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Background 

The city of Bergen is renowned for its plentiful rainfall. Recent reports on future climate, 

such as the Fifth Assessment Report (IPCC 2013) and KLIMA 2100 (Hanssen-Bauer et al., 

2015), indicate an increased risk for more heavy and frequent precipitation extremes. These 

projections are of great concern to the city of Bergen as the infrastructure they design and 

manage today also should be sufficient in the future. Blue green stormwater infrastructure, 

like rain gardens, will have to be designed for the predicted changes in order to ensure a 

robust infrastructure also in the future. 

The software RECARGA models water flow through a rain garden (Dussaillant et al., 2005) 

and can be used to study future design criteria for rain gardens. Future estimates of 

precipitation at the local level cannot be directly extracted from the current climate 

projections available through e.g. the Hanssen-Bauer et al. (2015) and IPCC (2013) reports 

because the spatial and temporal resolution of these projections is too coarse. In order to 

deal with this, downscaling techniques for translating the large-scale climate to the local 

scale has been developed (Maraun et al. 2010). Tools for statistical downscaling 

techniques, such as SDSM (Wilby et al. 2002), are easy to use and does not require much 

computer capacity or the experience of a climate researcher. In combination with temporal 

dowscaling (e.g. the GEV-distribution), they can be used to bridge the gap between the 

global climate models and local projections.  

Research questions 

1. To which extent can the combination of spatial downscaling with SDSM-DC, bias 

correction, and temporal downscaling with the GEV distribution be used to 

produce IDF curves for future climate in Bergen? 
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2. How does the applied downscaling method compare to the current practice of 

multiplying the design precipitation with a climate factor?  

3. What is the robustness of raingardens as stormwater peak flow measures in 

Bergen for different future climate scenarios? 
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Sammendrag 
Bergen er kjent for store nedbørsmengder. Klimaendringer er forventet å føre til enda større 

nedbørsmengder og høyere intensitet på de ekstreme nedbørshendelsene, noe som vil føre 

til mer overvann. Bedre håndtering av overvann er derfor nødvendig, og blå-grønne tiltak 

som regnbed kan være en løsning. Utfordringen er å estimere hvilke nedbørsmengder som 

må håndteres i framtiden. For å estimere dimensjonerende nedbør i fremtiden, er vanlig 

praksis i Norge å multiplisere dagens dimensjonerende nedbør med en klimafaktor. 

Alternativt kan globale klimamodeller brukes, men disse har en romlig oppløsning og 

tidsoppløsning som er for grov til å brukes i urban hydrologi. De globale klimamodellene 

kan derfor kombineres med nedskaleringsteknikker for å oppnå nødvendig oppløsning.  

I dette studiet er det vurdert hvor robuste regnbed er for flomtoppsreduksjon under 

klimaendringer. Fremtidig nedbør ble estimert ved å bruke en metode som kombinerer 

romlig nedskalering og tidsnedskalering av nedbør. Til dette ble programmet the Statistical 

DownScaling Model - Decision Centric (SDSM-DC) og den generaliserte ekstremverdi-

fordelingen (GEV-fordelingen) brukt. Resultatet av nedskaleringsprosessen var intensitet-

varighet-frekvens-kurver (IVF-kurver) for historisk nedbør og nedbør som følge av mulige 

klimaendringer. Regnbedets yteevne ved ekstreme hendelser ble simulert i 

modelleringsverktøyet RECARGA for de forskjellige nedbørsscenarioene. Estimater på 

nedbørsscenarioene ble funnet ved å endre variansen på nedbøren og total nedbørsmengde. 

Endringer i varians og total nedbørsmengde var basert på Hanssen-Bauer et al. (2015). 

Nedskaleringsmetoden ga resultater i samsvar med å gange dimensjonerende nedbør med 

en klimafaktor anbefalt av Norsk klimaservicesenter (2016). Altså ga den anbefalte 

klimafaktoren intensiteter tilsvarende det undersøkte klimascenarioet med størst 

nedbørsendring. For mindre komplekse systemer med lave investeringskostnader og liten 

risiko knyttet til svikt kan det derfor være nok å benytte anbefalt klimafaktor. 

Nedskaleringsmetoden ga best resultater for lengre varigheter (> 180 minutter), men bør 

ikke brukes for varigheter under 15 minutter. Det ble funnet at usikkerhetene fra 

tidsnedskaleringen var større enn usikkerhetene fra den romlige nedskaleringen. Metoden 

egner seg best for å demonstrere mulige scenarioer som følge av ulike klimaendringer, til 

å stressteste systemer av interesse og/eller være del av en risikoanalyse.    

Resultatene viser at regnbeds robusthet, når det gjelder å håndtere flomtoppen fra overvann 

under klimaendringer, er svært avhengig av mettet hydraulisk konduktivitet (Ksat). De 
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oppnådde resultatene viser at en høyere Ksat er gunstig for å redusere overløp og for å øke 

fordrøyningstiden. Basert på dette, er en høyere Ksat enn hva som er tidligere anbefalt for 

kaldt klima nødvendig for at regnbed skal være robuste under klimaendringer. Derimot er 

gir en lavere Ksat høyest flomtoppsreduksjon. Derfor bør mediet regnbedet er bygd opp av 

(og med dette Ksat) bestemmes ut i fra hvilke egenskaper man ønsker at regnbedet skal ha. 

En løsning som kombinerer ulike egenskaper, for eksempel ved å ha ulike 

regnbed/infiltrasjonsløsninger i serie, vil likevel gi størst robusthet. 
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Thesis structure 
The thesis has an untraditional format in the sense that a paper is the main product. The 

paper has been submitted to the International Water Association (IWA) journal Water 

Science and Technology, but is yet not published. A manuscript of the paper (“Assessing 

the robustness of raingardens under climate change using SDSM and temporal 

downscaling”) is therefore the main content of the thesis. Further information about the 

work, and results not included in the paper, are found in 0 - Appendix D.  

The work will be presented at the conference Embrace the Water in Gothenburg, Sweden, 

12th of June 2017. The poster which will be used for the presentation, can be accessed using 

the QR code in Appendix E. 

Much of the thesis work was conducted using the programming language R. One of the R 

scripts is attached in Appendix F, while the rest of the applied scripts can be accessed at 

Daim (https://brage.bibsys.no/xmlui//handle/11250/223328). 
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Abbreviations  
 

AM Annual Maximum 

CSO Combined Sewer Overflow 

DDF Depth Duration Frequency 

GCM Global Climate Model 

GEV Generalized Extreme Value 

IDF Intensity Duration Frequency 

IVF Intensitet-varighet-frekvens 

MET Meteorologisk Institutt (Norwegian Meteorological Institute) 

MLE Maximum Likelihood Estimation 

MPD Modified Philip-Dunne 

NCEP National Centers for Environmental Prediction 

NCM Non-Central Moments 

RCP Representative Concentration Pathway 

SDSM-DC Statistical DownScaling Model - Decision Centric 
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Assessing the robustness of raingardens under climate 
change using SDSM and temporal downscaling 

Guro Heimstad Kleiven 

Department of Civil and Environmental Engineering, The Norwegian University of 
Science and Technology (NTNU), 2017 

 

Abstract 
Climate change is expected to lead to higher precipitation amounts and intensities. This 

study was carried out to (1) estimate the future precipitation extremes in Bergen (Norway) 

and (2) assess the robustness of raingardens as stormwater peak flow measures.  

A combined spatial temporal downscaling method using the Statistical DownScaling 

Model-Decision Centric (SDSM-DC) and the Generalized Extreme Value (GEV) 

distribution was applied to estimate future precipitation. Raingarden performance was 

simulated with the modelling tool RECARGA. 

The method gave results similar to multiplying with a climate factor as recommended by 

Norsk klimaservicesenter (2016). Uncertainties were found to be higher from temporal 

rather than spatial downscaling. The method is best suited as a tool for demonstrating 

possible climate change scenarios, and stress testing systems of interest. The robustness of 

raingardens as stormwater peak flow measures was found to be highly dependent on 

saturated hydraulic conductivity (Ksat). The results obtained indicate that a higher Ksat is 

beneficial for reducing overflow and increasing lag time. However, a lower Ksat value 

achieves the highest peak flow reductions.  

According to the research, a higher Ksat than what is earlier recommended for cold climates 

is needed to make raingardens robust under climate change. 

1. Introduction 
The Damsgård area (Bergen, Norway) is prone to high amounts of runoff, coming from the 

urbanized area itself and the hillsides upstream the urban development. Damsgård drains 

to the small fjord Puddefjorden (Figure A.1), resulting in combined sewer overflows 

(CSOs) to the fjord during heavy precipitation events.  
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Bergen is renowned for its plentiful rainfall, with an annual mean of 2250 mm (Jonassen et 

al. 2013). Climate change is expected to lead to higher precipitation amounts, and more 

frequent storm events with higher intensities in the future (Hanssen-Bauer et al. 2015). This 

can lead to increased number of CSOs (Nilsen et al. 2011). Solutions to reduce the 

stormwater runoff from Damsgård are therefore needed. Blue green stormwater 

infrastructure, like raingardens, have been pointed out to be beneficial measures for climate 

change mitigation (e.g. Demuzere et al. 2014). This is amongst other factors because of 

their ability to significantly remove peak flow runoff (e.g. Hunt et al. 2008).  

For estimating future design rainfall intensity, a common practice in Norway today is 

simply to apply a climate factor (a percentage safety factor) to present precipitation. 

Frequently asked questions by the designers concern the magnitude of the climate factor 

and whether simply multiplying today’s design precipitation with a climate factor is 

sufficient. An alternative approach is applying General Circulation Models (GCMs), which 

simulate the future climate scenarios on a global scale. These models are, however, too 

coarse to reproduce detailed climate predictions at the temporal and spatial scale necessary 

for hydrological assessments (Herath et al. 2016). Therefore, to translate the large-scale 

climate to the local scale, downscaling techniques can be applied. Statistical downscaling 

is a downscaling approach that utilizes statistical relationships between the large-scale 

climate (predictor) and the local climate (predictand) to simulate the climate at a local scale  

(Benestad et al. 2007). 

Several authors (e.g. Nilsen et al. 2011) maintain that the main uncertainties in climate 

change studies stem from the emission scenarios and the capacity of the GCMs to represent 

the climatic consequences of these. In addition to these, there are uncertainties in the 

downscaling procedure. Possible outcomes of climate change might in this manner be 

missed by applying the GCMs blindly. Some researchers (Wilby and Dessai 2010; Brown 

and Wilby 2012; Yates et al. 2015) are therefore suggesting an alternative approach for 

assessing the risk connected to climate change. This includes using the GCM projections 

to inform the analysis, rather than drive them, and to use the information to stress test the 

investigated system. In this way, greater emphasis is placed on the investigated system 

itself and possible adaption choices (Yates et al. 2015).  

The software The Statistical DownScaling Model - Decision Centric (SDSM-DC) (Wilby 

et al. 2014) facilitate the above-mentioned use of GCMs. The output from SDSM-DC is 
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limited to one day. However, for the results from the downscaling to be useful for 

evaluation of raingardens and other hydrological assessments in urban watersheds, a higher 

temporal resolution is necessary (Herath et al. 2016). Common practice is applying 

Intensity Duration Frequency (IDF) curves for design of urban stormwater systems. In this 

study, SDSM-DC was combined with a temporal downscaling approach using the 

Generalized Extreme Value (GEV) distribution (Nguyen et al. 2002) to obtain IDF curves 

for future climate change scenarios for Bergen, following the procedure of Nguyen et al. 

(2007).  

Based on the above, this paper addresses the following research questions: 

1. To which extent can the combination of spatial downscaling with SDSM-DC, bias 

correction, and temporal downscaling with the GEV distribution be used to 

produce IDF curves for future climate in Bergen? 

2. How does the applied downscaling method compare to the current practice of 

multiplying the design precipitation with a climate factor?   

3. What is the robustness of raingardens as stormwater peak flow measures in 

Bergen for different future climate scenarios? 

2. Methods 
The method was divided into three steps; (1) a spatial-temporal downscaling approach to 

obtain local extreme rainfall for construction of IDF curves from large-scale climate 

variables according to the prescriptions of Nguyen et al. (2007) (Figure 1); (2) construction 

of IDF curves using observed precipitation data and the climate factors 1.2 and 1.4; and (3) 

simulations of raingarden performance in RECARGA with design storm events constructed 

form the developed IDF curves.  

 

Figure 1 Flow chart describing step 1 in the method. AM is an abbreviation for “annual 
maximum”. 
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2.1. Collection of precipitation data 
Observed precipitation data was used for two purposes: (1) Calibrating the SDSM-DC and 

statistically downscale from global to local climate with SDSM-DC, and (2) developing 

IDF curves from (i) observed data and (ii) downscaled climate data using temporal 

downscaling.  

The weather stations were chosen on basis of proximity to the study site. The longest record 

of daily precipitation in the area was found at The Norwegian Meteorological Institute’s 

(MET) station at Florida, Bergen (50540). Thirty years of data (1985 – 2015) from this 

station was used for calibration and validation of the SDSM-DC model. However, this 

station has only four years of sub-daily precipitation data. A station seventy meters away, 

Florida UIB (50539), has minute data for 10 years (see Figure A.2). This station was 

therefore chosen for providing the sub-daily precipitation.  

The data has been quality controlled by MET and downloaded from eklima.no.  

2.2. Downscaling of precipitation 
The spatial-temporal downscaling is a combination of separate spatial and temporal 

downscaling techniques. It uses SDSM-DC to link the large-scale climate to the local 

climate and make future climate estimates. The results are further bias corrected. The 

temporal downscaling approach uses the scaling concept and the GEV distribution to obtain 

a relationship between daily and sub-daily precipitation (Nguyen et al. 2002). The GEV 

distribution is also used to derive IDF curves. The SDSM-DC and the GEV distribution 

have been applied successfully in combination to develop IDF curves (e.g. Nguyen et al. 

2010; Herath et al. 2016).  

The methods for spatial, including bias correction, and temporal downscaling described by 

Nguyen et al. (2007) and Herath et al. (2016) was used with the following exceptions (for 

detailed description about the downscaling method, see B.1. and B.2.):  

2.2.1. Scenario generation 
SDSM-DC does not include GCMs directly, but the user of the model can apply scenarios 

for the future climate by changing occurrence, mean, variance and trend of e.g. the 

precipitation (Wilby et al. 2014). To assess the effects of higher amounts and intensity of 

rainfall, changes in the treatments mean and variance were investigated by adding expected 

(1) change (%) in total precipitation amounts and (2) change (%) in precipitation amounts 
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at days with heavy precipitation to the SDSM-DC time series respectively (Table 1). (1) 

and (2) are estimates of the expected changes from 1971-2000 to 2071-2100 for the whole 

Sunnhordland region (Hanssen-Bauer et al. 2015).  

Table 1 Estimates on how the precipitation mean and variance might change. 

Climate Scenario 
0 1 2 3 4 5 6 

Changes based on Observed RCP 
4.5 low 

RCP 
8.5 low 

RCP 4.5 
med 

RCP 8.5 
med 

RCP8.5 
high 

RCP8.5 high 
autumn/winter 

MEAN: Change in 
total precipitation 
amounts (%) 

0 0 2 6 12 20 30 

VARIANCE: 
Change in prec-
ipitation amounts on 
days with heavy 
precipitation (%) 

0 2 8 7 14 21 30 

 

The climate scenarios 1-5 were based on yearly values.  Climate scenario 6 was based on 

the worst combination of seasonal values. Annual values for RCP4.5 High (12, 12) and 

RCP 8.5 Med (12, 14) were quite similar. Therefore, only a change corresponding to RCP 

8.5 Med was investigated. 

2.2.2. Temporal downscaling 
There are several ways of estimating the GEV parameters, where non-central moments 

(NCMs) have been used with this approach before (e.g. Nguyen et al. 2010; Herath et al. 

2016). However, due to a combination of applicability and study scope, the maximum 

likelihood estimation (MLE) method was used for parameter estimation in this study. The 

chosen parameters are those which maximize the log-likelihood function, which is given 

as (Coles 2001): 

 
𝑙(𝜃) =  ∑ log 𝑔 (𝑧𝑖; 𝜃)

𝑁

𝑖=1

 (1) 

where 𝑔 is the probability density function of the GEV distribution. 𝜃 = [𝜉, 𝜇,

𝜎]. 𝜉, 𝜇 and 𝜎 are the shape, location, and scale parameter of the GEV distribution.  

The scaling factors for the different parameters were found as described by Nguyen et al. 

(2007) and Herath et al. (2016). They were further plotted against precipitation duration 



6 
 

with the aim of finding one common scaling factor. This was calculated by finding the 

mean of the derived scaling factors. 

For constructing depth duration frequency (DDF) curves, the return levels (𝑧𝑝) were 
calculated (Coles 2001): 

 𝑧𝑝 = 𝜇 − 𝜎
𝜉

 [1 − {− log(1 − 𝑝)}−𝜉], for 𝜉 ≠ 0 (2) 

where 𝐺(𝑧𝑝) = 1 − 𝑝, and 𝑧𝑝 are associated with the return period 1
𝑝
 . To get IDF curves, 

the return values were converted from mm to mm/hr. These intensities were plotted against 

the precipitation durations. 

2.3. Construction of IDF curves for observed data 
An IDF curve for observed historical precipitation was developed using the GEV 

distribution. The intensities were multiplied by the climate factors 1.2 (a commonly used 

climate factor) and 1.4 (Norsk klimaservicesenter 2016). A second IDF curve for observed 

historical precipitation was constructed using the derived scaling factors for comparing 

purposes. 

2.4. Raingarden assessments 

2.4.1. Infiltration rate 
It was assumed that a possible raingarden at Damsgård will have the same size relative to 

the watershed (6%) and the same watershed characteristics as an existing raingarden 

located at the close-by site Bryggen (the city center of Bergen). The robustness of the 

raingarden was assessed by investigating the performance with different infiltration rates, 

represented by the saturated hydraulic conductivity (Ksat). The raingarden was tested with 

three different Ksat: 38 cm/h, 10 cm/h and 3.4 cm/h. The high Ksat of 38 cm/h was the value 

from the existing raingarden at Bryggen, obtained by Modified Philip-Dunne (MPD) 

infiltration tests, as described by Ahmed et al. (2014). Paus et al. (2016) found 10 cm/h to 

be the minimum recommended Ksat in cold climates. They further found that Ksat during 

autumn/early winter (i.e. September to December) was 25-43% of summer infiltration, with 

a mean of 34%. Therefore, 3.4 cm/h represented the winter infiltration. 

2.4.2. Evaluating performance 
The performance was evaluated based on (1) overflow (% of runoff into the raingarden), 

(2) change in lag time (change in minutes compared runoff without raingarden), and (3) 

flow peak reduction in underdrain compared to incoming runoff (%). Lag time is in this 
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study defined as the time from the rainfall event starts until flow peak of runoff or flow 

peak in the underdrain is reached.  

2.4.3. Simulation in RECARGA 
RECARGA models the performance of a raingarden in 1D vertical flow direction 

(Dussaillant et al. 2005). The model applies Green-Ampts (Mein and Larson 1973) and a 

surface water balance to model infiltration, runoff and evapotranspiration, and Genuchtens 

equations (Van Genuchten 1980) to model percolation between the model’s three soil 

layers.  

A modified version of RECARGA, allowing for minute resolution for input and output was 

used for the simulations (Dalen 2012). Using RECARGA, the performance with the 

different Ksat values was tested for the obtained climate scenarios (see Table C.1 for the 

input to RECARGA). 

2.4.4. Creation of time series 
RECARGA requires time series as input. These were made by symmetrical hyetographs 

with one hour duration, and calculation steps adapted to the developed IDF curves. As it is 

unlikely to have no precipitation prior to or following an extreme event, two days of 

uniformly distributed rainfall, equaling the average daily rainfall, were included before and 

after the event. Doing this also accounted for initial water in the soil and for delays in runoff 

and infiltration. 

3. Results and discussion  
The accuracy and applicability of the method was assessed by investigating the 

performance of each step separately and combined.  

3.1. Spatial downscaling  
The predictors shown in Table 2 were chosen based on assessments of scatter plots, 

correlation matrices and p-values. The goodness of fit of the model was assessed by the 

explained variance (R2). The model had an average R2 = 0.22 (Table D.1). This is 

comparable to previous studies (Mahmood and Babel 2013; Herath et al. 2016). Wilby et 

al. (2002) argue that an R2 under 0.4 is likely for precipitation occurrence and amounts. 

Further, the average cross validation R2 = 0.20. The two R2 values being close, indicates 

that the model performs well. The model performs best in autumn/winter, with the highest 

R2 in September (0.26). The poorest performance is found during summer (R2 = 0.11 in 
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July). The climate patterns might explain the difference. The precipitation in Bergen is in 

general governed by the topography and westerly winds from the North Sea (Jonassen et 

al. 2013). However, the precipitation during summer is typically influenced by convective 

processes, which are local phenomena. The model appears to reflect the large-scale patterns 

well, while being less successful at capturing variations due to local conditions.   

Table 2 The chosen National Centers for Environmental Prediction (NCEP) predictor variables. 

Parameter code Description  

Mslp Mean sea level pressure 

p5_f Geostrophic airflow velocity at 500 hPa 

p8_f Geostrophic airflow velocity at 850 hPa 

p8_u Zonal velocity component at 850 hPa 

p850 850 hPa geopotential height 

 

3.2. Bias correction 
Figure 2 shows that the SDSM-DC simulated daily annual maximum (AM) rainfall was 

overestimated for most years, and underestimated for the extreme years. This applies to 

some extent after bias correction too, though it is highly improved. Further, root-mean-

square deviation (RMSE) improved from 8.14 mm to 4.19 mm, and the Nash-Sutcliffe 

efficiency coefficient (N-S) improved from 0.85 to 0.96 due to bias correction. The 

percentage bias (p-bias) improved from 7.20% to 0% (Table D.2).  

 

Figure 2 Historical AM daily precipitation values based on observed data, SDSM results and bias 
corrected SDSM results. 
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3.3. Temporal downscaling 
The scaling factor 𝛽 was 0.472. When deriving the scaling factors, it was found that the 

scaling factors for all durations except for 12 hours were similar for all return periods 

(Figure D.3). Therefore, the 12-hour duration was excluded in the calculation of a common 

scaling factor (Figure D.4). The reason for the diverging scaling factor at 12-hour duration 

is that the daily data follows MET’s definition of a day (7.00 am to 7.00 am). The sub-daily 

durations were derived from observed minute data. While aggregating this data, a day was 

considered midnight to midnight. This difference may have influenced the data for the 12-

hour durations. However, when comparing the observed IDF curves found directly from 

the data and by using the scaling factor, it is seen that the longest durations are well 

represented by the scaling IDF curve (Figure 3a).  

 

 

Figure 3 IDF curves showing the ability of the applied method to represent historical precipitation 
intensities. a) observed precipitation, derived directly from the observed values, and by using the 
scaling factor; b) observed and bias corrected SDSM precipitation, both developed using the 
derived scaling factor; c) observed precipitation found directly from observed values and bias 
corrected SDSM precipitation found by using the scaling factor. The return periods are 2, 5, 10, 20, 
30, 50 and 100 years. 
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Figure 3a also shows that using the scaling procedure leads to high overestimation of the 

intensity for the shortest durations (< 15 minutes). This implies that the scaling principle 

should not be used for these intensities. The finding corresponds to Herath et al. (2016) 

who downscaled to 30 minutes at the lowest. Nguyen et al. (2010), on the other hand, used 

a downscaled resolution of five minutes in further hydrological assessments. The temporal 

scaling procedure represents the durations over 180 minutes well (Figure 3a). The longest 

durations being best represented is not surprising, as one could expect a closer statistical 

relationship between e.g. AM three-hour precipitation and AM daily precipitation than AM 

15-minute precipitation and AM daily precipitation. For durations between 15 and 180 

minutes, the intensities for the higher return periods are overestimated. The 15-minute 

duration was chosen as lowest duration in the IDF curves in this study. In addition, only 

intensities over 15 minutes were further used in the RECARGA simulation.  

The GEV parameters were estimated using maximum likelihood estimation (MLE) because 

MLE is a widely used approach for parameter optimization (Scholz 2006). The study aims 

to investigate tools that are available for the end-users. Using a well-known, standard 

method like MLE was therefore considered beneficial.  Based on the results from this study, 

using MLE gave good fit to the observed data (see Figure D.2) and acceptable results from 

the temporal downscaling (see discussion above). Nevertheless, is the temporal 

downscaling step identified as the major source of uncertainty (see Figure 3 and section 

3.4). Future studies investigating whether another method for parameter estimation, like 

NCMs as suggested by Nguyen et al. (2002), performs better would therefore be beneficial. 

3.4. Combination of spatial and temporal downscaling 
Figure 3b shows that the accuracy of the spatial downscaling (after bias correction) applies 

for sub-daily intensities as well as for daily precipitation. The spatially downscaled IDF 

curve follows the same pattern as the IDF curve based on observed data when both curves 

are constructed using the derived scaling factor. However, the fit is best for the lower return 

periods.  

Figure 3c shows that the same patterns as described in the section 3.3 applies for the 

spatially and temporally downscaled IDF curve. The small overestimation for larger return 

periods in the spatial downscaling step (Figure 3b) carries over to the spatially and 

temporally downscaled IDF curves (Figure 3c), though the temporal downscaling is the 

main source of inaccuracy in the results.  
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3.5. Comparison between the downscaled scenarios and climate 
factors 

The IDF curves for the chosen scenarios were compared to applying the climate factor 1.4, 

which is the recommended climate factor for durations less than three hours for Hordaland 

county (Norsk klimaservicesenter 2016), and to applying the commonly used climate factor 

of 1.2. The comparison is shown for the 20-year return period (Figure 4), which is the 

design criteria for stormwater pipes in the city of Bergen (Bergen kommune 2005). 

Applying the climate factor of 1.4 results in intensities higher than all the investigated 

climate scenarios for all durations, except for the durations from 30 to 120 minutes. 

Knowing that the spatially and temporally downscaled intensities are overestimated for 

these same durations (Figure 3c), the 1.4 climate factor gives the highest safety margin 

amongst the investigated cases. The intensities given by the commonly applied climate 

factor of 1.2 on the other hand, are exceeded by several of the climate scenarios for 

durations under 180 minutes. For durations over 180 minutes, is it only exceeded by climate 

scenario 6. This indicates that a lower climate factor might be used for longer durations. 

However, the shorter durations are of most interest in design of stormwater infrastructure 

(Herath et al. 2016; Nilsen et al. 2011). 

 

Figure 4 IDF curve for all investigated cases for return period 20 years. 

Even though the climate factor 1.4 gives the highest safety margin in this study, it is 

important noticing that this does not mean that applying this climate factor always is 

sufficient. The investigated scenarios do not constitute an upper limit for climate change. 
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The uncertainties of future emission scenarios, the GCMs and the spatial and temporal 

downscaling procedure make it crucial to use the results cautiously. This is the motivation 

behind the SDSM-DC. The GCMs can be used to inform the analysis, but they are not 

driving them (Wilby et al. 2014). This is done by selecting treatments to apply to the current 

climate situation. In this study, the GCM output was used to inform the choice of 

treatments, as recommended by Brown and Wilby (2012). The annual and seasonal change 

estimates for the Sunnhordland region represented the climate changes. 

One should also be aware of that SDSM-DC downscales the climate before the treatments 

are applied. The climate treatments are therefore not downscaled. Thus, the changes for 

Bergen might be higher or lower than implied by the applied changes. Furthermore, is the 

change (%) in rainfall amounts at days with heavy precipitation applied as an estimate of 

the treatment variance.  

The applied treatments are from Hanssen-Bauer et al. (2015) and the 1.4 climate factor is 

from Norsk klimaservicesenter (2016), which is based on Hanssen-Bauer et al. (2015). 

Thus, the climate factor and the applied treatments are based on the same GCM output. 

One could therefore expect that multiplying with the 1.4 climate factor would give similar 

intensities as the worst climate scenario. This was indeed the case, which indicates that 

there is an agreement between the downscaling approach used in this study and the 

downscaling methods used by Hanssen-Bauer et al. (2015). 

3.6. The raingarden as peak flow measure 
The raingarden performance was assessed for a 20-year storm because this is the design 

storm for stormwater pipes in the city centre of Bergen (Bergen kommune 2005). However, 

it can be argued that it is not reasonable to design raingardens for capturing all the runoff 

from such a rather large event. Raingardens are recommended to be designed to capture the 

“everyday” runoff, and to be combined with safe flood ways for larger events (Paus and 

Braskerud 2014). Therefore, infiltrating 80% of the incoming runoff is considered a 

successful performance in this study. With concern to Puddefjorden, the risk of a CSO 

every 20th year caused by 20% of the runoff from Damsgård is well within acceptable risk 

levels. 

Ksat = 38 cm/h was the only investigated infiltration rate that gave under 20% overflow for 

all climate scenarios (Figure 5a). It was further found that the Ksat should be over 17 cm/h 

to infiltrate 80% of the runoff for today’s condition. However, to meet the criterium for all 
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the investigated climate scenarios, it should be at least 33 cm/h. In addition, should winter 

conditions also be accounted for. A reduction of Ksat 33 cm/h to e.g. 11.2 cm/h (34% 

reduction, see section 2.4.1), would neither today nor in the future will give adequate 

infiltration. 

 

Figure 5 Performance of the raingarden for different Ksat values for the investigated climate 
scenarios. a) Percentage of incoming runoff becoming overflow from the raingarden (%); b) peak 
flow reduction compared to peak flow without raingarden (%); c) lag time reduction for peak 
overflow from the raingarden compared to peak runoff without raingarden (min). 

 

For all investigated Ksat values, the peak flow in the underdrain was reached before the peak 

runoff from the event. Hence the lag time was reduced for the flow in the underdrain 

compared to the lag time without a raingarden. However, an increase in lag time for 

overflow from the raingarden compared to the pre-raingarden conditions was observed. 

The largest increase was found for a Ksat = 38 cm/h, ranging from nine minutes for climate 

scenario 6 to 14 minutes for climate scenario 1 (Figure 5c). A Ksat = 3.4 cm/h gave the 

lowest increase in lag time, ranging from one to three minutes for the different climate 

scenarios and five minutes for today’s situation. 

The peak flow reduction was only dependent on Ksat, and was independent of the climate 

scenarios (Figure 5b). The highest peak flow reduction was found for Ksat = 3.4 cm/h (96%), 

while the lowest was found for Ksat = 38 cm/h (57%).  
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Thus, it is seen that a higher Ksat results in less overflow, and an increase in overflow lag 

time, whereas a lower Ksat is the most efficient for reducing the peak flow. Nevertheless, 

even though a higher peak flow reduction in the underdrain is achieved with a lower Ksat, 

does a lower Ksat also lead to more overflow. Thus, with a low Ksat value will only 

infiltration of the first runoff from a rainfall event (i.e. first flush) be achieved. 

Alternatively, is a larger storage volume on the top of the raingarden is necessary to reduce 

the overflow.  

The results show that the choice of filter medium (and ultimately Ksat) should be based on 

whether peak flow reduction or detention is the most important objective. Nevertheless, 

might a combination of different solutions be beneficial. One could e.g. have a series with 

a high-infiltration rate raingarden first, draining into another raingarden or infiltration-

based solution with lower infiltration capacity. Or, the raingardens could be placed in 

opposite order, with a low-infiltration rate raingarden first, infiltrating the small events and 

the first flush for larger events, and then overflowing to a second raingarden/infiltration-

based solution with higher infiltration rate. The above are two possible solutions, 

illustrating that the key to increased robustness is a combination of solutions. 

3.7. Overall performance of method 
The study shows that the different climate scenarios give highly different design events 

(Figure 4), and thus requirements for a raingarden to be well-performing (Figure 5). As 

discussed, the climate scenario selection, but also the applied downscaling procedure are 

sources of uncertainties. This was demonstrated by simulating a design event derived by 

multiplying the observed 20-year return period intensity with the climate factor 1.4 in 

RECARGA. It was seen that for Ksat = 38 cm/h, the 1.4 climate factor gave the highest 

percentage overflow, even though the precipitation volume for climate scenario 5 (29.38 

mm) and 6 (32.00 mm) were higher than for the climate factor 1.4 (28.75 mm). For Ksat = 

10 cm/h on the other hand, the downscaled climate scenarios always gave the highest 

overflows. This might be due to the shapes of the IDF curves. The climate factor IDF curves 

had higher intensity for the short durations than the climate scenario IDF curves (Figure 4). 

Because of the high infiltration rate with Ksat = 38 cm/h, only the most intense minutes gave 

overflow. The infiltration rate is lower with Ksat = 10 cm/h. Therefore, the lower intensities 

also resulted in overflow volume. As these intensities were higher in the climate scenario 

IDF curves, it generated more overflow volume compared to the climate factor IDF curve. 
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The results obtained from the downscaling and simulation in RECARGA must be used with 

care. The applied downscaling method is a good tool for showing the range of possible 

outcomes of climate change. Generally, it can be used to stress test systems for possible 

climate change scenarios, and to evaluate the response of an investigated system, as 

suggested by Wilby et al. (2014). In a design perspective, one should always consider the 

risk associated with failure of the system (Hanssen-Bauer et al. 2015). The common 

understanding of risk is a combination of probability and consequence. The applied 

downscaling method can be used together with other simulation tools, e.g. hydrological or 

hydraulic, to indicate the probability of an event occurrence. The combination of these 

results and the consequence of an event can be used to estimate risk connected to the event. 

From this, the best design or adaption measure can be decided.  

The method used in this study is a comprehensive process suited for cases with high 

investment costs and high consequences due to failure. It can therefore be suggested that 

the simpler approach of applying a climate factor is adequate for systems with smaller 

investment costs and lower consequences due to failure. According to the results, the 

recommended climate factor for durations under three hours would be 1.4 at the study site, 

as suggested by Norsk klimaservicesenter (2016). 

4. Conclusions 
A combination of spatial and temporal downscaling was applied to make historical and 

future IDF curves for Florida (Bergen, Norway), and assess the robustness of raingardens 

as peak flow reduction measures under climate change. The climate change scenarios were 

generated by manipulating the mean precipitation and precipitation variance. 

The IDF curves developed by using the downscaling method represent the lowest return 

periods well, but are inaccurate for the highest return periods. Further are durations over 

180 min best represented, while durations under 15 min are overestimated. It was found 

that the largest inaccuracy in the downscaling procedure was the temporal downscaling 

step. More research should be done on improving this step. 

Applying the climate factor recommended by Norsk klimaservicesenter (2016) (1.4 for 

durations under three hours at the study site) seems sufficient for less complex systems 

with small investment costs and low consequences due to failure. However, for more 

complex systems with higher consequences due to failure, making use of the method 

applied in this study will be beneficial. Nevertheless, use of the method should be restricted 
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to stress testing of systems of interest and/or being part of a risk analysis. More work should 

be carried out to reduce the uncertainties connected to climate change estimations.  

The robustness of raingardens as stormwater peak flow measures is highly dependent on 

the Ksat value. The higher Ksat value, the more robust as a stormwater peak flow measure 

the raingarden will be, both in terms of overflow, and lag time. Based on overflow and lag 

time, the recommended minimum Ksat value for cold climates of 10 cm/h is insufficient. 

However, even though a lower Ksat results in higher overflow, the peak flow reduction of 

the infiltrated water is highest for these Ksat values. It is therefore concluded that the 

raingarden media (and ultimately the Ksat) must be decided based on which feature of the 

raingarden is most important. A solution combining different features, e.g. by having 

several raingardens/infiltration-based solutions with different infiltration rates in series will 

add robustness and flexibility.  
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Appendix A The study site 

 

Figure A.1 The study site Damsgård, the existing raingarden at Bryggen and the weather 
stations at Florida. 

 

Figure A.2 The two weather stations used in the study. 
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Appendix B Detailed description of the method 
The applied method is described in the paper manuscript. However, a more detailed 

description of some of the steps follows in the next paragraphs.  

B.1. Bias correction 
As described by Nguyen et al. (2007) and Herath et al. (2016), a regression based bias 

correction method was used to improve the accuracy of the spatially downscaled 

precipitation. The following equations describe the approach: 

 𝑃𝜏 = 𝑃0𝜏 + 𝑒𝜏 (3) 

where 𝑃𝜏 is the adjusted daily AM rainfall at the probability level T, 𝑃0𝜏 is the AM rainfall 

from SDSM and 𝑒𝜏 is the corresponding residual. 𝑒𝜏 was estimated with a second order 

regression function: 

 𝑒𝜏 = 𝑎𝑃0𝜏
2 + 𝑏𝑃0𝜏 + 𝑐 + 𝑒 (4) 

where 𝑎, 𝑏 and 𝑐 are parameters of the regression function and 𝑒 is the resulting error term 

(see Figure D.1 for the developed bias correction function). 

The bias correction was done by developing a script in RStudio, an open source software 

for the programming language R (RStudio Team 2015). The residual was found for 

historical data, and the same residual was applied on future precipitation scenarios. 

B.1.1. Probability level 
To find the probability level T, the Cunnane (Cunnane 1978), Gringorten (Gringorten 1963) 

and Landwehr (Makkonen 2008) plotting positions were tested. Cunnane and Gringorten 

have been found to perform well for the GEV distribution (Guo 1990), whereas Landwehr 

performs well for small samples (Yahaya et al. 2012). In this study, they all preformed 

quite similar. Therefore, the Cunnane plotting position, which gave values between the two 

others, was chosen for estimating the exceedance probabilities and return levels. The 

Cunnane plotting position is described by the following equation (Guo 1990): 

 
𝑃𝑖 =

𝑖 − 0.4
𝑁 + 0.2

 
(5) 

where 𝑃𝑖 = 1
𝑇𝑖

 is the plotting (exceedance) probability, 𝑖 is the rank and 𝑁 is the sample 

size.  
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B.2. Temporal downscaling 
The temporal downscaling was conducted as described in Figure B.1. 

 

Figure B.1 Flow chart describing the temporal downscaling method. 

 

The GEV distribution was used to model the AM precipitation, as suggested by Nguyen et 

al. (2002). The cumulative distribution function is given as (Coles 2001): 

 
𝐺(𝑧) = 𝑒𝑥𝑝 {− [1 + 𝜉 (

𝑧 − 𝜇
𝜎

)]
−1

𝜉} (6) 

for 𝜉 ≠ 0. 𝜉, 𝜇 and 𝜎 are the shape, location, and scale parameter respectively.  

The GEV parameters were estimated using the MLE method, as described in the paper 

manuscript. The shape, location and scale parameters were first calculated for the daily 

precipitation. When calculating the parameters for the other precipitation durations, the 

shape parameter was fixed to the value of daily precipitation (see Eq. 7).  

The concept of scale-invariance, or scaling, applies for the statistical properties of the GEV 

distribution and hence the relationship between two different time scales 𝑡 and 𝜆𝑡 (e.g. daily 

and sub-daily) can be described as following (Nguyen et al. 2002): 

  𝜉(𝜆𝑡) =  𝜉(𝑡) (7) 

 𝜎(𝜆𝑡) = 𝜆𝛽 𝜎(𝑡) (8) 

 𝜇(𝜆𝑡) =  𝜆𝛽 𝜇(𝑡) (9) 
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 𝑍𝑇(𝜆𝑡) =  𝜆𝛽 𝑍𝑇(𝑡) (10) 

 

where 𝛽 is the scaling factor. The quantiles, 𝑍𝑇, used for estimating the scaling factors were 

calculated as (Nguyen 2002): 

 𝑍𝑇 = 𝜇 +
𝜎
𝜉

 {1 −  [− log(𝑝)]𝜉} (11) 

where 𝑝 = 1
𝑇

 is the exceedance probability. 

Scaling factors were calculated from the derived GEV parameters and quantiles using 

observed historical precipitation (Eq. 7 – Eq. 10). As described in the paper manuscript, 

they were further plotted against precipitation duration with the aim of finding one common 

scaling factor. This was calculated by finding the mean of the derived scaling factors. 

IDF curves were constructed as described in the paper manuscript. RStudio was used for 

executing the temporal downscaling (see Appendix F) and for construction of the IDF 

curves. 

B.3. Deciding design duration  
Two possible approaches for deciding design duration were considered: (1) Using a 

duration equal concentration time1 (Lindholm 1978); and (2) using one-hour events, which 

often are used for urban drainage network design (Herath et al. 2016). 

Approach (1) was investigated by calculating the concentration time as recommended by 

Bergen kommune (2005), using the values in Table B.1 and Figure B.2. From this, a run-

on time of approximately three minutes was obtained. However, the shortest duration in 

the developed IDF curves was 15 minutes (see section 3.3 in the paper manuscript). 

Therefore, to be able to construct a reasonable precipitation event, a one-hour event 

(Approach (2)) was used. Since the events were simulated using hyetographs (see section 

2.4.4 in paper manuscript), it was ensured that the high-intensity minutes were represented 

also with Approach (2) (Ødegaard 2014).  

  

                                                 
1 The concentration time is the time a water molecule spends from the uppermost part of the 
watershed to the investigated site in the watershed (Bergen kommune 2005). 
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Table B.1 Values used for calculating concentration time. Watershed characteristics of the 
existing raingarden at Bryggen were used. 

Variable  Value  Value from/ derived by using 
Run-on distance from watershed (m) 120 Google maps’ measure function 
Slope (‰) 100 Norgeskart.no: 12 m height difference 
Runoff coeffisient 0.95 Bergen kommune 2005 

 

 

 

Figure B.2 Nomogram for calculation of concentration time (Bergen kommune 2005). 
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Appendix C Simulations in RECARGA 

C.1. Input to RECARGA 

Table C.1 The input used for the RECARGA simulations. Properties of the existing raingarden 
at Bryggen, Bergen, were used. 

Input type 
(Abbreviation in the 
MATLAB code) 

Value  Value based on/assumptions 

Facility Area (m2) 
Arg 180.8 Design drawings 

Tributary area (m2) 
TribA 2900 Information from designer 

Percent imprevious 
EIA 

95 
 By visual inspection using google maps 

CN 
CN 98 

The area consists mainly of roads and houses. There 
are very few gardens. There are (partly) storm 
sewers. Average soil conditions (AMCII) assumed 
(Walter et al. 1981) 

Regional average 
evapotranspiration 
avet 

0 
 

Evapotranspiration is irrelevant for peak flow 
calculations 

Depression zone   
Depth (cm) 
dmin 

12 
 Design drawings  

Root layer   
Type  2 – fine sand The root layer consists of 93% sand (from designer) 
Saturated hydraulic 
conductivity 
(cm/min) 
Krz 

0.05667  
0.167  
0.63  

Testing for Ksat 3.4 cm/hr, 10 cm/hr and 38 cm/hr 

Depth (cm) 38 Design drawings 
Storage layer   

Type  1 – sand  Gravel (design drawings), but sand is the closest to 
this in RECARGA 

Saturated hydraulic 
conductivity 
(cm/min) 
Kst 

10 Since the media is gravel, a Ksat large enough to not 
delaying was chosen 

Depth (cm) 
St 30 Design drawings 

Native soil layer   
Type 10 – clay loam Closest to actual native soil 
Saturated hydraulic 
conductivity 
(cm/min) 
Kcz 

0.0004167 
 Native soil has Ksat = 0.25 cm/hr (from designer) 

Depth (cm) 
Scz 0  

Underdrain flowrate 
(cm/min) 
 

0.338 
 

Calculated automatically by RECARGA from the 
underdrain diameter  

Diameter (m) 0.11 Design drawings 
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C.2. Comments on the modified version of RECARGA  
Before using the version of RECARGA modified by Dalen (2012), the performance of it 

was assessed by visual inspection of output and comparing to hand calculations and to the 

results obtained by Dalen (2012). It was found that the results seem reasonable. RECARGA 

gives however output to a summary file (text file) and to a record file (excel file). It was 

found that the results in the two output formats differ somewhat. The reason for this might 

be that the record file output is calculated by fewer decimals than the summary file output. 

This conclusion was drawn by testing with very low Ksat values, giving zero recharge in the 

record file and a small recharge in the summary file. In this study, the results from the 

record file was used.  
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Appendix D Results 

D.1. Spatial downscaling 

D.1.1. SDSM 

Table D.1 R2 values for the model. 

Month R2 Cross validation R2 % difference between R2 
and cross validation R2 

January 0.23 0.20 13.89 
February 0.22 0.21 4.71 
March 0.23 0.22 2.92 
April 0.22 0.18 16.61 
May 0.25 0.24 3.69 
June 0.18 0.15 12.81 
July 0.11 0.08 30.52 
August 0.25 0.25 0.04 
September 0.26 0.25 4.60 
October 0.23 0.20 11.42 
November  0.24 0.19 18.47 
December 0.22 0.22 1.53 
Mean 0.22 0.20 8.99 

D.1.2. Bias correction 

 

Figure D.1 Bias correction function for daily AM rainfall downscaled with SDSM. 

Table D.2 Accuracy of model before and after bias correction. 

  Before bias correction After bias correction 
RMSE (mm) 8.14 4.19 
N-S (-) 0.85 0.96 
p-bias (%) 7.20 8.63e-15 
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D.2. Temporal downscaling  

D.2.1. GEV model fit 
a) Daily     b) 12-hour 

 

c) 6-hour     d) 3-hour 

 

e) 1-hour     e) 30-minute 
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f) 15-minute     g) 5-minute 

 

h) 2-minute 

 

Figure D.2 Summary of GEV fit, as given by the the R package ‘evd’, for precipitation events 
with different durations. ‘evd’ was used for fitting the data to the GEV distribution and finding the 
GEV parameters, applying MLE. Solid line: GEV model; x and dotted line: observed data; - : the 
95th percentile. 
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D.2.2. Estimation of scaling factors 

 

Figure D.3 Scaling factors for statistical properties of the GEV distribution for all durations. As 
discussed in section 3.3 in the paper manuscript, is the scaling factors for 12-hour duration diverging 
from the scaling factors for the other durations. 

 

Figure D.4 Scaling factors for statistical properties of the GEV distribution for durations up to 6 
hours. The mean of these scaling factors was used to decide one common scaling factor. 
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Appendix E Poster presented at the conference 
Embrace the Water 
 

 

Read the QR code to find the poster in A0 format. Alternatively, the poster can be found at 

Daim. 
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Appendix F  Script for deriving the GEV parameters 
and the scaling factor 
 
The following R script was used for deriving the GEV parameters and the scaling factor. It 

was combined with the use of other R scripts (which can be found at Daim) to execute the 

spatial-temporal downscaling. 

#GEV PARAMETERS AND SCALING FACTORS 

#Guro Heimstad Kleiven, with supervision from Erle Kristvik 

#09.03.17, Trondheim 

#NONE OF THE INPUT OR OUTPUT OF THIS FILE SHOULD BE CHANGE AS LONG AS THE  

#OBSERVED DATA IS THE SAME 

setwd("C:/Users/Bruker/OneDrive - NTNU/Masteroppgave/Temporal downscaling") 

require("evd") 

#Import the AM data for different durations 

############################################ 

min2AM <- read.table('min2AM.txt', header = TRUE) 

min5AM <- read.table('min5AM.txt', header = TRUE) 

min15AM <- read.table('min15AM.txt', header = TRUE) 

min30AM <- read.table('min30AM.txt', header = TRUE) 

hr1AM <- read.table('hr1AM.txt', header = TRUE) 

hr3AM <- read.table('hr3AM.txt', header = TRUE) 

hr6AM <- read.table('hr6AM.txt', header = TRUE) 

hr12AM <- read.table('hr12AM.txt', header = TRUE) 

dAM <- read.table('DailyObservedAM.txt', header = TRUE) 

#Estimate the GEV parameters for different durations 

##################################################### 

#GEV parameters for daily precipitation 

##Daily 

dGEVfit <- fgev(dAM$AM)                        #Fit the data to the GEV-distribution 

dGEVfit 

par(mfrow = c(2,2)) 

plot(dGEVfit) 

dpar <- as.numeric(dGEVfit$estimate)              #Get the estimated parameters 

dxi <- dpar[3]                                    # xi for daily precipitation 

dmu <- dpar[1]                                    # mu for daily precipitation 

dbeta <- dpar[2]                                  # beta for daily precipitation 

#GEV parameters for the other durations 

##2 minutes 

min2GEVfit <- fgev(min2AM$AM, shape = dxi)        #Fit data to GEV, with fixed shape 

parameter 

min2GEVfit 

par(mfrow = c(2,2)) 

plot(min2GEVfit) 
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min2par <- as.numeric(min2GEVfit$estimate) 

min2xi <- dxi 

min2mu <- min2par[1] 

min2beta <- min2par[2] 

##5min 

min5GEVfit <- fgev(min5AM$AM, shape = dxi) 

min5GEVfit 

par(mfrow = c(2,2)) 

plot(min5GEVfit) 

min5par <- as.numeric(min5GEVfit$estimate) 

min5xi <- dxi 

min5mu <- min5par[1] 

min5beta <- min5par[2] 

##15min 

min15GEVfit <- fgev(min15AM$AM, shape = dxi) 

min15GEVfit 

par(mfrow = c(2,2)) 

plot(min15GEVfit) 

min15par <- as.numeric(min15GEVfit$estimate) 

min15xi <- dxi 

min15mu <- min15par[1] 

min15beta <- min15par[2] 

##30min 

min30GEVfit <- fgev(min30AM$AM, shape = dxi) 

min30GEVfit 

par(mfrow = c(2,2)) 

plot(min30GEVfit) 

min30par <- as.numeric(min30GEVfit$estimate) 

min30xi <- dxi 

min30mu <- min30par[1] 

min30beta <- min30par[2] 

##1hr 

hr1GEVfit <- fgev(hr1AM$AM, shape = dxi) 

hr1GEVfit 

par(mfrow = c(2,2)) 

plot(hr1GEVfit) 

hr1par <- as.numeric(hr1GEVfit$estimate) 

hr1xi <- dxi 

hr1mu <- hr1par[1] 

hr1beta <- hr1par[2] 

##3hr 

hr3GEVfit <- fgev(hr3AM$AM, shape = dxi) 

hr3GEVfit 

par(mfrow = c(2,2)) 

plot(hr3GEVfit) 

hr3par <- as.numeric(hr3GEVfit$estimate) 
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hr3xi <- dxi 

hr3mu <- hr3par[1] 

hr3beta <- hr3par[2] 

##6hr 

hr6GEVfit <- fgev(hr6AM$AM, shape = dxi) 

hr6GEVfit 

par(mfrow = c(2,2)) 

plot(hr6GEVfit) 

hr6par <- as.numeric(hr6GEVfit$estimate) 

hr6xi <- dxi 

hr6mu <- hr6par[1] 

hr6beta <- hr6par[2] 

##12hr 

hr12GEVfit <- fgev(hr12AM$AM, shape = dxi) 

hr12GEVfit 

par(mfrow = c(2,2)) 

plot(hr12GEVfit) 

hr12par <- as.numeric(hr12GEVfit$estimate) 

hr12xi <- dxi 

hr12mu <- hr12par[1] 

hr12beta <- hr12par[2] 

#Make a matrix of observed GEV parameters (for later use) 

ddistpar <- c(dxi, dmu, dbeta) 

min2distpar <- c(min2xi, min2mu, min2beta) 

min5distpar <- c(min5xi, min5mu, min5beta) 

min15distpar <- c(min15xi, min15mu, min15beta) 

min30distpar <- c(min30xi, min30mu, min30beta) 

hr1distpar <- c(hr1xi, hr1mu, hr1beta) 

hr3distpar <- c(hr3xi, hr3mu, hr3beta) 

hr6distpar <- c(hr6xi, hr6mu, hr6beta) 

hr12distpar <- c(hr12xi, hr12mu, hr12beta) 

mdistpar <- matrix(c(ddistpar, min2distpar, min5distpar, min15distpar, min30distpar, 

hr1distpar, hr3distpar, hr6distpar, hr12distpar), nrow = 3) 

colnames(mdistpar, do.NULL = FALSE) 

colnames(mdistpar) <- c('day', '2min', '5min', '15min', '30min', '60min', '180min', 

'360min', '720min') 

rownames(mdistpar) <- c('xi', 'mu', 'beta') 

mdistpar <- as.data.frame(mdistpar) 

tmdistpar <- as.data.frame(t(mdistpar)) 

#Find scaling factors 

######################## 

#Calculate the quantiles as done by Nguyen et al 

Treturn <- c(2, 5, 10, 20, 30, 50, 100)  #return period 

p <- 1/Treturn                           #probability 

##Daily  

dXt <- dmu + (dbeta/dxi)*(1-(1-log(p))^(dxi)) 
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par(mfcol = c(1, 1)) 

plot(Treturn, dXt, ylab = "Return level: Daily AM (mm)") 

##2 min 

min2Xt <- min2mu + (min2beta/min2xi)*(1-(1-log(p))^(min2xi)) 

par(mfcol = c(1, 1)) 

plot(Treturn, min2Xt, ylab = "Return level (mm)") 

##5 min 

min5Xt <- min5mu + (min5beta/min5xi)*(1-(1-log(p))^(min5xi)) 

par(mfcol = c(1, 1)) 

plot(Treturn, min5Xt, ylab = "Return level (mm)") 

##15 min 

min15Xt <- min15mu + (min15beta/min15xi)*(1-(1-log(p))^(min15xi)) 

par(mfcol = c(1, 1)) 

plot(Treturn, min15Xt, ylab = "Return level (mm)") 

##30 min 

min30Xt <- min30mu + (min30beta/min30xi)*(1-(1-log(p))^(min30xi)) 

par(mfcol = c(1, 1)) 

plot(Treturn, min30Xt, ylab = "Return level (mm)") 

##1 hr 

hr1Xt <- hr1mu + (hr1beta/hr1xi)*(1-(1-log(p))^(hr1xi)) 

par(mfcol = c(1, 1)) 

plot(Treturn, hr1Xt, ylab = "Return level (mm)") 

##3 hr 

hr3Xt <- hr3mu + (hr3beta/hr3xi)*(1-(1-log(p))^(hr3xi)) 

par(mfcol = c(1, 1)) 

plot(Treturn, hr3Xt, ylab = "Return level (mm)") 

##6 hr 

hr6Xt <- hr6mu + (hr6beta/hr6xi)*(1-(1-log(p))^(hr6xi)) 

par(mfcol = c(1, 1)) 

plot(Treturn, hr6Xt, ylab = "Return level (mm)") 

##12 hr 

hr12Xt <- hr12mu + (hr12beta/hr12xi)*(1-(1-log(p))^(hr12xi)) 

par(mfcol = c(1, 1)) 

plot(Treturn, hr12Xt, ylab = "Return level (mm)") 

#Find lambda 

durationsMinute <- c(2, 5, 15, 30, 60*1, 60*3, 60*6, 12*60) 

durationsHour <- durationsMinute/60 

lambda <- durationsHour/24  

min2lambda <- lambda[1] 

min5lambda <- lambda[2] 

min15lambda <- lambda[3] 

min30lambda <- lambda[4] 

hr1lambda <- lambda[5] 

hr3lambda <- lambda[6] 

hr6lambda <- lambda[7] 

hr12lambda <- lambda[8] 
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##Calculate the scaling factors based on xi, mu, beta, Xt and lambda 

###2 min 

min2sxi <- 1 

min2smu <- (log(min2mu)-log(dmu))/log(min2lambda) 

min2sbeta <- (log(min2beta)-log(dbeta))/log(min2lambda) 

min2sXt <- (log(min2Xt)-log(dXt))/log(min2lambda) 

###5min 

min5sxi <- 1 

min5smu <- (log(min5mu)-log(dmu))/log(min5lambda) 

min5sbeta <- (log(min5beta)-log(dbeta))/log(min5lambda) 

min5sXt <- (log(min5Xt)-log(dXt))/log(min5lambda) 

###15 min 

min15sxi <- 1 

min15smu <- (log(min15mu)-log(dmu))/log(min15lambda) 

min15sbeta <- (log(min15beta)-log(dbeta))/log(min15lambda) 

min15sXt <- (log(min15Xt)-log(dXt))/log(min15lambda) 

###30 min 

min30sxi <- 1 

min30smu <- (log(min30mu)-log(dmu))/log(min30lambda) 

min30sbeta <- (log(min30beta)-log(dbeta))/log(min30lambda) 

min30sXt <- (log(min30Xt)-log(dXt))/log(min30lambda) 

###1 hr 

hr1sxi <- 1 

hr1smu <- (log(hr1mu)-log(dmu))/log(hr1lambda) 

hr1sbeta <- (log(hr1beta)-log(dbeta))/log(hr1lambda) 

hr1sXt <- (log(hr1Xt)-log(dXt))/log(hr1lambda) 

###3 hr 

hr3sxi <- 1 

hr3smu <- (log(hr3mu)-log(dmu))/log(hr3lambda) 

hr3sbeta <- (log(hr3beta)-log(dbeta))/log(hr3lambda) 

hr3sXt <- (log(hr3Xt)-log(dXt))/log(hr3lambda) 

###6 hr 

hr6sxi <- 1 

hr6smu <- (log(hr6mu)-log(dmu))/log(hr6lambda) 

hr6sbeta <- (log(hr6beta)-log(dbeta))/log(hr6lambda) 

hr6sXt <- (log(hr6Xt)-log(dXt))/log(hr6lambda) 

###12 hr 

hr12sxi <- 1 

hr12smu <- (log(hr12mu)-log(dmu))/log(hr12lambda) 

hr12sbeta <- (log(hr12beta)-log(dbeta))/log(hr12lambda) 

hr12sXt <- (log(hr12Xt)-log(dXt))/log(hr12lambda) 

#Plot the scaling factors 

######################### 

#Make a matrix of the quantile scaling factors 

qsm <- matrix(c(min2sXt,min5sXt,min15sXt,min30sXt,hr1sXt,hr3sXt,hr6sXt,hr12sXt),  

              nrow = length(min2sXt)) 
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colnames(qsm, do.NULL = FALSE) 

colnames(qsm) <- c('2min', '5min', '15min', '30min', '60min', '180min', '360min', 

'720min') 

rownames(qsm) <- c('2', '5', '10', '20', '30', '50', '100')   

qsm <- as.data.frame(qsm) 

tqsm <- as.data.frame(t(qsm)) 

#Make a matrix of the scaling factors for the parameters 

min2s <- c(min2sxi, min2smu, min2sbeta) 

min5s <- c(min5sxi, min5smu, min5sbeta) 

min15s <- c(min15sxi, min15smu, min15sbeta) 

min30s <- c(min30sxi, min30smu, min30sbeta) 

hr1s <- c(hr1sxi, hr1smu, hr1sbeta) 

hr3s <- c(hr3sxi, hr3smu, hr3sbeta) 

hr6s <- c(hr6sxi, hr6smu, hr6sbeta) 

hr12s <- c(hr12sxi, hr12smu, hr12sbeta) 

ms <- matrix(c(min2s, min5s, min15s, min30s, hr1s, hr3s, hr6s, hr12s), nrow = 

length((min2s))) 

colnames(ms, do.NULL = FALSE) 

colnames(ms) <- c('2min', '5min', '15min', '30min', '60min', '180min', '360min', 

'720min') 

rownames(ms) <- c('xi', 'mu', 'beta') 

ms <- as.data.frame(ms) 

tms <- as.data.frame(t(ms)) 

xs <- c(2, 5, 15, 30, 60, 180, 360, 720) #The x axis 

#Plot the scaling factors  

par(mfrow = c(1,1)) 

plot(xs, tms$beta, ylim = c(0, 1), xlab = 'Duration (min)', ylab = 'Scaling factor', 

     cex.axis = 1.3, cex.lab = 1.3) 

points(xs, tms$mu, col = 'red', pch = 2) 

points(xs, tqsm$`2`, pch = 7) 

points(xs, tqsm$`5`, pch = 1) 

points(xs, tqsm$`10`, col = 'red', pch = 23) 

points(xs, tqsm$`20`, pch = 23) 

points(xs, tqsm$`30`, col = 'red', pch = 18) 

points(xs, tqsm$`50`,  pch = 18) 

points(xs, tqsm$`100`, col = 'red', pch = 4) 

legend("topleft", title = 'Scaling factors', pch = c(1, 2, 7, 1, 23, 23, 18, 18, 4),  

       col = c('black', 'red', 'black','black', 'red', 'black', 'red', 'black', 

'red'), 

       c('beta', 'mu', '2 years return', '5 years return', '10 years return', '20 

years return',  

         '30 years return', '50 years return', '100 years return'), cex = 1, ncol = 

2) 

##Find the average of the derived scaling factors (excluding 12 hr duration  

####because this point is diverging from the rest) 
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sfactors1 <- c(min2smu, min2sbeta, min5smu, min5sbeta, min15smu, min15sbeta, 

min30smu, min30sbeta, hr1smu, hr1sbeta, hr3smu, hr3sbeta, hr6smu, hr6sbeta, 

tqsm$`2`[1:7], 

              tqsm$`5`[1:7], tqsm$`10`[1:7], tqsm$`20`[1:7], tqsm$`30`[1:7], 

tqsm$`50`[1:7], tqsm$`100`[1:7]) 

sfactor <- mean(sfactors1) 

xs2 <- xs[1:7] 

#Plot the scaling factors and the average. 12 hr duration is excluded 

par(mfrow = c(1,1)) 

plot(xs2, tms$beta[1:7], ylim = c(0.2, 1), xlab = 'Duration (min)', ylab = 'Scaling 

factor', cex.axis = 1.3, cex.lab = 1.3) 

points(xs2, tms$mu[1:7], col = 'red', pch = 2) 

points(xs2, tqsm$`2`[1:7], pch = 7) 

points(xs2, tqsm$`5`[1:7], pch = 1) 

points(xs2, tqsm$`10`[1:7], col = 'red', pch = 23) 

points(xs2, tqsm$`20`[1:7], pch = 23) 

points(xs2, tqsm$`30`[1:7], col = 'red', pch = 18) 

points(xs2, tqsm$`50`[1:7],  pch = 18) 

points(xs2, tqsm$`100`[1:7], col = 'red', pch = 4) 

abline(a = sfactor, b = 0, lty = 3) 

legend("topright", title = 'Scaling factors', pch = c(1, 2, 7, 1, 23, 23, 18, 18, 4, 

NA), lty = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, 3), col = c('black', 'red', 

'black','black', 'red', 'black', 'red', 'black', 'red', 'black'), 

       c('beta', 'mu', '2 years return', '5 years return', '10 years return', '20 

years return', '30 years return', '50 years return', '100 years return', 'Average 

scaling factor'), cex = 1, ncol= 2) 

        

#Export the GEV parameters and scaling factor for further use 

############################################################## 

write.table(tmdistpar, file = "Observed GEV parameters.txt", row.names = TRUE, 

col.names = TRUE) 

write.table(sfactor, file = "Scaling factor.txt") 

 


