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Forbedre visualiseringen av blodstrømmer i hjertet ved å bruke

adaptiv filtrering

I ultralyd fargedoppler kan atypiske blodstrømmer være en tidlig indikasjon på hjertefeil. Blod-

strømmen kan også visualiseres med teknikker for flerdimensjonal blodstrømsestimering som

speckle tracking. For å kunne visualisere blodstrømmen må signalet fra det omkringliggende

vevet dempes, dette er ofte kalt clutter-filtrering. Om vevssignalet ikke er tilstrekkelig dempet

kan dette føre til bias i hastighetsmålingene.

For avbildinger av hjertet er det vanskelig å bruke filtre med én fast cutoff-frekvens fordi

blod- og vevshastighetene endrer seg i løpet av hjertesyklusen. Én mulig løsning for å unngå

blinkende vev, og tap av blodsignal er å bruke adaptive filtre. Eigenverdi-regresjonsfiltre er én

type adaptive filtre, og i dette arbeidet ble det undersøkt om clutter filtrering av ultralyddata fra

hjerte er enda en passende applikasjon for eigenverdi-regresjonsfiltre.

Valg av clutter-delmengden er utfordrende med eigenverdi-regresjonsfiltre. I dette arbei-

det ble clutter-delmengden valgt manuelt, ved å benytte en tidligere foreslått halvautomatisk

metode, og ved å benytte to helautomatiske metoder.

Datasettene som ble analysert under arbeidet var in vivo data og simuleringer. Eigenverdi-

regresjonsfilteret med manuelt valg av clutter-delmengden kan forbedre visualiseringen av virvel-

dannelsen i blod sammenlignet med et konvensjonelt filter for hjertedata. Men forbedringen

var ikke evaluert av klinikere og bare fem ulike bilder ble vurdert. Disse bildene var fra tre ulike

datasett. Eigenverdi-regresjonsfilteret kan gi lavere bias i hastighetsestimeringene fra speckle

tracking, siden det kan redusere blinking av vev og hindre tap av blodsignal. Dette ble under-

søkt ved å gjøre enkle simuleringer.

Den halvautomatiske metoden valgte riktigst clutter-delmengde av de tre metodene som ble

undersøkt i dette arbeidet. Den var riktig i 44 % av tilfellene i diastole, men bare ett bilde hver,

fra ni ulike datasett ble undersøkt. Den halvautomatiske metoden er ikke en praktisk løsning

siden en region i bildet som inneholder vevssignal og en som inneholder blodsignal må velges

manuelt.
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Summary and Conclusions

In ultrasound color flow images of the heart, irregular blood flow patterns might be an early

indication of heart disease. The blood flow is possible to image using multi-dimensional blood

velocity estimation like speckle tracking. In order to image the blood flow the signal from the

surrounding tissue must be attenuated, and this is often termed clutter filtering. Insufficient

clutter filtering might cause bias in the velocity estimation.

It is difficult to design filters with a fixed cut-off frequency for cardiac imaging since the

blood and clutter velocity changes during the heart cycle. A possible solution to avoid both

tissue flashing and blood signal drop-out is to use adaptive filters. Eigenvalue regression filters

are one type of adaptive clutter filters, and in this project it was investigated if clutter filtering of

cardiac data was yet an other suitable application for eigenvalue regression filters.

Selection of a clutter subspace is a challenge when using eigenvalue regression filters. In

this work the clutter subspace was chosen manually, and by using a previous suggested semi-

automatic approach, and two fully automatic approaches.

Analyzed datasets included in vivo data, and simulations. The eigenvalue regression fil-

ter with a manually selected clutter subspace has the possibility of improving the visualiza-

tion of vortex formation in blood compared to a conventional filter for cardiac data. However,

the improvement was not judged by clinicians, and only five different frames were considered.

These frames were from three different in vivo datasets. The results from the simple simula-

tions showed that the eigenvalue regression filter can reduce the bias in the velocity estimate

from speckle tracking compared to a FIR filter, as it reduces tissue flashing, and blood signal

drop-outs.

The semi-automatic approach select the clutter subspace most correctly out of the three

methods considered in this work. It was correct in 44 % of the frames in diastole, but only one

frame from nine different datasets were considered. The semi-automatic approach is not a prac-

tical solution since a region containing clutter and blood signals must be chosen manually.

The report is structured as follows. Chapter 1.1, the introduction, contain clinical motiva-

tion, and an overview of some previously purposed adaptive clutter filters. It also include the

problem formulation, the objectives, limitation and approach for this work. Chapter 2 intro-
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duces the estimators and conventional filters commonly used in color flow imaging. Following,

the eigenvalue regression filter is thoroughly explained. The Nyquist velocity for pulsed wave

Doppler is defined, and some image artefacts in color flow imaging are presented. A brief sum-

mary of multi-dimensional blood velocity estimation is given, focusing on speckle tracking. The

chapter ends with a short explanation of the sonogram.

Chapter 3 gives details regarding the data aquisition, the simulations, and the post pro-

cessing of the data. It explains how the spectral content was estimated. It also explaines how

the eigenvalue regression filter was implemented, and some methods for selecting the clutter

subspace automatically. The last subsection gives detail regarding the parameters used for the

speckle tracking. The in vivo data that has been analyzed in this project is presented in table 3.1,

and the simulations in table 3.2.

The results are presented in chapter 4 and are structured by objective, followed by chapter 5

which includes a discussion of the results. The report ends with chapter 6, the conclusion, and

suggestions to further work.
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Chapter 1

Introduction

1.1 Background

Congenital heart disease is the most common birth defect and affects about 1 % of all live births,

van der Linde et al. (2011). Such diseases may affect the blood flow, causing irregular vortex

formation in the heart. This might alter the pressure distribution, and can contribute to an

extra load for the heart muscle. Untreated, this may cause abnormal growth of the heart muscle

or heart failure.

In diastole when the ventricles are filled, there is a vortex flow of blood in the left ventricle in

an healthy heart. Figure 1.1, Pedrizzetti et al. (2014), shows the blood flow in an healthy heart to

the left, next to a heart with impaired flow. It also shows how impaired flow might lead to dilata-

tion of the heart. The pressure gradient, shown in arrows, is longitudinal in the healthy heart. In

the heart with impaired flow there is both a longitudinal and transversal pressure gradient, and

the dilatation of the heart is a reaction to the transversal pressure gradient.

Prenatal diagnosis of congenital heart disease has been shown to lead to a variety of favor-

able outcomes, listed below.

• Significant decrease in postnatal morbidity in infants with left heart obstructive lesions

Eapen et al. (1998).

• Has a favorable impact on treatment of patients who have hypoplastic left heart syn-

drome, and are undergoing staged palliation and reduces early neurologic morbidity Mahle

et al. (2001).

3
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Figure 1.1: Figure from article by Pedrizzetti et al. (2014), showing how a transversal pressure
gradient in impaired flow might cause dilatation of the heart. Gray arrows indicate the compo-
nents of the pressure gradient.

• Minimizes metabolic acidosis in patients and may be associated with improved long-term

outcome and prevention of cerebral damage Verhejien et al. (2001),

• Was associated with a decreased need for invasive respiratory support Landis et al. (2013).

Some other studies have found that neonatal and postnatal diagnosis of congenital heart disease

is less favorable. The setting in which neonatal congenital heart disease is first recognised has an

impact on preoperative condition, which in turn influences postoperative progress and survival

after surgery, Brown et al. (2006). In addition postnatal diagnosis of pulmonary atresia, another

type of congenital heart disease, is associated with greater cyanosis at presentation, Tzifa et al.

(2007).

Some conventional methods in ultrasound tecnology that are used in prenatal diagnosis of

congenital heart disease are B-mode (grayscale two-dimensional echocardiography), M-mode,

spectral Doppler (pulsed wave and continous wave) and color flow imaging (color coded two-

dimensional Doppler echocardiography), Achiron et al. (1992), Rajiah et al. (2011), Yagel et al.

(1997). Ultrasound technology is used for detection of congenital cardiac anomalies, but there
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are still reported undetected defects and misdiagnosis, Benavidez et al. (2008).

In color flow imaging, blood velocities are shown in a colormap on top of a grayscale (B-

mode) image showing the structures of the heart. The signal contain signals from thermal noise,

tissue signals which are often called the clutter signal, and blood signal. The clutter signal is

usually much stronger than the blood signal and has to be attenuated to achieve high quality

color flow images.

The current method of distinguishing between the different signals; blood and clutter, is to

use a high pass filter that should attenuate the clutter signal with low velocity, while the blood

signal with high velocity should fall within the passband. Previous research in color flow imaging

has shown that polynomial regression filters are suitable as clutter filters because they have a

sharp transition region when few samples are available for filtering. Also, for frequencies in

the passband, a polynomial regression filter has a negligible influence on the bias and standard

deviation of the mean frequency estimate, which is used in calculation of the color flow, Bjærum

et al. (2002b).

It systole the mitral valve closes, the ventricle contract and blood flows out through the aortic

valve. In the end of the diastole and the beginning of the systole the velocity of both clutter and

blood signal is low, and in some cases the blood spectrum falls below the cut-off frequency of

the filter and is attenuated together with the clutter signal. As a result, blood will not show up

in the image, making it difficult to estimate the true blood flow pattern, and visualize the vortex

formation in the blood flow. Accelerated clutter or otherwise clutter with high velocities might

fall within the passband of the filter and show up as tissue flashing, or contribute to biased

velocity estimates. The heart valve is especially difficult to remove from ultrasound images of

apical views of the heart with conventional high-pass filters. A possible solution to avoid both

tissue flashing and blood signal drop-out is to use filters with an adaptive cut-off frequency.

Previously purposed adaptive clutter filters include downmixing filters and eigenvalue re-

gression filters. Eigenvalue regression filters are an other type of regression filters that uses a

basis calculated using a Karhunen-Loève transform. This transform has the property that the

clutter representation is optimum and therefore this filter is a regression filter with an optimal

signaldependent set of basis vectors, and the maximum amount of clutter energy is removed

from the signal, Bjærum and Torp (1997), Ledoux et al. (1997), Bjærum et al. (2002a). For B-
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mode images of in vivo scenarios with substantial clutter motion eigenvalue regression filters

improve the contrast between clutter and blood compared to using polynomial regression fil-

ters. The in vivo data examples include intra-operative coronary imaging and thyroid imaging.

And a frequency-based algorithm was used to select the clutter subspace for the eigenvalue re-

gression filter, Yu and Løvstakken (2010). The eigenvalue regression filter can also be used for

applications with low blood velocity if the packet size is high, i. e. Np = 100 and the pulse rep-

etition frequency (PRF ) is high 5−10 kHz. However it is not suited for color flow imaging if the

blood velocity is low, Ledoux et al. (1997). Eigenvalue regression filters can improve the visual-

ization of small blood vessels with low blood velocities, like microvascular networks, Demené

et al. (2015).

It has also been shown that adaptive filters improves the image quality when imaging small

vessels in the thyroid gland. The cut-off frequency for the filter remained fixed, and the signal

were downmixed by varying phase increments. The downmixing approach allowed for adaption

to accelerating clutter movement. The phase increments were calculated from the autocorre-

lation function of the unfiltered data. The downmixing approach outperformed both the poly-

nomial regression filter and the eigenvalue regression filter for this application, Bjærum et al.

(2002a).

Problem formulation: Improve the estimation of intracardiac flow patterns using adaptive

clutter filtering.

When using the eigenvalue regression filter the clutter subspace is subtracted from the sig-

nal. The clutter subspace consist of an unknown number of the most dominant eigenvectors.

Different methods have been purposed to select the clutter subspace automatically. Yu and

Løvstakken (2010) suggest calculating the power of the eigenvalues and the Doppler velocity of

the eigenvectors, and setting predefined power and Doppler velocity threshold values. Faurie

et al. (2017) suggest considering the 30% eigenvalues with highest power as the clutter, and re-

moving the corresponding eigenvectors. Demené et al. (2015) suggest either using the power of
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the clutter and blood signal to set a threshold value, or setting a predefined number of the eigen-

vectors with highest power as the clutter subspace, and letting the clinician decide the clutter

subspace for the current application and data.

Some fully automated approaches to set an adaptive threshold value for the eigenvalue re-

gression filter include minimax Donoho and Gavish (2014), robust principal component analy-

sis (PCA) Candès et al. (2005), Akaike information criterion (AIC) or the minimum description

length (MDL) Allam et al. (1996) Wax and Kailath (1985), and dynamic mean evaluation Fort

et al. (1995). Details regarding these methods are given in section 3.4. For the robust PCA, AIC

and MDL, each possible maximum eigenvalue for the blood subspace is considered and a cost

function is calculated. The threshold is set by finding the minimum of the cost function.

During diagnosis it is important that the velocity estimates are accurate and the methods

for estimation are robust, so that the diagnosis is not based on a flawed dataset. To increase

accuracy of the adaptive filtering method, the following problems remains to be accessed. Get

input from clinicians to determine if the visualization of the blood vortex in this application is

improved when filtering with the eigenvalue regression filter. Simulations with an expanding

phantom for even better understanding of the fundamental properties of the eigenvalue regres-

sion filter, and to give more information in order to develop a robust method for clutter subspace

selection. Develop a method to also select a velocity threshold, and a method to select a power

threshold without the need for an input. Evaluation of which of the aforementioned methods

yields the most accurate clutter subspace, and is the most practical in the sense that it is not too

computer intensive. Consideration of machine learning and image recognition algorithms to

select clutter subspace based on plots of eigenvalue power and spectral content, and in terms

of computer complexity, how it would perform compared to the aforementioned methods for

clutter subspace selection. Compare the eigenvalue regression filter and the downmixing filter

for this application.

1.2 Objectives

The main objective of this project is to improve the estimation of intracardiac flow patterns

using adaptive clutter filtering.
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The secondary objectives are to

1. Investigate the potential of adaptive eigenvalue regression filter in cardiac imaging

2. Investigate the fundamental properties of the eigenvalue regression filter for separating

blood and clutter signal

3. Investigate the possibility of adaptive basis order selection in the eigenvalue regression

filter

1.3 Limitations

In this master thesis the eigenvalue regression filter was applied as a clutter filter for cardiac

data. Only ultrasound data of apical views of the left ventrical were considered. In the heart the

blood flow has complex patterens. And, when measuring the Dopplershift of the blood, only the

frequency shift of the axial velocity component is measured. The loss of the velocity component

perpendicular to the ultrasound pulse makes it difficult to accurately estimate the blood flow

pattern in the heart.

The application of eigenvector filters for use with color flow and speckle tracking was evalu-

ated compared to a FIR filter and a polynomial regression filter with fixed order, and the down-

mixing filter was not considered. Only quantitative examples are presented when comparing

the visualization of the vortex when filtering with the eigenvalue regression filter and the FIR

filter. This was only done for three of the in vivo datasets. For the visualization of the blood vor-

tex with speckle tracking estimates the averaging region in both space and time was considered

large.

1.4 Approach

The adaptive filter used in this work was an eigenvalue regression filter. To investigate the poten-

tial of the eigenvalue regression filter in cardiac imaging, in vivo data is used. Firstly, the clutter

signal for cardiac data is analyzed over time. Diastole and systole are determined by inspec-

tion of the sonogram, B-mode images, and color flow images for different time points during
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the heart cycle. The frequency spectrum is calculated for a region in the lumen, in the heart

wall, and in the ventricular septum. This is done for different times during diastole and plotted

together with the frequency spectrum for the blood flow imaging (BFI) finite impulse response

(FIR) filter.

To investigate how the signals contained in the different eigenvectors are distributed in space,

the projection of each eigenvector is shown as a B-mode image. The power of the eigenvalues

are also plotted against the Doppler velocity of its corresponding eigenvector. This is done for a

frame in systole, and diastole for two dataset with different PRF . To investigate how the signals

contained in the different eigenvectors are distributed in frequency, the power distribution of

the spectral content of the eigenvectors, are shown for a frame in systole and diastole for dif-

ferent filter basis sizes. In order to visualize the intracardiac flow patterns speckle tracking was

used. The eigenvalue regression filter was compared to the conventional FIR filter, and the clut-

ter subspace was chosen manually for the eigenvalue regression filter. Quantitative examples

from the speckle tracking for the two cases are shown. These examples are from three different

in vivo datasets.

To investigate the fundamental properties of the eigenvalue regression filter for separating

blood and clutter signal, simulations are used. This is done as a first step in order to develop

a robust fully automatic approach for selecting the clutter subspace. The simulations are sim-

ple with two different constant velocities. They are used to determine how the velocity differ-

ence between two constant velocities affect the eigenvalue regression filter performance. One

velocity, simulating the clutter velocity, was kept constant for all simulations and the other, sim-

ulating blood, was varied. Two cases are considered in more depth, one with a small velocity

difference between clutter and blood, and one with a large difference. For these simulations

the eigenvalues are plotted and compared to the case with only clutter velocity. For these two

cases, and the case with only clutter signal, the spectral content of the eigenvectors are imaged

as a colormap showing the power distribution. For four different simulations with increasing

difference in blood and clutter velocity the signal clutter ratio (SCR) is calculated and plotted for

packet size one to sixty four. These plots are compared to similar plots from one of the in vivo

datasets.

Simulations are used to compare the eigenvalue regression filter to two conventional filters,
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the polynomial regression filter, and a FIR filter. The simulation parameters is chosen as the

maximum absolute velocity for clutter, and blood, for a frame in systole, and a frame in diastole,

for dataset Testdata2. The velocities is found by inspection of the sonogram. The absolute ve-

locity was determined from the blood flow in a video of B-mode images, and was found to be

the same as the axial velocity for those frames. For the FIR filter and the eigenvalue regression

filter the bias and the standard deviation of the velocity estimates from speckle tracking was

calculated, and examples from the speckle tracking is shown.

To investigate the possibility of adaptive basis order selection in the eigenvalue regression

filter, in vivo data is used. Three previously purposed methods to select the clutter subspace

is evaluated for a frame in systole, and a frame in diastole, for nine different in vivo datasets.

These methods are compared to the clutter subspace chosen manually. The clutter subspace

was chosen manually by inspection of the B-mode images of the different eigenvectors.



Chapter 2

Theory

Color flow imaging is a medical imaging modality where the mean axial velocity of blood flow

is estimated using ultrasound Doppler. The estimated velocity for a region-of-interest (ROI)

is displayed as a colormap ranging from red to blue, for positive and negative velocities. The

color flow image is usually superimposed with a B-mode ultrasound image showing the tissue

structure, Reid and Spencer (1972) Ferrara and DeAngelis (1997). In color-flow imaging the time

dimension is divided into slow-time and fast-time. The slow-time dimension is used for filtering

and is often termed packet. It consist of Np consecutive pulses. The fast-time dimension is the

depth dimension.

2.1 Estimators in Color Flow Imaging

In color flow imaging the mean Doppler frequency is estimated using the autocorrelation func-

tion R̂x(m) in the packet dimension. The autocorrelation function R̂x(m) with packet size Np

and lag m for a Doppler signal x from a given spatial sample, is given by

R̂x(m) = 1

Np −1

Np−2∑
n=0

x(n)∗x(n +m). (2.1)

An estimator for the blood signal power is given by the autocorrelation function with lag equal

to zero, P̂ = R̂x(0).

For two subsequent temporal samples, the movement of a scatterer introduces a phase dif-

11
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ference between the signals. This phase difference is estimated using the autocorrelation R̂x(m)

with lag equal to one, and it gives an estimator for the mean Doppler frequency in the axial

direction ω̂ = 6 R̂x(1), Kasai et al. (1983). The mean axial velocity v̂axial is calculated from this

estimator as

v̂axial =
c ·PRF

4π f0
6 R̂x(1) (2.2)

where PRF is the pulse repetition frequency, f0 is the center frequency of the emitted ultrasound

pulse, and c is the velocity of sound in tissue.

Turbulence in the blood flow is often indicated as a green hue in the color flow image. The

blood flow is often considered turbulent if the bandwidth is large. An estimator for the band-

width B̂ 2 depends on the estimate of the blood signal power P̂ and the estimate of the mean

Doppler frequency ω̂. An overview of these three common estimators in color flow imaging is

given by

P̂ = R̂x(0) ω̂= 6 R̂x(1) B̂ 2 = 1− |R̂x(1)|
R̂x(0)

. (2.3)

2.2 Clutter Filtering in Color Flow Imaging

The received signal in color flow imaging is considered a superposition of signals arising from

moving clutter, moving blood and thermal noise. In order to image the blood signal it is neces-

sary to attenuate the signal from moving clutter. It is well known that the clutter signal power is

about 40-100 dB stronger than blood, and would otherwise hide the blood signal.

Filtering is done in the packet dimension and the packet size is determined by the depth

of the ROI and the frame rate. For cardiac imaging these two conditions result in one packet

consisting of only eight to sixteen temporal samples. The order of the filter is limited to the size

of the packet. This further limit the possibility of designing sharp clutter filters with a narrow

transition region.

Two conventional clutter filters in color flow imaging are polynomial regression filters, and

FIR filters. The polynomial regression filter is suitable for clutter filtering in color flow imaging

because it has a narrow transition region for low packet sizes Bjærum et al. (2002b). FIR filters

has the advantage that they can be designed to be time-invariant. For time-invariant filters the

Doppler signal waveform is not distorted from filtering.



2.3. EIGENVALUE REGRESSION FILTER 13

2.2.1 FIR Filter

The output of a FIR filter can be described by a finite convolution sum as

y(n) =
K−1∑
k=0

h(k)x(n −k) =
n∑

k=n−K+1
h(n −k)x(k) (2.4)

for a FIR filter of order K −1. The number of valid output samples are N −K −1, and the first

K −1 output samples have to be discarded because of the filter initialization.

2.2.2 Polynomial Regression Filter

When using a polynomial regression filter the clutter component is subtracted from the signal.

The clutter component is modelled using a Legendre polynomial base, and is the signal compo-

nent contained in a Kc dimensional space. The filter output y is given by

y = (I−
Kc−1∑
k=0

bkb∗T
k )x = Ax (2.5)

where the input signal vector x is projected onto the complement of the clutter component

basis. The term bk are orthonormal basis vectors spanning the clutter signal subspace, I is the

identity matrix and A is a projection matrix, Torp (1997), Hoeks et al. (1991).

The QR factorization of matrix A can be calculated from a Householder reflection, which is

a transformation that takes a vector and reflects it about some plane, Trefethen (2008).

2.3 Eigenvalue Regression Filter

An estimator for the signal power is obtained from the correlation matrix R̂x(0) as previously

noted in section 2.1. Since the signal is assumed to be a superposition of signals arising from

blood, tissue and noise, the correlation matrix can be written according to

R̂x(0) = R̂c (0)+ R̂b(0)+σ2
nI. (2.6)
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Where R̂c (0) is the correlation matrix of the clutter signal, and R̂b(0) is that of the blood signal.

The noise is assumed to be white, and therefore it has a constant value equal its variance.

This correlation matrix can be considered a linear combination of orthonormal basis vectors

if the signal vector x is expanded into the basis given by

R̂x(0) = E {xx∗T } =∑
k
λk ek e∗T

k . (2.7)

This expansion, called a principal component analysis (PCA) Pearson (1901), the Hotelling trans-

form, or the discrete Karhunen-Loève transform (DKLT) Therrien (1992), yields the orthonormal

eigenvectors ek of the correlation matrix. The power of each eigenvector is given by its eigen-

valueλk , and the total energy in the signal is equal to the sum of the eigenvalues. The eigenvalue

distribution is therefore a measure of the bandwidth of the signal, Bjærum et al. (2002a).

In order to calculate the eigenvalues and eigenvectors the correlation matrix R̂x(0) should be

a full rank matrix, so that each row of equations is independent. The correlation matrix has full

rank if the number of spatial samples is at least equal to the packet size.

The filtered signal y is given by

y = (I−
Kc−1∑
k=0

ek e∗T
k )x (2.8)

where I is the identity matrix, ek is eigenvector number k, and the sum corresponds to the clutter

subspace, and x is the input signal vector. The eigenvectors are calculated from the correlation

matrix R̂x(0) of the packet dimension as in equation 2.7, Yu and Løvstakken (2010).

The eigenvector regression filter is inherently adaptive because the expansion is carried out

in the packet dimension and is done independently for each frame. This way, each frame will

have unique eigenvalues and eigenvectors that are the best fit to the motion at that time.

The main idea of the eigenvector regression filter is to subtract the clutter signal represented

as the Kc eigenvectors with the highest power. Figure 2.1 is an illustration of this idea. This is

challenging when there are more than one clutter component and when the clutter components

have different velocities. Then the clutter signal is no longer only present in the most dominant

eigenvector, but might be spread across an unknown number of eigenvectors.

To properly supress the clutter signal, the clutter and blood signals must be mostly con-
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Figure 2.1: Illustration of the concept for the eigenvalue regression filter. All eigenvalues λ con-
tain the power represented by clutter, blood and noise, but clutter and blood dominate for dif-
ferent eigenvalues.

tained in separate eigenvectors. Every eigenvector will have some contribution from both clut-

ter, blood and noise signal. If the tissue and blood signals are sufficiently uncorrelated, different

eigenvectors will contain mostly clutter, or blood signal. When the clutter and blood signals are

correlated then the same eigenvectors will contain comparable signal strength for both clutter

and blood signal making filtering difficult. The correlation between the clutter and blood signals

decreases by increasing the packet size, and also for increasing difference on blood and clutter

velocity, Ledoux et al. (1997). In the ideal case, with stationary clutter, there should be perfect

correlation and all clutter signals would be contained in one eigenvector. Noise is assumed to

have constant eigenvalues and are contained in all eigenvectors.

Some of the proposed methods to select the clutter subspace was mentioned in the intro-

duction, section 1.1. Two of the fully automatic approaches, the AIC and the MDL, calculate the

clutter subspace based on a sufficient statistic. The sufficient statistic is the ratio of the arith-

metic mean to the geometric mean of the eigenvalues λi of the blood subspace, as

δk (λ) =
( 1

Np −k

Np∑
i=k+1

λi

)/( Np∏
i=k+1

λi

) 1

Np −k (2.9)

Where Np is the packet size andλk is the last eigenvalue in the clutter subspace, Wax and Kailath
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(1985).

The AIC is formulated as

AIC(k) =−2Np (Np −k)logδk (λ)+2k(2Np −k) (2.10)

and the MDL is formulated as

MDL(k) =−2Np (Np −k)logδk (λ)+
1

2
k(2M −k)log(Np ) (2.11)

where δk is the sufficient statistic. This has to be calculated for each possible value k of Kc , and

the value k that minimizes the AIC or MDL determine the clutter subspace Kc , Wax and Kailath

(1985), Allam et al. (1996).

2.4 Nyquist Limit

To avoid aliasing in color flow imaging the PRF should be equal or higher than the highest

Doppler shift, PRF > 2 fd . This is the Nyquist limit in pulsed wave Doppler. To get sufficient axial

resolution the PRF is also limited by the two-way-distanse PRF < c/2z. These two constraints

together with the equation for the mean Doppler shift fd = 2 f0v/c give an expression for the

maximum detectable velocity along the beam axis

vNyquist = c ·PRF

4 f0
, (2.12)

and this velocity is called the Nyquist velocity in pulsed wave Doppler.

2.5 Image Artefacts in Color Flow Imaging

Image artefacts are distortions in the image that look like real structures. The speckle pattern

in ultrasound images is an example of an image artefact. It originate from the diffraction pat-

tern from scatterers smaller than λ/2, like blood and tissue cells. For velocities higher than the

Nyquist velocity aliasing will distort the image, and this is another type of image artefact in color
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flow images. The color flow will, in this case typically show negative velocities in a region with

positive velocities because the Doppler spectrum wraps around itself. From equation 2.12 there

is always an upper limit for the axial velocity measurement, so this image artefact is difficult

to avoid. In color flow images color blooming occurs because the resolution of the color flow

image is lower than the B-mode image, and the color seem to leak into the tissue. If the clutter

signal attenuation is not sufficient, then flash artefacts will show in the color flow image. This is

typically seen as flashes of colour in areas without blood.

2.6 Multi-Dimensional Blood Velocity Estimation

Vortex visualization might be used as an aid when diagnosing heart diseases. The vortex for-

mation in the blood flow forming in the end of the distole and beginning of the systole is of

particular interest, Gharib et al. (2006). In ultrasound Doppler only the axial blood velocity is

estimated, while this vortex is a three dimensional complex pattern. In regular color flow imag-

ing it is not possible to visualize the full three dimensional velocity vector, since the estimated

velocity is angle-dependent.

Multi-dimensional blood velocity estimation methods have been proposed to facilitate vi-

sualization of the blood flow. The two main research fields for multi-dimensional blood flow

velocity estimation are vector Doppler and speckle tracking. In vector Doppler triangulariza-

tion is used to estimate the lateral velocity component, and ultrasound beams are transmitted

and received from different angles Dunmire et al. (2000).

Figure 2.2: Illustration of the speckle tracking concept. The best match for the 2D image kernel
in the next frame is used to estimate the velocity.

In speckle tracking, pattern matching techniques are used to track the blood speckle in the



18 CHAPTER 2. THEORY

ultrasound image between frames. An image kernel is defined, and the best match of the kernel

in the subsequent frame is used together with the PRF to calculate the movement of the kernel.

The velocity is estimated for all imaging points and are visualized as arrows in a vector velocity

map Bohs et al. (2000) Trahey et al. (1987). Figure 2.2 is an illustration of the speckle tracking

concept.

Pattern matching algorithms used for the speckle tracking operate on the radio-frequency

(RF) signals like the normalized cross-correlation or on the extracted envelope of the signal, like

the sum of absolute differences (SAD), and sum of squared differences (SSD). The two latter are

less computer intensive, Bohs et al. (2000).

2.6.1 Normalized Cross-Correlation

The most likely displacement of the kernel K for the normalized cross-correlation algorithm, is

given by the index of the maximum correlation value, according to

ρ(u, v) =
∑

x,y (I (x +u, y + v)− Īu,v )(K (x, y)− K̄ )√∑
x,y (I (x +u, y + v)− Īu,v )2 ∑

x,y (K (x, y)− K̄ )2
, (2.13)

where I is the search region displaced (u, v) from the kernel position for a subsequent frame.

The average of the search region and the kernel is defined by

Īu,v =
1

Nx Ny

∑
x,y

I (x +u, y + v), K̄ =
1

Nx Ny

∑
x,y

K (x, y), (2.14)

where Nx and Ny are the kernel dimensions.

2.6.2 Sum of Absolute Differences (SAD), and Sum of Squared Differences

(SSD)

For the SAD, and the SSD algorithm a coefficient representing the error for the match is calcu-

lated according to

dS AD (u, v) =∑
x,y

|I (x +u, y + v)−K (x, y)|, (2.15)
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dSSD (u, v) =∑
x,y

(I (x +u, y + v)−K (x, y))2, (2.16)

respectively. The displacement is given by the match that yields the minimum error. I is the

search region, and K is the kernel.

2.7 Tissue Spectral Doppler

Tissue spectral Doppler shows the spectral content of the Doppler frequencies for a given re-

gion, and how it changes in time. It is a grayscale image of the periodogram in two dimensions

where the brightness of each pixel indicates the count of that Doppler frequency. Most often,

the time is represented along the horizontal axis and velocities, calculated from equation 2.2,

are displayed on the vertical axis, instead of the Doppler frequency. The tissue spectral Doppler

image is often termed the sonogram.

For a continous aquisition, the resolution of the sonogram can be improved by applying the

sliding window fast fourier transform (FFT). Instead of using fixed bins, the bins overlap by 50 %

and is windowed, Manolakis and Ingle (2011).
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Chapter 3

Methods

3.1 Data Aquisition

3.1.1 In Vivo Data

A total of nine in vivo datasets were used in this project. Two datasets (Testdata1 and Testdata2)

were recorded using a research scanner, Verasonics Vantage system (Verasonics, Inc., USA). Both

were apical views of the left ventricle from the same healthy volunteer, with different PRF . A

continuous acquisition with diverging waves insonifying the whole field-of-view was used and

RF channel data was stored for further processing. Dataset Testdata1 had PRF of 2000 Hz and

dataset Testdata2 had PRF of 4000 Hz. In addition, previously recorded datasets from patients

were used, and those had been recorded with a GE Vivid E9 scanner using research software

developed by GE Vingmed, Horten, Norway. Patient1 refers to a recording of an apical view of

the left ventricle from a child suffering from a side effect of cancer treatment, more specifically

antracyclin induced dilated cardiomyopathy. The child was seven years old, and weighed 20 kg.

Control1 refers to a recording of an apical view of the left ventricle from a healthy child. The

child was six years old and weighed 23 kg. These four datasets were analyzed more in depth,

and the remaining datasets was used to evaluate the clutter subspace selection methods. Table

3.1 gives an overview of the data, including information on the heart rate in beats per minute

(BP M), the PRF , the center frequency f0, the packet size, the probe and the scanner.

21
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Dataset Healthy Heartrate PRF [kHz] f0 [MHz] Np Probe Scanner
[BPM]

Testdata1 Yes 2 2.9 Continous Phased Verasonics
Testdata2 Yes 4 2.9 Continous Phased Verasonics
Control1 Yes 73 5 3.7 16 6S Phased GE Vivid E9
Control2 Yes 109 7 5.8 16 12S Phased GE Vivid E9
Control3 Yes 109 7 5.8 16 12S Phased GE Vivid E9
Patient1 No 127 5 3.7 16 6S Phased GE Vivid E9
Patient2 No 107 8 5 16 9L Linear GE Vivid E9
Patient3 No 157 5 4.5 16 9L Linear GE Vivid E9
Patient4 No 162 5 4.5 16 9L Linear GE Vivid E9

Table 3.1: in vivo data and meta data

3.1.2 Simulations

In order to evaluate the performance of the eigenvalue regression filter a total of seven simula-

tions were carried out using the Field II simulation software, Jensen (1996). Channel RF data was

simulated for a linear scan, and both clutter and blood signal were simulated as plug flow with

constant velocity in a cylindrical phantom. The Doppler angle of the phantom was 60 deg. The

number of blood scatterers per resolution cell was 10. Random noise was added to the signals,

and the SN R was 40 dB. For Simulation1 there was only one velocity present in the phantom and

the absolute velocity was 0.1 m/s representing clutter movement. For Simulation2, Simulation3,

Simulation4 and Simulation5 there was one plug flow with absolute velocity 0.1 m/s represent-

ing clutter movement, and one plug flow representing blood movement. The different blood

velocities were 0.15 m/s for Simulation2, 0.2 m/s for Simulation3, 0.25 m/s for Simulation4 and

0.3 m/s for Simulation5. The SC R for the simulations was −25 dB. These simulations were used

to determine how the eigenvalues were distributed in the case of low velocity difference, and

high velocity difference between clutter and blood signals. In Simulation6 and Simulation7 the

absolute velocity of the phantom representing clutter and blood was chosen as the maximum

absolute velocity found in vivo data Testdata2 for a frame in systole and a frame in diastole. This

was found by inspection of the sonogram. Simulation6 and Simulation7 was used to calculate

the bias of the velocity estimates from speckle tracking and evaluate the performance of the

eigenvalue regression filter compared to polynomial regression filter and the FIR filter. For all

the simulations the PRF was 4 kHz, center frequency f0 was 5 kHz. The parameters used for the
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Dataset Blood Clutter PRF [kHz] f0 [MHz] Packet Scan
phantom phantom size
velocity [m/s] velocity [m/s]

Simulation1 0.1 4 5 Continous Linear
Simulation2 0.15 0.1 4 5 Continous Linear
Simulation3 0.2 0.1 4 5 Continous Linear
Simulation4 0.25 0.1 4 5 Continous Linear
Simulation5 0.3 0.1 4 5 Continous Linear
Simulation6 0.5 0.15 4 5 Continous Linear
Simulation7 0.15 0.03 4 5 Continous Linear

Table 3.2: Simulation parameters

simulations are listed in table 3.2.

3.2 Post Processing of Data

The datasets from the Verasonics scanner were stored as channel data and beamformed off-line.

The signal envelope was extracted using complex demodulation. Dynamic receive focusing was

used to get higher signal intensity and higher lateral resolution. Focusing on receive is obtained

by multiplying with a phase factor. The phase is calculated for each time sample according to

the two-way distance z = c0t/2.

The patient and control datasets recorded with the GE Vivid E9 scanner were scan converted.

Interpolation was used to convert the data from cartesian to polar coordinates.

3.3 Sonogram and Frequency Spectrum

The improved Sonogram using the sliding window FFT was calculated for Testdata1 and Test-

data2 as described in section 2.7. The sonogram for Testdata2 was used to find the maximum

absolute velocity for a frame in systole and diastole. To verify that the velocity was in the ax-

ial direction, the blood flow was displayed in a video of B-mode images. The spectral content

was calculated for three different spatial points and five different temporal points for Testdata2.

This was used together with B-mode and color flow images of the dataset to evaluate the perfor-

mance of the FIR-filter and to verify the need for an adaptive clutter filter.
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3.4 Eigenvalue Regression Filter as Adaptive Filter

The eigenvalue regression filter was implemented using a multi-ensemble-based formulation,

Yu and Løvstakken (2010). The eigenvalue regression filter is a two-dimensional filter. Since the

correlation matrix of the blood, clutter and noise signals is calculated for each frame, and is used

in calculating the filter basis as explained in section 2.3, the eigenvalue regression filter adapt

to tissue motion in time. The clutter subspace varies for each frame, and there is, therefore,

the possibility to also set the size of the clutter subspace for each frame adaptivily to achieve

optimum clutter rejection, Yu and Løvstakken (2010). Since the eigenvalues represent the signal

strength of the eigenvector, the power of each eigenvalue was calculated and the eigenvalues

above a power threshold value was considered the clutter subspace.

Some previously purposed methods to select the clutter subspace was mentioned in the in-

troduction, and an overview of some of these methods are given below.

• Minimax, guarantee quantitatively accurate recovery of a signal matrix c from a signal

matrix s = c +n containing noise n by applying soft thresholding to the singular values of

s, Donoho and Gavish (2014). This is not directly applicable for setting a blood threshold

value since the blood signal is not standard gaussian noise, and noise signal will also be

present.

• Robust Principal Component Analysis (PCA), for a signal matrix s = c +b consisting of a

low rank matrix c and a sparse matrix b. When the sparse matrix b is a small perturbation

of the signal matrix s, it is possible to disentangle the low-rank and sparse components

exactly by convex programming. It is not known how well the rank of c and b would be

estimated if the sparse matrix was dense instead. In that case the signal b could be con-

sidered a sum of a sparse and a dense matrix, Candès et al. (2005). For in vivo data the

blood signal is considered a small perturbation of the signal matrix since the power of

the clutter signal is much higher than the blood signal. Demené et al. (2015) suggest that

blood signal can be considered a sparse matrix. For a simulation where the blood sig-

nal is only present for a particular region like in a blood phantom, then the blood signal

would be sparse. For in vivo data some blood signal is present in all image pixels and it is

unknown whether the blood signal can be considered a sparse matrix.
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• Akaike information criterion, using the Akaike information criterion (AIC) or the Mini-

mum description length (MDL) to determine the size of the clutter subspace, when a suf-

ficient statistic is assumed to be the ratio of the arithmetic mean to the geometric mean

of the eigenvalues of the covariance matrix, Allam et al. (1996) Wax and Kailath (1985).

• Dynamic mean evaluation, to find the first eigenvalue corresponding to noise all possible

sizes of the clutter subspace are considered, in an efficient way, and a if test is performed

to decide the order. If the distance to the first eigenvalue (clutter) is the shortest it is con-

sidered a part of the clutter subspace, or if the distance to the last eigenvalue (noise) is

the shortest it is part of the noise subspace. When calculating the distance the signal is

modeled using AR polynomial representation, Fort et al. (1995). This is also not directly

applicable for setting a blood threshold, but might be if noise is properly removed first.

In this work the power threshold for the in vivo data was chosen for each frame. Three dif-

ferent methods were considered. One semi-automatic method where the power threshold was

set equal to the difference in decibels between a clutter ROI and a blood ROI. The blood ROI

was assumed to contain signals from blood, clutter and noise, and the clutter ROI was assumed

to contain signals from clutter and noise. The difference should yield the power of the blood

signal, and this method is similar to one of the methods purposed by Demené et al. (2015). Two

other fully automatic methods for selecting the clutter subspace was also tested. These two

methods was the AIC and the MDL, as mentioned above, and explained in the end of section

2.3. The subspace selected using these methods were compared to the clutter subspace chosen

manually. For the simulations, the power threshold was set equal the SC R.

Since blood velocities are normally larger than clutter velocities it is also possible to set a ve-

locity threshold to select clutter subspace. This can be done by calculating the Doppler velocity

of each eigenvector. This was used when filtering the simulated data as the clutter velocity in the

simulation was known, and could easily be set as the velocity threshold value. Setting a Doppler

velocity threshold for the in vivo data was not looked further into. The underestimation of the

true clutter velocity was a problem for the case where all beam and range samples were used as

the ROI.
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3.5 Visualization of the Eigenvectors

In order to manually select the clutter subspace, the projection of each eigenvector onto the data

from the selected frame was displayed as its own B-mode image, resulting in as many B-mode

images as the size of the packet. To better visualize where in the image the signal representing

clutter, blood and noise originated, all these B-mode images were given a color and superim-

posed using the quadratic mean of the RGB-value into one image. The B-mode images of each

eigenvector for a frame in diastole for dataset Testdata2 are shown in figure 4.11, and the result

of the superimposed image of the same frame is shown in figure 4.10a, and these results are

presented in section 4.2.

The spectral content of each eigenvector was calculated using the sliding window FFT, and

the frequency was converted to yield Doppler velocity. The distribution of energy in decibels of

the spectral content for each eigenvector was displayed in an image as a colormap. Images was

generated for Simulation1, Simulation2, and Simulation5, and for in vivo data Testdata1. This

was done for one frame in systole, and one frame in diastole, for packet size sixteen, sixty four

and for a packet consisting of all temporal samples. The images from the three simulations were

used to determine the effect of the difference in velocity, between clutter and blood signals,

on the spectral content of the eigenvectors. The images from the in vivo data were used to

determine the effect of increasing packet size on the spectral content of the eigenvectors.

3.6 Speckle Tracking

Speckle tracking was used to aquire velocity estimates of the blood flow in Simulation6 and Sim-

ulation7. These simulations were filtered with the eigenvalue regression filter and the FIR filter,

and the bias were calculated for the two cases for each simulation. Speckle tracking was also

used to visualize the vortex formation of blood in the left ventricle during diastole for the test

data with the highest PRF, Testdata2, and the patient data Patient1, Control1. The width of the

phantom was 1 cm and the diameter was 3 cm. And, for the speckle tracking of the simulation

data, a spatial averaging region of 3.8 mm in the axial direction and 3.3 mm in the lateral direc-

tion was used. The width of the left ventricle in in vivo data Testdata2 was approximately 10 cm

and the length was approximately 15 cm. And, for the speckle tracking a spatial averaging re-
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gion of 12 mm in the axial direction and 13 mm in the lateral direction was used. The width of

the left ventricle in in vivo data Patient1 and Control1 was approximately 5 cm and the length

was approximately 6 cm. For Patient1 and Control1 a spatial averaging region of 7 mm in the

axial direction and 7 mm in the lateral direction was used. A temporal averaging of 40 ms was

used for all.
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Chapter 4

Results

4.1 Presentation of Dataset Testdata1 and Testdata2

Figure 4.1: Sonogram for dataset Testdata1 for the regions marked in the left figure displaying
the B-mode image. The ROIs are 26 mm in depth and 0.83 mm in width. Yellow arrows indicate
the systole and diastole. Two frames in systole and seven frames in diastole are indicated with
red lines and are displayed as B-mode and color flow images in figure 4.3 and 4.4 respectively.

In order to develop and test the eigenvalue regression filter, datasets Testdata1 and Testdata2

were analyzed in different ways as stated in section 1.4. These two datasets are presented below.

Figure 4.1 shows the sonogram for in vivo data Testdata1 for a region in the heart wall and

a region in the lumen. Yellow arrows indicate systole and diastole and two frames in systole

and seven frames in diastole are indicated with red lines. These frames was filtered with the FIR

filter and displayed as B-mode images in figure 4.3, and color flow images in figure 4.4. Similarly

for dataset Testdata2, the frames marked with red lines in figure 4.2 are displayed as B-mode

images in figure 4.5, and color flow images in figure 4.6. These figures also indicate the systole

29
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Figure 4.2: Sonogram for dataset Testdata2 for the regions marked in the left figure displaying
the B-mode image. The ROIs are 26 mm in depth and 0.83 mm in width. Yellow arrows indicate
the systole and diastole. Two frames in systole and seven frames in diastole are indicated with
red lines and are displayed as B-mode and color flow images in figure 4.5 and 4.6 respectively.

and diastole with red arrows. Both datasets were apical views showing the left ventricle. In both

cases the first two frames show outflow of blood from the left ventricle through the aortic valve.

The aortic valve is not visible in this view. The next frames show inflow of blood through the

mitral valve. In the B-mode images, the mitral valve is visible in the bottow center of the frame

at t = 0.312 s for dataset Testdata1, and t = 0.684 s for dataset Testdata2. The opening of the

mitral valve indicate the beginning of diastole, and in the subsequent frames there is possible

vortex formation in the blood flow. The PRF , center frequency f0, and information on the probe

and scanner used for the recording of these two datasets can be found in table 3.1.

4.2 Investigate the Potential of Adaptive Eigenvalue Regression

Filter in Cardiac Imaging

Figure 4.7 shows the frequency spectrum for different spatial points for five frames in diastole

for dataset Testdata2. At time points t = 0.4680 s, and t = 0.5920 s, the frequency spectrum of

the spatial point in the tissue region close to the mitral valve (right) and the spatial point in the

lumen (middle) are comparable in strength. This shows that the attenuation of the FIR-filter

within the stopband is too low. The signal power for both spatial points are around 50 dB, and

by looking at the B-mode image in figure 4.5 this is visible as tissue flashing for depth 10 cm. At

t = 0.5279 s the spatial point in the tissue region close to the mitral valve (right) shows that the
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Figure 4.3: B-mode images of the filtered dataset Testdata1 using the FIR-filter at different times
during the heart cycle. Red arrows indicate the systole and diastole.
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Figure 4.4: Color flow images of the filtered dataset Testdata1 using the FIR-filter at different
times during the heart cycle. Red arrows indicate the systole and diastole.
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Figure 4.5: B-mode images of the filtered dataset Testdata2 using the FIR-filter at different times
during the heart cycle. Red arrows indicate the systole and diastole.
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Figure 4.6: Color flow images of the filtered dataset Testdata2 using the FIR-filter at different
times during the heart cycle. Red arrows indicate the systole and diastole.
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Figure 4.7: Signal, signal filtered using the FIR filter, and the FIR filter response from dataset
Testdata2 in the lumen, in the heart wall and in the ventricular septum at different times during
the diastole. The ROI is one beam sample and ten range samples with center indicated in the
B-mode images in the top row as a red mark.
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tissue signal falls within the passband of the FIR-filter. From the B-mode image this tissue signal

is hiding the blood signal which is only barely visible at depth 5 cm. By looking at the frequency

spectrum at time points t = 0.7160 s and t = 0.8120 s the long transition region of the FIR-filter

causes some blood drop out as the blood signal is also attenuated by the FIR-filter. The blood

drop-out is visible in the B-mode image as a region with lower intensity in the middle of the

blood signal at depth 5 cm.

(a) Eigenvectors projected onto data subspace and
shown with different colors for dataset Testdata2 at
time point t =0.241 s in systole. The pink box indi-
cates which eigenvectors represent blood signal the
most.

(b) Corresponding eigenvalues for dataset Test-
data2 at time point t =0.241 s in systole. The adap-
tive power thresholds for this frame are indicated as
horizontal lines.

Figure 4.8: Eigenvectors and eigenvalues for Testdata2 at time point t =0.241 s with outflow in
systole. For this frame the adaptive power threshold is in agreement with the eigenvectors rep-
resenting blood signal selected manually.

One frame in systole and two in diastole for in vivo data Testdata2, was filtered as explained

in section 3.5. The frame in systole was at time point t = 0.241 s with outflow, one frame in

diastole was at time point 0.5920 s with inflow, and the other at time point 0.8129 s with vortex

formation. The frame in systole with outflow is shown in figure 4.8a, the frame in diastole with

inflow in figure 4.9a and the frame in diastole with vortex formation in figure 4.10a, where each

eigenvector corresponds to a colour. The pink box indicates which eigenvectors correspond to

the blood signal. This was decided by looking at the image of each individual eigenvector which

is shown in figure 4.11 for the frame in diastole. The eigenvalues for the frame in systole and the

two frames in diastole are shown in figures 4.8b, 4.9b and 4.10b. The adaptive power threshold
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(a) Eigenvectors projected onto data subspace and
shown with different colors for dataset Testdata2 at
time point t =0.5920 s in diastole. The pink box in-
dicates which eigenvectors represent blood signal
the most.

(b) Corresponding eigenvalues for dataset Test-
data2 at time point t =0.5920 s in diastole. The
adaptive power thresholds for this frame are indi-
cated as horizontal lines.

Figure 4.9: Eigenvectors and eigenvalues for Testdata2 at time point t =0.5920 s with inflow in
diastole. In this frame the adaptive power threshold was too high, and not in agreement with
the eigenvectors representing blood signal selected manually.

(a) Eigenvectors projected onto data subspace and
shown with different colors for dataset Testdata2 at
time point t =0.8120 s in diastole. The pink box in-
dicates which eigenvectors represent blood signal
the most.

(b) Corresponding eigenvalues for dataset Test-
data2 at time point t =0.8120 s in diastole. The
adaptive power thresholds for this frame are indi-
cated as horizontal lines.

Figure 4.10: Eigenvectors and eigenvalues for Testdata2 at time point t =0.8120 s with vortex
formation in diastole. For this frame the adaptive power threshold is in agreement with the
eigenvectors representing blood signal selected manually.
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Figure 4.11: B-mode images of the projection of each eigenvector onto the data subspace for
dataset Testdata2 at time point t =0.8120 s in diastole with vortex formation. Increasing eigen-
vector number from left to right top to bottom. The tissue signal is represented by eigenvectors
1 and 2, blood signal is represented by eigenvectors 3-8, and the remaining eigenvectors 9-16
represent noise.
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(a) Eigenvectors projected onto data subspace and
shown with different colors for dataset Testdata1 at
time point t =0.2160 s in systole. In this case it was
not possible to distinguish between clutter, blood
and noise subspace.

(b) Corresponding eigenvalues for dataset Test-
data1 at time point t =0.2160 s in systole. The adap-
tive power thresholds for this frame are indicated as
horizontal lines.

Figure 4.12: Eigenvectors and eigenvalues for Testdata1 at time point t =0.2160 s in systole with
outflow.

(a) Eigenvectors projected onto data subspace and
shown with different colors for dataset Testdata1 at
time point t =0.4720 s in diastole. The pink box in-
dicates which eigenvectors represent blood signal
the most.

(b) Corresponding eigenvalues for dataset Test-
data1 at time point t =0.4720 s in diastole with vor-
tex formation. The adaptive power thresholds for
this frame are indicated as horizontal lines.

Figure 4.13: Eigenvectors and eigenvalues for Testdata1 at time point t =0.4720 s in diastole.

was selected as explained in section 3.4 and is shown as horizontal lines.

This was also done similarily for Testdata1, and figure 4.12 shows the eigenvectors and eigen-

values for the frame in systole, and figure 4.13 for the frame in diastole. The frame in systole is
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at time point t = 0.216 s and the one in diastole at t = 0.472 s.

(a) Timepoint t =0.2160 s in systole and t =0.4720 s in diastole
for packet size sixteen and sixtyfour.

(b) Packet contain all temporal samples.

Figure 4.14: Power distribution of the spectral content of the eigenvectors as explained in section
3.5 for dataset Testdata1 for different packet size. When one packet contains all time samples the
eigenvalue regression filter becomes saturated and looses its adaptive nature. It will function as
a normal highpass filter with fixed cut-off frequency.

The power distribution of the spectral content of the eigenvectors from in vivo data Testdata1

are shown in figure 4.14a for packet sizes Np = 16, and Np = 64 for one frame in systole and one

frame in diastole. Figure 4.14b shows the spectral content when the packet size consisted of all

available time samples, and the packet size was Np = 1488. The signals has a broader bandwidth

for Np = 16 than Np = 64, and has the broadest bandwidth for Np = 1488.

Figure 4.15 shows the effect of increasing packet size on the SC R. Figure 4.15a, and figure

4.15b, is from in vivo data Testdata1 in systole, and diastole, respectively. The velocity and power

threshold were set manually, and for the in vivo data the eigenvectors corresponding to blood

was determined by figure 4.12a and 4.13a as eigenvectors number 11−16 and 5−12, respectively.

The power threshold was therefore set to be −35 dB for systole and −40 dB for diastole, and the

velocity threshold set to be 0.1 m/s for systole and 0.05 m/s for diastole. The SC R is maximum

at packet size Np = 18, and Np = 43 for Testdata1. For a conventional scanner like GE Vivid E9

the packet size is sixteen, as mentioned in section 3.1. The difference in SC R for packet Np = 16

and the packet giving the maximum SC R is 1.795 dB for systole, and 4.064 dB for diastole.
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(a) Dataset Testdata1 at time t = 0.216 s in sys-
tole. Difference in blood and clutter signal was
0.408 m/s.

(b) Dataset Testdata1 at time t = 0.472 s in dias-
tole. Difference in blood and clutter signal was
0.228 m/s.

Figure 4.15: Effect of increasing the filter basis size on SCR when filtering with the eigenvalue
regression filter when blood and clutter signal was sufficiently uncorrelated, for Testdata1. The
power and velocity threshold were set manually by inspection of the two frames with packet size
sixteen.

(a) BFI-filter (b) Eigenvalue Regression filter with manually se-
lected clutter subspace

Figure 4.16: Color flow image with arrows showing the velocity estimate from speckle tracking.
Comparison of using the FIR and eigenvalue regression filter to visualize the vortex at time point
t = 0.8360 s, dataset Testdata2. Both temporal and spatial averaging were used for the speckle
tracking, as explained in section 3.6.



42 CHAPTER 4. RESULTS

Figure 4.17: Color flow image with arrows showing the velocity estimate from speckle track-
ing. Comparison of using the FIR (left) and eigenvalue regression filter (right) with the power
threshold set manually. For a time point in systole for dataset Control1. Both temporal and
spatial averaging were used for the speckle tracking, as explained in section 3.6.

The color flow image with arrows from speckle tracking in figure 4.16 shows a vortex forma-

tion in the blood flow for Testdata2 at time t = 0.8360 s in diastole. In 4.16a the FIR filter was

used and in 4.16b the eigenvalue regression filter was used, where the power threshold was set

manually. For this frame the eigenvalue regression filter improves the visualization of the vor-

tex by reducing the tissue flashing at depth 7.5− 15 cm, and reducing blood drop-out at width

−2 cm and depth 3− 6 cm.

Figures 4.17 and 4.18 shows the color flow image with arrows from speckle tracking for two

frames for dataset Control1 for the two filters. And, figures 4.19 and 4.20 are from dataset Pa-

tient. For these frames the clutter subspace for the eigenvalue regression filter was also selected

manually. The PRF , center frequency f0, probe and scanner used for the recording of these two

datasets can be found in table 3.1. For dataset Control1, figure 4.17 shows that the visualization

of the vortex, located at depth 45 mm and width 5 mm in the left ventricle, is improved when

filtering with the eigenvalue regression filter. In figure 4.19, the heart valve can be seen at depth

65 mm and width 10 mm. For this region, the speckle tracking velocity estimate results in chaotic
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Figure 4.18: Color flow image with arrows showing the velocity estimate from speckle tracking.
Comparison of using the FIR (left) and eigenvalue regression filter (right) with the power thresh-
old set manually. For a time point in diastole for dataset Control1. Both temporal and spatial
averaging were used for the speckle tracking, as explained in section 3.6.

arrows for the FIR filter, and this indicate that the eigenvalue regression filter supresses the sig-

nal from the heart valve in a larger extent than the FIR filter. In figure 4.20, using the eigenvalue

regression filter results in less blood signal drop-out. The vortex formation for dataset Patient

in figure 4.20 is located much closer towards the apex in the left ventricle, at depth 35 mm and

width −10 mm, than for dataset Control1 in figure 4.18, at depth 45 mm and width 10 mm.

4.3 Investigate the Fundamental Properties of the Eigenvalue

Regression Filter for Separating Blood and Clutter signal

Simulations were carried out in order to better understand how the velocity difference affect

the correlation between the clutter and blood signals. Three simulations, Simulation1, Simula-

tion2, and Simulation5, was compared to one another. Simulation1 was of a clutter phantom,

Simulation2 was of a clutter and a blood phantom, where the velocity difference between the
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Figure 4.19: Color flow image with arrows showing the velocity estimate from speckle tracking.
Comparison of using the FIR (left) and eigenvalue regression filter (right) with the power thresh-
old set manually. For a time point in systole for dataset Patient1. Both temporal and spatial
averaging were used for the speckle tracking, as explained in section 3.6.

clutter and blood was low, and Simulation5 was of a clutter and a blood phantom where the

velocity difference between the clutter and blood signals was high. The frequency spectrum of

these three cases are shown in figure 4.21. The absolute velocity for the clutter was 0.1 m/s in

all cases, and the absolute velocity of the blood signal was 0.15 m/s, and 0.3 m/s. Figure 4.22

shows the eigenvalue power. There is no visible difference between figure 4.22a and figure 4.22b

even though there is blood signals present in one, and not the other. Therefore, the clutter and

blood signal power is contained in the same eigenvalues for Simulation2. By comparing Simu-

lation1 in figure 4.22a with Simulation5 in figure 4.22c the power of the clutter signal is mostly

contained in the first ten eigenvalues, and the power of the blood signal is contained in eigen-

values number eleven to thirty for Simulation5. The remaining eigenvalues mostly contain the

signal power from the noise signals. Eigenvalues around number fifteen might contain signal

power from both clutter and blood signals. The number of eigenvalues representing one veloc-

ity is determined by the transit time of the scatterer. Therefore, low velocities would be entirely

represented by fewer eigenvectors than high velocities.
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Figure 4.20: Color flow image with arrows showing the velocity estimate from speckle track-
ing. Comparison of using the FIR (left) and eigenvalue regression filter (right) with the power
threshold set manually. For a time point in diastole for dataset Patient1. Both temporal and
spatial averaging were used for the speckle tracking, as explained in section 3.6.

Figure 4.21: Frequency spectrum of Simulation1 only clutter, Simulation2 clutter and blood
signals with low difference velocity difference, and Simulation5 clutter and blood signals with a
high velocity difference. Frequency spectrum showing the signal, the FIR filter respons and the
signal filtered with the FIR filter. Because of the high clutter velocity clutter supression is not
sufficient.

Figure 4.23 shows the power distribution of the spectral content of the eigenvectors, as ex-

plained in section 3.5. The frequency spectrum of the eigenvectors containing blood signal is

distinguishable for Simulation5 in figure 4.23c. It is visible as broadband signals with center fre-



46 CHAPTER 4. RESULTS

(a) Only clutter signal with
absolute velocity of clutter
0.1 m/s

(b) Clutter and blood signal,
with absolute velocity of clutter
0.1 m/s and blood 0.15 m/s.

(c) Clutter and blood signal,
with absolute velocity of clutter
0.1 m/s and blood 0.3 m/s.

Figure 4.22: Power of eigenvalues of Simulation1 only clutter, Simulation2 clutter and blood
signals with a low velocity difference, and Simulation5 clutter and blood signals with a high
velocity difference. In (b) bandwidth of the clutter signal is larger than the separation between
the clutter and blood signal. The same eigenvectors contain both clutter and blood signal and
the blood signal is not possible to separate from the clutter signal. In (c) the clutter and blood
signal are separated into different eigenvalues and the eigenvalues corresponding to blood are
10−30.

(a) Only clutter signal with
absolute velocity of clutter
0.1 m/s

(b) Clutter and blood signal,
with absolute velocity of clutter
0.1 m/s and blood 0.15 m/s.

(c) Clutter and blood signal,
with absolute velocity of clutter
0.1 m/s and blood 0.3 m/s.

Figure 4.23: Power distribution of the spectral content of the eigenvectors as explained in sec-
tion 3.5 for Simulation1 only clutter, Simulation2 clutter and blood signals with a low veloc-
ity difference, and Simulation5 clutter and blood signals with a high velocity difference. In (c)
the eigenvectors with broader bandwidth around eigenvector number fifteen contain the most
blood signal.

quency corresponding to 0.15 m/s around eigenvector number fifteen to twenty. The Doppler

angle was 60 deg so the axial velocity of the blood scatterers was 0.15 m/s in this case. Figure

4.24 shows B-mode images of the two cases with low and high velocity difference between clut-

ter and blood signals. The data have been filtered using the eigenvalue regression filter with

power threshold equal to the SC R at −25 dB and velocity threshold equal to the axial tissue ve-
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(a) B-mode image of the tube
phantom with clutter and
blood signal.

(b) B-mode image showing
clutterfiltering attempt using
the eigenvalue regression filter
for Simulation2 when the
clutter and blood signal was
correlated. Absolute velocity
of clutter 0.1 m/s and blood
0.15 m/s.

(c) B-mode image showing
clutterfiltering attempt using
the eigenvalue regression
filter for Simulation5 when
the clutter and blood signal
was sufficiently uncorrelated.
Absolute velocity of clutter
0.1 m/s and blood 0.3 m/s.

Figure 4.24: Eigenvalue regression filter used for filtering Simulation2 and Simulation5.

Part of heart cycle Clutter [m/s] Blood [m/s] Difference [m/s]
Max. vel. Sim. par. Max. vel. Sim. par. Max. vel. Sim. par.

Systole (outflow) 0.116 0.15 0.489 0.5 0.373 0.35
Diastole (inflow) 0.13 >0.57 >0.44
Diastole (vortex) 0.03 0.03 0.19 0.15 0.16 0.12

Table 4.1: Parameters used for Simulation6 and Simulation7, and the maximum absolute veloc-
ity found by inspection of the sonogram of dataset Testdata2.

locity. For comparison figure 4.24a shows the phantom without filtering. For the case with a low

difference it was not possible to get sufficient clutter signal attenuation.

Figure 4.25 shows the effect of increasing packet size on the SC R. The results were from

Simulation2, Simulation3, Simulation4, and Simulation5. For these simulations the clutter ve-

locity was 0.1 m/s, and for each simulation the blood velocity was increased. From figure 4.25d

the eigenvalue regression filter performs well for both low and high packet size if the velocity

difference between blood and clutter signal is high.

Two simulations were performed with parameters corresponding to the ones found in the

in vivo test data with the highest PRF , Testdata2. From figure 4.2 there is a delay between the

maximum clutter velocity and the maximum blood velocity. The maximum clutter velocity was

found by inspection of the sonogram for a ROI in the heart wall, and the maximum blood veloc-

ity by inspection of the sonogram with a ROI in the lumen. These sonograms are shown in figure
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(a) vbl ood = 0.15 m/s (b) vbl ood = 0.2 m/s

(c) vbl ood = 0.25 m/s (d) vblood = 0.3 m/s

Figure 4.25: Optimum packet size for increasing difference between blood and clutter signal.
For the simulation the velocity threshold was equal to the axial component of the clutter velocity
and the power threshold equal to the SC R. The clutter velocity was 0.1 m/s.

4.2 together with a B-mode image showing the ROIs. The maximum clutter velocity in systole is

0.116 m/s, and the maximum blood velocity is 0.489 m/s. The maximum blood velocity might

be higher than the Nyquist velocity for a ROI in the lumen closer to the heart valve. The differ-

ence in maximum velocity for blood and clutter is 0.373 m/s in systole. In diastole, when there

is inflow, the maximum velocity of clutter is 0.13 m/s and the blood velocity is possibly higher

than 0.57 m/s. When there is vortex formation the maximum velocity of clutter is 0.03 m/s and

the maximum blood velocity is 0.19 m/s, with a difference of 0.16 m/s. These results were used

to set parameters for a simulation with constant movement of blood and clutter, Simulation6,

Simulation7. The maximum clutter and blood velocities are summarized in table 4.1 together
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(a) B-mode image showing the tube phantom data
after filtering

(b) The eigenvalues and the threshold values se-
lected for the eigenvalue regression filter

Figure 4.26: B-mode images of the data from Simulation6 filtered with the FIR filter, polynomial
regression order six, and with the eigenvalue regression filter. The parameters used for the sim-
ulation were set equal to the maximum blood and tissue velocities found in systole for dataset
Testdata2 and are listed in table 4.1. The velocity threshold was set equal to the axial component
of the clutter velocity, and the power threshold was set equal to the SC R.

with the parameters used for the simulation.

The simulation data from Simulation6 was filtered with the BFI, polynomial regression filter

with order six, and with the eigenvalue regression filter, and are displayed as a B-mode image

in figure 4.26a. The threshold values used for the eigenvalue regression filter is shown in figure

4.26b. Similarily for the simulation data from Simulation7 with parameters from diastole, in

figure 4.27a showing the B-mode images, and 4.27b showing the eigenvalues and the threshold

values.

The mean SC R for the two simulations and the three different filters are listed in table 4.2.

The ROI of the signal was the whole fast moving tube without the edges and the ROI of the

clutter signal was the whole slow moving tube without edges. In both instances the SC R was

highest when filtering with the eigenvalue regression filter.

For the two simulations figure 4.28 and figure 4.29 shows color flow images together with

speckle tracking for the FIR and eigenvalue regression filter. In these images using the eigen-

value regression filter results in less tissue flashing and less blood signal drop-out. The mean,
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(a) B-mode image showing the tube phantom data
after filtering

(b) The eigenvalues and the threshold values se-
lected for the eigenvalue regression filter

Figure 4.27: B-mode images of the data from Simulation7 filtered with the FIR filter, polynomial
regression order six, and with the eigenvalue regression filter. The parameters used for the sim-
ulation were set equal to the maximum blood and tissue velocities found in diastole for dataset
Testdata2 and are listed in table 4.1. The velocity threshold was set equal to the axial component
of the clutter velocity, and the power threshold was set equal to the SC R.

standard deviation and bias for the velocity estimates from the speckle tracking are listed in

table 4.3.

4.4 Investigate the Possibility of Adaptive Basis Order Selection

in the Eigenvalue Regression Filter

For the in vivo datasets in table 3.1 the different methods for selecting the clutter subspace was

tested. Table 4.4 shows these results for a frame in systole, and table 4.5 for a frame in diastole.

Green numbers in the tables indicate that the selected clutter subspace was in agreement with

the manually selected clutter subspace. The results are also shown in the bar chart in figure 4.30

for systole and 4.31 for diastole. The methods for selecting the clutter subspace are explained

in the end of section 2.3. For dataset Testdata1 and Testdata2 the manually selected clutter sub-

space is shown in figures 4.12a, 4.13a, 4.8a and 4.10a. And the clutter subspace λK c was selected
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Figure 4.28: Color flow image with arrows from the velocity estimate from speckle tracking of
Simulation6 filtered with FIR filter in top row and the eigenvalue regression filter in the bottow
row. The parameters used for the simulation were set equal to the maximum blood and tissue
velocities found in systole for dataset Testdata2 and are listed in table 4.1.

in the same way for the rest of the datasets, by looking at the B-mode images of each eigen-

vector. The eigenvalues together with the threshold values are shown in figures 4.12b, 4.13b for

Testdata1, and 4.10b, 4.10b for Testdata2.
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Type of filter SCR [dB]
Systole Diastole

Eigenvalue regression filter 5.90 6.20
FIR filter -20.11 -0.02
Polynomial regression filter ord. 6 -20.48 5.56

Table 4.2: The SC R found after filtering with eigenvalue regression filter, polynomial regression
filter with order six and the FIR filter for Simulation6 with parameters corresponding to the max-
imum absolute velocity of clutter and blood in systole and Simulation7 for diastole. The SCR of
the tube phantom data was −25 dB before filtering. The velocities and simulation parameters
are listed in table 4.1.

Type of filter Mean velocity [m/s] Simulation velocity Bias [m/s]
Systole Diastole Systole Diastole Systole Diastole

Eigenvalue regression filter 0.482 ± 0.051 0.138 ± 0.032 0.5 0.15 -0.0180 ∓ 0.051 -0.0120 ∓ 0.032
FIR filter 0.457 ± 0.073 0.181 ± 0.071 0.5 0.15 -0.0430 ∓ 0.051 0.0310 ∓ 0.071

Table 4.3: The mean velocity and the bias for the velocity estimate from speckle tracking of
Simulation6 and Simulation7 filtered with the FIR filter and the eigenvalue regression filter. The
parameters used for Simulation6 were set equal the maximum absolute velocity of blood and
tissue found in systole for dataset Testdata2 and the parameters used for Simulation7 equal the
ones found in diastole. The parameters are listed in table 4.1.

Dataset λK c Demené AIC MDL
Control1 5 3 3 4
Control2 5 3 7 8
Control3 2 2 5 7
Patient1 2 5 5 6
Patient2 3 2 3 4
Patient3 1 2 3 6
Patient4 2 1 5 8
Testdata1 10 8 5 7
Testdata2 4 3 4 5

Table 4.4: The clutter subspace selected by different methods for a frame in systole for different
datasets. Two fully automatic methods based on the AIC, and the MDL, and a semi-automatic
method purposed by Demené et al. (2015) using the power of a clutter and blood ROI to select a
power threshold. These methods were compared to the manual selected clutter subspace λK c .
That was selected based on B-mode images of the eigenvectors. Green numbers indicate that
the automatic selection method agree with the manual selected clutter subspace.
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Figure 4.29: Color flow image with arrows from the velocity estimate from speckle tracking of
Simulation7 filtered with FIR filter in top row and the eigenvalue regression filter in the bottow
row. The parameters used for the simulation were set equal to the maximum blood and tissue
velocities found in diastole for dataset Testdata2 and are listed in table 4.1.

Figure 4.30: Bar chart showing the clutter subspace selected by different methods, for a frame in
systole for different datasets. Two fully automatic methods based on the AIC, and the MDL, and
a semi-automatic method purposed by Demené et al. (2015) using the power of a clutter and
blood ROI to select a power threshold. These methods were compared to the manual selected
clutter subspace λK c . This was selected based on B-mode images of the eigenvectors.
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Dataset λK c Demené AIC MDL
Control1 3 3 3 3
Control2 2 2 4 8
Control3 2 2 4 6
Patient1 2 4 5 6
Patient2 2 1 3 5
Patient3 1 2 3 6
Patient4 2 1 5 7
Testdata1 4 3 3 4
Testdata2 2 2 3 4

Table 4.5: The clutter subspace selected by different methods for a frame in diastole for different
datasets. Two fully automatic methods based on the AIC, and the MDL, and a semi-automatic
method purposed by Demené et al. (2015) using the power of a clutter and blood ROI to select a
power threshold. These methods were compared to the manual selected clutter subspace λK c .
That was selected based on B-mode images of the eigenvectors. Green numbers indicate that
the automatic selection method agree with the manual selected clutter subspace.

Figure 4.31: Bar chart showing the clutter subspace selected by different methods, for a frame
in diastole for different datasets. Two fully automatic methods based on the AIC, and the MDL,
and a semi-automatic method purposed by Demené et al. (2015) using the power of a clutter and
blood ROI to select a power threshold. These methods were compared to the manual selected
clutter subspace λK c . This was selected based on B-mode images of the eigenvectors.



Chapter 5

Discussion of Results

Figure 4.7 shows that the FIR filter is not well suited for clutter filtering of cardiac data. From pre-

vious research it is possible to achieve proper clutter attenuation using a FIR-filter if the clutter

velocity is low, but even better clutter suppression is obtained when using a polynomial regres-

sion filter since it has a higher attenuation in the stopband Torp (1997) Bjærum et al. (2002b).

This is in agreement with the results because the velocity of the clutter is too high even in dias-

tole, and the attenuation in the stopband is too low to get sufficient clutter suppression. When

using this filter for clutter filtering of cardiac data there will be both blood signal drop-outs and

tissue flashing in diastole, which makes visualization of the blood vortex difficult.

From the visualization of the eigenvectors in time, figures 4.8, 4.9, 4.10, 4.12, and 4.13, the

clutter signal was found to be contained in less eigenvectors during systole than diastole. The

clutter subspace is determined by the mean axial velocity, the velocity bandwidth of the clutter

signal, and the difference in velocity between clutter and blood signal, Yu and Løvstakken (2010).

This agrees with the results since the sonogram in figures 4.1 and 4.2 shows that the bandwidth

of the clutter velocity is larger in systole than in diastole.

Clutter was contained in the eigenvectors with highest eigenvalues, blood signal in the eigen-

vectors with intermediate eigenvalues, and noise in the eigenvectors with lowest eigenvalues.

The clutter signal will be contained in the dominant eigenvector. Since the eigenvalue regres-

sion filter is a two-dimensional filter it does not matter where the clutter signal is dominant as

long as it is dominant somewhere in the signal, Ledoux et al. (1997). Eigenvectors corresponding

to clutter signal were typically easy to distinguish from the blood and noise signals. However,

55
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it was difficult to distinguish between eigenvectors representing blood and noise signals since

they were both characterized by a range of Doppler velocities from zero to the Nyquist velocity

and low eigenvalues. This is in agreement with previous research by Ledoux et al. (1997) that

the eigenvalues corresponding to noise do not form such a distinct group as those representing

clutter. The similar appearance of blood and noise signals is also shown in figure 4.11, and there

is a smooth transition between eigenvectors corresponding to blood and noise.

In figure 4.12 it was not possible to distinguish which eigenvectors contained most of the

blood signal because the PRF was too low. The PRF determines the clutter suppression achieved

by the eigenvalue regression filter since it limits maximum measureable velocity, and thereby

limits the velocity difference of clutter and blood signal. If both the measured clutter and blood

velocity are equal to the Nyquist velocity, then those two signals are correlated. From the visu-

alization of the eigenvectors in figure 4.12a, eigenvector number eleven looked like it contained

only blood signal. However, when filtering using eigenvectors one to ten as clutter subspace the

speckle pattern was stationary over one packet from a video of B-mode images, and it is there-

fore a possibility that eigenvectors eleven to sixteen only contain noise signals even though it

has the appearence of blood signal in B-mode images.

Figure 4.14a shows the power distribution of the spectral content of the eigenvectors for

Testdata1. The image for systole shows that the eigenvectors either contain clutter or noise.

The clutter signals are contained in eigenvectors one to ten for packet size sixteen, and one to

twenty for packet size sixty four. The remaining power is distributed on all frequencies and are

likely noise signals. For diastole the eigenvectors that contain the most blood signals are five

to twelve for packet sixteen, and ten to fifty for packet sixty four. These eigenvectors have a

larger bandwidth than eigenvectors containing mostly clutter signals, and this is as expected,

since blood has a higher velocity than clutter, and therefore shorter transition time which gives

a broader bandwidth. The eigenvectors containing blood also had a narrower bandwidth than

those containing mostly noise, which is also expected, since the noise is assumed to contain

all frequencies. For figure 4.14b one packet contained all temporal signals, and clutter filtering

was no longer possible. Clutter filtering is possible if the consecutive signals in one packet are

correlated. This way, the clutter signals can be described with a finite number of subsignals.

In practice, a packet shorter than 10 ms should be used to achieve correlated signals also for
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systole. For low clutter velocities a longer packet can be applied Ledoux et al. (1997). This was

also in agreement with the results in figure 4.15 which showed that for systole the maximum

SC R was achieved by using a packet of eighteen, which is 9 ms. For diastole, longer packets

improved the SC R. The eigenvalue regression filter also attenuated the clutter signal for packet

size sixteen, and the improvement to the SC R by increasing the packet size beyond sixteen for

diastole was 4 dB.

Speckle tracking examples from in vivo data are shown in figure 4.16, 4.17, 4.18, 4.19, 4.20.

The clutter subspace for the eigenvalue regression filter was chosen manually. For figure 4.16

the clutter subspace was chosen using the method purposed by Demené et al. (2015), but for

this frame this was the same clutter subspace as the manually selected clutter subspace. Fig-

ure 4.19 shows chaotic arrows at width 10 mm and depth 65 mm for the FIR filter, and not for

the eigenvalue regression filter. This indicate that the eigenvalue regression filter better supress

signals from the heart valve than the FIR filter. In these examples, using the eigenvalue regres-

sion filter results in less tissue flashing and blood signal drop-outs compared to the FIR filter.

And, in these examples, the eigenvalue regression filter improves the visualization of the vortex

formation of blood in systole and diastole compared to the FIR filter.

The results in figure 4.18 and 4.20 showed that the vortex formation was much closer to

the apex for the patient with dilated cardiomyopathy compared to the healthy control. This is

in agreement with Hong et al. (2008), that dilated cardiomyopathy effect the location of the

left ventricle vortex. However, the duration of the vortex is also of importance and was not

investigated in this work, and thorough clinical studies are needed to reach any conclusions.

From this work it was experienced that setting a power threshold was easier than setting a

velocity threshold for the in vivo data. Setting a velocity threshold equal the mean velocity from

all spatial points in one image severly underestimated the true clutter velocity. It was also easier

to distinguish between clutter and blood, than blood and noise, therefore using the eigenvalue

regression filter to also subtracting the noise signal was not looked further into.

From Simulation1, Simulation2 and Simulation5 it was found that when the clutter and

blood velocity difference is low, and even though the two signals are distinguishable in the fre-

quency spectrum, figure 4.21, their eigenvectors are impossible to distinguish from one another,

figure 4.22, 4.23 and filtering with the eigenvalue regression filter is not possible, figure 4.24.
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This is because the clutter and blood velocity difference determine the amount of correlation

between the signals Ledoux et al. (1997).

In order to determine whether this was an issue for the in vivo data Testdata2, the maximum

estimated axial velocity for clutter and blood for a frame in systole and a frame in diastole was

used to determine the parameters in Simulation6 and Simulation7. The parameters are listed

in table 4.1, and the results are listed in table 4.2 and figure 4.26 for systole and figure 4.27 for

diastole. These simulations showed that the difference between blood og clutter signals were

high enough, and that they were mostly represented by different eigenvectors. However, in the

simulation the blood and clutter velocities had a constant velocity profile, and for the in vivo

data the velocity profiles are more complex.

The results from Simulation6 and Simulation7 also showed increase in the SC R for filter-

ing with the eigenvalue regression filter compared to the polynomial regression filter and the

FIR filter. This is in agreement with previous research showing that eigenvalue regression fil-

ters can more effectively suppress clutter in CFI scenarios with substantial tissue motion Yu

and Løvstakken (2010). Also, eigenvalue regression filter can better adapt to the Doppler signal

characteristics Yu et al. (2007), and is suitable as a clutter filter Ledoux et al. (1997) Kargel et al.

(2003), also for both low and high clutter velocity Song et al. (2006). It has also been shown that

the eigenvalue regression filter is very effective at removing the clutter with and without clutter

movement Kruse and Ferrara (2002).

For a given high clutter velocity and varying blood velocity, the SC R was improved by in-

creasing the packet beyond packet sixteen from figure 4.25. The improvement was most evident

when the difference between clutter and blood was equal the clutter velocity. When the differ-

ence between the clutter and blood velocity was high, the eigenvalue regression achieved a high

SC R also for packet size sixteen. This is in agreement with previous research showing that an in-

crease in packet size decreases the correlation between clutter and blood signal. The correlation

between clutter and blood signals increases with decreasing difference between the clutter and

blood velocity, Ledoux et al. (1997). However, there was no improvement when the difference

between the clutter and blood velocity was half the clutter velocity, and this is not in agreement

with previous in vitro phantom study by Demené et al. (2015), that the eigenvalue regression

filter performance is increasing with the packet size used in estimating the correlation matrix.
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In the study by Demené et al. (2015) a high SC R of 6 dB was obtained for a difference in clutter

and blood velocity as low as 4 % of the clutter velocity when both a large amount of temporal

and spatial samples were used in the estimation of the correlation matrix. The main differences

of the simulations in this work and the in vitro phantom study is that the clutter and blood ve-

locity direction was equal in the simulation and different in that of Demené et al. (2015). The

velocities in the in vitro phantom study were also five times lower than in the simulations in this

work. In the in vitro study by Demené et al. (2015) it was noted that those results remain to be

verified in high motion applications such as cardiac imaging.

Figures 4.28, and 4.29 shows speckle tracking images for Simulation6 with parameters from

systole, and Simulation7 with parameters from diastole. Using the eigenvalue regression filter

instead of the FIR filter reduces tissue flashing in systole and reduces blood signal drop-outs in

diastole. From table 4.3 the bias of the velocity estimates from speckle tracking is also smaller

for filtering with the eigenvalue regression filter compared to the FIR filter. Previous reseach has

found that FIR clutter filter removed both blood and wall signal, resulting in severe underesti-

mation of the blood flow from speckle tracking Gallippi and Trahey (2002).

Tables 4.4 and 4.5, and figures 4.30 and 4.31, shows the results of three of the clutter subspace

selection methods mentioned in section 1.1. There are nine datasets and two frames for each

dataset yielding eighteen different frames. Since a random selection of clutter subspace would

have a 1/16 chance of being correct, it is therefore likely that each of the methods should have

at least one correct. Even though it may be beneficial to develop an algorithmic way of choosing

the clutter subspace, Yu and Løvstakken (2010), Demené et al. (2015) argue that the adjustment

of the power threshold is not as critical as the choise of cut off frequency in conventional filters.

The reduction to the SC R by using a suboptimal clutter subspace was not considered, therefore

only the methods selecting a clutter subspace that is spot on is indicated with green in the tables.

The method purposed by Demené et al. (2015) selected the clutter subspace correctly in 44 %

of the frames from the different datasets in diastole. In systole the AIC method selected cor-

rectly in most instances, but it was only correct 22 % of the frames from the different datasets.

Wax and Kailath (1985) found that the MDL method provides more consistent estimates, specif-

ically when the packet size is small, which is the case for pulsed-wave Doppler ultrasound. Yu

and Cobbold (2006) showed that the AIC and MDL underestimate the clutter subspace in sys-
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tole, and overestimate the clutter subspace in diastole. The results presented here suggest that

both the AIC and the MDL are overestimating the clutter subspace, both for systole and diastole.

For Testdata1 the MDL and AIC are underestimating the clutter subspace for the frame in sys-

tole, but for this frame the blood and clutter signals were correlated and it was quite difficult to

choose the clutter subspace manually. The main problem with this dataset was the low PRF as

discussed previously. The gap between the clutter subspace selected by the MDL, AIC, and the

manually selected clutter subspace is larger for the datasets with a beam aquisition, than for the

datasets with a plane wave aquisition. The eigenvalues were calculated using the whole image

as the ROI for all the datasets, also the datasets with beam aquisition, and this could be a source

of error. For the control and patient datasets the heartrate was high and there were few frames

in each heart cycle. It was therefore more difficult to decide which frames showed systole and

diastole, and this is also a source of error.

When calculating the AIC and MDL the blood signals are assumed to be gaussian random

processes, with zero mean, Wax and Kailath (1985). Although it is generally excepted that the

signal from blood cells with random positions in space will sum up incoherently and therefore

can be modeled as a Gaussian process, it is not certain that the mean is zero. This might be

the reason why the AIC and MDL does not yield more correct clutter subspaces for this appli-

cation. Perhaps more realistic blood phantoms of the heart could give insight to the probability

distribution, and aid in development of the clutter subspace selection method.

This work has been a first step in order to develop a robust fully automatic method for se-

lection of the clutter subspace in eigenvalue regression filters for use with cardiac data. No new

method for selecting clutter subspace is suggested in this thesis. Only three of the clutter sub-

space selection methods mentioned in section 3.4 was implemented and tested with the nine

different datasets. And, only two frames in each dataset were considered. Each of the simu-

lations was only carried out once, and the simulations were simple with just two different ve-

locities with plug flow. It is also possible to use eigenvalue regression filters to suppress noise

signals, but this was not considered in this work. Neither was it considered to set a Doppler

velocity threshold to select the clutter subspace. In this work the opinion of clinicians were not

aquired.
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Conclusion and Further Work

6.1 Conclusion

The eigenvalue regression filter with a manually selected clutter subspace has the possibility

of improving the visualization of vortex formation in blood compared to a FIR filter for cardiac

data. However, the improvement was not judged by clinicians, and only five different frames

were considered. These frames were from three different in vivo datasets.

When using the eigenvalue regression filter with a manually selected clutter subspace it is

possible to achieve a SC R comparable in strength to that achieved by using a FIR filter for packet

size sixteen. The results from the simple simulations showed that the eigenvalue regression filter

can reduce the bias in the velocity estimate from speckle tracking compared to a FIR filter, as it

reduces tissue flashing, and blood signal drop-outs.

The semi-automatic power threshold select the clutter subspace correctly in 44 % of the

frames in diastole considered in this work, but only one frame from nine different datasets were

considered. The semi-automatic power threshold is not a practical solution since a region con-

taining clutter and blood signals must be chosen manually.

6.2 Further work

Some suggations for further work are to develop a more robust clutter subspace selection method,

and evaluation of the previously suggested methods. Input from clinicians is also necessary
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when evaluating the method. Possible approaches could include more sophisticated simula-

tions, and in vitro experiments using more realistic cardiac phantoms. Possible simulations

could include accelerated clutter, expanding clutter, and simulations with different direction for

clutter and blood movement. Simulations should also include more realistic blood and tissue

phantoms like carotid artery simulations Swillens (2010). To investigate the use of eigenvalue

regression filters with accelerated flow it is perhaps an easier approach to use in vitro phantoms

than simulations as many frames are necessary to get sufficient increase in velocity when using

a high PRF .

The computation complexity should be considered as many of the previously suggested

methods include calculating a cost function for each possible clutter subspace, and that is per-

haps not a practical solution for high packet sizes. An other interesting approach is to use ma-

chine learning for determining the clutter subspace by recognizing patterns in plot of the eigen-

values.

There are also other types of adaptive clutter filters, like downmixing filters, and these should

also be considered and compared to the eigenvalue regression filter for this application.



Appendix A

Acronyms

US Ultrasound

CFI Color flow imaging

PRF Pulse repetition frequency

RF Radio frequency

FIR Finite impulse response

ROI Region-of-interest

BPM Beats per minute

FFT Fast fourier transform

SCR Signal-to-clutter ratio

PCA Principal component analysis

DKLT Discrete Karhunen-Loève transform

AIC Akaike information criterion

MDL Minimum description length

BFI Blood flow imaging

63



64 APPENDIX A. ACRONYMS



Bibliography

Achiron, R., Glaser, J., Gelernter, I., Hegesh, J., and Yagel, S. (1992). Extended fetal echocar-

diographic examination for detecting cardiac malformations in low risk pregnancies. British

Medical Journal.

Allam, M. E., Kinnick, R. R., and Greenleaf, J. F. (1996). Isomorphism between pulsed-wave

doppler ultrasound and direction-of-arrival estimation - part ii: Experimental results. IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

Benavidez, O. J., Gauvreau, K., Jenkins, K. J., and Geva, T. (2008). Diagnostic errors in pediatric

echocardiography: Development of taxonomy and identification of risk factors. Circulation.

Bjærum, S. and Torp, H. (1997). Optimal adaptive clutter filtering in color flow imaging. IEEE

Ultrasonics Symposium.

Bjærum, S., Torp, H., and Kristoffersen, K. (2002a). Clutter filers adapted to tissue motion in

ultrasound color flow imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency

Control, vol. 49.

Bjærum, S., Torp, H., and Kristoffersen, K. (2002b). Clutter filter design for ultrasound color flow

imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

Bohs, L. N., Geiman, B. J., Anderson, M. E., Gebhart, S. C., and Trahey, G. E. (2000). Speckle

tracking for multi-dimensional flow estimation. Ultrasonics, vol. 38,.

Brown, K. L., Ridout, D. A., Hoskote, A., Verhulst, L., Ricci, M., and Bull, C. (2006). Delayed

diagnosis of congenital heart disease worsens preoperative condition and outcome of surgery

in neonates. Heart.

65



66 BIBLIOGRAPHY

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2005). Robust principal component analysis? J. ACM

JACM, vol. 58, no. 3.

Demené, C., Deffieux, T., Pernot, M., Osmanski, B.-F., Biran, V., Gennisson, J.-L., Sieu, L.-A.,

Bergel, A., Franqui, S., Correas, J.-M., Cohen, I., Baud, O., and Tanter, M. (2015). Spatiotem-

poral clutter filtering of ultrafast ultrasound data highly increases doppler and fultrasound

sensitivity. IEEE Transactions on Medical Imaging, vol. 34, no. 11.

Donoho, D. and Gavish, M. (2014). Minimax risk of matrix denoising by singular value thresh-

olding. The Annals of Statistics, vol. 42, no. 6.

Dunmire, B., Beach, K. W., Labs, K., Plett, M., and Strandness, D. E. (2000). Cross-beam vector

doppler ultrasound for angle-independent velocity measurements. Ultrasound in Medicine

& Biology, vol. 26,.

Eapen, R. S., Rowland, D. G., and Franklin, W. H. (1998). Effect of prenatal diagnosis of critical

left heart obstruction on perinatal morbidity and mortality. American Journal of Perinatology.

Faurie, J., Baudet, M., Assi, K. C., Auger, D., Gilbert, G., Tournoux, F., and Garcia, D. (2017). In-

tracardiac vortex dynamics by high-frame-rate doppler vortography - in vivo comparison with

vector flow mapping and 4-d flow mri. IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control, vol. 64, no. 2.

Ferrara, K. and DeAngelis, G. (1997). Color flow mapping. Ultrasound in Medicine & Biology, Vol

23, Issue 3.

Fort, A., Manfredi, C., and Rocchi, S. (1995). Adaptive svd-based ar model order determination

for time-frequency analysis of doppler ultrasound signals. Ultrasound in Medicine & Biology,

vol. 21, no. 6.

Gallippi, C. M. and Trahey, G. E. (2002). Adaptive clutter filtering via blind source separation for

two-dimensional ultrasonic blood velocity measurement. Ultrasonic Imaging, vol. 24.

Gharib, M., Rambod, E., Kheradvar, A., Sahn, D. J., and Dabiri, J. O. (2006). Optimal vortex

formation as an indec of cardiac health. Proceeding of the National Academy of Sciences of

the United States of America, vol 103,.



BIBLIOGRAPHY 67

Hoeks, A. P. G., van de Vorst, J. J. W., Dabekaussen, A., Brands, P. J., and Reneman, R. S. (1991).

An efficient algorithm to remove low frequency doppler signals in digital doppler systems.

Ultrasonic Imaging, Volume 13, Issue 2.

Hong, G.-R., Pedrizzetti, G., Tonti, G., Li, P., Wei, Z., Kim, J. K., Baweja, A., Liu, S., Chung, N.,

Houle, H., Narula, J., and Vannan, M. A. (2008). Characterization and quantification of vortex

flow in the human left ventricle by contrast echocardiography using vector particle image

velocimetry. JACC Cardiovasc. Imaging.

Jensen, J. (1996). Field: A program for simulating ultrasound systems. Med. Biol. Comput., vol.

34.

Kargel, C., Höbenreich, G., Trummer, B., and Insana, M. F. (2003). Adaptive clutter rejection

filtering in ultrasonic strain-flow imaging. IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, vol. 50.

Kasai, C., Namekawa, K., Tsukamoto, M., and Koyano, A. (1983). Realtime bloodflow imaging

system utilizing auto-correlation techniques. Ultrasound in Medicine & Biology, 2, 203-8,.

Kruse, D. E. and Ferrara, K. W. (2002). A new high resolution color flow system using an

eigendecomposition-based adaptive filter for clutter rejection. IEEE Transactions on Ultra-

sonics, Ferroelectrics, and Frequency Control, vol. 49.

Landis, B. J., Levey, A., Levasseur, S. M., Glickstein, J. S., Kleinman, C. S., Simpson, L. L., and

Williams, I. A. (2013). Prenatal diagnosis of congenital heart disease and birth outcomes.

Pediatric Cardiology, vol. 34.

Ledoux, L. A. F., Brands, P. J., and Hoeks, A. P. G. (1997). Reduction of the clutter component

in doppler ultrasound signals based on singular value docomposition: a simulation study.

Ultrasonic Imaging, vol. 19.

Mahle, W. T., Clancy, R. R., McGaurn, S. P., Goin, J. E., and Clark, B. J. (2001). Impact of prenatal

diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left

heart syndrome. Pediatrics.



68 BIBLIOGRAPHY

Manolakis, D. G. and Ingle, V. K. (2011). Applied Digital Signal Processing. Cambridge University

Press.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical

Magazine vol 2.

Pedrizzetti, G., La Canna, G., Alfieri, O., and Tonti, G. (2014). The vortex - an early predictor of

cardiovascular outcome? Nature Reviews Cardiology.

Rajiah, P., Mak, C., Dubinksy, T. J., and Dighe, M. (2011). Ultrasound of fetal cardiac anomalies.

American Journal of Roentgenology.

Reid, J. M. and Spencer, M. P. (1972). Ultrasonic doppler technique for imaging blood vessels.

Science, 176, 1235-6.

Song, F., Zhang, D., and Gong, X. (2006). Performance evaluation of eigendocomposition-based

adaptive clutter filter for color flow imaging. Ultrasonics, vol. 44.

Swillens, e. a. (2010). Simulation environment for vascular imaging with ultrasound. Technical

report, Mobius Medical Systems.

Therrien, C. W. (1992). Discrete Random Signals and Statistical Signal Processing. Prentice Hall,

Inc.

Torp, H. (1997). Clutter rejection filter in color flow imaging: A theoretical approach. IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44, no. 2.

Trahey, G. E., Allison, J. W., and Von Ramm, O. T. (1987). Angle independent ultrasonic detection

of blood flow. IEEE Transactions on Biomedical Engineering, vol. 34, no. 12.

Trefethen, L. N. (2008). Householder triangularization of a quasimatrix. IMA Journal of Numer-

ical Analysis.

Tzifa, A., Barker, C., Tibby, S. M., and Simpson, J. M. (2007). Prenatal diagnosis of pulmonary

atresia: impact on clinical presentation and early outcome. Archives of disease in childhood.

Fetal and neonatal edition.



BIBLIOGRAPHY 69

van der Linde, D., Konings, E. E. M., Slager, M. A., Witsenburg, M., Helbing, W. A., Takkenberg,

J. J. M., and Roos-Hesseling, J. W. (2011). Birth prevalence of congenital heart disease world-

wide. Journal of the American College of Cardiology, vol. 58, no. 21.

Verhejien, P. M., Lisowski, L. A., Stoutenbeek, P., Hitchcock, J. F., Brenner, J. I., Copel, J. A., Klein-

man, C. S., Mejiboom, E. J., and Bennink, G. B. (2001). Prenatal diagnosis of congenital heart

disease affects preoperative acidosis in the newborn patient. The journal of thoracic and car-

diovascular surgery.

Wax, M. and Kailath, T. (1985). Detection of signals by information theoretic criteria. IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 2.

Yagel, S., Weissman, A., Rotstein, Z., Manor, M., Hegesh, J., Anteby, E., Lipitz, S., and Achiron, R.

(1997). Congenital heart defects: natural course an in utero development. Circulation.

Yu, A. C. H. and Cobbold, R. S. C. (2006). A matrix pencil estimator with adaptive rank selection:

Application to in vivo flow studies. IEEE Ultrasonics Symposium.

Yu, A. C. H., Johnston, K. W., and Cobbold, R. S. C. (2007). Frequency-based signal processing

for ultrasound color flow imaging. Journal of the Canadian Acoustical Association.

Yu, A. C. H. and Løvstakken, L. (2010). Eigen-based clutter filter design for ultrasound color flow

imaging: A review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,

vol. 57, no. 5.


	Preface
	Acknowledgment
	Summary and Conclusions
	Introduction
	Background
	Objectives
	Limitations
	Approach

	Theory
	Estimators in Color Flow Imaging
	Clutter Filtering in Color Flow Imaging
	FIR Filter
	Polynomial Regression Filter

	Eigenvalue Regression Filter
	Nyquist Limit
	Image Artefacts in Color Flow Imaging
	Multi-Dimensional Blood Velocity Estimation
	Normalized Cross-Correlation
	Sum of Absolute Differences (SAD), and Sum of Squared Differences (SSD)

	Tissue Spectral Doppler

	Methods
	Data Aquisition
	In Vivo Data
	Simulations

	Post Processing of Data
	Sonogram and Frequency Spectrum
	Eigenvalue Regression Filter as Adaptive Filter
	Visualization of the Eigenvectors
	Speckle Tracking

	Results
	Presentation of Dataset Testdata1 and Testdata2
	Investigate the Potential of Adaptive Eigenvalue Regression Filter in Cardiac Imaging
	Investigate the Fundamental Properties of the Eigenvalue Regression Filter for Separating Blood and Clutter signal
	Investigate the Possibility of Adaptive Basis Order Selection in the Eigenvalue Regression Filter

	Discussion of Results
	Conclusion and Further Work
	Conclusion
	Further work

	Acronyms
	Bibliography

