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Problem Description

Massive Nambu-Goldstone bosons are particles with a gap that is protected by symmetry and
can be computed exactly with the help thereof. The goal of this project will be to investigate
their further properties using Quantum Field Theory, and compare them to those of ordinary,
gapless Nambu-Goldstone bosons: low-energy theorems, interactions with other modes etc.
This is a follow-up project on the work done in Watanabe, Brauner and Murayama, Phys. Rev.
Lett. 111, 021601, 2013. Required background: Classical and (basic) Quantum Field Theory,
basics of the theory of Lie groups and Lie algebras.

i



Abstract

In this thesis we consider systems where both Lorentz invariance and a continuous symmetry
group G is explicitly broken by coupling a chemical potential µ to one of the generators Q
of G. In such systems it is well known that there exist two different types of massive Gold-
stone bosons, denoted here as mNGBs and pNGBs. It is also well known that each mNGB
corresponds to the explicit breaking of a pair of generators that we can combine into a linear
combination Q±σ. Furthermore, Q±σ satisfies the relation [Q,Q±σ] = ±qσQ±σ, where qσ are
the roots of the Cartan subalgebra. In [1] it is shown that this commutator relation implies that
the mass of the mNGBs are given by qσµ. This formula is derived using only symmetry, which
means that the mass of the mNGBs is not subjected to loop corrections. Interestingly, not much
is known about the scattering amplitudes for processes involving mNGBs and pNGBs. The goal
of this thesis is to investigate such scattering amplitudes and try to make some exact statements
about them.

We first showed that the Noether currents Jµ±σ corresponding to Q±σ satisfy the covariant
conservation laws DµJ

µ
±σ = ∂µJ

µ
±σ ± iqσµJ

0
±σ = 0. Next we defined the current element

〈f |Jµ±σ|i〉, representing a mNGB destroyed/created by Jµ±σ interacting with an initial state |i〉
and a final state |f〉. By applying the covariant derivative to 〈f |Jµ±σ|i〉 and using the correspond-
ing conservation law we managed to show that any scattering amplitude describing a process
involving at least one mNGB vanishes in the soft limit of the mNGB. We proved this statement
first perturbatively and then non-perturbatively, assuming a non-composite field. In the future,
we would like to generalise our non-perturbative proof to be valid for composite fields as well.

In addition, we wanted to show that a scattering amplitude describing a process involving
a pNGB does not vanish in the soft limit of the pNGB. To show this we studied the complete
breaking of an O(3) symmetry using an already known effective field theory approach. How-
ever, we considered 2 −→ 2 scattering and found to our surprise that the scattering amplitude
vanished. We have not managed to explain this behaviour, although some solutions might be:

• The model has a hidden discrete symmetry, that forces the scattering amplitude to vanish
in the soft limit.

• We have considered only the simplest possible scattering event, namely 2 −→ 2. Perhaps
this is too simple, and that we instead should consider 3 −→ 3 scattering?

• pNGBs also interact weakly.
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Sammendrag

I denne avhandlingen ser vi på systemer hvor både Lorentz invarians og en kontinuerlig sym-
metri gruppe G blir eksplisitt brutt ved å koble et kjemisk potensial µ til en av generatorene
Q av G. I slike modeller er det et veletablert faktum at det eksisterer to typer massive Gold-
stone bosoner, som vi kaller mNGBer og pNGBer. I tillegg er det velkjent at ethvert mNGB
korresponderer til ett par med eksplisitt brutte generatorer. Disse to generatorene kan brukes
til å konstruere en lineær kombinasjon Q±σ som tilfredsstiller [Q,Q±σ] = ±qσQ±σ, hvor qσ
er røttene til den Cartanske underalgebraen. I [1] vises det at denne kommutatorrelasjonen im-
pliserer at massen til mNGBer er qσµ. Da massene til mNGBene kun ble bestemt vha symme-
triegenskaper følger det at massen ikke mottar kvantekorreksjoner. Overaskende nok, vet man
ikke mye om spredningsamplituden for kollisjoner som involverer mNGBer og pNGBer. Målet
med denne avhandlingen er å se om vi kan si noe generelt om disse spredningsamplitudene.

Vi har vist at Noether strømmene Jµ±σ, som korresponderer tilQ±σ, oppfyller bevaringslovene
DµJ

µ
±σ = ∂µJ

µ
±σ ± iqσµJ0

±σ = 0. Vi definerte matrisen 〈f |Jµ±σ|i〉 som representerer et mNGB
som vekselvirker med en begynnelsestilstand |i〉 og en sluttilstand |f〉. Ved å da bruke bevar-
ingslovene DµJ

µ
±σ = 0 beviste vi at en spredningsamplitude hvor minst et mNGB vekselvirker

alltid forsvinner i grensa hvor 3-impulsen til det mNGBet forsvinner. Dette ble bevist først ved
å bruke perturbasjonsteori og deretter bevist eksakt. Det nevnes at beviset kun er gyldig for et
ikke-sammensatt felt. I fremtiden håper vi å kunne kvitte oss med denne antagelsen.

I tillegg, ønsket vi å vise at spredningsamplituden hvor minst et pNGB vekselvirker ikke
nødvendigvis forsvinner i grensa hvor 3-impulsen til pNGBet forsvinner. Vi forsøkte å gi in-
dikasjon på dette ved å studere en modell hvor en O(3) symmetri ble fullstendig brutt. For
å beskrive denne situasjonen ble vi nødt til å bruke en velkjent effektiv feltteori. Som et
konkret eksempel så vi på spredningen av to og to partikler og oppdaget at spredningsamplitu-
den forsvant i grensa hvor 3-impulsen til pNGBet forsvinner. Vi har enda ikke forstått grunnen
til at spredningsamplituden forsvant, men noen forklaringer kan være:

• Modellen kan ha en diskret symmetri som krever at spredningsamplituden forsvinner for
små 3-impulser.

• Spredningen av to og to partikler er ikke komplisert nok til å verifisere at spredningsam-
plituden ikke forsvinner. Det kan derfor være lurt å studere spredningen av tre og tre
partikler istedet.

• Spredningsamplituden, som beskriver en kollisjon hvor minst et pNGB vekselvirker,
forsvinner også for små 3-impulser.
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Preface

This final version of my thesis represent two semesters of work. To be concrete part I and II of
the main body as well as the appendix is more or less identical1 to my specialisation project that
I wrote in the autumn semester of 2016, see [2]. Meanwhile part III represents the work done
this semester. I include all three parts in this thesis because I found it convenient to include all
of the equations and explanations in one paper.

In this thesis we investigate some general properties of the two different types of massive
Goldstone bosons potentially present in systems where both Lorentz invariance and a continu-
ous symmetry is explicitly broken by a chemical potential. Of particular interest is the soft-
limit2 on-shell scattering amplitude for a process involving at least one massive Goldstone
boson. In the specialisation project we conjectured a theorem3 which we managed to prove
this semester. The proof will form the foundation of an article that will be written during the
upcoming summer.

I am indebted to my supervisors Jens O. Andersen (NTNU) and Tomas Brauner (UiS), for
providing me with a project that I have enjoyed very much working on and for reading through
my various drafts. In particular I would like to thank Tomas Brauner for both his time and
patience in explaining and discussing various aspects of the project with me.

1Except for some typographical errors that have been corrected and some physical interpretations that have
been added/improved in chapters 3 and 4.

2By soft limit we mean that the 3-momentum of the NGB, pNGB or mNGB approaches zero.
3The theorem can be found on page 60

iv



Contents

Problem Description i

Abstract ii

Sammendrag iii

Preface iv

List of Tables ix

List of Figures xi

Notation and Conventions xiii

1 Introduction 1
1.1 A Brief History of the Nambu-Goldstone Bosons . . . . . . . . . . . . . . . . 1
1.2 Spontaneous Symmetry Breaking and Goldstone’s Theorem . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I The Soft-Limit Scattering Amplitude of mNGBs 5

2 The Abelian Model 7
2.1 The Abelian Model without Chemical Potential . . . . . . . . . . . . . . . . . 7

2.1.1 The Mass Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Scattering Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Alternative Parametrisation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Abelian Model with a Chemical Potential . . . . . . . . . . . . . . . . . . . . 18
2.2.1 The Chemical Potential as a Gauge Field . . . . . . . . . . . . . . . . 18
2.2.2 Spontaneous Symmetry Breaking due to a Chemical Potential . . . . . 20

3 Non-Abelian Models 25
3.1 The Non-Abelian Linear SO(3) Model without a Chemical Potential . . . . . . 25
3.2 The Non-Abelian Linear SO(3) Model with a Chemical Potential . . . . . . . . 28
3.3 Scattering Amplitudes in the Linear SO(3) Model with a Chemical Potential . . 32

v



4 A Higgs-Like Model 37
4.1 Symmetries of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Vacuum Expectation Value and Symmetry Breaking . . . . . . . . . . . . . . . 38
4.3 The Broken Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Dispersion Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

II The Soft-Limit Scattering Amplitude of pNGBs 41

5 The Complete Breaking of an O(3) Symmetry 43
5.1 Definitions in the Effective Field Theory . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Calculating ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2 Calculating ωcah

a
b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.3 The Lagrangian to Second Order . . . . . . . . . . . . . . . . . . . . . 46
5.1.4 The Mass Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.5 Noether Charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Scattering Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.1 The Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 The Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.3 Vacuum Transition Amplitudes . . . . . . . . . . . . . . . . . . . . . 52
5.2.4 Scattering Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III Proving The Conjectures 57

6 Weinberg’s Soft-Limit Theorem and Covariant Current Conservation 59
6.1 A Collection of the Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Weinberg’s Proof - Massless Goldstone Bosons . . . . . . . . . . . . . . . . . 60
6.3 The Covariant Conservation Law . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Revisiting the Nonlinear Sigma Model for SO(3) 65
7.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 The Noether Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3 The Matrix Element 〈f |Jµ2 |i〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3.1 The Feynman Current Rules from Jµ2 . . . . . . . . . . . . . . . . . . 67
7.3.2 Calculating the Matrix Element . . . . . . . . . . . . . . . . . . . . . 68

7.4 The Matrix Element 〈f |Jµ1 |i〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 Current Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.6 The Scattering Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.6.1 Soft Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Revisiting the Higgs-Like Model 73
8.1 The Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2 The Noether Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3 Expanding the Lagrangian and Determining the Vev . . . . . . . . . . . . . . . 75
8.4 Dispersion Relations, Propagators and Feynman Rules . . . . . . . . . . . . . 76
8.5 Particle-Antiparticle Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.6 Expanding the Noether Currents . . . . . . . . . . . . . . . . . . . . . . . . . 78

vi



8.7 The Current Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.8 Current Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.9 Scattering Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9 Generalisations 85
9.1 Some Well-Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.1.1 The Nonlinear Sigma Model . . . . . . . . . . . . . . . . . . . . . . . 86
9.1.2 The Higgs-Like Model . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2 Perturbative Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2.1 Conservation Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2.2 The Connection Between the Propagator and the Noether Current . . . 88
9.2.3 Proving the Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3 The Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.4 Non-Perturbative Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10 Discussion, Conclusion and Outlook 95
10.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.3 Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99

Appendices 101

A Field Theory in a Nutshell 103
A.1 The Euler-Lagrange Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.2 Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.3 Masses and Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.3.1 An Example of the Calculation of a Feynman Vertex . . . . . . . . . . 105

B A Simple Proof of Goldstone’s Theorem 107

C The Complete Breaking of an O(3) Symmetry 109
C.1 The Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.1.1 Third Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.1.2 Fourth Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

vii



viii



List of Tables

1.1 The table displays the different types of Goldstone bosons we come across
in this thesis. Each Goldstone boson is characterised by their mass and one
additional characteristic property. E is the energy of the particle, p is the 3-
momentum, n is an integer, qσ is a root of the Cartan subalgebra and f(gi) is a
function depending on the coupling constants gi of the theory. . . . . . . . . . 2

ix



x



List of Figures

2.1 Feynman rules for the Abelian model without a chemical potential. The
massless field is represented as a dashed line while the massive field is
represented as a thick line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The four diagrams contributing to the scattering amplitude for the pro-
cess π2(p1)π2(p2)→ π2(p3)π2(p4) at tree level. . . . . . . . . . . . . . . . . 10

2.3 The four diagrams contributing to the scattering scattering amplitude for
the process π1(p1)π2(p2)→ π1(p′1)π2(p′2) at tree level. . . . . . . . . . . . . 11

2.4 The potential U plotted in (φ, φ∗) space. . . . . . . . . . . . . . . . . . . . 14

2.5 Feynman rules for the polar coordinate parametrisation. . . . . . . . . . . 15

2.6 Tree-level Feynman diagrams contributing to θ(p1)θ(p2)→ θ(p3)θ(p4). . . 15

2.7 Feynman diagrams contributing to ρ(p1)θ(p2)→ ρ(p3)θ(p4). . . . . . . . . 17

2.8 SSB is only possible when µ > m. . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The Feynman rules in the nonlinear sigma model needed to calculate
the amplitude for π(k)G(p) → π(k′)G(p′). The NGB is represented as a
dashed line and the mNGB as a thick line. . . . . . . . . . . . . . . . . . . 33

3.2 Feynman diagrams contributing to π(k)G(p)→ π(k′)G(p′). . . . . . . . . 33

3.3 Definition of the angles used in Eq. (3.43). The 4-momenta p and p′ rep-
resent the incoming and outgoing mNGB respectively. The 4-momentum
k labels the incoming NGB. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 The Feynman rules, that we need, for computing scattering amplitudes
when the O(3) symmetry is completely broken. The fields φ1, φ2 and
φ3 are represented by the solid line, the dashed line and the dotted line
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 The Feynman diagrams contributing to Ψ±Ψ3 → Ψ±Ψ3. The Latin in-
dices can take the values {1, 2}. The signs ± refers to whether or not
the field obeys ω+ or ω−. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 The scattering amplitudes as functions of the scale parameter z, with
µ = 1 g1 = 1, g2 = 2 and g3 = 5. The left figure corresponds to Ψ++Ψ3 →
Ψ+Ψ3. The right figure corresponds to Ψ−Ψ3 → Ψ−Ψ3. . . . . . . . . . . . 55

xi



6.1 The figure represents the pole structure of the matrix element 〈f |Jµ(0)|i〉
describing the process |i〉 + |π(k)〉 → |f〉 with corresponding scattering
amplitude Afi. The large black circle represents the scattering amplitude
Afi, the small black dot represents the matrix element 〈π(k)|Jµ|0〉 re-
sponsible for the creation of a massless NGB and the dashed line repre-
sents the massless NGB propagator i/k2. Combining these ingredients
we can express the pole structure as Afi × 〈π(k)|Jµ|0〉 × i/k2. . . . . . . 60

7.1 The figure shows the Feynman diagrams that represent the matrix el-
ement 〈f |Jµa |i〉 at tree level. The incoming NGB and mNGB and the
outgoing NGB and mNGB have momenta k, p, k′ and p′ respectively. To
avoid clutter the external momenta are only labelled in the first diagram.
The small black dot represents the current Jµa . The diagram describes
an initial state containing a NGB interacting with a mNGB created by the
Noether current to form a final state consisting of a NGB and a mNGB.
The diagrams in the first and second line represent the pole and non-
pole contributions respectively. . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 The figure shows the Feynman current rules that will be used to evaluate
the matrix element 〈f |Jµ2 |i〉. The solid and dashed line represents G and
π respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 The figure shows the Feynman rules that will be used to evaluate the
matrix element 〈f |Jµ1 |i〉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1 The Feynman rules needed for computing particle-antiparticle scattering
in the SU(2) × U(1) model. The solid and dashed line represents the
particle-antiparticle pair and the (ψ3, ψ4) particle respectively. . . . . . . . 77

8.2 The scattering amplitude for particle-antiparticle scattering. . . . . . . . . 78
8.3 The Feynman rules we will use to calculate 〈f |Jµ−|i〉. The black dot rep-

resents the current Jµ− responsible for the creation of the mNGB. . . . . 80
8.4 The figure shows the Feynman diagrams that represent the matrix el-

ement 〈f |Jµ−|i〉 at tree level. The incoming NGB and mNGB and the
outgoing NGB and mNGB have momenta k, p, k′ and p′ respectively. To
avoid clutter the external momenta are only labelled in the first diagram.
The small black dot represents the current Jµ−. The diagrams describe an
initial state with a NGB interacting with a mNGB created by the Noether
current to form a final state consisting of a NGB and a mNGB. Since in
this case the fields ψ3 and ψ4 mix we get four non-pole contributions. . . 81

9.1 The figure shows the pole structure of the current element 〈f |Jµ−|i〉. It
consists of the Noether current (small black circle), a mNGB propagator
and an amputated Green’s function (GF). . . . . . . . . . . . . . . . . . . 91

xii



Notation and Conventions

In this section we include a list of notation and conventions that are used in this thesis. It is
meant to be used as a quick reference when reading through the text.

• Atree: on-shell tree-level scattering amplitude.

• Aoff : off-shell tree-level scattering amplitude.

• L : Lagrangian (density).

• U : potential energy (density) or equivalently the static part of L .

• SSB: spontaneous symmetry breaking.

• vev: vacuum expectation value.

• Ti: generator of a symmetry group.

• Jµi : a Noether current corresponding to a generator Ti.

• Soft limit: the limit of zero 3-momentum.

• NGB: a massless Nambu-Goldstone boson (of type-I or type-II).

• NGB of type-I: a massless Nambu-Goldstone boson whose dispersion relation is an odd
power of momentum in the soft limit.

• NGB of type-II: a massless Nambu-Goldstone boson whose dispersion relation is an even
power of momentum in the soft limit.

• mNGB: massive Nambu-Goldstone boson with a fixed gap.

• pNGB: pseudo Nambu-Goldstone boson with an unfixed gap.

• |i〉 & |f〉 : an arbitrary initial and final state.

• 〈f |Jµ±|i〉: a current element describing the interaction between a massive Goldstone boson
destroyed/created by Jµ± and an arbitrary initial and final state.

• The Fourier transformation is defined as f(x) =
∫

d4k
(2π)4

f(k)e−ikx.

• We use the Minkowski metric ηµν = diag (1,−1,−1,−1).

• For repeated indices we use the Einstein summation convention.

• w.r.t.: with respect to.

• d.o.f.: degrees of freedom.

• Boldfaced letters such as p denote 3-vectors.
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• MC form: Maurer-Cartan form.

• fabc: structure constants.

• σi and τi represent the Pauli matrices.

• Tr{A}: the trace of the matrix A.
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Chapter 1
Introduction

In this chapter we give a brief historic overview of the study of Nambu-Goldstone bosons. In
particular we will focus on the four types of Goldstone bosons potentially present in systems
where a chemical potential is responsible for the explicit breaking of both Lorentz invariance
and a continuous symmetry group G. In addition, we describe the process known as spon-
taneous symmetry breaking and provide one formulation of Goldstone’s theorem. Finally we
discuss the structure of the thesis, emphasising the logical flow of the text.

1.1 A Brief History of the Nambu-Goldstone Bosons
The first clue for the existence of massless Nambu-Goldstone bosons (NGBs) was discovered by
Nambu in 1960. In his paper [3] he was investigating superconductivity by applying field theory
to the BCS-Bogoliubov model. To be precise he used the Hartree-Fock method to determine
an integral equation that described the self-energy of an electron in an electron gas interacting
with phonons and a Coulomb potential. The homogenous solutions of the resulting equation
turned out to describe collective excitations of pairs of massless quasiparticles, today known as
massless NGBs.

One year later, inspired by Nambu’s findings, Goldstone wanted to investigate these mass-
less quasiparticles further. The results of his investigation are found in [4], where he conjectured
that if a theory originally invariant under a symmetry group G had a ground state invariant un-
der a corresponding subgroup H ⊂ G, NGBs are born. This conjecture is today known as
Goldstone’s theorem and was proved in 1962 by Goldstone, Salam and Weinberg in [5]. How-
ever, their proof only holds for Lorentz invariant systems leading to a large number of papers
attempting to generalise the theorem. An early review can be found in [6].

When attempting to generalise Goldstone’s theorem to non-Lorentz invariant systems1 it
was found that predicting the number of NGBs was quite subtle, we call this the counting
problem. The first notable breakthrough in solving the counting problem was made by Nielsen
and Chadha in 1975, see [7]. The key idea was that there actually exist two types of massless
NGBs in non-Lorentz invariant systems exhibiting spontaneous symmetry breaking (SSB). The
two types of NGBs can be most easily distinguished by considering their dispersion relations
in the limit of zero 3-momentum (soft limit). They found that the soft-limit dispersion relations
of type-I and type-II NGBs depend on odd and even powers of the norm of the 3-momentum

1To be concrete: we consider systems where Lorentz invariance is broken explicitly by a chemical potential.
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Chapter 1. Introduction

respectively. This important fact led to a successful proof of what is called the Nielsen and
Chadha counting rule.

So far we have introduced the two types of massless NGBs, present in systems where
Lorentz invariance is broken by the introduction of a chemical potential, whose properties are
well known. Let us now introduce the main subject of this thesis namely the massive NGBs
who are born when a chemical potential explicitly breaks both Lorentz invariance and a con-
tinuous symmetry. These special massive NGBs were first discovered by Nicolis and Piazza in
2013 in [8]. In their paper Nicolis and Piazza investigated theories exhibiting SSB in Lorentz
invariant systems at finite charge density. Based on Goldstone’s theorem one would expect to
find only massless excitations, however this did not happen! Instead they found massive Gold-
stone bosons whose masses were fixed by the symmetry algebra and the chemical potential µ.2

The same year Watanabe, Brauner and Murayama generalised these mNGBs in [9] and showed
that the mNGBs exist also in non-relativistic systems such as (anti)ferromagnets subjected to
an external magnetic field.

Furthermore, Nicolis, Penco, Piazza and Rosen discovered in [1] that there also exist mas-
sive NGBs whose masses are not fixed by the symmetry algebra.3 They found that these second
types of massive NGBs had masses that depend on the coupling constants gi of the model.

To be concise the different types of NGBs that we will come across in this thesis are given
in table 1.1, borrowed from my specialisation project [2].

Table 1.1: The table displays the different types of Goldstone bosons we come across in this thesis.
Each Goldstone boson is characterised by their mass and one additional characteristic property. E is the
energy of the particle, p is the 3-momentum, n is an integer, qσ is a root of the Cartan subalgebra and
f(gi) is a function depending on the coupling constants gi of the theory.

Type of Goldstone boson Mass Characteristic property
NGB of type-I 0 E = |p|2n+1

NGB of type-II 0 E = |p|2n

mNGB µqσ Mass fixed by the symmetry algebra.
pNGB f(gi)µ Mass not fixed by the symmetry algebra.

Finally let us address a particularity of scattering amplitudes describing processes involving
massless NGBs, that we are very interested in. Consider that we are given a Lorentz invariant
theory and are asked to compute the scattering amplitude for a scattering process involving at
least one massless NGB. Weinberg proved in [10] that such an amplitude always4 vanishes in
the soft limit of the NGB. In this thesis we want to show that the same soft-limit theorem holds
for mNGBs but does not hold for pNGBs.

1.2 Spontaneous Symmetry Breaking and Goldstone’s Theo-
rem

Given the importance of the process we have referred to as SSB let us give a general overview.
Consider a theory specified by a Lagrangian density L (φ) with a continuous symmetry group

2We will call these particles massive Goldstone bosons (mNGBs).
3We will call these particles pseudo Goldstone bosons (pNGBs).
4Unless the theory contains a kinematic singularity.
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1.3 Structure of the Thesis

G. If the ground state of the system is also invariant under G, we are not dealing with sponta-
neous symmetry breaking and no NGBs are born. However consider the case where the ground
state of the system is not invariant under G, but is invariant under some subgroup H ⊂ G.
Whenever this is the case we say that the symmetry G has been spontaneously broken down to
the subgroup H . The generators of the coset space G/H are called broken because they do not
annihilate the ground state. Goldstone’s theorem tell us that there is a one-to-one correspon-
dence between the broken generators and the NGBs in Lorentz-invariant systems. One possible
formulation of the theorem is given below. It is proved in App. B.

Theorem 1: Goldstone’s Theorem

Let G be the symmetry group of the Lagrangian with ng generators {T1, T2, . . . , TnG}.
Also let H ⊂ G be the subgroup that leaves the ground state invariant containing
nH < nG generators {T1, T2, . . . TnH} and consider the SSB of G down to H . For each
generator in the set {T1, T2, . . . , TnG} that does not annihilate the ground state there ex-
ists exactly one NGB. Thus the total number of NGBs is given by the dimension of the
coset space, dimG/H = nG − nH .

1.3 Structure of the Thesis
The main body of this thesis consists primarily of three parts. Part I and II represent the work
done in the specialisation project the previous semester, while part III represents the work done
this semester.

In part I, we consider specific models containing massless NGBs and mNGBs. The goal of
part I is to investigate the scattering amplitude corresponding to a collision involving mNGBs
to form the foundation of our conjecture found on page. 60.

In part II, we consider a model containing both mNGBs and pNGBs. Our goal was to
calculate a scattering amplitude corresponding to a collision involving pNGBs to see if we
could verify that the pNGBs do not satisfy the soft-limit theorem. However, to our surprise we
found that the scattering amplitude vanished. We have three possible explanations for this

• The model has a hidden symmetry, that forces the scattering amplitude to vanish in the
soft limit.

• We have considered only the simplest possible scattering event, namely 2 −→ 2. Perhaps
this is too simple, and that we instead should consider 3 −→ 3 scattering?

• pNGBs also interact weakly.

Given more time we would of course address each of these issues in detail.
In part III, we begin by proving Weinberg’s soft-limit theorem because it motivates us to

determine a new covariant conservation law. Armed with this we look at two concrete examples,
and manage to find a procedure for determining a formula for the scattering amplitude from
which it is trivial to see that it vanishes in the soft limit. We then prove our theorem, first
perturbatively and then non-pertubatively.
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Part I

The Soft-Limit Scattering Amplitude of
mNGBs
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Chapter 2
The Abelian Model

2.1 The Abelian Model without Chemical Potential
In this section we study one of the simplest models exhibiting SSB, namely the Abelian model
with a complex scalar field. As a first step we determine the mass spectrum of the theory and
show that the existence of the NGB is in accordance with Goldstone’s theorem.

Having derived the mass spectrum, we want to investigate scattering amplitudes involving
NGBs and verify that the on-shell tree-level amplitude1 vanishes in the soft limit as mentioned
in section 1.1.

Finally, we want to demonstrate that the physical observables are independent of the parametri-
sation of the field and that some parametrisations provide a more intuitive picture than others.

2.1.1 The Mass Spectrum

The Lagrangian for the complex field φ is given by

L = ∂µφ
∗∂µφ+m2φ∗φ− λ (φ∗φ)2 , (2.1)

where m and λ are the mass and coupling constant of the theory respectively. Before we can
calculate the mass of the fields as done in Eq. (A.14) we need to check if the field’s vacuum
expectation value (vev) is zero. To do this we recall that the vev is defined as the field config-
uration that minimises the potential U . The potential is determined from the static part of the
Lagrangian and is given by,

U = −m2φ∗φ+ λ (φ∗φ)2 . (2.2)

The vev is found by differentiating U w.r.t. the field φ∗ and setting the derivative equal to zero,

0 =
∂U

∂φ∗
=
[
2λ (φ∗φ)2 −m2

]
φ. (2.3)

The solutions are
φ = 0 (2.4)

1In this paper we will only calculate on-shell tree-level scattering amplitudes. Therefore if we use the word
amplitude this should be taken to mean on-shell tree-level scattering amplitude.
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Chapter 2. The Abelian Model

which is a local maximum,2 and

φ∗φ ≡ |φ|2 =
m2

2λ
≡ v2

2
, (2.5)

which corresponds to a local minimum. The ground state3 is

φ0 =
v√
2
eiθ (2.6)

where θ is an arbitrary phase. There is thus an infinite set of possible nonzero vevs each specified
by a unique value of θ. This degeneracy of possible vevs is a general characteristic of all theories
exhibiting SSB.

Note that the Lagrangian in Eq. (2.1) is not expanded around its ground state in Eq. (2.6),
instead it is expanded around its unstable maximum φ = 0. To find the true mass spectrum
of the theory it is necessary to parametrise the field φ around the ground state φ0. We choose
to write the field φ in terms of two real fields π1 and π2 fluctuating around the ground state
corresponding to θ = 0. This gives,

φ =
1√
2

(v + π1 + iπ2) . (2.7)

If we insert this into Eq. (2.1), and drop constant terms, we obtain

L =
1

2
∂µπ1∂

µπ1 −m2π2
1 +

1

2
∂µπ2∂

µπ2

− λ

4
π4

1 −
λ

2
π2

1π
2
2 − λvπ3

1 − λvπ1π
2
2 −

λ

4
π4

2.

(2.8)

We can now use Eq. (A.14) to determine the mass spectrum. The potential is

U = m2π2
1 +

λ

4
π4

1 +
λ

2
π2

1π
2
2 + λvπ3

1 + λvπ1π
2
2 +

λ

4
π4

2 (2.9)

and evaluating its second derivative with respect to the fields π1 and π2 gives

m2
π1

=
∂2U

∂π2
1

∣∣∣∣∣
π1=π2=0

= 2m2 (2.10)

and

m2
π2

=
∂2U

∂π2
2

∣∣∣∣∣
π1=π2=0

= 0. (2.11)

If we apply Goldstone’s theorem we can interpret the massless particle as a NGB: The La-
grangian in Eq. (2.1) is invariant under U(1) transformations. However, the ground state
φ0 = v√

2
is not because a U(1) transformation of the ground state results in a different ground

state φ0 = v√
2
eiα, where α is some phase factor. Hence the ground state does not share the U(1)

symmetry of the Lagrangian. Since the group U(1) only has one generator, which breaks when
we choose a ground state, Goldstone’s theorem tells us that there should only be one NGB.

2In order to show that this is indeed a maximum one simply checks that the second derivative is negative.
3In this paper the words ground state and vev mean the same thing.
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2.1 The Abelian Model without Chemical Potential

2.1.2 Scattering Amplitudes
Feynman Rules

Before we can compute scattering amplitudes it is necessary to determine the Feynman rules
of the theory. That is we need the propagators for π1 and π2 and the interaction vertices. We
use the method presented in appendix A.3. The propagators follow from the quadratic part of
Eq. (2.8). In particular the π1-propagator Dπ1 can be determined from

L =
1

2
∂µπ1∂

µπ1 −m2π2
1

= −1

2
π1

(
� + 2m2

)
π1

=
1

2
π1D

−1
π1
π1,

(2.12)

where we in the second line performed one partial integration and in the third identified the
term −

(
� + 2m2

)
as the inverse propagator D−1

π1
. The propagator Dπ1 is a Green’s function

and therefore satisfies the equation

−
(
� + 2m2

)
Dπ1(x− x′) = δ4(x− x′). (2.13)

Performing a Fourier transformation4 yields

− (−k2 + 2m2)Dπ1(k) = 1. (2.14)

Thus we find
iDπ1(k) =

i

k2 − 2m2 + iε
, (2.15)

where iε is the infinitesimal Feynman prescription, often introduced to avoid the pole at k2
0 =

2m2. For the π2-propagator we take the limit m→ 0 giving,

iDπ2(k) =
i

k2 + iε
. (2.16)

The part of the Lagrangian containing the particle interactions is,

LI = −λ
4
π4

1 −
λ

2
π2

1π
2
2 − λvπ3

1 − λvπ1π
2
2 −

λ

4
π4

2. (2.17)

By following the procedure described in appendix A.3 we can calculate the Feynman vertices.
The complete set of Feynman rules are given in Fig. 2.1.

Having obtained the Feynman rules we can now compute our first on-shell tree-level scat-
tering amplitude involving NGBs.

Pure NGB-Scattering

The first amplitude iAtree we will calculate corresponds to the process only involving NGBs,5

π2(p1)π2(p2)→ π2(p3)π2(p4).

4Our convention for the Fourier transformation is mentioned under ”Notation and Conventions”.
5The 4-momentum of each particle is indicated in the bracket.
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Chapter 2. The Abelian Model

= −6ivλ = −2ivλ

= −6iλ = −6iλ

= −2iλ

k

k

= i
k2−2m2+iε

= i
k2+iε

Figure 2.1: Feynman rules for the Abelian model without a chemical potential. The massless
field is represented as a dashed line while the massive field is represented as a thick line.

There are four diagrams contributing to this amplitude at tree level, and they are shown in Fig.
2.2.

p1

p2

p1 + p2

p3

p4

p1 p3

p2 p4

p3 − p1

p1

p2

p4 − p1

p3

p4

a) b) c) d)

p1

p2

p3

p4

Figure 2.2: The four diagrams contributing to the scattering amplitude for the process
π2(p1)π2(p2)→ π2(p3)π2(p4) at tree level.

Using the Feynman rules in Fig. 2.1, we can determine the scattering amplitude for each
diagram in Fig. 2.2

iAa = −6iλ, (2.18)

iAb = (−2ivλ)2 i

(p1 + p2)2 − 2m2
, (2.19)

iAc = (−2ivλ)2 i

(p1 − p3)2 − 2m2
, (2.20)

and

iAd = (−2ivλ)2 i

(p1 − p4)2 − 2m2
. (2.21)
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2.1 The Abelian Model without Chemical Potential

The complete amplitude iAtree is then given by the sum of the individual amplitudes. Let us
assume that the external particles are on shell such that

p2
i = m2

π2
= 0, (i = 1, 2, 3, 4)

and define the Mandelstam variables s, t and u as

s = (p1 + p2)2 = (p3 + p4)4 = 2p1p2 = 2p3p4,

t = (p1 − p3)2 = (p4 − p2)2 = −2p1p3 = −2p2p4,

u = (p1 − p4)2 = (p3 − p2)2 = −2p1p4 = −2p2p3.

(2.22)

Note that the Mandelstam variables vanish when either of the external 4-momenta p1, p2, p3 or
p4 vanishes. The total amplitude is then,

iAtree = iAa + iAb + iAc + iAd

= −6iλ+ i (−2ivλ)2

(
1

s− 2m2
+

1

t− 2m2
+

1

u− 2m2

)
.

(2.23)

Let us investigate what happens to the amplitude when one of the particles has vanishing
momentum such that all the Mandelstam variables approach zero

iAtree −−−−−→
s, t, u→0

−6iλ+ i (−2ivλ)2

(
−3

2m2

)
= −6iλ+ 6iλ

= 0.

(2.24)

Thus if either of the momenta of the NGBs vanishes, then the tree level amplitude vanishes as
well. Note that if the NGBs were not on shell, we would not get the cancellation because p2

i 6= 0
for some i.

Mixed scattering

Let us show that a soft-limit NGB also gives a vanishing tree-level amplitude for the process

π1(p1)π2(p2)→ π1(p′1)π2(p′2).

The contributing Feynman diagrams are given in Fig. 2.3.

p2 p′1

p1 p′2

p′2 − p1

a) c)

p2

p1

p′1

p′2

p2 p′2

p1 p′1

p′2 − p2

b)

p2

p1

p1 + p2

p′2

p′1

d)

Figure 2.3: The four diagrams contributing to the scattering scattering amplitude for the process
π1(p1)π2(p2)→ π1(p′1)π2(p′2) at tree level.
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Chapter 2. The Abelian Model

The corresponding Mandelstam variables are

t = (p2 − p′2)2,

u = (p1 − p′2)2,

s = (p1 + p2)2.

(2.25)

Using the Feynman rules, we construct each amplitude

iAa = −2iλ, (2.26)

iAb =
−12iλ2v2

t− 2m2
=

6iλm2

p2p′2 +m2
, (2.27)

iAc = −4iλ2v2

u
=

−4iλm2

p′1 (p′1 − 2p2)
, (2.28)

iAd = −4iλ2v2

s
=

−4iλm2

p1 (p1 + 2p2)
. (2.29)

The complete tree-level amplitude thus reads,

iAtree = −2iλ+
6iλm2

p2p′2 +m2
− 4iλm2

p′1 (p′1 − 2p2)
− 4iλm2

p1 (p1 + 2p2)

= −2iλ− 4iλ2v2

(
1

s
+

1

u

)
− 12iλ2v2

(
1

t− 2m2

)
.

(2.30)

Let us first investigate the soft limit p2 → 0, which gives

iAtree −−−→
p2→0

−2iλ+
6iλm2

m2
− 4iλm2

p′21
− 4iλm2

p2
1

. (2.31)

Using that p′21 = p2
1 = 2m2, we obtain

iAtree −−−→
p2→0

−2iλ+ 6iλ− 2iλ− 2iλ = 0. (2.32)

We then investigate the limit p′2 → 0. However, before we take the limit, we rewrite the
amplitude as

iAtree = −2iλ+
6iλm2

p2p′2 +m2
− 4iλm2

p2
1 − 2p1p′2

− 4iλm2

p′21 + 2p′1p
′
2

. (2.33)

Now we let p′2 → 0 and obtain

iAtree −−−→
p′2→0

−2iλ+ 6iλ− 4iλm2

2m2
− 4iλm2

2m2

= −2iλ+ 6iλ− 2iλ− 2iλ = 0.

(2.34)

Once again we have shown that a scattering process involving on-shell NGBs, has a vanishing
tree-level amplitude in the limit where the momentum of a single NGB approaches zero. This
is in fact general behaviour and is proved in chapter 6 as well as in [10].

12



2.1 The Abelian Model without Chemical Potential

2.1.3 Alternative Parametrisation
We now illustrate that there exists a parametrisation providing a more intuitive picture of why
SSB leads to NGBs. We expect that the mass spectrum and the amplitudes should be identical
to the ones previously obtained because physical observables should not depend on the field
parametrisation. The parametrisation we will use is similar to standard polar coordinates and is
given by

φ =
1√
2

(v + ρ) e
iθ
v ,

φ∗ =
1√
2

(v + ρ) e−
iθ
v

(2.35)

where θ and ρ are real fields and v is the vev in Eq. (2.6). The reason for that this parametri-
sation is more intuitive can be explained by noting that a constant θ can be removed from the
Lagrangian by applying a U(1) transformation on the field φ. This means that every interaction
term involving θ must depend on an even power6 of the derivatives ∂µθ, which implies that the
interactions are proportional to products of momenta. Thus in the soft limit of the momentum
the NGB usually7 interacts weakly.

If we express the Lagrangian in Eq. (2.1) in terms of the two real fields, we get

L =

[
1

2
∂µρ∂

µρ−m2ρ2

]
+

[
1

2
∂µθ∂

µθ

]
+

1

v
ρ∂µθ∂

µθ +
1

2v2
ρ2∂µθ∂

µθ − λ

4
ρ4 − λvρ3.

(2.36)

Mass spectrum

Next, we calculate the mass spectrum from the potential

U = m2ρ2 +
λ

4
ρ4 + λvρ3. (2.37)

Differentiating twice yields

m2
ρ =

∂2U

∂ρ2

∣∣∣∣∣
ρ=θ=0

= 2m2,

m2
θ =

∂2U

∂θ2

∣∣∣∣∣
ρ=θ=0

= 0.

(2.38)

As expected the mass spectrum is identical to the one determined in Eqs. (2.10) and (2.11)
and we identify θ as the NGB. We can understand the existence of the NGB geometrically by
plotting the potential in (φ, φ∗) space.

6The power must be even because the Lagrangian must be a scalar, such that all the Lorentz indices are con-
tracted.

7Although it is usually true that the scattering amplitude involving NGBs vanish in the soft limit it is not always
true. In fact, there may be kinematic singularities which lead to that the amplitude does not vanish. We will see an
example of this in chapter 3.
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Chapter 2. The Abelian Model

φ

φ∗

U

Figure 2.4: The potential U plotted in (φ, φ∗) space.

From Fig. 2.4, it is clear that radial excitations cost energy resulting in a massive radial
field ρ. However, due to the cylindrical symmetry of the potential an excitation in the azimuthal
direction gives a massless angular field θ.

Feynman Rules

Next, we determine the new Feynman rules starting with the propagators. The radial propagator
Dρ comes from the term,

L =
1

2
∂µρ∂

µρ−m2ρ2

= −1

2
ρ
(
� + 2m2

)
ρ

=
1

2
ρD−1

ρ ρ,

(2.39)

and satisfies
− (� + 2m2)Dρ(x, x

′) = δ4(x− x′). (2.40)

Performing first a Fourier transformation and then solving the algebraic equation forDρ we get,

iDρ(k) =
i

k2 − 2m2 + iε
. (2.41)

The angular field propagator Dθ is the massless limit of Dρ

iDθ (k) =
i

k2 + iε
. (2.42)
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2.1 The Abelian Model without Chemical Potential

The interaction vertices are a bit different in this case, because some of the interactions depend
on derivatives. We use the method demonstrated in App. A.3.1 to calculate the Feynman rules
for the Lagrangian in Eq. (2.36) and the result is shown in Fig. (2.5).

p1 p2

= −2ip1p2
v

p1 p2

= −2ip1p2
v2

= −6ivλ = −6iλ

= i
k2−2m2+iε

= i
k2+iε

k k

Figure 2.5: Feynman rules for the polar coordinate parametrisation.

Pure NG-scattering

The first process we will look at is the scattering amplitude for

θ(p1)θ(p2)→ θ(p3)θ(p4),

containing only NGBs. There are three tree-level diagrams contributing to the scattering ampli-
tude and they are shown in Fig. (2.6).

p1

p2

p1 + p2

p3

p4

p1 p3

p2 p4

p3 − p1

p1

p2

p4 − p1

p3

p4

a)

b)
c)

Figure 2.6: Tree-level Feynman diagrams contributing to θ(p1)θ(p2)→ θ(p3)θ(p4).

The amplitudes corresponding to the diagrams are

iAa = −2i

v2

(p1p2)(p3p4)

p1p2 −m2
, (2.43)

iAb =
2i

v2

(p1p3)(p2p4)

p1p3 +m2
, (2.44)
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Chapter 2. The Abelian Model

and

iAc =
2i

v2

(p1p4)(p2p3)

p1p4 +m2
. (2.45)

The complete tree-level amplitude becomes,

iAtree =
2i

v2

[
−(p1p2)(p3p4)

p1p2 −m2
+

(p1p3)(p2p4)

p1p3 +m2
+

(p1p4)(p2p3)

p1p4 +m2

]
(2.46)

and it obviously vanishes when one of the Goldstone momenta p1, p2, p3 or p4 approaches zero.
In order to verify that Eq. (2.46) is identical to Eq. (2.23) we have to rewrite it using the

Mandelstam variables. The Mandelstam variables corresponding to Fig. 2.6 are

s = (p1 + p2)2 = (p3 + p4)2 = 2p1p2 = 2p3p4,

t = (p1 − p3)2 = (p4 − p2)2 = −2p1p3 = −2p2p4,

u = (p1 − p4)2 = (p2 − p3)2 = −2p1p4 = −2p2p3,

(2.47)

and satisfy s+ t+ u = 0 for the scattering of massless particles. Eq. (2.46) becomes,

iAtree =
2i

v2

(
−s2/4

s/2−m2
+

t2/4

−t/2 +m2
+

u2/4

−u/2 +m2

)

= − i

v2

(
s2

s− 2m2
+

t2

t− 2m2
+

u2

u− 2m2

)
.

(2.48)

If we rewrite the Mandelstam variables as

s2 = (s− 2m2)2 + 4m2(s− 2m2) + 4m4,

t2 = (t− 2m2)2 + 4m2(t− 2m2) + 4m4,

u2 = (u− 2m2)2 + 4m2(u− 2m2) + 4m4,

(2.49)

we may express the amplitude as

iAtree = − i

v2

[(
s+ 2m2 +

4m4

s− 2m2

)
+

(
t+ 2m2 +

4m4

t− 2m2

)
+

(
u+ 2m2 +

4m4

u− 2m2

)]

= − i

v2

[
(s+ t+ u) + 6m2 + 4m4

(
1

s− 2m2
+

1

t− 2m2
+

1

u− 2m2

)]

= −6iλ− 4iλ2v2

(
1

s− 2m2
+

1

t− 2m2
+

1

u− 2m2

)
, (2.50)

which shows that the amplitudes in Eqs. (2.23) and (2.50) are identical.

Mixed scattering

The final scattering amplitude we will compute is for the mixed scattering

ρ(p1)θ(p2)→ ρ(p3)θ(p4).
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2.1 The Abelian Model without Chemical Potential

The contributing Feynman diagrams are shown in Fig 2.7

a)

p1

p2

p4

p3

p1

p2

p1 + p2

p3

p4

b)

p1

p4 − p1

p3

p4 p2

c)

p1 p3

p2 p4

p3 − p1

d)

Figure 2.7: Feynman diagrams contributing to ρ(p1)θ(p2)→ ρ(p3)θ(p4).

and the corresponding Mandelstam variables are

s = (p1 + p2)2 = p2
1 + 2p1p2 = 2m2 + 2p1p2,

u = (p1 − p4)2 = 2m2 − 2p1p4 = (p2 − p3)2 = 2m2 − 2p2p3,

t = (p1 − p3)2 = 4m2 − 2p1p3 = (p2 − p4)2 = −2p2p4.

(2.51)

The corresponding amplitudes read

iAa =
+2ip2p4

v2
,

iAb =

(
2i

v

)2

p2(p1 + p2)
i

s
p4(p3 + p4),

iAc =

(
2i

v

)2

p4(p1 − p4)
i

u
p2(p3 − p2),

iAd = −6iλv
i

t− 2m2

(
+

2i

v
p2p4

)
.

(2.52)
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Chapter 2. The Abelian Model

Summing up the amplitudes in Eq. (2.52) and using the Mandelstam variables gives

iAtree = − it
v2
− 4i

v2s

(
s− 2m2

2

)2

− 4i

v2u

(
2m2 − u

2

)2

− 6iλv
1

t− 2m2

t

v
. (2.53)

We can simplify this expression to give

iAtree = −2iλ− 4iv2λ2

(
1

s
+

1

u

)
− 12iv2λ2 1

t− 2m2
, (2.54)

which is identical to Eq. (2.30). The fact that the expressions for the mass spectrum and the
on-shell scattering amplitudes were identical in both parametrisations show that the results are
parametrisation independent.

2.2 Abelian Model with a Chemical Potential
Now we want to see what happens to the NGB if we consider the Lagrangian8

L = ∂µφ
∗∂µφ−m2φ∗φ− λ (φ∗φ)2 , (2.55)

at finite density. To do this we must first find a way to introduce a chemical potential µ. We will
see that the chemical potential acts as a constant temporal gauge field, see e.g. [11].

2.2.1 The Chemical Potential as a Gauge Field
From statistical physics [12] we know that adding a chemical potential to a theory is equivalent
to working in the grand canonical ensemble where both the energy and the particle number
of the system are allowed to fluctuate. Mathematically a system described by a Hamiltonian
density H in the canonical ensemble can be promoted to an equivalent system in the grand
canonical ensemble by the replacement

H → K = H − µj0, (2.56)

where µ is the chemical potential and j0 is the conserved Noether charge density. We will now
demonstrate that in the Lagrangian formalism the replacement in Eq. (2.56) is equivalent to the
replacement

∂α → Dα = ∂α − iµδ0α. (2.57)

The Hamiltonian density H corresponding to the Lagrangian density L in Eq. (2.55) is
obtained by performing the Legendre transformation9

H = πφ̇+ π∗φ̇∗ −L , (2.58)

where π and π∗ are the conjugate momenta of the fields φ and φ∗ respectively. Using Eq. (2.55)
we find that the conjugate momenta are

π =
∂L

∂φ̇
= φ̇∗ (2.59)

8This is the same Lagrangian as in Eq. (2.1) except that we changed the sign in front of m2.
9The dots indicate differentiation w.r.t. the time variable t.
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2.2 Abelian Model with a Chemical Potential

and

π∗ =
∂L

∂φ̇∗
= φ̇. (2.60)

Inserting Eqs. (2.59) and (2.60) into Eq. (2.58) yields the Hamiltonian density

H = ππ∗ +∇φ · ∇φ∗ +m2φ∗φ+ λ (φ∗φ)2 . (2.61)

The Lagrangian in Eq. (2.55) is invariant under U (1) transformations. We can calculate the
corresponding conserved Noether current by considering infinitesimal transformations of the
form

φ→ e−iθφ = (1− iθ)φ,
φ∗ → eiθφ∗ = (1 + iθ)φ∗.

(2.62)

The Noether current in Eq. (A.8) becomes,10

jµ =
∂L

∂
(
∂µφ
)δφ+

∂L

∂
(
∂µφ∗

)δφ∗
= (∂µφ∗) (−iφ) + (∂µφ) (iφ∗)

= i (φ∗∂µφ− φ∂µφ∗) .

(2.63)

Inserting Eq. (2.63) into Eq. (2.56) we get

K = ππ∗ +∇φ · ∇φ∗ +m2φ∗φ+ λ (φ∗φ)2 − iµ (φ∗π∗ − φπ) . (2.64)

Now, by performing an inverse Legendre transform, we can calculate the Lagrangian LK cor-
responding to the Hamiltonian K

LK = πφ̇+ π∗φ̇∗ −K. (2.65)

However, because of the replacement in Eq. (2.64) the conjugate momenta in Eqs. (2.59) and
(2.60) are no longer the conjugate momenta π and π∗ present in Eq. (2.65). Using thus Hamil-
ton’s equations we get

φ̇ =
∂K
∂π

= π∗ + iµφ =⇒ π∗ = φ̇− iµφ (2.66)

and
φ̇∗ =

∂K
∂π∗

= π − iµφ∗ =⇒ π = φ̇∗ + iµφ∗. (2.67)

By inserting Eqs. (2.66) and (2.67) into Eq. (2.65) we find that

LK = ∂µφ
∗∂µφ+ iµ (φ∗∂0φ− φ∂0φ

∗) +
(
µ2 −m2

)
φ∗φ− λ (φ∗φ)2 (2.68)

which is equivalent to
LK = Dµφ

∗Dµφ−m2φ∗φ− λ (φ∗φ)2 (2.69)

if we define
Dα = ∂α − iµδ0α, (2.70)

which is the replacement rule we wanted to derive.
10We follow the standard convention of factoring out the infinitesimal parameter θ.

19



Chapter 2. The Abelian Model

2.2.2 Spontaneous Symmetry Breaking due to a Chemical Potential

Promoting the derivative in Eq. (2.55) to the covariant derivative gives the Lagrangian,

L = Dµφ
∗Dµφ−m2φ∗φ− λ (φ∗φ)2 . (2.71)

Using Eq. (2.70) the Lagrangian becomes

L = ∂µφ
∗∂µφ+ iµ (φ∗∂0φ− φ∂0φ

∗) +
(
µ2 −m2

)
φ∗φ− λ (φ∗φ)2 , (2.72)

which reduces to Eq. (2.55) in the limit µ → 0. We see that the introduction of a chemical
potential has led to that space and time is no longer treated on equal footing, which means
that the Lagrangian is no longer Lorentz invariant or diagonal. This means that the dispersion
relation is no longer E2 = m2 + p2, and that we can not determine the mass spectrum by
simply taking the second derivative of the static term of the Lagrangian. In fact, we have to first
calculate the new dispersion relation and then evaluate the limit p → 0 to obtain the new mass
spectrum.

Now in order to demonstrate that the system indeed exhibits SSB we should determine
the vev. Since, the ground state is time independent the term coupled to the charge density
j0 = i (φ∗∂0φ− φ∂0φ

∗) will drop out and hence we define the classical potential as

U =
(
µ2 −m2

)
|φ|2 − λ|φ|4. (2.73)

The minimum of the potential can be found by solving the equation,

∂U

∂|φ|
= 2

(
µ2 −m2 − 2λ|φ|2

)
|φ| = 0. (2.74)

One solution is |φ| = 0, which is a local maximum for µ > m and a local minimum for µ < m.
Another solution exists if and only if µ > m and it is given by,

|φ|2 =
µ2 −m2

2λ
≡ v2

2
. (2.75)

Hence there exists an infinite number of nonzero vevs when µ > m given by,

φ0 =
v√
2
eiθ (2.76)

where θ is some arbitrary phase. Eq. (2.75) implies that there can only be SSB if µ > m, as
shown in Fig. (2.8).
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2.2 Abelian Model with a Chemical Potential

µ < m

(No SSB)

µ > m

(SSB)

Figure 2.8: SSB is only possible when µ > m.

The reason for this is that when µ < m the only solution to Eq. (2.74) is φ = 0. In the case
µ > m there is also a nonzero solution to Eq. (2.74). We note that in this case the chemical
potential is responsible for the explicit breaking of Lorentz invariance and the SSB of the U(1)
symmetry.11

Mass Spectrum

As before in order to obtain the mass spectrum we could use either of the two parametrisations

i) φ =
1√
2

(v + π1 + iπ2) ,

ii) φ =
1√
2

(v + ρ) e
iθ
v .

(2.77)

Using the first parametrisation the Lagrangian becomes

L =
1

2

(
∂µπ1∂

µπ1 + ∂µπ2∂
µπ2

)
+ µ(−v∂0π2 + π2∂0π1 − π1∂0π2)

+
(µ2 −m2)

2

(
v2 + 2vπ1 + π2

1 + π2
2

)
− λ

4
(v4 + 4v3π1 + 2v2π2

2 + 6v2π2
1 + 4vπ3

1 + 4vπ1π
2
2 + π4

1 + 2π2
1π

2
2 + π4

2).

(2.78)

11While the replacement ∂α → ∂α + iµδ0α results in that the chemical potential explicitly breaks Lorentz
invariance it is worth noting that there exists an equivalent picture where Lorentz invariance undergoes SSB. In
this picture we let the ground state be time dependent φ0(t) = v√

2
e−iµt and we start from the original Lorentz

invariant Lagrangian. When we expand the field about this ground state the chemical potential is not present in
the Lagrangian at all, which means that in this picture Lorentz invariance is spontaneously broken! The situation
where the state is evolving in time is called spontaneous symmetry probing and it is described in [13].
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Chapter 2. The Abelian Model

The dispersion relations come from the quadratic part of the Lagrangian

L (2) =
1

2

(
∂µπ1∂

µπ1 + ∂µπ2∂
µπ2

)
− µ(π1∂0π2 − π2∂0π1)

+
µ2 −m2

2
(π2

1 + π2
2)− λv2

4
(6π2

1 + 2π2
2).

(2.79)

Using λv2 = µ2 −m2 yields,

L (2) =
1

2

(
∂µπ1∂

µπ1 + ∂µπ2∂
µπ2

)
− µ(π1∂0π2 − π2∂0π1) +

µ2 −m2

2
(−2π2

1).
(2.80)

In matrix form this equation reads

L (2) =
(
π1 π2

)( −1
2
∂µ∂

µ − (µ2 −m2) −µ∂0

µ∂0 −1
2
∂µ∂

µ

)(
π1

π2

)
(2.81)

and the matrix sandwiched between the two doublets is the inverse propagatorD−1. Performing
a Fourier transformation yields,

D−1 =

(
1
2
p2 − (µ2 −m2) iµω
−iµω 1

2
p2

)
. (2.82)

The dispersion relations are determined by requiring that the matrix D−1 is singular, such that

0 = detD−1 =

(
1

2
p2 − µ2 +m2

)
1

2
p2 + (iµω)2. (2.83)

Now we use that p2 = ω2 − p2 where ω and p are the energy and 3-momentum respectively, to
obtain the equation

0 =
1

4

(
ω2 − p2 − 2µ2 + 2m2

) (
ω2 − p2

)
− µ2ω2

=
1

4

[
ω4 − ω2p2 + ω2

(
−p2 − 2µ2 + 2m2

)
+
(
−p2 − 2µ2 + 2m2

)
(−p2)

]
− µ2ω2.

(2.84)

Multiplying by four and collecting equal powers of ω yields

0 = (ω2)2 + ω2
(
−2p2 − 6µ2 + 2m2

)
+ p2

(
p2 + 2µ2 − 2m2

)
,

and the dispersion relations take the form

ω2
± = p2 + 3µ2 −m2 ±

(
3µ2 −m2

)√
1 +

(
2µ|p|

3µ2 −m2

)2

. (2.85)

The mass spectrum is then obtained by taking the limit p→ 0 of Eq. (2.85) which gives

m2
π1

= 6µ2 − 2m2,

m2
π2

= 0.
(2.86)
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2.2 Abelian Model with a Chemical Potential

As a check of consistency note that Eqs. (2.85) and (2.86) both reduce to the familiar expres-
sions in Eqs. (2.10) and (2.11) in the limit µ → 0 and when m2 < 0. In order to characterise
the NGB it is useful to consider small 3-momentum p such that we can expand the square root
to obtain

ω2
− =

(
µ2 −m2

3µ2 −m2

)
p2 +O(p4).

The dispersion relation thus looks like that of a phonon for small p,

ω− =

√
µ2 −m2

3µ2 −m2
|p|. (2.87)

In the literature [7] this NGB is characterised as type-I because i) it is linear in the 3-momentum,
and ii) only one generator was spontaneously broken. Thus by introducing a chemical potential,

the dispersion relation of the NGB changed from ω =
√
m2 + p2 to ω− =

√
µ2−m2

3µ2−m2 |p|.
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Chapter 3
Non-Abelian Models

In the spirit of the previous chapter we will first introduce an SO(3) model without a chemical
potential and then add a chemical potential to see how the NGBs change. We will find that,
whereas the introduction of a chemical potential in the Abelian model did not change the mass
of the NGBs, a chemical potential in a non-Abelian model will. In fact, we obtain a mNGB as
mentioned in the introduction. We then try to give indication for the existence of a soft-limit
theorem for mNGB which is similar to the soft-limit theorem for NGBs discussed in section
2.1.2.

3.1 The Non-Abelian Linear SO(3) Model without a Chemi-
cal Potential

We consider a vector field ~φ = (φ1, φ2, φ3) and the Lagrangian

L =
1

2

(
∂µ~φ
)2

+
1

2
m2~φ 2 − λ

4

(
~φ 2
)2

, (3.1)

which is invariant under SO(3) transformations.
In order to show that this model exhibits SSB, we must find at least one nonzero vev.

Spontaneous Symmetry Breaking of the Model

As usual we start by looking at the potential,

U = −1

2
m2~φ 2 +

λ

4

(
~φ 2
)2

= −1

2
m2|~φ| 2 +

λ

4
|~φ|4 (3.2)

and then determine the field configuration that minimises the energy by solving the equation

∂U

∂|φ|
=
(
−m2 + λ|~φ|2

)
|~φ| = 0.

This implies that there are an infinite number of nonzero vevs which all lie on the sphere

~φ 2 =
m2

λ
≡ v2. (3.3)
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Chapter 3. Non-Abelian Models

Mass Spectrum

We choose the ground state

~φ0 = (φ01, φ02, φ03) = (0, 0, v), (3.4)

and introduce a quantum field η (x) which fluctuates around the classical field φ03 = v. I.e the
field parametrisation reads,

φ3 = v + η (x) . (3.5)

In order to determine the number of Goldstone modes, we substitute the parametrisation in
Eq. (3.5) into the potential in Eq. (3.2). In the following we drop the constants in the potential
and introduce for brevity Φ2 = φ2

1 + φ2
2.

U = −1

2
m2(φ2

1 + φ2
2 + φ2

3) +
λ

4
(φ2

1 + φ2
2 + φ2

3)2

= −1

2
m2(Φ2 + η2 + 2vη) +

λ

4
(Φ2 + v2 + η2 + 2vη)2

= −1

2
m2(Φ2 + η2 + 2vη) +

λ

4
(φ4 + 2v2Φ2 + 2Φ2η2 + 4vΦ2η

+ 6v2η2 + 4v3η + η4 + 4vη3).

(3.6)

Due to the presence of the Φ2-terms in Eq. (3.6) we see that the ground state is invariant under
the SO(2) subgroup of SO(3).

Now, we evaluate the masses of the particles by calculating the relevant second derivatives
evaluated in the ground state configuration φ1 = φ2 = η = 0. Since the fields φ1 and φ2 have
identical couplings in the potential, their masses will be identical and it is only necessary to
evaluate one of the second derivatives

m2
φ1

=
∂2U

∂φ2
1

∣∣∣∣∣
φ1=φ2=η=0

= −m2 + v2λ = −m2 +m2 = 0. (3.7)

This reveals that there are two Goldstone bosons,

m2
φ1

= m2
φ2

= 0. (3.8)

The mass of the η excitation is

m2
η =

∂2U

∂η2

∣∣∣∣∣
φ1=φ2=η=0

= −m2 + 3λv2 = 2m2. (3.9)

We can interpret Eq. (3.8) and Eq. (3.9) as follows: The minimum of the potential is on a
sphere in field space given by Eq. (3.3). Thus the two NGBs correspond to azimuthal and
polar excitations, while the massive particle corresponds to radial excitations. For an SO(N)
invariant theory, we would find N − 1 NGBs because the angular element dΩ always contain
N − 1 angles in N dimensions.

However, this intuitive argument only holds for SO(N) theories. In order to apply Gold-
stone’s theorem it is necessary to evaluate the number of broken generators.
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3.1 The Non-Abelian Linear SO(3) Model without a Chemical Potential

The Broken Generators

The generators of the Lie algebra so(3) are the three matrices,

T1 = i

 0 0 0
0 0 −1
0 1 0

 , T2 = i

 0 0 1
0 0 0
−1 0 0

 , and T3 = i

 0 −1 0
1 0 0
0 0 0

 . (3.10)

In order to make sense of the term broken generator, we will consider infinitesimal SO(3)
transformations of the form1

~φ0 → ~φ
′

0 = eiθ
aTa ~φ0 =

[
1 + iθaTa +O(θ2)

]
~φ0

=
[
1 + iθ1T1 + iθ2T2 + iθ3T3 +O(θ2)

]
~φ0.

(3.11)

This expression reveals that the ground state is invariant under an infinitesimal transformation
if and only if

Ti ~φ0 = 0. (3.12)

If this expression is not satisfied then we are dealing with a broken generator. It is called broken
because the ground state is not invariant under the symmetry, unlike the Lagrangian.

Using this definition it is easy to check which of the so(3) generators that are broken by the
ground state:

T1
~φ0 = i

 0 0 0
0 0 −1
0 1 0


 0

0
v

 = −i

 0
v
0

 , broken→ NGB

T2
~φ0 = i

 0 0 1
0 0 0
−1 0 0


 0

0
v

 = i

 v
0
0

 , broken→ NGB

T3
~φ0 = i

 0 −1 0
1 0 0
0 0 0


 0

0
v

 =

 0
0
0

 , unbroken→ Massive.

(3.13)

Note that the vectors T1
~φ0 and T2

~φ0 point in the directions of the φ2 and φ1 components of
the field. This is not a coincidence. One can always identify the Goldstone components of the
field by acting with the broken generators on the ground state.

The calculation also confirms that the ground state is invariant under the SO(2) subgroup
spanned by the generator T3. To apply Goldstone’s theorem we note that the group SO(3) has
three generators T1, T2 and T3, while the subgroup SO(2) has one generator T3. Goldstone’s
theorem predicts that the number of NGBs should be equal to the dimension of the coset space
SO(3)/SO(2), which in this case is two. So Goldstone’s theorem is satisfied.

1Here an implicit sum over a = 1, 2, 3 is implied.
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3.2 The Non-Abelian Linear SO(3) Model with a Chemical
Potential

Now that we have established that the SSB SO(3)→ SO(2) result in two NGBs, let us see what
happens when we add a chemical potential to the theory. The relation between the chemical
potential and the covariant derivative is determined in exactly the same way as in section 2.2.1.
The result is the replacement rule

∂α → Dα
~φ = (∂α − iµT3δ0α)~φ, (3.14)

when we choose to couple the chemical potential to the generator T3. Replacing ∂µ by Dµ in
Eq. (3.1) gives

L =
1

2

(
Dµ

~φ
)2

+
1

2
m2~φ 2 − λ

4

(
~φ 2
)2

. (3.15)

Explicit Symmetry Breaking by the Chemical Potential

In order to show the effect of the chemical potential it is necessary to express the covariant
derivative in vector form,

D0
~φ = (∂0 − iµT3) ~φ =

 ∂0φ1 − µφ2

∂0φ2 + µφ1

∂0φ3

 . (3.16)

The kinetic term of the Lagrangian becomes(
Dµ

~φ
)2

=
(
Dµ

~φ
)(

Dµ~φ
)

=
(
D0
~φ
)(

D0
~φ
)
−
(
∇~φ
)2

=
(
∂0φ1 − µφ2 ∂0φ2 + µφ1 ∂0φ3

) ∂0φ1 − µφ2

∂0φ2 + µφ1

∂0φ3

− (∇~φ)2

=
(
∂µ~φ

)2

+ µ2
(
φ2

1 + φ2
2

)
− 2µ (φ2∂0φ2 − φ1∂0φ2) .

(3.17)

Substituting Eq. (3.17) into the Lagrangian in Eq. (3.15) yields,

L =
1

2

(
∂µ~φ

)2

+
(
φ2

1 + φ2
2

)(µ2 +m2

2

)
+

1

2
m2φ2

3

− µ (φ2∂0φ1 − φ1∂0φ2)− λ

4

(
φ2

1 + φ2
2 + φ2

3

)2
.

(3.18)

By studying the Lagrangian in Eq. (3.18) we see that the terms involving the chemical potential
explicitly break the SO(3) symmetry. That is by introducing the chemical potential the SO(3)
symmetry of the Lagrangian is lost. The new symmetry of the Lagrangian is in fact SO(2).
Furthermore, we note that the chemical potential also breaks Lorentz invariance. Thus for the
Lagrangian in Eq. (3.18) Goldstone’s theorem, in the form given in section 1.2, is not valid.
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3.2 The Non-Abelian Linear SO(3) Model with a Chemical Potential

The Vacuum Expectation Value

For convenience we define |Φ|2 = φ2
1 + φ2

2, and identify the potential as

U = −
(
µ2 +m2

)
2

|Φ|2 − 1

2
m2φ2

3 +
λ

4

(
|Φ|2 + φ2

3

)2
. (3.19)

To determine the vevs we need the derivatives w.r.t. |Φ| and φ3

∂U

∂|Φ|
= 0 = |Φ|

(
−µ2 −m2 + λ|Φ|2 + λφ2

3

)
,

∂U

∂φ3

= 0 = φ3

(
−m2 + λ|Φ|2 + λφ2

3

)
.

The only solutions that correspond to stable minima is

|Φ|2 =
µ2 +m2

λ
≡ v2 and φ3 = 0. (3.20)

Thus the potential takes its minimum value on a circle in the plane φ3 = 0 and we have a set of
nonzero vevs.

Mass Spectrum

As expected from chapter 2 there are an infinite number of available ground states, all of which
lie on the circle in Eq. (3.20). In order to proceed we need to pick one particular ground state
and parametrise the field accordingly. The ground state we choose is

~φ0 =

 v
0
0

 (3.21)

and the corresponding parametrisation is,

~φ =

 v + ψ1

ψ2

ψ3

 . (3.22)

By substituting Eq. (3.22) into Eq. (3.18) we get,

L =
1

2

(
∂µψ1

)2
+

1

2

(
∂µψ2

)2
+

1

2

(
∂µψ3

)2
+

(
µ2 +m2

2

)[
(ψ1 + v)2 + ψ2

2

]
+
m2

2
ψ2

3 − µ
(
ψ2∂0ψ1 − (ψ1 + v) ∂0ψ2

)
− λ

4

(
(ψ1 + v)2 + ψ2

2 + ψ2
3

)2

.

(3.23)

Extracting the quadratic part L (2) yields

L (2) =
1

2
∂µψ1∂

µψ1 +
1

2
∂µψ2∂

µψ2 +
1

2
∂µψ3∂

µψ3 +

(
µ2 +m2

2

)(
ψ2

1 + ψ2
2

)
+
m2

2
ψ2

3 − µ (ψ2∂0ψ1 − ψ1∂0ψ2)− λ
(

3

2
v2ψ2

1 +
1

2
v2ψ2

2 +
1

2
v2ψ2

3

)
,

(3.24)
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which can be written in matrix form as

L (2) = ( ψ1 ψ2 ψ3 )

 −1
2
∂µ∂

µ −
(
µ2 +m2

)
µ∂0 0

−µ∂0 −1
2
∂µ∂

µ 0

0 0 −1
2
∂µ∂

µ − µ2

2


 ψ1

ψ2

ψ3

 .

(3.25)
As in Eq. (2.81) the matrix sandwiched between the two vectors is the inverse propagator D−1.
Performing a Fourier transformation gives

D−1 =

 1
2

(
ω2 − p2

)
−
(
µ2 +m2

)
−iµω 0

iµω 1
2

(
ω2 − p2

)
0

0 0 1
2

(
ω2 − p2

)
− µ2

2

 (3.26)

and the dispersion relations can then be determined by requiring detD−1 = 0. However, to find
the mass spectrum we also set p = 0. Thus the characteristic equation reads,

0 =
1

2

(
ω2 − µ2

) [1

2
ω2

(
1

2
ω2 − µ2 −m2

)
− µ2ω2

]
. (3.27)

By factorising and completing the square, the mass spectrum reads

mψ1 =
√

6µ2 + 2m2,

mψ2 = 0,

mψ3 = µ.

(3.28)

By comparing Eqs. (3.28), (3.8) and (3.9) we note that one of the previously massless NGBs
has become a mNGB with mass µ. In section 3.3 we will investigate its scattering amplitude.

Physical Interpretation

Let us try to understand the emergence of the mNGB physically. By including a small chemical
potential the symmetry of the Lagrangian is explicitly broken as SO(3)→ SO(2). In this case,
there is one exact symmetry direction (generated by T3) and one direction were the symmetry
is approximate (generated by a linear combination of T1 and T2). Thus excitations in the exact
symmetry direction give the NGB, while excitations in the approximate symmetry direction
give the mNGB.2 This interpretation is also consistent in the limit µ → 0. In this limit the
direction of approximate symmetry becomes a direction of exact symmetry. Hence, the mNGB
becomes a massless NGB.

The Nonlinear Sigma Model

In order to investigate the scattering amplitudes of the NGB and the mNGB we will introduce
the nonlinear sigma model. The nonlinear sigma model is useful because it describes only the
Goldstone bosons of the theory [14], as we now show.

For our case the nonlinear sigma model reads,

L =
1

2

(
Dµ~χ

)2
=

1

2
(D0~χ )2 − 1

2
(∂i~χ )2 (3.29)

2In fact in chapter 9 we show that a mNGB always corresponds to the explicit breaking of two generators.
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3.2 The Non-Abelian Linear SO(3) Model with a Chemical Potential

where ~χ = (χ1, χ2, χ3) is a vector field. Since there are only two NGBs, but three degrees of
freedom (d.o.f.) in ~χ we need a constraint. In order to correctly impose a constraint on the field
~χ it is useful to imagine that we turn on the chemical potential in an adiabatic manner. Since
the NGBs live in the coset space SO(3)/SO(2), which has the geometry of the unit sphere S2,
we impose the spherically symmetric constraint3

χ2
1 + χ2

2 + χ2
3 = v2.

Now we adiabatically turn on the chemical potential, and observe how the field responds.4

We choose the ground state to be ~χ0 = (v, 0, 0) and treat χ2 and χ3 as independent d.o.f.
The temporal part of the nonlinear sigma model is,

(D0~χ)2 = (∂0χ1)2 + (∂0χ2)2 + (∂0χ3)2 + µ2
(
χ2

1 + χ2
2

)
− 2µ (χ2∂0χ1 − χ1∂0χ2) . (3.30)

If we insert this into Eq. (3.29), we obtain

L =
1

2

(
∂µχ2

)2
+

1

2

(
∂µχ3

)2 − µ2

2
χ2

3 +
µ

2v

(
χ2

2∂0χ2 − χ2
3∂0χ2

)
+
µ

v
χ2χ3∂0χ3

+
1

2v2

(
χ2

2∂µχ2∂
µχ2 + χ2

3∂µχ3∂
µχ3 + 2χ2χ3∂µχ2∂

µχ3

)
+O

(
χ5
)
.

(3.31)

The mass spectrum can be obtained from Eq. (3.31) by considering its quadratic part

L (2) =
1

2
∂µχ2∂

µχ2 +
1

2
∂µχ3∂

µχ3 −
µ2

2
χ2

3

=
(
χ2 χ3

)( −1
2
∂µ∂

µ 0

0 −1
2
∂µ∂

µ − µ2

2

)(
χ2

χ3

)
.

(3.32)

We denote the matrix as D−1 and perform a Fourier transformation

D−1 =

(
1
2

(
ω2 − p2

)
0

0 1
2

(
ω2 − p2

)
− µ2

2

)
. (3.33)

The dispersion relation follows from requiring that the matrix in Eq. (3.33) is singular,

0 = detD−1 =
1

4

(
ω2 − p2

) (
ω2 − p2 − µ2

)
.

Thus the dispersion relations become

ωχ2 (p) = |p|,
ωχ3 (p) =

√
µ2 + p2,

(3.34)

3For some problems it might be useful to express χi in terms of spherical coordinates, such that the constraint
χ2

1 + χ2
2 + χ2

3 = v2 fixes the radius. The massive and the massless NGB then corresponds to the angular fields θ
and φ.

4The situation is analogues to an antiferromagnet placed in an external field: Before we turn on the field there
is no preferred direction for the spins to align, however as the field is turned on the spins will align perpendicular
to the field. More on this in chapter 9.
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Chapter 3. Non-Abelian Models

and the mass spectrum can be determined by taking the limit p→ 0,

ωχ2 (0) = mχ2 = 0,

ωχ3 (0) = mχ3 = µ.
(3.35)

Since the mass spectrum is the same as before, we conclude that the nonlinear sigma model
contains only the Goldstone modes of the theory. In addition, we note that when µ = 0 both the
NGBs are of type-I. This, combined with the Abelian example of the last chapter, indicate that
one NGB of type-I is born for each generator that is spontaneously broken. This is consistent
with the existing literature, see e.g. [7].

3.3 Scattering Amplitudes in the Linear SO(3) Model with a
Chemical Potential

In this section we use the nonlinear sigma model in Eq. (3.31) to investigate the soft limit of
a scattering amplitude describing a process involving the mNGB. Let us denote by π the NGB
and by G the mNGB. The scattering amplitude we will calculate corresponds to the process

π(k)G(p)→ π(k′)G(p′). (3.36)

However, before we can calculate the scattering amplitude we need the Feynman rules.

Feynman Rules

With the new notation and using the chain rule the Lagrangian in Eq. (3.31) can be rewritten as

L =
1

2

(
∂µπ
)2

+
1

2

(
∂µG

)2 − µ2

2
G2

+
µ

2v

[
1

3

d

dt

(
π3
)
−G2π̇ + π

d

dt
(G2)

]
+

1

2v2

[
π2
(
∂µπ
)2

+G2
(
∂µG

)2
+ 2πG∂µπ∂

µG
]
.

(3.37)

Dropping the total derivatives5 and performing a partial integration w.r.t. time we can simplify
Eq. (3.37) to

L =
1

2

(
∂µπ
)2

+
1

2

(
∂µG

)2 − µ2

2
G2 − µ

v
G2π̇

+
1

2v2

[
π2
(
∂µπ
)2

+G2
(
∂µG

)2
+ 2πG∂µπ∂

µG
]
.

(3.38)

The Feynman rules corresponding to Eq. (3.38), that we will need, are shown in Fig 3.1.

5Alternatively we could have kept the corresponding Feynman vertices, but in the end they turn out to be zero
due to conservation of momentum.
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p1 p3

p2 p4

= i
v2

(p1 + p3)2

= i
k2+iε

= i
k2−µ2+iε

= −2µ
v
Eπ(~p)

k k

p

Figure 3.1: The Feynman rules in the nonlinear sigma model needed to calculate the amplitude
for π(k)G(p)→ π(k′)G(p′). The NGB is represented as a dashed line and the mNGB as a thick
line.

The Scattering Amplitude

Using the Feynman rules we can calculate the scattering amplitude of the process in Eq (3.36).
There are three diagrams contributing, as shown in Fig. 3.2.

a) b) c)

k k′

p p′

k

k
k′

k′

p pp′ p′

k + p p′ − k

Figure 3.2: Feynman diagrams contributing to π(k)G(p)→ π(k′)G(p′).

Summing up the diagrams give6

−iAtree =
i

v2

(
k − k′

)2
+

(
−2µ

v

)
(k0)

i

(k + p)2 − µ2

(
−2µ

v

)(
−k′0

)
+

(
2µ

v

)(
k′0
) i

(k − p′)2 − µ2

(
−2µ

v

)
(k0)

(3.39)

If we then use the on-shell conditions k2 = k′2 = 0 we obtain

−iAtree = −2i

v2
kk′ − 4iµ2

v2

k0k
′
0

(k + p)2 − µ2
− 4iµ2

v2

k0k
′
0

(k − p′)2 − µ2
. (3.40)

Thus the total amplitude is

Atree =
2

v2
kk′ +

4µ2

v2
k0k

′
0

(
1

(p+ k)2 − µ2
+

1

(k − p′)2 − µ2

)
. (3.41)

6In this case we let the sum of the diagrams equal −iAtree because then the negative signs cancel in Atree.
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Soft Limits

Having obtained the amplitude we can investigate the soft limits of both the mNGB and the
NGB. The first soft limit we will investigate is that of the NGB where k → 0. Based on the
calculation for the Abelian model, we might expect that this limit vanishes and thus the particle
to interact weakly. The soft-limit amplitude becomes,

Atree −−→
k→0

4µ2

v2

(
k0k

′
0

2pk
− k0k

′
0

2p′k

)
. (3.42)

In order to check if the amplitude vanishes, we need the following expressions

pk = p0k0 − |p||k| cos(θ)

= |k|
[
p0 − |p| cos(θ)

]
,

p′k = p′0k0 − |p′||k| cos(φ)

= |k|
[
p′0 − |p′| cos(φ)

]
,

(3.43)

where we used the dispersion relations in Eq. (3.34). The angles θ and φ are defined in Fig.
(3.3).

θ

φ

k

p

p′

Figure 3.3: Definition of the angles used in Eq. (3.43). The 4-momenta p and p′ represent the
incoming and outgoing mNGB respectively. The 4-momentum k labels the incoming NGB.

Inserting Eq. (3.43) into Eq. (3.42) gives

Atree −−→
k→0

2µ2

v2

(
k′0

p0 − |p| cos(θ)
− k′0
p′0 − |p′| cos(φ)

)
. (3.44)
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3.3 Scattering Amplitudes in the Linear SO(3) Model with a Chemical Potential

Thus the amplitude does not always vanish in soft limit of the NGB k → 0. Let us determine
the kinematic constraint that ensures that the amplitude vanishes. If the amplitude is to vanish
then

p0 − |p| cos(θ) = p′0 − |p′| cos(θ) (3.45)

must hold. If we use Eq. (3.43) we can write

kp

|k|
=
kp′

|k| (3.46)

or
k

|k|
(
p− p′

)
= 0. (3.47)

Using conservation of 4-momenta gives

k
(
p− p′

)
= k

(
k′ − k

)
= kk′ = k0k

′
0 − |k||k′| cosα = |k||k′|

[
1− cosα

]
, (3.48)

where α is the angle between the momenta k and k′. From Eq. (3.48) we see that the scattering
amplitude vanishes only if the NGB undergoes forward scattering α = 0 in the collision. More
interestingly, we see that our naive expectation was wrong and that the scattering amplitude
is nonzero when k and k′ are not collinear! This is an example of a kinematic singularity.
Kinematic singularities are further discussed in [10] where it is proved that they usually arise
because of cubic interaction terms in the Lagrangian.

Finally we investigate the soft limit of the mNGB p→
(
µ,~0

)
. The amplitude in Eq. (3.41)

becomes

Atree −−−−−→
p→(µ,~0 )

2

v2
kk′ +

4µ2

v2
k0k

′
0

(
1

2µk0

− 1

2µk′0

)
=

2

v2
kk′ +

2µ

v2

(
k′0 − k0

)
. (3.49)

Using conservation of 4-momenta, we can write

−2kk′ = (k − k′)2 = (p′ − p)2 = 2µ2 − 2pp′ −−−−−→
p→(µ,~0 )

2µ2 − 2µp′0

= 2µ2 − 2µ(k0 + p0 − k′0) = 2µ2 − 2µ2 − 2µ(k0 − k′0) = −2µ(k0 − k′0).
(3.50)

Inserting Eq. (3.50) into Eq. (3.49) we obtain

Atree →
2µ

v2

(
k0 − k′0

)
+

2µ

v2

(
k′0 − k0

)
= 0. (3.51)

This gives us a first indication that mNGBs also have a vanishing scattering amplitude in the
soft limit. However, it does not exclude the possibility that there exist systems with kinematic
singularities.
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Chapter 4
A Higgs-Like Model

In this section we show another case where Goldstone’s theorem does not apply due to a chem-
ical potential. Furthermore, the model indicates that there exist two different types of massless
NGBs as we mentioned in the introduction. They are characterised by their dispersion rela-
tions in the soft limit and are denoted by type-I and type-II. The Lagrangian we will consider is
similar to the Higgs model and is given by

L = Dµφ
†Dµφ−m2φ†φ− λ

(
φ†φ
)2

(4.1)

where φ is a complex doublet and Dµ = ∂µ − iµδ0µ.

4.1 Symmetries of the Model
We begin by determining the most important symmetries of the Lagrangian in the cases µ = 0
and µ 6= 0.

Zero Chemical Potential

In the case µ = 0 the Lagrangian is invariant under SO(4).1 However, to make the symmetry
breaking pattern more explicit we will use the fact that SO(4) is locally isomorphic to SU(2)×
SU(2), that is

SO(4) ' SU(2)× SU(2). (4.2)

Nonzero Chemical Potential

To show that a nonzero chemical potential breaks Lorentz invariance and SO(4) let us expand
Eq. (4.1)

L = (∂0 + iµ)φ† (∂0 − iµ)φ−m2φ†φ− λ
(
φ†φ
)2

= ∂µφ
†∂µφ+ iµ

(
φ†∂0φ− ∂0φ

†φ
)

+ φ†φ
(
µ2 −m2

)
− λ

(
φ†φ
)2

.
(4.3)

1This can be shown explicitly by writing φ =

(
π1 + iπ2

π3 + iπ4

)
, where π1, π2, π3 and π4 are real fields. However,

it is not necessary because the doublets always occur in the products φ∗φ.
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Chapter 4. A Higgs-Like Model

Thus, symmetries are lost due to the term µj0 ≡ iµ
(
φ†∂0φ− ∂0φ

†φ
)
. The Lagrangian in

Eq. (4.3) is invariant under global SU(2) and U(1) transformations, i.e the symmetry group is

SU(2)× U(1). (4.4)

Hence by introducing a chemical potential we have the following explicit symmetry breaking
pattern,

SU(2)× SU(2)
µ−→ SU(2)× U(1). (4.5)

4.2 Vacuum Expectation Value and Symmetry Breaking

We will now show that for µ > m the symmetry is spontaneously broken by a nonzero vev. The
vev is determined from the static part of the Lagrangian

U = −φ†φ
(
µ2 −m2

)
+ λ

(
φ†φ
)2

= −
(
|φ1|2 + |φ2|2

) (
µ2 −m2

)
+ λ

(
|φ1|2 + |φ2|2

)2
.

(4.6)

Since |φ1|2 and |φ2|2 appear identically in the equation above, we need only calculate the deriva-
tive with respect to one of them to find the vev. This gives

0 =
∂U

∂|φ1|
= 2|φ1|

[
m2 − µ2 + 2λ

(
|φ1|2 + |φ2|2

) ]
,

(4.7)

hence the vev is

|φ1|2 + |φ2|2 = φ†φ =
µ2 −m2

2λ
≡ v2

2
. (4.8)

Note that Eq. (4.8) only has a real solution when µ > m. In the case µ < m the vev is zero and
there is no SSB, just like in chapter 2.

4.3 The Broken Generators

We now choose the ground state as

φ0 =
1√
2

(
0
v

)
(4.9)

and try to determine which generators it break. One set of generators for SU(2) × U(1) is the
set 1

2
(σ1, σ2, σ3, I), in which case all of the generators are broken and one might expect four

NGBs. However, by applying a general SU(2) × U(1) transformation we can show that there
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is a more interesting second set of generators. Consider the infinitesimal transformation,

φ0 → φ′ = e
iαaσa

2 e
iβ
2 φ0

=

(
1 +

iαaσa
2

)(
1 +

iβ

2

)
φ0

=

(
1 +

iβ

2
+
iαaσa

2

)
φ0

=

(
1 +

iβ

2
+
iα1

2
σ1 +

iα2

2
σ2 +

iα3

2
σ3

)
φ0

=
1√
2

 ( 0
v

)
+

(
v
2

(
iα1 + α2

)
iv
2

(
β − α3

) ) .

(4.10)

Here σa are the three Pauli matrices while αa and β are infinitesimal parameters. From Eq. (4.10)
it is clear that in order for the ground state to be invariant under an SU(2)×U(1) transformation
we must require,

α1 = α2 = 0 and β = α3. (4.11)

Eq. (4.11) corresponds to a generator of the form 1
2

(1 + σ3). A different set of independent
generators for SU(2)× U(1) is therefore

1

2
(σ1, σ2, 1− σ3, 1 + σ3) . (4.12)

This set consists of 3 broken and 1 unbroken generator and the symmetry breaking pattern is
therefore SU(2)×U(1)→ U(1)′.2 If we were to apply Goldstone’s theorem we would therefore
expect 3 massless NGBs. However, we will see that in fact we only get two gapless bosons.
The reason for this is related to the fact that the theory is not Lorentz invariant and therefore the
number of broken generators is only an upper limit for the possible number of NGBs. In order
to get the correct number we could have used the counting rule presented in [15].

4.4 Dispersion Relations
In order to determine the dispersion relations we could use either of two the parametrisations

φ =
1√
2

(
ψ1 + iψ2

v + ψ3 + iψ4

)
or φ =

1√
2

e
iσ̃π̃
v

(
0

v + ψ

)
. (4.13)

We choose the left parametrisation. Inserting Eq. (4.13) into the Lagrangian in Eq. (4.3) and
keeping only the quadratic terms yield

L (2) =
(
ψ1 ψ2

)( −1
2
∂µ∂

µ −µ∂0

µ∂0 −1
2
∂µ∂

µ

)(
ψ1

ψ2

)

+
(
ψ3 ψ4

)( −1
2
∂µ∂

µ −
(
µ2 −m2

)
−µ∂0

µ∂0 −1
2
∂µ∂

µ

)(
ψ3

ψ4

)
.

(4.14)

2The prime means that the unbroken U(1)′ is different from the original U(1).
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Denoting the matrices in Eq. (4.14) as D−1
1 and D−1

2 respectively and then performing a Fourier
transformation we obtain

D−1
1 =

(
1
2

(
ω2 − p2

)
iµω

−iµω 1
2

(
ω2 − p2

) ) ,

D−1
2 =

(
1
2

(
ω2 − p2

)
−
(
µ2 −m2

)
iµω

−iµω 1
2

(
ω2 − p2

) ) .
(4.15)

The second of these matrices is identical to the one found in the Abelian case displayed in
Eq. (2.82). In order to determine the dispersion relations we require that the determinants
vanish. The dispersion relations associated with D−1

1 are then

ω± =
√

p2 + µ2 ± µ.
(4.16)

In the soft limit p→ 0 the dispersion relations become

ω+ = 2µ,

ω− = 0.
(4.17)

Note that the first particle is a mNGB, while the second is massless NGB. The massless NGB
depends on the 3-momentum in a quadratic manner and is therefore characterised as type-II, as
we mentioned in the introduction.

The dispersion relations associated with D−1
2 are

Ω2
± =

(
p2 + 3µ2 −m2

)
±
(
3µ2 −m2

)√
1 +

4µ2p2

(3µ2 −m2)2 . (4.18)

which in the soft limit becomes

Ω+ =
√

6µ2 − 2m2,

Ω− =

√ µ2 −m2

3µ2 −m2

 |p| . (4.19)

The first particle in Eq. (4.19) is a massive particle and the second is a NGB of type-I.

A Simplified Physical Interpretation

In this model the complete symmetry breaking pattern is

SU(2)× SU(2)
µ−→ SU(2)× U(1) −→ U(1)′. (4.20)

The mNGB come from the explicit breaking of the two generators of SU(2). This leaves us
with four generators that may potentially be spontaneously broken. Now by then choosing a
ground state we spontaneously break three generators in the last step. Our previous examples
tell us that the type-I NGB corresponds to only one spontaneously broken generator. Thus we
are forced to conclude that the existence of one type-II NGB requires two spontaneously broken
generators, consistent with the existing literature.
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Part II

The Soft-Limit Scattering Amplitude of
pNGBs
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Chapter 5
The Complete Breaking of an O(3)
Symmetry

Up to now we have only considered examples with gapless NGBs and mNGBs with a fixed
gap. However, recent research [1] suggests that there exists a second kind of massive Goldstone
boson which we call a pseudo Goldstone boson (pNGB). The pNGB is different from the other
bosons because its gap depends on the free parameters of the theory and may therefore be
adjustable. Next we present a concrete example of a theory containing one NGB, mNGB and
pNGB. We begin by calculating the mass spectrum of the theory and finish by calculating the
soft-limit behaviour of the on-shell tree-level scattering amplitude involving both the mNGB
and the pNGB.

The example we will be considering is the case when three of the generators of O(3) are
broken. This situation can not be described using a vector field ~φ as we used in chapter 3.
However, we can construct an effective low-energy Lagrangian by following the procedure
developed in [16] called the coset construction.

5.1 Definitions in the Effective Field Theory
The Lagrangian we will consider has the form

L =
1

2
gab(π)Dµπ

aDµπb. (5.1)

There are in total three Goldstone bosons πa, one for each broken generator Ta. The metric
gab(π) is in general too complicated to be calculated in closed form. However, we can make
good progress by first introducing U(π) = eiπ

aTa and then defining the Maurer-Cartan form
(MC form) ωab (π) implicitly as1

− iU(π)−1∂µU(π) ≡ Taω
a
b (π)∂µπ

b. (5.2)

The metric is of the form
gab (π) = gcd(0)ωca (π)ωdb (π) (5.3)

1The reason for us to define U(π) and the MC form in this way is that it enables us to calculate the MC form
order by order in a series expansion in πa. We will see this soon enough.
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where gcd(0) = diag (g1, g2, g3) can be chosen to be a diagonal matrix containing the coupling
constants of the theory.2

The covariant derivative Dµ can be specified by performing an infinitesimal O(3) transfor-
mation on the NGB fields U(π). The transformation gives,

eiπ
aTa → eiε

aTaeiπ
aTa ≡ eiπ

′aTa (5.4)

where εa are three infinitesimals and π′a = πa+εbhab (π). The nonlinear function hab (π) specifies
the covariant derivative as

Dµπ
a ≡ ∂µπ

a − Aeµhae . (5.5)

The gauge field is Aeµ = (µe, ~0 ) = (µ, ~0 ).
With these definitions we will first attempt to construct the Lagrangian up to second order,

and hence determine the mass spectrum. As a first step we calculate the functions ω and ωcah
a
b ,

because these are the ones that we need to construct the Lagrangian.

5.1.1 Calculating ω
To calculate ω we apply the formula

e−A∂µe
A =

∫ 1

0

dt e−tA
(
∂µA

)
etA (5.6)

to the left side of the definition in (5.2) giving

− iU−1∂µU = −i
∫ 1

0

dt
(
e−itπ

aTa
(
iTa∂µπ

a
)
eitπ

aTa
)
. (5.7)

We can evaluate the RHS of this equation by using the Baker–Campbell–Hausdorff formula
e−BAeB = A+

[
A,B

]
+ 1

2!

[[
A,B

]
, B
]

+ . . . , which gives

−iU−1∂µU =

∫ 1

0

dt
(
Ta∂µπ

a − itπa∂µπb
[
Ta, Tb

]
− t2

2
πaπb∂µπ

c
[
Ta,
[
Tb, Tc

]]
+O(π3)

)
.

(5.8)

Then by performing the integration we obtain

−iU−1∂µU = Ta∂µπ
a − i

2
πa∂µπ

b
[
Ta, Tb

]
− 1

6
πaπb∂µπ

c
[
Ta,
[
Tb, Tc

]]
+O(π3). (5.9)

To proceed we recall that the structure constants fabc of O(3) is the Levi-Civita tensor εabc and
evaluate the commutators [

Ta, Tb
]

= iεabcTc (5.10)

and[
Ta,
[
Tb, Tc

]]
=
[
Ta, iεbcdTd

]
= iεbcdiεadeTe = −εdbcεdeaTe = − (δbeδca − δbaδce)Te, (5.11)

2In principle any choice of gcd is allowed as long as it is consistent with the unbroken discrete symmetry
Z2 × Z2 × Z2.
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where we in the final equality used that εdbcεdea = δbeδca − δbaδce. Inserting the commutators
into (5.9) we obtain

−iU−1∂µU = Ta∂µπa +
1

2
πa∂µπ

bεabcTc +
1

6
πaπb∂µπ

c (δbeδca − δbaδce)Te +O(π3). (5.12)

which can be simplified as follows,

−iU−1∂µU = Ta∂µπa +
1

2
πa∂µπ

bεabcTc +
1

6

(
πcπe∂µπ

cTe − πaπa∂µπeTe
)

+O(π3)

= Ta∂µπ
bδab +

1

2
πc∂µπ

bεcbaTa +
1

6

(
πbπa∂µπ

bTa − ~π2∂µπ
bTaδab

)
+O(π3)

= Ta∂µπ
b

(
δab +

1

2
πcεcba +

1

6

(
πaπb − ~π2δab

))
+O(π3)

= Ta∂µπ
b

(
δab −

1

2
πcεabc +

1

6

(
πaπb − ~π2δab

))
+O(π3).

(5.13)

Thus by using Eq. (5.2) we can read off the MC form ω up to second order in the fields πa

ωab = δab −
1

2
εabcπ

c +
1

6

(
πaπb − δab~π2

)
+O

(
π3
)
. (5.14)

5.1.2 Calculating ωcahab
To calculate ωcah

a
b it is convenient to start from the definition given by Eq. (5.4). Multiplication

from the left by e−iπaTa gives

e−iπ
aTaeiε

aTaeiπ
aTa = e−iπ

aTaeiπ
′aTa . (5.15)

If we expand the exponential containing the infinitesimal εa on the LHS and add and subtract 1
on the RHS we get

e−iπ
aTa (1 + iεaTa) e

iπaTa = 1 + e−iπ
aTa
(
eiπ
′aTa − eiπaTa

)
, (5.16)

which can be simplified to

1 + ie−iπ
aTaεaTae

iπaTa = 1 + e−iπ
aTa
(
eiπ

aTa+iεbhabTa − eiπaTa
)
. (5.17)

Applying the Baker–Campbell–Hausdorff formula to the second term on the LHS gives,

e−iπ
aTaεaTae

iπaTa = εaTa + πaεbf cabTc +
1

2
πaεbf eabπ

df cdeTc +O(π2). (5.18)

Inserting this into Eq. (5.17) and then expanding the exponential eiεbhabTa on the RHS, yields

1 + i

(
εaTa + πaεbf cabTc +

1

2
πaεbf eabπ

df cdeTc

)
= 1 + e−iπ

aTa
[ (

1 + iεbhabTa

)
eiπ

aTa − e−iπaTa
]

= 1 + iεbhabe
−iπaTaTae

iπaTa

= 1 + εbhabe
−iπaTa ∂

∂πa
eiπ

aTa .

(5.19)
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To proceed we exploit the relation

ωiaTi = −iU−1 ∂

∂πa
U, (5.20)

giving

i

(
εaTa + πaεbf cabTc +

1

2
πaεbf eabπ

df cdeTc

)
= iεbhabTcω

c
a. (5.21)

To extract ωcah
a
b we equate the coefficients for the term iεbTc

iεbTc

(
δcb + πaf cab +

1

2
πaπdf eabf

c
de

)
= iεbTc (habω

c
a) . (5.22)

Thus we find
ωcah

a
b = δcb + πaf cab +

1

2
πaπdf eabf

c
de +O(π3). (5.23)

The product of Levi-Civita tensors in ωcah
a
b can be expressed in terms of Kronecker delta func-

tions as
εeabεecd = δacδbd − δadδbc. (5.24)

The matrix ωcah
a
b then takes the form

ωcah
a
b = δbc + πaεcab +

1

2

(
πcπb − πaπaδbc

)
.

For personal preference we rename the indices and obtain,

ωach
c
b = δab − εabcπc +

1

2

(
πaπb − ~π 2δab

)
. (5.25)

5.1.3 The Lagrangian to Second Order
The first step in determining the mass spectrum of the theory is to find the quadratic part of the
Lagrangian. The starting point is Eq. (5.1), and we proceed by inserting the covariant derivative
displayed in Eq. (5.5). This gives

L =
1

2
gcd (0)ωcaω

d
bDµπ

aDµπb

=
1

2
gcdω

c
aω

d
b

(
∂µπ

a − Aeµhae
)(

∂µπb − Afµhbf
)

=
1

2
gcdω

c
aω

d
b∂µπ

a∂µπb − 1

2
gcdω

c
aω

d
b∂µπ

aAfµhbf

− 1

2
gcdω

c
ah

a
eω

d
b∂

µπbAeµ +
1

2
gcdω

c
ah

a
eω

d
bh

b
fA

e
µA

fµ.

(5.26)

Now, if we substitute Eqs. (5.14) and (5.25) into Eq. (5.26) and only keep second order terms
we obtain, after the algebraic dust settles,

L =
1

2

[
g1

(
∂µπ1

)2
+ g2

(
∂µπ2

)2
+ g3

(
∂µπ3

)2 ]− 1

2
g3µ (π1π̇2 − π̇1π2)

+ µ(g2π1π̇2 − g1π̇1π2) + π2
1

[1

2
µ2 (g2 − g3)

]
+ π2

2

[
2
µ2 (g1 − g3)

]
.

(5.27)
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If we use integration by parts we can write

π1π̇2 =
1

2
π1π̇2 −

1

2
π̇1π2 =

1

2
(π1π̇2 − π̇1π2) ,

− π̇1π2 =
1

2
(π1π̇2 − π̇1π2)

(5.28)

such that the Lagrangian in Eq. (5.27) becomes

L =
1

2

[
g1

(
∂µπ1

)2
+ g2

(
∂µπ2

)2
+ g3

(
∂µπ3

)2 ]
− 1

2
g3µ (π1π̇2 − π̇1π2) +

1

2
g2µ (π1π̇2 − π̇1π2)

+
1

2
g1µ (π1π̇2 − π̇1π2)

− 1

2
µ2 (g3 − g2) π2

1 −
1

2
µ2 (g3 − g1)π2

2.

(5.29)

More compactly we can write

L =
1

2

[
g1

(
∂µπ1

)2
+ g2

(
∂µπ2

)2
+ g3

(
∂µπ3

)2 ]
+

1

2
µ (g1 + g2 − g3) (π1π̇2 − π̇1π2)

− 1

2
µ2 (g3 − g2) π2

1 −
1

2
µ2 (g3 − g1) π2

2.

(5.30)

5.1.4 The Mass Spectrum

From Eq. (5.30) we can extract the inverse propagator D−1

D−1 =

 −g1∂µ∂
µ − µ2 (g3 − g2) µ (g1 + g2 − g3) ∂0 0

−µ (g1 + g2 − g3) ∂0 −g2∂µ∂
µ − µ2 (g3 − g1) 0

0 0 −g3∂µ∂
µ

 , (5.31)

and perform a Fourier transformation to obtain

D−1 =

 g1

(
ω2 − p2

)
− µ2 (g3 − g2) −µ (g1 + g2 − g3) iω 0

µ (g1 + g2 − g3) iω g2

(
ω2 − p2

)
− µ2 (g3 − g1) 0

0 0 g3

(
ω2 − p2

)
 .

(5.32)
The mass spectrum follows from that the matrix D−1 should be singular, giving the character-
istic equation:

0 = g3

(
ω2 − p2

){[
g1

(
ω2 − p2

)
− µ2 (g3 − g2)

]
×
[
g2

(
ω2 − p2

)
− µ2 (g3 − g1)

]
− µ2ω2 (g1 + g2 − g3)2

}
.

(5.33)
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Solving Eq. (5.33) gives the following dispersion relations

ω1 = ω− =

√
p2 + µ2 + µ2

g3 (g3 − g1 − g2)

2g1g2

(1− Ω),

ω2 = ω+ =

√
p2 + µ2 + µ2

g3 (g3 − g1 − g2)

2g1g2

(1 + Ω),

ω3 = |p|

(5.34)

with

Ω =

√
1 +

4p2g1g2

µ2g2
3

. (5.35)

By taking the limit p→ 0 we obtain the mass spectrum:

m1 = µ,

m2 =

√
(g1 − g3) (g2 − g3)

g1g2

µ,

m3 = 0.

(5.36)

Eq. (5.36) reveals that the theory contains one NGB and two massive modes. One of the mas-
sive modes has a gap exactly equal to µ and is a mNGB. We expect the scattering amplitude
involving the mNGB to vanish in the soft limit. This expectation is based on the example in
chapter 3. The gap of the second massive mode is model dependent, and we expect the mass
not to be protected from higher order corrections by a symmetry. This is therefore a pNGB and
we expect the soft-limit scattering amplitude to be nonzero.

5.1.5 Noether Charges
Now, we will calculate the Noether charge densities for the three O(3) generators3 as a series
expansion up to first order in the fields πa. The Noether charge density is given by

j0 =
∂L

∂ (π̇a)
δπa

=

(
g1π̇1 −

1

2
µ (g1 + g2 − g3) π2

)
δπ1 +

(
g2π̇2 +

1

2
µ (g1 + g2 − g3) π1

)
δπ2 + g3π̇3δπ3

(5.37)

and our task is then mainly to calculate the variations δπa. We begin by looking at an infinitesi-
mal T1 transformation on the form

eiπ
aTa → eiεT1eiπ

aTa (5.38)

and expand the exponentials

(1 + iπaTa)→ (1 + iεT1) (1 + iπaTa) = 1 + iπaTa + iεT1 − εT1π
aTa. (5.39)

3We consider only the generators of the continuous symmetry.
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Expanding the brackets on the LHS and writing out the summations give

i (π1T1 + π2T2 + π3T3)→ i (π1T1 + π2T2 + π3T3) + iεT1 − επ1T
2
1 − επ2T1T2 − επ3T1T3.

(5.40)

Performing all matrix multiplications we end up with 0 π3 −π2

−π3 0 π1

π2 −π1 0

→
 0 π3 −π2

−π3 + επ2 0 π1 + ε
π2 + επ3 −π1 − ε 0

 (5.41)

the variations of the fields then read

δπ1 = ε,

δπ2 = επ3,

δπ3 = −επ2.

(5.42)

The Noether charge density for the T1 transformation then takes the form,

j0
T1

= g1π̇1 −
1

2
µ (g1 + g2 − g3) π2. (5.43)

The calculation for T2 and T3 are almost identical and hence omitted. The Noether charges are
thus

j0
T1

= g1π̇1 −
1

2
µ (g1 + g2 − g3) π2,

j0
T2

= g2π̇2 +
1

2
µ (g1 + g2 − g3) π1,

j0
T3

= g3π̇3.

(5.44)

Note that the currents are all linear in the fields. This is actually one of the hallmarks of SSB:
whenever a generator is spontaneously broken, the corresponding NGB will appear linearly in
the corresponding Noether current. In fact, these linear terms are the most interesting piece of
the current in the case of broken symmetry, because they determine how the current operator
couples to the NGB state. The coupling is described by the matrix element 〈0|j0|πi〉 which is
interpreted as the amplitude to generate the NGB from the vacuum by the current.

5.2 Scattering Amplitudes
In this section we try to show that one can distinguish massive modes and pseudo modes by
the soft-limit behaviour of the scattering amplitudes for 2 → 2 scattering. Specifically we try
to show that the scattering amplitude for the massive mode vanishes in the soft limit, while the
scattering amplitude for the pseudo mode does not vanish in the soft limit.

However, before we can calculate scattering amplitudes in this theory we need the La-
grangian in Eq. (5.30) up to fourth order in the fields. Once we know this we can calculate
the relevant Feynman rules and propagators. In this case we observe from Eq. (5.32) that the
propagator is energy dependent and therefore not diagonalisable. Therefore we must use the
same method as in [17] to calculate the scattering amplitude. That is we must first construct the
transition vacuum amplitudes and from these construct the total scattering amplitude.4

4Please note that in this section we change the notation for the fields as πi → φi.

49



Chapter 5. The Complete Breaking of an O(3) Symmetry

5.2.1 The Lagrangian
The calculation of the Lagrangian to fourth order is identical to the calculation in section 5.1.3
except that one needs Eqs. (5.14) and (5.25) to fourth order. The calculations were performed
using Mathematica and the result is

L = L (2) + L (3) + L (4) (5.45)

where

L (2) =
1

2

[
g1

(
∂µφ1

)2
+ g2

(
∂µφ2

)2
+ g3

(
∂µφ3

)2 ]
+

1

2
µ (g1 + g2 − g3) (φ1π̇2 − π̇1φ2)

− 1

2
µ2 (g3 − g2)φ2

1 −
1

2
µ2 (g3 − g1)φ2

2,

(5.46)

L (3) =

[
µ (g2 − 3g1 + 3g3)

4
φ2

2φ̇3

]

+

[
µ2 (g1 − g2)

2
φ1φ2φ3 −

(g1 − g2)

2
φ3∂µφ1∂

µφ2

+
(g1 − g3)

2
φ2∂µφ1∂

µφ3 −
(g2 − g3)

2
φ1∂µφ2∂

µφ3

]

+

[
µ (g1 − 3g2 + 3g3)

4
φ2

1φ̇3

]
,

(5.47)

and

L (4) =

[
µ2

(
g2

8
− g1

6
+
g3

24

)
φ2

2φ
2
3 +

(
g1

8
− g2

6

)(
∂µφ2

)2
φ2

3

+

(
g2

6
− g1

4
+
g3

6

)
φ2

(
∂µφ2∂

µφ3

)
φ3 +

(
g1

8
− g3

6

)
φ2

2

(
∂µφ3

)2

]

+

[
µ2

(
g1

8
− g2

6
+
g3

24

)
φ2

1φ
2
3 +

(
g2

8
− g1

6

)
φ2

3

(
∂µφ1

)2

+

(
g1

6
− g2

4
+
g3

6

)
φ1

(
∂µφ1∂

µφ3

)
φ3 +

(
g2

8
− g3

6

)
φ2

1

(
∂µφ3

)2

]

+

[
µ

(
g1

3
− g2

4
− g3

24

)
φ̇1φ2φ

2
3 + µ

(
g1

4
− g2

3
+
g3

24

)
φ1φ̇2φ

2
3

+ 5µ

(
g2 − g1

12

)
φ1φ2φ̇3φ3

]

(5.48)

Each square bracket in L (3) and L (4) represents a Feynman vertex. The procedure for calcu-
lating the Feynman rules is the same as always, however the terms are a bit more complicated
than what we are used to. The calculation is therefore shown in App. C.1, and the results are
shown in Fig. 5.1
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p1

p2

p3

p1

p2

p3=
µ
[
g2−3(g1−g3)

]
2

E3(p3) =
µ
[
g1−3(g2−g3)

]
2

E3(p3)

p2

p1

= iµ2(g1−g2)
2

+ i(g1−g2)
2

(p1p2) + i(g3−g1)
2

(p1p3) + i(g2−g3)
2

(p2p3)p3

p1

p2p3

p4

= iµ2(g2
2
− 2g1

3
+ g3

6
) + i(2g2

3
− g1

2
)p1p2 − i(g14 −

g2
6
− g3

6
)(p1 + p2)2 + i(2g3

3
− g1

2
)p3p4

p1

p2p3

p4

= iµ2
(
g1
2
− 2g2

3
+ ig3

6

)
+ i
(

2g1
3
− g2

2

)
p1p2 + i

(
g1
6
− g2

4
+ g3

6

)
(p1 + p2)2 + i

(
2g3
3
− g2

2

)
p3p4

p1

p2p3

p4

= µE1(p1)

[
13g1−11g2−g3

12

]
+ µE2(p2)

[
11g1−13g2+g3

12

]

Figure 5.1: The Feynman rules, that we need, for computing scattering amplitudes when the
O(3) symmetry is completely broken. The fields φ1, φ2 and φ3 are represented by the solid line,
the dashed line and the dotted line respectively.

5.2.2 The Propagator

The propagator D is the inverse of Eq. (5.32). The fact that the inverse propagator

D−1 =

 g1

(
ω2 − p2

)
− µ2 (g3 − g2) −µ (g1 + g2 − g3) iω 0

µ (g1 + g2 − g3) iω g2

(
ω2 − p2

)
− µ2 (g3 − g1) 0

0 0 g3

(
ω2 − p2

)

(5.49)

is in block diagonal form makes the task of inverting it almost trivial. We simply define the
submatrix

A−1 =

(
g1

(
ω2 − p2

)
− µ2 (g3 − g2) −µ (g1 + g2 − g3) iω

µ (g1 + g2 − g3) iω g2

(
ω2 − p2

)
− µ2 (g3 − g1)

)
(5.50)
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whose inverse is

A =
1

detA−1

(
g2

(
ω2 − p2

)
− µ2 (g3 − g1) µ (g1 + g2 − g3) iω

−µ (g1 + g2 − g3) iω g1

(
ω2 − p2

)
− µ2 (g3 − g2)

)
(5.51)

with
detA−1 = g1g2

(
ω2 − ω2

+

) (
ω2 − ω2

−
)
. (5.52)

Hence the propagator is

D =

(
A 0
0 1

g3(ω2−p2)

)
. (5.53)

5.2.3 Vacuum Transition Amplitudes
By following the procedure described in [17] we will use the propagator in Eq. (5.53) to extract
the vacuum transition amplitudes for the fields φ1, φ2 and φ3. To be specific we will employ
Eq. (22) in [17] which reads

DAB (p, ω) = (2π)3
∑
n

[
〈0|A (0) |n,p〉 〈n,p|B (0) |0〉

ω − En (p) + iε
− 〈0|B (0) |n,−p〉 〈n,−p|A (0) |0〉

ω + En (p)− iε

]
.

(5.54)

It is called the Kallen-Lehmann representation of the time-ordered Green’s function DAB =
−i 〈0|T

[
A(x)B(y)

]
〉. In this notation A(x) and B(x) are generic bosonic operators and En(p)

is the energy of the state |n,p〉 which is normalised as 〈m,p1|n,p2〉 = δmnδ
3(p1 − p2). In

order to use Eq. (5.54) we first need to determine how the propagator in Eq. (5.51) behaves
close to the two poles ω = ω+ and ω = ω−.

Behaviour Close to the Poles

In order to simplify the expressions we define

∆ ≡ ω2
+ − ω2

− = µ2 g3 (g3 − g1 − g2)

g1g2

Ω. (5.55)

If we write ω = ω± ∓ iε the determinant in Eq. (5.51) takes the form

detA−1 = ±2g1g2ω±∆ (ω − ω±) (5.56)

and the propagator reads

A± =
1

detA−1

(
g2

(
ω2
± − p2

)
− µ2 (g3 − g1) iµ (g1 + g2 − g3)ω±

−iµ (g1 + g2 − g3)ω± g1

(
ω2
± − p2

)
− µ2 (g3 − g2)

)
. (5.57)

We can rewrite the second diagonal term as

g1

(
ω2
± − p2

)
− µ2 (g3 − g2) = g1

[
µ2 + µ2 g3 (g3 − g1 − g2)

2g1g2

(1± Ω)

]
− µ2 (g3 − g1)

= µ2 (g1 + g2 − g3) +
µ2g3 (g3 − g1 − g2)

2g2

(1± Ω)

= µ2 (g1 + g2 − g3)

(
1− g3

2g2

(1± Ω)

)
.

(5.58)
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By replacing g1 ↔ g2 we get a similar expression for the first diagonal term

g2

(
ω2
± − p2

)
− µ2 (g3 − g1) = µ2 (g1 + g2 − g3)

(
1− g3

2g1

(1± Ω)

)
. (5.59)

Eq. (5.57) then becomes

A± =
µ2 (g1 + g2 − g3)

±2g1g2ω±∆ (ω − ω±)

(
1− g3

2g1
(1± Ω) iω±

µ

− iω±
µ

1− g3
2g2

(1± Ω)

)

=
±1

2ω± (ω − ω±) g3Ω

(
g3
2g1

(1± Ω)− 1 − iω±
µ

+ iω±
µ

g3
2g2

(1± Ω)− 1

)
.

(5.60)

Extracting the Transition Amplitudes

If we now let |1〉, |2〉 and |3〉 be states with energy ω+, ω− and ω3 respectively we can use
Eq. (5.60) to extract the transition amplitudes. By using the Kallen-Lehmann representation we
can write5

〈0|φ1φ
†
1|0〉 =

1

(2π)3 Resω→ω+A
+
11,

〈0|φ2φ
†
2|0〉 =

1

(2π)3 Resω→ω+A
+
22,

(5.61)

which after inserting a complete set of states |1〉 〈1| = 1 on the LHS becomes

〈0|φ1|1〉 = eiθ1

√
g3
2g1

(1 + Ω)− 1

(2π)3 2ω+g3Ω
,

〈0|φ2|1〉 = eiθ2

√
g3
2g2

(1 + Ω)− 1

(2π)3 2ω+g3Ω
.

(5.62)

Here θ1 and θ2 are the two phase factors. By choosing θ1 = 0 we can determine θ2 by requiring
that

〈0|φ1φ
†
2|0〉 =

1

(2π)3 Resω→ω+ (ω − ω+)A+
12. (5.63)

This results in that θ2 = π
2
. The transition amplitudes 〈0|φ1|2〉 and 〈0|φ2|2〉 is obtained by

performing a similar calculation where we use A− instead of A+.
The final transition amplitude 〈0|φ3|3〉 can be determined by considering the (3, 3) element

in the propagator

D33 =
1

g3(ω − ω3)(ω + ω3)
(5.64)

close to the pole ω = ω3 − iε. Specifically we can use the Kallen-Lehmann representation to
write

〈0|φ3φ
†
3|0〉 =

1

(2π)3 Resω→ω3D33 =
1

2 (2π)3 g3ω3

. (5.65)

5Where Resx−→x0f(x) denotes the complex residue of f(x) at the point x0.
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If we now insert the identity 1 = |3〉 〈3| between φ3 and φ†3 and take the square root we find that
〈0|φ3|3〉 =

√
1

2(2π)3ω3
. To summarise we thus have the following transition amplitudes

〈0|φ1|1〉 =

√
g3
2g1

(1 + Ω)− 1

(2π)3 2ω+g3Ω
,

〈0|φ2|1〉 = i

√
g3
2g2

(1 + Ω)− 1

(2π)3 2ω+g3Ω
,

〈0|φ1|2〉 =

√
g3
2g1

(Ω− 1) + 1

(2π)3 2ω−g3Ω
,

〈0|φ2|2〉 = −i

√
g3
2g2

(Ω− 1) + 1

(2π)3 2ω−g3Ω
,

〈0|φ3|3〉 =

√
1

2 (2π)3 ω3

.

(5.66)

Thus particles with the energies ω+, ω− and ω3 are described by the states

Ψ+ =

(
〈0|φ1|1〉
〈0|φ2|1〉

)
,

Ψ− =

(
〈0|φ1|2〉
〈0|φ2|2〉

)
,

(5.67)

and
Ψ3 = 〈0|φ3|3〉 . (5.68)

respectively. Now we have all the ingredients necessary to compute the scattering amplitudes
we are interested in.

5.2.4 Scattering Amplitudes
We want to compute the soft-limit behaviour of the two scattering amplitudes

Ψ±Ψ3 → Ψ±Ψ3. (5.69)

The computation of the amplitudes is now slightly more complicated than before because the
propagator in Eq. (5.53) is energy dependent and can therefore not be diagonalised. This results
in that the fields φ1 and φ2 mix. To be concrete the Feynman diagrams contributing to the
scattering events are shown in Fig. 5.2. Note that each of the Latin indices in the figure can
take the values {1, 2} giving a total of 4 + 16 + 16 = 36 Feynman diagrams. To calculate the
amplitudes we collect the triple and quadruple vertices in Fig. 5.1 in two matrices V and W
respectively. This allows us to calculate the scattering amplitude by computing

iA± = Ψ†3Ψ†±{W + V DV + V DV }Ψ3Ψ± (5.70)

where the last term represents the exchange diagram. We have done this calculation in Math-
ematica. Given the complexity of the analytic expression for the scattering amplitudes it was
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5.2 Scattering Amplitudes

Ψ±Ψ±

Ψ3 Ψ3

φ±i φ±j

Ψ± Ψ±

Ψ3 Ψ3

φ±i

φ±j φ±k

φ±l

Ψ3 Ψ3

Ψ± Ψ±

φ±iφ±l

φ±j φ±k

Figure 5.2: The Feynman diagrams contributing to Ψ±Ψ3 → Ψ±Ψ3. The Latin indices can take
the values {1, 2}. The signs ± refers to whether or not the field obeys ω+ or ω−.

necessary to introduce numerical values for all the parameters of the theory. To study the soft
limit of the mNGB and the pNGB we introduced a scale factor z in their 3-momentum and let
z → 0. In order to use the script we had to make sure that all of the momenta stayed on shell,
when taking the limit. In order to do this we generated the momenta for the two modes Ψ±
randomly and then introduced the scale factor. Having done this the last two momenta were
determined by requiring momentum conservation. We then, for each value of z, generated a
set of on-shell momenta that we used to calculate the amplitude. Our output is the amplitude
as a function of the scale factor z. The results are shown in Fig. 5.3 along with the model
parameters.

Figure 5.3: The scattering amplitudes as functions of the scale parameter z, with µ = 1 g1 =
1, g2 = 2 and g3 = 5. The left figure corresponds to Ψ+ + Ψ3 → Ψ+Ψ3. The right figure
corresponds to Ψ−Ψ3 → Ψ−Ψ3.

In the calculation the momenta at z = 1 were
k1 = (2.6147,−0.741869, 0.0414662,−0.23057),

k2 = (2.65305, 0.549901, 0.0638119, 0.668636),

p1 = (32.3189, 19.309,−7.53947,−24.7958),

p2 = (32.2805, 18.0172,−7.56181,−25.695),

(5.71)

for the process Ψ−(k1)Ψ3(p1)→ Ψ−(k2)Ψ3(p2) and

p1 = (1.30027, 0.847035, 0.573307,−0.224029),

p2 = (1.26091, 0.657704,−0.333695, 0.630827),

k1 = (−20.2082,−9.36737,−12.1733,−13.1314),

k2 = (−20.1688,−9.17804,−11.2663,−13.9863),

(5.72)
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Chapter 5. The Complete Breaking of an O(3) Symmetry

for the process Ψ+(k1)+Ψ3(p1)→ Ψ+(k2)+Ψ3(p2). As expected we found that the scattering
amplitude involving the mNGB vanished

A (Ψ−Ψ3 → Ψ−Ψ3) −−→
z→0

0. (5.73)

However, we were surprised to see that the scattering amplitude also vanished for the process
that involved the pNGB

A (Ψ+Ψ3 → Ψ+Ψ3) −−→
z→0

0. (5.74)

This could mean either that there is some hidden symmetry in our model, or that the kinematics
of the 2→ 2 scattering is too simple to tell the difference between the two modes.
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Part III

Proving The Conjectures
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Chapter 6
Weinberg’s Soft-Limit Theorem and
Covariant Current Conservation

In this chapter we want primarily to reach two goals. Firstly we want to show how Weinberg
proves his soft-limit theorem, because it underpins all of the discussions that follow. In short the
proof is performed by applying current conservation to a matrix element1 〈f |Jµ|i〉 which gives
us an expression for the corresponding scattering amplitude. In Weinberg’s case this is relatively
straight forward because the conservation law is simply ∂µJµ = 0. However, in systems where
a symmetry is explicitly broken by a chemical potential the RHS of this conservation law is
no longer zero as shown in e.g. [18]. In order to obtain an equation that we can solve for the
scattering amplitude we have to look for a new conservation law that takes the form DµJ

µ = 0.
Hence our second goal is to find such a conservation law. Having justified the conservation law
we could in principle begin proving our theorems. However, since it usually is hard to prove
something without having looked at specific examples we choose to spend chapters 7 and 8 by
revisiting some models that we are already familiar with to see if we can learn how to construct
a proof.

6.1 A Collection of the Conjectures

Up to now we have conjectured two soft-limit theorems. Let us now state them explicitly and
precisely for future reference:

Theorem 2: Weinberg’s Soft-Limit Theorem for NGBs

The on-shell tree-level scattering amplitude corresponding to a process involving at least
one massless NGB vanishes in the soft limit of the NGB, unless a kinematic singularity
appears.

1This matrix element describes an initial state |i〉 interacting with a NGB created/destroyed by the current Jµ

to form a final state |f〉.
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Chapter 6. Weinberg’s Soft-Limit Theorem and Covariant Current Conservation

Theorem 3: The Soft-Limit Theorem for mNGBs

The on-shell tree-level scattering amplitude corresponding to a process involving at least
one mNGB vanishes in the soft limit of the mNGB, unless a kinematic singularity ap-
pears.

The first theorem is well known and is proved in [10]. However, the proof will be presented
here both for completeness and the fact that the procedure for proving the second theorem
follows similar logic.

6.2 Weinberg’s Proof - Massless Goldstone Bosons
Proof. In this case we consider the SSB of a Lorentz invariant theory with at least one massless
NGB π(x), created by a broken current Jµ(x).2 From now on we will use the Heisenberg
picture, as in [19], where the spacetime dependence of the current can be expressed as Jµ(x) =
eiPxJµ(0)e−iPx, where P is the 4-momentum operator. The scattering process we will consider
is shown in Fig. 6.1, where an initial state |i〉 and a NGB π(k) scatters into a final state |f〉.

|i〉 |f〉

〈π(k)|Jµ|0〉

Figure 6.1: The figure represents the pole structure of the matrix element 〈f |Jµ(0)|i〉 describing
the process |i〉 + |π(k)〉 → |f〉 with corresponding scattering amplitude Afi. The large black
circle represents the scattering amplitude Afi, the small black dot represents the matrix element
〈π(k)|Jµ|0〉 responsible for the creation of a massless NGB and the dashed line represents the
massless NGB propagator i/k2. Combining these ingredients we can express the pole structure
as Afi × 〈π(k)|Jµ|0〉 × i/k2.

Mathematically Fig. (6.1) represents the pole structure of the matrix element

〈f |Jµ(x)|i〉 = ei(pf−pi)x 〈f |Jµ(0)|i〉 = eikx 〈f |Jµ(0)|i〉 , (6.1)

where k is the momentum of the NGB.3 We know that the mass of a particle can always be
determined from the pole of the propagator. Since, in this case, the NGB is massless we know
that Eq. (6.1) has a pole that looks like i/k2. In addition, it follows from Lorentz invariance that
〈π(k)|Jµ(0)|0〉 = kµF , where F is a scalar function. The large black circle in Fig. 6.1 repre-
sents the scattering amplitude Afi corresponding to the process |i〉+ |π(k)〉 −→ |f〉. Combining

2By broken current we mean the Noether current corresponding to the spontaneously broken symmetry.
3Note that we used momentum conservation, to write k = pf − pi, where pf and pi are the momenta of the

states |f〉 and |i〉 respectively.
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the ingredients as shown in Fig. 6.1 yields the Laurent series

〈f |Jµ(x)|i〉 = eikx
(
Nµ

fi +
ikµF

k2
Afi

)
, (6.2)

where Nµ
fi is the contribution to the matrix element 〈f |Jµ|i〉 that does not contain the Goldstone

pole.4 Differentiating both sides of Eq. (6.2) w.r.t. x and using the fact that the current Jµ is a
conserved quantity we obtain

0 = ikµ

(
Nµ

fi +
ikµF

k2
Afi

)
eikx, (6.3)

from which it follows that

Afi =
i

F
kµN

µ
fi =

i

F

(
k0N

0
fi − k ·Nfi

)
. (6.4)

Eq. (6.4) shows that the scattering amplitude vanishes in the soft limit of the NGB kµ → 0
if and only if Nµ

fi has no poles. However, if Nµ
fi has a pole in the soft limit then the scatter-

ing amplitude may not vanish. This is what happened in section 3.3 where we encountered a
kinematic singularity. To be more precise, what happened was that Nfi contained a factor 1/k
that cancelled the factor k in Eq. (6.4) only when the massless NGBs before and after the col-
lision were not collinear. In the collinear case the cancellation did not happen, resulting in an
amplitude that vanished in the soft limit. �

6.3 The Covariant Conservation Law
In the previous section the proof relies on the fact that the broken current is conserved i.e that
∂µJ

µ = 0. In cases with mNGBs the RHS of this conservation law will be nonzero due to
the additional term(s) explicitly breaking the symmetry, as mentioned in [18]. To be specific,
the would-be conservation law reads ∂µJµ = δL where δL is the variation of the Lagrangian
under a symmetry transformation. As δL varies from system to system, we are forced to find
a different conservation law that takes the same form in all systems. It turns out that we can
find such a conservation law by considering a gauge theory, where the gauge field contains the
chemical potential. The formulas and conventions we use in this section can be found in any
standard textbook on QFT such as [10], [19], [20] and [21].

For simplicity we consider a gauge theory with a Lagrangian that only depends on the fields
and their first derivatives L (φi, Dµφ

i). The i’th component of the covariant derivative is defined
as

Dµφ
i = ∂µφ

i − iAµa(Ta)ijφj (6.5)

where Aµa = µaδµ0 is the gauge field(s) containing the chemical potential(s) µa, and Ta are the
generator(s) coupled to the chemical potential(s). In order to derive the conservation law we
consider the Lagrangian under the infinitesimal gauge transformations

δφi = iθa(Ta)
i
jφ

j,

δAµa = ∂µθa + fabcAµbθc.
(6.6)

4Nµ
fi is called the non-pole contribution to the matrix element 〈f |Jµ|i〉. The name can in some cases be

misleading given that Nµ
fi may still contain poles not related to the Goldstone boson.
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By first requiring the variation of the action to be zero we obtain

0 = δS =

∫
d4x

[
∂L

∂φi
δφi +

∂L

∂(Dµφi)
δ
(
Dµφ

i
)]
. (6.7)

To proceed we need to find an expression for the variation of the covariant derivative δ
(
Dµφ

i
)
.

Eq. (6.5) implies that

δ(Dµφ
i) = ∂µ(δφi)− i(δAµa)(Ta)ijφj − iAµa(Ta)ij(δφj), (6.8)

and substituting the variations in Eq. (6.6) into Eq. (6.8) yields

δ(Dµφ
i) = iθa(Ta)

i
j∂µφ

j − ifabcAµbθc(Ta)ijφj + Aµaθb
[
(Ta)

i
j(Tb)

j
k

]
φk. (6.9)

Using then the definition of the structure constants[
Ta, Tb

]
= ifabcTc (6.10)

we can rewrite the term in the square brackets of Eq. (6.9) as[
(Ta)

i
j(Tb)

j
k

]
= (TaTb)

i
k = (TbTa)

i
k + ifabc(Tc)

i
k

= (Tb)
i
j(Ta)

j
k + ifabc(Tc)

i
k.

(6.11)

If we substitute Eq. (6.11) into Eq. (6.9) and simplify we obtain

δ(Dµφ
i) = iθa(Ta)

i
j

[
∂µφ

j − iAµb(Tb)jkφ
k
]

= iθa(Ta)
i
jDµφ

j. (6.12)

Now that we have explicit expressions for δφi and δ(Dµφ
i) we can continue working with the

variation of the action. Substituting Eqs. (6.6) and (6.12) into Eq. (6.7) gives

0 = δS =

∫
d4x

[
∂L

∂φi
φj +

∂L

∂(Dµφi)
Dµφ

j

]
iθa(Ta)

i
j. (6.13)

In order to obtain a Noether current, we need to find the analogue of the Euler-Lagrange equa-
tions such that we can express ∂L /∂φi in terms of the covariant derivative. The equation of
motion for φi is

∂µ
∂L

∂(∂µφi)
=
∂L

∂φi
+

∂L

∂(Dµφj)

∂(Dµφ
j)

∂φi
, (6.14)

which can be expressed as

∂µ
∂L

∂(∂µφi)
=
∂L

∂φi
− iAµa(Ta)ji

∂L

∂(Dµφj)
(6.15)

by using Eq. (6.5) to calculate ∂(Dµφ
j)/∂φi. From Eq. (6.15) it follows that

∂L

∂φi
= ∂µ

∂L

∂(∂µφi)
+ iAµa(Ta)

j
i

∂L

∂(Dµφj)
≡ Dµ

∂L

∂(Dµφi)
, (6.16)
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where we used

∂L

∂(∂µφi)
=

∂L

∂(Dµφj)

∂(Dµφ
j)

∂(∂µφi)
=

∂L

∂(Dµφj)
δji =

∂L

∂(Dµφi)
, (6.17)

and defined
Dµxi ≡ ∂µxi + iAµa(Ta)

j
ixj. (6.18)

Thus we can substitute Eq. (6.16) into Eq. (6.13) to obtain

0 =

∫
d4x

{
Dµ

[
∂L

∂(Dµφi)

]
φj +

∂L

∂(Dµφi)
Dµφ

j

}
iθa(Ta)

i
j. (6.19)

By then using the product rule we obtain

0 =

∫
d4xDµ

(
∂L

∂(Dµφi)
φj
)
iθa(Ta)

i
j. (6.20)

Since the variations iθa(Ta)ij are independent we obtain the conservation law

DµJ
µ
a = 0, (6.21)

where we identified the Noether current as

Jµa = i
∂L

∂(Dµφi)
(Ta)

i
jφ

j =
∂L

∂(Dµφi)
δφia. (6.22)

Eq. (6.21) is called the covariant conservation law, and will be used extensively in the following
discussions. The reason for its usefulness is that the RHS is independent of the variation of the
Lagrangian δL . As we will see this enables us to write down equations that we can solve for
the scattering amplitude in systems where the chemical potential explicly breaks a symmetry,
analogues to how we used the conservation law ∂µJ

µ = 0 in the previous section.
In order to actually use Eq. (6.21) we should figure out how the covariant derivative acts

on a tensor product representation such as the Noether current. The current has the same tensor
structure as the quantity xa = xi(Ta)

i
jφ

j , and we should therefore calculateDµxa. By first using
the product rule

Dµxa = [Dµxi](Ta)
i
jφ

j + xi(Ta)
i
j[Dµφ

j] (6.23)

and then replacing the square brackets by Eqs. (6.5) and (6.18) respectively, we find that

Dµxa = ∂µxa + iAµbxi
{

(Tb)
i
j(Ta)

j
k − (Ta)

i
j(Tb)

j
k

}
φk. (6.24)

The curly brackets in Eq. (6.24) is given by

(Tb)
i
j(Ta)

j
k − (Ta)

i
j(Tb)

j
k = [Tb, Ta]

i
k = ifbac(Tc)

i
k. (6.25)

Substituting Eq. (6.25) into Eq. (6.24) and performing the permutation b↔ a yields

Dµxa = ∂µxa + fabcAµbxi(Tc)
i
kφ

k = ∂µxa + fabcAµbxc. (6.26)

Thus the covariant conservation law takes the explicit form

∂µJ
µ
a + fabcAµbJ

µ
c = 0. (6.27)
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Chapter 7
Revisiting the Nonlinear Sigma Model for
SO(3)

A successful proof of theorem 3 requires that we find a formula for the scattering amplitude
which does not rely on explicitly calculating the corresponding Feynman diagrams. In other
words we want to obtain a formula similar to that of Eq. (6.4) where we expressed the am-
plitude only in terms of the non-pole contributions of the matrix element 〈f |Jµ|i〉. To find a
way of doing this it is useful to first discuss a simple concrete model. In this context simple
means a model that contains mNGBs with relativistic propagators, but does not allow for the
complications of mixing discussed in Chapter 5. An ideal candidate is of course the nonlinear
sigma model from section 3.2 containing a mNGB, a NGB and rotational symmetry. The linear
and nonlinear sigma models are both commonly used when discussing symmetry breaking and
Goldstone bosons, see e.g. [8], [9], [2], and [16]. However, in this chapter we will use the
nonlinear sigma model in quite a different way than what has been done earlier.

7.1 The Model

The Lagrangian is

L =
1

2
(Dµ~χ )2 (7.1)

where the magnitude of the field ~χ is constrained such that ~χ = (
√
v2 − π2 −G2, π,G) is

expressed in terms of the vev v, the NGB π and the mNGB G. The covariant derivative is
Dµ = ∂µ − iµT3δµ0, where the generator is given in Eq. (3.10).

In order to obtain the desired formula for the scattering amplitude we need to calculate
matrix elements of the form 〈f |Jµa |i〉 where Jµa is the Noether current corresponding to the
generator Ta that excites mNGBs. If we choose the initial state |i〉 to contain one NGB and
the final state |f〉 to contain both a mNGB and a NGB the matrix element 〈f |Jµa |i〉 represents
the process π(k) + G(p) −→ π(k′) + G(p′). In Feynman’s language 〈f |Jµa |i〉 can be expressed
diagrammatically, as shown in Fig. 7.1. To compute these diagrams it is clear that we need
to find Feynman rules involving the Noether currents Jµa . The method for calculating these is
actually pretty similar to the method we have used to calculate Feynman rules so far. The reason
being that the matrix element 〈f |Jµa |i〉 basically has the same structure as the S-matrix 〈f |S|i〉.
Hence we can proceed in the usual way, see [20], by expanding the Noether current in terms
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〈f |Jµa |i〉 = = + +

+ + +

k k′

p p′

p+ k

p+ k

p− k′

p− k′

Figure 7.1: The figure shows the Feynman diagrams that represent the matrix element 〈f |Jµa |i〉
at tree level. The incoming NGB and mNGB and the outgoing NGB and mNGB have momenta
k, p, k′ and p′ respectively. To avoid clutter the external momenta are only labelled in the first
diagram. The small black dot represents the current Jµa . The diagram describes an initial state
containing a NGB interacting with a mNGB created by the Noether current to form a final state
consisting of a NGB and a mNGB. The diagrams in the first and second line represent the pole
and non-pole contributions respectively.

of the fields1, wedging the current between the initial and final states that we have expressed
in terms of creation and annihilation operators and finally evaluating the Wick contractions to
obtain the Feynman rules. The analogy between 〈f |Jµa |i〉 and 〈f |S|i〉 tell us that the Feynman
rules we desire can be evaluated by treating the Noether current in the same way that we usually
treat the Lagrangian. To be concrete each term in the Noether current corresponds to a current-
interaction, and the Feynman rule can be evaluated by computing functional derivatives w.r.t.
the corresponding fields.

7.2 The Noether Currents

Let us first calculate the Noether currents using Eq. (6.22), which we derived in the previous
chapter. The general expression is2

Jµa = − ∂L

∂(Dµχi)
i(Ta)

i
kχ

k. (7.2)

A useful representation for the generators is the adjoint representation in which (Ta)
i
k = if iak,

3

see [19]. Since we are dealing with the group SO(3) the structure constants are given in terms
of the Levi-Civita tensor f iak = εiak. Substituting the Lagrangian in Eq. (7.1) into Eq. (7.2)
yields

Jµa = (Dµ~χ )iε
i
akχ

k. (7.3)

1This step is analogues to Dyson’s expansion, where the S-matrix is written as a perturbation series in terms of
the fields.

2Note that we chose to add a minus sign, without any physical consequences.
3There is no distinction between upper and lower indices in the structure constants in this thesis.
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7.3 The Matrix Element 〈f |Jµ2 |i〉

Thus the first component of Jµa is

Jµ1 = (Dµ~χ )3χ2 − (Dµ~χ )2χ3

= (∂µχ3)χ2 − (∂µχ2 + µδµ0χ1)χ3

= π∂µG−G∂µπ − µδµ0G
√
v2 − π2 −G2.

(7.4)

The second and third components of Jµa can be calculated in exactly the same way, giving

Jµ2 = −δµ0µπG− (v2 − π2)∂µG+ πG∂µπ√
v2 − π2 −G2

,

Jµ3 = δµ0µ(v2 −G2) +
πG∂µG+ (v2 −G2)∂µπ√

v2 − π2 −G2
.

(7.5)

Before we proceed, let us have a look at Fig. 7.1. From the second line we see that we are going
to need Feynman rules both bilinear and trilinear in the fields. As discussed the correct method
to obtain the Feynman rules is to calculate variational derivatives of the Noether currents. How-
ever, in their present forms this will not help us much because of the square roots. In order to
obtain all of the necessary Feynman rules we are forced to expand the Noether currents up to
third order in the fields. We expand the square roots as

√
v2 − π2 −G2 = v

√
1− π2 +G2

v2
= v

[
1− π2 +G2

2v2
+O(χ4

i )

]
,

1√
v2 − π2 −G2

=
1

v
√

1− π2+G2

v2

=
1

v

[
1 +

π2 +G2

2v2
+O(χ4

i )

]
.

(7.6)

If we substitute this into the Noether currents we obtain the following three expansions

Jµ1 = π∂µG−G∂µπ + δµ0
(
µG

π2 +G2

2v
− µvG

)
+O(χ4

i ),

Jµ2 = −v∂µG− δµ0µπG− 1

2v
∂µG(G2 − π2)− 1

v
πG∂µπ +O(χ4

i ),

Jµ3 = v∂µπ + δµ0µ(v2 −G2) +
1

v
πG∂µG− 1

2v
∂µπ(G2 − π2) +O(χ4

i ).

(7.7)

Note that the mNGB is only present linearly in Jµ1 and Jµ2 , meaning that only these currents
excite mNGBs. It follows that 〈f |Jµ1,2|i〉will contain both pole and non-pole contributions while
〈f |Jµ3 |i〉 will only contain non-pole contributions, see Fig. 7.1. Since the scattering amplitude
is connected to the pole pieces, it is only necessary to calculate 〈f |Jµ1,2|i〉.

7.3 The Matrix Element 〈f |Jµ2 |i〉

7.3.1 The Feynman Current Rules from Jµ2

In order to compute 〈f |Jµ2 |i〉 we see from Fig. 7.1 that we only need the following terms from
Jµ2 :

− v∂µG− δµ0µπG−
(1

v
πG∂µπ − 1

2v
π2∂µG

)
. (7.8)
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Of these only the third is nontrivial, so let us demonstrate how to calculate the corresponding
Feynman current rule. By performing a Fourier transformation we obtain4

( 1

2v
π2∂µG− 1

v
πG∂µπ

)
→
∫

i

v
π(p1)G(p3)π(p2)p2 −

i

2v
π(p1)π(p2)G(p3)p3. (7.9)

The Feynman current rule V µ(k, k′, p) is then obtained by calculating the three variational
derivatives

V µ(k, k′, p) =

∫
δ3

δπ(k)δπ(k′)δG(p)

( i
v
π(p1)G(p3)π(p2)p2 −

i

2v
π(p1)π(p2)G(p3)p3

)
=
i

v
(k + k′ − p)µ.

(7.10)

All of the Feynman current rules, that we are going to need, associated with Jµ2 are shown in
Fig. 7.2.

p

Jµ2

= ivpµ p

k

k′

= i
v
(k + k′ − p)µ

Jµ2

k

p

Jµ2

= −µδµ0

Figure 7.2: The figure shows the Feynman current rules that will be used to evaluate the matrix
element 〈f |Jµ2 |i〉. The solid and dashed line represents G and π respectively.

7.3.2 Calculating the Matrix Element
Now we can calculate the matrix element 〈f |Jµ2 |i〉 shown in Fig. 7.1 when a = 2, by using the
Feynman rules in Figs. 3.1 and 7.2. This gives

〈f |Jµ2 |i〉 = −ivpµ i

p2 − µ2
(−iAoff) +Nµ

2 (7.11)

where Aoff is the off-shell5 scattering amplitude calculated in Eq. (3.39) and Nµ
2 are the non-

pole contributions

Nµ
2 =

i

v
(p′ + k − k′)µ + δµ0 2µ2

v

{
ik0

(p− k′)2 − µ2
− ik′0

(p+ k)2 − µ2

}
. (7.12)

4In this case we use the same convention as in App. A.3.1, where we suppress all differentials and exponentials
as shown in Eq. (A.17).

5In this case ”off-shell” refers to the fact, that none of the particles in the collision π(k)+G(p) −→ π(k′)+G(p′)
are on shell yet.
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7.4 The Matrix Element 〈f |Jµ1 |i〉

7.4 The Matrix Element 〈f |Jµ1 |i〉
In this section we will calculate 〈f |Jµ1 |i〉. As before we need to first determine the Feynman
current rules from the corresponding Noether current which in this case is Jµ1 . The rules relevant
for our calculation are shown in Fig. 7.3

p

Jµ1

= −δµ0µv p

k

k′

= δµ0 µ
vJµ1

k

p

Jµ1

= i(k − p)µ

Figure 7.3: The figure shows the Feynman rules that will be used to evaluate the matrix element
〈f |Jµ1 |i〉.

and were calculated from the terms:

π∂µG−G∂µπ + δµ0
( µ

2v
Gπ2 − µvG

)
, (7.13)

present in Jµ1 .
The Feynman diagrams contributing to 〈f |Jµ1 |i〉 are displayed in Fig. 7.1 when a = 1. By

using the Feynman rules in Fig. 7.3 we obtain

〈f |Jµ1 |i〉 = −δµ0µv
i

p2 − µ2
(−iAoff) +Nµ

1 , (7.14)

where the non-pole contributions are

Nµ
1 = δµ0µ

v
+

2µ

v

{
(p− 2k′)µk0

(p− k′)2 − µ2
− (2k + p)µk′0

(p+ k)2 − µ2

}
. (7.15)

7.5 Current Conservation
Note that the off-shell scattering amplitude−iAoff is present in both matrix elements 〈f |Jµ1,2|i〉.
If we had an equation involving both matrix elements we would be able to solve for the ampli-
tude and hence determine the amplitude in terms of the non-pole contributions. The obvious
candidate for such an equation is the covariant conservation law that we discussed in section
6.3, where we showed that the Noether currents satisfies the equation DµJ

µ
a = 0. If we use the

matrix representation for the covariant derivative Dµ = ∂µ − iµT3δµ0 and collect the Noether
currents into a vector ~Jµ = (Jµ1 , J

µ
2 , J

µ
3 )T we obtain

0 = Dµ
~Jµ =

 ∂µJ
µ
1 − δµ0µJ

µ
2

δµ0µJ
µ
1 + ∂µJ

µ
2

∂µJ
µ
3

 , (7.16)
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which is satisfied when the Noether currents satisfy the Euler-Lagrange equations. Eq. (7.16)
implies that we can write

0 = µδµ0 〈f |Jµ1 |i〉+ ∂µ 〈f |Jµ2 |i〉 = µδµ0 〈f |Jµ1 |i〉+ ipµ 〈f |Jµ2 |i〉 , (7.17)

where p is the momentum of the mNGB, created by Jµ2 . Let us check whether or not this
equation is satisfied when the momenta k, k′, p and p′ are all off shell. By substituting Eqs.
(7.11) and (7.14) into the RHS of Eq. (7.17) we obtain

ipµ 〈f |Jµ2 |i〉+ µδµ0 〈f |Jµ1 |i〉 = ipµ

{
vpµ

p2 − µ2
(−iAoff) +

i

v
(k − k′ + p′)µ

−
���

���
���

���XXXXXXXXXXXX

2µ2δµ0k′0
v

i

(k + p)2 − µ2
+
��

���
���

���
��XXXXXXXXXXXXX

2µ2δµ0k0

v

i

(p′ − k)2 − µ2

}

+ µδµ0

{
− µvδµ0i

p2 − µ2
(−iAoff) +

µδµ0

v
− 2µk′0

v

(2k + �Ap)
µ

(p+ k)2 − µ2

+
2µk0

v

(�Ap− 2k′)µ

(p′ − k′)2 − µ2

}
,

(7.18)

where the crosses indicate cancellations. If we substitute Eq. (3.39) for the off-shell amplitude
into the expression above and use momentum conservation we obtain

ipµ 〈f |Jµ2 |i〉+ µδµ0 〈f |Jµ1 |i〉 =
1

v
(µ2 − p′2) (7.19)

which only vanishes if we use the on-shell condition p′2 = µ2. Thus the only requirement
necessary for Eq. (7.17) to be satisfied is that p′ is on shell. However, note that the other
momenta k, k′ and p need not be on shell for the conservation law to hold.

By performing a very similar calculation we can also show that ∂µ 〈f |Jµ1 |i〉−δµ0µ 〈f |Jµ2 |i〉 =
0 is satisfied only when p′, k and k′ are all on shell.

Thus it is clear that both ∂µ 〈f |Jµ2 |i〉+µδµ0 〈f |Jµ1 |i〉 = 0 and ∂µ 〈f |Jµ1 |i〉−δµ0µ 〈f |Jµ2 |i〉 = 0
are satisfied simultaneously if and only if p′, k and k′ are on shell. However, it is not yet
necessary to impose that p should be on shell as well.

7.6 The Scattering Amplitude

Having verified that

ipµ 〈f |Jµ2 |i〉+ µδµ0 〈f |Jµ1 |i〉 = 0 (7.20)
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7.6 The Scattering Amplitude

is satisfied when p′ is on shell we can finally construct a formula for the scattering amplitude.
If we once again substitute Eqs. (7.11) and (7.14) into Eq. (7.20) we get

0 = ipµ 〈f |Jµ2 |i〉+ µδµ0 〈f |Jµ1 |i〉 = ipµ

{
vpµ

p2 − µ2
(−iAoff) +Nµ

2

}

+ µδµ0

{
iµvδµ0

p2 − µ2
(iAoff) +Nµ

1

}

= (−iAoff)

{
iv(p2 − µ2)

p2 − µ2

}
+ ipµN

µ
2 + µN0

1

= iv(−iAoff) + ipµN
µ
2 + µN0

1 .

(7.21)

From Eq. (7.21) it follows that the scattering amplitude is given by

− iAoff =
i

v
(ipµN

µ
2 + µN0

1 ), (7.22)

where p, k and k′ are still off shell. This is exactly the kind of formula that we have been
looking for, where we note that the scattering amplitude can be expressed in terms of the non-
pole contributions of the matrix elements 〈f |Jµ1,2|i〉.

7.6.1 Soft Limit

Our conjecture on page 60 states that the scattering amplitude in Eq. (7.22) should vanish when
we let p, k, p′ and k′ be on shell and send the three momentum p −→ 0. However, at first glance
this does not appear to be the case. Our next step is therefore to determine how the vanishing
of the on-shell scattering amplitude in the soft limit follows from the conservation laws. That
is, we want to show that −iAon = i

v
(ipµN

µ
2 + µN0

1 ) vanishes in the soft limit of the on-shell
mNGB pµ → µδµ0, when also k, k′ and p′ are on shell.

In deriving Eq. (7.22) we only used the conservation law ∂µ 〈f |Jµ2 |i〉 + µδµ0 〈f |Jµ1 |i〉 = 0.
Thus we still have one more conservation law at our disposal

∂µ 〈f |Jµ1 |i〉 − µδµ0 〈f |Jµ2 |i〉 = 0 (7.23)

which is satisfied if p′, k and k′ are all on shell. First consider the LHS and replace 〈f |Jµ2 |i〉 and
〈f |Jµ1 |i〉 by Eqs. (7.11) and (7.14) respectively, as shown below

∂µ 〈f |Jµ1 |i〉 − µδµ0 〈f |Jµ2 |i〉 = ipµ 〈f |Jµ1 |i〉 − µδµ0 〈f |Jµ2 |i〉

= ipµ

{
iµvδµ0

p2 − µ2
(iAoff) +Nµ

1

}

− µδµ0

{
vpµ

p2 − µ2
(−iAoff) +Nµ

2

}

= (−iAoff)

{
µvp0 − µvp0

p2 − µ2

}
+ ipµN

µ
1 − µN0

2 .

(7.24)
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Note that the term in the curly brackets vanishes exactly, without the need to impose any on-
shell condition on the momenta p, k, p′ and k′. If we now use the on-shell conditions p′2 = µ2,
k2 = 0 and k′2 = 0 we can set the RHS of Eq. (7.24) equal to zero and obtain

0 = ipµN
µ
1 − µN0

2 =⇒ ipµN
µ
1 = µN0

2 . (7.25)

If we in addition also let the mNGB be on shell and send its 3-momentum to zero such that
pµ → µδµ0, Eq. (7.25) implies that6

µN0
1,soft = −iµN0

2,soft. (7.26)

If we now take the on shell soft limit of the mNGB in Eq. (7.22) we obtain

−iAon =
i

v
(ipµN

µ
2 + µN0

1 )→ i

v
(iµNµ

2,soft + µN0
1,soft)

=
i

v
(iµNµ

2,soft − iµN
µ
2,soft) = 0.

(7.27)

Thus we have demonstrated that by using one of the available conservation laws we can con-
struct a formula for the off-shell scattering amplitude −iAoff , where only p′ is on shell. By
also using the second available conservation law we managed to show that if p, p′, k and k′ are
all on shell the corresponding on-shell scattering amplitude −iAon vanishes in the soft limit of
the mNGB. In principle the method discussed in this chapter can be applied to all other sym-
metry breaking patterns. However, before we attempt such a generalisation it is useful to see
how the argument goes for a theory where the mNGB propagator is non-relativistic, such that
p2 6= (mass)2.

6The subscripts ”soft” indicate that the non-pole contributions are evaluated in the on shell soft limit pµ −→ µδµ0

of the mNGB.
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Chapter 8
Revisiting the Higgs-Like Model

In chapter 4 we studied a Higgs-like model with the symmetry breaking pattern

SU(2)L × SU(2)R
µ−→ SU(2)L × U(1)R −→ U(1)′ (8.1)

and found that the particle spectrum consists of a Higgs mode, a NGB of type-I, a NGB of
type-II and a mNGB with mass 2µ. In this chapter we want to study this model in the same way
that we studied the SO(3) model in the previous chapter. That is, our goal is to find a formula
for the scattering amplitude Aoff(mNGB + NGB −→ mNGB + NGB) expressed in terms of the
non-pole contributions of some current element. From this formula we should be able to show
that the scattering amplitude vanishes in the soft limit of the mNGB if we require all particles
to be on shell. To find such a formula we will have to determine the following

• The Feynman rules,

• The scattering amplitude,

• The Noether currents,

• The Feynman current rules,

• The matrix current element.

The Higgs-like model is one of the standard examples when discussing both massless and
massive Goldstone bosons. It is mentioned or discussed in a lot of papers such as [1], [2], [7],
[9], [17], [18] and [22]. In this section we use conventions that are similar to the ones found in
[9], but in this thesis we focus on the mNGB instead of the massless NGBs.

8.1 The Lagrangian
It might be tempting to start from the Lagrangian in Eq. (4.1). However, this turns out to be
inconvenient because we then need to figure out how the fields transform under the symmetry
transformations SU(2)L × U(1)R. Instead we will use a Lagrangian that is completely equiv-
alent, although it may not look that way at first. The Lagrangian we will consider is given
by

L =
1

2
Tr
(
DµΦ†DµΦ

)
− m2

2
Tr
(

Φ†Φ
)
− λ

4

[
Tr
(

Φ†Φ
)]2

. (8.2)
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Chapter 8. Revisiting the Higgs-Like Model

Here Φ = (φc|φ) is a matrix consisting of a complex doublet φ and its charge conjugated
field φc = iτ2φ

∗, where ~τ is the Pauli matrices and ∗ denotes complex conjugation. The field
transforms as Φ −→ ULΦU †R under an SU(2)L×SU(2)R transformation, making the SU(2)L×
SU(2)R invariance of Eq. (8.2) obvious. The covariant derivative is defined as

DµΦ = ∂µΦ− iLµΦ + iΦRµ, (8.3)

where Lµ = ~Lµ ·~τ and Rµ = ~Rµ ·~τ are the generators of SU(2)L and SU(2)R respectively. The
symmetry breaking pattern in Eq. (8.1) tells us that the mNGBs come from the explicit breaking
of SU(2)R only. This means that if we couple the chemical potential to Rµ

3 the generators Rµ
1

and Rµ
2 break explicitly. Thus since we are interested only in the interactions involving mNGBs

we only care about the currents JµR1
and JµR2

meaning that we can set Lµ = 0 in all of our
calculations. However, before we begin calculating the Noether currents it is useful to expand
DµΦ†DµΦ as

DµΦ†DµΦ = ∂µΦ†∂µΦ + i∂µΦ†ΦRµ − iRµΦ†∂µΦ +RµΦ†ΦRµ (8.4)

and substitute this into the Lagrangian to obtain

L =
1

2
Tr
(
∂µΦ†∂µΦ + i∂µΦ†ΦRµ

aτa − iRµaτaΦ
†∂µΦ +RµaτaΦ

†ΦRµ
b τb

)
− m2

2
Tr
(

Φ†Φ
)
− λ

4

[
Tr
(

Φ†Φ
)]2

.

(8.5)

8.2 The Noether Currents
Having introduced the gauge field Rµ = Rµ

c τc it is natural to calculate the Noether currents as
JµRc = δL /δRµ

c .1 This gives

JµRc =
1

2
Tr
(
i∂µΦ†Φτc − iτcΦ†∂µΦ + 2Rµ

cΦ†Φ
)

(8.6)

where we used that δRµ
a/δR

ν
c = δµνδac and {τa, τb} = 2δab. Hence, JµR1

is given by2

JµR1
=

1

2
Tr
(
i∂µΦ†Φτ1 − iΦ†∂µΦτ1

)
. (8.7)

Let us first evaluate ∂µΦ†Φτ1 by first performing the matrix multiplication

∂µΦ†Φτ1 =

(
(∂µφ

c)†

(∂µφ)†

)(
φc φ

)( 0 1
1 0

)

=

(
(∂µφ

c)†φ · · ·
· · · (∂µφ)†φc

)
.

(8.8)

1This expression comes from the fact that when we gauge the theory, the replacement ∂µ −→ Dµ is equivalent
to adding a term AµJ

µ to the Lagrangian. Thus the path integral takes the form

Z
[
Jµ
]

=

∫
Dφ exp

{
i

∫
d4xL +AµJ

µ
}

and we can obtain the classical Noether current by calculating the variational derivative w.r.t. the gauge field Aµ.
2We ignored the term 2Rµ1 Φ†Φ because in the end we will couple the chemical potential to τ3 only, such that

Rµ1 = Rµ2 = 0.
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If we then rewrite the diagonal elements as

(∂µφ
c)†φ = (∂µiτ2φ

∗)†φ = −i(∂µφ)Tτ2φ,

(∂µφ)†φc = (∂µφ)†iτ2φ
∗ = i(∂µφ)†τ2φ

∗,
(8.9)

we obtain

∂µΦ†Φτ1 =

(
−i(∂µφ)Tτ2φ · · ·
· · · i(∂µφ)†τ2φ

∗

)
. (8.10)

A similar calculation yields

Φ†∂µΦτ1 =

(
−iφTτ2∂

µφ · · ·
· · · iφ†τ2(∂µφ)∗

)
. (8.11)

By substituting Eqs. (8.10) and (8.11) into Eq. (8.7) and evaluating the trace we obtain

JµR1
= −φTτ2∂

µφ+ φ†τ2(∂µφ)∗. (8.12)

Since the calculation for JµR2
is very similar we omit the calculation and state the result

JµR2
= −iφTτ2∂

µφ− iφ†τ2(∂µφ)∗. (8.13)

Before we can proceed, by parametrising the field φ, we need to check that our model has a vev.

8.3 Expanding the Lagrangian and Determining the Vev
Recall that we decided to couple the chemical potential to the third Pauli matrix, meaning that
Rµ = µδµ0τ3. Substituting this into Eq. (8.5) gives

L =
1

2
Tr
(
∂µΦ†∂µΦ + iµΦ̇†Φτ3 − iµΦ†Φ̇τ3 + (µ2 −m2)Φ†Φ

)
− λ

4

[
Tr
(

Φ†Φ
)]2

. (8.14)

By denoting the two components of φ as φ1 and φ2 it is straightforward to evaluate all of the
quantities in the Lagrangian, this results in

L = ∂µφ
∗
1∂

µφ1 + ∂µφ
∗
2∂

µφ2 + iµ(φ̇1φ
∗
1 − φ̇∗1φ1) + iµ(φ̇2φ

∗
2 − φ̇∗2φ2)

+ (µ2 −m2)(φ∗1φ1 + φ∗2φ2)− λ(φ∗1φ1 + φ∗2φ2)2.
(8.15)

This is the same expression as in Eq. (4.3). Thus we have shown that the two Lagrangians in
Eqs. (4.3) and (8.2) indeed are equivalent. As in chapter 4 we find that the vev is

v2 =
µ2 −m2

λ
(8.16)

and parametrise the field like

φ =

(
ψ

1√
2
(v + ψ3 + iψ4)

)
. (8.17)
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By substituting Eq. (8.17) into Eq. (8.15) and simplifying we find that

L = ∂µψ
∗∂µψ + iµ(ψ∗ψ̇ − ψψ̇∗)

+
1

2
(∂µψ3)2 +

1

2
(∂µψ4)2 − µ(ψ3ψ̇4 − ψ4ψ̇3)− λv2ψ2

3

− λ(ψ∗ψ)2 − 2λv(ψ∗ψ)ψ3 − λψ∗ψ(ψ2
3 + ψ2

4)− λ
(
ψ4

3

4
+
ψ2

3ψ
2
4

2
+
ψ4

4

4

)
− λvψ3

3 − λvψ3ψ
2
4,

(8.18)

where we dropped the constant term.

8.4 Dispersion Relations, Propagators and Feynman Rules
Before we can calculate scattering amplitudes involving the mNGB we need to analyse the
particle spectrum more closely than what we did in chapter 4. To this end we rewrite Eq. (8.18)
in matrix form,

L =
1

2

(
ψ∗ ψ

)( −∂µ∂µ + 2iµ∂0 0
0 −∂µ∂µ − 2iµ∂0

)(
ψ
ψ∗

)

+
1

2

(
ψ3 ψ4

)( −∂µ∂µ − 2λv2 −2µ∂0

2µ∂0 −∂µ∂µ

)(
ψ3

ψ4

)

− λ(ψ∗ψ)2 − 2λv(ψ∗ψ)ψ3 − λψ∗ψ(ψ2
3 + ψ2

4)− λ
(
ψ4

3

4
+
ψ2

3ψ
2
4

2
+
ψ4

4

4

)
− λvψ3

3 − λvψ3ψ
2
4,

(8.19)

and perform a Fourier transformation to obtain the inverse propagators

D−1
1 =

(
ω2 − p2 + 2µω 0

0 ω2 − p2 − 2µω

)
(8.20)

and

D−1
2 =

(
ω2 − p2 − 2λv2 2iµω
−2iµω ω2 − p2

)
. (8.21)

Since the inverse propagator in Eq. (8.20) is diagonal in the (ψ∗, ψ) basis the matrix describes
the propagation of a particle-antiparticle pair. By using the same convention for charge flow as
we use in QED 3 the two equations4

ω2 + 2µω − p2 = 0

ω2 − 2µω − p2 = 0
(8.22)

determines the dispersion relation for the particle and antiparticle respectively. The solutions
are

ω = −µ+
√
µ2 + p2,

ω = µ+
√
µ2 + p2.

(8.23)

3To be explicit: the charge is created at point x by ψ(x) and flows to point y where it is annihilated by ψ∗(y).
4Obtained by requiring that detD−1

1 = 0.
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8.5 Particle-Antiparticle Scattering

From the dispersion relations we see that the type-II NGB and the mNGB actually form a
particle-antiparticle pair!5 Given that the inverse propagator is diagonal it is trivial to determine
the propagators, the results are shown in Fig. 8.1.

There is not much subtlety in the particle spectrum associated with D−1
2 , which we calcu-

lated in Eq. (4.19). However, since the propagator is not diagonal the fields ψ3 and ψ4 exhibit
mixing which means we have to be careful when evaluating Feynman diagrams. The propagator
for (ψ3, ψ4) is found by inverting D−1

2 and is equal to

iD2 =
i

p2(p2 − 2λv2)− 4µ2p2
0

(
p2 −2iµp0

2iµp0 p2 − 2λv2

)
. (8.24)

Finally the relevant interactions follow from the penultimate line in Eq. (8.18). For convenience
all of the Feynman rules that we are going to use when calculating scattering amplitudes, are
shown in Fig. 8.1.

= −4iλ = −2iλv
ψ3

p
= ip2

p2(p2−2λv2)−4µ2p20

p

= i
p2−2µp0

Figure 8.1: The Feynman rules needed for computing particle-antiparticle scattering in the
SU(2) × U(1) model. The solid and dashed line represents the particle-antiparticle pair and
the (ψ3, ψ4) particle respectively.

8.5 Particle-Antiparticle Scattering

In this section we want to calculate the scattering amplitude for the elastic scattering of the
mNGB and the type-II NGB and show that it vanishes in the corresponding soft limits. The
Feynman diagrams contributing to the off-shell scattering amplitude is shown in Fig. 8.2.

Using the Feynman rules in Fig. 8.1 the off-shell amplitude is

−iAoff = −4iλ+ (2iλv)2 i(p+ k)2

(p+ k)2
[
(p+ k)2 − 2λv2

]
− 4µ2(p0 + k0)2

+ (2iλv)2 i(p− p′)2

(p− p′)2
[
(p− p′)2 − 2λv2

]
− 4µ2(p0 − p′0)2

,

(8.25)

where p, p′, k and k′ are off shell.

5Of course it is not a real particle-antiparticle pair because their masses are different. It would perhaps be more
fitting to denote the mNGB as a pseudo-antiparticle, but for simplicity we will call it an antiparticle.
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p

p′

k

k′
+

p

p′

k

k′
+

p+ k

p p′

k k′

p− p′−iAoff =

Figure 8.2: The scattering amplitude for particle-antiparticle scattering.

mNGB Soft Limit

The soft limit of the on-shell mNGB is pµ −→ 2µδµ0. In this limit we have the on-shell relations

(p+ k)2 −→ 2µ(p0 − k0) + 4µk0 = 2µ(p0 + k0) =⇒ (p+ k)4 −→ 4µ2(p0 + k0)2,

(p− p′)2 −→ 2µ(p0 + p′0)− 4µp′0 = 2µ(p0 − p′0) =⇒ (p− p′)4 −→ 4µ2(p0 − p′0)2,
(8.26)

where we used p2 = 2µp0, p
′2 = 2µp′0, k

2 = −2µk0 and k′2 = −2µk′0 which are consequences
of the non-relativistic dispersion relations in Eq. (8.23). By using these relations we see that
the two fractions in Eq. (8.25) simplify and we obtain

− iAon −→ −4iλ+ 2iλ+ 2iλ = 0, (8.27)

in the soft limit where p −→ µδµ0. Thus the scattering amplitude vanishes in the soft limit of the
mNGB when p, k, p′ and k′ are on shell.

NGB Soft Limit

We also expect the on-shell amplitude to vanish in the limit kµ −→ 0. An explicit calculation
confirms this,

−iAon −→ −4iλ+ (2iλv)2 ip2

p2
[
p2 − 2λv2

]
− 4µ2p2

0

+ (2iλv)2 ik′2

k′2
[
k′2 − 2λv2

]
− 4µ2k′20

= −4iλ+ 2iλ+ 2iλ = 0,

(8.28)

where we once again used that p2 = 2µp0, p
′2 = 2µp′0, k

2 = −2µk0 and k′2 = −2µk′0.

8.6 Expanding the Noether Currents
So far we have determined that our model contains a nonzero vev when µ > m, and that it has
an on-shell amplitude describing particle-antiparticle scattering that vanishes in the soft limits
of the Goldstone bosons. Let us now try to use the same strategy that we used in the previous
chapter to obtain a formula for the scattering amplitude in terms of the non-pole contributions
of some matrix current element. As a first step we need to express the currents in Eqs. (8.12)
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and (8.13) in terms of the fields ψ, ψ3 and ψ4. To do this we need to calculate φTτ2∂
µφ and

φ†τ2(∂µφ)∗, by using the second Pauli matrix and parametrising φ as in Eq. (8.17). This gives

φTτ2∂
µφ =

1√
2

{
iv∂µψ +

(
ψ∂µψ4 − ψ4∂

µψ
)

+ i
(
ψ3∂

µψ − ψ∂µψ3

)}
,

φ†τ2(∂µφ)∗ =
1√
2

{
iv∂µψ∗ +

(
ψ4∂

µψ∗ − ψ∗∂µψ4

)
+ i
(
ψ3∂

µψ∗ − ψ∗∂µψ3

)}
.

(8.29)

By substituting the expressions in Eq. (8.29) into the Noether currents given by Eqs. (8.12) and
(8.13) we see that both of the currents JµR1

and JµR2
have a linear piece that contains the fields ψ

and ψ∗. Thus we could continue in exactly the same way as we did in the previous chapter by
first calculating 〈f |JµR1

|i〉 and then 〈f |JµR2
|i〉. By then using one of the two conservation laws

we could find an explicit formula for the scattering amplitude in Eq. (8.25). However, from this
formula it is not at all obvious that the amplitude should vanish in the soft limit. In fact, to show
that it vanishes we have to use the second available conservation law as well. In principle this
is not a problem, but it is hard to generalise this strategy. However, if we could combine the
Noether currents into a linear combination we would incorporate the information contained in
both conservation laws. This would give us one current, satisfying one conservation law. If we
can calculate the amplitude from this special current, we should obtain a formula from which it
should be trivial to see that the amplitude vanishes in the soft limit. We will now demonstrate
that the construction of such a current is possible, while we will justify it rigorously in chapter
9.

8.7 The Current Element
We define the current

Jµ± =
1√
2

(
JµR1
± iJµR2

)
(8.30)

and choose to calculate 〈f |Jµ−|i〉, where |f〉 contains both the mNGB and the type-II NGB while
|i〉 only contains the type-II NGB. The mNGB interacting with |i〉 is created by the current

Jµ− = −iv∂µψ − i
(
ψ3∂

µψ − ψ∂µψ3

)
+
(
ψ4∂

µψ − ψ∂µψ4

)
, (8.31)

which satisfies the conservation law67(
∂µ − 2iµδµ0

)
Jµ− = 0. (8.32)

By treating the current Jµ− as a Lagrangian we can calculate the Feynman current rules. For
convenience we display all of the ingredients that we will need for calculating the current ele-
ment 〈f |Jµ−|i〉 in Fig. 8.3. By using these ingredients we can draw the Feynman diagrams that
contribute to the current element 〈f |Jµ−|i〉 as in Fig. 8.4.

An explicit calculation of the current element gives

〈f |Jµ−|i〉 =
ivpµ

p2 − 2µp0

(−iAoff) +Nµ
−, (8.33)

6This can be checked explicitly by using the Euler-Lagrange equations for the fields ψ, ψ3 and ψ4 to express
∂µ∂

µψ, ∂µ∂µψ3 and ∂µ∂µψ4 in terms of time derivatives and products of fields. However, due to an enormous
amount of algebra I used Mathematica and have therefore omitted the calculation.

7In chapter 9 we will justify this conservation law rigorously.
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where

Nµ
− =

i(p+ 2k)µ
[
(p+ k)2 + 2µ(p0 + k0)

]
(2iλv)

(p+ k)2
[
(p+ k)2 − 2λv2

]
− 4µ2(p0 + k0)2

+
i(p− 2p′)µ

[
(p− p′)2 + 2µ(p0 − p′0)

]
(2iλv)

(p− p′2)
[
(p− p′)2 − 2λv2

]
− 4µ2(p0 − p′0)2

.

(8.34)

p q

ψ3

= qµ − pµ
p

= −vpµ

ψ3
= −2iλv

p q

ψ4

= i(q − p)µ

ψ3 ψ3
= ip2

p2[p2−2λv2]−4µ2p20p

ψ4 ψ3
= 2µp0

p2[p2−2λv2]−4µ2p20p

p

= i
p2−2µp0

Figure 8.3: The Feynman rules we will use to calculate 〈f |Jµ−|i〉. The black dot represents the
current Jµ− responsible for the creation of the mNGB.
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〈f |Jµ−|i〉 =

p

k

p′

k′

= + +
p+ k

p− p′

+ +
p+ k

ψ3 ψ3

p+ k

ψ4 ψ3

+ p− p′
ψ3

ψ3

+ p− p′
ψ4

ψ3

Jµ−

Figure 8.4: The figure shows the Feynman diagrams that represent the matrix element 〈f |Jµ−|i〉
at tree level. The incoming NGB and mNGB and the outgoing NGB and mNGB have momenta
k, p, k′ and p′ respectively. To avoid clutter the external momenta are only labelled in the
first diagram. The small black dot represents the current Jµ−. The diagrams describe an initial
state with a NGB interacting with a mNGB created by the Noether current to form a final state
consisting of a NGB and a mNGB. Since in this case the fields ψ3 and ψ4 mix we get four
non-pole contributions.
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8.8 Current Conservation
Now, we will investigate the conservation law

∂µ 〈f |Jµ−|i〉 − 2iµ 〈f |J0
−|i〉 = 0. (8.35)

That is we want to see which of the momenta p, p′, k and k′ have to be on shell for the conser-
vation law to be satisfied. To this end we substitute Eq. (8.33) into the LHS of of Eq. (8.35),

ipµ 〈f |Jµ−|i〉 − 2iµ 〈f |J0
−|i〉 = ipµ

{
ivpµ(−iAoff)

p2 − 2µp0

−
i(p+ 2k)µ(−2iλv)

[
(p+ k)2 + 2µ(p0 + k0)

]
(p+ k)2

[
(p+ k)2 − 2λv2

]
− 4µ2(p0 + k0)2

+
i(2p′ − p)µ(−2iλv)

[
(p− p′)2 + 2µ(p0 − p′0)

(p− p′)2
[
(p− p′)2 − 2λv2

]
− 4µ2(p0 − p′0)2

}

− 2iµ

{
ivp0(−iAoff)

p2 − 2µp0

−
i(p+ 2k)0(−2iλv)

[
(p+ k)2 + 2µ(p0 + k0)

]
(p+ k)2

[
(p+ k)2 − 2λv2

]
− 4µ2(p0 + k0)2

+
i(2p′ − p)0(−2iλv)

[
(p− p′)2 + 2µ(p0 − p′0)

]
(p− p′)2

[
(p− p′)2 − 2λv2

]
− 4µ2(p0 − p′0)2

}
.

If we collect the the terms with the same denominator we obtain

− i
{

(−iAoff)(−iv) +
i
[
(p+ k)2 + 2µ(p0 + k0)

]
(−2iλv)

(p+ k)2
[
(p+ k)2 − 2λv2

]
− 4µ2(p0 + k0)2

{
(pµ − 2µδµ0)(2kµ + pµ)

}
+

i
[
(p− p′)2 + 2µ(p0 − p′0)

]
(−2iλv)

(p− p′)2
[
(p− p′)2 − 2λv2

]
− 4µ2(p0 − p′0)2

{
(pµ − 2µδµ0)(pµ − 2p′µ)

}}
.

To simplify this we use the following on-shell relations:

(pµ − 2µδµ0)(2kµ + pµ) =
[
(p′µ + k′µ)− kµ

][
kµ + (p′µ + k′µ)

]
− 2µ(2k0 + p0)

= (pµ + kµ)2 − 2µ(p0 + k0)
(8.36)

and
(pµ − 2µδµ0)(pµ − 2p′µ) =

[
(k′µ − kµ) + p′µ

][
(k′µ − kµ)− p′µ

]
− 2µ(p0 − 2p′0)

= (p− p′)2 − 2µ(p0 − p′0).
(8.37)

Note that Eqs. (8.36) and (8.37) were obtained by assuming that p′, k and k′ were on shell, but
p was kept off shell. Using the on-shell relations and Eq. (8.25) we end up with

ipµ 〈f |Jµ−|i〉 − 2iµ 〈f |Jµ−|i〉 = −i
(
− 4λv + 2λv + 2λv

)
= 0. (8.38)

We emphasise that the equality only holds provided all momenta except that of the mNGB
(created by Jµ−) are on shell.

8.9 Scattering Amplitude
In this section we use the conservation law we just discussed to derive a formula for the off-shell
scattering amplitude −iAoff .8 Substituting Eq. (8.33) into Eq. (8.35) gives

ipµ

{
ivpµ

p2 − 2µp0

(−iAoff) +Nµ
−

}
− 2iµδµ0

{
ivpµ

p2 − 2µp0

(−iAoff) +Nµ
−

}
= 0. (8.39)

8To avoid confusion: the subscript in this case indicates that only p is off shell.

82



8.9 Scattering Amplitude

Collecting the two terms involving the amplitude gives

(−iAoff)

p2 − 2µp0

(p2 − 2µp0)(−v) + ipµN
µ
− − 2iµN0

− = 0. (8.40)

By solving for the amplitude we obtain the formula

− iAoff =
ipµN

µ
− − 2iµN0

−

v
, (8.41)

which obviously vanishes when we let p be on shell and send the 3-momentum to zero such
that pµ = 2µδµ0. Showing that our formula reproduces the amplitude in Eq. (8.25) is redundant
because the calculation in this section is equivalent to the calculation in the previous section.
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Chapter 9
Generalisations

Having looked at the structure of the concrete examples in chapters 7 and 8 it is now much
easier to make some general remarks and finally prove theorem 3. We begin by investigating
some of the well known exact statements about mNGBs discussed in [1] and [9]. These well
established statements combined with what we learnt from the previous two chapters allow us
to formulate a proof of theorem 3 in the perturbative picture.

Following this discussion we want to make some statements that do not rely on perturbation
theory. We begin by determining the exact form of the dispersion relation for mNGBs and finish
by proving theorem 3 non-perturbatively.

9.1 Some Well-Known Results
In this section we follow the main argument of [9] closely, in order to understand the results
we have discussed so far at a deeper level. Let us consider a many-body system, initially at
zero chemical potential µ, with Hamiltonian H whose symmetry group is denoted by G. The
Hamiltonian describing the system at nonzero µ is thus H̃ = H − µQ, where Q is one of the
generators of G. The symmetry group of H̃ is denoted by G̃, and we define the vacuum state
|0〉 by

H̃ |0〉 ≡ 0. (9.1)

Given that Qi, the generators of G, is a symmetry of the Hamiltonian H it follows from stan-
dard quantum mechanics that [H , Qi] = 0, which means that

Qi(t) =

∫
d3x ei(H t−Px)J0

i (0)e−i(H t−Px) (9.2)

is time independent.1 In our calculations up to this chapter we have made in particular two
important well known observations:

1. Massless NGBs are born when the generators of G̃ are broken spontaneously. A type-I
NGB corresponds to one spontaneously broken generator, and a type-II NGB corresponds
to two spontaneously broken generators.

1Eq. (9.2) describes the time-evolution of an operator Q in the Heisenberg picture. P and x are the 3-
momentum operator and position respectively.

85



Chapter 9. Generalisations

2. mNGBs are born when the generators of G are broken explicitly in the step G
µ−→ G̃. So

far we have noticed that a pair of explicitly broken generators always seem to give exactly
one mNGB.

The second statement is a result of the Cartan decomposition. In fact the explicitly broken
generators can be grouped together in pairs of linear combinations Q±σ that satisfy

[Q,Q±σ] = ±qσQ±σ, (9.3)

where σ labels each pair and qσ is a positive real number. By defining an order parameter
λσ = 〈0|[Q+σ(t), J0

−σ(0)]|0〉, using Eq. (9.2), inserting a complete set of eigenstates 1 =∑
n |n,p〉 〈n,p| and performing the spatial integration the authors of [9] obtain

λσ =
∑
n

e−i[En(0)−µqσ ]t
∣∣〈0|J0

+σ|n, 0〉
∣∣2

−
∑
n

ei[En(0)+µqσ ]t
∣∣〈0|J0

−σ|n, 0〉
∣∣2 . (9.4)

Note that λσ = 〈0|[Q+σ(t), J0
−σ(0)]|0〉 is time independent, because Q+σ(t) commutes with

the Hamiltonian. If we assume that the mass of the n’th excitation is En(0) ≥ 0 it fol-
lows that 〈0|J0

−σ|n, 0〉 = 0 for all n. There are then two things that can happen: Either
〈0|J0

+σ|n, 0〉 = 0 resulting in no mNGBs or 〈0|J0
+σ|n, 0〉 6= 0 from which it follows that

H̃ |n, 0〉 = En(0) |n, 0〉 = µqσ |n, 0〉. Thus if 〈0|J0
+σ|n, 0〉 6= 0 the state |n,p〉 is a mNGB

with mass µqσ.
Furthermore, if 〈0|J0

−σ|n, 0〉 = 0 and 〈0|J0
+σ|n, 0〉 6= 0 it follows from the definition of λσ

that Q+σ |0〉 = 0 and Q−σ |0〉 6= 0 respectively. So the operator Q+σ annihilates the vacuum
while Q−σ excites a particle. To find the mass of the particle excited by Q−σ, consider the
commutator

[H̃ , Q−σ] |0〉 = [H , Q−σ] |0〉 − µ[Q,Q−σ] |0〉 . (9.5)

Using the facts [H , Q−σ] = 0, H̃ |0〉 = 0 and Eq. (9.3) we obtain

H̃ Q−σ |0〉 = µqσQ−σ |0〉 . (9.6)

Hence the state Q−σ |0〉 is a state with energy µqσ which we identify as a mNGB.
Next we should check that this is consistent with the two models we studied in the two

previous chapters.

9.1.1 The Nonlinear Sigma Model
At zero chemical potential the symmetry group is G = SO(3) with the three generators T1, T2

and T3. Choosing a ground state φ0 = (0, 0, v) results in that T1 and T2 spontaneously break
leading to two type-I NGBs.

Coupling a nonzero chemical potential to the generator T3 leads to the explicit breaking of
T1 and T2. Thus the new symmetry group G̃ is the SO(2) subgroup of SO(3) generated by T3.
We found a type-I NGB from the SSB of T3 and a mNGB from the explicit breaking of T1 and
T2. If we define T± = 1/

√
2 (T1 ± iT2) the commutator in Eq. (9.3) takes the form

[T3, T±] = ±T±, (9.7)

implying that the mass of the mNGB is µ, agreeing with our explicit calculation in chapter
3. With the benefit of hindsight we note that we could also have performed the calculation in
chapter 7 by working with the current Jµ± = 1/

√
2(Jµ1 + iJµ2 ) instead of Jµ1 and Jµ2 seperately.
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Physical Application

As mentioned in chapter 3 this example has the physical interpretation of an antiferromagnet,
where the chemical potential can be viewed as an external magnetic field. In the case of no
external magnetic field, we assume that the spins are aligned alternately in some arbitrary di-
rection such that the symmetry is spontaneously broken like SO(3) −→ SO(2) resulting in two
type-I NGBs.

Now, assume that in the ground state the spins are aligned alternately in the z-direction. If
we turn on an external magnetic field in the z-direction, the spins in the ground state become
unstable. This results in a new ground state that points in a direction orthogonal to the z-axis.
Choosing this direction to be x̂ results in that the generator T3 spontaneously breaks giving one
type-I NGB. In addition, as a result of applying the field in the z-direction the generators T1 and
T2 were broken explicitly resulting in the mNGB.

9.1.2 The Higgs-Like Model
In this case we coupled the chemical potential to the generator R3 leading to the symmetry
breaking pattern SU(2)L × SU(2)R

µ−→ SU(2)L × U(1)R −→ U(1)′. In the first step the gen-
erators R1 and R2 were explicitly broken giving a mNGB. In the second step three generators
were broken spontaneously giving one type-I and one type-II NGB.

If we define the generators R± = 1/
√

2 (R1 ± iR2) the commutator in Eq. (9.3) takes the
form

[R3, R±] = ±2R± (9.8)

implying that the mass of the mNGB is 2µ, agreeing with our explicit calculation. Eq. (9.8)
also tells us that the mNGB was created by the operator R−. This is what motivated us to define
the current Jµ− = JµR1

− iJµR2
in Eq. (8.30) responsible for the creation of the mNGB.

9.2 Perturbative Proof
In this section we generalise the calculations in Chapters 7 and 8 and attempt to prove theorem
3 in the perturbative picture. Based on the previous section and the examples in the aforemen-
tioned chapters we know that there exists a current Jµ− responsible for the creation of a mNGB
with momentum p. If we define an initial state |i〉 and a final state |f〉 we can parametrise the
matrix element 〈f |Jµ−|i〉 as

〈f |Jµ−|i〉 = (Jµ−)(1) × P × (−iAoff) +Nµ
−, (9.9)

which is very similar to the parametrisation used in [10] for massless NGBs. Here (Jµ−)(1) is the
linear Feynman current rule,2 P is the propagator of the mNGB, Aoff is the scattering amplitude
with p off shell and Nµ

− are the non-pole contributions of 〈f |Jµ−|i〉.

9.2.1 Conservation Law
To begin with we need to determine the conservation law that Jµ− satisfies. From our discussion
in section 9.1 we recall that a mNGB always corresponds to two explicitly broken generators

2In our concrete examples (Jµ−)(1) can be found in Figs. 7.2 and 8.3.
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denoted by e.g. Q1 and Q2. We also emphasised that we can always construct the linear com-
bination

Q± = Q1 ± iQ2, (9.10)

which satisfies
[Q,Q±] = ±qQ±. (9.11)

Here Q is the generator coupled to the chemical potential µ and q is a positive real number. By
substituting Eq. (9.10) into Eq. (9.11) we obtain two equations:

[Q,Q+] = qQ+ =⇒ [Q,Q1] + i[Q,Q2] = qQ1 + iqQ2,

[Q,Q−] = −qQ− =⇒ [Q,Q1]− i[Q,Q2] = −qQ1 + iqQ2.
(9.12)

By adding and subtracting these equations we obtain

[Q,Q1] = iqQ2,

[Q,Q2] = −iqQ1,
(9.13)

respectively. In order to proceed we have to identify the structure constants of the coset space,
where the mNGBs live. From Eq. (9.13) we see that the structure constants are

fa12 = q, fa21 = −q, (9.14)

where a labels the explicitly unbroken generator Q. Using Eq. (6.27) we can write down the
conservation laws for the broken currents Jµ1 and Jµ2

DµJ
µ
1 = ∂µJ

µ
1 + f1a2AµaJ

µ
2 = ∂µJ

µ
1 − µqJ0

2 ,

DµJ
µ
2 = ∂µJ

µ
2 + f2b1AµbJ

µ
1 = ∂µJ

µ
2 + µqJ0

1 ,
(9.15)

where we used that Aµa = µaδµ0 = µδµ0. If we then define the currents Jµ± = Jµ1 ± iJ
µ
2 and use

the conservation laws in Eq. (9.15) we obtain

DµJ
µ
+ = ∂µJ

µ
+ + iµqJ0

+ = 0,

DµJ
µ
− = ∂µJ

µ
− − iµqJ0

− = 0.
(9.16)

Note that the conservation laws in Eq. (9.16) only holds when all momenta except that of the
mNGB (destroyed/created by Jµ±) is on shell.

9.2.2 The Connection Between the Propagator and the Noether Current

In section 6.3 we derived the equation of motion for a general gauge theory,

Dµ
∂L

∂(Dµφi)
=
∂L

∂φi
. (9.17)

For mNGBs the gauge field is given by the chemical potential Aµ = µδµ0 and the fields φi

transform in general like
δφia = Ci

a + Pa(φ
i) (9.18)
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where Ci
a is a constant and Pa(φi) is a polynomial in the fields φi. Therefore to linear order the

mNGB has a shift symmetry, meaning that δL /δφi = 0 such that the linearised equation of
motion takes the form

Dµ
∂L

∂(Dµφi)
= 0. (9.19)

In earlier chapters we have used that the inverse propagator is obtained from the terms quadratic
in the Lagrangian which is equivalent to saying that the inverse propagator is the Green’s func-
tion corresponding to the linearised equations of motion. Thus the inverse propagator P−1 is
the Green’s function to the operator contained Eq. (9.19).

The Noether currents are defined as Jµa = δL
∂(Dµφi)

δφia which to linear order is

JµLin,a =
δL

∂(Dµφi)
Ci
a. (9.20)

Since the current is conserved we can write

DµJ
µ
Lin,a = Dµ

∂L

∂(Dµφi)
Ci
a = 0. (9.21)

Note that Eq. (9.19) and Eq. (9.21) are identical up to a constant.
Furthermore we can parametrise the linear Feynman current rule as

(Jµ−)(1) = ipµA− + iδµ0B−, (9.22)

where both A− and B− are constants. By performing an inverse Fourier transformation we get
the linear piece of the Noether current

JµLin,− = A−∂
µφ+ iδµ0B−φ,

3 (9.23)

where JµLin,− is a linear combination of the currents JµLin,a. Acting on Eq. (9.23) with the covari-
ant derivative Dµ = ∂µ − iµqδµ0 we obtain the equation

0 = A−∂µ∂
µφ+ iB−∂0φ− iµqA−∂0φ+ µqB−φ. (9.24)

Performing a Fourier transformation gives

0 =
{
− A−p2 −B−p0 + µqA−p0 + µqB−

}
φ. (9.25)

Hence, because Eq. (9.19) and Eq. (9.21) are identical up to a constant we can read off the
inverse propagator as

P−1 = −A−p2 −B−p0 + µqA−p0 + µqB−. (9.26)

3The attentive reader might wonder why there is not a minus sign in front of A−. In our convention the Fourier
transform is given by φ(x) =

∫
d4k

(2π)4 e
−ikxφ(k), when the momentum flows into the vertex. However, since we

are assuming that the mNGB is created by the current Jµ− the momentum should flow out of the vertex resulting in
the change of sign.
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9.2.3 Proving the Theorem
Proof. We now have all of the ingredients needed to prove theorem 3 perturbatively. By using
Eqs. (9.9) and (9.16) we can write

0 = Dµ 〈f |Jµ−|i〉 = Dµ

{
eipx
[
(Jµ−)(1) × P × (−iAoff) +Nµ

−
]}
. (9.27)

Factoring out the exponential gives the equation

0 = ipµ
[
(Jµ−)(1)P (−iAoff) +Nµ

−
]
− iµq

[
(J0
−)(1)P (−iAoff) +N0

−
]
, (9.28)

and if we then collect the terms involving the scattering amplitude we obtain

0 = (−iAoff)P (ipµ − iµqδµ0)(Jµ−)(1)(−iAoff) + ipµN
µ
− − iµqN0

−. (9.29)

By replacing (Jµ−)(1) with Eq. (9.22) we obtain

0 = (−iAoff)P
[
− A−p2 −B−p0 + µqA−p0 + µqB−

]
+ ipµN

µ
− − iµqN0

−

= (−iAoff) + ipµN
µ
− − iµqN0

−,
(9.30)

where we in the penultimate line used Eq. (9.26). By solving for the scattering amplitude we
obtain

− iAoff = iµqN0
− − ipµN

µ
− (9.31)

which vanishes when we let p be on shell and evaluate the soft limit such that pµ = δµ0µq. �

Hence consider that we are given a scattering process |i〉+ mNGB −→ |f〉 with all momenta
on shell and the corresponding on-shell scattering amplitude −iAon. We can say that −iAon

vanishes in the soft limit of the mNGB, unless Nµ
− is at the same time singular. Nµ

− being
singular in the soft limit, would suggest the presence of a kinematic singularity.

9.3 The Dispersion Relation
Before we attempt to prove theorem 3 non-perturbatively, let us see if we can say something
general about the dispersion relation for mNGBs. This discussion is motivated by attempting
to generalise section IV in [18]. If we consider a theory with rotational invariance and assume
that the current Jµ+ acts as an annihilation operator for mNGBs we can write,

〈0|Jµ+(x)|π(p)〉 = e−ipx
{
ipµF (|p|) + iδµ0G(|p|)

}
. (9.32)

Here the functions F (|p|) and G(|p|) are scalars and p is the on-shell momentum of the mNGB
|π(p)〉. In this case the term iδµ0G(|p|) takes into account that our theory is in general not
Lorentz invariant. Using the fact that the current Jµ+ is conserved we can write

0 = Dµ 〈0|Jµ+(x)|π(p)〉 = ∂µ 〈0|Jµ+(x)|π(p)〉+ iµq 〈0|J0
+(x)|π(p)〉

= p2F (|p|) + p0G(|p|)− µqp0F (|p|)− µqG(|p|).
(9.33)

To avoid clutter let us suppress the arguments of the functions F (|p|) and G(|p|). Furthermore
by writing p2 = ω2 − p2 we obtain the quadratic equation

0 = Fω2 + (G− µqF )ω − (µqG+ p2F ). (9.34)
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By taking the limit p −→ 0 such that ω(0) = m, where m is the mass of the mNGB we obtain

0 = F (0)m2 + [G(0)− µqF (0)]m− µqG(0). (9.35)

The solutions to this equation are

m+ = µq & m− = −G(0)

F (0)
. (9.36)

The first solution tells us that the mass of the mNGB is exactly given by µq, as we have already
shown using the symmetry algebra. If we assume that both F (0) and G(0) are positive then the
second solution is unphysical.

We can also try to say something about the form of the dispersion relation of a mNGB by
solving Eq. (9.34) exactly. The solution is

ω± =
−G+ µqF ± (G+ µqF )

√
1 + 4F 2

(G+µqF )2
p2

2F
(9.37)

and we see that the dispersion relation of the mNGB is fully determined by the functions F and
G.

9.4 Non-Perturbative Proof
In this section we prove theorem 3 non-perturbatively, following Weinberg’s strategy described
in chapter 6. The idea is to view 〈f |Jµ−|i〉 as an amputated Green’s function where we have
appended an external mNGB propagator with off-shell momentum p. The momenta of all the
other particles are kept on shell such that the current satisfies the covariant conservation law in
Eq. (9.16). The situation we will consider is illustrated in Fig. 9.1, where an initial state |i〉
interacts with an off-shell mNGB created by Jµ− to form a final state |f〉.

GF

|i〉

|f〉

Jµ−

Propagator

Figure 9.1: The figure shows the pole structure of the current element 〈f |Jµ−|i〉. It consists of the
Noether current (small black circle), a mNGB propagator and an amputated Green’s function
(GF).

Note that our proof is not valid for the pNGBs discussed in chapter 5 because their propa-
gator (and hence their dispersion relation) takes a different form than the mNGBs.
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Proof. Let us start by trying to extract the mNGB propagator contained in the Källen-Lehmann
representation Dφφ = −i 〈0|T{φ(x)φ(y)}|0〉. In momentum space the Källen-Lehmann prop-
agator takes the form

Dφφ (p, ω) = (2π)3
∑
n

[
〈0|φ(0)|n,p〉 〈n,p|φ(0)|0〉

ω − En (p) + iε

− 〈0|φ(0)|n,−p〉 〈n,−p|φ(0)|0〉
ω + En (p)− iε

]
.

(9.38)

We used this expression also in chapter 5, and the formula is taken from [17]. Let us for sim-
plicity assume that the field φ is not composite, such that there is a one to one correspondence
between the number of fields and the number of mNGBs.4 The pole of the current element
〈f |Jµ−|i〉 comes from the pole of the propagator in Eq. (9.38). For the particular mNGB created
by Jµ− there is a pole at p0 = Em(p) where Em(p) is the on-shell dispersion relation of the
mNGB. Therefore the pole structure that will appear in 〈f |Jµ−|i〉 is

Dφφ pole−−→ 〈0|φ(0)|m,p〉 〈m,p|φ(0)|0〉
p0 − Em(p)

. (9.39)

The remaining terms in Eq. (9.38) will give a contribution to the non-pole contributions Nµ
− of

〈f |Jµ−|i〉. Now, we can proceed in exactly the same manner as we did in chapter 6. By attach-
ing 〈m,p|φ(0)|0〉 to the Noether current Jµ− and 〈0|φ(0)|m,p〉 to the Green’s function (GF )
displayed in Fig. 9.1 we obtain the current element 〈m,p|Jµ−|0〉 and the scattering amplitude5

−iAoff respectively. Combining the ingredients as shown in Fig. 9.1 gives a Laurent expansion
of the current element,

〈f |Jµ−(0)|i〉 = 〈m,p|Jµ−|0〉 ×
i

p0 − Em(p)
×−iAoff +Nµ

−. (9.40)

In the Heisenberg picture we can immediately write down this expression as a function of space-
time x,

〈f |Jµ−(x)|i〉 = eipx
[
〈m,p|Jµ−|0〉

i

p0 − Em(p)
(−iAoff) +Nµ

−

]
. (9.41)

Now, if we assume rotational invariance we can parametrise 〈m,p|Jµ−|0〉 in terms of two scalar
functions F (|p|) and G(|p|) to obtain6

〈m,p|Jµ−|0〉 = ipµF (|p|) + iδµ0G(|p|). (9.42)

By first substituting Eq. (9.42) into Eq. (9.41) and then acting with the covariant derivative
Dµ = ∂µ − iµqδµ0 on 〈f |Jµ−|i〉 we obtain

0 = ipµ

{
(ipµF + iδµ0G)

Aoff

p0 − Em(p)
+Nµ

−

}
− iµq

{
(ip0F + iG)

Aoff

p0 − Em(p)
+N0

−

}
. (9.43)

4Equivalently we can say that we ignore the case were the fields mix.
5The subscript indicates that p still is off shell
6To avoid clutter we suppress the momentum dependence and write F ≡ F (|p|) and G ≡ G(|p|) in the

following.
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Collecting the terms involving the scattering amplitude yields

0 =
Aoff

p0 − Em(p)

{
− p2F − p0G+ µqp0F + µqG

}
+ ipµN

µ
− − iµqN0

−. (9.44)

In order to proceed we focus on the expression in the curly brackets in Eq. (9.44). By first
writing p2 = p2

0 − p2 and then taking the soft limit p −→ 0 we get

−p2F − p0G+ µqp0F + µqG = −p2
0F + p2F − p0G+ µqp0F + µqG

soft−−→ −p2
0F (0)− p0G(0) + µq

[
p0F (0) +G(0)

]
= −

[
p0F (0) +G(0)

][
p0 − Em(0)

]
.

(9.45)

In the penultimate line we identified the mass of the mNGB as Em(0) = µq. Thus, in the soft
limit the factor p0 − Em(0) in Eq. (9.45) cancels the denominator in Eq. (9.44). This results in
the expression

0 = −A soft
off

[
p0F (0) +G(0)

]
+ ip0N

µ,soft
− − iµqN0,soft

− , (9.46)

where the superscript ”soft” indicates that the given quantity is being evaluated in the soft limit
of the mNGB p −→ 0. By solving for the soft-limit scattering amplitude we find

−A soft
off =

iµqN0,soft
− − ip0N

µ,soft
−

G(0)− p0F (0)
(9.47)

which vanishes when we let p go on shell such that p0 −→ µq in the soft limit. �

Let us comment briefly on the case F (0) = G(0) = 0, where Eq. (9.47) appears to
be singular. According to section 9.1 and [9] mNGBs satisfy both 〈0|Jµ+σ|m, 0〉 6= 0 and
〈0|Jµ−σ|m, 0〉 = 0. This means that Jµ+σ and Jµ−σ destroys and creates mNGBs respectively. In
our proof, see Eq. (9.42), we used that 〈m, 0|J0

−|0〉 = ip0F (0) + iG(0) =
(
〈0|J0

+|m, 0〉
)∗ 6= 0.

Hence, we see that mNGBs require that ip0F (0) + iG(0) 6= 0 and we do not have to worry
about the case F (0) = G(0) = 0.7

As in section 9.2 we once again note that if Nµ
− is singular in the soft limit of the mNGB the

on-shell scattering amplitude may not vanish due to a kinematic singularity. However, if Nµ
− is

not singular in the soft limit we can with confidence say that the on-shell scattering amplitude
vanishes in soft limit of the mNGB. Thus we have proved theorem 3.

7However, it is interesting to note that according to [9] the condition F (0) = G(0) = 0 is exactly satisfied by
the pNGBs we discussed in chapter 5.
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Chapter 10
Discussion, Conclusion and Outlook

As mentioned in both the preface and introduction, the main body of this thesis consists of parts
I, II and III. Part I and II are more or less identical to last semesters specialisation project found
in [2], while Part III represents the work done this semester. All parts have been included for
completeness.

10.1 Part I

We began by considering an Abelian model with one complex field. This model had a nonzero
vev, thus triggering SSB. In accordance with Goldstone’s theorem this gave us one massless
NGB π2 and a massive mode π1. Then by computing the scattering amplitudes for the processes
π1π2 → π1π2 and π2π2 → π2π2 we were able to show that the amplitudes vanished in the soft
limit of the NGB, in accordance with theorem 2. The introduction of a chemical potential
broke Lorentz invariance and modified the dispersion relation of the NGB. However, the NGB
remained massless because a pair of generators were not broken explicitly.

In order to discuss a more complicated example we next looked at the non-Abelian linear
SO(3) model. At zero chemical potential the SSB pattern is SO(3) −→ SO(2) which in accor-
dance with Goldstone’s theorem gave us two NGBs (one for each broken generator). Coupling
a chemical potential to the generator T3 we found that the new symmetry breaking pattern is
SO(3)

µ−→ SO(2) −→ ∅. An explicit calculation gave us one mNGB G and a NGB of type-I π.
Once again we can understand this particle spectrum by looking at the generators. The mNGB
corresponds to the explicitly broken pair T1 and T2 while the spontaneous breaking of T3 gave
us the NGB of type-I. In order to give indication for our conjecture on page 60 we calculated
the scattering amplitude for the process πG→ πG, using the nonlinear sigma model. We found
that in the the soft limit of the mNGB the amplitude vanished. However, in the soft limit of the
type-I NGB we found a kinematic singularity. The reason for the existence of this singularity is
explained in [10].

Next we had a very brief look at a model invariant under SU(2)L×SU(2)R transformations.
By introducing a chemical potential we obtained the symmetry breaking pattern SU(2)L ×
SU(2)R

µ−→ SU(2)L × U(1)R −→ U(1)′. Again we found one mNGB corresponding to the
explicit breaking of the pair R1 and R2. In addition we found NGBs of both types. This
is consistent with literature such as [9] which tells us that type-I NGBs and type-II NGBs
correspond to the spontaneous breaking of one and two generators respectively.
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10.2 Part II
In part II we considered the complete breaking of an O(3) symmetry. To describe this phe-
nomenon we had to use a well known effective field theory approach and ended up with a
mNGB Ψ−, a pNGB Ψ+ and a NGB of type-I Ψ3. We tried to calculate the scattering ampli-
tudes for the two processes Ψ−Ψ3 → Ψ−Ψ3 and Ψ+Ψ3 → Ψ+Ψ3 with corresponding on-shell
scattering amplitudes A− and A+ respectively. We found that A− vanished in the soft limit of
the mNGB, giving further support to our conjecture on page 60. However, we were surprised
to find that the amplitude A+ vanished in the soft limit of the pNGB. There could be several
reasons for this:

• The model has a hidden discrete symmetry, that forces the scattering amplitude to vanish
in the soft limit.

• We have considered only the simplest possible scattering event, namely 2 −→ 2. Perhaps
this is too simple, and that we instead should consider 3 −→ 3 scattering?

• pNGBs also interact weakly.

Given more time we would of course address each of these issues in detail.

10.3 Part III
In part III we began by going through Weinberg’s proof of theorem 2. In short the proof goes like
this: Define a current element 〈f |Jµ(0)|i〉 describing an initial state |i〉 interacting with a NGB
created by Jµ to form a final state |f〉. By assuming Lorentz invariance we can parametrise the
current element as 〈f |Jµ(0)|i〉 = Nµ

fi + ikµF
k2

Afi, where k is the momentum of the NGB, Afi is
the scattering amplitude corresponding to the process |i〉+NGB −→ |f〉 andNµ

fi are the non-pole
contributions of the current element. If we then apply current conservation ∂µ 〈f |Jµ|i〉 = 0 we
obtain a formula for the scattering amplitude in terms of the non-pole contributions Nµ

fi . From
this formula it is trivial to see that the scattering amplitude vanishes in the soft limit k −→ 0
unless Nµ

fi is also singular in the same limit.
However, in systems where a symmetry is explicitly broken by a chemical potential the

conservation law ∂µ 〈f |Jµ|i〉 = 0 does not hold. Hence we realised that if we were ever going
to be able to prove theorem 3 we needed a new conservation law. We were able to derive such
a conservation law by viewing the chemical potential as a gauge field Aµ = µδµ0 and then
requiring the variation of the action to be zero under infinitesimal gauge transformations. The
new conservation law takes the form DµJ

µ
a = 0.

Having obtained this new covariant conservation law we revisited the nonlinear SO(3)
model and tried to perform Weinberg’s argument perturbatively. We found that we indeed could
obtain a formula for the scattering amplitude if we used one of the two available conservation
laws DµJ

µ
1 = 0 and DµJ

µ
2 = 0. However, from the formula it was not trivial to see that the

amplitude vanished in the soft limit of the mNGB. To show that the amplitude vanished we
also had to use the second conservation law. In principle this is not a problem, but it is hard to
generalise such a procedure.

In order to get a better understanding of how we could generalise to other symmetry break-
ing patterns, we revisited the model invariant under SU(2)L × SU(2)R transformations. Based
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on the previous example we realised that it may beneficial to combine the two Noether cur-
rents into a linear combination Jµ± = 1√

2
(Jµ1 ± iJµ2 ). This results in that we can incorpo-

rate the information contained in DµJ
µ
1 and DµJ

µ
2 separately into just one conservation law

DµJ
µ
− = ∂−J

µ
−− 2iµJ0

−. If we then proceed in the same manner as in the previous example we
obtain a formula for the scattering amplitude expressed in terms of the non-pole contributions of
〈f |Jµ−|i〉. However, in this case we can see directly from the formula that the soft-limit on-shell
amplitude vanishes. In addition, it turns out that this procedure is easier to generalise!

Having calculated two concrete examples we began reviewing [9] in order to explain some
of our results so far. First of all the Cartan subalgebra tells us that each pair of explicitly
broken generators correspond to one mNGB. Furthermore, each pair of explicitly broken gen-
erators can be combined into pairs Q±σ that satisfy the commutator [Q,Q±σ] = ±qσQ±σ.1 As
a consequence of the commutator relation the mass of the mNGB is qσµ. By using these well
established facts, we have demonstrated that we can always construct pairs of currents Jµ±σ that
satisfy the conservation law DµJ

µ
±σ = ∂µJ

µ
±σ ± iqµJ0

±σ = 0. Such a construction results in
that Jµ+σ and Jµ−σ destroys and creates mNGBs respectively. This allowed us to prove theorem 3
perturbatively, by acting with the covariant derivative Dµ on the current element 〈f |Jµ±σ|i〉. We
were also able to prove the theorem in the non-perturbative picture. We did this by viewing the
current element 〈f |Jµ−|i〉 as an amputated Green’s function with one appended mNGB propa-
gator plus non-pole contributions. By then acting with the covariant derivative on 〈f |Jµ−|i〉 and
using the corresponding conservation law we successfully proved theorem 3 for the case of a
non-composite field.

10.4 Outlook
Finally let us address some of the subjects of future work. First of all, we would like to inves-
tigate the complete breaking of the O(3) symmetry further. As mentioned we could do this by
considering 3 −→ 3 scattering, and check whether or not the corresponding scattering amplitude
vanishes in the soft limit of the pNGB. If the scattering amplitude does not vanish in the soft
limit of the pNGB, we have proved that the pNGBs indeed interact strongly.

In addition, we would also like to generalise our non-perturbative proof of theorem 3 to a
composite field. Generalising in this way requires us to include more than just one pole-term
from the Källen-Lehmann propagator in Eq. (9.38). Other than that the proof should be similar
in both structure and logic.

Another interesting aspect of scattering amplitudes involving mNGBs that we have merely
mentioned in this thesis is the existence of kinematic singularities. Both of our formulas in
Eqs. (9.31) and (9.47) suggest that kinematic singularities may appear when the non-pole con-
tributions Nµ

− of 〈f |Jµ−|i〉 are singular in the soft limit of the mNGB. If we could find a concrete
example exhibiting such kinematic singularities, we may be able to find a deeper physical mean-
ing for their existence.

Finally it would be interesting to investigate if there exists a classification of mNGBs that
are similar to the classification for NGBs, as suggested in [18]. That is, perhaps the mNGBs also
can be classified as type-I and type-II? A starting point for this discussion could be to solve Eq.
(9.34) for the cases G/F − µq � 1 and G/F − µq � 1 in the limit of vanishing 3-momentum
p −→ 0. This may result in that we can distinguish type-I and type-II mNGBs by the behaviour
of the functions F and G in the limit p −→ 0.

1We have not included the proves of these statements in this thesis, because they are well known.
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Appendix A
Field Theory in a Nutshell

A.1 The Euler-Lagrange Equations

The fields φa(xµ) are functions that map points in spacetime xµ into numbers in field space. In
quantum field theory particles are viewed as excitations in the field φa. The dynamics of the
field φa is governed by the Euler-Lagrange equations which can be derived from Hamilton’s
principle. If we define the action S

S =

∫
Ω

d4xL (φa, ∂µφa) (A.1)

where Ω is the spacetime volume where the field is nonzero, and L is the Lagrangian then
Hamilton’s principle states that

δS

δφa
= 0. (A.2)

Thus if we consider variations of the fields δφa that vanish on the boundary ∂Ω we find that

0 = δS =
δS

δφa
δφa

=

∫
Ω

d4x
∂L

∂φa
δφa +

∂L

∂(∂µφa)
∂µδφa

=

∫
Ω

d4x
∂L

∂φa
δφa +

[
δφa

(
∂µ

∂L

∂(∂µφa)

)]
∂Ω

−
∫

Ω

d4x ∂µ

(
∂L

∂(∂µφa)

)
δφa

=

∫
Ω

d4x

[
∂L

∂φa
− ∂µ

∂L

∂(∂µφa)

]
δφa,

(A.3)

where we in the penultimate line performed a partial integration. Thus, since the variations δφa
are arbitrary, the Euler-Lagrange equations are

∂L

∂φa
= ∂µ

(
∂L

∂(∂µφa)

)
. (A.4)
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A.2 Noether’s Theorem
We say that a transformation leading to a variation δφa is a symmetry if the corresponding
change in the Lagrangian is a surface term δL = ∂µF

µ. From this we can derive Emmy
Noether’s famous theorem by considering what happens to the Lagrangian under a symmetry
transformation

δL = ∂µF
µ =

∂L

∂φa
δφa +

∂L

∂(∂µφa)
∂µδφa. (A.5)

If we now use the Euler-Lagrange equation in the first term we get

∂µF
µ = ∂µ

(
∂L

∂(∂µφa)

)
δφa +

∂L

∂(∂µφa)
∂µδφa. (A.6)

Hence by using the product rule

0 = ∂µ

(
∂L

∂(∂µφa)
δφa − F µ

)
≡ ∂µj

µ (A.7)

and we find that the conserved Noether current is

jµ =
∂L

∂(∂µφa)
δφa − F µ. (A.8)

From the continuity equation (A.7) we can show that j0 corresponds to a conserved charge
density

0 = ∂µj
µ = ∂0j0 −∇ ·~j. (A.9)

If we integrate both sides of this equation we get

d

dt

∫
V

d3x j0 =

∫
V

d3x∇ ·~j =

∫
∂V

d~S ·~j (A.10)

by applying the divergence theorem. Thus if there is no flux of ~j through the surface ∂V at
infinity then

Q =

∫
V

d3x j0 (A.11)

is a conserved charge.

A.3 Masses and Interactions
The Lagrangian L for n particles has the following general structure

L = L (1)
free + L (2)

free + · · ·+ L (n)
free + LI (A.12)

The superscript i = 1, . . . , n labels each particle. The term L i
free represents the free Lagrangian

for the particle i. It is related to the propagator of the particle in the sense that if it is substituted
into the Euler-Lagrange equation the free wave equation for the particle emerges. If we are
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dealing with a Lorentz invariant theory, such that the terms L (i)
free are not coupled and the field i

has a zero vacuum expectation value one can also determine the mass from the free Lagrangian
L (i)
free. To be specific we can write the free Lagrangian as the difference between a kinetic term

T and a potential term U analogous to classical mechanics

L (i)
free = T i −U i. (A.13)

If we do this, and the propagator is diagonal, we can calculate the mass of particle i by

mi =
∂2U

∂φ2
i

∣∣∣∣∣
φ=0

. (A.14)

The term LI contains all of the terms that describe how the different fields φi interact
with each other. We can determine the vertex describing the interaction between the fields
by calculating variational derivatives after having performed a Fourier transformation. Let us
illustrate this by an example.

A.3.1 An Example of the Calculation of a Feynman Vertex

In this paper we frequently come across terms in the Lagrangian that depend on time-derivatives,
spacetime-derivatives and no derivatives. To demonstrate the method for determining the Feyn-
man vertices in the paper, we consider the example:

L = φ̇1∂µφ2(x)∂µφ3(x)φ3(x). (A.15)

The first step is to perform a Fourier transformation. In our convention the Fourier transforma-
tion of a field φi(x) is

φi(x) =

∫
d4k

(2π)4
φ(k)e−i(Eit−px). (A.16)

In addition, the notation φi(kj) means that the field φi has four momentum kj . The field φi has
the dispersion relation Ei(ki). Performing a Fourier transformation gives,

L = −i
∫
d4k1d

4k2d
4k3d

4k4

(2π)16
e−ix(k1+k2+k3+k4)E1(k1)(k2k3)

[
φ1(k1)φ2(k2)φ3(k3)φ3(k4)

]
.

For notational simplicity we introduce the notation∫
d4k1d

4k2d
4k3d

4k4

(2π)16
e−ix(k1+k2+k3+k4) ≡

∫
. (A.17)

The vertex V (p1, p2, p3, p4) with inflowing momenta can then be calculated by

iV (p1, p2, p3, p4) =
iδ4L

δφ1(p1)δφ2(p2)δφ3(p3)δφ3(p4)
. (A.18)
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Let us demonstrate this calculation:

iV (p1, p2, p3, p4) =

∫
E1(k1)(k2k4)

iδ4

δφ1(p1)δφ2(p2)δφ3(p3)δφ3(p4)

[
φ1(k1)φ2(k2)φ3(k3)φ3(k4)

]
=

∫
E1

(
k1

)
(k2k3)

δ3

δφ1(p1)δφ2(p2)δφ3(p3)

[
φ1(k1)φ2(k2)δ(k3 − p4)φ3(k4)

+φ1(k1)φ2(k2)φ3(k3)δ(k4 − p4)

]
= E1(k1)(k2k3)

[
δ(k1 − p1)δ(k2 − p2)δ(k3 − p4)δ(k4 − p3)

+δ(k1 − p1)δ(k2 − p2)δ(k3 − p3)δ(k4 − p4)
]

= E1(p1)
[
(p2p4) + (p2p3)

]
. (A.19)
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Appendix B
A Simple Proof of Goldstone’s Theorem

We have on several occasions referred to Goldstone’s theorem througout the text. Here we give
one of the many possible proofs.

Proof. Noether’s theorem guarantees that for each continuous symmetry there exists one con-
served charge Q. In the Heisenberg picture, this means that Q commutes with the Hamiltonian
H such that [H , Q] = 0. Furthermore, we denote the ground state as |0〉 and subtract a
possible vacuum energy such that H |0〉 = 0.

By acting on the ground state with an infinitesimal symmetry U(θ) we can write

U(θ) |0〉 = eiθQ |0〉 = (1 + iθQ) |0〉 . (B.1)

From this it is clear that if Q |0〉 6= 0 the system exhibits SSB. We can determine the energy of
the state Q |0〉 by acting on it with the Hamiltonian, we find that

H Q |0〉 = (H Q−QH ) |0〉 =
[
H , Q

]
|0〉 = 0, (B.2)

where we in the last step used that [H , Q] = 0. Using Eq. (A.11) we can write Q =
∫
V
d3x j0.

We now define the state |k〉 =
∫
V
d3x eikxj0 |0〉, which is an eigenstate of the momentum

operator P, such that P |k〉 = k |p〉. Note that in the limit k → 0 the state k reduces to the
state Q |0〉 which has zero energy. If our theory is Lorentz invariant the dispersion relation
E =

√
p2 +m2 tells us that the mass m of the state |0〉 is zero. We have thus shown that for

each broken continuous symmetry we can find a state with no mass. This state is the NGB. �

Note that in systems without Lorentz invariance the mass of the state |k〉 only vanishes if the
dispersion relation is gapless. If there is a gap the state will be massive. Finally we mention that
in systems without Lorentz invariance it is not true that each broken generator corresponds to
exactly one Goldstone boson. This is what makes the counting of Goldstone bosons nontrivial
in systems without Lorentz invariance.
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Appendix C
The Complete Breaking of an O(3)
Symmetry

C.1 The Feynman Rules
The Feynman rules for the model considered in chapter 5 is slightly more complicated than the
other cases. We therefore include their calculation in this appendix. For notational simplicity
we once again absorb all differentials and exponentials into the integral symbol

∫
.

C.1.1 Third Order
The first term in Eq. (5.47) is

L (3)
1 =

µ(g2 − 3g1 + 3g3)

4
φ2

2φ̇3 ≡ Aφ2
2φ̇3. (C.1)

By performing a Fourier transformation we get

L (3)
1 = −iA

∫
φ3(k1)φ2(k2)φ2(k3)E3(k1). (C.2)

The corresponding Feynman rule is thus

iV (p1, p2, p3) =
iδ3L (3)

1

δφ2(p1)δφ2(p2)δφ3(p3)

= A

∫ [
δ(k1 − p3)δ(k2 − p2)δ(k3 − p1) + δ(k1 − p3)δ(k2 − p1)δ(k3 − p2)

]
E3(k1)

= 2AE3(p3)

=
µ(g2 − 3(g1 − g3))

2
E3(p3).

(C.3)

The second term in Eq. (5.47) is

L 3
2 =

µ2(g1 − g2)

2
φ1φ2φ3 −

(g1 − g2)

2
φ3(∂µφ1∂

µφ2)

+
(g1 − g3)

2
φ2(∂µφ1∂

µφ3)− (g2 − g3)

2
φ1(∂µφ2∂

µφ3).

(C.4)
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By performing a Fourier transformation we get

L 3
2 =

∫
µ2(g1 − g2)

2
φ1(k1)φ2(k2)φ3(k3)

+
(g1 − g2)

2
φ1(k1)φ2(k2)φ3(k3)k1µk

µ
2

+ (
g3 − g1

2
)φ1(k1)φ2(k2)φ3(k3)k1µk

µ
3

+ (
g2 − g3

2
)φ1(k1)φ2(k2)φ3(k3)k2µk

µ
3

≡
∫
φ1(k1)φ2(k2)φ3(k3)

[
A+B(k1k2) + C(k1k3) +D(k2k3)

]
(C.5)

The corresponding Feynman rule is thus

iV (p1, p2, p3) =
iδ3L (3)

2

δφ1(p1)δφ2(p2)δφ3(p3)

= i

∫ [
A+B(k1k2) + C(k1k3) +D(k2k3)

]
δ(k1 − p1)δ(k2 − p2)δ(k3 − p3))

= iA+ iB(p1p2) + iC(p1p3) + iD(p2p3)

=
iµ2(g1 − g2)

2
+
i(g1 − g2)

2
(p1p2) +

i(g3 − g1)

2
(p1p3) +

i(g2 − g3)

2
(p2p3).

(C.6)

The third term in Eq. (5.47) is

L 3
2 =

µ(g1 − 3g2 + 3g3)

4
φ2

1φ̇3 ≡ Aφ2
1φ̇3. (C.7)

By performing a Fourier transformation we get

L 3
2 =

∫
−iE3(k3)Aφ1(k1)φ1(k2)φ3(k3) (C.8)

The corresponding Feynman rule is thus

iV (p1, p2, p3) =
iδ3L (3)

2

δφ2(p1)δφ2(p2)δφ3(p3)

= 2AE3(p3)

=
µ(g1 − 3g2 + 3g3)

2
E3(p3).

(C.9)

This concludes the Feynman rules at third order.

C.1.2 Fourth Order
The first term in Eq. (5.48) is

L (4)
1 = µ2(

g2

8
− g1

6
+
g3

24
)φ2

2φ
2
3 + (

g1

8
− g2

6
)(∂µφ2)2φ2

3

+ (
g2

6
− g1

4
+
g3

6
)φ2(∂µφ2∂

µφ3)φ3 + (
g1

8
− g3

6
)φ2

2(∂µφ3)2
(C.10)
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By performing a Fourier transformation we get

L 4
2 =

∫
µ2(

g2

8
− g1

6
+
g3

24
)φ2(k1)φ2(k2)φ3(k3)φ3(k4)

− (
g1

8
− g2

6
)φ2(k1)φ2(k2)φ3(k3)φ3(k4)k1k2

− (
g2

6
− g1

4
+
g3

6
)φ2(k1)φ2(k2)φ3(k3)φ3(k4)k2k3

− (
g1

8
− g3

6
)φ2(k1)φ2(k2)φ3(k3)φ3(k4)k3k4

≡
∫
φ2(k1)φ2(k2)φ3(k3)φ3(k4)

[
A+B(k1k2) + C(k2k3) +D(k3k4)

]
(C.11)

The corresponding Feynman rule is thus

iV (p1, p2, p3, p4) =
iδ4L (4)

1

δφ2(p1)δφ2(p2)δφ3(p3)δφ3(p4)

= 4A+ 4Bp1p2 + C(p1p4 + p2p4 + p1p3 + p2p3) + 4Dp3p4

(C.12)

We can rewrite

p1p4 + p2p4 + p1p3 + p2p3 = (p1 + p2)(p3 + p4) = −(p1 + p2)2 (C.13)

by using momentum conservation p1 + p2 + p3 + p4 = 0. Hence the Feynman rule takes the
form

iV (p1, p2, p3, p4) = iµ2(
g2

2
− 2g1

3
+
g3

6
) + i(

2g2

3
− g1

2
)p1p2

− i(g1

4
− g2

6
− g3

6
)(p1 + p2)2 + i(

2g3

3
− g1

2
)p3p4.

(C.14)

The second term in Eq. (5.48) is

L (4)
2 = µ2(

g1

8
− g2

6
+
g3

24
)φ2

1φ
2
3 + (

g2

8
− g1

6
)φ2

3(∂µφ1)2

+ (
g1

6
− g2

4
+
g3

6
)φ1(∂µφ1∂

µφ3)φ3 + (
g2

8
− g3

6
)φ2

1(∂µφ3)2

≡ Aφ2
1φ

2
3 +Bφ2

3(∂µφ1)2 + Cφ1(∂µφ1∂
µφ3)φ3 +Dφ2

1(∂µφ3)2.

(C.15)

By performing a Fourier transformation we get

L (4)
2 =

∫
φ1(k1)φ1(k2)φ3(k3)φ3(k4)

[
A−B(k1k2)− C(k2k3)−D(k3k4)

]
(C.16)

The corresponding Feynman rule is thus

iV (p1, p2, p3, p4) =
iδ4L (4)

2

δφ1(p1)δφ1(p2)δφ3(p3)δφ3(p4)

= 4A− 4B(p1p2)− C(p1p4 + p1p3 + p2p4 + p2p3)− 4D(p3p4)

= i

[
µ2

(
g1

2
− 2g2

3
+
g3

6

)
+

(
2g1

3
− g2

2

)
p1p2

+

(
g1

6
− g2

4
+
g3

6

)
(p1 + p2)2 +

(
2g3

3
− g2

2

)
p3p4

]
.

(C.17)
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The second term in Eq. (5.48) is

L (4)
3 = µ(

g1

3
− g2

4
− g3

24
)φ̇1φ2φ

2
3 + µ(

g1

4
− g2

3
+
g3

24
)φ1φ̇2φ

2
3

+ 5µ(
g2 − g1

12
)φ1φ2φ̇3φ3

≡ Aφ̇1φ2φ
2
3 +Bφ1φ̇2φ

2
3 + Cφ1φ2φ̇3φ3.

(C.18)

By performing a Fourier transformation we get

L (4)
3 = −i

∫
(AE1(k1) +BE2(k2) + CE1(k3))φ1(k1)φ2(k2)φ3(k3)φ3(k4). (C.19)

The corresponding Feynman rule is thus

iV (p1, p2, p3, p4) =
iδ4L (4)

3

δφ1(p1)δφ2(p2)δφ3(p3)δφ3(p4)

=
{

2AE1(p1) + 2BE2(p2) + C
[
E3(p3) + E3(p4)

]}
.

(C.20)

Using that E3(p3) + E3(p4) = −E1(p1)− E2(p2) we get

iV (p1, p2, p3, p4) = µE1(p1)

[
13g1 − 11g2 − g3

12

]
+ µE2(p2)

[
11g1 − 13g2 + g3

12

]
(C.21)
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