ 1

0
|Pu(0, ξ, t)α(ξ, t)| dξ

≤|α(0, t)|+
∫ 1

0
|Pu(0, ξ, t)||α(ξ, t)| dξ

≤|α(0, t)|+

√∫ 1

0
|Pu(0, ξ, t)|2 dξ

√∫ 1

0
|α(ξ, t)|2 dξ

≤|α(0, t)|+ h||α||, (3.100)

for some h > 0, and similarly that

ṽ(0, t) ≤ h||α||. (3.101)

If (3.94) and (3.95) hold, then (3.96) and (3.97) follow trivially. Next, starting
with (3.7) and substituting u = ũ+ û and v = ṽ + v̂ give∫ t+T

t

|rv(0, τ)− u(0, τ)| dτ =
∫ t+T

t

|rv̂(0, τ)− û(0, τ) + rṽ(0, τ)− ũ(0, τ)| dτ,

(3.102)
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Relation (3.100) and (3.101) can now be inserted to yield∫ t+T

t

|rv(0, τ)− u(0, τ)| dτ ≤
∫ t+T

t

|rv̂(0, τ)− û(0, τ)| dτ

+ |r|
∫ t+T

t

|ṽ(0, τ)| dτ

+
∫ t+T

t

|ũ(0, τ)| dτ

≤
∫ t+T

t

|rv̂(0, τ)− û(0, τ)| dτ

+
∫ t+T

t

|α(0, τ)| dτ

+ h′
∫ t+T

t

||α||dτ

(3.103)

for some constant h′ > 0. Finally, from (3.93)–(3.95), the right hand side will
converge to zero asymptotically and the objective (3.7) follows.

The problem of stabilizing (3.1) is now transformed to the problem of finding
a controller that achieves (3.92), (3.94) and (3.95).

A time delayed version of the signal (3.91) can be modeled as the simple trans-
port equation

φt(x, t)− µφx(x, t) = 0 (3.104a)
φ(1, t) = ζ∗(t) (3.104b)

with the explicit solution
φ(0, t) = ζ∗(t− dβ). (3.105)

Lemma 3.8. Consider system (3.81) and (3.104). The linear transformation

η(x, t) = ζ(x, t)− φ(x, t) +H2(x, t)θ̂2(t) (3.106)

and control law
U3(t) = ζ∗(t)−H2(1, t)θ̂2(t), (3.107)

map system (3.81) and (3.104) into the target system

ηt(x, t)− µηx(x, t) =H2(x, t) ˙̂
θ2(t) +

(
∂

∂t
H2(x, t)

)
θ̂2(t) + Ω1(x, t)α(1, t)

+
∫ x

0
B(x, ξ, t)

(
η(x, t)−H2(ξ, t)θ̂2(t) + φ(ξ, t)

)
dξ

(3.108a)
η(1, t) =0 (3.108b)
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where
H2(x, t) = 1

µ

∫ x

0
H1(ξ, t)dξ (3.109)

has the property ∣∣∣∣ ∂∂tH2(x, t)
∣∣∣∣ ≤ h3| ˙̂θ1| ∈ L2 ∩ L∞ (3.110)

for some h3 > 0. The reference signal ζ∗ is generated from (3.91) and ˙̂
θ2 from the

adaptive law (3.26).

Proof. Differentiating (3.106) with respect to time and space and inserting the
dynamics (3.81a) and (3.104a) yield

ηt(x, t) =ζt(x, t)− φt(x, t)

+ 1
µ

∫ x

0
H1(ξ, t)dξ ˙̂

θ2(t) + 1
µ

∫ x

0

∂

∂t
H1(ξ, t)dξ θ̂2(t) (3.111)

and

ηx(x, t) =ζx(x, t)− φx(x, t) + 1
µ
H1(x, t)θ̂2(t). (3.112)

Inserting (3.111) and (3.112) into (3.81a) and using (3.109) give (3.108a):

ηt(x, t)− µηx(x, t) =ζt(x, t)− φt(x, t) + 1
µ

∫ x

0
H1(ξ, t)dξ ˙̂

θ2(t)

+ 1
µ

∫ x

0

∂

∂t
H1(ξ, t)dξ θ̂2(t)

− µ
(
ζx(x, t)− φx(x, t) + 1

µ
H1(x, t)θ̂2(t)

)
=H2(x, t) ˙̂

θ2(t) + ∂

∂t
H2(x, t)θ̂2(t)−H1(x, t)θ̂2(t) + θ̂2(t)H1(x, t)

+
∫ x

0
B(x, ξ, t)ζ(ξ, t)dξ + Ω1(x, t)α(1, t)

=H2(x, t) ˙̂
θ2(t) + ∂

∂t
H2(x, t)θ̂2(t) + Ω1(x, t)α(1, t)

+
∫ x

0
B(x, ξ, t)

(
η(x, t)−H2(ξ, t)θ̂2(t) + φ(ξ, t)

)
dξ (3.113)

Evaluating (3.106) at x = 1, and inserting (3.81b), (3.104b) and (3.107) give
(3.108b):

η(1, t) =ζ(1, t)− φ(1, t) +H2(1, t) θ̂2(t)
=U3(t)− ζ∗(t) +H2(1, t) θ̂2(t)
=0 (3.114)
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Property (3.110) can be seen from

∂

∂t
H2(x, t) = 1

µ

∫ x

0

∂

∂t
H1(ξ, t)dξ

= 1
µ

∫ x

0

∂

∂t

[
H(ξ)−

∫ ξ

0

1
µ
g(ξ − s, t)H(s)ds

]
dξ

=− 1
µ2

∫ x

0

∫ ξ

0
gt(ξ − s, t)H(s)dsdξ

≤ 1
µ2

∫ x

0

∫ ξ

0
|gt(ξ − s, t)||H(s)|dsdξ (3.115)

where the definitions of H1 and H2 from (3.83) and (3.109) have been substituted
in. Using property (3.60) and boundedness of H from Lemma 3.3 give

∂

∂t
H2(x, t) ≤ 1

µ2h2

∫ x

0

∫ ξ

0
|H(s)|dsdξ|θ̂1(t)|

≤ 1
µ2h2H̄1

∫ x

0

∫ ξ

0
dsdξ|θ̂1(t)|

= 1
µ2h2H̄1

1
2x

2|θ̂1(t)|

≤ 1
2µ2h2H̄1|θ̂1(t)|

=h3|θ̂1(t)|. (3.116)

Finally, from Theorem 3.2, using that θ̂1 ∈ L2 ∩ L∞ gives (3.110).

From transformation (3.106) and definition (3.109), it can be seen that η(0, t) =
0 implies ζ(0, t) = φ(0, t) = ζ∗(t − dβ). A useful relationship between ζ∗(t) and
ζ∗(t− dβ) will be stated next.

Lemma 3.9. Consider the adaptive law (3.26). If all the assumptions in Theo-
rem 3.2 hold and r /∈

[̄
θ1, θ̄1

]
, then

ζ∗(t)→ ζ∗(t− dβ) (3.117)

where ζ∗ is defined in (3.91).

Proof. Consider the limit

lim
t→∞

[
θ̂i(t)− θ̂i(t− dβ)

]
(3.118)

where i ∈ {1, 2}. Using Cauchy-Schwarz’ inequality, the following relation can be
found

0 ≤ lim
t→∞

|θ̂i(t)− θ̂i(t− dβ)| ≤ lim
t→∞

∫ t

t−dβ

∣∣∣ ˙̂θi(τ)
∣∣∣ dτ
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≤ lim
t→∞

(∫ t

t−dβ
dτ

) 1
2
(∫ t

t−dβ

∣∣∣ ˙̂θi(τ)
∣∣∣2 dτ) 1

2

≤ 1√
λ

lim
t→∞

(∫ t

t−dβ

∣∣∣ ˙̂θi(τ)
∣∣∣2 dτ) 1

2

. (3.119)

From Theorem 3.2, we have ˙̂
θi ∈ L2 for i ∈ {1, 2}, meaning the last integral in

(3.119) converges to zero and by the squeeze theorem (see Lemma A.4)

lim
t→∞

[
θ̂i(t)− θ̂i(t− dβ)

]
= 0, (3.120)

or equivalently
θ̂i(t)→ θ̂i(t− dβ). (3.121)

Since r /∈
[̄
θ1, θ̄1

]
, (3.117) follows from (3.91).

3.4 Stability Proof
Stabilization of (3.1) and convergence in the sense of (3.7) will be proved by con-
sidering the coupled system consisting of

αt(x, t) + λαx(x, t) =0 (3.122a)

ηt(x, t)− µηx(x, t) =H2(x, t) ˙̂
θ2(t) + ∂

∂t
H2(x, t)θ̂2(t)

+ Ω1(x, t)α(1, t)

+
∫ x

0
B(x, ξ, t)

(
η(x, t)−H2(ξ, t)θ̂2(t) + φ(ξ, t)

)
dξ

(3.122b)
α(0, t) =θ̃1(t)v(0, t) + θ̃2(t) (3.122c)
η(1, t) =0 (3.122d)

and the adaptive law (3.26), where v(0, t) is related to ζ, ζ∗ and α through

v(0, t) = η(0, t) + ζ∗(t− dβ) +
∫ 1

0
P v(0, ξ, t)α(ξ, t)dξ. (3.123)

The relation (3.123) can be seen from using β ≡ 0 for t > dβ in (3.12b), the
transformations (3.68b), (3.79) and (3.106), and φ(0, t) = ζ∗(t− dβ).

Before proving Theorem 3.4, boundedness of the system states in L2([0, 1]),
boundedness pointwise in space and convergence of ||α||, ||η|| in L2([0, 1]) will be
proved in separate lemmas in the following sections. The concluding proof of
Theorem 3.4 is given in Section 3.4.4.
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3.4.1 Boundedness in L2([0, 1])
Lemma 3.10. Consider the Lyapunov function candidate

V3 = a1V1 + V2 (3.124)

where a1 > 0 is a constant to be decided, and

V1 =λ−1
∫ 1

0
e−δxα2(x, t)dx (3.125a)

V2 =µ−1
∫ 1

0
ekxη2(x, t)dx (3.125b)

where α, η are the system states in the coupled system (3.122), H2 and Ω1 are
defined in (3.109) and (3.83) respectively, θ̂1, θ̂2 are obtained from (3.26) in Theo-
rem 3.2 and v is related to the system states through (3.123).

With appropriately selected a1, δ and k, then (3.124) satisfies

V̇3 ≤ −h4V3 + l1(t)V3(t) + l2(t)−
(

1− h5

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t)

)
η2(0, t) (3.126)

for some constants h4, h5 > 0, and where l1(t), l2(t) ≥ 0 are real valued functions
given by

l1(t) =2a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t) (P̄ v)2eδλ+ ek||B||2 (3.127a)

l2(t) =
((
H̄2θ̄2

)2 +
(
ζ̄∗
)2
)
ekµ−1||B||2 + H̄2

µk

(
ek − 1

) ˙̂
θ2

2(t)

+ a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t)

(
2 + 4(ζ̄∗)2

)
+ θ̄2c

µk

(
ek − 1

) ˙̂
θ2

1(t) (3.127b)

satisfying
l1, l2 ∈ L1 ∩ L∞. (3.128)

Furthermore,
V3 ∈ L1 ∩ L∞ (3.129)

and
||α||, ||η||, ||û||, ||v̂||, ||u||, ||v|| ∈ L∞. (3.130)

Proof. Differentiating (3.125a) with respect to time, inserting the dynamics
(3.122a), (3.122c) and integration by parts give

V̇1 =− 2
∫ 1

0
e−δxα(x, t)αx(x, t)dx

=− e−δα2(1, t) + α2(0, t)− δ
∫ 1

0
e−δxα2(x, t)dx
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=− e−δα2(1, t) +
(
θ̃1(t)v(0, t) + θ̃2(t)

) 2 − δλV1

(3.131)

Similarly, differentiating (3.125b) with respect to time and inserting the dynamics
(3.122b) give

V̇2 =2
∫ 1

0
ekxµ−1η(x, t)ηt(x, t) dx

=2
∫ 1

0
ekxη(x, t)ηx(x, t) dx

+ 2
∫ 1

0
ekxµ−1η(x, t)

∫ x

0
B(x, ξ, t)η(ξ, t) dξ dx

+ 2
∫ 1

0
ekxµ−1η(x, t)

∫ x

0
B(x, ξ, t)(−H2(ξ))dξ dx θ̂2(t)

+ 2
∫ 1

0
ekxµ−1η(x, t)

∫ x

0
B(x, ξ, t)φ(ξ, t) dξ dx

+ 2
∫ 1

0
ekxµ−1η(x, t)Ω1(x, t) dx α(1, t)

+ 2
∫ 1

0
ekxµ−1η(x, t)H2(x, t)dx ˙̂

θ2(t)

+ 2
∫ 1

0
ekxµ−1η(x, t) ∂

∂t
H2(x, t)dx θ̂2(t). (3.132)

Each of the terms on the right hand side of (3.132) will be considered separately.

1st term: Integration by parts and using boundary condition (3.122d) give

2
∫ 1

0
ekxη(x, t)ηx(x, t)dx

=ekη2(1, t)− η2(0, t)−
∫ 1

0
kekxη2(x, t)dx

=− η2(0, t)− µkV2. (3.133)

2nd term: Using Young’s inequality (see Lemma A.2) to separate the cross-term,
and Cauchy-Schwarz’ inequality on the last term give

2
∫ 1

0
ekxµ−1η(x, t)

∫ x

0
B(x, ξ, t)η(ξ, t)dξdx

≤
∫ 1

0
ekxµ−1η2(x, t)dx+

∫ 1

0
ekxµ−1

(∫ x

0
B(x, ξ, t)η(ξ, t)dξ

)2
dx

≤
∫ 1

0
ekxµ−1η2(x, t)dx+ ekµ−1

∫ 1

0

(∫ x

0
B(x, ξ, t)η(ξ, t)dξ

)2
dx
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≤
∫ 1

0
ekxµ−1η2(x, t)dx+ ekµ−1

∫ 1

0

(∫ x

0
B2(x, ξ, t)dξ

∫ x

0
η2(ξ, t)dξ

)
dx

≤
∫ 1

0
ekxµ−1η2(x, t)dx+ ekµ−1

∫ 1

0

(∫ x

0
B2(x, ξ, t)dξ

∫ 1

0
η2(ξ, t)dξ

)
dx

≤
∫ 1

0
ekxµ−1η2(x, t)dx+ ekµ−1

∫ 1

0

∫ x

0
B2(x, ξ, t)dξdx

∫ 1

0
η2(x, t)dx

≤
∫ 1

0
ekxµ−1η2(x, t)dx+ ek

∫ 1

0

∫ x

0
B2(x, ξ, t)dξdx

∫ 1

0
ekxµ−1η2(x, t)dx

≤
(
1 + ek||B||

)
V2. (3.134)

3rd and 4th term: Again, separating the cross term using Young’s inequality
and using that H2, ζ∗ and θ̂2 are bounded give similarly for the 3rd and 4th term

2
∫ 1

0
ekxµ−1η(x, t)

∫ x

0
B(x, ξ, t)(−H2(ξ))dξ dx θ̂2(t)

=2
∫ 1

0

∫ x

0
ekxµ−1η(x, t)B(x, ξ, t)(−H2(ξ))dξ dx θ̂2(t)

≤
∫ 1

0
ekxµ−1η2(x, t)

∫ x

0
dξ dx+

∫ 1

0

∫ x

0
ekxµ−1B2(x, ξ, t)H2

2 (ξ))dξ dx θ̂2
2(t)

≤
∫ 1

0
ekxµ−1η2(x, t)x dx+

∫ 1

0

∫ x

0
ekxµ−1B2(x, ξ, t)H2

2 (ξ))dξ dx θ̂2
2(t)

≤
∫ 1

0
ekxµ−1η2(x, t)dx+

(
H̄2θ̄2

)2
ekµ−1

∫ 1

0

∫ x

0
B2(x, ξ, t))dξ dx

≤V2 +
(
H̄2θ̄2

)2
ekµ−1||B||2 (3.135)

and

+ 2
∫ 1

0
ekxµ−1η(x, t)

∫ x

0
B(x, ξ, t)φ(ξ, t) dξ dx

=2
∫ 1

0

∫ x

0
ekxµ−1η(x, t)B(x, ξ, t)φ(ξ, t) dξ dx

≤
∫ 1

0
ekxµ−1η2(x, t)

∫ x

0
dξ dx+

∫ 1

0

∫ x

0
ekxµ−1B2(x, ξ, t)φ2(ξ, t) dξ dx

≤
∫ 1

0
ekxµ−1η2(x, t)x dx+

∫ 1

0

∫ x

0
ekxµ−1B2(x, ξ, t)φ2(ξ, t)dξ dx

≤
∫ 1

0
ekxµ−1η2(x, t)dx+

(
ζ̄∗
)2
ekµ−1

∫ 1

0

∫ x

0
B2(x, ξ, t))dξ dx

≤V2 +
(
ζ̄∗
)2
ekµ−1||B||2. (3.136)
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5th and 6th term: Using that Ω1 and H2 are bounded, and separating the
cross-term using Young’s inequality give similarly for the 5th and 6th term

+ 2
∫ 1

0
ekxµ−1η(x, t)Ω1(x, t) dxα(1, t)

≤2Ω̄1

∫ 1

0
ekxµ−1|η(x, t)|dx |α(1, t)|

≤Ω̄1

∫ 1

0
ekxµ−1η2(x, t)dx+ Ω̄1

∫ 1

0
ekxµ−1dxα2(1, t)

≤Ω̄1V2 + Ω̄1

µk

(
ek − 1

)
α2(1, t) (3.137)

and

+ 2
∫ 1

0
ekxµ−1η(x, t)H2(x)dx ˙̂

θ2(t)

≤2H̄2

∫ 1

0
ekxµ−1|η(x, t)|dx | ˙̂θ2(t)|

≤H̄2

∫ 1

0
ekxµ−1η2(x, t)dx+ H̄2

∫ 1

0
ekxµ−1dx

˙̂
θ2

2(t)

≤H̄2V2 + H̄2

µk

(
ek − 1

) ˙̂
θ2

2(t). (3.138)

7th term: From boundedness of θ̂2, property (3.110) and Young’s inequality on
the cross term, one obtains

+ 2
∫ 1

0
ekxµ−1η(x, t) ∂

∂t
H2(x, t)dxθ̂2(t)

≤ 2θ̄2

∫ 1

0
ekxµ−1|η(x, t)|

∣∣∣∣ ∂∂tH2(x, t)
∣∣∣∣ dx

≤ 2θ̄2h3

∫ 1

0
ekxµ−1|η(x, t)|| ˙̂θ1(t)|dx

≤ θ̄2h3

∫ 1

0
ekxµ−1η2(x, t)dx+ θ̄2h3

∫ 1

0
ekxµ−1dx

˙̂
θ2

1(t)

≤ θ̄2h3V2 + θ̄2h3

µk

(
ek − 1

) ˙̂
θ2

1(t). (3.139)

Combining (3.131) and (3.132) to form V̇3 and inserting (3.133)–(3.139) into
(3.132) yield
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V̇3 ≤a1
(
−e−δα2(1, t) +

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2 − δλV1
)

− η2(0, t)− µkV2

+
(
1 + ek||B||2

)
V2

+ V2 +
(
H̄2θ̄2

)2
ekµ−1||B||2

+ V2 +
(
ζ̄∗
)2
ekµ−1||B||2

+ Ω̄1V2 + Ω̄1

µk

(
ek − 1

)
α2(1, t)

+ H̄2V2 + H̄2

µk

(
ek − 1

) ˙̂
θ2

2(t)

+ θ̄2h3V2 + θ̄2c

µk

(
ek − 1

) ˙̂
θ2

1(t). (3.140)

Selecting a1 = eδ Ω̄1
kµ (ek − 1) and δ = 1, (3.140) can be simplified to

V̇3 ≤a1
(
θ̃1(t)v(0, t) + θ̃2(t)

) 2 − η2(0, t)
− a1δλV1 −

(
µk − 3− Ω̄1 − H̄2 − θ̄2h3

)
V2

+ ek||B||2V2 +
((
H̄2θ̄2

)2 +
(
ζ̄∗
)2
)
ekµ−1||B||2

+ H̄2

µk

(
ek − 1

) ˙̂
θ2

2(t) + θ̄2h3

µk

(
ek − 1

) ˙̂
θ2

1(t). (3.141)

For k > 1
µ

(
3 + Ω̄1 + H̄2 + θ̄2c

)
, the 4th term in parentheses will be positive, yield-

ing

V̇3 ≤a1
(
θ̃1(t)v(0, t) + θ̃2(t)

) 2 − η2(0, t)
− h4V3

+ ek||B||2V2 +
((
H̄2θ̄2

)2 +
(
ζ̄∗
)2
)
ekµ−1||B||2

+ H̄2

µk

(
ek − 1

) ˙̂
θ2

2(t) + θ̄2c

µk

(
ek − 1

) ˙̂
θ2

1(t). (3.142)

The first term can be rewritten on the form considered in property III in Theo-
rem 3.2 as follows

V̇3 ≤a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t) (2 + v2(0, t))− η2(0, t)

− h4V3

+ ek||B||2V2 +
((
H̄2θ̄2

)2 +
(
ζ̄∗
)2
)
ekµ−1||B||2
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+ H̄2

µk

(
ek − 1

) ˙̂
θ2

2(t) + θ̄2c

µk

(
ek − 1

) ˙̂
θ2

1(t). (3.143)

Next, using relation (3.123), this can be written as

V̇3 ≤a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t)

(
2 + 4η2(0, t) + 4(ζ̄∗)2 + 2(P̄ v)2

∫ 1

0
α2(ξ, t)dξ

)
− η2(0, t)− h4V3

+ ek||B||2V2 +
((
H̄2θ̄2

)2 +
(
ζ̄∗
)2
)
ekµ−1||B||2

+ H̄2

µk

(
ek − 1

) ˙̂
θ2

2(t) + θ̄2c

µk

(
ek − 1

) ˙̂
θ2

1(t), (3.144)

and after some reorganizing of the terms, we end up with

V̇3 ≤a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t)

(
2 + 4(ζ̄∗)2

)
−

(
1− 4a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t)

)
η2(0, t)

+ 2a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t) (P̄ v)2eδλV1

− h4V3

+ ek||B||2V2

+
((
H̄2θ̄2

)2 +
(
ζ̄∗
)2
)
ekµ−1||B||2

+ H̄2

µk

(
ek − 1

) ˙̂
θ2

2(t) + θ̄2c

µk

(
ek − 1

) ˙̂
θ2

1(t)

≤− h4V3 −

(
1− 4a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t)

)
η2(0, t)

+
(

2a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t) (P̄ v)2eδλ+ ek||B||2
)
V3

+
((
H̄2θ̄2

)2 +
(
ζ̄∗
)2
)
ekµ−1||B||2

+ H̄2

µk

(
ek − 1

) ˙̂
θ2

2(t) + θ̄2c

µk

(
ek − 1

) ˙̂
θ2

1(t)

+ a1

(
θ̃1(t)v(0, t) + θ̃2(t)

) 2

2 + v2(0, t)

(
2 + 4(ζ̄∗)2

)
. (3.145)

From this last expression, substituting in l1(t) and l2(t) from (3.127) give the
desired result (3.126) with some constants h4 > 0 and h5 > 0.
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By using the definitions of θ̂(t) and ψ(t) from (3.27a) and (3.24a) respectively,
the last term in (3.126) can be written in vector form as(

θ̃1(t)v(0, t) + θ̃2(t)
) 2

2 + v2(0, t) = θ̂T (t) ψ(t+ dα)ψT (t+ dα)
1 + ψT (t+ dα)ψ(t+ dα) θ̂(t), (3.146)

where the relation (3.25) has been used. Now, from (3.47), the term (3.146) can
be recognized to satisfy

V̇0(t) ≤ −h5θ̂
T (t) ψ(t+ dα)ψT (t+ dα)

1 + ψT (t+ dα)ψ(t+ dα) θ̂(t)

for V0 ≥ 0 defined in (3.33). Furthermore, from (3.124) we have that V3 ≥ 0,
and since all terms are squared in (3.127) that l1(t), l2(t) ≥ 0 for all t > 0. From
Theorem 3.4 property I, we have that θ̂ ∈ L∞, which together with property II
and III, and (3.85) in Lemma 3.6 give (3.128). Lastly, we have that

0 ≤ ψ(t)ψT (t)
1 + ψT (t)ψ(t) =

(
ψ(t)ψT (t)

1 + ψT (t)ψ(t)

)T
≤ I2×2. (3.147)

Lemma 8 from Anfinsen and Aamo (2017c) can now be applied, yielding (3.129).
For reference, Anfinsen and Aamo (2017c, Lemma 8) is included in Appendix A.5
as Lemma A.5.

From (3.129) it follows that

||α||, ||η|| ∈ L∞ (3.148)

and from the invertibility of the transforms (3.12), (3.68), (3.79) and (3.106) that

||û||, ||v̂||, ||u||, ||v|| ∈ L∞ (3.149)

which completes the proof.

3.4.2 Boundedness Pointwise in Space
Lemma 3.11. Consider the system (3.1) in closed loop with the observer (3.9)
and adaptive law (3.26). If the control signal U(t) is selected according to (3.64),
then the states (u, v) will be bounded pointwise in space, that is

u(x, ·), v(x, ·) ∈ L∞, ∀x ∈ [0, 1] (3.150)

Proof. Consider the backstepping transformation

α̌(x, t) =u(x, t)−
∫ x

0
Luu(x, ξ)u(ξ, t)dξ −

∫ x

0
Luv(x, ξ)v(ξ, t)dξ (3.151a)

β̌(x, t) =v(x, t)−
∫ x

0
Lvu(x, ξ)u(ξ, t)dξ −

∫ x

0
Lvv(x, ξ)v(ξ, t)dξ (3.151b)
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where (Luu, Luv, Lvu, Lvv) is the solution to the system

λLuux + λLuuξ =− c2(ξ)Luv (3.152a)
λLuvx − µLuvξ =− c1(ξ)Luu (3.152b)
µLvux − λLvuξ =c2(ξ)Lvv (3.152c)
µLvvx + µLvvξ =c1(ξ)Lvu (3.152d)

Luu(x, 0) =h1(x) (3.152e)

Luv(x, 0) = c1(x)
λ+ µ

(3.152f)

Lvu(x, 0) =− c2(x)
λ+ µ

(3.152g)

Lvv(x, 0) =θ1λ

µ
Lvu(x, 0) (3.152h)

and h1(x) is a design parameter. The backstepping transformation (3.151) and
kernel PDE (3.152) were first used in Vazquez et al. (2011), where it is shown that
(3.151) is invertible and there exist a unique bounded solution to (3.152) for all
(x, ξ) ∈ T2 (T2 defined in (3.53)).

Differentiation of (3.151a) with respect to time and space, inserting the dynam-
ics (3.1) and integration by parts yield

α̌t(x, t) =ut(x, t)−
∫ x

0
Luu(x, ξ)ut(ξ, t)dξ −

∫ x

0
Luv(x, ξ)vt(ξ, t)dξ

=ut(x, t)−
∫ x

0
Luu(x, ξ) (−λuξ(ξ, t) + c1(ξ)v(ξ, t)) dξ

−
∫ x

0
Luv(x, ξ) (µvξ(ξ, t) + c2(ξ)u(ξ, t)) dξ

=ut(x, t) + Luu(x, x)λu(x, t)− Luu(x, 0)λu(0, t)−
∫ x

0
Luuξ (x, ξ)λu(ξ, t)dξ

− Luv(x, x)µv(x, t) + Luv(x, 0)µv(0, t) +
∫ x

0
Luvξ (x, ξ)µv(ξ, t)dξ

−
∫ x

0
Luu(x, ξ)c1(ξ)v(ξ, t)dξ −

∫ x

0
Luv(x, ξ)c2(ξ)u(ξ, t)dξ, (3.153)

and

α̌x(x, t) =ux(x, t)− Luu(x, x)u(x, t)−
∫ x

0
Luux (x, ξ)u(ξ, t)dξ

− Luv(x, x)v(x, t)−
∫ x

0
Luvx (x, ξ)v(ξ, t)dξ. (3.154)

Similarly for (3.151b), one obtains

β̌t(x, t) =vt(x, t)−
∫ x

0
Lvu(x, ξ)ut(ξ, t)dξ −

∫ x

0
Lvv(x, ξ)vt(ξ, t)dξ
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=vt(x, t)−
∫ x

0
Lvu(x, ξ) (−λuξ(ξ, t) + c1(ξ)v(ξ, t)) dξ

−
∫ x

0
Lvv(x, ξ) (µvξ(ξ, t) + c2(ξ)u(ξ, t)) dξ

=vt(x, t) + Lvu(x, x)λu(x, t)− Lvu(x, 0)λu(0, t)−
∫ x

0
Lvuξ (x, ξ)λu(ξ, t)dξ

− Lvv(x, x)µv(x, t) + Lvv(x, 0)µv(0, t) +
∫ x

0
Lvvξ (x, ξ)µv(ξ, t)dξ

−
∫ x

0
Lvu(x, ξ)c1(ξ)v(ξ, t)dξ −

∫ x

0
Lvv(x, ξ)c2(ξ)u(ξ, t)dξ, (3.155)

and

β̌x(x, t) =vx(x, t)− Lvu(x, x)u(x, t)−
∫ x

0
Lvux (x, ξ)u(ξ, t)dξ

− Lvv(x, x)v(x, t)−
∫ x

0
Lvvx (x, ξ)v(ξ, t)dξ. (3.156)

Combining (3.153) and (3.154) and inserting the kernel equations (3.152) give

α̌t(x, t) + λα̌x(x, t) =ut(x, t) + Luu(x, x)λu(x, t)− Luu(x, 0)λu(0, t)

−
∫ x

0
Luuξ (x, ξ)λu(ξ, t)dξ − Luv(x, x)µv(x, t)

+ Luv(x, 0)µv(0, t) +
∫ x

0
Luvξ (x, ξ)µv(ξ, t)dξ

−
∫ x

0
Luu(x, ξ)c1(ξ)v(ξ, t)dξ −

∫ x

0
Luv(x, ξ)c2(ξ)u(ξ, t)dξ

+ λ

(
ux(x, t)− Luu(x, x)u(x, t)−

∫ x

0
Luux (x, ξ)u(ξ, t)dξ

−Luv(x, x)v(x, t)−
∫ x

0
Luvx (x, ξ)v(ξ, t)dξ

)
=h2(x)β(0, t)− h1(x)λθ2 (3.157)

where
h2(x) = c1(x)

λ+ µ
µ− h1(x)λθ1. (3.158)

Similarly, combining (3.155) and (3.156) and inserting the kernel equations (3.152)
give

β̌t(x, t)− µβ̌x(x, t) =vt(x, t) + Lvu(x, x)λu(x, t)− Lvu(x, 0)λu(0, t)

−
∫ x

0
Lvuξ (x, ξ)λu(ξ, t)dξ − Lvv(x, x)µv(x, t)

+ Lvv(x, 0)µv(0, t) +
∫ x

0
Lvvξ (x, ξ)µv(ξ, t)dξ
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−
∫ x

0
Lvu(x, ξ)c1(ξ)v(ξ, t)dξ −

∫ x

0
Lvv(x, ξ)c2(ξ)u(ξ, t)dξ

− µ
(
vx(x, t)− Lvu(x, x)u(x, t)−

∫ x

0
Lvux (x, ξ)u(ξ, t)dξ

)
−Lvv(x, x)v(x, t)−

∫ x

0
Lvvx (x, ξ)v(ξ, t)dξ

)
= c2(x)
λ+ µ

λθ2. (3.159)

Evaluating (3.151b) at x = 1 and inserting the dynamics (3.1c) and control law
(3.64) expressed using the plant and observer states u, v, û, v̂ , we obtain

β̌(1, t) =
∫ 1

0
Ku(1, x)û(x, t)dx+

∫ 1

0
Kv(1, x)v̂(x, t)dx

+
∫ 1

0

g(1− x, t)
µ

v̂(x, t)dx

−
∫ 1

0

g(1− x, t)
µ

∫ x

0
Ku(x, ξ)û(ξ, t)dξdx

−
∫ 1

0

g(1− x, t)
µ

∫ x

0
Kv(x, ξ)v̂(ξ, t)dξdx

+ ζ∗(t)−H2(1)θ̂2(t)

−
∫ 1

0
Lvu(1, ξ)u(ξ, t)dξ −

∫ 1

0
Lvv(1, ξ)v(ξ, t)dξ. (3.160)

The other boundary condition at x = 0 follows trivially from inserting (3.151)
evaluated at x = 0 into (3.1c). In summary, we have the target system

α̌t(x, t) + λα̌x(x, t) = h2(x)β(0, t)− h1(x)λθ2 (3.161a)

β̌t(x, t)− µβ̌x(x, t) = c2(x)
λ+ µ

λθ2 (3.161b)

α̌(0, t) = θ1β̌(0, t) + θ2 (3.161c)

β̌(1, t) =
∫ 1

0
Ku(1, x)û(x, t)dx+

∫ 1

0
Kv(1, x)v̂(x, t)dx

+
∫ 1

0

g(1− x, t)
µ

v̂(x, t)dx

−
∫ 1

0

g(1− x, t)
µ

∫ x

0
Ku(x, ξ)û(ξ, t)dξdx

−
∫ 1

0

g(1− x, t)
µ

∫ x

0
Kv(x, ξ)v̂(ξ, t)dξdx

+ ζ∗(t)−H2(1)θ̂2(t)

−
∫ 1

0
Lvu(1, ξ)u(ξ, t)dξ −

∫ 1

0
Lvv(1, ξ)v(ξ, t)dξ (3.161d)
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From (3.161d), we obtain

β̌(1, t) ≤
∫ 1

0
|Ku(1, x)û(x, t)| dx+

∫ 1

0
|Kv(1, x)v̂(x, t)|dx

+
∫ 1

0

∣∣∣∣g(1− x, t)
µ

v̂(x, t)
∣∣∣∣ dx

+
∫ 1

0

∣∣∣∣g(1− x, t)
µ

∣∣∣∣ ∫ x

0
|Ku(x, ξ)û(ξ, t)|dξdx

+
∫ 1

0

∣∣∣∣g(1− x, t)
µ

∣∣∣∣ ∫ x

0
|Kv(x, ξ)v̂(ξ, t)|dξdx

+ |ζ∗(t)|+ |H2(1)||θ̂2(t)|

+
∫ 1

0
|Lvu(1, ξ)u(ξ, t)|dξ +

∫ 1

0
|Lvv(1, ξ)v(ξ, t)|dξ. (3.162)

Using first Young’s inequality and then Cauchy-Schwarz’ inequality give

β̌(1, t) ≤

√∫ 1

0
|Ku(1, x)|2 dx

√∫ 1

0
|û(x, t)|2 dx

+

√∫ 1

0
|Kv(1, x)|2dx

√∫ 1

0
|v̂(x, t)|2dx

+

√∫ 1

0

∣∣∣∣g(1− x, t)
µ

∣∣∣∣2 dx
√∫ 1

0
|v̂(x, t)|2 dx

+ 1
2

∫ 1

0

∣∣∣∣g(1− x, t)
µ

∣∣∣∣2 dx+ 1
2

∫ 1

0

∫ x

0
|Ku(x, ξ)|2dξdx

∫ 1

0
|û(x, t)|2dx

+ 1
2

∫ 1

0

∣∣∣∣g(1− x, t)
µ

∣∣∣∣2 dx+ 1
2

∫ 1

0

∫ x

0
|Kv(x, ξ)|2dξdx

∫ 1

0
|v̂(x, t)|2dx

+ |ζ∗(t)|+ |H2(1)||θ̂2(t)|

+

√∫ 1

0
|Lvu(1, x)|2dx

√∫ 1

0
|u(x, t)|2dx

+

√∫ 1

0
|Lvv(1, x)|2dx

√∫ 1

0
|v(x, t)|2dx (3.163)

Using that (Lvu, Lvv) is bounded and from Lemma 3.3 that (Ku,Kv) is bounded,
this can be written simpler as

β̌(1, t) ≤h6||u||+ h7||v||+ h8||û||+ h9||v̂||

+ h10||g||+ |ζ∗(t)|+ |H2(1)||θ̂2(t)|. (3.164)

for some positive constants h6, h7, h8, h9, h10. Lastly, using that H2 is bounded,
from Lemma 3.3 and Theorem 3.2 that |ζ∗(t)|, ||g||, |θ̂2(t)| are bounded and from
Lemma 3.10 that ||u||, ||v||, ||û||, ||v̂|| are bounded, it follows that β̌(1, t) is bounded.
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Since system (3.161) consists of simple, cascaded transport equations, one must
have α̌(x, ·), β̌(x, ·) ∈ L∞ for all x ∈ [0, 1]. Furthermore, from the invertibility of
transformation (3.151), property (3.150) follows.

3.4.3 Convergence in L2([0, 1])
Lemma 3.12. Consider the transformed system (3.122) where H2 and Ω1 are
defined in (3.109) and (3.83) respectively, and v is related to the system states
through (3.123). If θ̂1, θ̂2 are generated using (3.26) in Theorem 3.2, then α, η
converge to zero in L2([0, 1]), that is

||α||, ||η|| → 0. (3.165)

Proof. By design, system (3.122) is obtained using the control law (3.64). Hence, all
assumptions in Lemma 3.11 hold and the sates u, v are bounded pointwise in space.
With v bounded, it follows from Theorem 3.2 property IV that û, v̂ are bounded
pointwise in space, and from transformation (3.68), (3.79) and (3.106) that η2(0, t)
is bounded. Now, since θ̂1, θ̂2 ∈ L∞ from Theorem 3.2 and V3, l1, l2 ∈ L∞ from
Lemma 3.10, the right hand side of (3.126) is bounded, implying V̇3 ∈ L∞. This
result, together with V3 ∈ L1 ∩ L∞ from Lemma 3.10 gives, by Barbalat’s Lemma
(see Lemma A.6),

V3 → 0 (3.166)

and (3.165) follows.

3.4.4 Proof of Theorem 3.4
Proof of Theorem 3.4. Inserting (3.69), (3.80) and (3.107) from Lemma 3.5, 3.6
and 3.8 respectively, together with the operators (3.51) and (3.55), into (3.67) give
(3.64). Boundedness of all signals in the closed loop system then follows from
Lemma 3.10 and 3.11 and Theorem 3.2.

Consider the Lyapunov function candidate

V4 = ||η||2 =
∫ 1

0
η2(x, t)dx. (3.167)

Differentiating with respect to time

V̇4 =2
∫ 1

0
η(x, t)ηt(x, t)dx

=− µη2(0, t)

+ 2
∫ 1

0
η(x, t)

∫ x

0
B(x, ξ, t)

(
η(ξ, t)−H2(ξ)θ̂2(t) + φ(ξ, t)

)
dξ dx

+ 2
∫ 1

0
η(x, t)Ω1(x, t) dx α(1, t) + 2

∫ 1

0
η(x, t)H2(x)dx ˙̂

θ2(t), (3.168)
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and then integrating from t to t+ T gives∫ t+T

t

V̇4dτ =V4(t+ T )− V4(t)

=− µ
∫ t+T

t

η2(0, τ)dτ

+ 2
∫ t+T

t

∫ 1

0
η(x, τ)

∫ x

0
B(x, ξ, τ)

×
(
η(ξ, τ)−H2(ξ)θ̂2(τ) + φ(ξ, τ)

)
dξ dx dτ

+ 2
∫ t+T

t

∫ 1

0
η(x, τ)Ω1(x, τ) dx α(1, τ) dτ

+ 2
∫ t+T

t

∫ 1

0
η(x, τ)H2(x)dx ˙̂

θ2(τ) dτ. (3.169)

Rearranging the terms and applying Cauchy-Schwarz’ inequality yield

V4(t+ T )− V4(t) + µ

∫ t+T

t

η2(0, τ)dτ

≤2
∫ t+T

t

√∫ 1

0
|η(x, τ)|2dx

×

√∫ 1

0

(∫ x

0
B(x, ξ, τ)

(
η(ξ, τ)−H2(ξ)θ̂2(τ) + φ(ξ, τ)

)
dξ

)2
dx dτ

+ 2
∫ t+T

t

√∫ 1

0
|η(x, τ)|2dx

√∫ 1

0
|Ω1(x, τ)|2dxα(1, τ) dτ

+ 2
∫ t+T

t

√∫ 1

0
|η(x, τ)|2dx

√∫ 1

0
|H2(x)|2dx ˙̂

θ2(τ)dτ (3.170)

Since ||η||, V4 → 0 and
∫ t+T
t

η2(0, t)dτ, V4 ≥ 0, all terms on the right hand side of
(3.170) converge to zero, and the left hand side is bounded from below. Then, by
the squeeze theorem, one obtains∫ t+T

t

η2(0, τ)dτ → 0, (3.171)

and thereby ∫ t+T

t

|η(0, τ)|dτ → 0. (3.172)

Regarding the α dynamics; since (3.122a) is a simple transport equation and
from ||α|| → 0, one obtains similarly∫ t+T

t

α2(0, τ)dτ → 0, (3.173)
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from which it follows that ∫ t+T

t

|α(0, τ)|dτ → 0 (3.174)

and Lemma 3.7 gives (3.65) and (3.66). Inserting transformation (3.106) and the
reference signal (3.91) into (3.172) yield∫ t+T

t

|η(0, τ)|dτ → 0∫ t+T

t

|ζ(0, τ)− φ(0, τ)|dτ → 0∫ t+T

t

|ζ(0, τ)− ζ∗(τ − dβ)|dτ → 0 (3.175)

where the explicit solution (3.105) has been inserted. From Lemma 3.9 it then
follows that ∫ t+T

t

|ζ(0, τ)− ζ∗(τ)|dτ → 0, (3.176)

and by Lemma 3.7, the objective (3.7) is satisfied.
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Chapter 4

Non-Collocated Sensing and
Control

This chapter considers adaptive stabilization and set-point regulation of a system
similar to the system presented in Chapter 3, but with sensing also taken at the left
boundary, anti-collocated with control, and with unknown boundary parameters
appearing in a special bilinear form.

4.1 Problem Statement
Consider the linear 2× 2 first-order hyperbolic system

ut(x, t) + λux(x, t) = c1(x)v(x, t) (4.1a)
vt(x, t)− µvx(x, t) = c2(x)u(x, t) (4.1b)

u(0, t) = rv(0, t) + k(θ − y0(t)) (4.1c)
v(1, t) = U(t) (4.1d)

defined for x ∈ [0, 1], t ≥ 0, where u, v are the system states and

λ, µ > 0, c1(x), c2(x) ∈ C([0, 1]) (4.2)

are known, while
k ∈ R , θ ∈ R (4.3)

are unknown boundary parameters, but where sign(k) is known. Sensing is allowed
at both boundaries. The measurement collocated with actuation is on the form

y1(t) = u(1, t) (4.4)

while the measurement anti-collocated with actuation is generated as a linear com-
bination of the system states. That is,

y0(t) = a0u(0, t) + b0v(0, t). (4.5)
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with a0 6= 0. Furthermore, it is assumed that the initial conditions u(x, 0) =
u0(x), v(x, 0) = v0(x) satisfy

u0, v0 ∈ L2([0, 1]). (4.6)

The objective is to design a control input U(t) such that system (4.1) is adaptively
stabilized in the L2-sense and such that the objective

lim
t→∞

∫ t+T

t

|rv(0, τ)− u(0, τ)| dτ = 0 (4.7)

with
r 6= − b0

a0
(4.8)

is achieved for some arbitrary T > 0.
Boundary condition (4.1c) can be written on the form

u(0, t) = qv(0, t) + d (4.9)

where

q = r − b0k
1 + a0k

(4.10a)

d = kθ

1 + a0k
(4.10b)

System (4.1), but with boundary condition on the form (4.10) is considered in
Anfinsen et al. (2016) (n+ 1 case) and Anfinsen et al. (2017) (m+ n case). Here,
the unknown boundary parameters q, d and system states u, v are estimated using
a swapping-based design. The extension to stabilization, without the additive
boundary parameter d and sensing at the left boundary restricted to the form
y0(t) = v(0, t), is given in Anfinsen and Aamo (2017c) (n + 1 case) and Anfinsen
and Aamo (2017a) (m+ n case).

The contributions in this chapter are twofold. First, in Section 4.2, building on
the results from Anfinsen et al. (2017), a swapping based observer exploiting the bi-
linear form in the boundary condition (4.1c) is derived. A bilinear parametric model
together with a suitable adaptive law are used to estimate the unknown boundary
parameters k, θ. Compared to the linear parametric model used in Anfinsen et al.
(2017), the bilinear form has some desirable properties regarding parameter conver-
gence. Properties of the adaptive law are formally stated in Theorem 4.4. Second,
an adaptive control law stabilizing system (4.1) in the L2-sense and achieving (4.7)
are presented in Section 4.3 with the main result stated in Theorem 4.6. Proof of
Theorem 4.6, that is L2-boundedness and point-wise boundedness of all signals in
the closed loop system and convergence in the sense of (4.7), is given in Section 4.4.

4.2 State and Parameter Estimation
In this section, swapping filters for state and parameter estimation are presented.
Non-adaptive and adaptive relations between the system states and swapping filters
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are found. The adaptive estimation error will be used to generate on-line parameter
updates and for control design in later sections.

4.2.1 Filter Design
Consider the input filters

at(x, t) + λax(x, t) =c1(x)b(x, t) + P1(x)(y1(t)− a(1, t)) (4.11a)
bt(x, t)− µbx(x, t) =c2(x)a(x, t) + P2(x)(y1(t)− a(1, t)) (4.11b)

a(0, t) =rb(0, t) (4.11c)
b(1, t) =U(t) (4.11d)

and parameter filters

mt(x, t) + λmx(x, t) =c1(x, t)n(x, t)− P1(x)m(1, t) (4.12a)
nt(x, t)− µnx(x, t) =c2(x)m(x, t)− P2(x)m(1, t) (4.12b)

m(0) =rn(0, t) + 1 (4.12c)
n(1) =0 (4.12d)

and

wt(x, t) + λwx(x, t) =c1(x)z(x, t)− P1(x)w(1, t) (4.13a)
zt(x, t)− µzx(x, t) =c2(x)w(x, t)− P2(x)w(1, t) (4.13b)

w(0, t) =rz(0, t)− y0(t) (4.13c)
z(1, t) =0 (4.13d)

where P1, P2 are gains to be designed. The input filters model how the control
signal U(t) affect the system states u, v, while the parameter filters model the
effect of the boundary parameters k and θ on the system states.

4.2.2 Relationship to the System States
The non-adaptive state estimates are defined as

ū(x, t) =a(x, t) + k (θm(x, t) + w(x, t)) (4.14a)
v̄(x, t) =b(x, t) + k (θn(x, t) + z(x, t)) (4.14b)

where the last term has the same bilinear form as boundary condition (4.1c). The
non-adaptive state estimates are related to the system states through

u(x, t) =ū(x, t) + e(x, t) (4.15a)
v(x, t) =v̄(x, t) + ε(x, t) (4.15b)

(4.15c)

where e, ε represent the non-adaptive estimation error.
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Lemma 4.1. The error terms e and ε in (4.15) have the dynamics
et(x, t) + λex(x, t) =c1(x)ε(x, t)− P1(x)e(1, t) (4.16a)
εt(x, t)− µεx(x, t) =c2(x)e(x, t)− P2(x)e(1, t) (4.16b)

e(0, t) =rε(0, t) (4.16c)
ε(1, t) =0. (4.16d)

Proof. Inserting the static estimates (4.14) into (4.15), rearranging, differentiating
with respect to time and space and inserting the system dynamics (4.1a) and (4.1b)
and filter dynamics (4.11a), (4.11b), (4.12a), (4.12b), (4.13a) and (4.13b), yield

et(x, t) + λex(x, t) =ut(x, t) + λux(x, t)
− at(x, t)− λax(x, t)
− k (θ (mt(x, t) + λmx(x, t)) + wt(x, t) + λwx(x, t))

=c1(x)v(x, t)
− c1(x)b(x, t)− P1(x)(y1(t)− a(1, t))
− k (θ (c1(x, t)n(x, t)− P1(x)m(1, t))

+c1(x)z(x, t)− P1(x)w(1, t))
=c1(x)ε(x, t)− P1e(1, t) (4.17)

and
εt(x, t)− µεx(x, t) =vt(x, t)− µvx(x, t)

− bt(x, t) + µbx(x, t)
− k (θ (nt(x, t)− µnx(x, t)) + zt(x, t)− µzx(x, t))

=c2(x)u(x, t)
− c2(x)a(x, t)− P2(x)(y1(t)− a(1, t))
− k (θ (c2(x, t)m(x, t)− P2(x)m(1, t))

+c2(x)w(x, t)− P2(x)w(1, t))
=c2(x)e(x, t)− P2e(1, t). (4.18)

Boundary condition (4.16c) follows from evaluating (4.16c) at x = 0 and inserting
(4.11c), (4.12c), (4.13c) and (4.16c):
e(0, t) =u(0, t)− a(0, t)− k (θm(0, t) + w(0, t))

=rv(0, t) + k(θ − y0(t))− rb(0, t)− k (θ(rn(0, t) + 1) + rz(0, t)− y0(t))
=r (v(0, t)− b(0, t)− k (θn(0, t) + z(0, t)))
=rε(0, t). (4.19)

Similarly, boundary condition (4.16d) follows from evaluating (4.16d) at x = 1 and
inserting (4.11d), (4.12d), (4.13d) and (4.16d):

ε(1, t) =v(1, t)− b(1, t)− k (θn(1, t) + z(1, t))
=U(t)− U(t)
=0. (4.20)
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If the error terms e, ε in (4.15) go to zero in finite time, then (4.14) is a static
representation of the system states. Stability of the error system is addressed in
the next section by first transforming (4.15) into an equivalent target system.

4.2.3 Error Dynamics Analysis
To facilitate the analysis, consider the operators

P1,P2 : L2([0, 1])× L2([0, 1])→ L2([0, 1]) (4.21)

given as

P1[a, b](x) = a(x) +
∫ 1

x

Puu(x, ξ)a(ξ)dξ +
∫ 1

x

Puv(x, ξ)b(ξ)dξ (4.22a)

P2[a, b](x) = b(x) +
∫ 1

x

P vu(x, ξ)a(ξ)dξ +
∫ 1

x

P vv(x, ξ)b(ξ)dξ (4.22b)

where a(x), b(x) are two signals defined for x ∈ [0, 1] and (Puu, Puv, P vu, P vv) is
the solution to

λPuux (x, ξ) + λPuuξ (x, ξ) =c1(x)P vu(x, ξ) (4.23a)
λPuvx (x, ξ)− µPuvξ (x, ξ) =c1(x)P vv(x, ξ) (4.23b)
µP vux (x, ξ)− λP vuξ (x, ξ) =− c2(x)Puu(x, ξ) (4.23c)
µP vvx (x, ξ) + µP vvξ (x, ξ) =− c2(x)Puv(x, ξ) (4.23d)
Puv(x, x)λ+ Puv(x, x)µ =− c1(x) (4.23e)
P vu(x, x)λ+ P vu(x, x)µ =c2(x) (4.23f)

Puu(0, ξ) =rP vu(0, ξ) (4.23g)
Puv(0, ξ) =rP vv(0, ξ). (4.23h)

It is shown i Vazquez et al. (2011) that system (4.23) has a bounded, continuous
and unique solution. Furthermore, it is shown that the mapping (a, b) → (ā, b̄)
given by

a(x) =P1[ā, b̄](x) (4.24a)
b(x) =P2[ā, b̄](x) (4.24b)

is invertible.
Using the operators (4.22), the non-adaptive error system can be transformed

into an equivalent target system for which the stability analysis is easier. The
backstepping transformation and corresponding target system used in the next
lemma were first used in Vazquez et al. (2011).
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Lemma 4.2. Let

dα = 1
λ

(4.25a)

dβ = 1
µ

(4.25b)

and consider the non-adaptive error system (4.16). If the injection terms are se-
lected as

P1(x) = λPuu(x, 1) (4.26a)
P2(x) = λP vu(x, 1), (4.26b)

then the error terms e, ε will tend to zero in a finite time given by

tF = dα + dβ (4.27)

and (4.14) is a static representation of the system states u, v.

Proof. Consider the transformation

e(x, t) =P1[α, β](x, t) (4.28a)
ε(x, t) =P2[α, β](x, t) (4.28b)

where P1,P2 are defined in (4.22). It is shown in Vazquez et al. (2011) that the
transformation maps the non-adaptive error system (4.16) into the target system

αt(x, t) + λα̂x(x, t) =0 (4.29a)
βt(x, t)− µβ̂x(x, t) =0 (4.29b)

α(0, t) =rβ(0, t) (4.29c)
β(1, t) =0. (4.29d)

The subsystem consisting of (4.29b) and (4.29d) is a simple transport equation
and will be zero β ≡ 0 for all t > dβ , reducing the boundary condition (4.29c)
to α(0, t) = 0 and we have α ≡ 0 for another t ≥ dα. From the invertibility of
transformation (4.28), e, ε ≡ 0 for all t ≥ dα + dβ follows and the relation (4.15) is
reduced to

u(x, t) =ū(x, t) (4.30a)
v(x, t) =v̄(x, t) (4.30b)

(4.30c)

for all t ≥ dα + dβ .

4.2.4 Adaptive Law
Before presenting the adaptive law and the main result of this section, an equivalent
set of filter systems will be derived using a backstepping transformation. This
equivalent set will be used to prove properties of the adaptive law.
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Lemma 4.3. If P1, P2 are selected according to (4.26), the transformation

m(x, t) =P1[m̌, ň](x, t) (4.31a)
n(x, t) =P2[m̌, ň](x, t) (4.31b)

map the filters (4.12) into the target system

m̌t(x, t) + λm̌x(x, t) =0 (4.32a)
ňt(x, t)− µňx(x, t) =0 (4.32b)

m̌(0, t) =rň(0, t) + 1 (4.32c)
ň(1, t) =0, (4.32d)

and the transformation

w(x, t) =P1[w̌, ž](x, t) (4.33a)
z(x, t) =P2[w̌, ž](x, t) (4.33b)

map the filters (4.13) into the target system

w̌t(x, t) + λw̌x(x, t) =0 (4.34a)
žt(x, t)− µžx(x, t) =0 (4.34b)

w̌(0, t) =rž(0, t)− y0(t) (4.34c)
ž(1, t) =0 (4.34d)

with P1,P2 defined in (4.22).

Proof. Equations (4.32a) and (4.32b) follow from differentiating (4.31) and insert-
ing (4.12a) and (4.12b). Similarly, (4.34a) and (4.34b) follow from differentiating
(4.33) and inserting (4.13a) and (4.13b). Boundary condition (4.32c) and (4.34c)
can be seen from

m̌(0, t) =m(0, t)−
∫ 1

0
Puu(0, ξ)m̌(ξ, t)dξ −

∫ 1

0
Puv(0, ξ)ň(ξ, t)dξ

=rň(0, t) + 1−
∫ 1

0
(Puu(0, ξ)− rP vu(0, ξ)) m̌(ξ, t)dξ

−
∫ 1

0
(Puv(0, ξ)− rP vv(0, ξ)) ň(ξ, t)dξ

=rň(0, t) + 1 (4.35)

and

w̌(0, t) =w(0, t)−
∫ 1

0
Puu(0, ξ)w̌(ξ, t)dξ −

∫ 1

0
Puv(0, ξ)ž(ξ, t)dξ

=rž(0, t)− y0(t)−
∫ 1

0
(Puu(0, ξ)− rP vu(0, ξ)) w̌(ξ, t)dξ

−
∫ 1

0
(Puv(0, ξ)− rP vv(0, ξ)) ž(ξ, t)dξ
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=rž(0, t)− y0(t) (4.36)

Boundary conditions (4.32d) and (4.34d) follow trivially from evaluating (4.31)
and (4.33) at x = 1 and inserting (4.12d) and (4.33).

Using that e(1, t) = 0 for all t > tF from Lemma 4.1 and inserting (4.4), the
static relationship (4.15) evaluated at x = 1 can be written on the bilinear form

y1(t)− a(1, t) = k(θm(1, t) + w(1, t)). (4.37)

Motivated by this bilinear form of the static relationship, the following adaptive
state estimates are generated:

û(x, t) =a(x, t) + k̂(t)
(
θ̂(t)m(x, t) + w(x, t)

)
(4.38a)

v̂(x, t) =b(x, t) + k̂(t)
(
θ̂(t)n(x, t) + z(x, t)

)
. (4.38b)

The adaptive state estimates are related to the system states through

u(x, t) =û(x, t) + ê(x, t) (4.39a)
v(x, t) =v̂(x, t) + ε̂(x, t) (4.39b)

where ê, ε̂ represent the adaptive estimation error.
Evaluating (4.39a) at x = 1, inserting (4.4) and rearranging then give

ê(1, t) = y1(t)− a(1, t)− k̂(t)
(
θ̂(t)m(x, t) + w(x, t)

)
(4.40)

Assuming the sign of k is known, the gradient method for bilinear parametric models
in Ioannou and Sun (2012, Theorem 4.52) can be used to minimize a cost function
based on the square error ê2(1, t) and thereby forming an adaptive law for the
parameter estimates θ̂, k̂ (see Appendix B.1.3). The following theorem presents
the main results from Ioannou and Sun (2012, Theorem 4.52) together with some
additional properties needed to prove stability of the closed loop system.

Theorem 4.4. Consider the adaptive law

˙̂
θ(t) =

γ1sign(k) ê(1, t)
1 + w2(1, t)m(1, t) t ≥ tF

0 otherwise
(4.41a)

˙̂
k(t) =

γ2

[
θ̂(t)m(1, t) + w(1, t)

] ê(1, t)
1 + w2(1, t) t ≥ tF

0 otherwise
(4.41b)

for some adaptation gain γ1, γ2 > 0 where m(1, t) and w(1, t) are the filters given in
(4.12) and (4.13), ê(1, t) is the adaptive estimation error in (4.40) and tF is defined
in (4.27). Suppose system (4.1) has a unique solution u, v ∈ L2([0, 1]) ∀t ≥ 0 and
sign(k) is known, then the adaptive law (4.41) has the following properties:
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I)
θ̂, k̂, ∈ L∞ (4.42)

II)
˙̂
θ,

˙̂
k, ∈ L∞ ∩ L2 (4.43)

III)

θ̂(t)→θ̂(t− dβ) (4.44a)
k̂(t)→k̂(t− dβ) (4.44b)

IV)
k̃ (θ − y0) + k̂θ̃√

1 + w2(1, ·)
∈ L2 (4.45)

where θ̃ = θ − θ̂ and k̃ = k − k̂.

V) If
θ̂m(1, ·) + w(1, ·) ∈ L2 (4.46)

then θ̂ converges to θ and k̂ converges to some constant.

Proof. Consider the Lyapunov function candidate

V0 = |k| 1
2γ1

θ̃2 + 1
2γ2

k̃2 (4.47)

where θ̃ = θ − θ̂ and k̃ = k − k̂. Differentiating and inserting the adaptive laws
(4.41) for t > tF give

V̇0 =|k| 1
γ1
θ̃

˙̂
θ + 1

γ2
k̃

˙̂
k

=|k|θ̃sign(k) ê(1, t)
1 + w2(1, t)m(1, t) + k̃

[
θ̂(t)m(1, t) + w(1, t)

] ê(1, t)
1 + w2(1, t)

= ê(1, t)
1 + w2(t)

(
kθ̃m(1, t) + k̃

[
θ̂(t)m(1, t) + w(1, t)

])
= ê(1, t)

1 + w2(t)

(
−k
[
θ(t)m(1, t) + w(1, t)

]
+ k̂

[
θ̂(t)m(1, t) + w(1, t)

])
= ê(1, t)

1 + w2(t) (−u(1, t) + û(1, t))

=− ê2(1, t)
1 + w2(t)
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≤0 (4.48)

which shows that
V0, θ̃, k̃ ∈ L∞ (4.49)

and Property I follows.
The transformed filter system (m̌, ň) in (4.32) is a simple cascaded transport

equation and we have m̌ ≡ 1 and ň ≡ 0 for all x ∈ [0, 1] and t > tF . From the
invertibility of transformation (4.31), we have m(x, ·), n(x, ·) ∈ L∞, which together
with Property I give

ê(1, ·)√
1 + w2(1, ·)

∈ L∞ (4.50)

and
m(1, ·)√

1 + w2(1, ·)
∈ L∞ (4.51)

Integrating (4.48) from t = 0 to t = ∞ and using that V0 ≥ 0 is a non-increasing
function of time give∫ ∞

0

(
ê2(1, τ)

1 + w2(τ)

)2

dτ = −
∫ ∞

0
V̇0(τ)dτ = V0(0)− V0(∞) ≤ ∞, (4.52)

and therefore
ê(1, ·)√
1 + w2(·)

∈ L2. (4.53)

From (4.41a), one has∣∣∣ ˙̂θ(t)∣∣∣ ≤ γ1

∣∣∣∣∣ ê(1, t)√
1 + w2(t)

∣∣∣∣∣
∣∣∣∣∣ m(1, t)√

1 + w2(1, t)

∣∣∣∣∣ (4.54)

which together with (4.50), (4.51) and (4.53) give ˙̂
θ ∈ L∞ ∩ L2 and the first part

of Property II. For the second part, one has similarly∣∣∣ ˙̂k(t)
∣∣∣ ≤ γ2

∣∣∣∣∣ ê(1, t)√
1 + w2(t)

∣∣∣∣∣
∣∣∣∣∣ θ̂m(1, t) + w(1, t)√

1 + w2(1, t)

∣∣∣∣∣ (4.55)

which together with (4.50), (4.51) and (4.53) give ˙̂
k ∈ L∞∩L2 and the second part

of Property II.
The proof of Property III is similar to the proof of Lemma 3.9 and therefore

omitted.
Let

Θ(t) =
[
k̃(t),

√
|k|θ̃(t)

]T (4.56a)

Ψ(t) = 1√
1 + w2(1, t)

[
θ̂m(1, t) + w(1, t), sign(k)

√
|k|m(1, t)

]T (4.56b)

Γ =diag([γ1, γ2]) (4.56c)
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We then have
V0 = ΘT (t)Γ−1Θ(t) (4.57)

and
V̇0 = −ê2(1, t) =

(
ΘT (t)Ψ(t)

)2 = ΘT (t)Ψ(t)ΨT (t)Θ(t). (4.58)

From Property I, a lower bound for V̇0 can be found as

V̇0 =− ê2(1, t) =
(
ΘT (t)Ψ(t)

)2 = ΘT (t)Ψ(t)ΨT (t)Θ(t)
≥− hΘT (t)Θ(t)

≥− 2hγmax
1
2ΘT (t)Γ−1Θ(t)

≥− 2hγmaxV0

(4.59)

where h > 0 is a constant and γmax the largest eigenvalue of Γ. A lower bound for V0
can now be found by using the method of separation of variables (see Appendix B.2)
as

V̇0 ≥− 2hγmaxV0

V̇0

V0
≥− 2hγmax∫ V0(t)

V0(t−dα)

dV0

V0
≥−

∫ t

t−dα
2hγmaxdτ

ln
(

V0(t)
V0(t− dα)

)
≥− 2dαhγmax

(4.60)

and solving for V0(t) to yield

V0(t) ≥ e−2dαhγmaxV0(t− dα), (4.61)

which shows that the decay rate of V0 is at maximum exponential. Again, using
the definition of V0 in (4.57) one obtains

Θ̃T (t)Θ̃(t) ≥2γmin
1
2 θ̃

T (t)Γ−1θ̃(t)

=2γminV0(t)
≥2γmine−2dαhγmaxV0(t− dα)

=2γmine−2dαhγmax 1
2Θ̃T (t− dα)Γ−1Θ̃(t− dα)

≥ γmin
γmax

e−2dαhγmaxΘ̃T (t− dα)Θ̃(t− dα). (4.62)

The relation (4.62) can now be substituted into (4.58), yielding

V̇0 =−
(
ΘT (t)Ψ(t)

)2
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≤− γmin
γmax

e−2dαhγmax
(
Θ̃T (t− dα)Ψ(t)

)2 (4.63)

Integrating (4.63) from t = 0 to t = ∞ and using that V0 ≥ 0 is a non-increasing
function of time give∫ ∞

0

γmin
γmax

e−2dαhγmax
(
Θ̃T (τ − dα)Ψ(τ)

)2
dτ ≤−

∫ ∞
0

V̇0(τ)dτ

=V0(0)− V0(∞)
<∞, (4.64)

which shows that ∫ ∞
0

(
Θ̃T (τ − dα)Ψ(τ)

)2
dτ <∞. (4.65)

Since the target system (4.32) is a set of simple cascaded transport equations and
from transformation (4.31), it follows that m(1, t) = m̌(1, t) = 1 for all t > tF
and similarly that w(1, t) = w̌(1, t) = y0(t − dα) for all t > tF . Inserting (4.56a)
and (4.56b) into (4.65) and rearranging the terms give Property IV.

Inserting (4.40) into (4.41a) yields

˙̃θ(t) = − γ1sign(k)
1 + w2(1, t)

(
kθ̃m(1, t) + k̃(t)

(
θ̂m(1, t) + w(1, t)

))
m(1, t) (4.66)

where the last term can be treated as an external input. Using that m(1, t) ≡ 1 for
all t > tF and if the last term k̃(t)

(
θ̂m(1, t) + w(1, t)

)
is square integrable, then

(4.66) form an exponentially stable system and it follows that θ̃ → 0 as t → ∞ or
equivalently the first part of Property V.

If θ̂(τ)m(1, τ) + w(1, τ) ∈ L2, and by using Cauchy-Schwarz’ inequality, we
obtain the inequality∫ ∞

0

∣∣∣ ˙̂k(τ)
∣∣∣ dτ ≤γ2

∫ ∞
0

∣∣∣∣[θ̂(τ)m(1, τ) + w(1, τ)
] ê(1, τ)

1 + w2(1, τ)

∣∣∣∣ dτ
≤γ2

√∫ ∞
0

∣∣∣θ̂(τ)m(1, τ) + w(1, τ)
∣∣∣2 dτ

√∫ ∞
0

∣∣∣∣ ê(1, τ)
1 + w2(1, τ)

∣∣∣∣2 dτ
<∞ (4.67)

which implies that ˙̂
k ∈ L1 and the second part of Property V follows.

4.3 Closed Loop Adaptive Control
The main result from this section will be a control law U(t) that, together with
Theorem 4.4, adaptively stabilizes (4.1) in the L2-sense and achieves (4.7). This
section will start off by deriving the estimator dynamics and introduce a backstep-
ping operator, before the main theorem is presented. The stability proof is deferred
to Section 4.4.
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4.3.1 Estimator Dynamics
Lemma 4.5. The state estimates û, v̂ generated from (4.38) have the dynamics

ût(x, t) + λûx(x, t) =c1(x)v̂(x, t) + P1(x)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)m(x, t) + w(x, t)

)
+ k̂(t) ˙̂

θ(t)m(x, t) (4.68a)

v̂t(x, t)− µv̂x(x, t) =c2(x)û(x, t) + P2(x)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)n(x, t) + z(x, t)

)
+ k̂(t) ˙̂

θ(t)n(x, t) (4.68b)

û(0, t) =rv̂(0, t) + k̂(t)
(
θ̂(t)− y0(t)

)
(4.68c)

v̂(1, t) =U(t) (4.68d)

Alternatively, boundary condition (4.68c) can be written on the form

û(0, t) = q(t)v̂(0, t) + d(t) + κ(t)ε(t) (4.69)

where

q(t) = r − b0k̂(t)
1 + a0k̂(t)

(4.70a)

d(t) = k̂(t)θ̂(t)
1 + a0k̂(t)

(4.70b)

κ(t) =− k̂(t)
1 + a0k̂(t)

(4.70c)

ε(t) =a0ê(0, t) + b0ε̂(0, t). (4.70d)

Proof. Differentiating (4.38a) with respect to time and space give

ût(x, t) =at(x, t) + ˙̂
k(t)

(
θ̂(t)m(x, t) + w(x, t)

)
+ k̂(t)

( ˙̂
θ(t)m(x, t) + θ̂(t)mt(x, t) + wt(x, t)

)
, (4.71)

ûx(x, t) = ax(x, t) + k̂(t)
(
θ̂(t)mx(x, t) + wx(x, t)

)
. (4.72)

Combining (4.71) and (4.72) and inserting the filter dynamics (4.11a), (4.12a)
and (4.13a) yield

ût(x, t) + λûx(x, t) =at(x, t) + ˙̂
k(t)

(
θ̂(t)m(x, t) + w(x, t)

)
+ k̂(t)

( ˙̂
θ(t)m(x, t) + θ̂(t)mt(x, t) + wt(x, t)

)
+ λ

(
ax(x, t) + k̂(t)

(
θ̂(t)mx(x, t) + wx(x, t)

))
=at(x, t) + λax(x, t)
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+ k̂(t)
(
θ̂(t) (mt(x, t) + λmx(x, t)) + wt(x, t) + λwx(x, t)

)
+ ˙̂
k(t)

(
θ̂(t)m(x, t) + w(x, t)

)
+ k̂(t) ˙̂

θ(t)m(x, t)

=c1(x)b(x, t) + P1(x)(y1(t)− a(1, t))

+ k̂(t)
(
θ̂(t) (c1(x, t)n(x, t)− P1(x)m(1, t))

+ c1(x)z(x, t)− P1(x)w(1, t)
)

+ ˙̂
k(t)

(
θ̂(t)m(x, t) + w(x, t)

)
+ k̂(t) ˙̂

θ(t)m(x, t)

=c1(x)v̂(x, t) + P1(x)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)m(x, t) + w(x, t)

)
+ k̂(t) ˙̂

θ(t)m(x, t). (4.73)

Similarly, differentiating (4.38b) with respect to time and space give

v̂t(x, t) =bt(x, t) + ˙̂
k(t)

(
θ̂(t)n(x, t) + z(x, t)

)
+ k̂(t)

( ˙̂
θ(t)n(x, t) + θ̂(t)nt(x, t) + zt(x, t)

)
, (4.74)

v̂x(x, t) = bx(x, t) + k̂(t)
(
θ̂(t)nx(x, t) + zx(x, t)

)
(4.75)

and combining (4.74) and (4.75), and inserting the filter dynamics (4.11b), (4.12b)
and (4.13b) yield

v̂t(x, t)− µv̂x(x, t) =bt(x, t) + ˙̂
k(t)

(
θ̂(t)n(x, t) + z(x, t)

)
+ k̂(t)

( ˙̂
θ(t)n(x, t) + θ̂(t)nt(x, t) + zt(x, t)

)
− µ

(
bx(x, t) + k̂(t)

(
θ̂(t)nx(x, t) + zx(x, t)

))
=bt(x, t)− µbx(x, t)

+ k̂(t)
(
θ̂(t) (nt(x, t)− µnx(x, t)) + zt(x, t)− µzx(x, t)

)
+ ˙̂
k(t)

(
θ̂(t)n(x, t) + z(x, t)

)
+ k̂(t) ˙̂

θ(t)n(x, t)

=c2(x)b(x, t) + P2(x)(y1(t)− a(1, t))

+ k̂(t)
(
θ̂(t) (c2(x, t)n(x, t)− P2(x)m(1, t))

+ c2(x)z(x, t)− P2(x)w(1, t)
)

+ ˙̂
k(t)

(
θ̂(t)n(x, t) + z(x, t)

)
+ k̂(t) ˙̂

θ(t)n(x, t)

=c2(x)û(x, t) + P2(x)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)n(x, t) + z(x, t)

)
+ k̂(t) ˙̂

θ(t)n(x, t). (4.76)
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Boundary condition (4.68c) can be seen from

û(0, t) =a(0, t) + k̂(t)
(
θ̂(t)m(0, t) + w(0, t)

)
=rb(0, t) + k̂(t)

(
θ̂(t) (rn(0, t) + 1) + rz(0, t)− y0(t)

)
=rv̂(0, t) + k̂(t)

(
θ̂(t)− y0(t)

)
, (4.77)

while the alternative boundary condition (4.69) is obtained by rearranging the
terms and using relation (4.5) and (4.39). Boundary condition (4.68d) follows
trivially from evaluating (4.38b) at x = 1:

v̂(1, t) =b(1, t) + k̂(t)
(
θ̂(t)n(1, t) + z(1, t)

)
=U(t). (4.78)

4.3.2 Backstepping Operators and Main Result
Consider the operators

K1,K2 : L2([0, 1])× L2([0, 1])→ L2([0, 1]) (4.79)

given as

K1[a, b](x) =a(x)−
∫ x

0
Kuu(x, ξ)a(ξ)dξ +

∫ x

0
Kuv(x, ξ)b(ξ)dξ (4.80a)

K2[a, b](x) =b(x)−
∫ x

0
Kvu(x, ξ)a(ξ)dξ +

∫ x

0
Kvv(x, ξ)b(ξ)dξ (4.80b)

where a(x), b(x) are two signals defined for x ∈ [0, 1] and (Kuu,Kuv,Kvu,Kvv) is
the solution to

Kuu
x (x, ξ)λ+Kuu

ξ (x, ξ)λ =−Kuv(x, ξ)c2(x) (4.81a)
Kuv
x (x, ξ)−Kuv

ξ (x, ξ)µλ =−Kuu(x, ξ)c1(x) (4.81b)
Kvu
x (x, ξ)µ−Kvu

ξ (x, ξ)λ =Kvv(x, ξ)c2(x) (4.81c)
Kvv
x (x, ξ)µ+Kvv

ξ (x, ξ)µ =Kvu(x, ξ)c1(x) (4.81d)

Kuv(x, x)λ+Kuv(x, x)µ =c1(x) (4.81e)
Kvu(x, x)λ+Kvu(x, x)µ =− c2(x) (4.81f)

Kuu(x, 0)λr =Kuv(x, 0)µ (4.81g)
Kvu(x, 0)λr =Kvv(x, 0)µ (4.81h)

defined over
T2 = {(x, ξ) | 0 ≤ ξ ≤ x ≤ 1}. (4.82)
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From Vazquez et al. (2011, Theorem 4), system (4.81) has a unique solution
Kuu,Kuv,Kvu,Kvv. Moreover, the mapping (a, b)→ (ā, b̄) given by

ā(x) =K1[a, b](x)
b̄(x) =K2[a, b](x) (4.83)

is invertible with unique inverse transformation kernels (see Vazquez et al. (2011)
for details).

Theorem 4.6. Consider the system (4.1), the state estimates (4.38) and the adap-
tive law (4.41). The control law

U(t) = K2[û, v̂](1) + 1
a0r + b0

θ̂(t) (4.84)

where K2 is defined in (4.80b), r satisfies (4.8) and θ̂ are generated from the adap-
tive law (4.41), guarantees (4.7). Moreover, all signals in the closed loop system
are bounded and the parameter estimate θ̂ converges to its true value in the sense∫ t+T

t

|θ̂(τ)− θ|dτ → 0 (4.85)

for some T > 0.

Proof of Theorem 4.6 is deferred to Section 4.4. The rest of this section will
present the derivation of the control law (4.84). To improve readability, the control
law U(t) is decomposed into two parts

U(t) = U1(t) + U2(t) (4.86)

with each term presented in separate subsections and lemmas.

4.3.3 Decoupling of the Observer Dynamics

Lemma 4.7. Consider the state estimate dynamics (4.68) generated from (4.38)
and the operators K1,K2 from (4.80). The transformation

ω(x, t) = K1[û, v̂](x, t) (4.87a)
ζ(x, t) = K2[û, v̂](x, t), (4.87b)

and the control law (4.86) with

U1(t) =K2[û, v̂](1, t)
(4.88)
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map (4.68) into the target system

ωt(x, t) + λωx(x, t) =θ̂(t)H1(x, t) ˙̂
k(t) +G1(x, t) ˙̂

k(t) + k̂(t)H1(x, t) ˙̂
θ(t)

+ Ω1(x)ê(1, t) + Ψ1(x)k̂(t)
(
θ̂(t)− y0(t)

)
(4.89a)

ζt(x, t)− µζx(x, t) =θ̂(t)H2(x, t) ˙̂
k(t) +G2(x, t) ˙̂

k(t) + k̂(t)H2(x, t) ˙̂
θ(t)

+Ω2(x)ê(1, t) + Ψ2(x, t)k̂(t)
(
θ̂(t)− y0(t)

)
(4.89b)

ω(0, t) =ζ(0, t)q(t) + d(t) + κ(t)ε(t) (4.89c)
ζ(1, t) =U2(t). (4.89d)

where

G1(x, t) =K1[w, z](x, t) (4.90a)
G2(x, t) =K2[w, z](x, t) (4.90b)

H1(x, t) =K1[m,n](x, t) (4.91a)
H2(x, t) =K2[m,n](x, t) (4.91b)

Ω1(x) =K1[P1, P2](x) (4.92a)
Ω2(x) =K2[P1, P2](x) (4.92b)

Ψ1(x) =−Kuu(x, 0)λ (4.93a)
Ψ2(x) =−Kvu(x, 0)λ (4.93b)

and q, d, κ, ε defined in (4.70).

Proof. From (4.87a) and definition (4.80a), differentiating with respect to time,
inserting the dynamics (4.68) and integration by parts give

ωt(x, t) =ût(x, t)−
∫ x

0
Kuu(x, ξ)ût(ξ, t)dξ −

∫ x

0
Kuv(x, ξ)v̂t(ξ, t)dξ

=ût(x, t)

−
∫ x

0
Kuu(x, ξ)

(
− λûξ(ξ, t) + c1(ξ)v̂(ξ, t) + P1(ξ)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)m(ξ, t) + w(ξ, t)

)
+ k̂(t) ˙̂

θ(t)m(ξ, t)
)
dξ

−
∫ x

0
Kuv(x, ξ)

(
+ µv̂x(x, t) + c2(x)û(x, t) + P2(x)ê(1, t)
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+ ˙̂
k(t)

(
θ̂(t)n(x, t) + z(x, t)

)
+ k̂(t) ˙̂

θ(t)n(x, t)
)
dξ

=ût(x, t)

+Kuu(x, x)λû(x, t)−Kuu(x, 0)λû(0, t)−
∫ x

0
Kuu
ξ (x, ξ)λû(ξ, t)dξ

−
∫ x

0
Kuu(x, ξ)

(
c1(ξ)v̂(ξ, t) + P1(ξ)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)m(ξ, t) + w(ξ, t)

)
+ k̂(t) ˙̂

θ(t)m(ξ, t)
)
dξ

−Kuv(x, x)µv̂(x, t) +Kuv(x, 0)µv̂(0, t) +
∫ x

0
Kuv
ξ (x, ξ)µv̂(ξ, t)dξ

−
∫ x

0
Kuv(x, ξ)

(
c2(ξ)û(ξ, t) + P2(ξ)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)n(ξ, t) + z(ξ, t)

)
+ k̂(t) ˙̂

θ(t)n(ξ, t)
)
dξ.

(4.94)

Differentiating with respect to space and applying Leibniz’ differentiation rule (see
Appendix A.8) give

ωx(x, t) =ûx(x, t)

−Kuu(x, x)û(x, t)−
∫ x

0
Kuu
x (x, ξ)û(ξ, t)dξ

−Kuv(x, x)v̂(x, t)−
∫ x

0
Kuv
x (x, ξ)v̂(ξ, t)dξ. (4.95)

Substituting (4.94) and (4.95) into (4.68a) and using (4.81) and (4.90a)–(4.93a)
one finds

ωt(x, t) + λωx(x, t)

=Kuu(x, x)λû(x, t)−Kuu(x, 0)λû(0, t)−
∫ x

0
Kuu
ξ (x, ξ)λû(ξ, t)dξ

−
∫ x

0
Kuu(x, ξ)

(
c1(ξ)v̂(ξ, t) + P1(ξ)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)m(ξ, t) + w(ξ, t)

)
+ k̂(t) ˙̂

θ(t)m(ξ, t)
)
dξ

−Kuv(x, x)µv̂(x, t) +Kuv(x, 0)µv̂(0, t) +
∫ x

0
Kuv
ξ (x, ξ)µv̂(ξ, t)dξ

−
∫ x

0
Kuv(x, ξ)

(
c2(ξ)û(ξ, t) + P2(ξ)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)n(ξ, t) + z(ξ, t)

)
+ k̂(t) ˙̂

θ(t)n(ξ, t)
)
dξ

+ λ

(
−Kuu(x, x)û(x, t)−

∫ x

0
Kuu
x (x, ξ)û(ξ, t)dξ
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−Kuv(x, x)v̂(x, t)−
∫ x

0
Kuv
x (x, ξ)v̂(ξ, t)dξ

)
+ c1(x)v̂(x, t) + P1(x)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)m(x, t) + w(x, t)

)
+ k̂(t) ˙̂

θ(t)m(x, t)

=−
∫ x

0

[
Kuu
ξ (x, ξ)λ+Kuu

x (x, ξ)λ+Kuv(x, ξ)c2(ξ)
]︸ ︷︷ ︸

=0

û(ξ, t)dξ

−
∫ x

0

[
−Kuv

ξ (x, ξ)µ+Kuv
x (x, ξ)λ+Kuu(x, ξ)c1(ξ)

]︸ ︷︷ ︸
=0

v̂(ξ, t)dξ

− [Kuv(x, x)µ+Kuv(x, x)λ− c1(x)]︸ ︷︷ ︸
=0

v̂(x, t)

− [Kuu(x, 0)λr −Kuv(x, 0)µ]︸ ︷︷ ︸
=0

v̂(0, t)

+ [−Kuu(x, 0)λ]︸ ︷︷ ︸
Ψ1(x)

k̂(t)
(
θ̂(t)− y0(t)

)

+
[
P1(x)−

∫ x

0
Kuu(x, ξ)P1(ξ)dξ −

∫ x

0
Kuv(x, ξ)P2(ξ)dξ

]
︸ ︷︷ ︸

=Ω1(x)

ê(1, t)

+ θ̂(t)
[
m(x, t)−

∫ x

0
Kuu(x, ξ)m(ξ, t)dξ −

∫ x

0
Kuv(x, ξ)n(ξ, t)dξ

]
︸ ︷︷ ︸

H1(x,t)

˙̂
k(t)

+
[
w(x, t)−

∫ x

0
Kuu(x, ξ)w(ξ, t)dξ −

∫ x

0
Kuv(x, ξ)z(ξ, t)dξ

]
︸ ︷︷ ︸

G1(x,t)

˙̂
k(t)

+ k̂(t)
[
m(x, t)−

∫ x

0
Kuu(x, ξ)m(ξ, t)dξ −

∫ x

0
Kuv(x, ξ)(t)n(ξ, t)dξ

]
︸ ︷︷ ︸

H1(x,t)

˙̂
θ(t)

=θ̂(t)H1(x, t) ˙̂
k(t) +G1(x, t) ˙̂

k(t) + k̂(t)H1(x, t) ˙̂
θ(t)

+ Ω1(x)ê(1, t) + Ψ1(x)k̂(t)
(
θ̂(t)− y0(t)

)
. (4.96)

Similarly, from (4.87b) and definition (4.80b), differentiating with respect to time,
inserting the dynamics (4.68) and integration by parts give

ζt(x, t) =v̂t(x, t)−
∫ x

0
Kvu(x, ξ)ût(ξ, t)dξ −

∫ x

0
Kvv(x, ξ)v̂t(ξ, t)dξ

=v̂t(x, t)
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−
∫ x

0
Kvu(x, ξ)

(
− λûξ(ξ, t) + c1(ξ)v̂(ξ, t) + P1(ξ)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)m(ξ, t) + w(ξ, t)

)
+ k̂(t) ˙̂

θ(t)m(ξ, t)
)
dξ

−
∫ x

0
Kvv(x, ξ)

(
+ µv̂x(x, t) + c2(x)û(x, t) + P2(x)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)n(x, t) + z(x, t)

)
+ k̂(t) ˙̂

θ(t)n(x, t)
)
dξ

=v̂t(x, t)

+Kvu(x, x)λû(x, t)−Kvu(x, 0)λû(0, t)−
∫ x

0
Kvu
ξ (x, ξ)λû(ξ, t)dξ

−
∫ x

0
Kvu(x, ξ)

(
c1(ξ)v̂(ξ, t) + P1(ξ)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)m(ξ, t) + w(ξ, t)

)
+ k̂(t) ˙̂

θ(t)m(ξ, t)
)
dξ

−Kvv(x, x)µv̂(x, t) +Kvv(x, 0)µv̂(0, t) +
∫ x

0
Kvv
ξ (x, ξ)µv̂(ξ, t)dξ

−
∫ x

0
Kvv(x, ξ)

(
c2(ξ)û(ξ, t) + P2(ξ)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)n(ξ, t) + z(ξ, t)

)
+ k̂(t) ˙̂

θ(t)n(ξ, t)
)
dξ.

(4.97)

Differentiating with respect to space and applying Leibniz’ differentiation rule give

ζx(x, t) =v̂x(x, t)

−Kvu(x, x)û(x, t)−
∫ x

0
Kvu
x (x, ξ)û(ξ, t)dξ

−Kvv(x, x)v̂(x, t)−
∫ x

0
Kvv
x (x, ξ)v̂(ξ, t)dξ. (4.98)

Substituting (4.97) and (4.98) into (4.68b) and using (4.81) and (4.90b)–(4.93b)
one finds

ζt(x, t)− µζx(x, t)

=Kvu(x, x)λû(x, t)−Kvu(x, 0)λû(0, t)−
∫ x

0
Kvu
ξ (x, ξ)λû(ξ, t)dξ

−
∫ x

0
Kvu(x, ξ)

(
c1(ξ)v̂(ξ, t) + P1(ξ)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)m(ξ, t) + w(ξ, t)

)
+ k̂(t) ˙̂

θ(t)m(ξ, t)
)
dξ

−Kvv(x, x)µv̂(x, t) +Kvv(x, 0)µv̂(0, t) +
∫ x

0
Kvv
ξ (x, ξ)µv̂(ξ, t)dξ

−
∫ x

0
Kvv(x, ξ)

(
c2(ξ)û(ξ, t) + P2(ξ)ê(1, t)
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+ ˙̂
k(t)

(
θ̂(t)n(ξ, t) + z(ξ, t)

)
+ k̂(t) ˙̂

θ(t)n(ξ, t)
)
dξ

− µ
(
−Kvu(x, x)û(x, t)−

∫ x

0
Kvu
x (x, ξ)û(ξ, t)dξ

−Kvv(x, x)v̂(x, t)−
∫ x

0
Kvv
x (x, ξ)v̂(ξ, t)dξ

)
+ c2(x)û(x, t) + P2(x)ê(1, t)

+ ˙̂
k(t)

(
θ̂(t)n(x, t) + z(x, t)

)
+ k̂(t) ˙̂

θ(t)n(x, t)

=−
∫ x

0

[
Kvu
ξ (x, ξ)λ−Kvu

x (x, ξ)µ+Kvv(x, ξ)c2(ξ)
]︸ ︷︷ ︸

=0

û(ξ, t)dξ

−
∫ x

0

[
−Kvv

ξ (x, ξ)µ−Kvv
x (x, ξ)µ+Kvu(x, ξ)c1(ξ)

]︸ ︷︷ ︸
=0

v̂(ξ, t)dξ

+ [Kvu(x, x)µ+Kvu(x, x)λ+ c2(x)]︸ ︷︷ ︸
=0

û(x, t)

− [Kvu(x, 0)λr −Kvv(x, 0)µ]︸ ︷︷ ︸
=0

v̂(0, t)

+ [−Kvu(x, 0)λ]︸ ︷︷ ︸
=Ψ2(x)

k̂(t)
(
θ̂(t)− y0(t)

)

+
[
P2(x)−

∫ x

0
Kvu(x, ξ)P1(ξ)dξ −

∫ x

0
Kvv(x, ξ)P2(ξ)dξ

]
︸ ︷︷ ︸

=Ω2(x)

ê(1, t)

+ θ̂(t)
[
n(x, t)−

∫ x

0
Kvu(x, ξ)m(ξ, t)dξ −

∫ x

0
Kvv(x, ξ)n(ξ, t)dξ

]
︸ ︷︷ ︸

H2(x,t)

˙̂
k(t)

+
[
z(x, t)−

∫ x

0
Kvu(x, ξ)w(ξ, t)dξ −

∫ x

0
Kvv(x, ξ)z(ξ, t)dξ

]
︸ ︷︷ ︸

G2(x,t)

˙̂
k(t)

+ k̂(t)
[
n(x, t)−

∫ x

0
Kvu(x, ξ)m(ξ, t)dξ −

∫ x

0
Kvv(x, ξ)(t)n(ξ, t)dξ

]
︸ ︷︷ ︸

H2(x,t)

˙̂
θ(t)

=θ̂(t)H2(x, t) ˙̂
k(t) +G2(x, t) ˙̂

k(t) + k̂(t)H2(x, t) ˙̂
θ(t)

+Ω2(x)ê(1, t) + Ψ2(x, t)k̂(t)
(
θ̂(t)− y0(t)

)
. (4.99)

The boundary condition (4.89c) can be seen from evaluating (4.87) at x = 0 and
inserting (4.69):

ω(0, t) =û(0, t)
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=v̂(0, t)q(t) + d(t) + κ(t)ε(t)
=ζ(0, t)q(t) + d(t) + κ(t)ε(t). (4.100)

Selecting the control law according to (4.86) and (4.88) give the boundary condition
(4.89d):

ζ(1, t) =v̂(1, t)−
∫ 1

0
Kvu(1, ξ, t)û(ξ, t)dξ −

∫ 1

0
Kvv(1, ξ, t)v̂(ξ, t)dξ

ζ(1, t) =U2(t). (4.101)

4.3.4 Reference Model and Tracking
Motivated by the structure of system (4.89), consider the reference model

ϕt(x, t) + λϕx(x, t) =0 (4.102a)
φt(x, t)− µφx(x, t) =0 (4.102b)

ϕ(0, t) =q(t)φ(0, t) + d(t) (4.102c)
φ(1, t) =ζ∗(t) (4.102d)

where ζ∗(t) is a reference signal to be designed. The initial conditions ϕ(x, 0) =
ϕ0(x), φ(x, 0) = φ0(x) satisfy

ϕ0, φ0 ∈ L2([0, 1]). (4.103)

Lemma 4.8. Consider system (4.89) and the reference model (4.102). The devi-
ation signals

ν(x, t) =ω(x, t)− ϕ(x, t) (4.104a)
η(x, t) =ζ(x, t)− φ(x, t) (4.104b)

with the control law selected as

U2(t) = ζ∗(t) (4.105)

satisfy the dynamics

νt(x, t) + λνx(x, t) =θ̂(t)H1(x, t) ˙̂
k(t) +G1(x, t) ˙̂

k(t) + k̂(t)H1(x, t) ˙̂
θ(t)

+ Ω1(x)ê(1, t) + Ψ1(x)k̂(t)
(
θ̂(t)− y0(t)

)
(4.106a)

ηt(x, t)− µηx(x, t) =θ̂(t)H2(x, t) ˙̂
k(t) +G2(x, t) ˙̂

k(t) + k̂(t)H2(x, t) ˙̂
θ(t)

+Ω2(x)ê(1, t) + Ψ2(x)k̂(t)
(
θ̂(t)− y0(t)

)
(4.106b)

ν(0, t) =η(0, t)q(t) + κ(t)ε(t) (4.106c)
η(1, t) =0 (4.106d)

where Gi, Hi,Ωi,Ψi i ∈ [1, 2] are defined in (4.90)–(4.93) and d, q, κ, ε in (4.70).
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Proof. The dynamics (4.106a) and (4.106b) follow straight forward by differentiat-
ing (4.104) and inserting (4.89) and (4.102). Direct substitution of the boundary
conditions and control law (4.105) give (4.106c) and (4.106d).

4.4 Stability Proof
4.4.1 Estimation Error Dynamics
The adaptive estimation error dynamics can be found by substituting in the state
dynamics (4.1) and estimator dynamics (4.68) into (4.39). The Boundary condition
(for t > tF ) can be seen from

ê(0, t) =u(0, t)− û(0, t)

=rv(0, t) + k(θ − y0(t))− rv̂(0, t)− k̂(t)
(
θ̂(t)− y0(t)

)
=rε̂(0, t) + k̃(t)(θ − y0(t)) + k̂(t)θ̃(t). (4.107)

This gives the dynamics:

êt(x, t) + λêx(x, t) =c1(x)ε̂(x, t)− P1ê(1, t)

− ˙̂
k
(
θ̂(t)m(x, t)− w(x, t)

)
− k̂ ˙̂

θm(x, t) (4.108a)

ε̂t(x, t) + λε̂x(x, t) =c2(x)ê(x, t)− P2ê(1, t)

− ˙̂
k
(
θ̂(t)n(x, t)− z(x, t)

)
− k̂ ˙̂

θn(x, t) (4.108b)

ê(0, t) =rε̂(0, t) + k̃(t)(θ − y0(t)) + k̂(t)θ̃(t) (4.108c)
ε̂(1, t) =0 (4.108d)

where P1, P2 are output injection gains originating from the static estimation error
system (4.16) found by solving (4.23). To facilitate the Lyapunov analysis, the
estimation error system is transformed into an equivalent target system in the next
lemma.

Lemma 4.9. Consider the operators P1,P2 in (4.22). The backstepping transfor-
mation

ê(x, t) = P1[α̂, β̂](x, t) (4.109a)
ε̂(x, t) = P2[α̂, β̂](x, t) (4.109b)

maps the error dynamics (4.108) into the target system

α̂t(x, t) + λα̂x(x, t) =B1(x, t) (4.110a)
β̂t(x, t)− µβ̂x(x, t) =B2(x, t) (4.110b)

α̂(0, t) =rβ̂(0, t) + k̃(t)(θ − y0(t)) + k̂(t)θ̃(t) (4.110c)
β̂(1, t) =0 (4.110d)
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where (B1, B2) is given by the 2× 2 Volterra equation

B1(x, t) = ˙̂
k
(
θ̂(t)m(x, t)− w(x, t)

)
+ k̂

˙̂
θm(x, t)

+
∫ 1

x

Puu(x, ξ)B1(ξ, t)dξ +
∫ 1

x

Puv(x, ξ)B2(ξ, t)dξ (4.111a)

B2(x, t) = ˙̂
k
(
θ̂(t)n(x, t)− z(x, t)

)
+ k̂

˙̂
θn(x, t)

+
∫ 1

x

P vu(x, ξ)B1(ξ, t)dξ +
∫ 1

x

P vv(x, ξ)B2(ξ, t)dξ. (4.111b)

Proof. Differentiating (4.109a) with respect to time, inserting the dynamics
(4.110a) and (4.110b) and integration by parts give

êt(x, t) =α̂t(x, t) +
∫ 1

x

Puu(x, ξ)α̂t(ξ, t)dξ +
∫ 1

x

Puv(x, ξ)β̂t(ξ, t)dξ

=α̂t(x, t)

− λ
∫ 1

x

Puu(x, ξ)α̂ξ(ξ, t)dξ

+
∫ 1

x

Puu(x, ξ)B1(ξ, t)dξ

+ µ

∫ 1

x

Puv(x, ξ)β̂ξ(ξ, t)dξ

+
∫ 1

x

Puv(x, ξ)B2(ξ, t)dξ

=α̂t(x, t)

− Puu(x, 1)λα̂(1, t) + Puu(x, x)λα̂(x, t) + λ

∫ 1

x

Puuξ (x, ξ)α̂(ξ, t)dξ

+
∫ 1

x

Puu(x, ξ)B1(ξ, t)dξ

+ Puv(x, 1)µβ̂(1, t)− Puv(x, x)µβ̂(x, t)− µ
∫ 1

x

Puvξ (x, ξ)β̂(ξ, t)dξ

+
∫ 1

x

Puv(x, ξ)B2(ξ, t)dξ. (4.112)

Differentiating with respect to space and applying Leibniz’ differentiation rule give

êx(x, t) =α̂x(x, t)− Puu(x, x)α̂(x, t) +
∫ 1

x

Puux (x, ξ)α̂(ξ, t)dξ

− Puv(x, x)β̂(x, t) +
∫ 1

x

Puvx (x, ξ)β̂(ξ, t)dξ.

(4.113)
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Substituting (4.112) and (4.113) into (4.108a) and using (4.23) and the definitions
(4.111) yield

α̂t(x, t) + λα̂x(x, t)

=Puu(x, 1)λα̂(1, t)− Puu(x, x)λα̂(x, t)− λ
∫ 1

x

Puuξ (x, ξ)α̂(ξ, t)dξ

−
∫ 1

x

Puu(x, ξ)B1(ξ, t)dξ

− Puv(x, 1)µβ̂(1, t) + Puv(x, x)µβ̂(x, t) + µ

∫ 1

x

Puvξ (x, ξ)β̂(ξ, t)dξ

−
∫ 1

x

Puv(x, ξ)B2(ξ, t)dξ

+ λPuu(x, x)α̂(x, t)− λ
∫ 1

x

Puux (x, ξ)α̂(ξ, t)dξ

+ λPuv(x, x)β̂(x, t)− λ
∫ 1

x

Puvx (x, ξ)β̂(ξ, t)dξ

+ c1(x)β̂(x, t) + c1(x)
∫ 1

x

P vu(x, ξ)α̂(ξ, t)dξ + c1(x)
∫ 1

x

P vv(x, ξ)β̂(ξ, t)dξ

− P1α̂(1, t)− ˙̂
k
(
θ̂(t)m(x, t)− w(x, t)

)
− k̂ ˙̂

θm(x, t)

=−
∫ 1

x

[
Puux (x, ξ)λ+ Puuξ (x, ξ)λ− c1(x)P vu(x, ξ)

]︸ ︷︷ ︸
=0

α̂(ξ, t)dξ

−
∫ 1

x

[
Puvx (x, ξ)λ− Puvξ (x, ξ)µ− c1(x)P vv(x, ξ)

]︸ ︷︷ ︸
=0

β̂(ξ, t)dξ

+ [Puv(x, x)µ+ λPuv(x, x) + c1(x)]︸ ︷︷ ︸
=0

β̂(x, t)

+ [Puu(x, 1)λ− P1]︸ ︷︷ ︸
=0

α̂(1, t)

−
[ ˙̂
k
(
θ̂(t)m(x, t)− w(x, t)

)
+ k̂

˙̂
θm(x, t)

]
+
∫ 1

x

Puu(x, ξ)B1(ξ, t)dξ +
∫ 1

x

Puv(x, ξ)B2(ξ, t)dξ
]

=B1(x, t). (4.114)

Equation (4.110b) can be found in a similar way. Boundary condition (4.110c)
is obtained by evaluating (4.109) at x = 0, inserting (4.108c) and using (4.23).
Boundary condition (4.110d) follows trivially from evaluating (4.109a) at x = 1.
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4.4.2 Boundedness in L2([0, 1])
To ease the Lyapunov proof in this section, some additional signals are introduced.
Let w̄ be a signal defined by the auxiliary filter

w̄t(x, t) + λw̄x(x, t) =0 (4.115a)
w̄(0, t) =− θ̂(t). (4.115b)

Next, let w̃ describe the deviation between the transformed filter system (4.34) and
the auxiliary system (4.115). That is

w̃(x, t) = w̌(x, t)− w̄(x, t). (4.116)

Differentiating (4.116) and substituting in (4.34) and (4.115) give the dynamics

w̃t(x, t) + λw̃x(x, t) =0 (4.117a)
w̃(0, t) =θ̂(t)− y0(t). (4.117b)

System (4.117) will be included in the Lyapunov function candidate and used to
prove boundedness of all signals in the closed loop system.

In the following lemma, some properties needed in the Lyapunov analysis are
presented.

Lemma 4.10. Consider G1, G2, H1, H2, Ω1 and Ω2 given in (4.90)–(4.92), ε in
(4.70d), w̃ by (4.117) and Bi in (4.111). The following properties hold for t > tF
with tF given by (4.27):

I)
H1(x, ·), H2(x, ·) ∈ L∞. (4.118)

II)
Ω1(x, ·), Ω2(x, ·) ∈ L∞. (4.119)

III)

||G1(t)|| ≤h1||w̌(t)||
||G2(t)|| ≤h2||w̌(t)|| (4.120)

IV)

ε2(t) ≤h3β
2(0, t) + h4||α̌(t)||2 + h5||β̌||2

+ h6

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2
(4.121)

V)
|w̃0, t)| ≤ hθ + h7|η(0, t)|+ |ε(t)| (4.122)
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VI)
||Bi(x, t)||2 ≤ h8

∣∣∣ ˙̂k(t)
∣∣∣2 + h9

∣∣∣ ˙̂θ(t)∣∣∣2 + h10

∣∣∣ ˙̂k(t)
∣∣∣2 ||w̃||2. (4.123)

for some constants hθ and hi > 0 i ∈ [1, 10].

Proof. The transformed filter system (m̌, ň) in (4.32) is a simple cascaded transport
equation and we have m̌ ≡ 1 and ň ≡ 0 for all x ∈ [0, 1] and t > tF . From the
invertibility of transformation (4.31), we have m(x, ·), n(x, ·) ∈ L∞, leaving all
signals in H1, H2 bounded and Property I follows. Boundedness of the kernels in
(4.22) gives Property II. The subsystem (4.34b) is a simple transport equation and
we have ž ≡ 0 for all x ∈ [0, 1] and t > tF . From the backstepping transformation
(4.33) it then follows that

w(x, t) =w̌(x, t) +
∫ 1

x

Puu(x, ξ)w̌(ξ, t)dξ (4.124a)

z(x, t) =
∫ 1

x

P vu(x, ξ)w̌(ξ, t)dξ (4.124b)

for t > tF , and by applying Cauchy-Schwarz’ inequality that

||w| ≤h′1||w̌|| (4.125a)
||z|| ≤h′2||w̌|| (4.125b)

for some constants h′1, h′2 > 0. Boundedness of the kernels in (4.80), using Cauchy-
Schwarz’ inequality on G1, G2 and the relation (4.125) then give Property III.

From transformation (4.109), inserting boundary condition (4.110c), and using
Cauchy-Schwarz’ inequality on the integral terms, we get

ê(0, t) ≤rβ̂(0, t) + c1||α̂||+ c2||β̂||+ k̃(t)(θ − y0(t)) + k̂(t)θ̃(t) (4.126a)
ε̂(0, t) ≤β̂(0, t) + c3||α̂||+ c4||β̂|| (4.126b)

Squaring both terms and substituting the result into (4.70d) give Property IV.
The following relation between ω̃(0, t) and η(0, t), ε(t) can be found:

w̃(0, t) =θ̂(t)− y0(t)
=θ̂(t)− a0u(0, t)− b0v(0, t)
=θ̂(t)− a0û(0, t)− b0v̂(0, t)− a0ê(0, t)− b0ε̂(0, t)
=θ̂(t)− a0ω(0, t)− b0ζ(0, t)− ε(t)
=θ̂(t)− a0ν(0, t)− a0ϕ(0, t)− b0η(0, t)− b0φ(0, t)− ε(t)
=θ̂(t)− a0d(t)− (a0q(t) + b0) η(0, t)− (a0q(t) + b0)φ(0, t)− ε(t)
=θ̂(t)− a0d(t)− (a0q(t) + b0) η(0, t)− (a0q(t) + b0) ζ∗(t− dβ)− ε(t)

=θ̂(t)− a0
k̂(t)θ̂(t)

1 + a0k̂(t)
−

(
a0
r − b0k̂(t)
1 + a0k̂(t)

+ b0

)
θ̂(t− dβ)
a0r + b0
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− (a0q(t) + b0) η(0, t)− ε(t)

= θ̂(t) + a0k̂(t)θ̂(t)− a0k̂(t)θ̂(t)
1 + a0k̂(t)

−

(
a0r + b0

1 + a0k̂(t)

)
θ̂(t− dβ)
a0r + b0

− (a0q(t) + b0) η(0, t)− ε(t)

= θ̂(t)− θ̂(t− dβ)
1 + a0k̂(t)

− (a0q(t) + b0) η(0, t)− ε(t) (4.127)

Using Property I of Theorem 4.4 gives Property V.
From Lemma A.1 we have

Bi(x, t) ≤ f(x, t) + ḡ||f ||e2ḡ(1−x) (4.128)

for i ∈ [1, 2] with

ḡ = max
x,ξ∈[0,1]

(|Puu(x, ξ)|, |Puv(x, ξ)|, |P vu(x, ξ)|, |P vv(x, ξ)|) (4.129)

and

f(x, t) =
∣∣∣ ˙̂k (θ̂(t)m(x, t)− w(x, t)

)
+ k̂

˙̂
θm(x, t)

∣∣∣
+
∣∣∣ ˙̂k (θ̂(t)n(x, t)− z(x, t)

)
+ k̂

˙̂
θn(x, t)

∣∣∣ . (4.130)

Let

fa(x, t) =
∣∣∣ ˙̂kθ̂(t)m(x, t) + k̂

˙̂
θm(x, t)

∣∣∣+
∣∣∣ ˙̂kθ̂(t)n(x, t) + k̂

˙̂
θn(x, t)

∣∣∣ (4.131a)

fb(x, t) =
∣∣∣ ˙̂kw(x, t)

∣∣∣+
∣∣∣ ˙̂kz(x, t)∣∣∣ , (4.131b)

then
Bi(x, t) ≤ |fa(x, t)|+ |fb(x, t)|+ (||fa||+ ||fb||)ḡe2ḡ(1−x). (4.132)

Boundedness of m,n, k̂, θ̂ and square integrability of ˙̂
k,

˙̂
θ from Theorem 4.4 give

fa(x, ·) ≤ h′8
∣∣∣ ˙̂k(t)

∣∣∣+ h′9

∣∣∣ ˙̂θ(t)∣∣∣ ∈ L1 ∩ L∞, (4.133)

and using (4.125)
||fb||2 ≤ h′10

∣∣∣ ˙̂k(t)
∣∣∣2 ||w̌||2 (4.134)

for some constants h′8, h′9, h′10 > 0. It then follows that

||Bi(x, t)||2 ≤ h′′8
∣∣∣ ˙̂k(t)

∣∣∣2 + h9

∣∣∣ ˙̂θ(t)∣∣∣2 + h10

∣∣∣ ˙̂k(t)
∣∣∣2 ||w̌||2 (4.135)

for some other constant h′′8 > 0. Inserting relation (4.116) and boundedness of
(4.115) give Property VI.
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Lemma 4.11. Consider the Lyapunov function candidate

V6(t) =
5∑
i=1

aiVi (4.136)

where ai > 0 ∀i ∈ [1, 5] are constants to be decided,

V1(t) =λ−1
∫ 1

0
e−δxν2(x, t)dx (4.137a)

V2(t) =µ−1
∫ 1

0
eσxη2(x, t)dx (4.137b)

V3(t) =λ−1
∫ 1

0
e−πxw̃2(x, t)dx (4.137c)

V4(t) =λ−1
∫ 1

0
e−δxα̂2(x, t)dx (4.137d)

V5(t) =µ−1
∫ 1

0
eσxβ̂2(x, t)dx (4.137e)

and ν, η are given by (4.106), w̃ defined in (4.117) and α̂, β̂ given by (4.110).
With appropriately selected ai ∀i ∈ [1, 5], δ, σ and π, then (4.136) satisfies

V̇6 ≤− h66V6 + l1(t)V6 + l2(t)

− e−π

1− 2eπh67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

1 + w2(1, t)

 w̃2(1, t) (4.138)

for some constants h66, h67 > 0, and where l1(t), l2(t) ≥ 0 are real valued functions
given by

l1(t) =a12h1

∣∣∣ ˙̂k(t)
∣∣∣2 + a2h2

∣∣∣ ˙̂k(t)
∣∣∣2 + a4e

π
∣∣∣ ˙̂k(t)

∣∣∣2 + a5e
σ+π

∣∣∣ ˙̂k(t)
∣∣∣2 (4.139a)

l2(t) = + a4λ
−1h8

∣∣∣ ˙̂k(t)
∣∣∣2 + a4λ

−1h9

∣∣∣ ˙̂θ(t)∣∣∣2
+ a1

(
h14

λδ

(
1− e−δ

)
+ 1
δ

(
1− e−δ

)
h13

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a1
h15

λδ

(
1− e−δ

) ∣∣∣ ˙̂θ(t)∣∣∣2
+ a1

Ω̄1

λδ

(
1− e−δ

)
|ê(1, t)|2

+ a2

(
h24

µσ
(eσ − 1) + 1

σ
(eσ − 1)h23

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a2
h25

µσ
(eσ − 1)

∣∣∣ ˙̂θ(t)∣∣∣2
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+ a2
Ω̄2

µσ
(eσ − 1) |ê(1, t)|2

+ a5µ
−1eσh8

∣∣∣ ˙̂k(t)
∣∣∣2 + a5µ

−1eσh9

∣∣∣ ˙̂θ(t)∣∣∣2
+ h67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

1 + w2(1, t)
(
1 + w̄2(1, t)

)
. (4.139b)

satisfying
l1, l2 ∈ L1 ∩ L∞. (4.140)

Furthermore,
V3 ∈ L1 ∩ L∞ (4.141)

and
||ν||, ||η||, ||w̃||, ||α̂||, ||β̂|| ∈ L∞. (4.142)

Before proving Lemma 4.11, derivatives of all the terms in (4.137) will be cal-
culated separately in the next sections.

Derivations regarding V1

From (4.137a) and inserting the dynamics (4.106a), we get

V̇1(t) =2λ−1
∫ 1

0
e−δxν(x, t)νt(x, t)dx

=− 2λ−1
∫ 1

0
e−δxν(x, t)λνx(x, t)dx

+ 2λ−1
∫ 1

0
e−δxν(x, t)G1(x, t) ˙̂

k(t)dx

+ 2λ−1
∫ 1

0
e−δxν(x, t)θ̂(t)H1(x, t) ˙̂

k(t)dx

+ 2λ−1
∫ 1

0
e−δxν(x, t)k̂(t)H1(x, t) ˙̂

θ(t)dx

+ 2λ−1
∫ 1

0
e−δxν(x, t)Ω1(x)ê(1, t)dx

+ 2λ−1
∫ 1

0
e−δxν(x, t)Ψ1(x)k̂(t)

(
θ̂(t)− y0(t)

)
dx (4.143)

1st term: Integration by parts and using boundary condition (4.106c) give

− 2λ−1
∫ 1

0
e−δxν(x, t)λνx(x, t)dx

=− 2
∫ 1

0
e−δxν(x, t)νx(x, t)dx
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=− e−δν2(1, t) + ν2(0, t)− δ
∫ 1

0
e−δxν2(x, t)dx

=− e−δν2(1, t) + (η(0, t)q(t) + κ(t)ε(t))2 − δ
∫ 1

0
e−δxν2(x, t)dx

≤2η2(0, t)q2(t) + 2κ2(t)ε2(t)− δλV1. (4.144)

2nd term: Substituting in the relation (4.116), separating the cross terms using
Young’s inequality (see Lemma A.2) and from Theorem 4.4 using that θ̂ and ˙̂

k are
bounded give

2λ−1
∫ 1

0
e−δxν(x, t)G1(x, t) ˙̂

k(t)dx

≤2λ−1
∫ 1

0
e−δx|ν(x, t)||G1(x, t)|dx

∣∣∣ ˙̂k(t)
∣∣∣

≤2λ−1h1

∣∣∣ ˙̂k(t)
∣∣∣ ∫ 1

0
e−δx|ν(x, t)|dx||w̌(t)||

≤2λ−1h1

∣∣∣ ˙̂k(t)
∣∣∣ ∫ 1

0
e−δx|ν(x, t)|dx||(w̃ + w̄)(t)||

≤λ−1h1

∣∣∣ ˙̂k(t)
∣∣∣2 ∫ 1

0
e−δxν2(x, t)dx+ λ−1h1

∫ 1

0
e−δxdx||w̌(t)||2

+ λ−1h1||w̄||
∫ 1

0
e−δxν2(x, t)dx+ λ−1h1||w̄||

∫ 1

0
e−δxdx

∣∣∣ ˙̂k(t)
∣∣∣2

≤2h1

∣∣∣ ˙̂k(t)
∣∣∣2 V1 + 2h1

1
δ

(
1− e−δ

)
V3 + 2h1||w̄||V1 + 2h1

||w̄||
λδ

(
1− e−δ

) ∣∣∣ ˙̂k(t)
∣∣∣2

≤2h1

∣∣∣ ˙̂k(t)
∣∣∣2 V1 + h11V1 + 1

δ

(
1− e−δ

)
h12V3 + 1

δ

(
1− e−δ

)
h13

∣∣∣ ˙̂k(t)
∣∣∣2 (4.145)

for some constants h11, h12, h13 > 0.

3rd, 4th and 5th term: Separating the cross terms using Young’s inequality
and using that H1,Ω1θ̂, k̂,

˙̂
θ,

˙̂
k are bounded (Lemma 4.10 and Theorem 4.4) give

similarly for the 3rd, 4th and 5th term

2λ−1
∫ 1

0
e−δxν(x, t)θ̂(t)H1(x, t) ˙̂

k(t)dx

≤h142λ−1
∫ 1

0
e−δx|ν(x, t)|dx

∣∣∣ ˙̂k(t)
∣∣∣

≤h14λ
−1
∫ 1

0
e−δx|ν(x, t)|2dx+ h14λ

−1
∫ 1

0
e−δxdx

∣∣∣ ˙̂k(t)
∣∣∣2

≤h14V1 + h14

λδ

(
1− e−δ

) ∣∣∣ ˙̂k(t)
∣∣∣2 , (4.146)
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2λ−1
∫ 1

0
e−δxν(x, t)k̂(t)H1(x, t) ˙̂

θ(t)dx

≤h152λ−1
∫ 1

0
e−δx|ν(x, t)|dx

∣∣∣ ˙̂θ(t)∣∣∣
≤h15λ

−1
∫ 1

0
e−δx|ν(x, t)|2dx+ h15λ

−1
∫ 1

0
e−δxdx

∣∣∣ ˙̂θ(t)∣∣∣2
≤h15V1 + h15

λδ

(
1− e−δ

) ∣∣∣ ˙̂θ(t)∣∣∣2 (4.147)

and

2λ−1
∫ 1

0
e−δxν(x, t)Ω1(x)ê(1, t)dx

≤2λ−1Ω̄1

∫ 1

0
e−δx |ν(x, t)| |ê(1, t)| dx

≤λ−1Ω̄1

∫ 1

0
e−δxν2(x, t)dx+ λ−1Ω̄1

∫ 1

0
e−δxdx |ê(1, t)|2

≤Ω̄1V1 + Ω̄1

λδ

(
1− e−δ

)
|ê(1, t)|2 (4.148)

for some constants h14, h15 > 0.

6th term: Separating the cross terms using Young’s inequality, inserting the
boundary condition (4.117b), Property V and using that Ψ1 and k̂ are bounded
give

+ 2λ−1
∫ 1

0
e−δxν(x, t)Ψ1(x)k̂(t)

(
θ̂(t)− y0(t)

)
dx

≤2λ−1Ψ̄1

∫ 1

0
e−δx |ν(x, t)|

∣∣∣k̂(t)
∣∣∣ ∣∣∣θ̂(t)− y0(t)

∣∣∣ dx
≤2λ−1Ψ̄1

∫ 1

0
e−δx |ν(x, t)|

∣∣∣k̂(t)
∣∣∣ |hθ + h7|η(0, t)|+ |ε(t)|| dx

≤
(
1 + h2

θ

)
λ−1Ψ̄1

∣∣∣k̂(t)
∣∣∣ ∫ 1

0
e−δxν2(x, t)dx

+ λ−1Ψ̄1

∣∣∣k̂(t)
∣∣∣ ∫ 1

0
e−δxdx |h7|η(0, t)|+ |ε(t)||2

≤
(
1 + h2

θ

)
Ψ̄1

∣∣∣k̂(t)
∣∣∣V1 + Ψ̄1

λδ

∣∣∣k̂(t)
∣∣∣ (1− e−δ) |h7|η(0, t)|+ |ε(t)||2

≤h16V1 + 1
δ

(
1− e−δ

)
h17|η(0, t)|2 + 1

δ

(
1− e−δ

)
h18|ε(t)|2 (4.149)

for some constants h16, h17, h18 > 0.
Combining all the terms yield an expression for the derivative V̇1:

V̇1 ≤2η2(0, t)q2(t) + 2κ2(t)ε2(t)− δλV1
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+ 2h1

∣∣∣ ˙̂k(t)
∣∣∣V1 + h11V1 + 1

δ

(
1− e−δ

)
h12V3 + 1

δ

(
1− e−δ

)
h13

∣∣∣ ˙̂k(t)
∣∣∣2

+ h14V1 + h14

λδ

(
1− e−δ

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ h15V1 + h15

λδ

(
1− e−δ

) ∣∣∣ ˙̂θ(t)∣∣∣2
+ Ω̄1V1 + Ω̄1

λδ

(
1− e−δ

)
|ê(1, t)|2

+ h16V1 + 1
δ

(
1− e−δ

)
h17 |w̃(0, t)|2

≤h16V1 + 1
δ

(
1− e−δ

)
h17|η(0, t)|2 + 1

δ

(
1− e−δ

)
h18|ε(t)|2

−
(
δλ− h11 − h14 − h15 − Ω̄1 − h16

)
V1

+ 2h1

∣∣∣ ˙̂k(t)
∣∣∣V1

+ 1
δ

(
1− e−δ

)
h12V3

+
(
h14

λδ

(
1− e−δ

)
+ 1
δ

(
1− e−δ

)
h13

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ h15

λδ

(
1− e−δ

) ∣∣∣ ˙̂θ(t)∣∣∣2
+ Ω̄1

λδ

(
1− e−δ

)
|ê(1, t)|2

+ 1
δ

(
1− e−δ

)
h17|η(0, t)|2 + 1

δ

(
1− e−δ

)
h18|ε(t)|2 (4.150)

Derivations regarding V2

From (4.137b) and inserting the dynamics (4.106b), we get

V̇2 =2µ−1
∫ 1

0
eσxη(x, t)ηt(x, t)dx

= + 2µ−1
∫ 1

0
eσxη(x, t)µηx(x, t)dx

+ 2µ−1
∫ 1

0
eσxη(x, t)θ̂(t)H2(x, t) ˙̂

k(t)dx

+ 2µ−1
∫ 1

0
eσxη(x, t)G2(x, t) ˙̂

k(t)dx

+ 2µ−1
∫ 1

0
eσxη(x, t)k̂(t)H2(x, t) ˙̂

θ(t)dx

+ 2µ−1
∫ 1

0
eσxη(x, t)Ω2(x)ê(1, t)dx
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+ 2µ−1
∫ 1

0
eσxη(x, t)Ψ2(x)k̂(t)

(
θ̂(t)− y0(t)

)
dx (4.151)

1st term: Integration by parts and using boundary condition (4.106d) give

2µ−1
∫ 1

0
eσxη(x, t)µηx(x, t)dx

=2
∫ 1

0
eσxη(x, t)ηx(x, t)dx

=eση2(1, t)− η2(0, t)− σ
∫ 1

0
eσxη2(x, t)dx

≤− η2(0, t)− σµV2. (4.152)

2nd term: Substituting in the relation (4.116), separating the cross terms using
Young’s inequality and from Theorem 4.4 using that θ̂ and ˙̂

k are bounded give

2µ−1
∫ 1

0
eσxη(x, t)G2(x, t) ˙̂

k(t)dx

≤2µ−1
∫ 1

0
eσx|η(x, t)||G2(x, t)|dx

∣∣∣ ˙̂k(t)
∣∣∣

≤2µ−1h2

∣∣∣ ˙̂k(t)
∣∣∣ ∫ 1

0
eσx|η(x, t)|dx||w̌(t)||

≤2µ−1h2

∣∣∣ ˙̂k(t)
∣∣∣ ∫ 1

0
eσx|η(x, t)|dx||(w̃ + w̄)(t)||

≤µ−1h2

∣∣∣ ˙̂k(t)
∣∣∣2 ∫ 1

0
eσxη2(x, t)dx+ µ−1h2

∫ 1

0
eσxdx||w̌(t)||2

+ µ−1h2||w̄||
∫ 1

0
eσxη2(x, t)dx+ µ−1h2||w̄||

∫ 1

0
eσxdx

∣∣∣ ˙̂k(t)
∣∣∣2

≤h2

∣∣∣ ˙̂k(t)
∣∣∣2 V2 + h2

1
σ

(eσ − 1)V3 + h2||w̄||V2 + h2
||w̄||
µσ

(eσ − 1)
∣∣∣ ˙̂k(t)

∣∣∣2
≤h2

∣∣∣ ˙̂k(t)
∣∣∣2 V2 + h21V2 + 1

σ
(eσ − 1)h22V3 + 1

σ
(eσ − 1)h23

∣∣∣ ˙̂k(t)
∣∣∣2 (4.153)

for some constant h21, h22, h23 > 0.

3rd, 4th and 5th term: Separating the cross terms using Young’s inequality
and using that H2,Ω2θ̂, k̂,

˙̂
θ,

˙̂
k are bounded (Lemma 4.10 and Theorem 4.4) give

similarly for the 3rd, 4th and 5th term

2µ−1
∫ 1

0
eσxη(x, t)θ̂(t)H2(x, t) ˙̂

k(t)dx

≤h242µ−1
∫ 1

0
eσx|η(x, t)|dx

∣∣∣ ˙̂k(t)
∣∣∣

90



4.4 Stability Proof

≤h24µ
−1
∫ 1

0
eσx|η(x, t)|2dx+ h24µ

−1
∫ 1

0
eσxdx

∣∣∣ ˙̂k(t)
∣∣∣2

≤h24V2 + h24

µσ
(eσ − 1)

∣∣∣ ˙̂k(t)
∣∣∣2 , (4.154)

2µ−1
∫ 1

0
eσxη(x, t)k̂(t)H2(x, t) ˙̂

θ(t)dx

≤h252µ−1
∫ 1

0
eσx|η(x, t)|dx

∣∣∣ ˙̂θ(t)∣∣∣
≤h25µ

−1
∫ 1

0
eσx|η(x, t)|2dx+ h25µ

−1
∫ 1

0
eσxdx

∣∣∣ ˙̂θ(t)∣∣∣2
≤h25V2 + h25

µσ
(eσ − 1)

∣∣∣ ˙̂θ(t)∣∣∣2 (4.155)

and

2µ−1
∫ 1

0
eσxη(x, t)Ω2(x)ê(1, t)dx

≤2µ−1Ω̄2

∫ 1

0
eσx |η(x, t)| |ê(1, t)| dx

≤µ−1Ω̄2

∫ 1

0
eσxη2(x, t)dx+ µ−1Ω̄2

∫ 1

0
eσxdx |ê(1, t)|2

≤Ω̄2V2 + Ω̄2

µσ
(eσ − 1) |ê(1, t)|2 . (4.156)

for some constants h24, h25 > 0.

6th term: Separating the cross terms using Young’s inequality, inserting the
boundary condition (4.117b) and using that Ψ2 and k̂ are bounded give

+ 2µ−1
∫ 1

0
eσxη(x, t)Ψ2(x)k̂(t)

(
θ̂(t)− y0(t)

)
dx

≤2µ−1Ψ̄2

∫ 1

0
eσx |η(x, t)|

∣∣∣k̂(t)
∣∣∣ ∣∣∣θ̂(t)− y0(t)

∣∣∣ dx
≤2µ−1Ψ̄2

∫ 1

0
eσx |η(x, t)|

∣∣∣k̂(t)
∣∣∣ |hθ + h7|η(0, t)|+ |ε(t)|| dx

≤
(
1 + h2

θ

)
µ−1Ψ̄2

∣∣∣k̂(t)
∣∣∣ ∫ 1

0
eσxη2(x, t)dx

+ µ−1Ψ̄2

∣∣∣k̂(t)
∣∣∣ ∫ 1

0
eσxdx |h7|η(0, t)|+ |ε(t)||2

≤
(
1 + h2

θ

)
Ψ̄2

∣∣∣k̂(t)
∣∣∣V2 + Ψ̄2

µσ

∣∣∣k̂(t)
∣∣∣ (eσ − 1) |h7|η(0, t)|+ |ε(t)||2
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≤h26V2 + 1
σ

(eσ − 1)h27 |η(0, t)||2 + 1
σ

(eσ − 1)h28 |ε(t)|2 . (4.157)

for some constants h26, h27, h28 > 0.
Combining all the terms yields an expression for the derivative V̇2:

V̇2 ≤− η2(0, t)− σµV2

+ h2

∣∣∣ ˙̂k(t)
∣∣∣V2 + h21V2 + 1

σ
(eσ − 1)h22V3 + 1

σ
(eσ − 1)h23

∣∣∣ ˙̂k(t)
∣∣∣2

+ h24V2 + h24

µσ
(eσ − 1)

∣∣∣ ˙̂k(t)
∣∣∣2

+ h25V2 + h25

µσ
(eσ − 1)

∣∣∣ ˙̂θ(t)∣∣∣2
+ Ω̄2V2 + Ω̄2

µσ
(eσ − 1) |ê(1, t)|2

+ h26V2 + 1
σ

(eσ − 1)h27 |η(0, t)||2 + 1
σ

(eσ − 1)h28 |ε(t)|2

≤− η2(0, t)
−
(
σµ− h24 − h6 − h25 − Ω̄2 − h26

)
V2

+ h2

∣∣∣ ˙̂k(t)
∣∣∣V2

+ 1
σ

(eσ − 1)h22V3

+
(
h24

µσ
(eσ − 1) + 1

σ
(eσ − 1)h23

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ h25

µσ
(eσ − 1)

∣∣∣ ˙̂θ(t)∣∣∣2
+ Ω̄2

µσ
(eσ − 1) |ê(1, t)|2

+ 1
σ

(eσ − 1)h27 |η(0, t)||2 + 1
σ

(eσ − 1)h28 |ε(t)|2 . (4.158)

Derivations regarding V3

Differentiating (4.137c), inserting the dynamics (4.117), integration by parts and
using Property V in Lemma 4.10 yield

V̇3 =2λ−1
∫ 1

0
e−πxw̃(x, t)w̃t(x, t)dx

=− 2
∫ 1

0
e−πxw̃(x, t)w̃x(x, t)dx

=− e−πw̃2(1, t) + w̃2(0, t)− π
∫ 1

0
w̃2(x, t)dx

≤− e−πw̃2(1, t) + 2h7η
2(0, t) + 2ε2(t)− πλV3 (4.159)
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Derivations regarding V4

From (4.137d) and inserting the dynamics (4.110a), we get

V̇4 =2λ−1
∫ 1

0
e−δxα̂(x, t)α̂t(x, t)dx

=− 2
∫ 1

0
e−δxα̂(x, t)α̂x(x, t)dx

+ 2λ−1
∫ 1

0
e−δxα̂(x, t)B1(x, t)dx (4.160)

1st term: Integration by parts and inserting boundary condition (4.110c) give

− 2
∫ 1

0
e−δxα̂(x, t)α̂x(x, t)dx

=− e−δα̂2(1, t) + α̂2(0, t)− δ
∫ 1

0
e−δxα̂2(x, t)dx

≤2r2β̂2(0, t) + 2
(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2
− δV4 (4.161)

2nd term: Separating the cross terms using Young’s inequality and using Prop-
erty VI of Lemma 4.10 give

2λ−1
∫ 1

0
e−δxα̂(x, t)B1(x, t)dx

≤2λ−1
∫ 1

0
e−δx|α̂(x, t)||B1(x, t)|dx

≤λ−1
∫ 1

0
e−δxα̂2(x, t)dx+ λ−1

∫ 1

0
|B1(x, t)|2dx

≤V4 + λ−1||B1(t)||2

≤V4 + λ−1h8

∣∣∣ ˙̂k(t)
∣∣∣2 + λ−1h9

∣∣∣ ˙̂θ(t)∣∣∣2 + λ−1h10

∣∣∣ ˙̂k(t)
∣∣∣ ||w̃||2

≤V4 + λ−1h8

∣∣∣ ˙̂k(t)
∣∣∣2 + λ−1h9

∣∣∣ ˙̂θ(t)∣∣∣2 + eπ
∣∣∣ ˙̂k(t)

∣∣∣2 V3 (4.162)

Combining the two terms yields and expression for V̇4

V̇4 ≤2r2β̂2(0, t) + 2
(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2
− δV4

+ V4 + λ−1h8

∣∣∣ ˙̂k(t)
∣∣∣2 + λ−1h9

∣∣∣ ˙̂θ(t)∣∣∣2 + eπ
∣∣∣ ˙̂k(t)

∣∣∣2 V3

≤− (δ − 1)V4 + eπ
∣∣∣ ˙̂k(t)

∣∣∣2 V3 + 2r2β̂2(0, t)

+ 2
(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2
+ λ−1h8

∣∣∣ ˙̂k(t)
∣∣∣2 + λ−1h9

∣∣∣ ˙̂θ(t)∣∣∣2 . (4.163)
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Derivations regarding V5

From (4.137e) and inserting the dynamics (4.110b), we get

V̇5 =2µ−1
∫ 1

0
eσxβ̂(x, t)β̂t(x, t)dx

=2
∫ 1

0
eσxβ̂(x, t)β̂x(x, t)dx

+ 2µ−1
∫ 1

0
eσxβ̂(x, t)B2(x, t)dx (4.164)

1st term: Integration by parts and inserting boundary condition (4.110d) give

2
∫ 1

0
eσxβ̂(x, t)β̂x(x, t)dx

=eσβ̂2(1, t)− β̂2(0, t)− σ
∫ 1

0
eσxβ̂2(x, t)dx

=− β̂2(0, t)− σV5 (4.165)

2nd term: Separating the cross terms using Young’s inequality and using Prop-
erty VI of Lemma 4.10 give

2µ−1
∫ 1

0
eσxβ̂(x, t)B2(x, t)dx

≤2µ−1
∫ 1

0
eσx|β̂(x, t)||B2(x, t)|dx

≤µ−1
∫ 1

0
eσxβ̂2(x, t)dx+ µ−1eσ

∫ 1

0
|B2(x, t)|2dx

≤V5 + µ−1eσ||B2(t)||2

≤V5 + µ−1eσh8

∣∣∣ ˙̂k(t)
∣∣∣2 + µ−1eσh9

∣∣∣ ˙̂θ(t)∣∣∣2 + µ−1eσh10

∣∣∣ ˙̂k(t)
∣∣∣ ||w̃||2

≤V5 + µ−1eσh8

∣∣∣ ˙̂k(t)
∣∣∣2 + µ−1eσh9

∣∣∣ ˙̂θ(t)∣∣∣2 + eσ+π
∣∣∣ ˙̂k(t)

∣∣∣2 V3 (4.166)

Combining the two terms yield and expression for V̇4

V̇5 ≤− β̂2(0, t)− σV5 + V5 + µ−1eσh8

∣∣∣ ˙̂k(t)
∣∣∣2 + µ−1eσh9

∣∣∣ ˙̂θ(t)∣∣∣2 + eσ+π
∣∣∣ ˙̂k(t)

∣∣∣2 V3

≤− β̂2(0, t)− (σ − 1)V5 + eσ+π
∣∣∣ ˙̂k(t)

∣∣∣2 V3

+ µ−1eσh8

∣∣∣ ˙̂k(t)
∣∣∣2 + µ−1eσh9

∣∣∣ ˙̂θ(t)∣∣∣2 . (4.167)
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Derivations regarding V6

Having calculated the derivative of all the terms in (4.137), we are ready to prove
Lemma 4.11.

Proof of Lemma 4.11. Combining (4.150), (4.158), (4.159), (4.163) and (4.167)
yield

V̇6 ≤a12η2(0, t)q2(t) + a12κ2(t)ε2(t)
− a1

(
δλ− h11 − h14 − h15 − Ω̄1 − h16

)
V1

+ a12h1

∣∣∣ ˙̂k(t)
∣∣∣2 V1

+ a1
1
δ

(
1− e−δ

)
h12V3

+ a1

(
h14

λδ

(
1− e−δ

)
+ 1
δ

(
1− e−δ

)
h13

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a1
h15

λδ

(
1− e−δ

) ∣∣∣ ˙̂θ(t)∣∣∣2
+ a1

Ω̄1

λδ

(
1− e−δ

)
|ê(1, t)|2

+ 1
δ

(
1− e−δ

)
h17|η(0, t)|2 + 1

δ

(
1− e−δ

)
h18|ε(t)|2

− a2η
2(0, t)

− a2
(
σµ− h24 − h6 − h25 − Ω̄2 − h26

)
V2

+ a2h2

∣∣∣ ˙̂k(t)
∣∣∣2 V2

+ a2
1
σ

(eσ − 1)h22V3

+ a2

(
h24

µσ
(eσ − 1) + 1

σ
(eσ − 1)h23

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a2
h25

µσ
(eσ − 1)

∣∣∣ ˙̂θ(t)∣∣∣2
+ a2

Ω̄2

µσ
(eσ − 1) |ê(1, t)|2

+ 1
σ

(eσ − 1)h27 |η(0, t)||2 + 1
σ

(eσ − 1)h28 |ε(t)|2

− e−πw̃2(1, t) + a3h7η
2(0, t) + a3ε

2(t)− a3πλV3

− a4 (δ − 1)V4 + a4e
π
∣∣∣ ˙̂k(t)

∣∣∣2 V3 + a42r2β̂2(0, t)

+ a42
(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2
+ a4λ

−1h8

∣∣∣ ˙̂k(t)
∣∣∣2

+ a4λ
−1h9

∣∣∣ ˙̂θ(t)∣∣∣2
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− β̂2(0, t)− a5 (σ − 1)V5 + a5e
σ+π

∣∣∣ ˙̂k(t)
∣∣∣2 V3 + a5µ

−1eσh8

∣∣∣ ˙̂k(t)
∣∣∣2

+ a5µ
−1eσh9

∣∣∣ ˙̂θ(t)∣∣∣2 . (4.168)

Reorganizing the terms and using Property IV from Lemma 4.10 give

V̇6 ≤−
(
a2 − a12q2(t)− a3h7 − h7a1

1
δ

(
1− e−δ

)
h17

)
η2(0, t)

−
(
a5 − a42r2 − h3

(
a12κ2(t) + a3

)
− a1

1
δ

(
1− e−δ

)
h17

)
β̂2(0, t)

− a1
(
δλ− h11 − h14 − h15 − Ω̄1 − h16

)
V1

− a2
(
σµ− h24 − h6 − h25 − Ω̄2 − h26

)
V2

−
(
a3πλ− a1

1
δ

(
1− e−δ

)
h12 − a2

1
σ

(eσ − 1)h22

)
V3

−
(
a4 (δ − 1)− h4e

δ

(
a12κ2(t) + a3 + a1

1
δ

(
1− e−δ

)
h17

))
V4

−
(
a5 (σ − 1)− h5

(
a12κ2(t) + a3 + a1

1
δ

(
1− e−δ

)
h17

))
V5

+ a12h1

∣∣∣ ˙̂k(t)
∣∣∣2 V1 + a2h2

∣∣∣ ˙̂k(t)
∣∣∣2 V2 + a4e

π
∣∣∣ ˙̂k(t)

∣∣∣2 V3 + a5e
σ+π

∣∣∣ ˙̂k(t)
∣∣∣2 V3

− e−πw̃2(1, t)

+
(

2a4 + h6

(
a12κ2(t) + a3 + a1

1
δ

(
1− e−δ

)
h17

))
×
(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

+ a4λ
−1h8

∣∣∣ ˙̂k(t)
∣∣∣2 + a4λ

−1h9

∣∣∣ ˙̂θ(t)∣∣∣2
+ a1

(
h14

λδ

(
1− e−δ

)
+ 1
δ

(
1− e−δ

)
h13

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a1
h15

λδ

(
1− e−δ

) ∣∣∣ ˙̂θ(t)∣∣∣2
+ a1

Ω̄1

λδ

(
1− e−δ

)
|ê(1, t)|2

+ a2

(
h24

µσ
(eσ − 1) + 1

σ
(eσ − 1)h23

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a2
h25

µσ
(eσ − 1)

∣∣∣ ˙̂θ(t)∣∣∣2
+ a2

Ω̄2

µσ
(eσ − 1) |ê(1, t)|2

+ a5µ
−1eσh8

∣∣∣ ˙̂k(t)
∣∣∣2 + a5µ

−1eσh9

∣∣∣ ˙̂θ(t)∣∣∣2 . (4.169)
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Let

a51 =a42r2 + h3
(
a12κ2(t) + a3

)
+ a1

1
δ

(
1− e−δ

)
h17 (4.170a)

a52 = 1
σ1

(
h5

(
a12κ2(t) + a3 + a1

1
δ

(
1− e−δ

)
h17

))
(4.170b)

h67 =
(

2a4 + h6

(
a12κ2(t) + a3 + a1

1
δ

(
1− e−δ

)
h17

))
. (4.170c)

Selecting

δ ≥max
(

1
λ

(
h11 + h14 + h15 + Ω̄1 + h16

)
, 1
)

(4.171a)

σ ≥max
(

1
µ

(
h24 + h6 + h25 + Ω̄2 + h26

)
, 1
)

(4.171b)

a1 =1 (4.171c)
a3 =1 (4.171d)

a2 ≥a12q2(t) + a3h7 + h7a1
1
δ

(
1− e−δ

)
h17 (4.171e)

a4 ≥
1

δ − 1

(
h4e

δ

(
a12κ2(t) + a3 + a1

1
δ

(
1− e−δ

)
h17

))
(4.171f)

a5 ≥max(a51, a52) (4.171g)

π ≥ 1
a3λ

(
a1

1
δ

(
1− e−δ

)
h12 + a2

1
σ

(eσ − 1)h22

)
(4.171h)

yield

V̇6 ≤− h61V1 − h62V2 − h63V3 − h64V4 − h65)V5

+ a12h1

∣∣∣ ˙̂k(t)
∣∣∣2 V1 + a2h2

∣∣∣ ˙̂k(t)
∣∣∣2 V2 + a4e

π
∣∣∣ ˙̂k(t)

∣∣∣2 V3 + a5e
σ+π

∣∣∣ ˙̂k(t)
∣∣∣2 V3

− e−πw̃2(1, t)

+ h67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

+ a4λ
−1h8

∣∣∣ ˙̂k(t)
∣∣∣2 + a4λ

−1h9

∣∣∣ ˙̂θ(t)∣∣∣2
+ a1

(
h14

λδ

(
1− e−δ

)
+ 1
δ

(
1− e−δ

)
h13

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a1
h15

λδ

(
1− e−δ

) ∣∣∣ ˙̂θ(t)∣∣∣2
+ a1

Ω̄1

λδ

(
1− e−δ

)
|ê(1, t)|2

+ a2

(
h24

µσ
(eσ − 1) + 1

σ
(eσ − 1)h23

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a2
h25

µσ
(eσ − 1)

∣∣∣ ˙̂θ(t)∣∣∣2
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+ a2
Ω̄2

µσ
(eσ − 1) |ê(1, t)|2

+ a5µ
−1eσh8

∣∣∣ ˙̂k(t)
∣∣∣2 + a5µ

−1eσh9

∣∣∣ ˙̂θ(t)∣∣∣2
≤− h66V6

+
(
a12h1

∣∣∣ ˙̂k(t)
∣∣∣2 + a2h2

∣∣∣ ˙̂k(t)
∣∣∣2 + a4e

π
∣∣∣ ˙̂k(t)

∣∣∣2 + a5e
σ+π

∣∣∣ ˙̂k(t)
∣∣∣2)V6

− e−πw̃2(1, t)

+ h67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

+ a4λ
−1h8

∣∣∣ ˙̂k(t)
∣∣∣2 + a4λ

−1h9

∣∣∣ ˙̂θ(t)∣∣∣2
+ a1

(
h14

λδ

(
1− e−δ

)
+ 1
δ

(
1− e−δ

)
h13

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a1
h15

λδ

(
1− e−δ

) ∣∣∣ ˙̂θ(t)∣∣∣2
+ a1

Ω̄1

λδ

(
1− e−δ

)
|ê(1, t)|2

+ a2

(
h24

µσ
(eσ − 1) + 1

σ
(eσ − 1)h23

) ∣∣∣ ˙̂k(t)
∣∣∣2

+ a2
h25

µσ
(eσ − 1)

∣∣∣ ˙̂θ(t)∣∣∣2
+ a2

Ω̄2

µσ
(eσ − 1) |ê(1, t)|2

+ a5µ
−1eσh8

∣∣∣ ˙̂k(t)
∣∣∣2 + a5µ

−1eσh9

∣∣∣ ˙̂θ(t)∣∣∣2 . (4.172)

Using (4.139), this expression can be simplified to

V̇6 ≤− h66V6 + l1(t)V6 + l2(t)

− h67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

1 + w2(1, t)
(
1 + 2w̄2(1, t)

)
− e−πw̃2(1, t) + h67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2
. (4.173)

The last term can be written on the form considered in Property IV in Theorem 4.4
by dividing and multiplying by

(
1 + w2(1, t)

)
to yield

V̇6 ≤− h66V6 + l1(t)V6 + l2(t)− e−πw̃2(1, t)

+ h67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

1 + w2(1, t)
(
1 + w2(1, t)

)
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− h67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

1 + w2(1, t)
(
1 + 2w̄2(1, t)

)
≤− h66V6 + l1(t)V6 + l2(t)− e−πw̃2(1, t)

+ h67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

1 + w2(1, t)
(
1 + w̌2(1, t)

)
≤− h66V6 + l1(t)V6 + l2(t)− e−πw̃2(1, t)

+ h67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

1 + w2(1, t)
(
1 + 2w̄2(1, t)− 1− 2w̄2(1, t) + 2w̃2(1, t)

)
≤− h66V6 + l1(t)V6 + l2(t)

− e−π

1− 2eπh67

(
k̃(t)(θ − y0(t)) + k̂(t)θ̃(t)

)2

1 + w2(1, t)

 w̃2(1, t) (4.174)

which is equal to (4.138).
Boundedness and integrability of l1 and l2 follow from Property I, II, IV and

boundedness of (4.115). From (4.63) we have that

V̇0 ≤ −h68
(
Θ̃T (t)Ψ(t+ dα)

)2 (4.175)

where Ψ,Θ are defined in (4.56), h68 > 0 a constant, and with h68Ψ(t)ΨT (t) ≤
I2×2. Lemma 8 from Anfinsen and Aamo (2017c) can then be applied, yielding
(4.141). For reference, Anfinsen and Aamo (2017c, Lemma 8) is included in Ap-
pendix A.5 as Lemma A.5.

From (4.141) it follows that

||ν||, ||η||, ||w̃||, ||α̂||, ||β̂|| ∈ L∞. (4.176)

and from the invertibility of the transforms (4.87), (4.104) and (4.109) that

||û||, ||v̂||, ||u||, ||v|| ∈ L∞ (4.177)

which completes the proof.

4.4.3 Boundedness Point-wise in Space
Lemma 4.12. Consider the system (4.1) with state estimates generated by (4.38)
and the adaptive law (4.41). If the control signal U(t) is selected according to
(4.84), then the states u, v will be bounded point wise in space, that is

u(x, ·), v(x, ·) ∈ L∞, ∀x ∈ [0, 1]. (4.178)

Proof. Using the same backstepping transformation as in the proof of Lemma 3.11,
the proof is similar and therefore omitted.
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4.4.4 Convergence in L2([0, 1])
To prove convergence in L2([0, 1]), Lemma 3.1 from Liu and Krstić (2001) will be
utilized. For reference, the lemma is restated in Appendix A.7 as Lemma A.7.

Lemma 4.13. Consider the transformed system (4.106) in Lemma 4.8, the filer
system (4.117) and the transformed error system (4.110) in Lemma 4.9. If k̂, θ̂
are generated using (4.41) in Theorem 4.4, then ν, η, w̃, α̂, β̂ converge to zero in
L2([0, 1]), that is

||ν||, ||η||, ||w̃||, ||α̂||, ||β̂|| → 0. (4.179)

Proof. By design, system (4.106) is obtained using the control law (4.84). Hence,
all assumptions in Lemma 4.12 hold and the sates u, v are bounded point-wise in
space. From the definition (4.5) it follows that y0 is bounded and from (4.117) and
Property I in Theorem 4.4 that w̃(1, t) is bounded. Now, since V3, l1, l2 ∈ L∞ from
Lemma 4.11, the right hand side of (4.138) is bounded from above and there exists
a constant M such that V̇3 ≤ M . This result, together with V3 ∈ L1 ∩ L∞ from
Lemma 4.11 gives, by Lemma A.7,

V3 → 0 (4.180)

and (4.179) follows.

4.4.5 Proof of Theorem 4.6
Proof of Theorem 4.6. Inserting (4.88) and (4.105) from Lemma 4.7 and 4.8 re-
spectively into (4.86), together with the operator (4.80b) and ζ∗ selected as

ζ∗(t) = 1
a0r + b0

θ̂(t) (4.181)

give (4.84). Boundedness of all signals in the closed loop system then follows from
Lemma 4.11 and 4.12 and Theorem 4.4.

Consider the Lyapunov function candidate

V7 = ||η||2 =
∫ 1

0
η2(x, t)dx. (4.182)

Differentiating with respect to time

V̇7 =2
∫ 1

0
η(x, t)ηt(x, t)dx

=− µη2(0, t)

+ 2
∫ 1

0
η(x, t)θ̂(t)H2(x, t) ˙̂

k(t)dx

+ 2
∫ 1

0
η(x, t)G2(x, t) ˙̂

k(t)dx
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+ 2
∫ 1

0
η(x, t)k̂(t)H2(x, t) ˙̂

θ(t)dx

+ 2
∫ 1

0
η(x, t)Ω2(x)ê(1, t)dx

+ 2
∫ 1

0
η(x, t)Ψ2(x)k̂(t)

(
θ̂(t)− y0(t)

)
dx (4.183)

and then integrating from t to t+ T gives∫ t+T

t

V̇7dτ =V7(t+ T )− V7(t)

=− µ
∫ t+T

t

η2(0, τ)dτ

+ 2
∫ t+T

t

∫ 1

0
η(x, t)θ̂(t)H2(x, t) ˙̂

k(t)dx dτ

+ 2
∫ t+T

t

∫ 1

0
η(x, t)G2(x, t) ˙̂

k(t)dx dτ

+ 2
∫ t+T

t

∫ 1

0
η(x, t)k̂(t)H2(x, t) ˙̂

θ(t)dx dτ

+ 2
∫ t+T

t

∫ 1

0
η(x, t)Ω2(x)ê(1, t)dx dτ

+ 2
∫ t+T

t

∫ 1

0
η(x, t)Ψ2(x)k̂(t)

(
θ̂(t)− y0(t)

)
dx dτ. (4.184)

Rearranging the terms and applying Cauchy-Schwarz’ inequality yield

V7(t+ T )− V7(t) + µ

∫ t+T

t

η2(0, τ)dτ

≤+ 2
∫ t+T

t

√∫ 1

0
|η(x, t)|2dx

√∫ t+T

t

∣∣∣θ̂(t)H2(x, t) ˙̂
k(t)

∣∣∣2 dx dτ
+ 2

∫ t+T

t

√∫ 1

0
|η(x, t)|2dx

√∫ t+T

t

∣∣∣G2(x, t) ˙̂
k(t)

∣∣∣2 dx dτ
+ 2

∫ t+T

t

√∫ 1

0
|η(x, t)|2dx

√∫ t+T

t

∣∣∣k̂(t)H2(x, t) ˙̂
θ(t)

∣∣∣2 dx dτ
+ 2

∫ t+T

t

√∫ 1

0
|η(x, t)|2dx

√∫ t+T

t

|Ω2(x)ê(1, t)|2 dx dτ

+ 2
∫ t+T

t

√∫ 1

0
|η(x, t)|2dx

√∫ t+T

t

∣∣∣Ψ2(x)k̂(t)
(
θ̂(t)− y0(t)

)∣∣∣2 dx dτ. (4.185)
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Since ||η||, V7 → 0 and
∫ t+T
t

η2(0, t)dτ, V7 ≥ 0, all terms on the right hand side of
(4.185) converge to zero, and the left hand side is bounded from below. Then, by
the squeeze theorem, one obtains∫ t+T

t

η2(0, τ)dτ → 0, (4.186)

and thereby ∫ t+T

t

|η(0, τ)|dτ → 0. (4.187)

Consider the Lyapunov function candidate

V8 = ||η||2 =
∫ 1

0
β̂2(x, t)dx. (4.188)

Differentiating with respect to time

V̇8 =2
∫ 1

0
β̂(x, t)β̂t(x, t)dx

=− µβ̂2(0, t) + 2
∫ 1

0
β̂(x, t)B2(x, t)dx (4.189)

and then integrating from t to t+ T give∫ t+T

t

V̇8dτ =V8(t+ T )− V8(t)

=− µ
∫ t+T

t

β̂2(0, τ)dτ + 2
∫ t+T

t

∫ 1

0
β̂(x, t)Ψ2(x)B2(x, t)dx dτ.

(4.190)

Rearranging the terms and applying Cauchy-Schwarz’ inequality yield

V8(t+ T )− V8(t) + µ

∫ t+T

t

β̂2(0, τ)dτ

≤2
∫ t+T

t

√∫ 1

0
|β̂(x, t)|2dx

√∫ t+T

t

|B2(x, t)|2 dx dτ. (4.191)

Since ||β̂||, V8 → 0 and
∫ t+T
t

β̂2(0, t)dτ, V8 ≥ 0, all terms on the right hand side of
(4.191) converge to zero, and the left hand side is bounded from below. Then, by
the squeeze theorem, one obtains∫ t+T

t

β̂2(0, τ)dτ → 0, (4.192)

and thereby ∫ t+T

t

|β̂(0, τ)|dτ → 0. (4.193)
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Using transformation (4.87) and (4.104) and boundary conditions (4.106c) and
(4.89c), the following relation can be found:

|rv̂(0, t)− û(0, t)|
=|rζ(0, t)− ω(0, t)|
=|rη(0, t)− ν(0, t) + rφ(0, t)− ϕ(0, t)|
=|(r − q(t))η(0, t)− κ(t)ε(t) + (r − q(t))φ(0, t)− d(t)|
=|(r − q(t))η(0, t)− κ(t)ε(t) + (r − q(t))ζ∗(t− dβ)− d(t)|

=|(r − q(t))η(0, t)− κ(t)ε(t) + (r − q(t)) d(t− dβ)
r − q(t− dβ) − d(t)|

≤|r − q(t)||η(0, t)|+ |κ(t)||ε(t)|+ |(r − q(t)) d(t− dβ)
r − q(t− dβ) − d(t)|

(4.194)
Integrating both sides from τ = t to τ = t+ T yields∫ t+T

t

|rv̂(0, τ)− û(0, τ)|dτ ≤
∫ t+T

t

|r − q(t)||η(0, τ)|dτ +
∫ t+T

t

|κ(t)ε(t)|

+ dτ

∫ t+T

t

|(r − q(τ)) d(τ − dβ)
r − q(τ − dβ) − d(τ)|dτ

(4.195)
From (4.187), (4.193), invertibility of the transform (4.109) and Property I and
III of Theorem 4.4, the right hand side will converge to zero and by the squeeze
theorem ∫ t+T

t

|rv̂(0, τ)− û(0, τ)|dτ → 0. (4.196)

Consider∫ t+T

t

|rv(0, τ)− u(0, τ)|dτ ≤
∫ t+T

t

|rv̂(0, τ)− û(0, τ)|dτ

+
∫ t+T

t

|rε̂(0, τ)− ê(0, τ)|dτ

≤
∫ t+T

t

|rv̂(0, τ)− û(0, τ)|dτ

+
∫ t+T

t

|k̃(τ)(θ − y0(τ)) + k̂(τ)θ̃(τ)|dτ. (4.197)

From Property IV of Theorem 4.4, the last term is square integrable, implying that
the last term will converge to zero, and again by the squeeze theorem, we have∫ t+T

t

|rv(0, τ)− u(0, τ)|dτ → 0. (4.198)

Lastly, from the results (4.196) and (4.198), and boundary conditions (4.1c) and
(4.68c), we obtain (4.85).
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Chapter 5

Application to Kick and Loss
Attenuation in MPD

The theory derived in Part II will be applied to the Kick and Loss Detection
and Attenuation problem in Managed Pressure Drilling. The MPD technique and
kick and loss application were briefly presented in Chapter 1. A more detailed
introduction to well control is given in Section 5.1. A model of the drilling system
is presented in Section 5.2. Transformations relating the drilling system to the
systems in Chapters 3 and 4 and accompanying stability proofs are presented in
Sections 5.3 and 5.4 respectively. Section 5.5 presents a simple control method that
will be used for benchmarking of the two other methods.

5.1 Well Control
When drilling, a fluid called mud is circulated down the drill-string, through the
drill-bit and up the casing around the drill string called annulus. This is illustrated
in Figure 5.1. The purpose of the drill mud is not only to carry cuttings out to
the surface, but also to prevent fracturing of the formation and collapse of the well
(Aamo, 2013). All formations penetrated during drilling are porous and permeable
to some degree (Lyons and Plisga, 2011, Section 4.14.1). If the reservoir pressure,
often called the pore pressure or formation pressure, is higher than the bottom-
hole pressure of the drilling fluid, the formation fluid will enter the well and, if not
controlled, will traverse all the way up the annulus and cause an uncontrolled release
of formation fluid into free air known as a blowout. The sudden inflow of formation
fluid into the well is called a kick. Kicks may be the result of many causes, among
them; an abnormally high formation pressure when drilling into a new formation,
loss of circulation, too low mud weight and swabbing while tripping1 (Lyons and
Plisga, 2011, Section 4.14.1). In this thesis, only kicks caused by drilling into
reservoirs with unknown fraction pressure is considered. If the bottom-hole pressure

1A temporarily pressure reduction created when pulling out the drill string.
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Drilling �uid

Oil & Gas 
in�ux 3-10 km

Figure 5.1: Schematic of a well being drilled. Courtesy of Ulf Jacob Aarsnes (Aarsnes
et al. (2016b)).

is higher than the formation pressure, a situation known as a loss might occur where
the drill fluid starts flowing into the formation, i.e. a loss of drilling fluid. This
situation is also unwanted as it frequently leads to formation damage, decrease in
penetration rate and in the extreme case fracturing and loss of circulation (Ostroot
et al., 2007). In view of this, preventing or at least attenuating both kicks and
losses should be the main concern in well pressure management.

In conventional drilling operations the drilling mud is circulated from an open
pit, down the drill string, though the drill bit, up the annulus through a bell nipple,
through a flow-line for separation of the mud and fraction fluids, and back to the
open pit again (Malloy et al., 2009). Since the mud pit is open, drilling needs
to be done with a higher bottom-hole pressure than pore pressure everywhere in
the formation to avoid blowouts. The bottom-hole pressure can be controlled by
varying the mud density, but because of the low bandwidth of this control method,
the drilling pressure needs to be overly conservative. The result is a consistently
overbalanced situation with all the negative consequences that entails. To achieve
higher reservoir productivity, drilling with a pressure closer to the pore pressure
is necessary. In underbalanced drilling the bottom-hole pressure is intentionally
lower than the pore pressure in all parts of the formations. This way, all the
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Figure 5.2: Illustration showing region of operation for conventional, underbalanced
and managed pressure drilling together with borehole stability limits, pore pressure and
fractioning limits. Adapted from Malloy et al. (2009).

negative effects associated with formation invasion are avoided. Drilling with a
low bottom-hole pressure leads to formation fluids flowing up the annulus and
to the surface. In underbalanced drilling, this is handled by sealing the top-side
and diverting the produced fluids into a separator. Some problem-wells might be
impossible or uneconomical to drill with conventional or underbalanced drilling.
This might for instance be the case if the well stability pressure exceeds the pore
pressure or if the fractioning pressure is close to the pore pressure. By controlling
the back pressure through a valve (and pump if the circulation is stopped), the
applied back pressure (ABP) method is able to control the pressure throughout
the well. ABT is a method within managed pressure drilling where the goal is to
control the bottom-hole pressure closer to the pore pressure. This is illustrated in
Figure 5.2.

Well control can be divided into two classes defined in NORSOK (2004) as either
primary or secondary barriers. Primary barriers are operational control methods
and prevent formations from flowing into the wellbore by using the mud pressure
weight to control the bottom-hole pressure. Secondary barriers are only used if the
primary barrier fails. It uses a blow out preventer to stop the inflow and prevent
blowouts. MPD can be used both for reactive MPD, i.e. as a secondary barrier
to handle incidents after they occur, or as a proactive control method acting as a
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primary barrier. Only the latter use is considered in this thesis.

5.2 Problem Statement
To model the annular pressure and flow in a well using managed pressure drilling,
a modification of the model presented in Landet et al. (2013) is used. This model
was used to describe the heave problem in offshore drilling without circulation. To
model the reservoir relation, the bottom-hole boundary condition is replaced by a
simple productivity index based inflow model where the flow of produced formation
fluid is directly proportional to the difference in pressure between the bottom-hole
and reservoir. The proportional constant is called the productivity index (Ahmed,
2006, Chapter 7). This gives the following model:

pt(z, t) = − β

A1
qz(z, t) (5.1a)

qt(z, t) = −A1

ρ
pz(z, t)−

F1

ρ
q(z, t)−A1g (5.1b)

q(0, t) = J (pr − p(0, t)) + qbit (5.1c)
p(l, t) = pl(t) (5.1d)

where z ∈ [0, l] and t ≥ 0 are independent variables of space and time respectively,
l is the well depth, p(z, t) is pressure, q(z, t) is volumetric flow, β is the bulk
modulus of the mud, ρ is the density of the mud, A1 is the cross sectional area of
the annulus, F1 is the friction factor, g is the acceleration of gravity, J > 0 is the
productivity index, pr the reservoir pressure and qbit the flow through the drill bit.
It is assumed that pr satisfy

0 < pr ≤ p̄r (5.2)

where p̄r is some known upper bound for the reservoir pressure. Moreover, it is
assumed that the choke controller have significantly faster dynamics than the rest
of the system so that the actuation dynamics can be ignored and the top-side
pressure pl regarded as a control input. The design goal is to keep the down-hole
pressure equal to the unknown reservoir pressure, that is

p(0, t) = pr, (5.3)

such that flow from the reservoir into the drill string is zero. This implies that the
flow through the annulus is equal to the drill bit flow. Based on (5.3), the following
control objective is selected:

lim
t→∞

∫ t+T

t

|p(0, t)− pr| dτ = 0. (5.4)
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5.3 Feasibility of Design: Collocated Sensing and
Control

If sensing is restricted to be taken top-side, that is collocated with the actuation,
the theory derived in Chapter 3 can be applied to achieve the control objective
(5.4). Let the top-side measurement be given as

ql(t) = q(l, t). (5.5)

Lemma 5.1. The coordinate transformation

u(x, t) = 1
2

(
q(xl, t)− qbit + A1√

βρ
(p(xl, t) + ρglx+ F1

A1
qbitlx)

)
× exp( lF1

2
√
βρ
x) (5.6a)

v(x, t) = 1
2

(
q(xl, t)− qbit −

A1√
βρ

(p(xl, t) + ρglx+ F1

A1
qbitlx)

)
× exp(− lF1

2
√
βρ
x) (5.6b)

where

x = z

l
(5.7)

maps the system (5.1) into the form (3.1) with

λ =

√
β

ρ

1
l

(5.8a)

µ =

√
β

ρ

1
l

(5.8b)

c1(x) = −F1

2ρ exp( lF1√
βρ
x) (5.8c)

c2(x) = −F1

2ρ exp(− lF1√
βρ
x) (5.8d)

θ1 =

(
J

√
βρ

A1
− 1
)

(
J

√
βρ

A1
+ 1
) (5.8e)

θ2 = J(
J

√
βρ

A1
+ 1
)pr (5.8f)
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and

U(t) =1
2

(
q(l, t)− qbit −

A1√
βρ

(p(l, t) + ρgl + F1

A1
qbitl)

)
exp(− lF1

2
√
βρ

) (5.9a)

y(t) =1
2

(
q(l, t)− qbit + A1√

βρ
(p(l, t) + ρgl + F1

A1
qbitl)

)
exp( lF1

2
√
βρ

). (5.9b)

Moreover, the control objective (5.4) is transformed to (3.7) with r = −1.

Proof. The constant terms are removed and the origin shifted by defining

p̄(z, t) = p(z, t) + ρgz + F1

A1
qbitz (5.10a)

q̄(z, t) = q(z, t)− qbit. (5.10b)

Differentiating with respect to time gives

p̄t(z, t) = pt(z, t) (5.11)

and

q̄t(z, t) = −A1

ρ
pz(z, t)−

F1

ρ
q(z, t)−A1g

= −A1

ρ
(pz(z, t) + ρg)− F1

ρ
(q̄(z, t) + qbit)

= −A1

ρ

(
pz(z, t) + ρg + F1

A1
qbit

)
− F1

ρ
q̄(z, t)

= −A1

ρ
p̄z(z, t)−

F1

ρ
q̄(z, t). (5.12)

Similarly, differentiating with respect to space (z) gives

p̄z(z, t) = pz(z, t) + ρg + F1

A1
qbit (5.13)

and
q̄z(z, t) = qz(z, t). (5.14)

Next, introducing the diagonalizing change of variables

ū(z, t) = 1
2

(
q̄(z, t) + A1√

βρ
p̄(z, t)

)
(5.15a)

v̄(z, t) = 1
2

(
q̄(z, t)− A1√

βρ
p̄(z, t)

)
(5.15b)

and differentiating (5.15) with respect to space (z) give

ūz(z, t) = 1
2 q̄z(z, t) + A1

2
√
βρ
p̄z(z, t)

−

√
β

ρ
ūz(z, t) = 1

2

(
−

√
β

ρ
q̄z(z, t)−

A1

ρ
p̄z(z, t)

)
(5.16)

112



5.3 Feasibility of Design: Collocated Sensing and Control

and

v̄z(z, t) = 1
2 q̄z(z, t)−

A1

2
√
βρ
p̄z(z, t)√

β

ρ
ūz(z, t) = 1

2

(√
β

ρ
q̄z(z, t)−

A1

ρ
p̄z(z, t)

)
. (5.17)

Differentiating with respect to time and inserting (5.16) and (5.17) into (5.15) give
the dynamics in the new (ū, v̄)-coordinates:

ūt(z, t) = 1
2 q̄t(z, t) + A1

2
√
βρ
p̄t(z, t)

= 1
2

(
−A1

ρ
p̄z(z, t)−

F1

ρ
q̄(z, t)

)
− A1

2
√
βρ

(
β

A1
q̄z(z, t)

)
= 1

2

(
−A1

ρ
p̄z(z, t)−

√
β

ρ
q̄z(z, t)

)
− F1

2ρ q̄(z, t)

= −

√
β

ρ
ūz(z, t)−

F1

2ρ (ū(z, t) + v̄(z, t)) (5.18)

and

v̄t(z, t) = 1
2 q̄t(z, t)−

A1

2
√
βρ
p̄t(z, t)

= 1
2

(
−A1

ρ
p̄z(z, t)−

F1

ρ
q̄(z, t)

)
+ A1

2
√
βρ

(
β

A1
q̄z(z, t)

)
= 1

2

(
−A1

ρ
p̄z(z, t) +

√
β

ρ
q̄z(z, t)

)
− F1

2ρ q̄(z, t)

=

√
β

ρ
v̄z(z, t)−

F1

2ρ (ū(z, t) + v̄(z, t)) . (5.19)

To remove the dependence of ū from (5.18), v̄ from (5.19) and scale the domain to
[0, 1], the following transformation is defined:

u(x, t) = ū(xl, t) exp( lF1

2
√
βρ
x) (5.20a)

v(x, t) = v̄(xl, t) exp(− lF1

2
√
βρ
x) (5.20b)
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where x = z/l. Differentiating (5.20) with respect to space (x) gives
1
l
ux(x, t) = 1

l

∂

∂x

(
ū(z, t) exp( lF1

2
√
βρ
x)
)

= 1
l

∂

∂z
(ū(z, t)) ∂z

∂x
exp( lF1

2
√
βρ
x) + 1

l
ū(z, t) ∂

∂x

(
exp( lF1

2
√
βρ
x)
)

= ūz(z, t) exp( lF1

2
√
βρ
x) + ū(z, t) exp( lF1

2
√
βρ
x) F1

2
√
βρ

= exp( lF1

2
√
βρ
x)
(
ūz(z, t) + ū(z, t) F1

2
√
βρ

)
(5.21)

and
1
l
vx(x, t) = 1

l

∂

∂x

(
v̄(z, t) exp(− lF1

2
√
βρ
x)
)

= 1
l

∂

∂z
(v̄(z, t)) ∂z

∂x
exp(− lF1

2
√
βρ
x) + 1

l
v̄(z, t) ∂

∂x

(
exp(− lF1

2
√
βρ
x)
)

= v̄z(z, t) exp(− lF1

2
√
βρ
x)− v̄(z, t) exp(− lF1

2
√
βρ
x) F1

2
√
βρ

= exp(− lF1

2
√
βρ
x)
(
v̄z(z, t)− v̄(z, t) F1

2
√
βρ

)
. (5.22)

Differentiating (5.20) with respect to time and inserting (5.21) and (5.22) yield

ut(x, t) = ūt(xl, t) exp( lF1

2
√
βρ
x)

=
(
−

√
β

ρ
ūz(z, t)−

F1

2ρ (ū(z, t) + v̄(z, t))
)

exp( lF1

2
√
βρ
x)

= −

√
β

ρ

(
ūz(z, t) + F1

2
√
βρ
ū(z, t)

)
exp( lF1

2
√
βρ
x)− F1

2ρ v̄(z, t) exp( lF1

2
√
βρ
x)

= −

√
β

ρ

1
l
ux(x, t)− F1

2ρ exp( lF1√
βρ
x)v(x, t) (5.23)

and

vt(x, t) = v̄t(xl, t) exp(− lF1

2
√
βρ
x)

=
(√

β

ρ
v̄z(z, t)−

F1

2ρ (v̄(z, t) + ū(z, t))
)

exp(− lF1

2
√
βρ
x)

=

√
β

ρ

(
v̄z(z, t)−

F1

2
√
βρ
v̄(z, t)

)
exp(− lF1

2
√
βρ
x)− F1

2ρ ū(z, t) exp(− lF1

2
√
βρ
x)

=

√
β

ρ

1
l
vx(x, t)− F1

2ρ exp(− lF1√
βρ
x)u(x, t). (5.24)
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Inserting the definitions (5.8a)–(5.8d) give the dynamics (3.1a) and (3.1b).
From (5.15), the following relations can be found:

ū(z, t) + v̄(z, t) =1
2

(
q̄(z, t) + A1√

βρ
p̄(z, t)

)
+ 1

2

(
q̄(z, t)− A1√

βρ
p̄(z, t)

)
=q̄(z, t) (5.25)

and
√
βρ

A1
(ū(z, t)− v̄(z, t)) =

√
βρ

2A1

(
q̄(z, t) + A1√

βρ
p̄(z, t)

)
−
√
βρ

2A1

(
q̄(z, t)− A1√

βρ
p̄(z, t)

)
=p̄(z, t). (5.26)

Evaluating (5.10b) at z = 0 gives

q̄(0, t) = q(0, t)− qbit
= J (pr − p(0, t)) + qbit − qbit
= −Jp̄(0, t) + Jpr, (5.27)

inserting the relations (5.25) and (5.26) yield

ū(0, t) + v̄(0, t) = q̄(0, t)
= −Jp̄(0, t) + Jpr

= −J
√
βρ

A1
(ū(0, t)− v̄(0, t)) + Jpr (5.28)

and by reorganizing the terms and using definitions (5.8e) and (5.8f), one obtains
(3.1c).

Evaluating (5.6a) and (5.6b) at x = l give trivially (5.9a) and (5.9b). From
(5.28), it can be seen that p(0, t) = pr corresponds to u(0, t) + v(0, t) = 0 and the
objective (5.4) is transformed to (3.7) with r = −1. The complete transformation
(5.6) can be seen from inserting (5.10) and (5.15) into (5.20) which completes the
proof.

From (5.8e) and the fact that J > 0, it can be seen that θ1 satisfy

− 1 < θ1 < 1 (5.29)

which together with r = −1 means that the constraint (3.8) is satisfied. Inequality
(5.29) can also be used as lower and upper bounds for θ1. Lower and upper bounds
for θ2 can be found from (5.2) as

¯
θ2 = 0 and θ̄2 = p̄r respectively.

Since the system (5.1) takes the form of (3.1), the results from Theorem 3.2
and 3.4 can be applied.
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Theorem 5.2. Consider the system (5.1). Let (p̂, q̂) be estimates of the states
(p, q) generated from the observer (3.9) and transformation (5.6), and let Ĵ and
p̂r be estimates of the unknown system parameters J and pr generated using the
adaptive law (3.26) and definitions (5.8e)–(5.8f). If the system parameters and r
are selected according to Lemma 5.1, the control law

pl(t) =
√
βρ

A1

(
ql(t)− qbit − 2U(t) exp( lF1

2
√
βρ

)
)
− ρgl − F1

A1
qbitl (5.30)

with U(t) given by (3.64), guarantees (5.4) and all signals in the closed loop system
are bounded. Moreover, the estimate Ĵ converges to some steady state value and
the estimate p̂r converges to its true value pr in the sense∫ t+T

t

|p̂r(τ)− pr| dτ → 0. (5.31)

Proof. For the first part of the theorem; by Lemma 5.1, having established that
the system (5.1) takes the form (3.1), it suffices to show that the actuation pl(t)
is related to U(t) through (5.30). Solving (5.6b) for p(xl, t) and evaluating the
resulting equation at x = 1 give trivially the control law (5.30). By Theorem 3.4,
the control objective (5.4) is achieved for some T > 0 and all signals in the closed
loop are bounded. For the second part; from (3.65) and (3.66) it follows that∫ t+T

t

|p̂(0, τ)− p(0, τ)| dτ → 0. (5.32)

and since the control objective (5.4) is satisfied, we obtain (5.31). Convergence of
Ĵ to some steady state value follows from Theorem 3.2.

5.4 Feasibility of Design: Non-Collocated Sensing
and Control

If sensing is allowed to be taken both top-side and bottom-hole, the theory derived
in Chapter 4 can be applied to achieve the control objective (5.4). Consider the case
where measurement of both top-side flow and bottom-hole pressure are available.
Let the top-side measurement be given as

ql(t) = q(l, t) (5.33)

and the bottom-hole pressure as

p0(t) = p(0, t). (5.34)
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Lemma 5.3. The coordinate transformation

u(x, t) = 1
2

(
q(xl, t)− qbit + A1√

βρ
(p(xl, t) + ρglx+ F1

A1
qbitlx)

)
× exp( lF1

2
√
βρ
x) (5.35a)

v(x, t) = 1
2

(
q(xl, t)− qbit −

A1√
βρ

(p(xl, t) + ρglx+ F1

A1
qbitlx)

)
× exp(− lF1

2
√
βρ
x) (5.35b)

where
x = z

l
, (5.36)

maps the system (5.1) into the form (3.1) with

λ =

√
β

ρ

1
l

(5.37a)

µ =

√
β

ρ

1
l

(5.37b)

c1(x) = −F1

2ρ exp( lF1√
βρ
x) (5.37c)

c2(x) = −F1

2ρ exp(− lF1√
βρ
x) (5.37d)

k =J
√
βρ

A1
(5.37e)

θ = A1√
βρ
pr (5.37f)

and

U(t) =1
2

(
ql(t)− qbit −

A1√
βρ

(pl(t) + ρgl + F1

A1
qbitl)

)
exp(− lF1

2
√
βρ

) (5.38a)

y1(t) =1
2

(
ql(t)− qbit + A1√

βρ
(pl(t) + ρgl + F1

A1
qbitl)

)
exp( lF1

2
√
βρ

) (5.38b)

y0(t) = A1√
βρ
p0(t). (5.38c)

The measurement y0 is related to (u, v) by

y0(t) = u(0, t)− v(0, t) (5.39)

implying a0 = 1 and b0 = −1. Moreover, the control objective (5.4) is transformed
to (4.7) with r = −1.
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Proof. The proof of the mapping (5.1a)–(5.1b) to (4.1a)–(4.1b) is identical to the
proof of Lemma 5.1 and is therefore omitted.

Evaluating (5.35a) and (5.35b) at x = 0 and adding them together yield

u(0, t) + v(0, t) = q(0, t)− qbit =J (pr − p(0, t))

=J
√
βρ

A1

(
A1√
βρ
pr −

A1√
βρ
p(0, t)

)
(5.40)

and the boundary condition (4.1c) is obtained with θ and k given in (5.37e)
and (5.37f). Subtracting (5.35a) evaluated at x = 0 from (5.35b) evaluated at
x = 0 gives

u(0, t)− v(0, t) = A1√
βρ
p(0, t) (5.41)

and the measurement (4.5) is obtained with y0 given by (5.38c), a0 = 1 and b0 =
−1. From (5.40), it can be seen that p(0, t) = pr corresponds to u(0, t)+v(0, t) = 0
and the objective (5.4) is transformed to (4.7) with r = −1.

From (5.37e) and J > 0, we have that sign(k) is known and positive. Further-
more, it can be seen that the selected a1, b1 and r satisfy the constraint (4.8).

Since the system (5.1) takes the form of (4.1), the results from Theorem 4.4
and 4.6 can be applied.

Theorem 5.4. Consider the system (5.1). Let (p̂, q̂) be estimates of the states
(p, q) generated from (4.38), the update law in Theorem 4.4 and transformation
(5.35). Let Ĵ and p̂r be estimates of the unknown system parameters J and pr gen-
erated using the adaptive law (4.41) and definitions (5.37f)–(5.37e). If the system
parameters and r are selected according to Lemma 5.3, the control law

pl(t) =
√
βρ

A1

(
ql(t)− qbit − 2U(t) exp( lF1

2
√
βρ

)
)
− ρgl − F1

A1
qbitl (5.42)

with U(t) given by (4.84), guarantees (5.4) and all signals in the closed loop system
are bounded. Moreover, the estimate Ĵ converges to some steady state value and
the estimate p̂r converges to its true value pr, that is

p̂r → pr. (5.43)

Proof. For the first part of the theorem; by Lemma 5.3, having established that
the system (5.1) takes the form (4.1), it suffices to show that the actuation pl(t)
is related to U(t) through (5.42). Solving (5.35b) for p(xl, t) and evaluating the
resulting equation at x = 1 give trivially the control law (5.42). By Theorem 4.6,
the control objective (5.4) is achieved for some T > 0 and all signals in the closed
loop are bounded. For the second part; from Theorem 4.6 it follows that

θ̂ →θ (5.44a)
k̂ →k̄ (5.44b)

for some constant k̄. Convergence in p̂r and Ĵ then follow from definitions (5.37e)
and (5.37f).
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5.5 Alternative Control Scheme: Constant Top-
Side Actuation

In addition to the two controllers of Sections 5.3 and 5.4, a simple controller with
constant top-side actuation is presented in this section. This is essentially the
same control method used in Zhou et al. (2011) for kick attenuation in MPD. The
main purpose of introducing this controller is for benchmarking of the two other
methods. No stability or convergence proofs are offered1. Due to its simplicity, the
methods of Sections 5.3 and 5.4 should, if successful, offer significant performance
improvements over this controller. This however, can not be proven theoretically,
and must be demonstrated by simulation or experiment. The following lemma
presents the top-side control law and how it is implemented.

Lemma 5.5. Consider the model (5.1), transformation (5.6), control signal (5.9a)
and measurement (5.9b). Let

ql(t) = qbit, ∀t > 0 (5.45)

where ql is the top-side flow and qbit is the flow through the drill bit. The control
law (5.45) can be implemented as

U(t) = −y(t) exp(− lF1√
βρ

). (5.46)

Proof. Direct substitution of (5.9a) and (5.9b) into the left and right hand side of
(5.46) give (5.45) trivially.

1Although the methods derived in Part II are able to stabilize open-loop unstable systems,
benchmarking of the methods against this simple controller will only be performed on open-loop
stable system. This is because the open loop system (5.1) with U(t) ≡ 0 is inherently stable for
all physically realistic system parameters.
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Chapter 6

Simulations

In this chapter, the MPD system (5.1) is implemented in MATLAB with the controller
schemes of Theorem 5.2 and 5.4 and Lemma 5.5. The theory is applied to the Kick
and Loss Detection and Attenuation application described in Section 5.1.

In addition, since the open loop system (5.1) with U(t) ≡ 0 is stable for all
realistic system parameters, a mock-example with non-physical parameters is in-
cluded to demonstrate the stabilizing capability of the controller schemes derived
in Part II.

Four test cases are designed: The first one on a mock-example, the other three
on the MPD model with the Kick and Loss Attenuation application. A description
of the test cases are given in Section 6.1, performance metrics for comparing and
benchmarking the methods are presented in Section 6.2, some details regarding
how the systems are implemented are offered in Section 6.3, and simulation results
and discussions can be found in Section 6.4.

6.1 Design of Test Cases
Four test cases are simulated using three different control methods. They will
throughout this chapter be referred to as

I) The collocated method. Using the theory of Theorem 3.4 and the application
in Theorem 5.2 where sensing is restricted to be collocated with actuation.

II) The non-collocated method. Using the theory of Theorem 4.6 and the ap-
plication in Theorem 5.4 where sensing is allowed to be non-collocated with
actuation.

III) The constant method. Using constant top-side actuation equal to the drill
bit flow as described in Lemma 5.5.

The adaptation gains are selected as γ1 = γ2 = 5 in all test cases. For the first test
case, systems (3.1) and (4.1) are simulated with the collocated and non-collocated
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Table 6.1: Mock system parameters used in Case 1.

Parameter Description Value
λ Transport speed 3
µ Transport speed 3
c1(x) Source term 3e−2x

c2(x) Source term 3e2x

k Boundary Parameter 4
θ Boundary Parameter 1
r Control objective coefficient −1

Table 6.2: Well and drill system parameters used in Case 2, 3 and 4.

.

Parameter Description Value Unit
β Bulk modulus 7317× 105 Pa
A1 Annulus cross sectional area 0.024 m2

ρ Mud density 1250 kg m−3

F1 Friction factor 10 kg m−3

g Gravity constant 9.81 m s−2

l Well length 2500 m
qbit Drill bit flow 1/60 m3 s−1

J Productivity index 1.068× 10−8 m3 s−1 Pa−1

method respectively using mock-parameters, that is, parameters without any phys-
ical meaning. Numerical values for the system parameters, defined in Section 3.1
and/or Section 4.1 are given in Table 6.11 The purpose is to demonstrate the theory
of Theorem 3.2, 3.4, 4.4 and 4.6. In accordance with that purpose, no comparison
of performance between the two methods are made. No a priori information is
assumed known about system sates or parameters; all initial estimates are zero.
That is, û(x, 0) = 0, v̂(x, 0) for all x =∈ [0, 1], θ̂1(0) = θ̂2(0) = 0 (for the collocated
method) and θ̂(0) = k̂(0) = 0 (for the non-collocated method). Initial conditions
for the system states are selected as

u(x, 0) =1, ∀x ∈ [0, 1] (6.1a)
v(x, 0) = sin(x). (6.1b)

In the other three test cases, system (5.1) is simulated with the physical well and
drill parameters given in Table 6.2. The well length is 2500 meters, the productivity
index is 40 stock tank barrels per day per psi2 and the drill bit flow 1000 liters per
minute. All additional parameters are the same as used in Aamo (2013).

1Numerical values for θ1, θ2 can be found by using (4.10).
2 The productivity index is often referred to in terms of stock tank barrels per day per psi

(STB/Day/Psi). In SI units: 40 STB/Day/Psi = 1.068 × 10−8 m3/s/Pa.
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The purpose of the second test case is to demonstrate stability and conver-
gence of the collocated and non-collocated method applied on the MPD system
(5.1) by using Theorem 5.2 and 5.4 respectively. In accordance with that purpose,
no comparison of performance between the two methods are made. No a priori
information is assumed known about the well and drill states. All initial state
estimates are zero, and initial parameter estimates are randomly selected within
some reasonable range as Ĵ(0) = 1.5× 10−4 m3 and p̂r(0) = 100× 105 Pa. The
reservoir pressure is kept constant and equal to pr(t) = 450× 105 Pa, ∀ t > 0.
Initial conditions for the system states are selected as1

p(z, 0) =0, ∀ z ∈ [0, l]
q(z, 0) =0.1 m3 s−1.

The purpose of the third and forth test case is to compare the performance
of the collocated method and non-collocated method up against each other and
against the simple method. The performance is evaluated by how well the methods
attenuate a simulated kick and loss. In the third test case a step drop in reservoir
pressure is simulated, i.e. a loss. In the forth test case a step increase in reservoir
pressure is simulated, i.e. a kick. In order to better isolate the effects of the
simulated kick/loss, the simulation is run for an initial 10 seconds in steady state,
before the step in reservoir pressure is simulated. The system is initialized with
perfect knowledge about the system states and parameters, that is p̂(z, 0) = p(z, 0),
q̂(z, 0) = q(z, 0) for all z ∈ [0, l], Ĵ(0) = J and p̂r(0) = pr(0). The reservoir pressure
for the third test case is selected as

pr(t) =
{

450× 105 Pa, for t < 10
400× 105 Pa, for t > 10,

(6.3)

and for the fourth case as

pr(t) =
{

400× 105 Pa, for t < 10
450× 105 Pa, for t > 10.

(6.4)

Initial steady state conditions are found by setting pt(z, t) = qt(z, t) = 0 in (5.1)
and solving the resulting IVP, yielding

p(z, 0) =pr −
F1

A1
qbitz − ρgz := pss(z) (6.5a)

q(x, 0) =qbit := qss(z). (6.5b)

A summary of all initial conditions used in test Case 2, 3 and 4 can be found in
Table 6.3.

1The initial pressure distribution is highly non-physical, but is selected to better illustrate
specific features of the control methods.
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Table 6.3: Initial conditions used in Case 2, 3 and 4

Case 2 Case 3 Case 4
p(z, 0) 0 pss pss
q(z, 0) 0.1 m3 s−1 qss qss
pr(0) 450× 105 Pa 450× 105 Pa 400× 105 Pa
p̂(z, t) 0 p(z, 0) p(z, 0)
q̂(z, t) 0 q(z, 0) q(z, 0)
p̂r(0) 100× 105 Pa pr(0) pr(0)
Ĵ(0) 1.5× 10−8 m3 s−1 Pa−1 J J

6.2 Performance Metrics
In the kick and loss application, the goal is to counteract changes in reservoir
pressure by controlling the bottom-hole pressure and thereby preventing fluids
from flowing into or out of the well. A suitable measure of performance is thus the
total amount of fluid flowing into/out of the well before the kick/loss is attenuated.

Let the excess flow in or out of the well be denoted

qexs(t) = max (0, |q(0, τ)− qbit|) (6.6)

The performance of the control methods will be evaluated in terms of the L1 and
L∞ norm of qexs over the time interval t0 to t1, where t0 is the step time and t1 is
the total simulation horizon. That is

||qexs||1 =
∫ t1

t0

|qexs(τ)|dτ (6.7a)

||qexs||∞ = sup
t∈[t0,t1]

|qexs(τ)|. (6.7b)

6.3 Implementation
Instead of implementing system (5.1) directly, systems (3.1) and (4.1) are actually
the ones implemented. The system sates (p, q) are calculated from post-processing
of the (u, v) states by inverting the transform (5.6). This is also the procedure
used in Anfinsen (2013); Aamo (2013). Since system (5.1) is not on Riemann form,
implementing (5.1) would require the use of more advanced finite element methods
(Sonnendrücker, 2015). Instead, system (3.1) and (4.1) can be implemented using
the method of lines (Schiesser, 1991; Hamdi et al., 2007) where spatial derivatives
in x are approximated using a 2nd order upwind scheme (Kreyszig, 2011, Section
21.7) and the explicit Runge-Kutta MATLAB solver ode23() used for the resulting
IVP in time t. The spatial domain is discretized using N = 100 discretization
points.

The kernel PDEs (3.14), (3.52) and (4.81) are solved using the same solvers
developed for Anfinsen and Aamo (2016, 2017b). The kernel PDE (4.23) and
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injection gains (4.26) are found explicitly using the solution given in Vazquez and
Krstic (2014) and applied on the MPD model in Aamo (2016).

6.4 Simulation of Test Cases
Each of the sections below contain a description of the figures included, discussion
of the results, and for test case 3 and 4; the performance metrics.
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6.4.1 Case 1: Stabilization of 2× 2 Hyperbolic Systems
This test case shows simulation results using both the collocated and the non-
collocated method. The systems are simulated for 15 seconds. The following figures
are included:

1. A 3D representation of the open loop system states u(x, t), v(x, t) for all
x ∈ [0, 1], that is with no control input (U(t) ≡ 0).

2. A 3D representation of the closed loop system states u(x, t), v(x, t) for all
x ∈ [0, 1] using the collocated method.

3. A 3D representation of the closed loop system states u(x, t), v(x, t) for all
x ∈ [0, 1] using the non-collocated method.

4. A 3D representation of the state estimation error ũ(x, t) = u(x, t) − û(x, t),
ṽ(x, t) = v(x, t)− v̂(x, t) when using the collocated method.

5. A 3D representation of the state estimation error ũ(x, t) = u(x, t) − û(x, t),
ṽ(x, t) = v(x, t)− v̂(x, t) when using the non-collocated method.

6. Parameter estimates θ̂1(t), θ̂2(t) and actual boundary parameters θ1, θ2 for
the collocated method.

7. Parameter estimates k̂(t), θ̂(t) and actual boundary parameters k, θ for the
non-collocated method.

8. The applied actuation signal U(t) for both the collocated method and the
non-collocated method.

9. A linear combination of the system states at the boundary, namely u(0, t)−
rv(0, t). This is a stricter version of (3.7) and will be referred to as the
pointwise objective. The pointwise objective is shown for both the collocated
method and the non-collocated method.

Figure 6.1 shows that both sates are unbounded and the system is open loop
unstable. Introducing the controllers (3.64) and (4.84) in Figures 6.2 and 6.3, show
that all states now are bounded and that both the collocated method and non-
collocated method are able to stabilize the system. All state estimates are shown
to converge to zero in Figures 6.4 and 6.5, and from Figure 6.9 it can be seen that
the objectives (3.7) and (4.7) are satisfied. Hence, the results from Theorem 3.4
and 4.6 are demonstrated by simulation. Furthermore, from Figures 6.6 and 6.7 it
can be seen that all parameter estimates converge to a steady state value and that
θ̂ in Figure 6.7b converge to its true value. This is in line with what was shown
theoretically in Theorem 3.2 and 4.4. In addition, it can be seen from Figure 6.8
that the control signal converges to a constant non-zero value.
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Figure 6.1: States, open loop system (U(t) ≡ 0).
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Figure 6.2: States, closed loop system using collocated method.
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Figure 6.3: States, closed loop system using non-collocated method.
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Figure 6.4: Estimation error using collocated method.
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Figure 6.5: Estimation error using non-collocated method.
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Figure 6.6: Parameter estimates (dashed red) and actual parameters (solid black) for
the collocated method.
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Figure 6.7: Parameter estimates (dashed red) and actual parameters (dashed black) for
the non-collocated method.
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Figure 6.8: Control signal U(t) for the collocated method (left) and non-collocated
method (right).
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Figure 6.9: Point-wise control objective u(0, t)−rv(0, t) for the collocated method (left)
and non-collocated method (right).
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6.4.2 Case 2: Stabilization of MPD System
Both the collocated and the non-collocated method are tested on the MPD model.
The systems are simulated for 50 seconds. All figures show both methods side by
side. The following figures are included:

1. A 3D representation of the well pressure distribution p(z, t) for all z ∈ [0, l].

2. A 3D representation of the well pressure estimation error p̃(z, t) = p(z, t) −
p̂(z, t).

3. Estimated reservoir pressure p̂r(t) and actual reservoir pressure pr(t).

4. Estimated productivity index Ĵ(t) and actual productivity index J .

5. The applied actuation signal pl(t).

6. The bottom-hole pressure p(0, t) and reservoir pressure pr(t)

7. The bottom-hole volumetric flow q(0, t) and drill bit flow qbit.

Figure 6.10 shows that the well pressure is stabilized for all z ∈ [0, l] for both
methods. The pressure distributions converge to a linear steady state profile with
the highest pressure bottom-hole. Both methods are also able to estimate the
pressure everywhere in the well; where Figure 6.11 shows that the estimation errors
converge to zero for all z ∈ [0, l]. In accordance with Theorem 5.2 and 5.4, the
reservoir pressure estimates converge to their true value and the productivity index
estimates to some constant steady sate values, as can be seen from Figures 6.12
and 6.13. Figures 6.14 and 6.15 show that the bottom-hole pressures are stabilized
at the reservoir pressure and the net flows from the reservoir into the well converge
to zero, meaning that both methods are able to attenuate the gain, and Theorem 5.2
and 5.4 are demonstrated by simulation.
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(a) Collocated method. (b) Non-collocated method.

Figure 6.10: Pressure distribution in well p(z, t) for all z ∈ [0, l].

(a) Collocated method. (b) Non-collocated method.

Figure 6.11: Pressure estimation error in well p̃(z, t) for all z ∈ [0, l].

(a) Collocated method. (b) Non-collocated method.

Figure 6.12: Estimated reservoir pressure p̂r(t) and actual reservoir pressure pr(t).
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(a) Collocated method. (b) Non-collocated method.

Figure 6.13: Estimated productivity index Ĵ(t) and actual productivity index J .

(a) Collocated method. (b) Non-collocated method.

Figure 6.14: Bottom-hole pressure p(0, t) and reservoir pressure pr(t).

(a) Collocated method. (b) Non-collocated method.

Figure 6.15: Bottom-hole volumetric flow q(0, t) and drill bit flow qbit.
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6.4.3 Case 3: Loss Attenuation
A loss is simulated as a step drop in reservoir pressure at t0 = 10 s for all three
methods; the collocated, non-collocated and simple method. The systems are sim-
ulated for a total of t1 = 60 s. All methods are compared in the same figures. The
following two figures are included:

1. Bottom-hole pressure p(0, t) for all methods and reservoir pressure pr(t). Two
plots are included; an overview for t ∈ [0, 60 s] and a close up view for t ∈
[16 s, 33 s]. The latter is included to better show the difference between the
collocated and non-collocated method.

2. Bottom-hole volumetric flow q(0, t) for all methods and drill bit flow qbit.
Both an overview and close up view are also here included.

Figures 6.16 and 6.17 show that all three methods are able to attenuate the loss.
The bottom-hole pressure is stabilized at the reservoir pressure and the net loss out
of the well converges to zero. It is seen that both the collocated and non-collocated
method are significantly faster than the simple method. The performance results
in Table 6.4 show that using the collocated method or non-collocated method offer
a ∼ 40% reduction in total out-flow, compared with the constant method. The per-
formance of the collocated method and non-collocated method however are nearly
identical, both in terms of total out-flow and in transient response. It would be
natural to assume that the non-collocated method should offer some performance
improvement over the collocated method because of the additional bottom-hole
measurement and thereby better state estimates. The simulation results, however,
show that the non-collocated method is only marginally better. Examining Fig-
ures 6.16 and 6.17 further show that the bottom-hole pressure and flow converge
in almost discrete steps every ∼ 6 s. This corresponds to the propagation time1

from the bottom of the well to the top-side measurement and actuation and down
again to the bottom of the well. This propagation time is a theoretical limit for
how fast a bottom-hole loss can be attenuated by top-side actuation and sens-
ing only. Using bottom-hole sensing however, bottom-hole pressure estimates are
instantly available and the theoretical limit can be reduced to half of that. In-
specting the close up view in Figures 6.16b and 6.17b show that the non-located
method offer some performance improvements over the collocated method in terms
of faster convergence and less oscillations. In view of the theoretical limit of us-
ing non-collocated sensing, the additional bottom-hole measurement is nonetheless
not satisfactory utilized. This is however to be expected from the structure of the
control scheme: The bottom-hole measurement enters the swapping filter at one
boundary and must propagate through the swapping filter up to the other bound-
ary before the new information is available to the adaptive law and the estimate
p̂r can be updated. In conclusion, taking the structural design of the method into
account, the non-collocated method performed satisfactory.

1The propagation time can be calculated from the transport speeds (5.8a) and (5.8b) with
the parameters in Table 6.2.
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Table 6.4: Performance metrics for Case 3.

||qexs||1 ||qexs||∞
Collocated 0.257 m3 0.042 m3 s−1

Non-collcoated 0.253 m3 0.041 m3 s−1

Simple 0.410 m3 0.042 m3 s−1

(a) Overview.

(b) Close up view.

Figure 6.16: Bottom-hole pressure p(0, t) and reservoir pressure pr(t).
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(a) Overview.

(b) Close up view.

Figure 6.17: Bottom-hole volumetric flow q(0, t) and drill bit flow qbit.
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Table 6.5: Performance metrics for Case 2.

||qexs||1 ||qexs||∞
Collocated 0.250 m3 0.042 m3 s−1

Non-collcoated 0.254 m3 0.041 m3 s−1

Simple 0.410 m3 0.042 m3 s−1

6.4.4 Case 4: Kick Attenuation
A kick is simulated as a step increase in reservoir pressure at t0 = 10 s for all
three methods; the collocated, non-collocated and simple method. The systems
are simulated for a total of t1 = 60 s. All methods are compared in the same
figures. The following two figures are included:

1. Bottom-hole pressure p(0, t) for all methods and reservoir pressure pr(t). Two
plots are included; an overview for t ∈ [0, 60 s] and a close up view for t ∈
[16 s, 33 s]. The latter is included to better show the difference between the
collocated and non-collocated method.

2. Bottom-hole volumetric flow q(0, t) for all methods and drill bit flow qbit.
Both an overview and close up view are also here included.

Figures 6.18 and 6.19 show that all three methods are able to attenuate the kick.
The bottom-hole pressure is stabilized at the reservoir pressure and the net gain
into the well converge to zero. It is seen that both the collocated and non-collocated
method, are significantly faster than the simple method. The performance results
in Table 6.5 show that using the collocated method or non-collocated method also
in this case offer a ∼ 40% reduction in total in-flow, compared with the constant
method. Similarly to the loss attenuation case, the performance of the collocated
method and non-collocated method are nearly identical. The same discrete steps
in convergence every ∼ 6 s can be found in Figures 6.18 and 6.19, and thus the
same arguments about utilization of the bottom-hole measurement for the non-
collocated method applies here. From Figures 6.18b and 6.19b and contrary to the
loss attenuation case, an overshoot in the bottom-hole pressure and net out-flow can
be observed when using the collocated method. Compared to the non-collocated
method, the response is also highly oscillatory around 17 s − 24 s just before the
bottom-hole pressure is stabilized at the set-point. The same conclusion as in Case
3 can be made; namely that the non-collocated method offer some performance
improvement compared to the collocated method, and that both methods operate
close to their structural theoretical limit.
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(a) Overview.

(b) Close up view.

Figure 6.18: Bottom-hole pressure p(0, t) and reservoir pressure pr(t).
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(a) Overview.

(b) Close up view.

Figure 6.19: Bottom-hole volumetric flow q(0, t) and drill bit flow qbit.
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Chapter 7

Conclusion and Further
Work

In this thesis, two controller schemes for adaptive set-point regulation of linear 2×2
hyperbolic systems are derived. In the first scheme, the only available measurement
is collocated with actuation. Furthermore, the boundary condition anti-collocated
with the control is affine and includes two uncertain parameters. In the second
scheme, sensing is allowed to be taken at both boundaries, i.e. non-collated with
actuation. Moreover, the boundary condition anti-collocated with control has a
special bilinear form which also includes two uncertain parameters.

Proof of boundedness in the L2-sense and point-wise in space are proved for all
signals in the closed loop system. State estimates are shown to converge to zero and
parameter estimates to some constant steady state value. For the non-collocated
method, one of the parameter estimates was also shown to converge to its true
value. Convergence to some specified set-point, where the set-point is a function
dependent on the estimated parameters, was also shown for both methods.

The theory was applied on the Kick and Loss Detection and Attenuation Prob-
lem in Managed Pressure Drilling. A transformation relating the general 2 × 2
hyperbolic systems to a model of the drilling system was found. Stabilization of
the pressure and flow throughout the well were proved. Furthermore, it was shown
that the bottom-hole pressure can be stabilized at the unknown reservoir pressure
and precise estimates of the reservoir pressure obtained for both methods.

Compared with using simple constant top-side flow, the simulation results
showed a significant reduction in total in/out-flow and attenuation time when us-
ing the two derived methods. The two methods performed comparatively equal,
with the non-collocated method performing only slightly better; with less oscil-
lations and less overshoot. The performance gain was however negligible when
compared to using constant top-side actuation. Both methods have essentially the
same controller structure and differ mainly in how state and parameter estimates
are generated. This suggest that the estimation part is not the limiting factor.
Indeed, the methods performed close to the theoretical limit imposed by the prop-
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agation time (bottom-hole – top-side – bottom-hole). Using a higher adaptation
gain might increase the slope of convergence of the estimation error, but the gain
in convergence time will therefore only be marginal.

The non-collocated method has some other advantages over the collocated
method: Due to the special bilinear form, a simpler control law with fewer backstep-
ping transformations and integrators can be found for the non-collocated method.
This comes at the expense of a slightly more involved stability proof. Further-
more, the controller kernels used in the non-collocated method can be implemented
off-line, significantly improving computation time compared with the collocated
method.

Suggested areas for further work are:

I) Prove the stronger result of point-wise convergence in space, that is u(0, t)−
rv(0, t)→ 0.

II) Design a non-adaptive method better utilizing the additional anti-collocated
measurement by incorporating information from the left boundary condition
of the swapping filters into the adaptive law.

III) Investigate the robustness of the proposed design to parameter uncertainties.
For example in terms of the generic 2 × 2 hyperbolic parameters; transport
speed and source terms, or in terms of the drilling parameters; friction factor
or drill bit flow.

IV) Perform experimental lab testing of the derived controller methods.

V) Consider a system where the anti-collated measurement is available only with
a delay.

VI) Consider a system where the drill bit flow is controllable.

VII) Generalize the proposed designs to include general n+ 1 and m+ n systems.
This can be used to model gas kicks.
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Appendix A

Additional Lemmas

This appendix presents some useful additional lemmas used throughout the thesis.

A.1 Upper Bound on 2× 2 Volterra Equations
Lemma A.1. Let f1, f2 : [0, 1]→ R be any known functions, g1, g2, g3, g4 : [0, 1]×
[0, 1]→ R bounded known functions and B1, B2 : [0, 1]→ R satisfying the, possibly
time-varying, set of Volterra equations

B1(x) =f1(x) +
∫ 1

x

g1(x, ξ)B1(ξ) + g2(x, ξ)B2(ξ)dξ (A.1a)

B2(x) =f2(x) +
∫ 1

x

g3(x, ξ)B1(ξ) + g4(x, ξ)B2(ξ)dξ. (A.1b)

The unknown functions B1 and B2 are bounded by

B1(x)| ≤|f1(x)|+ ḡ||f ||e2ḡ(1−x) (A.2a)
B2(x)| ≤|f2(x)|+ ḡ||f ||e2ḡ(1−x) (A.2b)

where
ḡ = max

x,ξ∈[0,1]
(|g1(x, ξ)|, |g2(x, ξ)|, |g3(x, ξ)|, |g4(x, ξ)|) (A.3)

and
f(x) = |f1(x)|+ |f2(x)|. (A.4)

Proof. Consider the sequence

B0
1(x) =f1(x) (A.5a)

Bn+1
1 (x) =f1(x) +

∫ 1

x

g1(x, ξ)Bn1 (ξ) + g2(x, ξ)Bn2 (ξ)dξ (A.5b)
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and

B0
2(x) =f2(x) (A.6a)

Bn+1
2 (x) =f2(x) +

∫ 1

x

g3(x, ξ)Bn1 (ξ) + g4(x, ξ)Bn2 (ξ)dξ. (A.6b)

Next, define the differences

S0
1(x) =B0

1(x) = f1(x) (A.7a)
Sn1 (x) =Bn1 (x)−Bn−1

1 (x)

=f1(x) +
∫ 1

x

(
g1(x, ξ)Bn−1

1 (ξ) + g2(x, ξ)Bn−1
2 (ξ)

)
dξ

− f1(x)−
∫ 1

x

(
g1(x, ξ)Bn−2

1 (ξ) + g2(x, ξ)Bn−1
2 (ξ)

)
dξ

=
∫ 1

x

g1(x, ξ)
(
Bn−1

1 (ξ)−Bn−2
1 (ξ)

)
+ g2(x, ξ)

(
Bn−1

2 (ξ)−Bn−2
2 (ξ)

)
dξ

=
∫ 1

x

g1(x, ξ)Sn−1
1 (ξ) + g2(x, ξ)Sn−1

2 (ξ)dξ (A.7b)

and similarly,

S0
2(x) =B0

1(x) = f2(x) (A.8a)

Sn2 (x) =
∫ 1

x

g3(x, ξ)Sn−1
1 (ξ) + g4(x, ξ)Sn−1

2 (ξ)dξ. (A.8b)

If the sum exists, we have

B1(x) =
∞∑
n=0

Sn1 (x) (A.9)

and

B2(x) =
∞∑
n=0

Sn2 (x). (A.10)

Assume Sn1 and Sn2 satisfy the bounds

|Sn1 (x)| ≤ ḡ||f || (2ḡ)n−1

(n− 1)! (1− x)n−1 (A.11)

|Sn2 (x)| ≤ ḡ||f || (2ḡ)n−1

(n− 1)! (1− x)n−1 (A.12)

150



where ḡ and f are defined in (A.3) and (A.4), respectively. For n = 1, we have

S1
1(x) =

∫ 1

x

g1(x, ξ)S0
1(ξ) + g2(x, ξ)S0

2(ξ)dξ

=
∫ 1

x

g1(x, ξ)f1(ξ) + g2(x, ξ)f2(ξ)dξ

≤
∫ 1

x

|g1(x, ξ)||f1(ξ)|+ |g2(x, ξ)||f2(ξ)|dξ

≤
∫ 1

x

ḡ|f1(ξ)|+ ḡ|f2(ξ)|dξ

=
∫ 1

x

ḡf(ξ)dξ

≤

√∫ 1

x

|ḡ|2dξ

√∫ 1

0
|f(ξ)|2dξ

=ḡ
√

1− x||f ||
=ḡ||f || (A.13)

and similarly
S1

2(x) ≤ ḡ||f || (A.14)
which shows that (A.11) and (A.12) hold for n = 1. Furthermore,

Sn+1
1 (x) =

∫ 1

x

g1(x, ξ)Sn1 (ξ) + g2(x, ξ)Sn2 (ξ)dξ

≤ḡ
∫ 1

x

|Sn1 (ξ)|+ |Sn2 (ξ)|dξ

≤ḡ||f || (2ḡ)n

(n− 1)!

∫ 1

x

(1− ξ)n−1dξ

≤ḡ||f || (2ḡ)n

(n)! (1− x)n (A.15)

and similarly

Sn+1
2 (x) = ḡ||f || (2ḡ)n

(n)! (1− x)n (A.16)

which shows that (A.11) and (A.12) hold for for all n. An upper bound for (A.1)
can now be found as

B1(x)| =
∞∑
n=0

Sn1 (x)

≤|f1(x)|+ ḡ||f ||
∞∑
n=0

(2ḡ)n−1

(n− 1)! (1− x)n−1

≤|f1(x)|+ ḡ||f ||e2ḡ(1−x) (A.17)

151



and
B2(x)| ≤ +|f2(x)|+ ḡ||f ||e2ḡ(1−x) (A.18)

A.2 Young’s Inequality
Lemma A.2 (Young’s Inequality). For two numbers a, b ∈ R, a, b ≥ 0. If p, q ∈ R,
p, q > 0 such that

1
p

= 1
q

= 1, (A.19)

then
ab ≤ ap

p
+ bq

q
. (A.20)

Proof. See e.g. Patty (2015).

A.3 Cauchy–Schwarz’ inequality
The following form of the Cauchy–Schwarz’ inequality is used extensively in this
thesis:

Lemma A.3 (Cauchy–Schwarz’ inequality). Let f, g ∈ R be any two square-
integrable functions in [a, b], then

∫ b

a

|f(τ)g(τ)|dτ ≤
(∫ b

a

|f(τ)|2dτ
) 1

2
(∫ b

a

|g(τ)|2dτ
) 1

2

(A.21)

Proof. See e.g. Patty (2015).

A.4 Squeeze Lemma
Lemma A.4 (Squeeze Lemma). Let f, g, h be real-valued functions satisfying

g(t) ≤ f(t) ≤ h(t) (A.22)

for all t near a, except possibly at a. If

lim
t→a

g(t) = lim
t→a

h(t) = L, (A.23)

then
lim
t→a

f(t) = L (A.24)

Proof. See e.g. Sohrab (2003).
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A.5 Stability Lemma
The following Lemma presents Lemma 8 from Anfinsen and Aamo (2017c), which
is a modification of Lemma D.3 from Smyshlyaev and Krstic (2010).

Lemma A.5 (Lemma 8 from Anfinsen and Aamo (2017c)). Let V1(t), V2(t), l1(t),
l2(t) and f(t) be real-valued functions and G(t) a real-valued matrix of dimension
n× n defined for t ≥ 0, with

V1(t) = 1
2ν

T (t)ν(t) (A.25)

for a signal vector ν of length n. Suppose

0 ≤V1(t), V2(t), l1(t), l2(t), f(t) ∀t ≥ 0 (A.26a)
l1, l2 ∈L1 (A.26b)
|ν| ∈L∞ (A.26c)
0 ≤G(t) = GT (t) ≤ In×n (A.26d)∫ t

0
f(s)ds ≤AeBt (A.26e)

V̇1 ≤− νT (t)G(t)ν(t) (A.26f)
V̇2 ≤− cV2(t) + l1(t)V2(t) + l2(t)− a

(
1− bνT (t)G(t)ν(t)

)
f(t) (A.26g)

for some positive constants A, B, a, b and c. Then V2 ∈ L1 ∩ L∞.

Proof. See Anfinsen and Aamo (2017c, Lemma 8).

A.6 Barbalat’s Lemma
Lemma A.6 (Corollary of Barbalat’s Lemma). Consider the function f : R+ → R.
If f, ḟ ∈ L∞ and f ∈ Lp for some p ∈ [1,∞), then

lim
t→∞

f(t) = 0. (A.27)

Proof. See e.g. (Krstic et al., 1995, Corollary A.7).

A.7 Alternative Convergence Lemma
The following lemma from Liu and Krstić (2001) presents an alternative to Bar-
balat’s lemma which only requires the derivative of the function to be upper
bounded.

Lemma A.7 (Lemma 3.1 from Liu and Krstić (2001)). Suppose that the function
f(t) defined on [0,∞) satisfies the following conditions:

1. f(t) ≥ 0 for all t ∈ [0,∞),
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2. f(t) is differentiable on [0,∞) and there exists a constant M such that

ḟ(t) ≥M, ∀t ≥ 0 (A.28)

3. f ∈ L1.

Then we have
lim
t→∞

f(t) = 0 (A.29)

Proof. See Liu and Krstić (2001).

A.8 Leibniz’ Differentiation Rule
Lemma A.8. Let f(x, t) be a function such that both f(x, t) and its partial deriva-
tive ∂

∂x
f(x, t) are continuous in t and x in some region of the (x, t)-plane, including

a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1. Also suppose that the functions a(x) and b(x) are
both continuous and both have continuous derivatives for x0 ≤ x ≤ x1. Then for
x0 ≤ x ≤ x1:

d

dx

∫ b(x)

a(x)
f(x, t)dt =f(x, b(x)) d

dx
b(x)− f(x, a(x)) d

dx
a(x)

+
∫ b(x)

a(x)

∂

∂x
f(x, t)dx. (A.30)

Proof. See e.g. Protter and Morrey (2012).
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Appendix B

Additional Material

B.1 Gradient Method
Every on-line adaptive control scheme need some form of adaptive law that provides
an estimate of the plant or controller parameters. Most of these adaptive laws are
derived by minimizing a cost function with respect to the estimated parameters
(Ioannou and Sun, 2012, Appendix B). This section provides a brief overview of
the gradient method.

B.1.1 Gradient Method with Normalization

Following the notation used in Chapter 3, consider the linear parametric model

ϑ = ψT θ (B.1)

where ϑ ∈ R and ψ ∈ Rn are measured and θ ∈ Rn is the unknown parameter
vector to be estimated. Next, consider the normalized quadratic cost function

J(θ̂)) = 1
2

(
ϑ− ψT θ̂

)2

1 + ψTψ
(B.2)

An estimate of θ is found as the argument θ̂ that minimizes the cost function. That
is,

θ̂ = argmin
(
J(θ̂)

)
(B.3)

The gradient method is a line search method that search for a solution to (B.3) in
the direction of the steepest descent (Nocedal and Wright, 2006, Section 2.2), that
is

˙̂
θ = −Γ∇J(θ̂). (B.4)

155



where Γ is a scaling matrix, specifying the rate of convergence, and ∇J(θ̂) is the
gradient of J(θ̂). Defining the normalized estimation error

ê =

(
ϑ− ψT θ̂

)
1 + ψTψ

, (B.5)

we then have

∇J(θ̂) = −

(
ϑ− ψT θ̂

)
1 + ψTψ

ψ = −êψ (B.6)

which gives the gradient adaptive law

˙̂
θ = −Γêψ. (B.7)

B.1.2 Gradient Projection
If the estimates are constrained to be within some bounds

¯
θ ≤ θ̂ ≤ θ̄, (B.8)

we have the constrained optimization problem

θ̂ = argmin
(
J(θ̂)

)
s.t.

¯
θ ≤ θ̂ ≤ θ̄ (B.9)

The solution to this optimization problem follows from the gradient projection
method, where the estimate is forced to be within the set (B.8) by using the
adaptive law (B.7) together with the projection operator Proj given component-
wise as

˙̂
θi = Proja,b(−Γêψ, θ̂) =


0 if θ̂i = ai and (−Γêψ)i < 0
0 if θ̂i = bi and (−Γêψ)i > 0
(−Γêψ)i otherwise

for i ∈ [1, n]. (B.10)

where (−Γêψ)i and θ̂i denotes the i-th component of (−Γêψ) and θ̂ respectively.
From (Ioannou and Sun, 2012, Theorem 4.4.1): The gradient adaptive law with
projection, retain all their properties that are established in the absence of projec-
tion and in addition guarantee (B.8).

B.1.3 Gradient Method for Bilinear Parametric Models
As an alternative to the linear parametric model (B.1), consider the bilinear para-
metric model1

ϑ = k
(
θTm+ w

)
(B.11)

1The parametric model (4.37) can be written on the form (B.11) by defining ϑ = y1 − a
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where ϑ ∈ R, m ∈ Rn and w ∈ R are measured and k ∈ R and θ ∈ Rn are unknown
parameters. Furthermore it is assumed that m ∈ L∞. Let the estimation error be
given by

ê = ϑ− k̂
(
θ̂Tm+ w

)
(B.12)

where k̂ and θ̂ are estimates of the unknown parameters. As in the case of the
linear model, consider the quadratic cost function

J(k̂, θ̂) = 1
2 ê

2 =

(
ϑ− k̂

(
θ̂Tm+ w

))2

2 (1 + w2) (B.13)

Defining ξ = θ̂Tm+ w, this can be written

J(k̂, θ̂) =

(
ϑ− kθ̂Tm− k̂ξ + kξ − kw

)2

2 (1 + w2) (B.14)

Treating ξ as an independent variable of time (Ioannou and Sun, 2012, Page 211),
the gradient of (B.14) with respect to k̂ and θ̂ can be found as

∇θJ(k̂, θ̂) = −êξ (B.15a)
∇kJ(k̂, θ̂) = −kêm, (B.15b)

yielding the adaptive laws

˙̂
θ = −Γ1êξ (B.16a)

˙̂
k = −γ2kêm. (B.16b)

B.2 Separation of Variables
The method of separation of variables is a group of methods for solving ODEs or
PDEs (Renze, 2017). Here, we will present a method for solving ODEs on the form

d

dx
y(x) = g(x)h(y(x)). (B.17)

Rearranging the terms and integrating with respect to x from x = a to x = b give∫ b

a

1
h(y(x))

dy(x)
dx

dx =
∫ b

a

g(x)dx (B.18)

If g(x) = c∀x for a constant c and h(y(x)) = y(x), this can be solved explicitly to
yield ∫ b

a

1
y(x)

d

dx
y(x)dx =

∫ b

a

cdx
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∫ y(b)

y(a)

1
y(x)dy =

∫ b

a

cdx

ln( y(b)
y(a) ) =c(b− a)

y(b) = y(a)ec(b−a). (B.19)

B.3 Integral Equation Types
An integral equation is an equation in which the unknown function y(t) appears in-
side an integral (Kreyszig, 2011, Page 236). As an example of an integral equation,
consider

φ(x) = f(x) +
∫ x

0
K(x, y)φ(y)dy (B.20)

Integral equations can be categorized by three properties, creating in total eight
different types of equations (Arfken and Weber, 2005, Chapter 16):

I) If both integration limits are fixed, the equation is a Fredholm equation. If
one limit is variable, the equation is a Volterra equation. Equation (B.20) is
therefore an example of a Volterra equation.

II) If the unknown function appears only inside the integral, it is of first kind.
If the unknown function appear both inside and outside the integral, it is of
second kind. Equation (B.20) is therefore of second kind.

III) If f in (B.20) is identically zero, the equation is termed homogeneous, other-
wise inhomogeneous. Equation (B.20) is therefore inhomogeneous.
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Appendix C

Conference Papers

The following submitted conference papers are included:

1. Adaptive Set-Point Regulation of Linear 2×2 Hyperbolic Systems with Uncer-
tain Affine Boundary Condition using Collocated Sensing and Control. Based
on the work in Chapter 3. Submitted to the 2017 Asian Control Conference.

2. Estimation of an Uncertain Bilinear Boundary Condition in Linear 2 × 2
Hyperbolic Systems with Application to Drilling. Based on the estimation part
in Chapter 41. Submitted to the 17th International Conference on Control,
Automation and Systems.

1A more comprehensive journal paper is planned for the closed loop control part of Chapter 4.

159



160



Adaptive Set-Point Regulation of Linear 2×2 Hyperbolic
Systems with Uncertain Affine Boundary Condition using

Collocated Sensing and Control

Haavard Holta, Henrik Anfinsen and Ole Morten Aamo

Abstract

In this paper, an adaptive control law that stabilizes a 2×2 linear hyperbolic system and achieves set-point
regulation is derived. Sensing is restricted to be collocated with the control and anti-collocated with two uncertain
parameters in an affine boundary condition. Proof of L2-boundedness for all signals in the closed loop is given,
along with convergence to the set-point in the sense of an appropriate objective. The theory is demonstrated in a
simulation.

I. INTRODUCTION

A. Background
Linear 2×2 hyperbolic partial differential equations can be used to describe many real-world problems

and has attracted considerable research interest in later years. This paper considers adaptive set-point
regulation of such systems by using the method of infinite-dimensional backstepping for PDEs. The
method in its current form was first introduced for parabolic PDEs in [1], [2], [3], where the gain kernel
was expressed as a solution to a well-posed PDE.

The first result using backstepping applied on hyperbolic PDEs was for first order systems in [4].
The method was later extended for second order hyperbolic systems in [5], and for two coupled first
order hyperbolic systems in [6]. The results in the latter were used in [7] for disturbance attenuation in
managed pressure drilling which is similar to the problem considered in this paper.

While many results exist in the field of adaptive control for parabolic PDEs [8], adaptive control of
hyperbolic PDEs is relatively new. Adaptive observers for n+1 hyperbolic systems using non-collocated
sensing can be found in [9] using swapping filers, and in [10] using a Lyapunov approach. The extension
to general m+n systems is given in [11]. An adaptive observer for 2×2 systems using only collocated
sensing and control is developed in [12]. Adaptive stabilization of the same type of systems, but without
the additive boundary condition is considered in [13] and without the multiplicative boundary condition
in [7]. Stabilization of the system in [12] with both multiplicative and additive boundary parameters, i.e.
an affine boundary condition, has to the best of our knowledge not previously been addressed.

B. Notation

For a signal z(x, t) defined for 0≤ x≤ 1, t ≥ 0, ||z|| denotes the L2-norm , i.e.||z||=
√∫ 1

0 z2(x, t)dx.

For a time-varying, real signal f (t), the following vector spaces are used: f ∈Lp↔ (
∫ ∞

0 | f (t)|pdt)
1
p < ∞

for p≥ 1 with the particular case f ∈L∞↔ sup
t≥0
| f (t)|< ∞.

The authors are with the Department of Engineering Cybernetics. Norwegian University of Science and Technology, Trondheim N-7491,
Norway (e-mail: hhholta@stud.ntnu.no; henrik.anfinsen@ntnu.no; aamo@ntnu.no). The work of H. Anfinsen was funded by VISTA - a
basic research program in collaboration between The Norwegian Academy of Science and Letters, and Statoil.



C. Problem Statement
Consider the linear 2×2 first-order hyperbolic system

ut(x, t)+λux(x, t) = c1(x)v(x, t) (1a)
vt(x, t)−µvx(x, t) = c2(x)u(x, t) (1b)

u(0, t) = θ1v(0, t)+θ2 (1c)
v(1, t) =U(t) (1d)

defined for x ∈ [0,1], t ≥ 0, where u,v are the system states, λ ,µ > 0 and c1(x),c2(x) ∈C([0,1]) are
known, while

θi ∈
[
¯
θi, θ̄i

]
⊂ R (2)

for i ∈ {1,2}, are unknown boundary parameters with known bounds
¯
θ1 ≤ θ̄1, ¯

θ2 ≤ θ̄2. The objective is
to design a control input U(t) such that the system (1) is adaptively stabilized in the L2-sense, and such
that the objective

lim
t→∞

∫ t+T

t
|rv(0,τ)−u(0,τ)|dτ = 0 (3)

with r /∈
[
¯
θ1, θ̄1

]
, is achieved for some arbitrary T > 0. Sensing is restricted to the boundary collocated

with actuation, that is,
y(t) = u(1, t) (4)

is the only available measurement. It is assumed that the initial conditions u(x,0) = u0(x), v(x,0) = v0(x)
satisfy u0, v0 ∈ L2([0,1]).

The motivation for stabilizing (1) and achieving (3) comes from the Kick and Loss problem in
managed pressure drilling, where the goal is to detect and attenuate any flow between the well and the
reservoir by regulating the down-hole pressure to balance the reservoir pressure. It can be shown that
this objective is equivalent to (3). The challenge of this problem comes from the fact that the reservoir
pressure is unknown and so the system needs to track a reference signal dependent on the time-varying
estimates of the unknown boundary parameters θ1,θ2 and unmeasured system states u,v.

D. Paper Structure
This paper is organized as follows: In Section II, an observer is presented that estimates the unknown

boundary parameters and system states from sensing (4). This observer is formally stated in Theorem 1.
Section III contains the main contribution, which is the design of a closed loop adaptive control law
that achieves (3) by adaptively tracking a boundary-parameter-estimate-dependent reference signal. The
result is formally stated in Theorem 2. An illustrative simulation is given in Section V demonstrating
the performance of the controller. Some concluding remarks are offered in Section VI.

II. OBSERVER DESIGN

In this section, the observer from [12] will be presented together with some additional properties
needed for solving the adaptive control problem, that were not proven in [12].



A. Observer Equations
Consider the observer

ût(x, t)+λ ûx(x, t) = c1(x)v̂(x, t)
+P1(x, t)(y(t)− û(1, t)) (5a)

v̂t(x, t)−µ v̂x(x, t) = c2(x)û(x, t)
+P2(x, t)(y(t)− û(1, t)) (5b)

û(0, t) = θ̂1(t)v̂(0, t)+ θ̂2(t) (5c)
v̂(1, t) =U(t) (5d)

where û, v̂ are estimates of the system states with initial conditions û(x,0) = û0(x), v̂(x,0) = v̂0(x)
satisfying û0, v̂0 ∈ L2([0,1]). The parameters θ̂1, θ̂2 are estimates of the boundary parameters θ1, θ2
respectively, and P1, P2 are output injection gains to be specified.

Subtracting (5) from (1) gives the state estimation error dynamics

ũt(x, t)+λ ũx(x, t) =c1(x)ṽ(x, t)−P1(x, t)ũ(1, t) (6a)
ṽt(x, t)−µ ṽx(x, t) =c2(x)ũ(x, t)−P2(x, t)ũ(1, t) (6b)

ũ(0, t) =θ̂1(t)ṽ(0, t)

+ θ̃1(t)v(0, t)+ θ̃2(t) (6c)
ṽ(1, t) =0 (6d)

where ũ = u− û, ṽ = v− v̂, θ̃1 = θ1− θ̂1 and θ̃2 = θ2− θ̂2.

B. Decoupling the Observer Error Dynamics
The invertible backstepping transformation

ũ(x, t) =α(x, t)+
∫ 1

x
Pu(x,ξ , t)α(ξ , t)dξ (7a)

ṽ(x, t) =β (x, t)+
∫ 1

x
Pv(x,ξ , t)α(ξ , t)dξ (7b)

is used in Lemma 1 in [12] to transform the estimation error dynamics (6) into a target system in terms
of the states (α,β ) that facilitates the design of an adaptive law and provides the injection gains P1,P2
in (5).

Let dα = 1
λ , dβ = 1

µ and tF = dα +dβ . It is shown in [12] that the β -subsystem of the target system
is independent of α and we have β ≡ 0 for t > dβ and the target system is reduced to

αt(x, t)+λαx(x, t) =0 (8a)

α(0, t) =θ̃1(t)v(0, t)+ θ̃2(t). (8b)

C. Adaptive Law
The following lemma, which is a modification of Lemma 2 in [12], provides a linear parametric

model that can be used for designing parameter update laws.
Lemma 1: For t > tF , the signals

ϑ(t) =y(t)− û(1, t)+ θ̂1(t−dα)v̄(t)+ θ̂2(t−dα) (9a)
v̄(t) =v̂(0, t−dα)

+
∫ 1

0
Pv(0,ξ ,−t−dα)y(t−

ξ
λ
)dξ



−
∫ 1

0
Pv(0,ξ ,−t−dα)û(1, t−

ξ
λ
)dξ (9b)

are related to the unknown parameters through the linear parametric model

ϑ(t) = ψT (t)θ (10)

where

ψ(t) =
[
v̄(t) 1

]T
, θ =

[
θ1 θ2.

]T (11)

In addition, the relationship v̄(t) = v(0, t−dα), holds for t > tF .
Proof: See [12]

The linear relationship (10) facilitates for the application of any standard identification law. We use
the gradient method with normalization and projection. State estimates can be generated by combining
the resulting parameter estimates with the observer (5). The adaptive law will be restated here together
with some properties needed for adaptive control design. This is a modification of [13, Theorem 3] with
the additive boundary parameter θ2 included.

Theorem 1 (Modified from Theorem 3 in [13]): Consider the adaptive law

˙̂θ(t) =

{
Proj

¯
θ ,θ̄

(
Γϑ(t)−ψT (t)θ̂(t)

1+ψT (t)ψ(t) ψ(t), θ̂(t)
)

for t > tF
0 otherwise

(12)

for some adaptation gain Γ = ΓT > 0, where θ̂(t) = [θ̂1(t), θ̂2(t)]T ,
¯
θ = [

¯
θ1, ¯

θ2]
T and θ̄ = [θ̄1, θ̄2]

T ,
with ϑ , ψ generated using Lemma 1, and Proj is the projection operator with a = [a1,a2], b = [b1,b2],
ω = [ω1,ω2], ω = [ω1,ω2] given component-wise by

Proja,b(τ,ω) =





0 if ωi = ai and τi < 0
0 if ωi = bi and τi > 0
τi otherwise

for i = 1,2. (13)

Suppose system (1) and observer (5) have a unique solution u,v, û, v̂ ∈ L2([0,1]) ∀t ≥ 0 and the initial
estimates θ̂0 = θ̂(0) are within the bounds (2), then the adaptive law (12) has the following properties:

1) θ̂(t) ∈ [
¯
θ , θ̄ ], ∀t > 0

2) ˙̂θ1,
˙̂θ2, ∈L∞∩L2.

3) D = θ̃1(·)v(0,·)+θ̃2(·)√
2+v2(0,·)

∈L2.

4) If v̄ ∈L∞, then û(x, ·), v̂(x, ·) ∈L∞ for all x ∈ [0,1].
Proof: From [14, Theorem 4.4.1], the gradient adaptive law (12) with the projection retain all

properties that are established in the absence of projection. Therefore, in proving properties 1 through 4
the unprojected adaptive law

˙̂θ(t) = Γ
ϑ(t)−ψT (t)θ̂(t)

1+ψT (t)ψ(t)
ψ(t) (14)

will be considered. Furthermore, the projection operator will guarantee that the estimates θ1,θ2 remain
within the bounds (2) for all t > 0.

Inserting the parametric model (10) into the right hand side of (14) and using θ̃ = θ − θ̂ for t > tF
give

˙̂θ(t) = Γ
ψT (t)θ̃(t)

1+ψT (t)ψ(t)
ψ(t). (15)



Forming the Lyapunov function

V0 =
1
2

θ̃ T (t)Γ−1θ̃(t), (16)

differentiating with respect to time and inserting (15) give

V̇0 =−θ̃ T (t)Γ−1 ˙̂θ(t) =−
(
ψT (t)θ̃(t)

)2

1+ψT (t)ψ(t)
≤ 0. (17)

Hence V0 ∈L∞. Integrating (17) from t = 0 to t = ∞, using that V0 ≥ 0 is a non-increasing function of
time, gives

ψT (τ)θ̃(τ)√
1+ψT (τ)ψ(τ)

∈L2∩L∞. (18)

Substituting (18) into (15) gives Property 2.
Let γmin,γmax be the smallest and largest eigenvalue of Γ, respectively. Starting from (17), a lower

bound for V̇0 can be found as follows:

V̇0 =−
(
ψT (t)θ̃(t)

)2

1+ψT (t)ψ(t)
=−θ̃ T (t)

ψ(t)ψT (t)
1+ψT (t)ψ(t)

θ̃(t)

≥− θ̃ T (t)θ̃(t)≥−2γmax
1
2

θ̃ T (t)Γ−1θ̃(t)≥−2γmaxV0. (19)

A lower bound for V0(t) can now be found as

V0(t)≥ e−2dα γmaxV0(t−dα), (20)

for t > dα , meaning that the decay rate of V0 is at maximum exponential. The following lower bound
can then be obtained:

θ̃ T (t)θ̃(t)≥ γmin

γmax
e−2dα γmax θ̃ T (t−dα)θ̃(t−dα). (21)

Substituting (21) into (17), integrating from t = 0 to t = ∞, and inserting (11) give property 3.
From (8), θ̂1, θ̂2 ∈L∞ and the assumption that v̄ is bounded, one gets α(x, ·) ∈L∞ for all x ∈ [0,1].

Boundedness of the observer kernels gives property 4.

III. CLOSED LOOP ADAPTIVE CONTROL

The main result from this section will be a control law U(t) that, together with Theorem 1, adaptively
stabilizes (1) in the L2-sense and achieves (3). The adaptive control design follows similar steps as those
in [13], so we start by restating some of the operators from [13], before the main theorem is presented.
The stability proof is deferred to Section IV.

A. Backstepping Operators
Consider the operators from [13]

K ,K0 : L2([0,1])×L2([0,1])→ L2([0,1]) (22)

given as

K [a,b](x) =b(x)−K0[a,b](x) (23a)

K0[a,b](x) =
∫ x

0
Ku(x,ξ )a(ξ )dξ +

∫ x

0
Kv(x,ξ )b(ξ )dξ (23b)



where a(x), b(x) are two signals defined for x∈ [0,1] and (Ku,Kv) is the unique solution to a time-invariant
system of PDEs given in [13]. Consider also the operator

G [t],G0[t] : L2([0,1])→ L2([0,1]), (24)

from [13] given as

G [a; t](x) =a(x)−G0[a; t](x) (25a)

G0[a; t](x) =
1
µ

∫ x

0
g(x−ξ , t)a(ξ )dξ (25b)

where g is the on-line solution to the Volterra equation

g(x, t) =−G [θ̂1H](x, t) (26)

where
H(x) =−λKu(x,0). (27)

Since kernels Ku,Kv are time-invariant, they can be calculated off-line, while g is time-dependent and
must be calculated on-line.

B. Main Result
Theorem 2: Consider the system (1), the observer (5) and the adaptive law (12). The control law

U(t) =K0[û, v̂](1, t)+G0[K [û, v̂]; t](1, t)

+
θ̂2(t)

r− θ̂1(t)
− 1

µ

∫ 1

0
G [H; t](ξ , t)dξ θ̂2(t) (28)

where K ,K0,G ,G0 are the operators defined in (23) and (25), H is defined in (27), r /∈
[
¯
θ1, θ̄1

]
, and

θ̂1, θ̂2 are generated from the adaptive law (12), guarantees (3). Moreover, all signals in the closed loop
system are bounded.

Remark 1: It should be noted that for θ2 = 0 and θ̂2 ≡ 0, the control law (28) reduces to the
control law presented in [12, Theorem 4]. In that case, the only solution satisfying (3) with r 6= θ1 is
u(0, t),v(0, t)→ 0.

To improve readability, the control law U(t) is decomposed into two parts

U(t) =U1(t)+U2(t) (29)

where U1 decouples the observer dynamics and eliminates boundary terms, bringing the system into an
equivalent target system for which stability analysis is easier, while U2 implements reference tracking so
that the objective (3) is achieved. The terms are given in Lemma 2 and 4 in the next to sub-sections,
respectively, while proof of Theorem 2 is deferred to Section IV

C. Decoupling the Observer Dynamics
Lemma 2: Consider the observer (5), and the operators K , K0 from (23) and G ,G0 from (25). The

transformation

w(x, t) = û(x, t) (30a)
z(x, t) = K [û, v̂](x, t) (30b)
ζ (x, t) = G [z; t](x, t), (30c)

and the control law (29) with

U1(t) = K0[û, v̂](1, t)+G0[z; t](1, t), (31)



map (5) into the target system

wt(x, t)+λwx(x, t) =c1(x)z(x, t)+P1(x, t)α(1, t)

+
∫ x

0
κ1(x,ξ )w(ξ , t)dξ

+
∫ x

0
κ2(x,ξ )z(ξ , t)dξ (32a)

ζt(x, t)−µζx(x, t) =
∫ x

0
B(x,ξ , t)ζ (ξ , t)dξ +H1(x, t)θ̂2(t)

+Ω1(x, t)α(1, t) (32b)

w(0, t) =θ̂1(t)ζ (0, t)+ θ̂2(t) (32c)
ζ (1, t) =U2(t) (32d)

where Ω(x) = K [P1,P2](x), H is defined in (27), Ω1(x, t) = G [Ω; t](x, t), H1(x, t) = G [H; t](x, t), κ1,κ2
can be found as the solution to a 2×2 Volterra equation (see [13]). α is defined in (7), θ̂1, θ̂2 is obtained
from (12) in Theorem 1, U2 is the control signal to be designed, and B is defined in [13], and has the
property ||B||2 ∈L1∩L∞.
The proof is similar to the proof of Lemma 7 and 8 in [13] and is therefore omitted.

The significance of Lemma 2 is that subsystem (32b) is independent of w. If ζ ,α, θ̂1, θ̂2 are bounded,
it can be noted from the transport equation (32a) and boundary condition (32c) that w will be bounded
as well. Furthermore, w(0, t) is uniquely determined by θ̂1, θ̂2,ζ in (32c). The problem of stabilizing (1)
in the sense of (3) is therefore reduced to stabilizing ζ and α in the sense of some appropriate objective.

D. Reference Signal and Tracking
Stabilization of (1) in the sense of (3) can be transformed into a tracking problem for the ζ -system

(32b). Specifically, an equivalent objective is for the ζ -system to track a time-varying reference signal
ζ ∗(t) selected as

ζ ∗(t) =
θ̂2(t)

r− θ̂1(t)
(33)

where θ̂1, θ̂2 are generated using the adaptive law (12) in Theorem 1. The following lemma motivates
the use of this reference signal.

Lemma 3: Consider the reference signal (33). If, for some T > 0,
∫ t+T

t

∣∣ζ (0,τ)−ζ ∗(τ−dβ )
∣∣dτ → 0 (34)

and r /∈
[
¯
θ1, θ̄1

]
, then ∫ t+T

t
|rv̂(0,τ)− û(0,τ)|dτ → 0. (35)

If in addition ∫ t+T

t
|α(0,τ)|dt→ 0 (36)

and
||α|| → 0 (37)

then the objective (3) is satisfied.



Proof: Starting with the integrand of (34), using transformation (30) evaluated at x = 0, rearranging
and inserting the boundary condition (5c) give

∣∣ζ (0,τ)−ζ ∗(τ−dβ )
∣∣= |v̂(0,τ)r− û(0, t)|∣∣r− θ̂1(t)

∣∣ . (38)

Since θ̂1(t) is generated using projection, implying θ̂1 ∈
[
¯
θ1, θ̄1

]
and since, by assumption, r /∈

[
¯
θ1, θ̄1

]
,

there exists a δ > 0 such that
∣∣ζ (0,τ)−ζ ∗(τ−dβ )

∣∣≥ 1
δ
|v̂(0,τ)r− û(0, t)| (39)

From Theorem 1, we have ˙̂θi ∈L2 for i ∈ {1,2}, implying ζ ∗(t)→ ζ ∗(t−dβ ). Integrating both sides
from τ = t to τ = t +T , it can be seen that (34) implies (36) and the first part of the proof is complete.

For the second part; from the backstepping transformation (7), the fact that β ≡ 0 for t > tβ , boundedness
of the observer kernels, and using (36) and Cauchy-Schwarz’ inequality, one obtains

|ũ(0, t)| ≤ |α(0, t)|+h||α||, ṽ(0, t)≤ h||α||. (40)

Next, starting with (3), substituting u = ũ+ û and v = ṽ+ v̂ and inserting (40) give
∫ t+T

t
|rv(0,τ)−u(0,τ)|dτ ≤

∫ t+T

t
|rv̂(0,τ)− û(0,τ)|dτ

+
∫ t+T

t
|α(0,τ)|+ ||α||dτ. (41)

Finally, from (35)–(37), the right hand side will converge to zero asymptotically and the objective (3)
follows.
The problem of stabilizing (1) and achieving (3) is now transformed to the problem of finding a controller
that achieves (34), (36) and (37). A time delayed version of the signal (33) can be modeled as the simple
transport equation

φt(x, t)−µφx(x, t) =0 (42a)
φ(1, t) =ζ ∗(t). (42b)

Lemma 4: Consider system (32b) and (32d) and (42). The linear transformation

η(x, t) = ζ (x, t)−φ(x, t)+H2(x, t)θ̂2(t) (43)

and control law
U2(t) = ζ ∗(t)−H2(1, t)θ̂2(t), (44)

map system (32b), (32d) and (42) into the target system

ηt(x, t)−µηx(x, t) =H2(x, t)
˙̂θ2(t)+

(
∂
∂ t

H2(x, t)
)

θ̂2(t)

+Ω1(x, t)α(1, t)+
∫ x

0
B(x,ξ , t)

×
(
η(x, t)−H2(ξ , t)θ̂2(t)+φ(ξ , t)

)
dξ (45a)

η(1, t) =0 (45b)

where
H2(x, t) =

1
µ

∫ x

0
H1(ξ , t)dξ (46)



has the property
∣∣∣ ∂

∂ t H2(x, t)
∣∣∣ ∈L2∩L∞. The reference signal ζ ∗ is generated from (33) and ˙̂θ2 from

the adaptive law (12).
Proof: Differentiating (43) with respect to time and space and inserting the dynamics (32b) and (42a)

give (45a). Evaluating (43) at x = 1, and inserting (32d), (42b) and (44) give (45b). The last property
can be seen from inserting the definitions of H1 and H2 from Lemma 2, using that |g| is bounded by
|θ1|, boundedness of H (property of the operator) and from Theorem 1 that θ̂1 ∈L2∩L∞.

IV. STABILITY PROOF

Stabilization of (1) and achieving (3) is equivalent to stabilizing the coupled system

αt(x, t)+λαx(x, t) =0 (47a)

ηt(x, t)−µηx(x, t) =H2(x, t)
˙̂θ2(t)+

∂
∂ t

H2(x, t)θ̂2(t)

+Ω1(x, t)α(1, t)+
∫ x

0
B(x,ξ , t)

×
(
η(x, t)−H2(ξ , t)θ̂2(t)+φ(ξ , t)

)
dξ (47b)

α(0, t) = θ̃1(t)v(0, t)+ θ̃2(t) (47c)
η(1, t) = 0 (47d)

and achieving

lim
t→∞

∫ t+T

t
|η(0,τ)|dτ = 0, lim

t→∞

∫ t+T

t
|α(0,τ)|dτ = 0 (48)

where the state v(0, t) in boundary condition (47d) is related to ζ ∗ and α through

v(0, t) = η(0, t)+ζ ∗(t−dβ )+
∫ 1

0
Pv(0,ξ , t)α(ξ , t)dξ (49)

as can be seen from using β ≡ 0 for t > dβ in (7b), the transformations (30) and (43), and the definition
of ζ ∗ in (33).

Proof: [Proof of Theorem 2] Consider the Lyapunov function candidate

V3 = a1V1 +V2 (50)

where a1 > 0 is a constant to be decided, and

V1 = λ−1
∫ 1

0
e−δxα2(x, t)dx, V2 = µ−1

∫ 1

0
ekxη2(x, t)dx (51)

where α,η are the system states in the coupled system (47), H2 and Ω1 are defined in Lemma 2, and
θ̂1, θ̂2 are obtained from the adaptive law (12) in Theorem 1. It can then be shown that V̇3 satisfies

V̇3 ≤a1

(
−e−δ α2(1, t)+

(
θ̃1(t)v(0, t)+ θ̃2(t)

)2−δλV1

)

−η2(0, t)−µkV2 + Ω̄1V2 +
Ω̄1

µk

(
ek−1

)
α2(1, t)

+2V2 +
(
H̄2θ̄2

)2 ekµ−1||B||2 +
(
ζ̄ ∗
)2

ekµ−1||B||2

+
(

1+ ek||B||2
)

V2 + H̄2V2 +
H̄2

µk

(
ek−1

)
˙̂θ 2
2 (t)

+ θ̄2h3V2 +
θ̄2c
µk

(
ek−1

)
˙̂θ 2
1 (t). (52)



Selecting k > 1
µ
(
3+ Ω̄1 + H̄2 + θ̄2c

)
, a1 = eδ Ω̄1

kµ (e
k−1) and δ = 1, yield

V̇3 ≤a1
(
θ̃1(t)v(0, t)+ θ̃2(t)

)2−η2(0, t)−h4V3

+ ek||B||2V2 +
((

H̄2θ̄2
)2

+
(
ζ̄ ∗
)2
)

ekµ−1||B||2

+
H̄2

µk

(
ek−1

)
˙̂θ 2
2 (t)+

θ̄2c
µk

(
ek−1

)
˙̂θ 2
1 (t). (53)

The first term can be rewritten on the form considered in property 3 of Theorem 1 by dividing and
multiplying by

(
2+ v2(0, t)

)
. Using relation (49) gives

V̇3 ≤−h4V3 + l1(t)V3(t)+ l2(t)−
(
1−h5D2(t)

)
η2(0, t) (54)

for some constants h4,h5 > 0, D(t) defined in Property 2 of Theorem 1, and l1(t), l2(t)≥ 0 real valued
functions given by

l1(t) =2a1D2(t)(P̄v)2eδ λ + ek||B||2 (55a)

l2(t) =
((

H̄2θ̄2
)2

+
(
ζ̄ ∗
)2
)

ekµ−1||B||2

+a1D2(t)
(
2+4(ζ̄ ∗)2)

+

(
θ̄2c
µk

(
ek−1

)
+

H̄2

µk

(
ek−1

))
˙̂θ 2
1 (t). (55b)

From Theorem 2 property 1, we have that θ̂ ∈ L∞, which together with property 2 and 3, and
||B||2 ∈L1 ∩L∞ from Lemma 2 give l1, l2 ∈L1 ∩L∞ and since all terms are squared in (55) that
l1(t), l2(t)≥ 0 for all t > 0. Furthermore, it can be shown that V̇0(t)≤−h5D(t) for V0 ≥ 0 defined in (14).
Lastly, from (50), we have that V3 ≥ 0. Lemma 8 in [15] can now be applied, yielding V3 ∈L1∩L∞. It
follows that ||α||, ||η || ∈L∞, and from the invertibility of the transforms (7), (30), (30) and (43) that

||û||, ||v̂||, ||u||, ||v|| ∈L∞ (56)

By using the same backstepping transformation considered in [13], boundedness point-wise i space can
be proven, that is

u(x, ·),v(x, ·) ∈L∞, ∀x ∈ [0,1] (57)

leaving all signals in the closed loop bounded.
With v bounded, it follows from Theorem 1 property 4 that û, v̂ are bounded point-wise in space. Now,

since θ̂1, θ̂2 ∈L∞ from Theorem 1 and V3, l1, l2 ∈L∞ , the right hand side of (54) is bounded, implying
V̇3 ∈L∞. This result, together with V3 ∈L1∩L∞ give, by Barbalat’s Lemma (see [16, Corollary A.7])
V3→ 0 and ||α||, ||η || → 0.

Consider the Lyapunov function candidate

V4 = ||η ||2 =
∫ 1

0
η2(x, t)dx. (58)

Differentiating with respect to time, and then integrating from t to t +T gives

V4(t +T )−V4(t) =−µ
∫ t+T

t
η2(0,τ)dτ

+2
∫ t+T

t

∫ 1

0
η(x,τ)

∫ x

0
B(x,ξ ,τ)

×
(
η(ξ ,τ)−H2(ξ )θ̂2(τ)+φ(ξ ,τ)

)
dξ dxdτ



+2
∫ t+T

t

∫ 1

0
η(x,τ)Ω1(x,τ)dx α(1,τ)dτ

+2
∫ t+T

t

∫ 1

0
η(x,τ)H2(x)dx ˙̂θ2(τ)dτ. (59)

Since ||η ||,V4→ 0 and
∫ t+T

t η2(0,τ)dτ,V4 ≥ 0, all terms on the right hand side of (59) converge to
zero, and the left hand side is bounded from below. Furthermore, equation (47a) is a simple transport
equation and we have ||α|| → 0. By the squeeze theorem, it then follows that

∫ t+T

t
|η(0,τ)|dτ → 0,

∫ t+T

t
|α(0,τ)|dτ → 0. (60)

Inserting transformation (43) and the reference signal (33) into (60) yield (34) where the explicit solution
to (42) has been inserted. By Lemma 3, the objective (3) is satisfied.

Inserting (31) and (44) from Lemma 2 and 4 respectively, together with the operators (23) and (25),
into (29) give (28).

V. SIMULATION

The system was implemented in MATLAB with the adaptive observer of Theorem 1 and the controller of
Theorem 2. The system parameters were chosen as λ = µ = 3, c1(x)= 3e−2x, c2(x)= 3e2x, θ1 =

1
10 , θ2 =

1
3

and r =−1. The adaptation gain was chosen as γ1 = γ2 = 5. The system is open loop (U(t)≡ 0) unstable.

0 5 10

0

5

10

15

0 5 10

-10

-5

0

5

Fig. 1. Left: Control objective. Right: Actuation signal.

Figure 1 shows that the control objective is achieved and that the control signal converges to a steady
state value.

VI. CONCLUDING REMARKS

We have combined an adaptive observer estimating the system states and unknown affine boundary
parameters of a 2×2 linear hyperbolic system with a control law that stabilizes the system in the L2-
sense and achieves the control objective by adaptively tracking a boundary-parameter-estimate-dependent
reference signal. Proofs of convergence, L2- and point-wise boundedness was also given. The theory
was demonstrated in a simulation.
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Abstract: In this paper, unknown parameters appearing in a special bilinear boundary condition are estimated by using
swapping design filters to bring a system of 2× 2 linear hyperbolic equations to static form. Estimates of the unknown
parameters can then be generated by using any standard parameter identification law, and state estimates can be generated
from the static relationship and parameter estimates. Sensing is allowed at both boundaries, and the measurement collocated
with the uncertain parameters is allowed to be an arbitrary linear combination of the system states. Proof of boundedness
of the adaptive law and conditions for parameter convergence are given. The theory is applied to the kick and and loss
detection problem in manged pressure drilling and demonstrated in a simulation.
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1. INTRODUCTION

1.1 Background

Linear 2 × 2 hyperbolic partial differential equa-
tions can be used to describe many real-world problems
and has attracted considerable research interest in later
years. This paper considers state and boundary param-
eter estimation of such systems by using the method of
infinite-dimensional backstepping for PDEs. The infinite-
dimensional backstepping method in its current form was
first introduced for parabolic PDEs in [13], [15], [16]
for parabolic PDEs, where the gain kernel was expressed
as a solution to a well-posed PDE. The first result using
backstepping applied on hyperbolic PDEs was for first
order systems in [11]. The method was later extended
for second order hyperbolic systems in [14], and for two
coupled first order hyperbolic systems in [18]. The results
in the latter were used in [1] for disturbance attenuation in
managed pressure drilling which is similar to the problem
considered in this paper. While many results exist in the
field of adaptive control for parabolic PDEs [17], adaptive
control of hyperbolic PDEs is relatively new. Adaptive ob-
servers for n+ 1 hyperbolic systems using non-collocated
sensing can be found in [5] using swapping filers, and in
[7] using a Lyapunov approach. The extension to general
m+ n systems is given in [6]. An adaptive observer for
2× 2 systems using only collocated sensing and control
is developed in [3]. Adaptive stabilization of the same
type of system, but without the additive boundary condi-
tion is considered in [4] and without the multiplicative
boundary condition in [1]. The system in [5] is similar
to the system considered in this paper, but with an affine
boundary condition. Compared to the linear parametric
model, the bilinear form has some desirable properties
regarding parameter convergence.

The parameter estimation scheme developed in this
paper is demonstrated on the kick and loss detection prob-
lem in managed pressure drilling, where the goal is to
detect any sudden inflow into the well-bore or outflow
into the reservoir by changes in reservoir pressure and
the relation between pressure difference and net inflow.
Previous results on kick/loss detection and attenuation
in MPD have mainly focused on using lumped drilling
models. A lumped ODE model is applied on a gas kick de-
tection and mitigation problem in [19] by using a method
for switched control of the bottom-hole pressure. Another
lumped model for estimation and control of in-/outflux
is presented in [8]. Kick handling methods for a first-
order approximation to the PDE system is presented in
[2] using LMI (Linear Matrix Inequality) based controller
design. In/out-flux detection using an infinite dimensional
observer is presented in [9]. Detection and handling of
kick and loss using a distributed PDE model incorporating
a model of the reservoir inflow relation, has to the best of
the authors’ knowledge not previously been addressed.

1.2 Notation

For a signal z(x, t) defined for 0 ≤ x ≤ 1, t ≥ 0, ||z||
denotes the L2-norm , i.e.||z|| =

√∫ 1

0
z2(x, t)dx. For a

time-varying, real signal f(t), the following vector spaces

are used: f ∈ Lp ↔
(∫∞

0
|f(t)|pdt

) 1
p < ∞ for p ≥ 1

with the particular case f ∈ L∞ ↔ sup
t≥0
|f(t)| <∞.

1.3 Problem Statement

To model the annular pressure and flow in a well using
managed pressure drilling, a modification of the model
presented in [12] is used. The reservoir relation is mod-
eled using a productivity index based inflow model at the
bottom-hole boundary. This gives the following model of



the system:

pt(z, t) = − β

A1
qz(z, t) (1a)

qt(z, t) = −A1

ρ
pz(z, t)−

F1

ρ
q(z, t)−A1g (1b)

q(0, t) = J (pr − p(0, t)) + qbit (1c)
p(l, t) = pl(t) (1d)

where z ∈ [0, l] is the spatial independent variable, t > 0
is time, l is the well depth, p(z, t) is pressure, q(z, t) is
volumetric flow, β is the bulk modulus of the mud, ρ
is the density of the mud, A1 is the cross sectional area
of the annulus, F1 is the friction factor, g is the accel-
eration of gravity, J > 0 is the productivity index, pr
the reservoir pressure and qbit the flow through the drill
bit. pl(t) = p(l, t) and p0(t) = p(0, t) are measured and
pl(t) = p(l, t) can potentially be manipulated by control,
although control design is not considered in this paper.

By using a suitable change of variables, it can be shown
(see [1]) that (1) can be transformed into the linear 2× 2
first-order hyperbolic system

ut(x, t) + λux(x, t) = c1(x)v(x, t) (2a)
vt(x, t)− µvx(x, t) = c2(x)u(x, t) (2b)

u(0, t) = rv(0, t) + k(θ − y0(t)) (2c)
v(1, t) = U(t) (2d)

defined for x ∈ [0, 1], t ≥ 0, where u, v are the system
states and λ, µ > 0, c1(x), c2(x) ∈ C([0, 1]) are known,
while k, θ ∈ R, are unknown boundary parameters, but
where sign(k) is known. The measurement collocated
with actuation is related to pl(t) by

y1(t) = u(1, t)

=
1

2

(
q(l, t)− qbit +

A1√
βρ

(p(l, t) + ρgl +
F1

A1
qbitl)

)

× exp(
lF1

2
√
βρ

) (3)

while the measurement anti-collocated with actuation can
be found as a linear combination of the system states and
is related to p0(t) by

y0(t) = a0u(0, t) + b0v(0, t) =
A1√
βρ
p0(t) (4)

with a0 6= 0. Furthermore, U(t) is the top-side control
input and it is assumed that the initial conditions u(x, 0) =
u0(x), v(x, 0) = v0(x) satisfy u0, v0 ∈ L2([0, 1]).

2. OBSERVER DESIGN
In this section, swapping filters for state and parameter

estimation are presented. Non-adaptive and adaptive rela-
tions between the system states and swapping filters are
found, from which an adaptive estimation error driving
the on-line parameter updates is generated.

2.1 Filter Design
Consider the input filters

at(x, t) + λax(x, t) =c1(x)b(x, t)

+ P1(x)(y1(t)− a(1, t)) (5a)
bt(x, t)− µbx(x, t) =c2(x)a(x, t)

+ P2(x)(y1(t)− a(1, t)) (5b)
a(0, t) =rb(0, t) (5c)
b(1, t) =U(t) (5d)

and parameter filters

mt(x, t) + λmx(x, t) =c1(x, t)n(x, t)

− P1(x)m(1, t) (6a)
nt(x, t)− µnx(x, t) =c2(x)m(x, t)

− P2(x)m(1, t) (6b)
m(0) =rn(0, t) + 1 (6c)
n(1) =0 (6d)

and

wt(x, t) + λwx(x, t) =c1(x)z(x, t)− P1(x)w(1, t)
(7a)

zt(x, t)− µzx(x, t) =c2(x)w(x, t)− P2(x)w(1, t)
(7b)

w(0, t) =rz(0, t)− y0(t) (7c)
z(1, t) =0 (7d)

where P1, P2 are gains to be designed. The input filters
model how the control signal U(t) affect the system states
u, v, while the parameter filters model the effect of the
boundary parameters k and θ on the system states.

2.2 Relationship to the System States
The non-adaptive state estimates are defined as

ū(x, t) =a(x, t) + k (θm(x, t) + w(x, t)) (8a)
v̄(x, t) =b(x, t) + k (θn(x, t) + z(x, t)) (8b)

where the last term has the same bilinear form as bound-
ary condition (2c). The non-adaptive state estimates are
related to the system states through

u(x, t) =ū(x, t) + e(x, t) (9a)
v(x, t) =v̄(x, t) + ε(x, t) (9b)

where e, ε represent the non-adaptive estimation error.
Lemma 1: The error terms e and ε in (9) have the dy-

namics

et(x, t) + λex(x, t) =c1(x)ε(x, t)− P1(x)e(1, t) (10a)
εt(x, t)− µεx(x, t) =c2(x)e(x, t)− P2(x)e(1, t) (10b)

e(0, t) =rε(0, t) (10c)
ε(1, t) =0. (10d)



Proof: Inserting the static estimates in (8) into (9), rear-
ranging, differentiating w.r.t. time and space and inserting
the system dynamics (2a) and (2b) and filter dynamics
(5a), (5b), (6a), (6b), (7a) and (7b), yield (10a) and (10b).
The boundary condition in (10c) follows from evaluat-
ing (9a) at x = 0 and inserting (2c), (5c), (6c) and (7c).
Similarly, the boundary condition in (10d) follows from
evaluating (9b) at x = 1 and inserting (2d), (5d), (6d)
and (7d).
If the error terms e, ε in (9) go to zero in finite time, then
(8) is a static representation of the system states. Stability
of the error system is addressed in the next section by first
transforming (9) into an equivalent target system.

2.3 Error Dynamics Analysis
To facilitate the analysis, consider the operators

P1,P2 : L2([0, 1])× L2([0, 1])→ L2([0, 1]) (11)

given as

P1[a, b](x) =a(x) +

∫ 1

x

Puu(x, ξ)a(ξ)dξ

+

∫ 1

x

Puv(x, ξ)b(ξ)dξ (12a)

P2[a, b](x) =b(x) +

∫ 1

x

P vu(x, ξ)a(ξ)dξ

+

∫ 1

x

P vv(x, ξ)b(ξ)dξ (12b)

where a(x), b(x) are two signals defined for x ∈ [0, 1]
and (Puu, Puv, P vu, P vv) is the solution to

λPuux (x, ξ) + λPuuξ (x, ξ) =c1(x)P vu(x, ξ) (13a)

λPuvx (x, ξ)− µPuvξ (x, ξ) =c1(x)P vv(x, ξ) (13b)

µP vux (x, ξ)− λP vuξ (x, ξ) =− c2(x)Puu(x, ξ) (13c)

µP vvx (x, ξ) + µP vvξ (x, ξ) =− c2(x)Puv(x, ξ) (13d)

Puv(x, x)λ+ Puv(x, x)µ =− c1(x) (13e)
P vu(x, x)λ+ P vu(x, x)µ =c2(x) (13f)

Puu(0, ξ) =rP vu(0, ξ) (13g)
Puv(0, ξ) =rP vv(0, ξ). (13h)

It is shown i [18] that (13) has a bounded, continuous
and unique solution. Furthermore, it is shown that the
mapping (a, b)→ (ā, b̄) given by

a(x) =P1[ā, b̄](x) (14a)
b(x) =P2[ā, b̄](x) (14b)

is invertible.
Using the operators defined in (12), the non-adaptive

error system can be transformed into an equivalent target
system for which the stability analysis is easier. The back-
stepping transformation and corresponding target system
used in the next lemma was first used in [18].

Lemma 2: Let dα = 1
λ , dβ = 1

µ and consider the
non-adaptive error system (10). If the injection terms are
selected as

P1(x) = λPuu(x, 1) (15a)
P2(x) = λP vu(x, 1), (15b)

then the error terms e, ε will tend to zero in a finite time
given by tF = dα + dβ , and (8) is a static representation
of the system states u, v.

Proof: Consider the transformation

e(x, t) =P1[α, β](x, t) (16a)
ε(x, t) =P2[α, β](x, t) (16b)

where P1,P2 are defined in (12). It is shown in [18] that
the transformation maps the non-adaptive error system
(10) into the target system

αt(x, t) + λα̂x(x, t) =0 (17a)

βt(x, t)− µβ̂x(x, t) =0 (17b)
α(0, t) =rβ(0, t) (17c)
β(1, t) =0. (17d)

The subsystem consisting of (17b) and (17d) is a simple
transport equation and will be zero β ≡ 0 for all t > dβ ,
reducing the boundary condition (17c) to α(0, t) = 0 and
we have α ≡ 0 for another t ≥ dα. From the invertibility
of transformation (16), e, ε ≡ 0 for all t ≥ dα+dβ follows
and the relation (9) is reduced to

u(x, t) =ū(x, t) (18a)
v(x, t) =v̄(x, t) (18b)

for all t ≥ dα + dβ .

2.4 Adaptive Law
Before presenting the adaptive law and the main result

of this section, an equivalent set of filter systems will be
derived using a backstepping transformation. This equiv-
alent set will be used to prove properties of the adaptive
law.

Lemma 3: If P1, P2 are selected according to (15), the
transformation

m(x, t) =P1[m̌, ň](x, t) (19a)
n(x, t) =P2[m̌, ň](x, t) (19b)

map the filters (6) into the target system

m̌t(x, t) + λm̌x(x, t) =0 (20a)
ňt(x, t)− µňx(x, t) =0 (20b)

m̌(0, t) =rň(0, t) + 1 (20c)
ň(1, t) =0, (20d)

and the transformation

w(x, t) =P1[w̌, ž](x, t) (21a)



z(x, t) =P2[w̌, ž](x, t) (21b)

map the filters (7) into the target system

w̌t(x, t) + λw̌x(x, t) =0 (22a)
žt(x, t)− µžx(x, t) =0 (22b)

w̌(0, t) =rž(0, t)− y0(t) (22c)
ž(1, t) =0 (22d)

with P1,P2 defined in (12).
Proof: Equations (20a) and (20b) follow from differ-

entiating (19) and inserting (6a) and (6b). Similarly, (22a)
and (22b) follow from differentiating (21) and inserting
(7a) and (7b). The boundary conditions in (20c) and (22c)
are obtained by evaluating (19) and (21) at x = 0 and
using (13). The boundary conditions in (20d) and (22d)
follow trivially from evaluating (19) and (21) at x = 1 and
inserting (6d) and (21).
Using that e(1, t) = 0 for all t > tF from Lemma 1 and
inserting (3), the static relationship (9) evaluated at x = 1
can be written on the bilinear form

y1(t)− a(1, t) = k(θm(1, t) + w(1, t)). (23)

Motivated by this bilinear form of the static relationship,
the following adaptive state estimates are generated:

û(x, t) =a(x, t) + k̂(t)
(
θ̂(t)m(x, t) + w(x, t)

)
(24a)

v̂(x, t) =b(x, t) + k̂(t)
(
θ̂(t)n(x, t) + z(x, t)

)
. (24b)

The adaptive state estimates are related to the system states
through

u(x, t) =û(x, t) + ê(x, t) (25a)
v(x, t) =v̂(x, t) + ε̂(x, t) (25b)

where ê, ε̂ represent the adaptive estimation error.
Evaluating (25a) at x = 1, inserting (3) and rearranging

then give

ê(1, t) = y1(t)− a(1, t)− k̂(t)
(
θ̂(t)m(x, t) + w(x, t)

)

(26)

Assuming the sign of k is known, the gradient method
for bilinear parametric models in [10, Theorem 4.52] can
be used to minimize a cost function based on the square
error ê2(1, t) and thereby forming an adaptive law for the
parameter estimates θ̂, k̂. The following theorem presents
the main result on parameter estimation.

Theorem 1: Consider the adaptive law

˙̂
θ(t) =




γ1sign(k)

ê(1, t)

1 + w2(1, t)
m(1, t) t ≥ tF

0 otherwise
(27a)

˙̂
k(t) =




γ2Ξ(t)

ê(1, t)

1 + w2(1, t)
t ≥ tF

0 otherwise
(27b)

for some adaptation gain γ1, γ2 > 0 where Ξ(t) =

θ̂(t)m(1, t)+w(1, t), m(1, t) and w(1, t) are filters given
in (6) and (7), ê(1, t) is the adaptive estimation error
(26). Suppose system (2) has a unique solution u, v ∈
L2([0, 1]) ∀t ≥ 0 and sign(k) is known, then the adaptive
law (27) has the following properties:
1. θ̂, k̂, ∈ L∞.
2. ˙̂
θ,

˙̂
k, ∈ L∞ ∩ L2.

3. θ̂(t)→ θ̂(t− dβ) and k̂(t)→ k̂(t− dβ).

4. k̃(θ−y0)+k̂θ̃√
1+w2(1,·)

∈ L2 where θ̃ = θ − θ̂ and k̃ = k − k̂.

5. If w(1, ·) ∈ L∞ and θ̂m(1, ·) + w(1, ·) ∈ L2, then θ̂
converges to θ and k̂ converges to some constant.

Proof: Consider the Lyapunov function candidate

V0 = |k| 1

2γ1
θ̃2 +

1

2γ2
k̃2 (28)

where θ̃ = θ − θ̂ and k̃ = k − k̂. Differentiating and
inserting the adaptive laws (27) for t > tF give

V̇0 = |k| 1

γ1
θ̃

˙̂
θ +

1

γ2
k̃

˙̂
k = − ê2(1, t)

1 + w2(t)
≤ 0 (29)

which shows that V0, θ̃, k̃ ∈ L∞, and Property 1 follows.
The transformed filter system (m̌, ň) in (20) is a simple

cascaded transport equation and we have m̌ ≡ 1 and
ň ≡ 0 for all x ∈ [0, 1] and t > tF . From the invertibility
of transformation (19), we have m(x, ·), n(x, ·) ∈ L∞,
which together with Property 1 give

ê(1, ·)√
1 + w2(1, ·)

∈ L∞,
m(1, ·)√

1 + w2(1, ·)
∈ L∞ (30)

Integrating (29) from t = 0 to t = ∞ and using that
V0 ≥ 0 is a non-increasing function of time give

ê(1, ·)√
1 + w2(·)

∈ L2, (31)

from which it follows, together with (30) and the adaptive

laws (27) that ˙̂
θ,

˙̂
k ∈ L∞ ∩ L2 (Property 2).

The proof of Property 3 follow from Property 2 by
using Cauchy-Schwarz’ inequality.

Let

Θ(t) =
[
k̃(t),

√
|k|θ̃(t)

]T
(32a)

Ψ(t) =
1√

1 + w2(1, t)

[
θ̂m(1, t) + w(1, t)

sign(k)
√
|k|m(1, t)

]
(32b)

Γ =diag([γ1, γ2]) (32c)

We then have V0 = ΘT (t)Γ−1Θ(t) and

V̇0 = −ê2(1, t) = ΘT (t)Ψ(t)ΨT (t)Θ(t). (33)



From Property 1, a lower bound for V̇0 can be found as
follows:

V̇0 =− ê2(1, t) = ΘT (t)Ψ(t)ΨT (t)Θ(t)

≥− 2hγmax
1

2
ΘT (t)Γ−1Θ(t) ≥ −2hγmaxV0

(34)

where h > 0 is a constant and γmax the largest eigenvalue
or Γ. A lower bound for V0 can now be found as

V0(t) ≥ e−2dαhγmaxV0(t− dα), (35)

which shows that the decay rate of V0 is at maximum expo-
nential. The following lower bound can then be obtained

Θ̃T (t)Θ̃(t) ≥ γmin
γmax

e−2dαhγmaxΘ̃T (t− dα)Θ̃(t− dα)

(36)

Substituting the relation (36) into (33), integrating the
result from t = 0 to t = ∞, using that V0 ≥ 0 is a
non-increasing function of time, and using that m(1, t) =
m̌(1, t) = 1 for all t > tF and similarly that w(1, t) =
w̌(1, t) = y0(t − dα) for all t > tF gives, by inserting
(32a) and (32b) and rearranging the terms, Property 4.

If the signal θ̂(τ)m(1, τ)+w(1, τ) is square integrable
and by treating the same signal as an external input, it can
be seen from inserting (26) into (27a) that (27a) form an
exponentially stable system and it follows that θ̃ → 0 as
t → ∞, or equivalently the first part of Property 5. The
second part of Property 5 can be seen from (27b) by using
Cauchy-Schwarz’ inequality.

3. SIMULATION
The state and parameter estimator developed in the

previous section is now applied to a managed pressure
drilling system (MPD) and tested together with two closed
loop control methods, the first of witch provides constant
top-side flow. That is,

ql(t) = qbit, ∀t > 0. (37)

This control method can be shown to stabilize the bottom
hole pressure at the reservoir pressure (see [19]). Fur-
thermore, it can be shown that this control law can be
implemented as

U(t) = −y1(t) exp(− lF1√
βρ

). (38)

The second method provides constant top-side pressure.
That is

pl(t) = psp (39)

where psp is some constant set-point. This control method
can be implemented as

U(t) = − A1√
βρ

(
psp + ρgl +

F1

A1
qbitl

)
exp(− lF1

2
√
βρ

)
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Fig. 1: Bottom-hole pressure and flow (red dashed), and
reservoir pressure and drill bit flow (black solid) using the
constant flow control method.
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(b) Reservoir pressure.

Fig. 2: Parameter estimates (red dashed) and actual
parameters (black solid) using the constant flow control
method.

+ y1(t) exp(− lF1√
βρ

). (40)

The complete system consisting of the MPD dynamics,
swapping filters (5)–(7), state estimates (24), the adaptive
law of Theorem 1, and control law (38) or (40) was imple-
mented in MATLAB. The system parameters were chosen
as β = 7317 Pa, ρ = 1250 kg m−3, l = 2500 m, A1 =
0.024 m2, F1 = 10, g = 9.81 m s−2, qbit = 1/60m3 s−1,
J = 1.068× 10−8 m3 s−1 Pa−1. The reservoir pressure
was initially set to pr(0) = 400 bar and kept constant
until a step to pr(t ≥ t0) = 450 bar occurs at t0 = 10 s.
The system is at steady state at t = 0 with the initial
bottom-hole pressure set equal to the reservoir pressure
and the bottom-hole flow equal to the drill bit flow. The
adaptation gain was selected as γ1 = γ2 = 5.

For the constant flow control method, Figs. 1 and 2
show that the reservoir pressure estimate converges to its
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(b) Flow.

Fig. 3: Bottom-hole pressure and flow (red dashed), and
reservoir pressure and drill bit flow (black solid) using the
constant pressure control method
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(b) Reservoir pressure.

Fig. 4: Parameter estimates (red dashed) and actual pa-
rameters (black solid) using the constant pressure control
method.

true value and the productivity index to some constant
value as the bottom-hole pressure is stabilized at the reser-
voir pressure. For the constant pressure control method,
Figs. 3 and 4 show that the reservoir pressure estimate con-
verges to its true value and the productivity index to some
constant value even without convergence in the bottom-
hole pressure to the reservoir pressure.

4. CONCLUDING REMARKS
We have designed swapping filters that transform a

2× 2 linear hyperbolic system with a bilinear boundary
condition into a static form. The gradient method was
used to generate parameter and state estimates. Proofs
of boundedness of the adaptive law and conditions for
parameter convergence was given. The theory was applied
to the kick/loss detection problem in managed pressure
drilling and demonstrated in simulations.
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