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Summary

The main goal of this thesis is to compare and illustrate the use of logistic regression and
quantile regression on continuous outcome variables. In medical statistics, logistic regres-
sion is frequently applied to continuous outcomes by defining a cut-off value, whereas
quantile regression can be applied directly to quantiles of the outcome distribution. The
two approaches appear different, but are closely related. An approximate relation between
the quantile effect and the log-odds ratio is derived. Practical examples and illustrations
are shown through a case study concerning the effect of maternal smoking during preg-
nancy and mother’s age on birth weight, where low birth weight is of special interest. Both
maternal smoking during pregnancy and mother’s age are found to have a significant ef-
fect on birth weight, and the effect of maternal smoking is found to have a slightly larger
negative effect on low birth weight than for other quantiles. Trend in birth weight over
years is also studied as a part of the case study. Further, the two approaches are tested on
simulated data from known probability density functions, pdfs. We consider a population
consisting of two groups, where one of the groups is exposed to a factor, and the effect
of exposure is of interest. By this we illustrate the quantile effect and the odds ratio for
several examples of location, scale and location-scale shift of the normal distribution and
the Student t-distribution.

Through this thesis we find that quantile regression often yields an easier interpretation
of the estimated effects due to the estimated parameters being on the same measuring scale
as the dependent variable of interest. In addition, quantile regression provides easier com-
parisons of effects in different quantiles of the distribution, where the logistic regression
model may easily lead to misinterpretations.
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Samandrag

Føremålet med denne oppgåva er å samanlikne og vise bruken av logistisk regresjon og
kvantilregresjon på kontinuerlege responsvariablar. I medisinsk statistikk, er logistisk re-
gresjon ofte brukt på kontinuerlege utfall ved å definere ein grenseverdi, mens kvantilre-
gresjon kan bli anvendt direkte på kvantilar i responsfordelinga. Dei to modellane ser ulike
ut, men det er ein nær samanheng mellom dei. Ein tilnærma samanheng mellom log-odds
ratio og kvantileffekten er utleda. Praktiske eksempel og illustrasjonar er vist gjennom eit
eksempel-studie som omhandlar effekt av mors røyking gjennom svangerskapet og mors
alder på fødselsvekt, der lav fødselsvekt er spesielt interessant. Både mors røyking og mors
alder har ein signifikant effekt på fødselsvekt, og effekten av røyking er litt større ved lav
fødselsvekt enn ved andre kvantilar. Endring i fødselsvekt over år er også undersøkt som ei
del av eksempel-studiet. Vidare er dei to tilnærmingane brukt til å analysere simulerte data
frå kjente sannsynsfordelingar. Vi ser på ein populasjon som består av to grupper der den
eine blir påverka av ein faktor, og vi er interessert i effekten av eksponeringa. Ved dette
illustrerer vi kvantileffekten og odds ratio for fleire eksempel ved forskyving og spredning
av normalfordeling og Student t-fordeling.

Gjennom denne oppgåva ser vi at kvantilregresjon ofte gir enklare fortolking av dei
estimerte effektane på grunn av at dei estimerte parametrane er på same måleskala som den
avhengige variabelen vi undersøker. I tillegg gir kvantilregresjon enklare samanlikning av
effekt i ulike kvantilar, der logistisk regresjon lett kan bli mistolka.
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Chapter 1
Introduction

Several studies has shown that low birth weight is closely related to both foetal and neona-
tal mortality and morbidity, and in addition it may contribute to a range of poor health
outcomes for the babies later in life, like inhibited growth and cognitive development
and chronic diseases. The medical definition of low birth weight defined by the World
Health Organization (WHO) is a weight at birth less than 2500 g. This cuf-off value is
based on epidemiological observations of approximate mortality among infants with low
birth weight compared to infants with larger weight. This definition may vary between
countries (Wardlaw et al., 2004). A case study conserning birth weight in Norway will
be presented in this thesis, and this definition of low birth weight also holds for Norway
(Folkehelseinstituttet, 2015).

Due to the possible consequences of low birth weight, there has been a considerable
interest in explanatory variables influencing the birth weight. Many of the analyses on
birth weight have been carried out using ordinary linear regression models, resulting in
estimates of various effects on the conditional mean of birth weight. Nevertheless, it has
been recognized that the resulting estimates were not necessarily explanatory for the effect
of these factors in the lower tail of the distribution of birth weight. Further, several studies
have explored binary response models, like probit models and logistic regression, for the
occurrence of low birth weight (Koenker, 2005).

The most common method applied in medical statistics for analysis of binary response
is logistic regression (Kirkwood and Sterne, 2013). Logistic regression is used when pre-
dicting a dichotomous outcome, and allows us to model how the odds/risk of the dichoto-
mous outcome changes by exposure of an explanatory variable.

An alternative approach is quantile regression, which lets us model how the quantiles
of a continuous distribution changes by exposure. The quantile regression model was first
introduced in the 1970’s by econometricians Koenker and Bassett (1978). This approach
has gradually made its way to several other application areas like applications to survival
analysis, methods for reference growth charts in medicine (Wei et al., 2006), and appli-
cations to environment modelling (Cade and Noon, 2003) (Yu et al., 2003). Still, many
remain unaware of it, and the quantile regression model is still not as frequently used as
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logistic regression in applications in medicine, even when other parts of the distribution
than the conditional mean are of interest.

The goal of this thesis is to illustrate the use of both quantile regression and logistic re-
gression, and attempt to enlighten how quantile regression can offer a natural complement
to logistic regression, and provide a more complete picture of the effects of the factors
of interest. In addition quantile regression may provide several other advantages when
it comes to interpretability and understanding of the effects of the factors of interest. In
order to illustrate the use of the two approaches, some practical examples and illustrations
will be shown where the same data set is analyzed using both regression methods. The
response of interest is the birth weight, and especially low birth weight, and the factors
of interest will be the smoking habits of the mother and the mother’s age. In addition to
these examples we will look at the change in birth weight over time, and also how the
two methods are affected by censored data. Further some calculations using asymptotic
results will be shown to present an approximate relation between the two approaches. The
connection between logistic regression and quantile regression will also be shown through
analyses using both methods on simulated data sets. The distributions of interest in this
part is the normal distribution and the Student-t distribution.

The data set used for the analyses and practical examples will be presented further
in Chapter 2, including explanation of the different variables and exploratory analysis
of the data. The statistical theory behind the two regression models will be introduced
with a special focus on the interpretation of the estimated parameters in Chapter 3. The
derivation of an approximate relation between the log-odds ratio and the quantile effect is
also presented in Chapter 3. Chapter 4 contains the analyses on the simulated data. The
results from the analysis yielding the practical examples is presented in Chapter 5. Further
some discussion and conclusion of the findings of the thesis is given in Chapter 6.
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Chapter 2
Births in Norway data set and
exploratory analyses

The motivating case of this thesis is to study how birth weight is affected by the mother’s
age and her smoking habits during pregnancy; in particular, it is important to measure how
birth weights close to the definition of low birth weight 2500 g are affected. In this chapter
we present the data set and do exploratory analyses of the data.

The analyses are performed on an artificially generated data set, which contains the
following five variables: birth weight (BW) given in grams, year of birth, whether the
mother has been smoking during the pregnancy or not (smoking habits during the preg-
nancy), the age of the mother when giving birth (in categories), and whether the birth was
spontaneous or not.

To generate the data, completely anonymous crude tabular data from the Medical Birth
Registry of Norway (MBR) were used as a starting point. The data were then expanded
into a full sized data file according to the frequencies in each tabular category. Random
noise was then added to the birth weight categories to create a continuous distribution
similar to an actual birth weight distribution. The resulting data file thus has a total size
and multivariate distributions of its variables that closely resemble those of actual birth
registry data; at the same time, none of the “individual” data records in the file refer to any
actual patients.

The data cover all births in Norway in the period 1967 to 2009. In total, the data set
consists of 2 517 812 births, and five variables. The information about smoking habits
was first included in 1998. Therefore, the analyses involving smoking as a factor will be
done on a data set containing births in the period 1998 until 2009, on a data set containing
511 447 births. Information about spontaneous births is missing for all births in 2009, so
this year is not included in the analyses of spontaneous births.

Data analyses are intended primarily to illustrate the methods and to discuss advan-
tages and disadvantages of presenting results from the two methods; we expect the estima-
tion results presented in this thesis to closely resemble those that would be obtained from
real data, while at the same time not needing access to individual data.
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A histogram of birth weights in Norway for all births between 1967 and 2009 is shown
in Figure 2.1 together with the the corresponding normal-plot. Although the histogram
appears Gaussian, it is possible to observe a slightly heavier tail on the left side. The shape
of the corresponding normal-plot typically indicates a skewed distribution, and hence sup-
ports this observation. In addition we can detect deviation from the normal distribution
by the fact that the mean and the median, shown in Table 2.1, are not equal, which would
be the case for a normal distribution, and other symmetric distributions. In Figure 2.2 the
number of births is plotted for each year.

Figure 2.1: Distribution of birth weight.

Table 2.1: The mean, the median, the proportion of birth weights below 2500 grams and the weight
corresponding to the 5% quantile.

Mean 3488 g
Median 3530 g

Low BW 5.3%
5% quantile 2468 g

Table 2.2: Description of the smoking categories.

Category Description
1 the mother did not smoke during the pregnancy
2 the mother smoked sometimes during the pregnancy
3 the mother smoked daily during the pregnancy

The two variables, smoking or not and the age of mother, are categorical variables.
The variable containing information about smoking habits is described in Table 2.2. On
the left hand side in Figure 2.3 the number of births in each smoking category is plotted
for each year. The black curve shows the number of births for the non-smokers, the red
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Figure 2.2: Number of births in each year.

curve the smokers, and the blue curve the ones that smoked sometimes. The total number
of births in each category is shown in Table 2.3.

Table 2.3: Number of births in each category.

Non-smokers Smoke sometimes Daily smokers
446638 6477 59179
87.2% 1.2% 11.6%

In this study we choose to work with only two different categories, 1 denoting non-
smokers and 2 denoting smokers. Category 2, smoked sometimes, contains few observa-
tions compared to the other two categories, and category 1, non-smokers, is clearly the
largest group. So in order to obtain the two categories wanted above, it is reasonable to
add the births where the mother smoked sometimes to the category of non-smokers. From
the figure on the right hand side in 2.3 we see the number of births in each of the two
categories over years. The black curve now denotes both category 1 and 2, and we refer to
these as non-smokers and smokers respectively.
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Figure 2.3: Number of births in each category over years.

Figure 2.5: A histogram together with the corresponding normal-plot for the non-smokers in the
upper panel and the smokers in the lower panel. Both in the period 1998 to 2009.
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Figure 2.5 show histograms and corresponding normal-plots for birth weight of non-
smokers and smokers separately. The normal QQ-plots indicates deviations from a normal
distribution and support the observation of a heavier tail on the left side of both distribu-
tions. Notice that the mean and the median are lower for smokers than for non-smokers,
and in addition the proportion of children with low birth weight is higher for smokers.
These observations are presented in Figure 2.6 in the upper panel. For non-smokers 4.9%
of the birth weights has low birth weight, while this proportion increases to 7.7% for smok-
ers. In the lower panel of Figure 2.6 the weight corresponding to the 5% quantile of the
two distributions is presented, and we notice how this value decreases from 2508 g for
non-smokers to 2293 g for smokers.

In addition to these figures we inspect the boxplot found in Figure 2.7 to obtain more
information about the difference between the two groups. The difference in the median is
visible from this plot, and we are also led to believe that the distribution of non-smokers
has approximately equal variance as the variance for the distribution of smokers.

Figure 2.6: The proportion of weights below 2500 g is shown in the upper panel, and the weight
corresponding to the 5% quantile in the lower panel. Left panel: non-smokers. Right panel: smokers.
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Figure 2.7: Boxplot of birth weight for the smoking categories.
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The age variable is grouped in 5 year intervals, giving the 6 categories:

Table 2.4: Description of the age categories.

Category Age
1 19 years and younger
2 20 - 24
3 25 - 29
4 30 - 34
5 35 - 39
6 40 years and older

The number of births in each category over years is presented in Figure 2.8. By con-
sidering the boxplot in Figure 2.9 we are only able to see small differences between the
birth weight in each of the age categories.

Figure 2.8: Number of births in each age category over years.
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Table 2.5: The mean, median, proportion of low birth weight and the weight corresponding to the
5%-quantile for the different age groups.

≤ 19 20− 24 25− 29 30− 34 35− 239 40 ≥
Mean 3365 3447 3508 3530 3505 3462

Median 3418 3486 3545 3577 3566 3533
Low BW 6.9% 5.1% 4.8% 5.2% 6.5% 7.7%

5% quantile 2317 2487 2522 2473 2335 2194

Figure 2.9: Boxplot of birth weight for age categories.
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Chapter 3
Statistical methods

In this chapter the statistical theory of logistic regression and quantile regression is intro-
duced with a special focus on the interpretation of the estimated parameters.

3.1 Logistic Regression
The logistic regression model is one out of several possible generalized linear models
(GLM). To introduce this model we start by presenting the theoretical framework of gen-
eralized linear models using notation as presented by Rodriguez (2013). The standard
linear model will be introduced at first, and further how this can be generalized in two
steps to obtain the logistic regression model.

3.1.1 Generalized linear model theory
Let y1, ..., yn denote n independent observations of a response that are defined to be real-
izations of the random variable Yi. We assume that Yi has a normal distribution with mean
µi and variance σ2, that is assumed to be equal for all of the n observations,

Yi ∼ N(µi, σ
2). (3.1)

The expected value, µi, can be expressed as

µi = xTi β, (3.2)

where we assume that the expected value is a linear function of the r predictors taking
the values xTi = (xi1, ..., xir) for the i-th observation and β is a vector of the unknown
parameters, also called regression coefficients, that needs to be estimated. The response
can now be expressed as

yi =µi + εi

yi =xi
Tβ + εi,

(3.3)
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where, εi is a Gaussian error, εi ∼ N(0, σ2). This is the standard linear model that the
generalized linear models are based on, and this generalization requires two steps. First the
observations need to come from a distribution in the exponential family and be expressed
as

f(yi) = exp{yiθi − b(θi)
ai(φ)

+ c(yi, φ)}, (3.4)

where θi and φi are parameters, and the functions a(φi), b(θi) and c(yi, φ) are known. The
exponential family includes distributions such as the normal, binomial, Poisson, gamma
and exponential distributions.

Further, a transformation of the mean is introduced in order to obtain a model that is
not directly of the mean. This is a one-to-one, continuous differentiable transformation
given by the function g(µi), called the link function. It is assumed that this transformed
mean follows a linear model, and the linear predictor is introduced,

ηi = g(µi) (3.5)

ηi = xTi β. (3.6)

Since this transformation is one-to-one it can be inverted to obtain the expected value. For
the standard linear model the linear predictor is simply

ηi = µi, (3.7)

known as the identity. For the logistic regression model this function is called the logit
transformation, that we will come back to after defining the stochastic structure of the data.

3.1.2 The model and logit link
The logistic regression model is a model for dichotomous data, where the response takes
one of two possible outcomes, either “success” or “failure” for a given event.

We consider a binary response yi defined as,

yi =

{
1 success
0 failure,

(3.8)

being realizations of a random variable Yi that takes the values one and zero with proba-
bilities pi and 1− pi respectively. Then the distribution of Yi is the Bernoulli distribution
on the form,

P (Yi = yi) = pyii (1− pi)1−yi . (3.9)

This distribution is a special case of the binomial distribution of size one, equivalent to
considering individual data. Another possibility is to work with grouped data where, it
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is assumed that the data can be divided into groups such that all individuals in a group
have identical values of all predictors. Then ni denotes the number of observations and
yi denotes the number of “successes” in group i. The random variable Yi can then take
the values 0, 1, ..., ni, and when the yi‘s are independent have the same probability pi for
“success”, then

Yi ∼ Binomial(ni, pi). (3.10)

P (Yi = yi) =

(
ni
yi

)
pyii (1− pi)ni−yi (3.11)

Since the observations come from a binomial distribution, it is known that a change
in the probability p would affect both the expected value and the variance. Therefore,
constant variance is not an assumption for the logistic regression model.

The binomial distribution belongs to the exponential family, so the general theory for
generalized linear models holds. The logistic regression model is a generalized linear
model with binomial response and link logit that we will now define. Based on the stan-
dard linear regression model, we may first suggest a model assuming a linear function for
the probability,

pi = xTi β.

By doing this, the probability can take any real value, and restrictions on the explanatory
variables and the estimated parameter is needed to ensure that no probability takes values
less than 0 or larger than 1. To avoid these restrictions we use the logit transformation, a
transformation of the probability through the odds to the logit. The odds is defined as,

odds =
pi

1− pi
, (3.12)

the ratio of the probability to its compliment. Let the logit of the probability be defined as,

logit(pi) = ηi, (3.13)

The logit is connected to the probability through the odds, where the logit is the logarithm
of the odds, defined as the linear predictor in Equation (3.6), so that

ηi = logit(pi) = ln(odds) = ln(
pi

1− pi
) = xTi β. (3.14)

The logit can take any real value, and by exponentiating the logit the odds is obtained.
Since the logit transformation is one-to-one, and the inverse transformation makes it pos-
sible to go from logit to probabilities, and this leads us to the next section on how to
interpret the parameters in the logistic regressoin model. Figure 3.1 shows the logit and
the probabilities plotted together.

3.1.3 Interpretation of the parameters - comparing two groups

The regression coefficients β in the linear model defined in Equation (3.14) can be inter-
preted in the same way as for the standard linear model, remembering that the left-hand
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Figure 3.1: Logarithm of the odds vs the probability.

side is the logit, not the mean. βj would now represent a change in the logit of the prob-
ability when changing the j′th predictor with one unit, while the other predictors, if any,
are held constant.

By exponentiating Equation (3.14) we obtain the expression for the odds for the i′th
unit

pi
1− pi

= exp{xTi β}

odds = exp{xTi β},
(3.15)

that may be more familiar and easier to interpret than the logit scale. If the probability of
an event is 50%, then the odds are one-to-one, called even, and the logit would be zero. A
probability below 50% would take a negative value for the logit and a probability above
50% would take a positive value. This can be seen in Figure 3.1.

From this model it can also be seen how the odds of a dichotomous response changes
when being exposed to a factor, allowing us to compare the two groups where one is
exposed to the factor and the other is not. Equation (3.15) represents a multiplicative
model for the odds. Recall that βj represents the change in the logit when changing the
j′th predictor by one unit. When exponentiating βj we obtain the odds ratio, that is more
familiar to interpret than the effect of the logit. The odds ratio now gives information about
the effect on the odds.

For the effect on the odds, it is also possible to differ between effects, the gross effect
and the net effect. The gross effect of the parameters the β-coefficient in a simple model
that only contains one covariate. The net effect is the β-coefficient in a model with several
covariates, and it is then the effect on the response of changing the covariate one unit and
keeping the other constant. In this study we will mostly work with simple models, and
obtain the gross effect.

When looking at the effect of an explanatory variable, it is worth mentioning that
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although we are able to go from logit to probabilities by the inverse of the logit function,
this may not be very helpful when interpreting the effect of a factor. There is no simple
way to express this effect on the probability since an effect that appears constant in the
logit scale would transform to varying effects in the probability scale depending on both
βj and the probability. This can also be seen in Figure 3.1. From the logit link we are able
to go back to probabilities by

pi =
exp{xTi β}

1 + exp{xTi β}
. (3.16)

This leads to several ways of interpreting the results of logistic regression. Odds ratio
(OR) and relative risk (RR) are the two most widely used in epidemiology (Schmidt and
Kohlmann, 2008). It is discussed what is the best scale for presenting results. When
interpreting rare events that occurs in less than 10% of the cases, RR is considered to yield
an acceptable approximation of the OR (Schmidt and Kohlmann, 2008). Another measure
scale is the risk difference, and we will consider these three scales of measuring in Chapter
5.

3.1.4 Estimation of parameters
The parameters in a logistic regression model are estimated by maximum likelihood esti-
mation. The observations are independent, so the joint density is used to find the likelihood
function.

L(βi, yi) =

n∏
i=1

fi(yi; p), (3.17)

further finding the logarithm of this function, the log-likelihood function

lnL(βi, yi) =

n∑
i=1

lnfi(yi; p). (3.18)

For the n independent binomial observations, the log-likelihood function takes the form,

lnL(βi, yi) =

n∑
i=1

yiln(p) + (n− yi)ln(1− p) (3.19)

The estimates for β is found by using the connection between the probability p and
the covariates xi and β through the logit. Then the parameter β is then estimated by
optimizing the likelihood function or the log-likelihood function, these are equivalent, and
choosing the β than makes the data that are observed as likely as possible. This can be
expressed as:

lnL(β̂,y) ≥ lnL(β,y) (3.20)

for all β.
One way of finding this maximum likelihood estimator is to set what is called the score

vector equal to zero. The score vector is the first derivative of the log-likelihood function,

u(β) =
∂lnL(β,y)

∂β
, (3.21)
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then
u(β̂) = 0. (3.22)

From this the Hessian matrix can be found by,

H(β) =
∂u(β)

∂β
. (3.23)

For many problems the maximum likelihood estimation requires iterative procedures.
One way of doing this is to expand the score function using a first order Taylor series and
further using the Hessian matrix to obtain the first order approximation,

β̂ = β0 −H
−1(β0)u(β0) (3.24)

From this the Newton-Raphson technique can be used by, given a trial value, the equa-
tion above (3.24) is used to obtain an improved estimate and repeating the procedure until
the difference between estimates are sufficiently close to zero. Another suggestion for a
procedure is known as Fisher scoring which gives an imporved estimate. In this procedure
the Hessian matrix is replaced by the information matrix, that is its expected value, and
the improved estimate is then given by,

β̂ = β0 − I
−1(β0)u(β0) (3.25)

The information matrix is defined as,

Var[u(β)] = E[u(θ)u′(θ)] = I(β). (3.26)

Or under mild regularity conditions,

Var[u(β)] = I(β) = −E[
∂2lnL(β)

∂β∂β
]. (3.27)

3.1.5 Hypotheses testing and confidence intervals
To test the significance of a parameter, βj , look at the hypothesis,

H0 : βj = 0. (3.28)

The asymptotic results for the MLE is that under the certain regularity conditions,
when n → ∞ the estimated parameter (β̂j) are normally distributed. From this the Wald
test follows. The Wald-statistic, or the z-statistic, given by,

z =
β̂j√

Var(β̂j)
, (3.29)

is the critical value that is used at a chosen α-level of significance to decide if βj is signif-
icant.
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This z-statistic can also be used to construct a (1 − α)%-confidence interval. Using
the equation above (3.29), the two-sided (1− α)%-confidence interval is given by,

β̂j = ±z1−α/2

√
Var(β̂j), (3.30)

where
√

Var(β̂j) is the standard error. An estimate of this variance can be given by the the
inverse of the expected information matrix,

v̂ar(β̂) = I−1(β̂). (3.31)

The observed information matrix from Equation (3.27) is also possible to use for this
estimation (Rodriguez, 2013).
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3.2 Quantile Regression
The key idea of quantile regression was first introduced by Koenker and Bassett (1978).
In this section we introduce the statistical theory of the quantile regression model mainly
using theory and notation as presented by Koenker (2005) and Yu et al. (2003). For the
choice of methods of inference we refer to Kocherginsky et al. (2005) and He and Hu
(2002).

3.2.1 Definition of the quantile of a random variable
To define the term quantile we start by looking at a well known example of a quantile,
the median, known as the 50% quantile. The sample median can be defined as the middle
value of a set of ordered data (or the halfway between the two middle values). This means
that the sample median would split the data into two parts, and these two parts would
contain equally many observations. Let the variable Y be defined on a population and let
m denote the population median, that usually can be estimated by the sample median. For
Y a continuous random variable, the median m is the value that solves

F (m) =
1

2
, (3.32)

where the belonging cumulative distribution function of Y is F (y) = P (Y ≤ y). Since
the median splits the data into two equal parts, we have

P (Y ≤ m) = P (Y ≥ m) =
1

2
. (3.33)

Figure 3.2 show the 50%-quantile value, found on the horizantal axis, on the cumulative
distribution function and the probability density function.

Figure 3.2: The density and the cumulative distribution function.

Another example is to split the ordered data into four parts, with the proportions of one
quarter, a half and three quarters. We would then get the 25% quantile, also known as the
lower quartile, the median and the 75% quantile, also known as the upper quartile of the
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population. As before, for the continuous case, F (y) = 1
4 and F (y) = 3

4 for the lower and
upper quartile respectively. In general we define τ to take values so that 0 < τ < 1. Then,
for the continuous case, the 100τ% quantile is the value of y that solves F (y) = τ . Note
also that the 100τ% quantile is equivalent to the 100τ ′th percentile (Yu et al., 2003).

3.2.2 Linear quantile regression models
We recall the standard linear model presented in Equation (3.3), where we fit a model to
the conditional mean of relationship between the explanatory variables and the response.
An alternative, that is known to be more robust, is to fit a model to the median instead of
the mean. The basic idea is then to estimate β by minimizing the absolute value of the
error,

min
β

n∑
n=1

| yi − xTi β | . (3.34)

This is the basis for the median regression model, and this can be extended to other quan-
tiles in addition to the median, and we obtain the conditional quantile regression model.
The relationship between the 100τ% quantile of the response and the explanatory variables
xi is given by

QYi
(τ |x) = xi

Tβ(τ) (3.35)

So by the quantile regression model, it will be possible to look at the relationship between
the explanatory variables and the response in different quantiles of the distribution, not
only the mean. Figure 3.3 How the estimates of β is estimated will be explained in section

Figure 3.3: Toy example with one covariate shows the relationship between the explanatory variable
and the response in different quantiles of the distribution. The red percentages denote the quantiles.

3.2.4, and in the next section the interpretation of the quantile regression model will be
explained.
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3.2.3 Interpretation of the quantile effect-interpretation of the regres-
sion coefficients

Quantile regression models the relationship between the τ ′th sample quantile of the re-
sponse and the different explanatory variables in the model. The model usually contain an
intercept, that is the sample quantile with no effect from any of the explanatory variables
present. We usually interpret the effect of a explanatory variable by looking at what hap-
pens in the response when we change this with one unit. The effect would typically be
the change in the response that is necessary to keep the response at the same quantile as
before the change in the explanatory variable was made.

To explain this further Koenker (2005) presents the simplest regression model, the two-
sample treatment-control model, as introduced by Lehmann and Doksum (1974) (Koenker,
2005). By this model we assume that the response of an untreated observation would be
x, and that the treatment then would add an amount ∆(x) to the response. The random
variableX is distributed according to F , and the random variableX+∆(X) is distributed
according to a G. We can now define ∆(x) as the ”horizontal distance” between F and G
at x, giving

F (x) = G(x+ ∆(x)). (3.36)

Now, ∆(x) is uniquely defined and we express it as,

∆(x) = G−1(F (x))− x. (3.37)

We now recall the definition of the quantile, and use τ = F (x) to change variables and
obtain the quantile treatment effect,

δ(τ) = ∆(x) = ∆(F−1(τ)) = G−1(τ)− F−1(τ). (3.38)

This quantile treatment effect can be estimated by

δ̂(τ) = Ĝ−1
n (τ)− F̂−1

m (τ), (3.39)

where we let Ĝ−1
n and F̂−1

m denote the empirical distribution functions of the treatment
and control observations, with n and m observations, respectively. Figure 3.4 illustrates
an example of this setting. We now recall the quantile regression model, and formulate the
model for this problem,

QYi
(τ |xi) = β0(τ) + β1(τ)xi. (3.40)

In this binary problem the xi denotes the treatment indicator, where xi = 1 indicates
treatment and xi = 0 indicates the control. The estimates for the parameters in this model
will then be β̂0(τ) = F̂−1

m and β̂1(τ) = δ̂(τ). β0 is the intercept in a model, where none
of the covariates is present. The parameter β1 denotes the quantile treatment effect, and
is the slope of the model. We can interpret more complicated models in this way as well.
Often, to find the effect of a covariate we might look at the derivative of the model with
respect to the parameter of interest. For additive models we would obtain the effect of the
covariate of interest. If we should have a model with interaction effects as well, we need
to be aware of the additional interaction effect.
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Figure 3.4: Illustration of an example of empirical cumulative distribution functions F and G. The
quantile effect is shown by δ(τ).

3.2.4 Estimation of the parameters

The estimation of the parameters in the quantile regression model is computationally more
demanding than for both the standard linear model and the logistic model. The basic idea,
elaborated by Koenker and Basset (1978), is to minimize the sum of absolute errors. This
can be done by minimizing,

min
β

n∑
n=1

ρτ | yi − xTi β |, (3.41)

where ρτ is dependent on the quantile of interest, and often known as the check function.
An associated loss function can be written as |u| where u = yi − xiTβ, where yi is
observation number i, i = 1, ...n, and β contains the parameters to be estimated ,and we
extend this to a more convenient loss function, the check function

ρτ (u) = τuI[0,∞)(u)− (1− τ)uI(−∞,0)(u), (3.42)

where

IA =

{
1, u ∈ A
0, otherwise

(3.43)

(Yu et al., 2003). Since this check function is not differentiable in the origin, there is
no explicit solution for the parameters in this model. To solve the minimization prob-
lem, Koenker (2005, 1978) show that minimizing the loss actually leads to a simple op-
timization problem that can be solved by linear programming. We formulate the quantile
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regression problem (3.41) as a linear program on the form,

min
β,u,v

{τ1Tnu+ (1− τ)1Tnv|Xβ + u− v = y}, (3.44)

where X denotes the usual n × p regression design matrix. The variables u and v are
introduced as artificial variables ui, vi : 1, ..., n representing positive and negative parts of
the residual vector y −Xβ. The solutions, β̂(τ), that we call regression quantiles, follow
the properties of solutions of linear program, known as basic solutions. There are several
options for what algorithm to use to find these solutions. In the quantreg package
in R we find several available methods, many implemented by Koenker (2015). For large
samples, like the data set in our case study, the method used for optimization is the Frisch-
Newton interior point method.

3.2.5 Inference for regression quantiles
Several approaches to statistical inference for quantile regression applications exists, and
we can classify these into three categories: direct estimation of the variance-covariance
matrix, rank-score method and resampling methods; bootstrapping, pairwise or residual.
Several authors, including Koenker (2005), have considered the different methods, and
monte carlo simulations have been performed to compare the different methods. Based
on these comparisons and recommendations we choose, in this study, to apply a variant of
the bootstrap estimates called Markov chain marginal bootstrap, MCMB, proposed by He
and Hu (2002). For large problems the two common methods, bootstrapping pairwise and
bootstrapping residuals can be very time consuming as they require repeated calculation of
regression quantile estimates. This method is especially attractive for large problems, with
np between 10 000 and 2 000 000, and has shown robustness against certain deviations
from homoscedasticity (He and Hu, 2002). He and Hu (2002) show that the least absolute
deviation regression estimator is mcm bootstrappable, and this approach has been adapted
for quantile regression by Kocherginsky et al. (2005).

From the bootstrapping algorithm yielding K bootstrap samples, a sequence of
β(1), ..., β(K) is returned, and under the assumption of iid error models

yi = xTi β(τ) + εi (3.45)

He and Hu (2002) have shown that the sample variance of β(k) consistently approximates
the variance-covariance matrix. The sequence is a Markov chain, and some modifications
of the basic algorithm has been made to eliminate the correlation of the estimated se-
quence, obtaining the MCMB-A method. This is done by standardizing the design matrix
X by X̃ = (XTX)−1/2X , and transform back at the end by β(k)(XTX)−1/2β̃(k), lead-
ing back to the original parameter space. This method has been implemented by Kocher-
ginsky et al. (2005) to the quantreg package, called mcmb.

When using bootstrapping to estimate the variance-covariance matrix between 50 and
200 bootstrap replications are reccommended to obtain a decent estimate (Kocherginsky
et al., 2005). To construct a confidence interval based on the percentiles of the bootstrap
estimates, more replications are needed. This way of constructing confidence intervals is
often preferred, but on the other hand, for large data sets where we would not afford a
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much larger number of bootstrap replicates, an SD-based confidence interval is generally
adequate (Kocherginsky et al., 2005). For our case study we therefore use this SD-based
confidence interval on the form

β̂(τ)± zα/2SD(β̂(τ)). (3.46)

In addition to testing significance and creating confidence interval, it is possible to
carry out a test to find out whether the effect is constant over all the quantiles. This can be
done by the anova-function in the quantreg package that perform a joint test of equality
of slopes in the models for different quantiles of interest (Koenker, 2015).
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3.3 Derivation of a relation between odds ratio (OR) and
quantile effect

In this section an approximate relation between the odds ratio, or more precisely the loga-
rithm of the odds ratio, and the quantile effect will be derived.

We let p̂1 and p̂2 denote the estimated proportion of observations with value less than
the critical values x̂1 and x̂2, respectively. Let F (x) denote the cumulative distribution
function with corresponding density f(x). Then p̂1 = F (x̂1) and p̂2 = F (x̂2), and
x̂2 = F−1(p̂2) and x̂1 = F−1(p̂1). By definition,

ln (OR) = ln
(
p̂2/(1− p̂2)

p̂1/(1− p̂1)

)
= ln

(
F (x̂2)/(1− F (x̂2)

F (x̂1)/(1− F (x̂1))

)
. (3.47)

Define

g(x) = ln
(

F (x)

1− F (x)

)
. (3.48)

Then the log-odds ratio in Equation (3.47) can now be expressed as

ln(OR) = g(x̂2)− g(x̂1), (3.49)

where

g(x̂1) = ln
(

F (x̂1)

1− F (x̂1)

)
and g(x̂2) = ln

(
F (x̂2)

1− F (x̂2)

)
. (3.50)

It is in general adequate to use only the first order Taylor expansion; the first derivative,
and we ignore the remainder (Casella and Berger, 2002). By first order Taylor expansion
of g(x̂2) around x̂1,

g(x̂2) ≈ g(x̂1)− d

dx
g(x̂1)(x̂2 − x̂1) (3.51)

where

d

dx
g(x) =

d

dx

(
ln(F (x))− ln(1− F (x))

)
=

(
1

F (x)
− 1

1− F (x)

)
f(x)

=
f(x)

F (x)(1− F (x))
.

(3.52)

The approximate relation between the odds ratio and the quantile effect is thus,

g(x̂2) ≈ g(x̂1)− d

dx
g(x̂1)(x̂2 − x̂1)

g(x̂2)− g(x̂1) ≈ − f(x̂1)

F (x̂1)(1− F (x̂1))
(x̂2 − x̂1)

ln (OR) ≈ − f(x̂1)

F (x̂1)(1− F (x̂1))
(x̂2 − x̂1),

(3.53)
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Chapter 4
Synthetic case studies

The aim of this chapter is to explore analyses using quantile regression and logistic re-
gression for known pdfs, both analytically and by simulations. The quantile effect and the
odds ratio for location, scale and location-scale shifts of the normal distribution and the
Student t-distribution will be demonstrated, and further see how the two approaches are
related. To do this quantile regression and logistic regression are tested for simulated data
sets.

The simulated data sets has the same number of observations as the data set being
analyzed for effect of smoking on birth weight in Chapter 5, i.e 511 447 observations.
These observations are categorized in two groups, where the observations of Group 2 are
being exposed to a factor that the observations of Group 1 are not. In Group 2 there are
59 070 of the observations, yielding 452 377 observations in Group 1. This is similar to
the number of smokers and the number of non-smokers, respectively.

Further some illustrations on how a gradual increase in location, scale and location-
scale shifts affects the the results will be shown for both the normal distributed cases and
the t-distributed cases. This shows a trend in how the effect of the factor changes when
the difference between the two groups gradually increases. The distribution of Group 1 is
constant and we change the distribution of Group 2 by changing ∆µ and/or ∆σ.

4.1 Normally distributed cases
We let the observations of Group 1 be normally distributed with mean µ1 and standard
deviation σ1, and the observations of Group 2 be normally distributed with mean µ1 + ∆µ
and standard deviation σ1 + ∆σ. Let X be an observation from our data set, then,

X|Group 1 ∼ N(µ1, σ
2
1)

X|Group 2 ∼ N(µ1 + ∆µ, (σ1 + ∆σ)2).
(4.1)

When analyzing the data sets using quantile regression we let τ be the quantile of
interest. When the logistic regression model is used, we are interested in the odds of the
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event that a given observation is smaller than a chosen cut-off value, denoted by c. We
analyze the data for five different values for τ , and the values for c(τ) is set to be equal to
the intercept value obtained by quantile regression, that is the estimated quantile value for
Group 1. Let xi be defined as

xi =

{
1 if the observation comes from Group 2
0 if the observation comes from Group 1.

(4.2)

Then the response in the τ -th quantile is modelled by Equation (3.35), yielding

QYi(τ |xi) = β0(τ) + β1(τ)xi (4.3)

and by logistic regression the probability for an event below c(τ) is modelled through the
logit link by Equation (3.14), yielding

logit(p(τ)
i ) = β

(τ)
0 + β

(τ)
1 xi (4.4)

For the synthetic case studies we will look at three different cases that will illustrate the
effect on quantiles and odds ratio of location, scale and location-scale shifts of the normal
distribution. The three cases are presented in Table 4.1. By letting the observations be

Table 4.1: An overview of the three different simulated cases.

µ1 ∆µ σ1 ∆σ
Case 1 3539 −193 635 0
Case 2 3539 0 635 100
Case 3 3539 −193 635 100

normally distributed it is, in addition to analyses on the data set, possible to calculate
the theoretical values for the effect of the factor in the data set. The derivation of these
theoretical values is the subject of Section 4.1.2 and Section 4.1.3, after presenting some
properties of the normal distribution.

4.1.1 Properties of the normal distribution
Let Y be a random variable from a normal distribution with mean µ and variance σ2,

Y ∼ N(µ, σ2).

Then Y has the probability density function (pdf),

f(y) =
1√
2πσ

exp
(
−1

2

(y − µ)2

σ2

)
Considering the random variable Z ∼ N(0, 1) we obtain the standard normal curve on the
form,

f(z) =
1√
2π

exp
(
−z

2

2

)
,
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and the cumulative distribution function is given by

Φ(z) = P (Z ≤ z) =

∫ z

−∞

1√
2π

exp
(
− t

2

2

)
dt. (4.5)

The standard normal curve can be used to find this probability, by finding the area under
the curve.

Figure 4.1: Standard normal curve

To find Φ(z) we use a normal table or statistical software, that is based on numerical
integration in Equation (4.5). If Φ(z) is known z can be found by that same methods.
This probability can be found for the variable Y as well by doing a Z transformation
where,

Z =
Y − µ
σ

. (4.6)

Then
P (Y ≤ y) = P (

Y − µ
σ

≤ y − µ
σ

) = P (Z ≤ y − µ
σ

) = Φ(
y − µ
σ

)

(Larsen and Marx, 2012).

4.1.2 Theoretical quantile effect
We let τ denote the quantile of interest, and to calculate the theoretical values for the
response associated with τ , we use the properties of the normal distribution. We have

P (X < k1|Group 1) = τ and P (X < k2|Group 2) = τ,

where k1 and k2 denotes the response associated with τ for Group 1 and Group 2 respec-
tively. Further, we use the Z transformation from Equation (4.6) and obtain

Z1 =
X − µ1

σ1
and Z2 =

X − (µ1 + ∆µ)

(σ1 + ∆σ)
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Recall Equation (4.5) and let

Φ(zτ ) = P (Z ≤ zτ ) = τ.

We are now able to find expressions for k1 and k2 associated with τ . We have

zτ =
k1 − µ1

σ1
and zτ =

k2 − (µ1 + ∆µ)

(σ1 + ∆σ)
(4.7)

k1 = zτσ1 + µ1 and k2 = zτ (σ1 + ∆σ) + µ1 + ∆µ

The difference k2−k1 would now be the change in the response on the τth quantile caused
by the factor exposed to Group 2. This change denotes the effect of the factor on the τ−th
quantile.

effect = k2 − k1 = (zτ (σ1 + ∆σ) + µ1 + ∆µ)− (zτσ1 + µ1)

= zτ (σ1 + ∆σ) + µ1 + ∆µ− zτσ1 − µ1

effect = zτ

(
(σ1 + ∆σ)− σ1

)
+ ∆µ

effect = zτ (σ1 + ∆σ − σ1) + ∆µ

effect = zτ∆σ + ∆µ

(4.8)

4.1.3 Theoretical odds ratio

When applying the logistic regression model we are interested in the odds for the event
that an observation X is smaller than a given value c. The odds ratio, OR, is the effect on
the odds for the given event when the observation comes from Group 2.

Let odds1 denote the odds for the event given Group 1, and odds2 denote the odds for
the event given Group 2. The odds ratio is then,

OR =
Odds2

Odds1
=
P (X ≤ c|Group2)/(1− P (X ≤ c|Group2))

P (X ≤ c|Group1)/(1− P (X ≤ c|Group1))
. (4.9)

Standardizing using Equation (4.6) yields

P (X ≤ c|Group1) = P (Z ≤ c− µ
σ1

)

P (X ≤ c|Group2) = P (Z ≤ c− µ1 −∆µ

(σ1 + ∆σ)
).

(4.10)

By combining Equations (4.9), (4.10) and (4.5) we obtain the formula for the odds ratio,

OR =
Φ( c−µ1−∆µ

(σ1+∆σ) )/(1− Φ( c−µ1−∆µ
(σ1+∆σ) ))

Φ( c−µ1

σ1
)/(1− Φ( c−µ1

σ1
))

, (4.11)

that would be the effect of the factor in Group 2 on the odds for the event of interest.
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4.1.4 Case 1 - results

For the first set of analyses on data simulated from a normal distribution we let the two
groups be distributed as presented in Equation (4.1) by the values found for ”Case 1” in
Table 4.1. The pdf’s and and the cdf’s of the two groups are shown in Figure 4.2. Since
∆σ = 0 the distributions have the same shape, and because of the change in the mean
value, the distribution of Group 2 is shifted to the left with a distance to Group 1 equal to
∆µ = −193.

Figure 4.2: Left panel: pdf’s of the two groups. Right panel: cdf’s of the two groups. Green curve:
Group 1. Yellow curve: Group 2.

We analyze the data for five different values for τ , and the values for c corresponding
to the τ -th quantile is found in Table 4.2.

Table 4.2: The quantiles of interest, τ , and corresponding values for c of interest.

τ 0.05 0.25 0.50 0.75 0.95
c(τ) 2493 3109 3540 3968 4583

The results obtained by quantile regression for this simulated data set are shown in
Figure 4.3. The effect appears as a straight, horizontal line approximately at −200 on
the vertical axis. This implies that the effect of the factor is estimated to be equal for all
quantiles of the distribution. Recalling Section 3.2.3 and Equation (3.39) the effect on the
quantiles can be expressed as the horizontal distance between the curves of the empirical
cumulative distribution function. By construction, this distance is equal over the entire
distribution, and equal to the difference in the mean between the two groups, ∆µ = −193.
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This is reflected in the estimated quantile effect presented by the curve in Figure 4.3, and
as expected. Since Group 2 is shifted to the left of Group 1, the quantile effect is negative.

The results obtained by logistic regression for the same simulated data are found in
Figure 4.4. The curve denoting the odds ratio does not give the impression of a constant
effect on the logit scale. The odds ratio is larger than 1 for all cut-off values, implying
that the odds is increasing by exposure of the factor of interest, and hence more likely with
an observation below c(τ) with exposure. It is not as easy to see exactly how a change in
location affects the results from logistic regression, that we will also come back to later.

Figure 4.3: Results from quantile regression. The black curve denotes the quantile effect shown
on the y-axis, plotted against the values for the τ -th quantile when the factor of interest is not
present, that is the quantiles of Group 1, on the x-axis. The τ ’s of interest are presented by the
red percentages. A 95%-confidence interval is indicated in gray.

Figure 4.4: Results from logistic regression. The red numbers denote the logit(p(τ)i ) for an ob-
servation being below the cut-off value c(τ) found on the x-axis. The green numbers denote the
corresponding odds. The black curve denotes the odds ratio, plotted on a log-scale, i.e it is the
values on logit scale that are plotted, but the labels on the y-axis show actual odds ratio values. A
95%-confidence interval is indicated in gray.
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Further we let the location shift to the left gradually increase, and let ∆µ take the
values presented in Table 4.3. The location shifts are illustrated in Figure 4.5 showing
the pdf and the cdf of the different changes. Note that the black curve now shows the
distribution of Group 1. The results from both quantile regression and logistic regression
are presented in Figure 4.6.

Table 4.3: The different changes in location, with corresponding colours for Figure 4.5.

black ∆µ = 0 ∆σ = 0
red ∆µ = −100 ∆σ = 0

green ∆µ = −200 ∆σ = 0
blue ∆µ = −300 ∆σ = 0

Figure 4.5: Illustrates location shift to the left. Left panel: pdf’s. Right panel: cdf’s. Note that the
black curve represents the distribution of Group 1.

Figure 4.6: Left panel: the results from quantile regression. Right panel: the results from logistic
regression, plotted on log-scale. Note that the black curve now illustrates how the effect is presented
if the two groups were equally distributed. The colours are presented in Table 4.3.

From these results we notice that for the results obtained by quantile regression the
curves presenting the quantile effect still appear as horizontal lines, and thus constant in
all quantiles. As the distribution of Group 2 gradually shifts more to the left, the effect
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gradually increases, and each curve lies approximately at the value of ∆µ. For the results
obtained by logistic regression the curves presenting the odds ratio gradually take larger
values. When the two groups are equally distributed the odds ratio is naturally approx-
imately constant at 1. In addition to the increase in the odds ratio by location shift, we
also notice that the curves change shapes, and it might seem as they get gradually more
asymmetric around the mean as well. When the quantile effect is approximately 0 the
odds ratio is approximately 1. This can also be seen in Figure 4.7 where the odds ratio is
plotted against the quantile effect. The approximate relation derived in Section 3.3 is also
reflected in this figure, and we notice the approximate linear relation between the quantile
effect and the log-odds ratio.

Figure 4.7: The odds ratio (log-scale) plotted against the quantile effect. Calculated for the 5%-
quantile.
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4.1.5 Case 2 - results
For the second set of analyses on data simulated from a normal distribution, we consider
how the analyses are affected by a difference in the standard deviation, the scale parameter,
between the two groups. We let the two groups be distributed as in Equation (4.1) by the
values found in Table 4.1 by ”Case 2”. An overview of the quantile of interest and the
corresponding cut-off value for c(τ) is found in Table 4.4.

Table 4.4: The quantiles of interest, τ , and corresponding values for c of interest.

τ 0.05 0.25 0.50 0.75 0.95
c(τ) 2492 3107 3537 3967 4583

Figure 4.8: Left panel: pdf’s of the two groups. Right panel: cdf’s of the two groups. Green curve:
Group 1. Yellow curve: Group 2.

The pdf’s and cdf’s of the two groups are shown in Figure 4.8. By construction, the
two groups have the same mean value, and as we move further towards the tails of the
distribution then the distance between them increases.

The results from quantile regression are found in Figure 4.9. The black curve, that
denotes the effect of exposure of Group 2, now takes on a different shape than in the
previous case, where the mean was different and the standard deviation was constant.
Instead of being a straight horizontal line, we now observe a curve with constant slope.
The effect is both positive and negative, and zero exactly at the 50%-quantile. For the
normal distribution the mean is equal to the median, i.e. at the 50%-quantile. Keeping
in mind that the mean of the two distributions now is equal, this is as expected. Further,
the effect is positive as we move towards the upper tail, and negative as we move towards
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Figure 4.9: Results from quantile regression. The black curve denotes the quantile effect shown
on the y-axis, plotted against the values for the τ -th quantile when the factor of interest is not
present, that is the quantiles of Group 1, on the x-axis. The τ ’s of interest are presented by the
red percentages. A 95%-confidence interval is indicated in gray.

the lower tail. Recalling Section 3.2.3 and Equation (3.39) the effect on the quantiles can
be expressed as the horizontal distance between the curves of the empirical cumulative
distribution function. The distribution of the observations in Group 2 is more spread on
both tails in opposite directions. This explains why the effect is positive in the upper tail
and negative is the lower tail, and in addition, the absolute value of the effect would be
equal. This is consistent with the black curve in Figure 4.9.

The results from logistic regression are found in Figure 4.10. The black curve denoting
the odds ratio takes values larger than 1 and smaller than 1. It reaches the value 1 when the
cut-off value is equal to the mean value. Since the mean is equal for Group 1 and Group
2, the factor that Group 2 is exposed to would not give an effect in this point. An odds
ratio of 1 when c = mean is then consistent with the effect being 0 at the 50%-quantile.
As before we do not get the impression that the absolute value of the effect is equal in the
upper and lower tail.

Further we let ∆σ gradually increase, and obtain more spread in each direction of the
distribution. The values of ∆σ is presented in Table 4.5 with corresponding color for the
figures. The curves presenting the results from quantile regression in Figure 4.11 are all
increasing and cross 0 in the mean, as expected. Further we observe the same as before,
the effect is as positive in the upper tail, as it is negative in the lower tail. The results from
logistic regression show that all curves are decreasing and cross 1 at the mean value. This
is as expected. The curves are not linear, and by the odds ratio curves it is difficult to draw
any conclusions on how the effect varies over the distribution. The relation between the
two approaches is also for this case presented in Figure 4.13. The same trend is observed
for this case; as the quantile effect approaches 0 the odds ratio approaches 1, and there is
an approximate linear relation.
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Figure 4.10: Results from logistic regression. The red numbers denote the logit(p(τ)i ) for an ob-
servation being below the cut-off value c found on the x-axis. The green numbers denote the corre-
sponding odds. The black curve denotes the odds ratio, plotted on a log-scale. A 95%-confidence
interval is indicated in gray.

Table 4.5: The different changes in scale, with corresponding colours for Figure 4.11.

black ∆µ = 0 ∆σ = 0
red ∆µ = 0 ∆σ = 50

green ∆µ = 0 ∆σ = 100
blue ∆µ = 0 ∆σ = 150

Figure 4.11: Illustrates the difference in the standard deviation. Left panel: pdf’s. Right panel:
cdf’s. Note that the black curve represents the distribution of Group 1.
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Figure 4.12: Left panel: the results from quantile regression. Right panel: the results from logistic
regression, plotted on log-scale. Note that the black curve now illustrates how the effect is presented
if the two groups were equally distributed. The colours are presented in Table 4.5.

Figure 4.13: The odds ratio (log-scale) plotted against the quantile effect. Calculated at the 5%-
quantile.
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4.1.6 Case 3 - results

For the third set of analyses on data simulated from a normal distribution we consider how
the analysis is affected when both the mean and the standard deviation is different between
the two groups, location-scale shift. We let the two groups be distributed as in Equation
(4.1) by the values found in Table 4.1 denote ”Case 3”. An overview of the quantiles of
interest and the corresponding cut-off values c(τ) are found in Table 4.6.

Table 4.6: The quantiles of interest, τ , and corresponding values for c of interest.

τ 0.05 0.25 0.50 0.75 0.95
c(τ) 2495 3110 3540 3968 4584

Figure 4.14: Left panel: pdf’s of the two groups. Right panel: cdf’s of the two groups. Green curve:
Group 1. Yellow curve: Group 2.

The pdf’s and cdf’s of the two groups are shown in Figure 4.14. A clear trend where
the distance between the distributions gets larger in the lower tail, and coinciding in the
upper tail is observed.

The result from quantile regression are found in Figure 4.15. The shape of the black
curve that denotes the effect on the quantile looks similar to the shape of the effect curve
in case 2, but this curve shows negative effect on all quantiles. In the 95%-quantile the
effect is close to zero. This is consistent with what we would expect when examining
the distributions, keeping in mind that they are approximately coinciding in the upper tail.
We also notice clearly how this linear curve is consistent with the theoretical expression
derived in Section 4.1.2.

The results from logistic regression is shown in Figure 4.16. The odds ratio is larger
than 1 for all values of c(τ). It is largest in the lower tail of the distribution and decreases
until it approaches 1 when we consider the upper tail. This is also natural considering the
shape of the cdf.
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Figure 4.15: Results from quantile regression. The black curve denotes the quantile effect shown on
the y-axis, plotted against the values for the τ -th quantile when the factor of interest is not present,
that is the quantiles of Group 1, on the x-axis. The τ ’s of interest is presented by the red percentages.
A 95%-confidence interval is indicated in gray.

Figure 4.16: Results from logistic regression. The red numbers denote the logit(p(τ)i ) for an ob-
servation being below the cut-off value c found on the x-axis. The green numbers denote the corre-
sponding odds. The black curve denotes the odds ratio, plotted on a log-scale. A 95%-confidence
interval is indicated in gray.

Further we let both ∆µ and ∆σ gradually change obtaining a gradually clearer location-
scale shift. In Figure 4.17 we observe a gradually larger distance between the groups in
the lower tail, and in the upper tail, all of the distribution curves are coinciding. Values of
the change and corresponding colors is found in Table 4.7.

38



Table 4.7: The different location-scale shits, with corresponding colours for Figure 4.17.

black ∆µ = 0 ∆σ = 0
red ∆µ = −100 ∆σ = 50

green ∆µ = −200 ∆σ = 100
blue ∆µ = −300 ∆σ = 150

Figure 4.17: Illustration of the difference in the scale and location. Left panel: pdf’s. Right panel:
cdf’s. Note that the black curve represents the distribution of Group 1.

Figure 4.18: Left panel: the results from quantile regression. Right panel: the results from logistic
regression, plotted on log-scale. Note that the black curve now illustrates how the effect is presented
if the two groups were equally distributed. The colours are presented in Table 4.7.

The results are presented in Figure 4.18. The curves denoting the quantile effect is
still linear, but the negative effect gradually increases, and the slope gradually increases
as the groups are more shifted. In the upper tail all curves are close to 0 for the effect
and approximately equal. For logistic regression the odds ratio gradually increases and in
addition the shape of the curves gradually gets more different as the two groups are more
shifted. As expected the odds ratio approaches 1 in the upper tail. In Figure 4.19 the odds
ratio is plotted against the quantile effect, and we also here observe an approximately linear
relation, and as the quantile effect approaches 0 the corresponding odds ratio approaches
1.

From the three cases discussed above we get an impression of how the results from
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quantile regression and logistic regression relate to each other. To summarize, an odds
ratio of 1 obtained from the logistic regression model is equivalent to an effect of 0 on the
quantile of interest. When the effect on quantiles approaches 0, the odds ratio approaches
1. We have also seen that the curves presenting the quantile effect yield results as expected
when considering the corresponding cdf’s, and the results are easy to interpret as they
are on the same scale. In addition we can easily detect where the effect is found to be
largest, either advantageous or disadvantageous. The results from logistic regression are
not as easy to connect to the location, scale and location-scale shifts of the distribution. We
are able to find out it the effect of exposure yields increasing or decreasing odds. When
examining how the effect varies on different quantiles of the distribution, the odds ratio
alone does not answer this without taking the original probability into account. This has
not been discussed in this chapter, but it will be considered in Chapter 5.

Figure 4.19: The odds ratio (log-scale) plotted against the quantile effect. Calculated at the 5%-
quantile.

4.2 Theoretical values and simulation study

In this section we present a simulation study that has been performed to evaluate the perfor-
mance of the confidence intervals obtained for the estimated parameters. The simulation
study is performed for one of the above cases, and we have chosen the case where both
the mean and the standard deviation differ between the two groups, with ∆µ = −300 and
∆σ = 150. Both quantile regression and logistic regression have been applied through
1000 simulations from this distribution. Further we consider the coverage of the confi-
dence intervals. The theoretical values needed for this part are calculated using the Equa-
tion (4.8) and Equation (4.11) derived in Sections 4.1.2 and 4.1.3. In Figure 4.20 the
theoretical values for the quantile effect and the theoretical odds ratio are shown for all the
cases in Table 4.7. The blue curve denotes the case of interest in the simulation study, but
we choose to present the curves for all the cases as it is of interest to see that these curves

40



appear similar as the curves in Figure 4.18.

Figure 4.20: Left panel: the theoretical quantile effect. Right panel: the theoretical odds ratio.

Results from the simulations are shown in Table 4.8 and in Table 4.9. The mean
difference between the estimated odds ratio and the theoretical odds ratio is found to be
0.00482, and for the quantile effect the mean difference is found to be −0.1064, thus we
may consider both estimators to be unbiased for this sample size. Further we consider the
coverage of the confidence intervals, and find that the theoretical value is covered by the
95%-confidence interval for 94.5% of the estimates by logistic regression. By quantile
regression the theoretical values for the quantile effect is covered by the 95%-confidence
interval in 95.14% of the estimates. From these findings there is no reason to believe that
either of the confidence intervals is too optimistic or too narrow.

Table 4.8: Result for logistic regression obtained by 1000 simulations.

Average of estimated OR Theoretical value
3.924 3.910
2.307 2.300
1.843 1.840
1.550 1.550
1.161 1.160

Table 4.9: Result for quantile regression obtained by 1000 simulations.

Average of estimated effect Theoretical value
-547.071 -546.728
-401.425 -401.173
-300.057 -300.000
-198.899 -198.827

-53.080 -53.272
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4.3 Student t-distribution cases
To explore analyses using quantile regression and logistic regression on distributions with
heavier tails, similar analyses have been performed on simulated data from a Student t-
distribution with 3 degrees of freedom, although not as extensively. We adapt the three
cases of changes in the location and scale, presented in Table 4.3, Table 4.5 and Table 4.7.
Let

T ∼ t(3) (4.12)

Then

X|Group 1 = µ1 + σ1T

X|Group 2 = (µ1 −∆µ) + (σ1 −∆σ)T,
(4.13)

denotes the distributions of the two groups from the Student t-distribution.

The models obtained by quantile regression and logistic regression are defined in Equa-
tion (4.3) and Equation (4.4). Results from the analyses considering location, scale and
location-scale shifts are presented in Figure 4.21. From comparing these results to the cor-
responding results for the normally distributed cases (Figure 4.6, 4.12, 4.18) we find many
of the same trends when we consider when the quantile effects are positive or negative,
and the odds ratios are smaller than or larger than 1. The curves denoting the quantile
effects behaves similar as the curves obtained by the normal distributed cases. The results
from logistic regression yields odds ratio curves that behaves quite differently and now
has a clearly different shape than for the cases of normal distributed data. In Figure 4.24
the odds ratio is plotted against the quantile effect for the three cases. The approximate
linear relation is still observed, and a quantile effect of approximately 0 yields an odds
ratio of approximately 1. From this we understand that the interpretation of the odds ratio
depend both on the original probability, and the shape of the distribution, and if this is not
taken into account one may draw the wrong conclusion about the effect of the exposure. It
does not make sense to compare odds ratios alone in different parts of the distribution and
neither to compare odds ratios when the distributions have different shapes. From this we
also see that by knowing that there is a pure location, scale or location-scale shift between
the two groups, it is possible to know how to expect the quantile effects to behave, whereas
this is not the case for logistic regression since the odds ratios are dependent on the shape
of the distribution. This will also be considered further in Chapter 5 where we consider a
case study concerning the effect of smoking and mother’s age on birth weight.
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Figure 4.21: Left panel: the results from quantile regression. Right panel: the results from logistic
regression, plotted on log-scale. Note that the black curve now illustrates how the effect is presented
if the two groups were equally distributed. Upper panel: location shift. Middle panel: scale shift.
Lower panel: location-scale shift.
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Figure 4.24: Quantile effect vs OR, the 5%-quantile, all cases.
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Chapter 5
Case study of birth weight

In this chapter the birth weight data set introduced in Chapter 2 is analyzed using both
logistic regression and quantile regression, as introduced in Chapter 3. We are especially
interested in the effect of smoking and mother’s age on low birth weight, but we will
also model the effect of these factors for other quantiles. For the analysis of the effect of
mother’s age on birth weight we will also use the spontaneous birth variable as a selection
variable, doing the same analysis on a data set containing only spontaneous births.

The quantiles of interest are presented together with corresponding cut-off values used
when fitting the logistic regression models. These cut-off values are set to be equal to the
intercept values from quantile regression, yielding the corresponding quantile value when
the factor of interest is not present. This means that the cut-off value will change between
data sets, and the values of interest will be presented in tables before each case of analysis.
For each case we notice that the value corresponding to the 5%-quantile is close to the
definition of low birth weight, 2500g.

The results from both logistic regression and quantile regression modelling the effect
of smoking on birth weight are presented in Section 5.1. The results from modelling the
effect of the mother’s age on birth weight, also including only spontaneous births, are
presented in Section 5.2.

5.1 Birth weight and smoking

5.1.1 Model and results from logistic regression
To obtain the results using logistic regression we fit in total five models to the data set, one
for each of the cut-off values presented in Table 5.1.

Table 5.1: Quantiles of interest and corresponding cut-off values.

τ 0.05 0.25 0.5 0.75 0.95
cut-off(τ) 2508g 3221g 3579 3929g 4458g
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Let the binary response be y(τ)
i , so that,

y
(τ)
i =

{
1 if the i-th observation has BW below cut-off(τ)

0 otherwise
(5.1)

The y(τ)
i is now realizations of a Bernoulli random variable Y (τ)

i that takes the value 1
(BW below cut-off(τ)) with probability p(τ)

i and 0 (BW above cut-off(τ)) with probability
(1−p(τ)

i ). By logistic regression we model the probability of BW below cut-off(τ) through
the logit link,

logit(p(τ)
i ) = β̂

(τ)
0 + β̂

(τ)
1 xi (5.2)

where β̂0 and β̂1 are the estimated regression coefficients, and xi is a factor, taking the
values

xi =

{
1 if the mother is smoking
0 otherwise.

(5.3)

First, we consider the special case of interest, the odds and the effect of smoking on
the odds for low birth weight, and further discuss the results for all cut-off values.

Figure 5.1: Illustration of the odds and the odds ratio in the given birth weights.

Results from fitting the regression models to the data are presented in Figure 5.1. The
red numbers denotes logit(p(τ)

i ) = β̂
(τ)
0 and the green numbers, obtained by Equation

(3.15), denotes the odds for birth weight below the cut-off value found on the x-axis, for
a non-smoking mother. The black curve shows the odds ratio obtained for each of the
cut-off values. The odds ratio, as described in Section 3.1.3, is in this case the effect of
smoking on the odds for birth weight below the cut-off value. The curve is plotted on a
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log-scale, meaning that β̂(τ)
1 is plotted, but we choose to express the y-axis in terms of the

odds ratio, for easier interpretation. The 95%-confidence interval, obtained by Equation
(3.30), is indicated in gray. The results are also presented in Table 5.2. By the hypothesis
test presented in Section 3.1.5 the z-value and p-value in the table are obtained. These
values imply that smoking has a significant effect at all chosen cut-off values.

We are especially interested in modelling the odds of a child being born with low birth
weight, and if maternal smoking during pregnancy has any effect on the odds for low
birth weight. The cut-off value of 2508 g is approximately equal to the definition of low
birth weight, and we will use this to draw conclusions about the odds for low birth weight
obtained by these models. To calculate the odds and the odds ratio we use Equation (3.15).
The odds for low birth weight is found to be 0.05 for a non-smoking mother, whereas the
odds for low birth weight when the mother is smoking is found to be 0.083. To consider
the effect of smoking during pregnancy on the odds, we now turn to the odds ratio, which
is 1.6. This value is larger than 1, implying that the odds for low birth weight increases by
smoking, which we also notice by the higher value for the odds, 0.083, when the mother
is smoking.

From knowing that the odds ratio is larger than 1, and thus a higher value for the odds
is obtained, we conclude that it is more likely that a child is born with low birth weight
if the mother is smoking. This can also be found by using Equation (3.16) to go from
the logit scale to probabilities. The effect on logit scale alone cannot be transformed to
an effect on probability scale, so the original probability needs to be taken into account.
The logit for the underlying probability for low birth weight for a non-smoking mother is
found to be −2.9457 that translates to a probability of 0.05. When the mother is smoking
the probability of low birth weight is found to be 0.078, yielding an effect on probability
scale of 2.8 percentage points, that is known as the risk difference (RD). In addition to
these interpretations for the effect of smoking we recall that, when modelling the lower
part of the distribution it is possible to express this result in terms of relative risk (RR). We
can then express the odds ratio (OR) of 1.6 as 60% higher odds for low birth weight for
smokers.

In addition to considering the effect of smoking on the odds for low birth weight, we
are also interested in the effect of smoking for other values of the cut-off. The results
from the regression analyses show that the odds for birth weight below the given cut-off
value, for a non-smoking mother, increase as this cut-off value increases, which of course
is natural. The odds ratio is larger than 1 for all cases, implying that the odds of birth
weight below the cut-off value, in general, increases when the mother is smoking during
the pregnancy. At first glance, the curve showing the odds ratio may give the impression
that the effect of smoking is larger in the upper part of the distribution at the cut-off value
of 4458 g, as the value for the odds ratio of 2.12 is the largest. However, by recalling from
Section 3.1.3 that a constant effect in the logit scale will translate to varying effects on the
probability scale, we understand that we are not able to compare effects by considering
the odds ratios without taking the original probability into account. For the case of low
birth weight we considered the cut-off value of 2508 g and found the effect of smoking to
be 2.8 percentage points in terms of probabilities. Equivalent calculations considering the
cut-off value at 4458 g yields an effect of smoking of 2.5 percentage points. This implies
that the effect of smoking is in fact found to be larger at 2508 g.
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(Notice that the only estimate that appears not to be significant from considering the
p-values is the intercept value for cut-off 3579. This is reasonable since the value for the
logit in this model is close to zero implying even odds, and it is about as likely with a birth
weight above the 3579 as below 3579).

Table 5.2: Results from logistic regression, the logit values. The 95%-confidence interval is shown
i parantheses below each estimate of β̂1.

cut-off Value Std. Error z value Pr(> |z|)
2508 β̂0 -2.9457 0.0068 -431.6 < 2e-16

β̂1 0.4710 0.0168 28.0 < 2e-16
(0.438, 0.504 )

3221 β̂0 -1.0981 0.0034 -319.85 < 2e-16

β̂1 0.5946 0.0092 64.92 < 2e-16
( 0.577, 0.613 )

3579 β̂0 -0.0027 0.0030 -0.898 0.369

β̂1 0.5912 0.0091 65.051 < 2e-16
( 0.573, 0.609 )

3929 β̂0 1.1008 0.0034 320.42 < 2e-16

β̂1 0.6236 0.0120 52.03 < 2e-16
( 0.600, 0.647 )

4458 β̂0 2.9433 0.0068 431.7 < 2e-16

β̂1 0.7504 0.0276 27.2 < 2e-16
( 0.696, 0.804 )

5.1.2 Model and results from quantile regression
We now turn to quantile regression, and the results obtained from fitting these models. Let
τ take the values presented in Table 5.1 and xi be defined by Equation (5.3). By quantile
regression we model the birth weight depending on τ on the form of equation (3.40),

QYi(τ |xi) = β̂0(τ) + β̂1(τ)xi. (5.4)

From this model we obtain an estimate of the birth weight for the τ -th quantile when
the mother is not smoking, given by β̂0(τ). When the the mother is smoking, the estimate
for the birth weight is β̂0(τ) + β̂1(τ). The birth weight corresponding to the τ -th quantile
changes, and β̂1(τ) denotes an estimate of this change, and what we consider as the effect
of smoking on the birth weight, or the quantile effect.
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Figure 5.2: Results obtained from quantile regression.

Results from the quantile regression analysis are presented in Figure 5.2. The black
curve represents the effect of smoking, β̂1(τ), plotted against the birth weight correspond-
ing on the τ -th quantile for a non-smoking mother, β̂0(τ). The red percentages denote the
quantiles of interest, τ , and the 95%-confidence interval for the estimates is indicated in
gray. The effect of smoking on birth weight is found to be negative in all the quantiles of
interest. This implies that the birth weight, in general, is less when the mother has been
smoking during the pregnancy, than for a non-smoking mother.

The estimated parameters are also presented in Table 5.3, together with the standard
errors and SD-based 95%-confidence interval, as presented in Section 3.2.5. From these
results we conclude that smoking during pregnancy has a significant effect on birth weight
for all quantiles.

In addition to considering whether the effect is significant, it is also interesting to
know if the effect is constant over all quantiles of interest. From the curve in Figure 5.2
we observe an approximately constant negative effect around −190 grams for the 25%,
50%, 75% and 95% quantiles, and a slightly larger negative effect in the 5%-quantile. By
testing for equal slopes in each of the models, by using the anova-function, we find a p-
value of 0.052. From this result we may conclude that at a 0.1-significance level we reject
the hypothesis that the effect is constant over all quantiles, which supports the observations
on the curve, that the negative effect of smoking is slightly larger for the 5%-quantile.

A special case of interest is the 5% quantile since the corresponding weight for the non-
smokers is approximately equal to the definition of low birth weight, 2500g. For the 5%-
quantile the estimated effect is −215 g; this is a slightly larger negative effect on the birth
weight than for the other quantiles. These results imply that the babies that are already
small and with low birth weight, get even more affected by smoking during pregnancy.

49



Table 5.3: Results from quantile regression.

τ Value Std. Error t value Pr(>|t|)
0.05 β̂0 2508.000 3.237 774.764 0.000

(2501.7, 2514.3)
β̂1 -215.000 8.842 -24.317 0.000

(-232.3, -197.8)
0.25 β̂0 3221.000 1.129 2853.690 0.000

(3218.8, 3223.2)
β̂1 -193.000 3.319 -58.152 0.000

(-199.5, -186.5)
0.5 β̂0 3579.000 1.027 3484.822 0.000

(3577.0, 3581.0)
β̂1 -192.000 2.588 -74.201 0.000

(-197.1, -186.9)
0.75 β̂0 3929.000 1.140 3446.287 0.000

(3926.8, 3931.2)
β̂1 -188.000 2.920 -64.383 0.000

(-193.7, -182.3)
0.95 β̂0 4458.000 1.616 2758.620 0.000

(4454.8, 4461.2)
β̂1 -192.000 5.861 -32.757 0.000

(-203.5, -180.5)

The fact that the value for the birth weight at the 5%-quantile for smoking mothers is 215
g less than for non-smokers would then lead to a higher proportion of births defined as low
birth weight for the smokers, and this leads us to the next section where we discuss the
interpretation of the quantile regression model and the logistic regression model and how
the results are related.

5.1.3 Interpretation of the models, with focus on low birth weight
In Section 5.1.1 the special case of interest was the effect of smoking on the odds for low
birth weight. We obtained an estimate for the odds ratio that was larger than 1, implying
that low birth weight is more likely for a smoking mother than for a non-smoking mother.
This is consistent with the results from the previous section, 5.1.2, where a negative effect
on the birth weight at the 5%-quantile was found. Even if these effects are on different
scales and appear very different, they are closely related. A factor that has a negative effect
on the quantile value, would lead to more observations falling below the original cut-off
value, and consequently lead to a higher proportion of observations below the cut-off,
yielding higher odds, and an odds ratio larger than 1. The fact that the results from quantile
regression are in gram scale, the same scale as the weight, it is by simple interpretation
possible to draw conclusions on how much the birth weight is directly affected.

The results from fitting logistic regression models to the data presented a higher odds

50



ratio for the cut-off value 4458 g than for 2508 g, but the effect of smoking was still
found to be larger for 2508 g as cut-off. When fitting the quantile regression models we
found that the effect could be said to have the largest negative value at the 5%-quantile,
hence these results are consistent. When it comes to examining how the effects of a factor
may vary between different parts of the distribution, quantile regression yields an easier
interpretation. As the scale of the effect is directly on the birth weight, it gives a basis
for such comparisons, whereas logistic regression may be misunderstood, if not carefully
interpreted.
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5.2 Birth weight and mother’s age

Similar analyses as presented in the previous section for the effect of smoking on birth
weight has been carried out for the effect of mother’s age on birth weight. Due to the
changes over time of both spontaneous births and mothers in different age groups, these
analyses is performed for both all births and only spontaneous births separately. We use
age category 3: 25-29 years as reference category, as the number of births in this age group
is the most stable over time, as can be seen in Figure 2.8. Recall Table 2.4 for description
of the age categories. Analyses using both logistic regression and quantile regression have
been carried out with all births included, and further equivalent analyses on a data set
only including the spontaneous births. The cut-off values used for the logistic regression
models are presented with the corresponding quantile values relative to age group 3 for
all births in Table 5.4, and for spontaneous births in Table 5.5. The data set containing all
briths appart from year 2009 consist of 2 451 197 births, and the data set only including
spontaneous birth consist of 2 034 889 births.

Table 5.4: Quantiles of interest and corresponding cut-off values for all births.

τ 0.05 0.25 0.5 0.75 0.95
cut-off(τ) 2522g 3197g 3545 3888g 4403g

Table 5.5: Quantiles of interest and corresponding cut-off values for spontaneous births.

τ 0.05 0.25 0.5 0.75 0.95
cut-off(τ) 2615g 3214g 3550 3882g 4384g

The results from logistic regression are presented in the next section, 5.2.1, and in
Section 5.2.2 we present the results obtained by quantile regression.

5.2.1 Model and results from logistic regression

We define an index variable, Y (τ)
i as in Section 5.1.1, by Equation (5.1). The probability

of a birth weight below each cuf-off value is modelled through the logit link,

logit(p(τ)
i ) = xi

T β̂(τ), (5.5)

where β̂(τ) is a column vector of the estimated regression coefficients and xiT a row vec-
tor of zeros and ones, depending on what age group the i′th observation belongs to. The
first element in this vector is always 1, denoting the reference group, age group 3.
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Figure 5.3: Results from logistic regression all births.

The first set of analyses of the effect of mother’s age on birth weight fit logistic re-
gression models, one for each cut-off value, to the data set containing all births. By the
hypothesis test presented in Section 3.1.5 we find that the effect of each of age group on
the birth weight, relative to category 3, is significant. This conclusion holds for all five
values for the cut-off. Figure 5.3 presents the effect of mother’s age on the odds of birth
weight below the given cut-off value found on the x-axis. The odds ratio obtained for
each age group relative to the reference group is plotted against the cut-off value, and the
95%-confidence interval is indicated in gray. In the upper panel we find the odds ratio
curve for age group 1 and 2 relative to group 3. Both curves lie over 1 for all the cut-off
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values implying that the odds of being below the given cut-off value is increasing when
the mother is younger than 25 years.

In the lower panel we find the results for the effect of age group 4, 5 and 6. For these
three older age groups, a small cut-off value gives an odds ratio larger than 1 implying
higher odds for birth weight below the cut-off value, while a large value for the cut-off
yields an odds ratio smaller than 1, and hence lower odds for birth weight below the cut-
off values. From these results we also notice that the curve presenting the odds ratio for
age group 4 is the curve that is found closest to 1, and hence the age group where the effect
is the smallest relative to the reference group. We do not attempt to examine in which of
the cut-off values the effect of each age group is the largest as this will be easier to interpret
by quantile regression.

A special case of interest is the effect of mother’s age on the odds for low birth weight.
The cut-off value at 2522 g is close to the definition of low birth weight, and thus it is
natural to use this cut-off value to consider the effect of mother’s age on low birth weight.
The odds ratio is found to be larger than 1 at all ages, implying that for both younger and
older mothers the odds for low birth weight increases. Since we are now interested in
the effects at one particular cut-off value, it makes sense to compare the odds ratios for the
different age groups as the original probability will be equal for all. The odds ratio is found
to be largest for mothers at 40 years or older, taking the value 1.65, and second largest for
the youngest mothers at 19 years or younger, taking the value 1.48. By expressing the
results as relative risks we find that the risk of low birth weight is 65% higher for a mother
at age 40 or older than for a mother at age 25 − 29, and 48% higher for a mother at 19
years or younger.

In the second set of analyses we fit the logistic regression models to the data set only
including spontaneous births. The curves denoting the odds ratio for each age group rel-
ative to the reference group is shown in Figure 5.4. In the upper panel we find the odds
ratio curve for age group 1 and 2 relative to group 3, the results for the effect of age group
4, 5 and 6 is found in the lower panel. We observe many of the same trends from these
results as we did from the analyses using all births. For all age groups we observe slightly
larger values for the odds ratios than we did in the previous analyses on all births. By con-
struction, since each cut-off value corresponds to a given quantile, the original probability
for weight below each of the cut-off values, are equal to the original probability for the
corresponding cut-off values in the previous case. This makes it possible to compare the
results from the regression analyses on all births to these results for spontaneous births.

For the special case of interest, the odds for low birth weight, we also observe the same
trend as before, all value for the odds ratio is larger than one, yielding an increase in the
odds by mother’s age.
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Figure 5.4: Results from logistic regression spontaneous births.

5.2.2 Model and results from quantile regression

In this section we present the model and results from fitting quantile regression models to
both the data set containing all births and to the data set only including spontaneous births.
The quantiles, τ , of interest was presented in Table 5.5, and we model the birth weight
dependent on τ by,

QYi(τ |xiT ) = xi
T β̂(τ), (5.6)
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where β̂(τ) is a column vector of the estimated regression coefficients and xiT a row vec-
tor of zeros and ones, depending on what age group the i′th observation belongs to. The
first element in this vector is always 1, denoting the reference group, that is age group 3.
The results from the regression analysis on all births are presented in Figure 5.5. The
curves showing the quantile effects for age group 1 and 2 are plotted in the upper panel.
Both curves are consistently below 0 for all quantiles, implying that for all the quantiles
the mothers younger than 25 years have smaller babies relative to age group 3. This is also
consistent with the odds ratio larger than 1 found in the previous section. It is also clear
that the negative effect is larger, in all quantiles, for the mothers at age 19 year or younger
than for the mothers at age 20− 24 years. The negative effect for the youngest mothers is
always larger than 100 g, whereas for age group 2 the effect is found to be less than −100
g in all quantiles.
In the lower panel we find the results for age groups 4, 5 and 6. All three curves are
decreasing and crosses zero at some point, implying that the age effect can be both pos-
itive and negative depending on the quantile. In general, for these older age groups, we
observe that the smallest babies, with weight around the 5%-quantile, get even smaller
with mother’s age, and the larger babies, with weight around the 95%-quantile, get even
larger. This trend is most clear by considering the effect of age group 6, 40 years or older,
where the effect on the 5%-quantile is −328 g and the effect on the 95%-quantile is +74
g. By the regression output the effect of all age groups is found to be significant effect all
quantiles. In addition we find varying effects depending on the quantile.
Considering the special case of interest, the effect of mother’s age on low birth weight,
we find that mothers belonging to any of the other age group have smaller babies in the
5%-quantile than the mother in the reference group, 25 − 29 years. The negative effect
on the birth weight in the 5%-quantile is largest for age group 6, for mothers at age 40
or older, and found to be −328 g. The second largest effect of −204 g, is found for the
youngest group, mothers who are 19 years or younger.
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Figure 5.5: Results from quantile regression all births.

Equivalent analyses has been carried out for spontaneous births. These results are
shown in Figure 5.6, with the effect of age group 1 and 2 shown in the upper panel, and
age group 4, 5 and 6 is shown in the lower panel. We observe the same overall trend as
observed for all births, a negative effect on all quantiles for age group 1 and 2, and an
increasing curve taking both positive and negative effects in the older age groups, depend-
ing on the quantile. The difference between the effects obtained from all births and only
spontaneous births is most visible in the lower quantiles. Also in this case all age groups
has a significant effect for all quantiles and various effects depending on quantiles.

For age group 1 and 2 we notice that the negative effect for the spontaneous births are
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not very different from the effect for all births, except in the 5%-quantile where a larger
negative effect is observed for the spontaneous births. The opposite trend is observed for
age group 4, 5 and 6, where we now can observe a decrease in the negative effect, in the
lower quantiles.
When considering the special case of interst, the effect on low birth weight, we notice
that the weight corresponding to the 5%-quantile takes a larger value for the spontaneous
births than in the previous case when we considered all births. This value of 2615 g is not
as close to the definition of low birth weight, but we can still draw some conclusions by
considering effects on the 5%-quantile. First of all, this larger value for the birth weight
in the 5%-quantile for mothers between 25 − 29 years implies that less babies are born
with low birth weight when the birth is spontaneous. In fact, less than 5% of the births
can be considered low birth weight. As mentioned above the opposite trend is observed
in the 5%-quantile for the mothers at 19 years or younger and the mothers at 40 years or
older. For spontaneous births the negative effect increases from −205 (all births) to −258
for the youngest mothers, and decrease from −328 to −226 for the mothers at 40 or older.
This may imply that several of the births that was considered low birth weight may not
have been spontaneous. For the youngest mothers this may imply that inducing labor is
not especially common for the smallest babies.
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Figure 5.6: Results from quantile regression spontaneous.

5.3 Trend in birth weight
In addition to model the birth weight using smoking habits and mother’s age as predictors,
another case of interest is to see how the birth weight changes over years. In this section
we will discuss how both logistic regression and quantile regression can be applied to
illustrate a trend between years. We use the first year available in our data set, 1967, as
a reference year, and further the changes that appears in the birth weight, relative to this
year, will be illustrated. Several figures will be presented where the odds ratio, mean and
quantile values will be considered. The results will be presented for both the data set
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including all births, and the data set where only spontaneous births are included.
The first example is shown in Figure 5.7. The black curve, with corresponding axis on

the left hand side, indicates the gain in the mean birth weight in each year relative to the
reference year, 1967. From 1967 until 1975 we observe a gain in mean birth weight close
to zero which implies that there are only small changes in the mean birth weight in these
years relative to 1967. From 1975 until 1981 we observe an increase in mean birth weight,
with a gain around 50 g. Further, the largest gain is found in 1999 where we observe a
gain of 75 g.

The red curve, with corresponding axis on the right hand side, indicates the odds ratio
(OR) for low birth weight in each year relative to 1967. In 1967 the OR for low birth
weight is, naturally, equal to 1. Further we observe a decrease in the OR until the smallest
value, an OR of around 0.85,is reached in 1979. As this value is smaller than 1, the odds of
low birth weight was higher in 1967 than in 1975, and fewer babies had low birth weight in
1979. Through the following years the OR increases, but remains close to 1 from around
1991 until 2009.

When comparing these two curves, we notice that it is not clear how to expect the OR
curve to look like based on the gain in mean birth weight curve. Through the first years,
from 1967 until 1991, it seems like a gain in the mean birth weight can be reflected as a
decrease in the OR for low birth weight. On the other hand, when we observed an increase
in the years from 1991 until 2005 the OR still takes values around 1, implying that the odds
for low birth weight does not change much relative to 1967 even in there is an observed
gain in the mean birth weight.

Figure 5.7: Illustration of the gain in mean birth weight and the OR for low birth weight, for all
births. x-axis: years. Axis to the left: gain in mean birth weight in gram scale. Axis to the right: the
OR, plotted on a log-scale.
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Figure 5.8: Illustration of the gain in mean birth weight and the OR for low birth weight, for
spontaneous births. x-axis: years. Axis to the left: gain in mean birth weight in gram scale. Axis to
the right: the OR, plotted on a log-scale.

A different illustration of change in birth weight over years is shown in Figure 5.9.
The figure shows the gain in the birth weight corresponding to three different quantiles for
each year relative to 1967. The black curve denotes the 5% quantile, the red curve the 50%
quantile and the green curve the 95% quantile. From 1979 the gain in the birth weight
corresponding to the 95%-quantile keeps increasing and reaches its maximum value in
1999, whereas the birth weight corresponding to the 5%-quantile keeps decreasing over
the same years. This implies that the smallest babies are getting smaller and the heavier
babies are getting larger.

Figure 5.9: Illustration of the gain in birth weight at the corresponding quantiles, for all births.
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Figure 5.10 shows a similar plot of how the odds for birth weight below given cut-off
values changes over years. These cut-off values corresponds to the quantiles 5%, 50% and
95%, and are shown in Table 5.6. The colours of the curves is presented in the figure, these
are the same as in the previous figure.

Table 5.6: Quantiles of interest and corresponding cut-off values, all births.

τ 0.05 0.5 0.95
cut-off 2468g 3530g 4399

Table 5.7: Quantiles of interest and corresponding cut-off values, spontaneous births.

τ 0.05 0.5 0.95
cut-off 2565g 3535g 4378

Figure 5.10: Illustration of the odds ratio of being below the birth weight corresponding to the
quantiles 5%, 50% and 95%. All births included.

The two figures 5.9 and 5.10 show how the curves reflect each other. As the black
curve increase in figure 5.9 it decrease through the same period in 5.10 and opposite. For
the green curve we see this trend clearly. As the odds ratio decreases (relative to 1967), the
gain in the weight that corresponds to the 95% quantile increases (relative to 1967). This
basically means that as the weight that corresponds to the 95% quantile increases, more
of the birth weights will be found above the original weight that corresponds to the 95%
quantile in 1967, and therefore, the odds for being below this weight will be smaller than
what it was in 1967, hence an odds ratio smaller than 1.

In Figure 5.11 and Figure 5.12, similar results has been carried out for the data set
including only spontaneous births to see how the two methods integrates with the censored
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Figure 5.11: Illustration of the gain in birth weight at the corresponding quantiles, for spontaneous
births.

Figure 5.12: Illustration of the odds ratio of being below the birth weight corresponding to the
quantiles 5%, 50% and 95%. Only spontaneous births included.

data. From these results a steady increase in the birth weight corresponding to all three
quantiles is observed through the years, relative to 1967. The curve denoting the 5%-
quantile has the largest gain through times, that may indicate that many of the births at low
birth weight may not have been spontaneous, and that inducing labor may have become
more common for these cases over years. The green and the red curve are not as different
from the green and the red curve showing the trend for all births. The trend observed in
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Figure 5.11 for the birth weight in the quantiles is also reflected in the odds ratio for birth
weight below the given cut-off value in Figure 5.12. The green and the red curve do not
change as much when only considering spontaneous births, but the black curve shows a
decrease in the odds ratio for a birth weight below 2565 g for spontaneous births.
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Chapter 6
Discussion and conclusion

Through this thesis we have studied the use of both logistic regression and quantile regres-
sion. When other parts of the distribution than central location are of interest, the logistic
regression model for binary outcome is frequently used for continuous outcome variables.
The logistic regression model then allows us to model any part of the distribution by choos-
ing the cut-off value of interest. From the analyses on known distributions in Chapter 4 we
studied how location, scale and location-scale shifts affected the regression analyses, and
we found that this was reflected differently depending on the shape of the distribution for
the results from logistic regression. Hence the odds ratio is affected by both the original
probability and the shape of the distribution. For the logistic regression model an impor-
tant issue is on what scale the results should be presented. This was discussed further in
Chapter 5, concerning the case study on birth weight where the difference between OR,
RR and RD was discussed. If one is not aware of what scale the result are presented in, it
may lead to misinterpretation. We saw that by only studying the odds ratio we were not
able to correctly compare the estimated effect of smoking and mother’s age over the entire
distribution.

In addition to being known to be robust and handle heteroscedasticity, quantile regres-
sion yields interpretation on the same scale as the distribution being modelled, like stan-
dard linear regression. This simplifies the interpretation, and provides easier comparison
of effects over the entire distribution directly. In Chapter 4 it was shown that the results
from quantile regression appeared similar for the two different distribution by location,
scale and location-scale shifts.

An approximate relation between the two approaches was derived in Section 3.3, and
we find that they are closely related even if they appear different. This was especially
shown in Chapter 5 when we considered the trend in birth weight over years. When com-
paring the curves of the change in the given quantiles with the corresponding OR we found
that they expressed the same trend, however quantile regression gave results that are easier
to interpret. Due to this we see in what way quantile regression can yield a useful contri-
bution to the analyses. From this we suggest that quantile regression should definitely be
applied more often for continuous outcome variables, that one usually solve by defining a
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cut-off value and applying logistic regression. However, it need to be mentioned that to be
able to use quantile regression, the outcome need to be continuous. For outcomes that are
truly dichotomous it is not an option to use quantile regression.
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Appendix

The analyses are done in R-studio. Some of the code is found in this Appendix.

load("˜/Documents/Master /d.Sol.RData")
library(MASS)
library(quantreg)

#A vector of birth weight
vectorBw<-(d.Sol$bw)
# Check observations with negative value
neg <- subset(d.Sol, bw<0, select=c(c.year, bw,

smoke.end, m.age.c6, spontaneous))
#set negative birth weight to NA
#(will exclude this observation)
vectorBw[vectorBw ==-1] <-NA
d.Sol$bw <- vectorBw

#Quantile regression in R:

#Assign smoke 1 and 0
.bw <- d.Sol$bw
.smoke <- d.Sol$smoke.end
.smoke[.smoke %in% 1:2] <- 0
.smoke[.smoke %in% 3] <- 1
.tmpd <- data.frame(bw = .bw, smoke = .smoke)
# Remove NA
.tmpd <- na.omit(.tmpd)

## QUANTILE REGRESSION
# quantiles of interest
tau <- c(0.05, 0.25, 0.5, 0.75, 0.95)
.res.rq <- rq(bw ˜ smoke, tau = tau,

data = .tmpd, method = "fn")
#Regression output using the mcmb-method
.sum <- summary(.res.rq, se="boot", bsmethod = "mcmb", R=200)
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# Logistic regression in R:
cutOff <- tab.int$Value #set the cut-off values equal

# to the intercept from quantile regression

for (i in seq(along=cutOff) ){
.tmpd$cutbw <- (.tmpd$bw < cutOff[i]) + 0
.res.glmCut <- glm(cutbw ˜ smoke, family = binomial(link = "logit"),

data = .tmpd)
# Regression output
sumCut <- summary(.res.glmCut)

###################################

# Example from the synthetic case study -
# generating normally distributed data
# location-scale shift

n1 <- 452377
n2 <- 59070
mean1 <- 3539
mean2 <- 3539 -193
sd1 <- 635
sd2 <- 635 +100
NsumNoSmoke <- n1
NsumSmoke <- n2

set.seed()
NormDataNS <- data.frame(BirthW = rnorm(n=n1, mean=mean1, sd=sd1),

smokE =rep(0, NsumNoSmoke) ,class="Non-smokers")
NormDataS <- data.frame(BirthW = rnorm(n=n2, mean=mean2, sd=sd2),

smokE=rep(1, NsumSmoke), class="Smokers")

NormData <- rbind(NormDataNS, NormDataS)
#NormData
NormDataVec <- (NormData$BirthW)
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