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A B S T R A C T

Multivariate analysis methods have been studied for the pur-
pose of improving condition monitoring of equipment in in-
dustry. This concerns fault detection, isolation and diagnosis
for machinery in order to improve decision support capabilities
for condition based maintenance, improved safety and reliabil-
ity. Multivariate analysis techniques such as Principle Compo-
nent Analysis and Partial Least Squares Regression have been
investigated for this purpose, and applied to four different case
studies.

Two case studies was based on data collected at Statoil’s in-
dustrial processing facilities at Tjeldbergodden. One of these
cases regarded a steam turbine compressor, where multivari-
ate statistical methods where tested in order to evaluate their
performance for fault detection and fault isolation. PCA and
PLSR analysis was used and demonstrated a good performance
for fault detection and fault isolation when data from a known
fault condition was tested. The machine experience a non-stationary
behaviour in the period of the analysis, which reduced the
made use the multivariate methods more difficult and caused
some false alarms.

The second case study regarded a steam turbine generator
also from Tjeldbergodden. The performance of this machine
was analyzed over a period of approximately two years. The
results from the analysis was that a clear trend was detected
from PCA analysis, which corresponded with a gradual loss
of performance of the machine experienced in the same period.
This case study demonstrated the use of multivariate analysis
methods for discovering hidden information in relatively large
data sets.

The third case regarded vibration analysis of a ball bearing.
Vibration data from different working conditions of the bearing
was used, including both healthy and faulty conditions. After
signal conditioning, features from the vibration signal was ex-
tracted both from wavelet packet decomposition and time do-
main. The extracted features was then subject to the dimension
reduction technique of PCA which was further used for fault
detection and fault classification. The PCA analysis proved that
faulty condition could be detected. SIMCA analysis was also
used for classification. The classifier had good performance in
classifying new samples of healthy condition and two distinct
fault conditions.
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The last analysis regarded acoustic signal monitoring of an
air compressor, where wavelet packet decomposition was uti-
lized for features extraction. PCA was further used in fault de-
tection together with T2 and SPE, based on training data and
testing data for several fault conditions. SIMCA classification
was used to train 8 different classes corresponding to the fault
conditions and the healthy condition. Testing the classifier on
new data samples revealed that the PCA based classification
was not optimal, as nonlinear relations in the data could not be
captured.
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S A M M E N D R A G

Tilstandsbasert vedlikehold har i de siste årene blitt viktigere
i industrien for å redusere kostnadene forbundet med vedlike-
hold gjennom å overvåke den faktiske tilstanden til utstyret.
Dermed kan levetiden på utstyr forlenges, vedlikeholdsoperasjoner
kan planlegges på en optimal måte, og man oppnår en høyere
pålitelighet og bedre sikkerhet. For å forbedre mulighetene for
tilstandsbasert vedlikehold kan man benytte seg av mer intel-
ligente tilstandsovervåkingssystemer. Gjennom en data-drevet
tilnærming til tilstandsovervåking ved bruk av metoder fra mul-
tivariat data-analyse kan dette brukes til tidlig feildeteksjon og
feildiagnose. I denne oppgaven er fire ulike studer gjennomført
for å teste slike metoder.

Den første studien angikk en gasskompressor drevet av the
dampturbin. Data fra rundt 55 målinger ble samlet inn, og
metoder fra multivariat analyse ble brukt for beskrive de mange
korrelerte variable i noen få latente variabler gjennom bruk av
PCA og PLSR. Data fra normal drift ble brukt til å lage en mod-
ell av systemet, og ny data fra en kjent feilsituasjon ble brukt
for å teste metodenes evne til å detektere, samt isolere feilen.
Metodene klarte å detektere feilen i en tidlig fase, samt å isol-
ere hvilken målinger som feilen materialiserte seg i.

Den andre studien ble utført på en dampturbin-generator.
Driftsdata fra denne maskinen fra flere perioder i løpet av to
år ble samlet inn å analysert. En tydelig trend ble i dataen ble
tydelig gjennom PCA analyse, noe som kan ha en sammenheng
med at denne maskinen har opplevd et tap av virkningsgrad
over flere år. Bruk av multivariate metoder for å finne sammen-
henger i store datasett ble her demonstrert.

En tredje studie angikk vibrasjonsanalyse av et kulelager. Vi-
brasjonsmålinger både fra normal tilstand og forskjellige til-
stander ble brukt. Vibrasjonsmålingene ble behandlet med Wavelet
Packet Decomposition for å ekstrahere informasjon fra tid-frekvensdomenet.
PCA ble så brukt for å modellere normal tilstand til lageret, slik
at feiltilstander kunne detekteres. I tillegg ble data fra ulike til-
stander til lageret brukt for å trene en klassifiseringalgoritme
baser på SIMCA, slik at nye målinger kunne klassifiseres i hen-
hold til tilstanden lageret er i.

The siste studien som ble gjennomført omfattet akustisk overvåk-
ing av en luftkompressor. Her ble også Wavelet Packed Decom-
position benyttet for ekstrahere informasjon fra tid-frekvensdomenet.
På samme måte som for vibrasjonsanalysen for kulelageret, ble
også PCA benyttet for å modellere normal tilstand slik at feiltil-
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stander kunne oppdages. I tillegg ble 7 feiltilstander i tillegg til
normal tilstand benyttet for SIMCA klassifikasjon. Når data fra
ulike tilstander ble klassifisert, hadde SIMCA metoden noen
vanskeligheter med å skille klassene.
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C O N C L U S I O N

This thesis describes the use of multivariate statistical methods
for the purpose of condition monitoring. The thesis includes
four case studies where these techniques were tested and eval-
uated. This includes two cases of analysis of large rotating ma-
chinery from Statoil’s industrial complex at Tjelbergodden, a
third study regards bearing vibration analysis and lastly an
acoustic signal analysis of a reciprocating air compressor is cov-
ered.

The first case study regarded a steam turbine compressor
for the purpose of testing multivariate condition monitoring
techniques to achieve fault detection and fault isolation. Both
Principal Component Analysis (PCA) and Partial Least Squares
Regression was utilized for this purpose. These latent variable
methods were able to reduce the dimension of the 55 measured
variable, and the multivariate control charts Hotelling’s T2 and
SPE were used for fault detection. Data from a known fault sit-
uation was used for testing, and showed that the methods were
able to detect the faults at an early stage. The fault was also suc-
cessfully isolated by the use of contribution plots. The data set
used in this analysis did however have some limitation, as the
machinery was not in a steady state of operation, reducing the
modelling abilities for the latent variable methods and causing
false alarms.

The second study regarded steam turbine generator where
the its performance was analyzed over a period of approxi-
mately two years. The results from the analysis was that a clear
trend was detected from PCA, which corresponded with a grad-
ual loss of performance of the machine experienced in the same
period. The analysis did however suffered heavily from missing
data, reducing the quality of the analysis.

The third case regarded vibration analysis of a ball bearing.
Vibration data from different working conditions of the bearing
was used, including both healthy and faulty conditions. After
signal conditioning, features from the vibration signal was ex-
tracted both from wavelet packet decomposition and time do-
main. The extracted features was then subject to the dimension
reduction technique of PCA which was further used for fault
detection and fault classification. The PCA analysis proved that
faulty condition could be detected. SIMCA analysis was also
used for classification. The classifier had good performance in
classifying healthy condition and two distinct fault conditions.
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The last analysis regarded acoustic signal monitoring of an
air compressor, where wavelet packet decomposition was uti-
lized for features extraction. PCA was further used in fault de-
tection together with T2 and SPE, based on training data and
testing data for several fault conditions. SIMCA classification
was used to train 8 different classes corresponding to the fault
conditions and the healthy condition. Testing the classifier on
new date revealed that PCA based classification was not opti-
mal, as nonlinear relations in the data could not be captured.
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Part I

I N T R O D U C T I O N
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1
I N T R O D U C T I O N

1.1 introduction

1.1.1 Background

As modern industry companies are dependent on profit in or-
der to be become and remain successful businesses, they are
pressured to meet their production targets at the same time as
they often are need to meet high safety requirements. In order
to achieve this, the production equipment need to have high
availability and reliability to minimize production downtime,
and at the same time minimize maintenance related costs. Un-
expected equipment failure can lead to large production losses,
and unplanned maintenance can result in high additional costs.
Due to these reasons, the concept of condition based mainte-
nance (CBM) have become widespread in industry. This main-
tenance strategy can have great benefits compared to pure cor-
rective or preventive maintenance in many situations, as it is
based on the actual condition of the equipment, allowing main-
tenance to be performed in the most optimal manner.

Condition based maintenance relies on the ability to monitor
the condition of the equipment. This is achieved through col-
lection of information concerning the working condition of the
equipment utilizing instrumentation to measure features such
as vibration, temperature, pressure, acoustic emissions etc. In-
formation from the condition monitoring can further be used
by operational and maintenance personnel to take necessary ac-
tions, perform and plan maintenance operations. To further im-
prove decision support capabilities for CBM, intelligent condi-
tion monitoring techniques can be used in order automate early
detection of faults, and give diagnosis and prognosis of equip-
ment health state. Such intelligent condition monitoring sys-
tems have in recent years been widely investigated in academia,
and seem to be getting greater interest in industry. Such sys-
tems are therefore the main motivation for this thesis.

Data-driven methods for analyzing an ever-increasing amount
of information are getting more important as we are in a time
experiencing a large pressure for increased digitalization, with
a revolution in industrial big data and internet of things. In-
dustry companies are collecting a vast amount of data, such as
from sensors at plants, which currently only parts of are made

3
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4 introduction

use of, creating what is often known as an analytics gap. Be-
ing able to capture the meaning and hidden structures behind
complex industrial quantitative big data would have large po-
tentials for increasing the insight and understanding to help
companies make better decisions.

1.1.2 Objectives

The objectives of the thesis is to investigate methods from multi-
variate analysis such as Principal Component Analysis and Par-
tial Least Squares Regression to improve condition monitoring
of industry machinery in terms of fault or anomaly detection,
fault isolation and diagnosis.

The research concerns a investigation of the state of the art
and related work, in addition implementing and evaluating
multivariate condition monitoring methods for several differ-
ent applications.

The methods are tested for two specific applications based
on Statoil’s process plant at Tjeldbergodden, where historical
data is gathered from process equipment. The performance of
the methods are then evaluated.

Additionally the multivariate analysis methods are tested for
two other applications based on wavelet packet decomposition.
One of these cases concerns vibration analysis of a bearing, and
the other on acoustic signal analysis of a reciprocating air com-
pressor.

1.1.3 Report Structure

This report first includes an introduction to intelligent condi-
tion monitoring in chapter 2, which covers the basics of con-
dition based maintenance, different condition monitoring and
data acquisition techniques, and different approaches to intelli-
gent condition monitoring.

Chapter 3 is devoted to relevant background theory of multi-
variate analysis, including data pretreatment techniques, Prin-
ciple Component Analysis (PCA) and Partial Least Squares Re-
gression (PLSR).

Chapter 4 covers the data processing techniques of time-frequency
decomposition including Short Time Fourier Transform and
Wavelet Decomposition.

Chapter 5 involves an outline of the methods for multivariate
statistical condition monitoring.

Chapters 6 and 7 regard two application cases for process
equipment at Tjeldbergodden, involving a steam turbine com-
pressor and a turbine generator unit, respectively.
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1.1 introduction 5

Chapter 8 concerns a condition monitoring application based
on vibration analysis of a bearing, while chapter 9 presents an
application on acoustic signal analysis on an air compressor.

Chapter 10 provides a discussion of the methods used, the
results, evaluation and further work.

1.1.4 Software

• PI Datalink was used for gathering historic process data
from the database at Statoil Tjeldbergodden. This data
was exported to Microsoft Excel files for further use.

• Matlab R2016b was used for preliminary data visualisa-
tion, conditioning, pretreatment and also for implement-
ing algorithms for the respective applications along with
presentation of resulting data and visualisation.

• The Unscrambler® X version 10.3 by CAMO Software. Used
as main tool for multivariate data analysis. This includes
model generation, analysis and visualisation.
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2
I N T R O D U C T I O N T O I N T E L L I G E N T
C O N D I T I O N M O N I T O R I N G

2.1 condition monitoring and condition based main-
tenance

Traditionally, condition monitoring methods have mostly been
implemented in situations where there is of great importance
to prevent catastrophic failure of critical machinery. In oil and
gas industry such applications often include critical rotating
machinery such as gas compressors, turbines or pumps. As the
cost of instrumentation is tending to decrease, and information
technology and analytical methods are improving, condition
monitoring approaches are continuously expanding to a wider
range of equipment.

As condition monitoring enables the health of equipment to
be monitored so that deterioration is detected at an early stage,
possible disasters can be avoided. Being able to diagnose, and
optimally to preform a prognosis to predict remaining useful
life, an optimal maintenance strategy is possible in the form
of condition based maintenance, or sometimes known as pre-
dictive maintenance. Some of the main benefits of such mainte-
nance strategy is listed below [36]:

Reduced repair time and costs

Compared to corrective maintenance, condition based main-
tenance enables maintenance activities to be planned in
advance. This is advantageous as prior knowledge and
planned activities often are performed more efficiently
in less time and with better quality. Intelligent condition
monitoring system also helps diagnosing fault conditions,
reducing the time needed for manual troubleshooting and
diagnosis.

Avoided revenue loss

Unplanned production downtime caused by sudden fail-
ure of critical equipment can lead to substantial loss of
revenue. The downtime often tend be prolonged due to or-
dering of spare parts, as well as unplanned maintenance
activities become less efficient. If instead a CBM approach
is used, and equipment deterioration can be detected in
and early phase, the maintenance activities can be planned

7
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8 introduction to intelligent condition monitoring

in convenient off-peak periods or in combination with
other necessary maintenance activities or revision stops.

Maintenance cost savings

Reduced cost of spare parts and maintenance compared
to preventive maintenance, as only the equipment that ac-
tually need to be repaired is fixed and the equipment life-
time can be increased. Failures induces by maintenance
can also be reduced as the frequency of maintenance ac-
tivities is lower compared to preventive maintenance. The
size of the needed spare part inventory can also be re-
duced.

Improved safety

Condition monitoring enables increased equipment health
verification and safety assurance. Early alarms also re-
duces the chance of severe machine damage which lowers
the risk for personnel.

2.2 data acquisition

Selecting the correct sensor to be able to gather accurate and
sufficient information about the equipment health condition is
of key importance for effective condition monitoring. Main con-
siderations when choosing transducers is determining the prin-
ciple fault conditions to be monitored, and defining the me-
chanical manifestation of faults. Most often a number of differ-
ent transducers are used in combination to complement each
other.

2.2.1 Vibration Monitoring

Vibration monitoring is used in a wide range of equipment
monitoring applications, and is of special importance and is
widely implemented for rotating machinery. Vibration moni-
toring enables detection of a problems in structural and rotat-
ing parts of the equipment. A particular benefit is that specific
spectral components can be extracted from the vibration signal
which reveals much information about certain components and
fault conditions in the machine.

Different types of transducers are used for vibration mon-
itoring, including proximity probes, velocity transducers and
accelerometers. Proximity probes measure the motion of the ro-
tating shaft directly in displacement, have the advantages of
not being in direct contact with the shaft, and they have high
low frequency gain. Velocity transducers measure the dynamic
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2.3 intelligent condition monitoring , diagnosis and prognosis systems 9

motion and are effective for the speed range of many large ro-
tating machines, have good sensitivity, but suffer from a nar-
row frequency response and is sensitive to damage from shock
loadings. Accelerometers measure the dynamic response, an
have good high frequency response, but poor low frequency
response and sensitivity.

A range of features can be extracted from vibration signals
including time domain features such as RPM, variance, abso-
lute mean, peak, crest factor, skewness, shape factor and kur-
tosis, and so on. For frequency analysis of rotating machines,
synchronous vibration spectra is important as many features
about the machine condition may be revealed. For instance, the
amplitude and phase for the first rotational order (1x), syn-
chronous to the shaft rotation, can measure the state of rotor
imbalance. Higher rotational orders (2x, 3x, 4x) can detect me-
chanical asymmetries such as rotor cracks [36].

2.2.2 Thermal Monitoring

Thermal monitoring is widely applied for condition monitoring
as many faults are manifested in terms of certain thermal char-
acteristics in temperature and heat transfer. It is particularly
useful for monitoring bearings and gears in rotating machines
often in combination with vibration monitoring.

Infrared thermal monitoring is also used for condition mon-
itoring of machinery, equipment and processes, and one exam-
ple of an application is to detect hot-spots caused by leaks of
process fluids [36]

2.2.3 Process Parameter Monitoring

Process parameters used for process monitoring and control
can be utilized for condition monitoring. Such parameters can
include pressure, pressure drop, flow-rate, temperature etc. De-
viation from the normal behavior of these parameters can be
used to detect fault condition and process disturbances.

2.3 intelligent condition monitoring , diagnosis and

prognosis systems

Figure 1 illustrates the main parts of intelligent condition moni-
toring, diagnosis and prognosis systems. Some of the main part
of such system include sensor inputs, preprocessing, feature ex-
traction, fault detection, fault isolation, fault classification and
fault prediction.
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10 introduction to intelligent condition monitoring

2.3.1 Feature identification

Inputs to the system include a variety of information sources
such as on-line sensor outputs from equipment instrumenta-
tion such as those described above, but also other sources from
environmental information, observation and control informa-
tion [36]. This information is further processed in order reduce
noise, clean the data, handle missing values et cetera, such that
the desired information can be extracted. Signal processing can
be preformed in time domain, such as moving average filter-
ing, or in frequency domain, such as high pass, low pass or
band pass, or other techniques such as wavelet thresholding.
When appropriate signal processing is performed, features are
extracted from the signals. This can include time domain fea-
tures such as RMS, mean value, kurtosis, crest factor, skewness
et cetera. Frequency domain domain features such as spectral
component extraction, spectral signature and spectral envelope
are also in many cases useful. For rotated machinery, extracting
spectral components is of particular high use as a lot of infor-
mation of the machine condition is revealed from the spectral
characteristics.

Figure 1: Flow chart overview of intelligent condition monitoring sys-
tems

2.3.2 Fault Detection

The features extracted is further monitored in a fault detection
subsystem. The features are here compared to their healthy con-
dition, and any deviations revealing equipment degradation
can be detected. At this point a fault is detected in the form
of a global deviation from normal condition, and the source of
the fault is not ascertained.
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2.3 intelligent condition monitoring , diagnosis and prognosis systems 11

2.3.3 Fault Isolation

The next subsystem includes fault isolation, which concerns
identification and isolation of the fault that has revealed itself
from the features. This can reveal which information sources,
such as a component or subsystem, that is responsible for the
deviations of the features. This does not necessarily imply that
the causal relationship for the fault is found, only how it has
influenced the features.

2.3.4 Fault Classification

The next part of the system concerns fault classification, which
basically is where fault diagnosis is performed. The fault is here
identified and classified in order to determine the cause of the
fault and the equipment fault condition.

2.3.5 Prognosis

As fault diagnosis in essence only determines the current state
and fault condition, a prognosis is needed to predict future con-
dition of the equipment. Often one is interested in determining
the remaining useful time (RUL) of the equipment in order plan
and optimize maintenance.
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B A C K G R O U N D T H E O RY
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3
M U LT I VA R I AT E A N A LY S I S

This chapter presents some main aspects concerning multivari-
ate data analysis, including the theory and presentation of the
two multivariate projection methods Principal Component Anal-
ysis and Partial Least Squares Regression. The theory presented
below is mainly based on the results from [23], [27], [16].

3.1 latent variable methods

The multivariate analysis methods used in this study utilizes
bilinear subspace models to analyze and model the structure
in a data set. Bilinear modelling gives a generic description of
data using loadings P and scores T in the following form [27]

X = TPT + E (1)

where X ∈ Rm×n, P ∈ Rn×a, T ∈ Rm×a, X is a data ma-
trix with m rows representing samples, and n columns repre-
senting variables. P = [p1, ..., pa] is the loading matrix and the
columns pi are loadings. T = [t1, ..., ta] is the score matrix and
the columns ti are scores. E is the residual matrix and describes
the unmodelled part of the data in X.

Latent variable methods are used to approximate a data set
by finding linear combinations of the original variables and ex-
pressing new latent variables spanning a subspace in the orig-
inal variable space. The methods assume that the data set is
structured with correlated variables such that there exist la-
tent variable describing the data in a lower dimension variable
space. The set of loading vectors constitutes a basis for the LV-
space, while the scores represent the coordinates of the projec-
tions of each sample or object onto the loading vectors [27].

3.2 preprocessing

Several steps of preprocessing is often performed in order get
the data for multivariate analysis on a suitable form and reduc-
ing the effect of unwanted noise and variation. A short sum-
mary of such methods are given below.

15
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16 multivariate analysis

3.2.1 Filtering

Filtering techniques can be utilized in order to improve the
signal-to-noise ratio and reduce the effects of outliers in the
data.

One of the simplest types of smoothing filtering methods is
the moving average filter. In this method, each reading xik of
each variable k = 1, 2, ...,K is replaced by a a weighted average
of itself and its nearest neighbours from k−D to k+D [23]:

xik =

+D∑
d=−D

xi,k+dud (2)

Where ud are the convolution weights.

3.2.2 Centering

Mean centering is used to remove the variable offset of the data.
Each column is subtracted by its corresponding mean value so
that all variables are centered around mean. This increases the
ease of interpretation and numerical stability [16].

3.2.3 Normalization

In situations where the variables are scaled differently or have
different units, some variables often tend to dominate the anal-
ysis. To avoid this effect such that all variables will have equal
influence in the analysis, they can be normalized by dividing
the variables with their respective variance in order to have the
equal amount of variation.

Some of the pitfalls regarding normalization is that if cali-
bration of nearly static variables with low variance, the normal-
ization will amplify the noise and diminish the signal-to-noise
ratio.

3.2.4 Weighting

Weighting can be performed on each of the variables in the
data set in order do increase or decrease the influence of the
corresponding variables in the model. This procedure is often
approached in an empirical manner based on application spe-
cific knowledge and experience.
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3.3 principal component analysis 17

3.2.5 Other Preprocessing Techniques

A variety of other preprocessing techniques can be performed.
Variable selection is a method where subsets of variables are
selected for model calibration, and irrelevant variables or vari-
ables the diminishes the performance of the model is removed
from the analysis.

Outlier handling concerns detecting and removing outliers
from the data set that will otherwise greatly influence the bilin-
ear models.

Nonlinear transformations may be utilized in order to lin-
earize the original non-linear variables [27].

The reader is referred to [23] for more information regarding
data proprocessing.

3.3 principal component analysis

By diagonalizing the covariance matrix by extracting the cross-
correlation between the variables in the data matrix, the PCA
transforms the data matrix in a statistically optimal manner to
a compressed and decorrelated form. In this way PCA achieves
its strong ability to reduce the dimensionality of the data ma-
trix while capturing the underlying covariation structure be-
tween the variables [10]. With highly correlated variables in a
data set contaminated with noise, the first few principle com-
ponents will capture the main relationship in the data, and the
remaining components will mainly be composed of the noise.
The mathematical representation with mean centered data ma-
trix X ∈ Rm×n,

X = TPT + E =

A∑
i=1

tipT
i + E (3)

where P ∈ Rn×a, T ∈ Rm×a. The data matrix may also be
decomposed by singular value decomposition as [8],

X = U˜1/2V, (4)

where Λ is a diagonal matrix of the eigenvalues PT = V and
T = U˜1/2. The principle components are therefore ordered cor-
responding the eigenvalues. The elements corresponding to the
the A < n largest eigenvalues are extracted.

The computational algorithms for PCA are either based on
singular value decomposition or the NIPALS (Nonlinear Itera-
tive Partial Least Squares) algorithm. The reader is referred to
[11] for a more detailed outline and pseudo code for the algo-
rithms.
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3.4 partial least squares regression

Partial Least Squares Regression (PLSR) is a regression tech-
nique that utilized latent structures in the data sets in order to
build a regression model from explanatory variables X to re-
sponse variables Y. The latent structures are used such that the
regression model most optimally connects the input and the
output data.

PLSR model with mean centered data sets X ∈ Rm×n and
Y ∈ Rm×p

X = ZxPT + Ex (5)

Y = ZyQT + Ey (6)

Zx = XW(PTW)−1 = XW∗ (7)

where Zx ∈ Rm×a, P ∈ Rm×a, Ex ∈ Rm×n, Zy ∈ Rm×a, Q ∈
Rp×a, Ey ∈ Rm×p and W ∈ Rn×a [27]. The reader is referred to
[23] for derivations and further details regarding PLSR.

Partial Least Squares Regression is performed using the NI-
PALS algorithm [11].

3.5 validation

3.5.1 Underfitting Versus Overfitting

A challenge met when making a latent variable model is choos-
ing model complexity, that is, choosing the number of latent
variable that should be included. Choosing too high model
complexity can result in overfitting, and thus creating a model
with poor predictive performance and diminishing the signal-
to-noise ratio. In this case the model will include noise and
other unwanted phenomena. If on the other hand too few la-
tent variables are included, we risk underfitting the model and
loosing too much information and distorting the signal [23].

Different quantitative strategies for choosing model complex-
ity exists and some of the are discussed in further sections. It
should be mentioned that no method has shown to give opti-
mal answers to this problem, thus this challenge is often based
on a certain degree of empirical evaluation.
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3.5.2 Cross-validation

Cross-validation is a method which uses the calibration data in
order to determine the number of principal components that
should be retained. In essence this method omits segments of
the training data while performing PCA on the rest of the data
sequentially by starting with only one PC, then two, then three
and so on. This is performed on all data segments in turn so
as all segments have been kept out once. The number of com-
ponents are then chosen based on the PCA model complexity
which shows the minimum prediction error [23].

3.5.3 Independent Test Set

The independent test set regards using a dedicated validation
data set which is only used for validation. [12]

3.5.4 The Explained Variance

The explained variance is the variance that is explained by the
model described by the signal. The variance not included in
the model describes the noise in the data and is called residual
variance. The explained variance increases as more and more
principal components are added in the calibration model. De-
pending on the training data set at hand, this can be used to
the determine how many principle components to retain in the
model, as one for example could want to have about 95% ex-
plained variance by the model.

3.6 plot interpretations

Two of the most frequently used plots for graphical illustration
of the results from multivariate analysis are presented below
[12].

3.6.1 The Score Slot

The score plot shows the plot of each score corresponding the
projected samples down on the principle components. Often
the scores are plotted on a two or three dimensional space
spanned by the corresponding two or three first two princi-
ple components, as these are the most describing of the data.
The score plots can be seen as ’windows’ into the PC-space,
where each dot represent a sample or object. The score plot can
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be used to visually interpret the calibration model, detecting
groupings, outliers or trends in the data.

Figure 2 illustrates a two-dimensional score plot of PC1 and
PC2. This plot is from the bearing vibration analysis where the
calibration scores are from a healthy bearing condition. Sam-
ples for a bearing fault is projected on to this model, which are
clearly grouped outside the region for normal condition, indi-
cating a fault.

Figure 2: Score plot

3.6.2 The Loadings Plot

The loadings plot is used to illustrate how variables contribute
to each PC and their relationship regarding to their contribu-
tion. In a correlation loadings plot, an absolute value of one in-
dicates high variable contribution from the respective variable
to the particular PC. A value of zero indicates no contribution.
Clustered variables in the loadings plot indicate high correla-
tion between them [16].

Figure 3 shows a correlation loadings plot for the bearing
analysis. We see that PC1 have strong contributions from the
Variance, RMS and Abs mean variables placed at the left in the
plot. The strong clustering near the center shows that a large
number of the variables are highly correlated and with limited
influence on PC1 and PC2.
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Figure 3: Loading plot
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4
T I M E - F R E Q U E N C Y A N A LY S I S

Time-frequency analysis is an important subject in signal pro-
cessing for a wide range of application when dealing when
non-stationary signals [15]. Such techniques allows investigat-
ing both the temporal and spectral characteristics of a signal.
These abilities make such techniques particularly useful for con-
dition monitoring and fault diagnosis. Figure 4 illustrate a time-
frequency decomposition in the form of a spectrogram for a
vibration signal. The methods

Figure 4: Spectrogram of bearing vibration

4.1 short time fourier transform

The traditional Fourier Transform transforms a signal between
time domain and frequency domain. A time domain signal X(t)
is transformed into X(f) in frequency domain in the following
way,

X(f) =

∫∞
−∞ X(t) • e−2jπftdt (8)

23
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24 time-frequency analysis

Discrete case,

Xk =
N−1∑
n=0

xn · e
−i2πkn
N (9)

The shortcoming of the traditional Fourier Transform is that
the temporal information of a signal is lost when it is trans-
formed into frequency domain. This is not a problem when
dealing with stationary signals, but valuable temporal informa-
tion is lost if the signal is non-stationary.

To be able to decompose the signal in both frequency and
time simultaneously, a windowed Fourier Transform can be
used. This is called Short Time Fourier Transform (STFT). Math-
ematically it is given as [15]

STFT{x(t)}(τ,ω) ≡ X(τ,ω) =

∫∞
−∞ x(t)w(t− τ)e−jωtdt (10)

where w(t− τ) and is a window function and x(t)w(t− τ) is
a windowed signal. The discrete case

STFT{x [n]}(m,ω) ≡ X(m,ω) =

∞∑
n=−∞ x [n]w [n−m] e−jωn

(11)

The spectrogram from STFT with squared magnitude is de-
fined as

spectrogram{x(t)}(τ,ω) ≡ |X(τ,ω)|2 (12)

The basic idea behind STFT is that it divides the signal up
in segments, performing a Fourier Transform on each segment
giving a sequence of temporal spectrums. The choice of win-
dow length is important in order to capture the desired signal
characteristics and for the ability to suppress side blobs and
spectral leakage [15]. One of the weaknesses of STFT is its fixed
resolution, as shortening of the window length gives higher
time resolution but poorer frequency resolution, and expand-
ing the window length improves frequency resolution but de-
grades time resolution [24].

4.2 wavelet transform

An expansion of the Short Time Fourier Transform is the wavelet
transform which have improved time-frequency localization fea-
tures. Wavelet theory is relatively new, and wavelet transform
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4.2 wavelet transform 25

based technologies have in recent years been widely applied
to a range of fields including signal and image processing, nu-
merical computation, pattern recognition, speech analysis, fault
diagnosis and others [30].

The goal of this section is not to provide a complete descrip-
tion of wavelet theory, but to present the basic ideas behind
these technologies. The reader is referred to [22] for further de-
tails.

Continuous Wavelet Transform is defined by [24]:

Gs(w, t) =
∫
s

(
1√
a

)
ϕ

(
t− u

a

)
du (13)

where a is a scale factor, u is the shift, ϕ(t) is the mother
wavelet and Gs(w, t) is the wavelet transform of function s(t).
We see that the continuous wavelet transform correspond to the
STFT with a shifted and scaled window function called mother
wavelet.

4.2.1 Discrete Wavelet Transform

For the Discrete Wavelet Transform the signal is decomposed
by convolution with high pass and low pass filter coefficients,
called quadrature mirror filters [33].

y(n) =
∑
l

f(n− l) · g(l) (14)

where y(n) is the output from the convolving functions f(n)
and g(n). The results from the high pass filters are called detail
coefficients, and the results from the low pass filters are called
approximation coefficients. A dyadic sampling is achieved as
illustrated in figure 5.

Figure 5: Discrete Wavelet Transform filter bank. (Figure from [1])
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26 time-frequency analysis

4.2.2 Wavelet Packet Decomposition

The wavelet packet decomposition is an extension of wavelet de-
composition, where both approximation and detail coefficients
are further decomposed providing a more precise frequency
resolution. The wavelet packet decomposition makes a full bi-
nary tree as shown in figure 6 [37].

Figure 6: Wavelet Packed Tree

4.2.3 Choosing Wavelet Basis Function

The choice of wavelet basis function is important for meeting
application specific needs. For condition monitoring, fault de-
tection and diagnosis, orthogonal wavelet functions are pre-
ferred as they have the important property of being able to
decompose and reconstruct signals efficiently. Wavelet families
such as Haar, Coiflet and Daubechies can be used [33].
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5
M U LT I VA R I AT E S TAT I S T I C A L C O N D I T I O N
M O N I T O R I N G

Multivariate analysis have been successfully applied in indus-
try both for multivariate statistical process control and qual-
ity control [20, 28]. The are large potential in utilization of
multivariate statistical techniques for condition monitoring of
machinery, equipment and industrial processes for fault detec-
tion and fault diagnosis. The data-driven based models such as
Principle Component Analysis (PCA) and Partial Least Squares
Regression (PLSR) models has proven to be effective for such
application as deep knowledge of the processes and machines
are not needed. Such quantitative latent variable methods are
based on the actual data from the machinery and processes un-
der monitoring and is then able to model and capture character-
istics and conditions that are often not included in the first prin-
ciple based models [17]. These models are not however causal
models, but model only common-cause variation or correlation.

Latent variable methods are powerful as they are able to re-
duce the dimension of large data sets with many correlated
variables in to a lower dimension of uncorrelated latent vari-
ables. These latent variable are linear combinations of the orig-
inal variables, where the least significant variables are elim-
inated. By modelling a latent variable structure model from
healthy historic data, these projection models can be used for
online monitoring for the purpose of detecting faults and ab-
normal condition, and for fault diagnosis.

5.1 fault detection

The first step in multivariate statistical condition monitoring is
to develop an "in-control model" which models the normal situ-
ation from historic data using PCA or PLSR. The data from pe-
riods spanning the range for normal condition should be used
for training of the in-control model, such that the mean and
covariation structure for normal operating conditions are cap-
tured. The in-control model can then be applied on-line where
new data is projected on the model. New data samples are sub-
ject to operations such as mean centering, scaling and transfor-
mation defined from the calibration data.

The projections of new data can be tested if they can reveal
if any fault situation is apparent. Several multivariate control

27
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28 multivariate statistical condition monitoring

charts can used for condition monitoring and fault detection,
and the most important charts include the Hotelling’s T2 statis-
tic and the Squared Prediction Error (SPE). These to indices are
discussed in the further sections.

5.1.1 Hotelling’s T2 Statistic

Hotelling’s T2 statistic measures how close a new observation is
to the model mean. This is analogous to the euclidean distance
from the projected sample in the latent variable space, to the
origin of the model. Hotelling’s T2 statistic for sample i [20]

T2i =

A∑
j=1

tjtT
j

s2tj
=

A∑
j=1

tjtT
j

λj
(15)

The upper control limit (UCL) based on A first principle com-
ponents can be defined as [20]

T2A,UCL =
(n2 − 1)A

n(n−A)
Fα(A,n−A) (16)

where Fα(A,n−A) is the upper 100α% critical point of the F
distribution with (A,n−A) degrees of freedom [20].

5.1.2 Squared Prediction Error

The Squared Prediction Error (SPE), often known as the Q-
residual, is a measure of the goodness of fit for an observation
to a model. SPE is the squared error of the projection of a sam-
ple onto the latent variable space [20]. In other words, the SPE
measures the loss of information from projecting the sample in
the latent variable space spanned in a lower dimension than the
original.

SPE =

k∑
i=1

(xnew,i − x̂new,i)
2 (17)

The 100(1 − α)% confidence interval upper control limit of
SPE [20]

θ1

za
√
2θ2h

2
0

θ1
+
θ2h0(h0 − 1)

θ21
+ 1


1
h0

(18)
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5.1 fault detection 29

where za is the unit normal deviate corresponding to the up-
per 100(1 − α), α is the chance taken to incorrectly declare a
fault because of the type I error [20],

θi =

m∑
j=A+1

λij = Tr(E
i) (19)

for i = 1,2,3

h0 = 1−
2θ1θ3

3θ22
(20)

An approximation SPE upper control limit at significance
level α based on weighted Chi-squared distribution

[
gχ2(h)

]
ν

2b
χ2α(

2b2

ν
) (21)

where b is sample mean and ν is sample variance.
It should be noted that a good choice of calibration data is es-

sential for the success of defining satisfying limits for Hotelling’s
T2 and SPE control charts.

5.1.3 Combined indices

As the Hotelling’s T2 and SPE are two complementing indices,
it is often preferable to combine them into a single index for
a more practical use in condition monitoring. The Hotelling’s
T2 and the Squared Prediction Error can be combined in the
following manner [28]

ϕ =
SPE(x)
δ2α

+
T2(x)
χ2l;α

(22)

5.1.4 The roles of SPE and T2 in condition monitoring

The indices T2 and SPE measure different features for the sam-
ples projected to the latent variable space [28]. The SPE mea-
sures how well the new sample fits to the in-control model in
regard to the modelled covariance structure, while T2 measures
the distance from the projected sample in the latent variable
space to the model mean. This is illustrated in figure 7, where
we have two original variables X1 and X2, and a PCA model
with one principal component PC1. The SPE is the measure of
how far samples in the original variable space are from PC1,

[ June 5, 2017 at 21:47 – classicthesis ]



30 multivariate statistical condition monitoring

and thus how much it breaks the correlation structure. In con-
dition monitoring, one could experience large T2, but small SPE.
In this case one should be careful with false alarms as it does
not necessary have to be a fault, but rather a change in the op-
erating condition. The SPE is often the most important index in
condition monitoring as it indicates an abnormal situation, and
has lower chances of type I and type II errors compared to T2.
The T2 may also experience false alarms due to non-stationary
processes, which makes the choice of alarm limits important.

Figure 7: T2 and SPE illustration

5.2 fault isolation

Contribution plots, also known as diagnostic plots, are useful
in the process of isolating faults that have been detected by
metrics such as Hotelling’s T2 or SPE.

5.2.1 Contributions to SPE

When a situation with large deviation of SPE is detected, the
contribution for each variable can be plotted in order to isolate
the fault [20]. The SPE variable contribution is simply found by,

(xnew,i − x̂new,i)
2 (23)

where each contribution can be plotted in bar plot in order
to find the variables which contribute the most to the SPE. This
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5.3 plsr 31

variable can further be investigated in order to diagnose the
fault.

5.2.2 Contribution to Hotelling’s T2

If experiencing an out of limits value of Hotelling’s T2, variable
contributions can be found by first plotting the contributions
from each of the scores (ti/sti)

2. Variable contribution are then
found for the scores with most contribution. The contribution
from each variable to the score of component q is given by [20]

cj = pq,j(xj − x̄j) (24)

where cj is contribution of the jth variable of the given sam-
ple, pq,j is the loading and x̄j is the mean value of the variable.
Variables with large contributions and with the same sign as the
score should be further investigated.

Contribution plots are valuable tools for fault isolation and
fault diagnosis, but care should be taken regarding their inter-
pretation as it does not necessary reveal the cause of the fault,
but only which variables that are related to it. In many cases
where the variables are highly correlated, many of the variable
will contribute to the deviation of T2 or SPE which makes fur-
ther diagnosis more difficult.

Alcala et al. [7] presented a contribution method for fault
diagnosis called reconstruction-based contributions (RBC). This
method shows improved performance compared to traditional
contribution plots, and guarantees that the faulty variable has
the most contribution.

5.3 plsr

PLSR can be utilized for fault detection through its ability to
predict output data Y from input data X. The PLSR analysis
converts the input process data X into input latent variables,
and output data Y into output latent variables. Through the
regression analysis the relationship between the input and out-
put variables is determined, and new process input data can
be used to predict the output variables. The PLSR can thereby
be used as a soft sensing technique where abnormal condition
can be detected [17]. For instance, a PLSR model can be used to
predict a particular process parameter from other process data,
and if the predicted and the measured parameter deviates, this
might indicate a fault.
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5.4 fault classification

In some cases classification of fault conditions can be used to
automate the diagnosis. Classification is based on pattern recog-
nition of extracted features in order to to identify the condition
of the equipment. If a supervised learning approach is used,
data from known fault conditions can be used to train a classi-
fier. This can be used for classify future fault conditions.

5.4.1 SIMCA Pattern Recognition Classification

The Soft Independent Modelling of Class Analogies (SIMCA) is
a classification technique based on PCA. It is a supervised learn-
ing approach where distinct features are extracted and mod-
elled in unique corresponding PCA models. When all features
of interest are learned, new data is tested for their belonging
for each model, and hence new observations can be classified.
Samples that pass a F-test based on the sample-to-model dis-
tance and sample leverage, are classified to the respective class
analogy.

The reader is referred to [13, 14, 35] for more details about
the SIMCA method.

5.5 other relevant uses of mva techniques

5.5.1 Data compression

Often the storing capacity for historic process data is limited, in
other cases the data transmission rate is limited when data is to
be sent, for example from an offshore location to land. In such
cases, efficient data compression techniques can be very bene-
ficial. Multivariate analysis and latent variable methods are in
this case useful as they function as dimension reduction tech-
niques, utilizing the redundancy in correlated multivariate data
to describe the information in the data in a compacted form.

5.5.2 Visual presentation of hidden patterns in data

Multivariate data analysis can be utilized for data mining and
analysis of large collections of data. Latent variables can be
modelled directly from the data itself without prior system
knowledge, giving a pragmatic data compression that in com-
bination with good graphical tools can give good predictive
ability and good causal insight at the same time [23].
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5.5.3 Intelligent operator alarm systems

Multivariate statistical process monitoring can be used to im-
plement more intelligent alarm systems. In most cases process
parameters are monitored independently in a univariate man-
ner, with defined alarm limits. If many of the variables reach
their alarm limit in a short period of time, the system can be-
come uncontrollable as the operators are often unaware of the
interdependency between variables [17].

Multivariate techniques handle this problem as they are able
do find and model the correlations between variables, which
allows for discovering underlying hidden patterns in data. The
methods also reduces the dimensions of the variables such that
the number of alarms can be reduced, making it easier for the
operators to take the right actions.

Multivariate techniques can also give better alarms as they
are able to detect deviations in the covariation structure be-
tween variables.

5.6 self-learning and adaptive techniques

In some situations the conditions and processes are dynamic
and time varying. If the system is very slowly time varying in
the scale of months or years, it might suffice to manually re-
train the in-control model to capture any new characteristics,
or changes in covariance structure or model mean drifts. If the
system have several distinct working conditions, such as differ-
ent loads, startup, shutdown or normal, each situation can be
modelled, and the system can automatically detect its actual
mode of operation and use the corresponding model.

In other situations having a fixed in-control model might not
be sufficient and can give rise to many false alarms. In such
situations an adaptive approach is needed. Such systems con-
tinuously adapts its in-control model.

5.6.1 Moving window PCA

Moving window principal component analysis is an extension
of PCA where the model adaptively updates the direction of
the principal components, the model mean, and the covariation
structure by moving the time-window on-line [18].

Such adaptive systems should however be used with care as
choosing an incorrect moving window can lead to the system
adapting to faults, rather than detecting them.
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5.6.2 On-The-Fly Processing

Vitale & Martens et al. [34] have presented a promising propri-
etary On-The-Fly Processing (OTFP) technology for continuous
processing of high-dimensional data streams. The basis for the
technology is that reduced-rank bilinear subspace models are
developed in order to summarize massive streams of multivari-
ate responses, at the same time as evolving covariation patterns
are captured in a self learning manner. Unlike traditional adap-
tive moving-window methods, past and recent points can be
reconstructed and displayed simultaneously [34].
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6
S T E A M T U R B I N E D R I V E N C O M P R E S S O R

6.1 introduction

In the following section of the report is a case study with the
use of multivariate statistical techniques for condition monitor-
ing of a steam turbine compressor at Statoil’s methanol produc-
tion facilities at Tjeldbergodden.

Statoil Tjeldbergodden industrial facilities, located at Nord-
møre in Norway, comprises of a gas receiving terminal, a methanol
plant, an air separation unit and a LNG plant. Natural gas
from the Heidrun field at Haltenbanken is received via the Hal-
tenpipe pipeline. The methanol plant is the largest in Europe
producing about 900,000 tonnes of methanol per year, while
at the same time as being one of the most energy efficient
methanol plants in the world [2].

The plant consists of a considerable number of process equip-
ment units being critical for the production, including in par-
ticular large rotating machinery such as gas compressors and
turbines. Unexpected failures of such equipment can cause un-
necessary downtime with large revenue losses and high main-
tenance costs. Being able to detect equipment deterioration at
an early stage through condition monitoring, actions can be
taken before the systems reach an unrecoverable stage, saving
the company from substantial losses in revenue.

The machinery under monitoring consist of a steam turbine
side, which powers a gas compressor side compressing syn-
thesis gas, or syngas, consisting mainly of hydrogen, carbon
monoxide, and some carbon dioxide. This unit is of particular
importance to monitor since it is critical for production, and
a failure of this unit will result in production downtime. It is
also a high cost machinery both in terms of capital and op-
erational expenditures. This type of equipment is also highly
technically complex and is often weakly understood both in
regard to maintenance and operation. Obtaining replacement
parts can also be difficult and can result in long delays, which
again leads to extended periods of production downtime and
revenue loss.

The main motivation for the study was to collect healthy
training data in order to model the system under normal oper-
ational condition, for then to test condition monitoring abilities
of this model from test data from known fault conditions. The

37
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38 steam turbine driven compressor

data-driven approach to this problem was motivated from the
practicality and effectiveness of multivariate statistical methods
compared to developing detailed physical models of complex
processes, which can be difficult [38].

6.2 data acquisition and pre-treatment

In this study, a total of 55 different measurement points were
available for the analysis, where historic data was available
from a historic process database. Among the measurements in-
cluded are condition monitoring instrumentation such as vibra-
tion and temperature measurements on each bearing as illus-
trated in figure 8 and described in table 1. The vibration mea-
surements are based on proximity sensors, where the vibration
signals are represented in the form of peak-to-peak displace-
ment. Each bearing has vibration transducers both in the verti-
cal and horizontal direction, and is complemented with bearing
temperature sensors.

Figure 8: Principle illustration of measurement points for condition
monitoring of bearings

In addition to the dedicated condition monitoring instrumen-
tation, a variety of process parameters were included in the
analysis. This includes parameters such as rotating speed, power,
flow rates, pressure, temperature and so on.

The data was extracted with a sampling interval of 12 sec-
onds and is interpolated.

In this case study, multivariate condition monitoring meth-
ods were applied on data from a specific event that occurred
just after start-up of the machine after it had been off produc-
tion due to maintenance service. After start-up and a stationary
speed had been reached, the machine ran for approximately
two days until it automatically tripped due to a gas leakage in
a seal in the compressor. Some of the limitations from the data
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Equipment Measurement No. Measurement Points Measurement Type

1 Free-end axial Displacement [mm]
2 Bearing, free-end vertical Vibration [µm peak-to-peak]
3 Bearing, free-end horizontal Vibration [µm peak-to-peak]

Turbine 4 Bearing, free-end Temperature [◦C]
5 Bearing, load-end vertical Vibration [µm peak-to-peak]
6 Bearing, load-end horizontal Vibration [µm peak-to-peak]
7 Bearing, load-end Temperature [◦C]

8 Bearing, load-end vertical Vibration [µm peak-to-peak]
9 Bearing, load-end horizontal Vibration [µm peak-to-peak]

10 Bearing, load-end Temperature [◦C]
Compressor 11 Bearing, free-end vertical Vibration [µm peak-to-peak]

12 Free-end axial Displacement [mm]
13 Bearing, free-end horizontal Vibration [µm peak-to-peak]
14 Bearing, free-end Temperature [◦C]

Table 1: Measurement points table

from this specific event is that the machine had not reached a
fully steady state of operation, as some slow dynamics had not
fully settled, and there had been some minor changes in the
setpoint of the rotational speed.

Prior to the further analysis, the data needed to be pre-treated.
Firstly, the data was smoothed using a causal moving average
filter to increase the signal-to-noise ratio and reduce the effect
of outliers in the signal. A window size of 10 was chosen. Fil-
tering the process data should however be done with care as
is can be detrimental as it can suppress high frequency signal
components and destroy the multivariate nature of the data [8].

Each column, representing variables of the data matrix, was
subtracted by its mean value in order to center the data. Since
the variables in the data set is a collection of different measure-
ments with different units, performing an unscaled multivari-
ate analysis would not prove to be sufficient as some variable
will dominate the analysis completely, while other will have lit-
tle contribution. To solve this, the data set was normalized by
dividing each column with its corresponding standard devia-
tion. After these steps, the data was mean centered which is
important for having a meaningful PCA, and the normalized
variables had equal influence on the model. Great care should
be taken when normalizing each variable in the calibration set
with their respective variance, as this can result in noise ampli-
fication of variables with low variance.

Another challenge is whether all variables should be included
an the multivariate analysis, or if any of the variable should be
weighted in a particular manner. In the exploratory MVA phase,
different subsets of variables were included in the analysis in
an iterative manner in order to find the selection with best per-
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formance. Some variables tended to include more noise than
others, and was excluded from the analysis.

The correlation matrix in figure 9 shows that the degree of
correlation between the variables used in the analysis is consid-
erable. This expected as much of the same process phenomena
and physical laws affect several measurements in a certain man-
ner such that they are correlated to each other.

Figure 9: Correlation matrix of the 55 measurements monitored

6.3 pca modelling of normal condition

Several considerations must be made when making a calibration-
or in-control model for use in condition monitoring. The data
used to calibrate the model should most optimally span the en-
tire range of variation for normal condition. Data from periods
including any abnormal patterns should also be excluded from
the calibration set.

In the exploratory analysis phase, several subsets of variables
for different periods were explored in the calibration models in
order to find the most optimal performance. Two different in-
control PCA models are included in this paper. One of them
includes all 54 variables with 5200 samples, making a 5200× 54
calibration data matrix X. In the other model, one variable for
a bearing temperature which showed an abnormal character-
istic was removed, making a 2000 × 53 data matrix. The two
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calibration data sets cover different periods of operation. The
first model, including all 54 variables, was calibrated with a
longer period of samples equivalent to about 20 hours, which
included some dynamical variation of the machine. The second
model was calibrated with samples from a period of about 7

hours, where the machine had a more stationary operation.
In condition monitoring, choosing model complexity is of

high importance as an overfitted model will include the noise
from the training data. As the intention is to detect deviations
from the normal condition, having an overfitted model would
imply that the observed data need to have the same noise char-
acteristic as the training data in order to avoid false alarms. Un-
derfitting the model by retaining too few principal component
can on the other hand lead to distortions and give unsatisfying
results.

Figure 10: Explained variance of the first PCA in-control model with
54 variables

Figure 10 shows the explained variance of the training first
PCA model as a function of the number of principal compo-
nents added. We see that the 11 first components retain almost
90% of the explained variance with good validation, which
might indicate that it is a good model complexity. The calibra-
tion models were validated using cross-validation divided on
20 segments with random selected samples in each validation
segment. See Chapter 3 for a more detailed description of cross-
validation. We also see that the PC1 explains about 40% of the
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variance in the training data, revealing some of the considerable
amount of structure in the data.

Figure 11: Explained variance of the second PCA in-control model
with 53 variables

The explained variance for the second PCA calibration model
with 53 variables are shown in figure 11 and reveals that the
first principal components are less dominating and more com-
ponents are needed in order to describe the same percentage
of variance in the data. 16 components gave the best validating
performance, but since the calibration data have less variation
in this case, one should be careful not to overfit the model by
adding too many noise dominated principal components.

6.4 fault detection and isolation

For fault detection, new observations were projected on to the
healthy in-control models, and based on multivariate control
charts, this can detect deviation from normal condition indicat-
ing that a fault has occurred. The indices used for fault detec-
tion in this study are the Hotelling’s T2 statistic and the Squared
Prediction Error (SPE), also known as Q-residual, as described
in Chapter 5.
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6.4.1 First in-control model with 54 variables

The first in-control model is projected with 5350 samples corre-
sponding to about 18 hours of operation, from the end of the
calibration data, until the time where the compressor seal leak-
age is clearly apparent in the differential pressure reading.

Figure 12 shows a score plot of projected samples onto PC-1
and PC-3 as a fault condition is developing. The plot shows that
the projections remain in the 1% confidence limit for Hotelling’s
ellipse for PC-1 and PC-3 for the majority of time. At the last
samples of the projection however, the samples start to move far
beyond the limits for PC-3, indicating that a fault has occurred.

Figure 12: Score plot of projection for fault period on first PCA in-
control model with 54 variables

Figure 13 shows the correlation loadings plot PC-1 versus
PC-3 for the same model. It can be seen that there is a high
degree of clustering of the variables which reveals that they are
strongly correlated. In particular, variable number 1, represent-
ing the rotational speed of the machine is both correlated and
negatively correlated with many of the variables.

[ June 5, 2017 at 21:47 – classicthesis ]



44 steam turbine driven compressor

Figure 13: Loadings plot of projection for fault period on first PCA
in-control model with 54 variables

Figure 14 shows the Hotelling’s T2 statistic for the same pro-
jection for 11 principle components. Around sample number
1200, T2 starts to violate its 1% confidence limit considerably,
showing an abnormal behaviour. This large variation in T2 con-
tinues in the consecutive samples until the end of the projection
period where the statistic increases beyond all bounds. The ex-
treme violation of T2 in the last samples is a clear detection of
a fault that is appeared within the machine.

The SPE, or Q-resiual plot in figure 15 for the same projection
shows an almost identical pattern compared the Hotelling’s T2

statistic. Already from around sample number 400, the SPE
start to violate its 1% confidence limit, and near the end of the
projection period, it increases to the extreme.

From the Hotelling’s T2 it is clear that the projected samples
deviates far from the normal operating region for the normal
condition within the model. The SPE plot reveals that many of
the samples in the projection also heavily break the correlation
structure from the in-control model.
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Figure 14: Hotelling’s T2 of projection for fault period on first PCA
in-control model with 54 variables

Figure 15: SPE, or Q-residuals, of projection for fault period on first
PCA in-control model with 54 variables
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Figure 16: Variable contribution of residuals for projection of fault pe-
riod on first PCA in-control model with 54 variables

After the abnormal situation have been detected from T2

and SPE, it is of great interest to be able to isolate the fault
in order further diagnose the fault condition. Fault isolation is
helped with the use of variable contribution plots, also called
diagnostics plots. Figure 16 shows the variable contribution for
the residuals for the projection. It can clearly be detected that
the largest contributions are from variable number 23, corre-
sponded to a compressor bearing temperature, and variable
number 53, corresponding to the differential pressure of inert
gas in the compressor seal. A closer investigation of these vari-
ables reveal that the compressor bearing temperature at vari-
able number 23 contributes to T2 and SPE with the large spikes
starting projection sample number 1200. The cause of abnormal
behavior of this bearing temperature is however unclear, but the
methods prove successfully in both detecting and isolating this
fault.

The pressure difference reading in variable number 53 is the
main contributor to the extreme violation of these indices in
the last projection samples. This is caused by a drop in the
difference pressure over the sealing due to the leakage. This
fault is detected in a very early stage through large deviations
in the scores, as detected by Hotelling’s T , and heavy violation
of the correlation model structure, indicated by SPE. The fault
is detected about 1 hour and 40 minutes before the trip limit
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for the pressure is reached. The fault is also detected before the
univariate alarm limit is reached.

6.4.2 Second in-control model with 53 variables

A second calibration model was made where bearing temper-
ature variable number 23 with its abnormal behavior was ex-
cluded from the analysis, as the cause of these deviations are
unclear.

This new calibration model was projected with 2350 new
samples corresponding to the period of about 8 hours, just af-
ter the calibration period and until the fault is clearly apparent
from the pressure difference reading in variable 53.

Seen in figure 17 is the Hotelling’s T2 statistic of the pro-
jection including 16 principal components. The large spikes
caused by the abnormal bearing temperature in the previous
model are here not apparent. The T2 statistic is however in-
creasing beyond its 1% confidence limit from around sample
number 700. The same phenomena is apparent in the SPE plot
in figure 18, where the SPE is gradually increasing until the
rapid increase occur at the end of the projection period.

Figure 19 show the variable contributions to the residuals. As
expected, variable 53 corresponding to the seal difference pres-
sure is dominating in contributing to the deviation, indicating
it the cause of the fault condition.

It is however unclear if the gradual increase in Hotelling’s T2

and SPE is due to the developing fault condition or due to the
limitations of the PCA model. The empirical linear PCA soft-
modelling is not necessarily sufficient in modelling the dynam-
ical and non-stationary nature of this data set. The calibration
of the in-control model should optimally be performed on data
from more stationary conditions of operation.

The methods are however successful in clearly detecting the
fault caused by the seal leakage at an early stage.
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Figure 17: Hotelling’s T2 of projection of fault period on second PCA
in-control model with 53 variables

Figure 18: SPE, or Q-residuals, of projection of fault period on second
PCA in-control model with 53 variables
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Figure 19: Variable contribution of residuals of projection of fault pe-
riod on second PCA in-control model with 53 variables

Figure 20: Variable contribution plot for Hotelling’s T2 for a sample
in the fault situation

6.5 plsr

In addition the PCA, which is based only on one data set X,
PLS regression can be used to predict output variables Y from
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input variables X. In this case two PLS models were made, one
model where Y corresponded to the sealing pressure difference
variable 53, and another case where Y corresponded to the bear-
ing temperature of variable 23. Training data was used to cali-
brate the PLSR model used to predict Y from X. In each of the
two cases, these predictions were then compared to their actual
measurement data in order determine if any component in the
process had changed.

Figure 21 shows the predicted pressure difference reading in
the compressor seal for the fault period compared to the actual
measurement. At around sample number 2250 the predicted
and actual measurement start to deviate heavily. This is a clear
indication that a fault has occurred which the in-control model
did not take into account.

Figure 22 shows the predicted versus the actual bearing tem-
perature from variable 53. From sample number 700, the pre-
dicted and actual bearing temperature starts to deviate indicat-
ing a faulty condition.

Figure 21: Loadings plot of PLSR model of differential sealing pres-
sure
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Figure 22: Predicted versus actual PLSR model for bearing tempera-
ture
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7
S T E A M T U R B I N E G E N E R AT O R

7.1 introduction

This section involves analysis of another large rotating machine
at Tjeldbergodden, involving a steam driven turbine generator.
This machine is also a type of equipment of high criticality, also
being highly complex with large investment and operational
cost. The benefits of intelligent condition monitoring systems
would therefore be of high value to the operation and mainte-
nance of this machine.

The machine had experienced a declining efficiency over sev-
eral years, mainly due to internal steam leakage in the turbine.
A major overhaul was performed where the rotor, inner-casing
and labyrinth seals were replaced. The main motivation for this
analysis was to explore any trends in the condition for machine
over several years prior do this overhaul.

7.2 data acquisition pre-treatment

Data from a historic process database collected from 6 peri-
ods during approximately 2 years, each period corresponding
about 48 hours. These periods include June 2014, October 2014,
February 2015, July 2015, December 2015 and May 2016. Con-
siderable maintenance operation was performed in May 2016,
and operational data after repair in August 2016 was also col-
lected. The sampling was done a 1 minute intervals, and the
data was interpolated.

Around 60 variables were available for the analysis, however,
data for many of these variables were unavailable in the pe-
riod of interest. Only 26 of these variables are therefor included
in the analysis, consisting mainly of variables such as bearing
temperatures, lubrication system parameters and other process
parameters. A cleansing of the data was performed in order to
remove any obvious outliers and faults due to instrumentation.
Since many of the bad samples were removed from the analysis,
the different periods consisted of different number of samples.
Before analysis, the data was also mean centered and normal-
ized in order to have mean centered PCA where all variables
have equal contribution.

53
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7.3 quantitative data exploration using pca

Using PCA for data-driven analysis and empirical modelling
is a promising approach as it gives the ability to learn differ-
ent operating condition of the machinery without the need for
any physical understanding of the process. PCA is a valuable
technique for compressing a large amount of information in a
compact and easily interpretative form. Score plots can give a
window into the latent variable space to detect the underlying
patterns in the data.

For this purpose all six periods during approximately two
years was used to build a PCA model with 7 PCs. Figure 23

show a score plot of PC1 versus PC-3, which reveals a clear
trend in the six consecutive periods numbered in chronologi-
cal order. The data after the overhaul is also projected on this
model for comparison.

Figure 23: Score plot of PC-1 against PC-3

Figure 24, 25 and 26 shows score plots of PC-1, PC-2 and
PC-3 respectively for the six periods prior do maintenance. We
see that PC-1 and PC-2 shows little tendencies of any trends
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over time, but describes the major dynamic variations in the
data set. As previously indicated by the PC-1 versus PC-3 score
plot in figure 23, PC-3 shows a clear trend with a continuously
decreasing score in all 6 periods.

Figure 24: Score plot of PC-1 prior to overhauling

Figure 25: Score plot of PC-2 prior to overhauling

Figure 26: Score plot of PC-3 prior to overhauling
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7.4 degradation trending

Figure 27 shows a plot of the mean values of the scores for PC-
3 of each period in the analysis. The plot illustrates the clear
trend of the scores for PC-3. This trend may further be investi-
gated if it has any causal relationship with the degradation in
performance which has been experience over several years.

Figure 27: Trend for principal component 3

Being able to utilize this time series trend in order predict fu-
ture condition of the machine would be of high value in regard
to predictive maintenance. Time series analysis and modeling,
such as autoregressive integrated moving average (ARIMA) model
can be used for this purpose. ARIMA is a autoregressive mov-
ing average modelling technique based on the autocorrelation
structure of time series data, which can be used forecast futures
points in the series. Data-driven estimation of remaining useful
life is however not be covered in this thesis, and the reader is
referred to paper such [21] for more details.

The findings of this study is that the multivariate analysis
methods applied on the turbine generator has shown that trends
in the operating condition can be detected from otherwise hid-
den patterns in relatively large data matrices.
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8
B E A R I N G V I B R AT I O N A N A LY S I S

8.1 introduction

This case study explores condition monitoring techniques for
ball bearings based on vibration analysis. Bearings are essential
components to support and locate rotating shafts in machines.
The ball bearing studied here is a type of rolling-element bear-
ing which operate with a rolling action as opposed to the slid-
ing action of plain bearings. Rolling-element bearing health can
deteriorate or fail due to causes such as improper load, opera-
tion or lubrication, and eventually all bearings will fail due to
fatigue of the material [19]. Faults in such bearings starts as
discontinuities in the bearing raceway or on a rotating element,
and will grow and spread with time. Such faults give rise to
changes in the vibration characteristics from the bearing, as ev-
ery time the rolling-element passes a discontinuity, a pulse of
vibration results. The rate of these pulses are dependent on
the location of the discontinuity in the bearing, and such pass-
ing frequencies can be determined based on the geometry of
the specific bearing. Trying to detect such passing frequencies
from vibration frequency spectra can be difficult as they can be
"buried" in noise. The pulses generated will however amplify
the vibration signal in higher frequencies between 1 kHz and
20 kHz due to structural resonances [19].

Being able to monitor the condition of such bearings would
be of high value for condition based maintenance strategies.

The main objective for this case study is to utilize Princi-
pal Component Analysis methods for fault diagnosis includ-
ing fault detection, feature extraction and feature classification
based on features both from time domain and time-frequency
domain based on wavelet packed decomposition.

8.2 data acquisition

Data is provided from The Society for Machinery Failure Pre-
vention Technology, Vibration Institute, not-for-profit organiza-
tion. Data Assembled and Prepared on behalf of MFPT by Dr
Eric Bechhoefer, Chief Engineer, NRG Systems [3]. Data of bear-
ing vibration have been collected for different conditions, in-
cluding both normal and faulty conditions. A bearing test rig
was used, where different faults were induced to the test bear-
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Figure 28: Geometry of a ball bearing. Figure from [29]

ings. Small grooves were made in the inner and outer race of
the bearing in order to physically simulate the respective fault
conditions.

The parts of the dataset from [3] included in this study is:

• Two baseline conditions for healthy normal condition, 270
lbs of load, input shaft rate of 25Hz, sample rate of 97, 656
Hz, for 6 seconds

• Three outer race fault conditions of varying severity: 270

lbs of load, input shaft rate of 25Hz, sample rate of 97, 656
Hz for 6 seconds

• One inner race fault condition reading: 200 lbs of load,
input shaft rate of 25 Hz, sample rate of 48, 828 Hz for 3

seconds

8.3 filtering

To increase the signal-to-noise ratio, a number of filtering tech-
niques can be utilized, such as moving average filter, or high
pass, low pass or band pass.

The filtering technique used in this study is called wavelet
denoising, or wavelet thresholding, and is a nonlinear filtering
technique that can show improved results as it better preserves
sharp signal changes. The concept behind this method is that it
utilizes the wavelet transform to concentrate the signal features
in fewer large-magnitude wavelet coefficients. Small valued co-
efficients are thresholded or removed in order to remove the
noise in the signal but still preserving the quality and impor-
tant features. The signal can then be reconstructed using in-
verse wavelet transform [4]. The wavelet function used was the
Coiflot of order 5 at level 4. Maximal overlap discrete wavelet
transform was performed, and the thresholding was based on
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soft universal threshold selection rule
√
2ln(·). See the raw sig-

nal in figure 29 compared to the reconstructed denoised signal
in figure 30.

Figure 29: Raw vibration time series signal

Figure 30: Vibration signal denoised using wavelet thresholding

8.4 feature extraction

8.4.1 Wavelet Packet Decomposition

To be able to extract features from the frequency domain and at
the same time achieve time-localization for real-time monitor-
ing of non-stationary signals, we want to decompose the signal
in both time and frequency. A time-frequency representation in
the form of a spectrogram based in Short Time Fourier Trans-
form (STFT) is illustrated figure 31.

As the STFT suffers from a weak time resolution and cross
window contamination, a more optimal technology is the dis-
crete wavelet transform. The stretching and translation through
wavelet transform provides a good time domain resolution of
high frequency parts of the signal is obtained, as well the lower
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Figure 31: Spectrogram of raw signal based on Short Time Fourier
Transform

frequency parts preserve good frequency domain resolution.
Wavelet transform techniques are relatively new, and have in
recent years expanded in use for applications such as signal
and image analysis, pattern recognition, quantum mechanics,
fault diagnosis and other fields [6, 30].

Wavelet packed decomposition is a type of wavelet transform
where the signal is passed through more filters than DWT, al-
lowing for a finer multilayer frequency band division, see sec-
tion 4. This is therefore the technique applied in this study.

Several wavelet functions was tested, and the real Coiflot of
order 5 was chosen for this analysis. This wavelet basis function
have shown to be successful for bearing vibration analysis [15].
The decomposition was based on Shannon entropy.

The level of the decomposition was chosen in regard to the
wanted level of scale or frequency band division that was to
be utilized as features for the condition monitoring. A level of
7 was chosen, meaning that the wavelet packet tree consisted
of 128 terminal nodes that represent the range of wavelet coef-
ficients at the lowest scale divison. As the sampling frequency
of the vibration was at 97.656Hz, the bandwidth of the spec-
trum was 48.828Hz and the width of the frequency bands of
the terminal nodes was therefore approximately 381Hz. From
this wavelet packet tree, a reconstruction of the wavelet packet
power spectrum was computed with the same sampling fre-
quency as the original signal.
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As suggested by Shao et al. [30], the relative energy of each
wavelet frequency band can be used in the feature vector. A
summation of the power at each band over a window of n =

5800 samples formed the new samples of energy. Each feature
vector or sample then consists of the energy of each band which
was divided with the total sample energy, giving the relative
energy. Energy at each band j:

Ej =

n∑
k=1

pk,j (25)

where pk,j is the band power at sample k and band number j.

T = [E1,E2,E3, ...,E2L ] (26)

where L is the number of wavelet packet decomposition levels.
The total energy is:

E =

L∑
k=1

Ek (27)

Figure 32 shows the samples of the relative energy of the 128

bands for two different samples. The band number represent
the frequency bands from 1 to 128, where 1 is the highest fre-
quency band, and 128 is the lowest.

As concluded by [30], the energy located at different spec-
trum bands in the vibration signal reveals much information
about the equipment condition. When faults appear, some parts
of the spectrum will have relatively more energy than others in
a way that is characteristic for that fault. This also enables faults
to be classified if data for distinct fault conditions are available,
as is the case in this study.
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Figure 32: Two illustrative feature samples of relative energy at each
frequency band.

8.4.2 Time domain features

A variety of time domain features may also be extracted for
the purpose of condition monitoring. The time domain feature
included in this study are listed below:

• Absolute mean. The absolute statistical mean of the time-
series signal.

• Maximum peak. Maximum absolute peak value of a time-
series signal.

• Crest factor. The crest factor is the ratio of peak to RMS
values of the signal [33].

• Kurtosis. Kurtusis is a measure of the signal peakedness,
and is defined as the signal’s fourth order momentum
about the mean [33].

• RMS. Root mean square of the signal.

• Variance

• Shape factor. The shape factor is defined as the ratio of
the signal’s RMS value to its absolute mean [33].

• Skewness The skewness of a signal is a measure of the
signal asymmetry, and is defined as the third order mo-
ment about the mean [33].

The window size for the feature extraction in time domain
was 5800 samples, corresponding to the same time division as
the wavelet packed composition features.
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8.5 fault detection based on in-control pca model

The objectives for this section was to a create data-driven model
from the normal bearing condition from the features, for then
to investigate the fault detection techniques with testing data
from known fault conditions. For most practical applications
of these methods, data for the relevant fault conditions are not
available or does not have the quality to be used for classifica-
tion of future fault conditions. Being able to differentiate nor-
mal healthy condition from faulty conditions are in these cases
important.

For further fault detection and classification, the features are
subject to the dimension reduction technique of PCA (Principle
Component Analysis) in order to compress the original feature
space into lower dimension space containing new uncorrelated
features. This method is widely used for feature extraction for
condition monitoring [30, 33], and improves the ability for fur-
ther fault detection and classification. In this case we had 128

features from the wavelet packet decomposition, and 8 time
domain features, making a total of 136 features. In the further
fault detection and classification, the methods were first tested
with only the 128 wavelet packet features, and then with all 136

features.
Six vibration data series was included in this analysis. Two

baseline conditions at a length of 6 seconds each, three differ-
ent outer race fault conditions each with length 6 seconds, and
one inner race condition at 3 seconds. The inner race condition
was from a situation with a different load than the other condi-
tions. This makes this specific data series less useful for testing
for fault detection, as the PCA model for normal condition is
expected to change as the load varies.

Each of the baseline and outer race fault conditions have a
100× 136 data matrix with 100 samples and 136 features. In-
ner race condition have a 50× 136 data matrix as the sampling
period length is only 3 seconds.

8.5.1 Fault Detection Using Only Wavelet Packet Features

In this first part, only the 128 wavelet packet features were in-
cluded in the generation of the in-control model and for the
testing data. The in-control PCA model was calibrated with the
baseline condition 1 with a 100× 128 data matrix using singular
value decomposition. Figures 33 shows the explained variance
of the PCA in-control model as the number of retained PCs
increase. 8 principal components was retained in the in-control
model describing about 95% of the variance in the training data.
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From the cross-validation we see that we have good validating
performance all though the number of calibration samples is
relatively low.

Figure 34 shows the correlation loadings of PC-1 by PC-2 for
the in-control model. We see that the bands from the lowest
frequencies have the most variation and dominates the influ-
ence on the model. Most of the bands of higher frequencies are
highly clustered and correlated.

Figure 33: Explained variance of in-control model using only 128

wavelet packet features
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Figure 34: Correlation plot of in-control model using only 128 wavelet
packet features

Figure 35: Score plot with projections of test data: Left: Baseline con-
dition 2. Right: Outer race fault condition 2

After the in-control model was created, new testing data was
projected on to the model in order to detect if the new samples
deviated from normal condition. Figure 35 shows the PC-1 ver-
sus PC-2 score plots of the projections of the healthy baseline
2 testing data, and the faulty outer race condition 2 data. We
see that the projections of the samples from baseline condition
2 is within the normal operating region of the in-control model,
while the projections from the outer race fault condition lies
outside this region, clearly detecting the presence of the fault.
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Figures 36, 37, 38, 39 and 40 shows the Hotelling’s T2 statistic
and the SPE or Q-residual for the projections of the test data
from baseline condition 2, outer race fault condition 1-3, and
the inner race fault condition, respectively. Each plot is com-
pared to the 1% significance limit for T2 and SPE. In figure
36 we see that Hotelling’s T2 for the baseline 2 condition is
within the significance limit, except a few spikes. This might
indicate that the operating conditions for baseline condition 2

was slightly different from baseline condition 1. Including more
calibration samples in the in-control model calibration covering
a wider range of operating conditions might improve this prob-
lem, thus lowering the number of false alarms. The SPE for the
baseline 2 projection are well within the significance limit, indi-
cating the the samples fits the model well.

The T2 statistics in figure 37 for projections of the outer race
fault condition 1 show that it is starting to violate the limit, but
the deviation is small. For this condition, the SPE is still within
the significance limit. Since the severity of this fault condition
is the smallest, simulating a fault in an early stage, the small
deviation in T2 and SPE are expected. The fault is however still
detected due to the relatively high number of samples breaking
the T2 limit.

For the remaining projections for the more severe outer race
fault condition 2 and 3, as well as the inner race condition, we
see that all significantly violates both Hotelling’s T2 statistics
and SPE. In these cases the faults are clearly detected.

Figure 36: Baseline condition 2: Left: Hotelling’s T2. Right: SPE or Q-
residual

.
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Figure 37: Outer race fault condition 1: Left: Hotelling’s T2. Right:
SPE or Q-residual

.

Figure 38: Outer race fault condition 2: Left: Hotelling’s T2. Right:
SPE or Q-residual

.

Figure 39: Outer race fault condition 3: Left: Hotelling’s T2. Right:
SPE or Q-residual
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Figure 40: Inner race fault condition : Left: Hotelling’s T2. Right: SPE
or Q-residual

.

8.5.2 Fault Detection Using Both Time Domain and Wavelet Packet
Features

In this second part of the fault detection analysis, both the
wavelet packet features and time domain features are included
in the analysis. The data for all condition are the same as in the
previous part, except that the time domain features are added
to each data matrix.

As the time domain features are of varying magnitude and
units, they are normalized in order to have equal contribution
in the calibration of the in-control model. In order for the time
domain features to have comparable contribution in the calibra-
tion as the wavelet packet features, the time domain features
are down-scaled by a factor of 0.01.

Figure 41 shows the explained variance for the in-control
model calibrated on the 100× 136 baseline 1 training data. We
see that the time features contribute to new types of variation,
and in this case 11 principal components need to be retained
in order to explain 95% of variance in the data. 11 PCs was re-
tained in the in-control model, showing good performance by
cross-validation.

The correlation loadings plot in figure 42 reveals that the time
domain feature strongly contributes in the model. We also see
that the variance, RMS and absolute mean are strongly corre-
lated.

[ June 5, 2017 at 21:47 – classicthesis ]



8.5 fault detection based on in-control pca model 69

Figure 41: Explained variance of in-control model using all 136 fea-
tures

Figure 42: Correlation plot of in-control model using all 136 features

In the same manner as in the previous section, new testing
data was projected on to the in-control model. Figure 43 shows
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the score plot of projections for baseline condition 2 and outer
race condition 2. We see that the samples from the baseline
condition 2 are well within the normal operating region, while
the outer race fault condition is clearly deviating. Adding the
time domain features seem to improve the separability of this
fault condition.

Figure 43: Score plot with projections of test data including all fea-
tures: Left: Baseline condition 2. Right: Outer race fault
condition 2

.

Hotelling’s T2 and SPE plots for all projections are shown in
figures 44, 45, 46, 47 and 48. Similarly as was the case for the
model with only wavelet packet feature, the projection of the
baseline condition 2 samples are mainly within the limits for
T2, but some samples have larger deviations.

All of the projections for fault conditions are successfully de-
tected as faulty by the Hotelling’s T2 statstics and SPE. We also
see that adding the time domain features seem to improve the
detection ability compared to using only wavelet packet fea-
tures.
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Figure 44: Baseline condition 2, all features: Left: Hotelling’s T2.
Right: SPE or Q-residual

.

Figure 45: Outer race fault condition 1: Left: Hotelling’s T2. Right:
SPE or Q-residual

.

Figure 46: Outer race fault condition 2: Left: Hotelling’s T2. Right:
SPE or Q-residual

.
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Figure 47: Outer race fault condition 3: Left: Hotelling’s T2. Right:
SPE or Q-residual

Figure 48: Inner race fault condition : Left: Hotelling’s T2. Right: SPE
or Q-residual

.

8.6 simca based pattern recognition and classifi-
cation

When data from distinct fault condition are available, this can
be used for supervised training for classification and diagnosis.
SIMCA analysis is performed as a classification method using
supervised training to diagnose faults from known fault con-
ditions. The method involves generating PCA models for each
condition, both healthy condition and the distinct fault condi-
tions. In this case the different models included are healthy
baseline condition 1 model, model for outer race fault condi-
tion 2, and a model for inner race fault.

For the calibration of the SIMCA class models, each of the
data matrices for the three conditions were split into a training
part and a testing part. The baseline condition and outer race
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fault condition both had training matrices of size 50× 128 for
only WPD features and 50× 136 for the case with all features
included. The inner race fault class was calibrated with only
the first 25 samples.

Table 2 shows the number of retained PCs for the class mod-
els using only wavelet packet (WPD) features. Figure 3 shows
the explained variance and number of PCs for the SIMCA PCA
models including all 136 features. The choice of model com-
plexity was based on cross-validation and explained variance.

SIMCA Model Number of PCs Explained variance cal. Explained variance val. Number of cal. samples

Baseline 1 8 95% 87% 50

Outer race fault 2 9 95% 91% 50

Inner race fault 11 94% 76% 25

Table 2: SIMCA models, only 128 WPD features: model complexity
and explained variance

SIMCA Model Number of PCs Explained variance cal. Explained variance val. Number of cal. samples

Baseline 1 10 94% 87% 50

Outer race fault 2 12 96% 91% 50

Inner race fault 4 93% 89% 25

Table 3: SIMCA models, with all 136 features: model complexity and
explained variance

After the the SIMCA class models was trained with their re-
spective calibration set in a supervised manner, new testing
samples where projected on the the models for classification.
The remaining 50 samples of the data sets for the baseline con-
dition 1 and outer race condition 2 which was not included in
the calibration are used as testing data. For the inner race fault
condition the remaining 25 samples where classified. In addi-
tion, 100 samples of baseline condition 2 was also included in
the classification.

The confusion table 4 shows the results of the the SIMCA
classification for the case with only 128 wavelet packet fea-
tures. Table 5 shows the same results for the case with all 136

features. The classification was based on the sample leverage,
meaning the distance from the sample projection to the class
mean, and the sample-to-model distance which measures the
distance from a sample to a model. The result are based on
a F-test with 5% confidence limit. The models including only
wavelet packet features show an almost perfect classification of
the test samples. The projections of the samples for baseline 2

condition, classified only 89 of the 100 samples to the baseline 1

class. The classification results for the models including all 136

features show a few type II errors for outer race 2 and inner
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race test samples, but 94/100 test samples of baseline condition
2 is here classified to the the baseline 1 class.

Predicted class membership
Baseline 1 Outer race 2 Inner race Tot. no. samples

Baseline 1 50 0 0 50

Actual Class Outer race 2 0 50 0 50

Inner race 0 0 25 25

Baseline 2 89 0 0 100

Table 4: Confusion table for SIMCA classification with only 128 WPD
features

Predicted class membership
Baseline 1 Outer race 2 Inner race Tot. no. samples

Baseline 1 50 0 0 50

Actual Class Outer race 2 0 48 0 50

Inner race 0 0 22 25

Baseline 2 94 0 0 100

Table 5: Confusion table for SIMCA classification with all 136 features

The results from the classification shows a good performance.
The model-to-model distances shown in table 6 and 7 also shows
that strong separation between the model, as all distances are
much larger than 3. The classification methods should however
be calibrated with larger calibration sets, and be tested with a
larger number of representative samples. It is also uncertain if
future faults will have a covariation structure that is captured
in the trained fault models.

Model-to-model distance
Baseline 1 Outer race fault 2 Inner race fault

Baseline 1 1 18.19 54.27
Outer race fault 2 − 1 99.24

Inner race fault − − 1

Table 6: WPD features: distances between models

Model-to-model distance
Baseline 1 Outer race fault 2 Inner race fault

Baseline 1 1 22.20 147.02
Outer race fault 2 − 1 97.86

Inner race fault − − 1

Table 7: All features: distances between models
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8.6.1 Fault Isolation and Spectrum Analysis

In most situations, data from known fault conditions are not
available to be used in supervised learning based classification.
Diagnosis of the fault condition can in these cases be based on
known fault characteristics such as passing frequencies in ball
bearings.

Different passing frequencies based on the geometry of the
specific roller or ball bearing can be determined [9]:

Cage Pass Frequency:

CPF =
f

2

(
1−

d

e
× cos(β)

)
(28)

Ball Pass Frequency Inner Race:

BPFI =
Ne × f
2

(
1+

dB
dp
cos(α)

)
(29)

Ball Pass Frequency Outer Race:

BPFO =
Ne × f
2

(
1−

db
dp
cos(α)

)
(30)

Ball Fault Frequency:

BFF =
dp × f
db

(
1−

(
db
dp

)2
× cos2(α)

)
(31)

Where f is the driving frequency.
The test rig was equipped with a NICE bearing with the fol-

lowing parameters[3]:

• Roller diameter: db = 0.235

• Pitch diameter: dp = 1.245

• Number of elements: Ne = 8

• Contact angle: α = 0
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The corresponding passing frequencies for the outer race fault
in this study can be computed as BPFO ≈ 81Hz.

Zooming in on the time series vibration signal reveals the
pulses at equal intervals caused by the discontinuities in the
bearing raceways. Denoising of the signal by wavelet threshold-
ing makes these pulsating characteristics more clear as seen in
figure 49 and 50. Approximating the rate of the pulses in figure
50 gives a frequency at about 81Hz, which is corresponding to
the passing frequency of a outer race fault of this bearing.

Figure 49: Outer race condition 2. Raw time-series signal.

Figure 50: Outer race condition 2. Denoised time-series signal.
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A I R C O M P R E S S O R A C O U S T I C S I G N A L
A N A LY S I S

9.1 introduction

This case study concerns data-driven condition monitoring tech-
niques for a reciprocating air compressor using acoustic signal
analysis. Based on feature extraction from wavelet packet trans-
forms, Principal Component Analysis was further utilized as
a dimension reduction technique for fault detection and fault
classification.

Some of the benefits of using acoustic signals for condition
monitoring purposes is that they have a relatively low capital
and installation cost. In contrast to vibration monitoring, acous-
tic measurements from microphones can be taken sufficiently
far away from the machine to avoid conditions such as extreme
temperatures [31]. Acoustic signals have shown to be effective
for fault detection and fault identification of machinery both in
time domain and frequency domain.

Verma et al. [33] performed a study on acoustic signal based
condition monitoring of this air compressor setup, including
data acquisition, sensor positioning analysis, data preprocess-
ing, feature extraction, feature selection and classification. Verma
et al. used the same data in their study, investigating a range of
different feature extraction techniques, including Fast Fourier
Transform, Wavelet Packet Transform, Discrete Cosine Trans-
form, Short Time Fourier Transform and Wigner-Ville Distri-
bution. The classification was based on one-against-one multi-
class Support Vector Machine with radial basis function kernel,
achieving good performance [33].

This case study uses the same data set in order to study the
use of wavelet packet decomposition, PCA based fault detec-
tion and SIMCA fault classification.

9.2 data acquisition

Specification for the reciprocating air compressor setup that
was monitored is given below [33]:

• Air Pressure Range: 0-500 lb/m2, 0-35 Kg/cm2

• Induction Motor: 5HP, 415V, 5Am, 50 Hz, 1440rpm

• Pressure Switch: Type PR-15, Range 100-213 PSI

77
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The reader is referred to Verma et al. [33] for more details
regarding the air compressor test system setup, sensor location
analysis and data acquisition.

The data set comprised of readings from 8 states which in-
cludes healthy state and 7 faulty states, namely [33]:

• Healthy. In the healthy state the air compressor is free
from all faults.

• Bearing fault. Faulty state due to cracks in the bearing.

• Flywheel fault. Faulty state caused by wear in the fly-
wheel.

• Leakage Inlet Valve (LIV) fault. Faulty state with leakage
through the inlet valve due to damage.

• Leakage Outlet Valve (LOV) fault. Damaged outlet valve
causing leakage.

• Non-Return Valve (NRV) fault. Damaged non-return valve
causing leakage from the air tank, and hence increased
load on the compressor.

• Piston ring fault. Loose piston ring in piston head caus-
ing air leakage.

• Rider belt fault. Faulty state caused by bad alignment of
the rider belt with the pulley.

The data used in this thesis was collected from a freely dis-
tributed online repository provided by Indian Institute of Tech-
nology Kanpur, Verma et al [5], [33]. The data provided in
their online repository was only available in the form of pre-
processed acoustic signals. Only these conditioned signals are
used in this thesis. Any other data from the online repository
is not used.

The pre-processing performed by Verma et al. is descibed in
detail in [33]. Below is a short summary the steps:

• High and low pass filter High pass filtering with cut-off
frequency of 400Hz was performed in order to remove
noise from external cooling fans. Additionally, high fre-
qency noise was removed with a low pass filter with cut-
off frequency 12kHz [33].

• Clipping The signal was cleaned by clipping up the sig-
nal, and removing the parts with large standard devia-
tion.

• Moving average smoothing The effect of outliers was re-
duced by performing moving average smoothing.
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• Normalization The signal was also normalized in order
to scale the data within specified limits. See [33] for more
details about these steps.

9.3 feature extraction using wavelet packet trans-
form

A total of 225 recordings, each with a length of one second,
were collected for all compressor states giving a total of 1800

recordings. The acoustic recordings were taken when the air
compressor had a pressure range of 10 to 150 PSI [33].

To reduce the effect of the non-stationary operation of the air
compressor, caused by the increasing load and pressure build-
up in the air tank, only parts of these recordings were used in
this study for time periods with near stationary conditions. 20

recordings, corresponding to a length 20 seconds, was collected
for each state, where 10 recordings were used for training and
the remaining 10 used for testing.

The feature extraction procedure was widely based on the
same principle as for the bearing vibration analysis in chapter
8, except that time domain features were here not extracted.
Wavelet packet decomposition was utilized for the acoustic sig-
nal in order to achieve a time-frequency decomposition.

Choosing the family and type of wavelet function is an im-
portant part of the wavelet analysis. Wavelet function families
such as Haar, Coiflets and Daubechies have proven successful
in acoustic analysis, and the Daubechies of order 4 (db4) is cho-
sen for this case study as of its finite support size and low van-
ishing moment properties [26, 33]. The signal was decomposed
in seven levels, meaning that the signal was divided in 128 fre-
quency bands at the terminal nodes of the wavelet packet tree.
The sampling rate for the acoustic signal was 50kHz, hence the
frequency spectrum ranged from 0− 25kHz, and the width of
each band was approximately 195Hz. The wavelet packet power
spectrum was reconstructed from the terminal nodes with the
original sampling frequency and 128 frequency bands.

The same procedure for extraction of spectral and temporal
energy features as for the bearing analysis in chapter 8 was
performed on the recordings. The wavelet packet power spec-
trum for each state was used to calculate the energy features
based on equations 25, 26 and 27 from chapter 8. Each 10 sec-
ond recording had 500.000 samples, and a window n = 5000

was chosen for the energy features at each of the 128 frequency
bands. The resulting features comprised of a 100 × 128 train-
ing data matrix and a 100× 128 testing data matrix for each of
the 8 states. Figures 51, 52, 53 and 54 show the spectral energy
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feature plots for all 8 air compressor states for 100 samples, cor-
responding to 10 seconds.

Figure 51: Wavelet packet energy spectrum: Left: Healthy. Right: Bear-
ing fault

Figure 52: Wavelet packet energy spectrum: Left: Flywheel fault.
Right: LIV fault
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Figure 53: Wavelet packet energy spectrum: Left: LOV fault. Right:
NRV fault

Figure 54: Wavelet packet energy spectrum: Left: Piston fault. Right:
Rider belt fault

9.4 fault detection based on pca in-control model

One of the most important aspects of condition monitoring sys-
tems is the ability to separate faulty conditions from normal
conditions. To test this ability, PCA was utilized in order to
reduce the dimension of the feature space and to generate an
in-control model calibrated with data from the healthy state.

The in-control model was calibrated with the training data
matrix for the healthy state with the size 100× 128 using the
SVD algorithm. From the explained variance plot in figure 55

we see that the first two components describe almost 50% of the
variance in the data. This is expected since the most of the vari-
ation in the spectrum is located at the lowest frequency bands,
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leaving the higher frequency bands with little contribution to
the model. Based on cross-validation, 16 principal component
was retained, explaining about 95% of the variance in the data.

The loadings plot in figure 56 shows each of the frequency
bands, numbered from 1-128 where 128 is the lowest frequency,
and how they influence PC1 and PC2. We see that the bands
from the lower frequency range dominate the contribution to
the model. Most of the bands in the high frequency range are
clustered around zero, meaning that they have little influence.

Figure 55: Explained variance of healthy calibration or in-control
model

[ June 5, 2017 at 21:47 – classicthesis ]



9.4 fault detection based on pca in-control model 83

Figure 56: Correlation loadings plot i healthy in-control model

The in-control model was then projected with new testing
data from all 8 states in order to investigate the ability to detect
faults. The charts for Hotelling’s T2 and SPE, or Q-residual, was
used for fault detection. Figures 57, 58, 59, 60, 61, 62, 63 and
64 shows the charts for T2 and SPE for projections of testing
data for each state of the air compressor with confidence limits
of 1%. For the projection of healthy testing data we see that
T2 is within its limits, but the SPE chart shows some spikes
that violates its confidence limit. This may be due to the non-
stationary nature of the data or disturbances in the test data
period. It is however clear that this projected features are form
a healthy state.

All of the projections for the faulty states violate the limits
for SPE, and most of the states also breaks the limits of T2. The
methods are therefore successful in detecting faulty conditions,
and separating the faulty features from healthy ones.
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Figure 57: Projection of healthy testing data: Left: Hotelling’s T2.
Right: SPE or Q-residual

Figure 58: Projection of bearing fault testing data: Left: Hotelling’s T2.
Right: SPE or Q-residualg

Figure 59: Projection of flywheel fault testing data: Left: Hotelling’s
T2. Right: SPE or Q-residual
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Figure 60: Projection of LIV fault testing data: Left: Hotelling’s T2.
Right: SPE or Q-residual

Figure 61: Projection of LOV fault testing data: Left: Hotelling’s T2.
Right: SPE or Q-residual

Figure 62: Projection of NRV fault testing data: Left: Hotelling’s T2.
Right: SPE or Q-residual
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Figure 63: Projection of piston fault testing data: Left: Hotelling’s T2.
Right: SPE or Q-residual

Figure 64: Projection of rider belt fault testing data: Left: Hotelling’s
T2. Right: SPE or Q-residual

9.5 simca pattern recognition and classification

This section regards classification of the states of the air com-
pressor, utilizing pattern recognition of the extracted features
using the SIMCA method. SIMCA based classification is a su-
pervised learning approach where a PCA model corresponding
to a class is trained with data from each of the states. Each PCA
model will then capture the covariation structure for each state
independently. The models may have different complexity. Ta-
ble 8 shows the number of PCs retained and the explained vari-
ance for the PCA class models for each of the 8 states. The
model complexity was chosen based on cross-validation. Each
state was calibrated with training data of size 100x128, corre-
sponding to 10 seconds.

Testing data from all states were then projected to all mod-
els. Each sample or feature vector was tested for belonging to

[ June 5, 2017 at 21:47 – classicthesis ]



9.5 simca pattern recognition and classification 87

SIMCA Model Number of PCs Explained variance cal. Explained variance val.

Healthy 16 95% 90%
Bearing 7 94% 93%

Flywheel 10 93% 90%
LIV 9 92% 90%
LOV 10 93% 90%
NRV 15 95% 92%

Rider belt 10 91% 87%
Piston 10 94% 92%

Table 8: SIMCA models: model complexity and explained variance

each models. This testing was based on two measures, namely
sample-to-model distance (Si) and sample leverage (Hi). The
sample-to-model distance is a measure of how far a sample lies
from the modeled class, and is computed as the square root of
the sample residual variance [13]. Sample leverage is a measure
of the distance from the projection of a sample onto a model to
the model mean. Small values of Si and Hi indicate that a sam-
ple belongs to the specific model.

The projected samples was subject to a F-test with a 5% confi-
dence limit for Si, and a critical limit for Hi. The resulting mem-
berships for the samples indicate that the SIMCA class models
did not discriminate the class memberships very well, as many
of the samples was positively classified to several classes. Ta-
ble 9 shows the model-to-model distances for all classes. The
distance between two models should be larger than 3 for the
classes to be well distinguishable. We see that many of the dis-
tances are just above 3 which might explain why many of the
samples where falsely classified to several classes.

Model-to-model distances
Healthy Bearing Flywheel LIV LOV NRV Rider belt Piston

Healthy 1 4.79 4.37 4.00 3.86 5.03 3.90 4.45
Bearing - 1 3.15 8.71 7.57 9.94 5.28 4.75

Flywheel - - 1 5.95 6.59 6.03 3.44 3.41
LIV - - - 1 2.57 3.05 3.49 3.34
LOV - - - - 1 3.10 3.75 3.13
NRV - - - - - 1 3.88 4.18

Riderbelt - - - - - - 1 3.15
Piston - - - - - - - 1

Table 9: Distances between models

A discriminating classification was then performed, where
samples which had passed the F-test where classified to the
class which had the smallest combination of Si and Hi in the
following way: (Si/S0)/(Critical F value) + Hi/(Critical Hi).
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The results of the discriminating classification is shown in
the confusion table 10. We see that this classification gives ac-
ceptable results for most of the classes. The test samples from
the healthy state is 99% correctly classified. The classification
method has some difficulty distinguishing the classes such as
LIV fault and NRV fault, and bearing fault and flywheel fault.

Predicted class membership
Healthy Bearing Flywheel LIV LOV NRV Rider belt Piston

Healthy 99 0 1 0 0 0 0 0

Bearing 1 86 12 0 0 0 0 1

Flywheel 1 6 91 0 0 0 2 0

Actual class LIV 1 0 0 70 6 22 1 0

LOV 0 0 0 0 92 2 2 0

NRV 0 0 0 3 6 88 3 0

Riderbelt 0 0 3 1 0 1 92 3

Piston 1 3 0 0 8 0 4 84

Table 10: Confusion table for SIMCA classification with 5% signifi-
cance limit with 100 test samples for each class

The poor class separation of the PCA based SIMCA classifi-
cation approach might be due to the limitations of PCA as a
linear analysis method, as high order nonlinear relationships
of the data cannot be extracted [30]. Methods such as the im-
proved PCA [32] or kernel PCA [30] might show improved re-
sults. Fuzzy clustering is also suggested techniques for class
separation [14].
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10.1 discussion

From four different case studies, multivariate statistical tech-
niques have shown to be effective methods to be used in condi-
tion monitoring applications where large sets of correlated data
are analyzed.

In the case study for the steam turbine driven compressor
in chapter 6, multivariate latent variable methods have proved
their usefulness for effective dimension reduction of highly cor-
related process data. The study has illustrated how entire pro-
cess units with large numbers of process parameters and condi-
tion monitoring instrumentation can be monitored much more
effectively by analysis the covariance structure between the vari-
ables to find latent variables in a much lower dimension. The
study has demonstrated how an in-control PCA model cali-
brated from historic process data from normal operating con-
ditions, can be used for on-line monitoring of the condition of
a steam turbine driven compressor. Projection of testing data
from a period with a known fault condition has shown that the
multivariate control charts Hotelling’s T2 and SPE are able to
detect abnormal situations in the process at a early phase. Pro-
cess variables that break their normal covariation structure are
immediately detected before the their univariate alarm limits
are reached. Through the use of contribution plots, the study
has also shown how faults can be isolated after they have been
detected. Process operators and engineers may have large ben-
efits from the early fault detection and fault isolation.

The data set used for the study in chapter 6 had some limi-
tations, as the data was from a period where the machine was
not in a steady state operation. The non-stationary nature of
the data made the modelling of a linear structure model dif-
ficult. This caused the residuals in the model to increase over
time, causing false alarms. This problem could be avoided with
a correct choice of calibration data from normal steady state op-
eration. Miletic et al. [25] has covered an industrial perspective
for implementation of multivariate statistic.

Chapter 7 covered the use of multivariate analysis for analyz-
ing a long term trend in a steam turbine generator. By utilizing
principal component analysis, a trend was discovered which
seem to correlate with gradual degradation in performance that

91
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has been experienced over several years. This shows how latent
variable methods can give new insights in the hidden structures
of multivariate data set.

The limitations of this study was that a vast number of the
relevant process variables had missing values and could not be
included in the analysis. This meant that a lot of the variation
on the machine could not be analyzed, and hence potentially
missing much of the relevant information.

The bearing analysis in chapter 8 showed that the use of
wavelet packed decomposition in combination with principal
component analysis was effective for fault detection and clas-
sification. Fault detection from the use Hotelling’s T2 and SPE
has been effective, and all fault conditions were clearly detected.
A problem met using these techniques was the occasional false
alarms. Frequent false alarms can ruin the confidence in condi-
tion monitoring systems. Careful selection of the calibration set
might reduce this problem, and filtering techniques for Hotelling’s
and SPE can be utilized.

The SIMCA classification shows a relatively good performance
even if the linear PCA models does not capture higher order
nonlinearity in the data. The performance of the classification
should however be further tested to be able to tell if it can effec-
tively classify future fault conditions.

Acoustic signal feature extraction and dimension reduction
techniques for the purpose of fault detection and fault classifica-
tion has successfully been analyzed from operational data from
an air compressor in chapter 9. Using features from wavelet
packet decomposition in combination with principal compo-
nent analysis has been successful at detecting faulty from nor-
mal conditions. Using the SIMCA classification technique for
supervised learning has also shown that different fault con-
ditions can be classified. The SIMCA method had a relatively
poor ability to effectively distinguish between different classes
of fault states. This is due to the linear nature of the PCA mod-
els used in the SIMCA classification which are unable capture
nonlinear relationships in the features. The data from the air
compressor also shows a non-stationary nature as the load in-
creases over time. This also make classification and false alarms
more problematic.

10.2 further work

Suggestions for further work can be to investigate use of non-
linear extensions of PCA such as kernel PCA, to improve the
shortcoming of regular PCA when non-linear relationships are
present in the data. KPCA could also improve fault classifica-
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tion as it can better distinguish class memberships. Classifica-
tion of multiple simultaneous fault condition could also be in-
vestigated.

Adaptive approaches to bilinear subspace models can also be
powerful in many applications with time varying conditions.

Methods for avoiding false alarms are also important con-
cerns that could be studied further. Fuzzy filtering is a tech-
nique that can be applied for this purpose [38].

Improving the fault isolation and diagnostic abilities of the
traditional contribution plot by using reconstructions based con-
tributions is also a promising technology.

There are also large potential for creating hybrid system through
combining multivariate statistical methods with physical mod-
els. These techniques can compliment each other and improve
the performance of condition monitoring systems.
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A P P E N D I X
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A P P E N D I X A

a.1 acronyms

CBM Condition Based Maintenance

MVA Multivariate Analysis

PCA Principle Component Analysis

PLS Partial Least Squares

PLSR Partial Least Squares Regression

PLS-DA Partial Least Squares - Discriminant Analysis

SIMCA Soft Independent Modelling of Class Analogy

SPE Squared Prediction Error

MSPC Multivariate Statistical Process Control

NIPALS Nonlinear Iterative Partial Least Squares

STFT Short Time Fourier Transform

FFT Fast Fourier Transform

DWT Discrete Wavelet Transform

WPT Wavelet Packet Transform

WPD Wavelet Packet Decomposition

SVD Singular Value Decomposition
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