
Problem Description:
Snake robots are a biologically inspired type of robot with a very high level of agility. �ey have
the ability to move in terrain types that would be impossible to traverse with wheeled or legged
robots. In 2003, NTNU and SINTEF started a research program on snake robots, which has devel-
oped several prototypes for both ground robots, such as the Mamba robot in the picture, as well
as underwater robots. �e research group has also developed mathematical models of both high
and low complexity to describe the equations of motion of the snake robots, as well as algorithms
for guidance and control of the robots.

�is project will investigate how genetic algorithms can be used to evolve control system pa-
rameters for forward motion control of a snake robot. Genetic algorithms are global, population-
based optimization algorithms inspired by the basic concepts of biological evolution and genetics,
such as natural selection and inheritance. �ey are mainly used in optimization and search prob-
lems with complex, nonlinear objective functions, and can be applied to a wide range of problems
in di�erent areas due to the fact that they make few a-priori assumptions about the problem.

Based on the results from your project work fall 2016:

1. Review the existing literature on multiobjective optimization methods. Select a method
from and compare it with NSGA II, using both methodological information from the review
and data from multiple optimization runs.

2. Investigate the signi�cance of the initial population on the optimization. In particular, eval-
uate the use of an individual from a single-objective optimization run.

3. Replace the sinusoidal motion pa�ern with a more general representation, for instance a
Fourier series or a Taylor series, and optimize with respect to the series coe�cients.

4. Give a theoretical analysis of the pareto fronts, the scaling function g(n) and the general
motion pa�ern representation from point 3. For example, use curve ��ing tools to derive
analytical expressions for the various functions, and put the expressions into context.

�e report shall be wri�en in English and edited as a research report including Abstract, In-
troduction with motivation, literature survey, contributions of the project work, and the outline
of the report. �is is followed by the chapters describing the results of the project work, simula-
tion results and corresponding discussion, and a conclusion including a proposal for further work.
Source code should be provided on a CD with code listing enclosed in appendix. It is supposed
that Department of Engineering Cybernetics, NTNU, can use the results freely in its research
work, unless otherwise agreed upon, by referring to the student’s work.

Oppgaven gi�: 13.02.2017 Besvarelsen leveres: 18.07.2017 Utført ved Institu� for teknisk ky-
bernetikk Medveiledere ved FFI: Else-Line Malene Ruud, Martin Syre Wiig, Sondre Engebråten,
Jonas Moen Medveileder ved NTNU: Eleni Kelasidi

Sammendrag
Mange bilogiske inspirerte Autonome undervannsfartøyer (AUVs) har bli� utviklet gjennom

de siste tiårene. Denne oppgaven fokuserer på Autnonome undervannsfartøyer som er biolo-
gisk inspirert av slanger, kalt undervannsSlangeroboter. Et velkjent problem med disse under-
vannsfartøyene, er den langsikitge autonomien. For å oppnå langsikitg autonomi, bruk av en-
ergi e�ektive metoder er nødvending. En rekke studier har basert seg på enkelt-objektiv opti-
malisering med hensyn på energi e�ektiviteten på undervannsslangerobotene, men få har bli�
gjort med �er-objektiv optimalisering. Denne oppgaven presenter multi-objektiv optimalisering
med forskjellige bevegelser av undervannsslangeroboten. Fler-objektiv optimaliseringen som blir
presentert, baserer seg på maksimeringen av forover hastigheten, samt minimaliseringen av ef-
fekt forbruket på slangen. For beregningen av den e�ektive slange bevegelsen, to �er-objektiv
evolusjonær aloritmer er presentert, kalt Non-dominated Sort Genetic Algorithm II (NSGA-II),
og Hypervolume Estimation Algorithm for Multi-objective Optimization (HypE), er brukt. En
utfordring med undervannsslangeroboter, er dens evne for tilpasning av forskjellige bevegelses
mønstrer. Med forskjellige begevlser, oppstår det nye søke rom for optimaliseringsproblemet. Vi
presenterer en studie på to mest vansligste bevegelses mønstrene for undervannsslangeroboten:
(i) Lateral bølging (ii) og ål-lignende bevegelse. Dessuten, vi introduserer også en undersøkelse på
tre endret bevegelser for undervannsslangeroboten. Hensikten med disse beveglsesmønstrene er
å la evolusjons algoritmen selv bestemme utfallet på bevegelsesmønsteret. Fra simulerings resul-
tatene, viser det seg at en av bevegelsene approksimerer en tilnærmet bevelgse for lateral bølging.
Denne bevegelsesmønsteret er baset på Fourier-rekker. De oppnådde simulerings resultatene er
basert på optimalisering med optimale parametere i evolusjons algoritmen, fra en rekke opti-
maliseringsforsøk. Siden de�e er �er-objektiv optimaliseringsproblemer, så blir resultatet i form
av Pareto fronter. Disse Pareto frontene kan brukes til om handling mellom forover hastigheten
og e�ekt forbruket på undervannsslangeroboten. I tillegg til optimaliseringsproblemene, intro-
duserer vi multivariat analyse av simulerings resultatene ved bruk av prinsipial komponent anal-
yse, for å �nne likeheter mellom bevegelses mønstrene. Dessuten, ut i fra analysen, kan noen
antagelser bli gjort for formen på de endrete bevelgses mønstrene. Basert resultatene fra prin-
sipial komponent analysene, intrdouserer vi regresjonsmodeller beregnet av minste kvadraters
regresjons metode, for predikering av optimale bevegelses parametere med objektiv verdiene fra
Pareto fronten.

Nøkkelord
undervannsslangeroboter, Energi e�ektivitet, Multi-Objective Evolutionary Algorithm, Non-dominated
Sort Genetic Algorithm II, Hypervolume Estimation Algorithm for Multi-objective Optimization,
Principal Component Analysis, Partial Least Square Regression, Multi-Objective Optimization
Problem, Pareto fronter, Bevegelses generatorer.

Abstract
Biologically inspired Autonomous Underwater Vehicles (AUVs) have been developed in the

recent decades. �is thesis focuses on the AUVs that are biologically inspired by snakes, called
Underwater Snake Robots (USRs). A well-known issue of the USRs, or any AUVs, is the long-
term autonomy. To achieve this, energy e�cient approaches are required. Many studies have
considered single-objective optimization problems regarding the energy e�ciency of the USR,
but almost none with Multi-Objective Optimization Problems (MOPs). �is thesis presents MOPs
of di�erent locomotions of the USR. �e presented MOPs consider the energy e�cient optimiza-
tion of maximizing the forward velocity, while minimizing the power consumption of the USR. For
computing the e�cient motion pa�erns, two Multi-Objective Evolutionary Algorithms (MOEAs)
called Non-dominated Sort Genetic Algorithm II (NSGA-II), and Hypervolume Estimation Algo-
rithm for Multi-objective Optimization (HypE) are applied. A challenging topic of the USR, is
their adaptability of di�erent locomotions. Di�erent locomotions of the USR give rise to di�erent
search spaces for optimization. We present simulation studies of the two most common snake
locomotions: (i) lateral undulation and (ii) eel-like motion. Furthermore, we also present and in-
vestigate three altered motion pa�ern of the USR. �e aim of the altered locomotions is to let the
MOEAs generate e�cient locomotions through evolutionary, which we do not know the gait of.
From the simulation results, it turns out that one of the altered motion pa�ern approximates a
motion similar to the lateral undulation. �is motion pa�ern is generated based on Fourier se-
ries. �e obtained simulation results are based on optimization with optimal Genetic Algorithm
(GA) parameters, found by numerous presimulations of the MOPs. Since this is multi-objective
optimization problems, the end results will be in the form of Pareto fronts. �ese Pareto fronts
can be used as trade-o�s for selecting the forward velocity and power consumption of the USR.
Additional to the optimization results of the MOPs, we present multivariate analysis of the sim-
ulation results using Principal Component Analysis (PCA), for �nding relationships between the
motion pa�erns. Furthermore, through the analysis, some assumptions on the shape of the altered
locomotion can be given. Based on the results from the PCA, we also present regression models
computed by Partial Least Square Regression (PLSR) for predicting the optimal gait parameters
using the objective values from the Pareto fronts.

Keywords
Underwater snake robot, Energy e�ciency, Multi-Objective Evolutionary Algorithm, Non-dominated
Sort Genetic Algorithm II, Hypervolume Estimation Algorithm for Multi-objective Optimization,
Principal Component Analysis, Partial Least Square Regression, Multi-Objective Optimization
Problem, Pareto fronts, Pa�ern generators.

Table of contents

List of �gures .
List of tables .
List of Abbreviations .

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 1
1.3 Brief introduction to MOEAs . 3
1.4 Contributions of this thesis . 4
1.5 Outline of this thesis . 4

2 �eoretical background 5
2.1 A brief inntroduction to natural selection and genetics 5
2.2 Genetic algorithm — single objective optimization 6
2.3 Multi-objective optimization . 12
2.4 �e NSGA-II Multi-Objective Evolutionary Algorithm 13
2.5 �e HypE Multi-Objective Evolutionary Algorithm 19
2.6 Fourier series . 26
2.7 Multivariate Analysis . 27

3 Dynamic model of the underwater snake robot 35
3.1 Mathematical terms and symbols . 35
3.2 �e kinematics of the underwater snake robot . 36
3.3 Hydrodynamic model . 38
3.4 Equations of motion . 38
3.5 Low-level joint controller for the underwater snake robot 39
3.6 �e forward velocity and the average power consumption 39

4 Methodology 41
4.1 �e multi-objective optimization problem . 41
4.2 Constraint handling . 44
4.3 Genetic representation . 44
4.4 Simulation paramters . 47
4.5 Implementation . 47
4.6 Simulation study . 48

5 Simulation results 51
5.1 Optimal GA paramters . 51
5.2 Simulations with optimal GA paramters . 55
5.3 Summary . 69

6 Conclusions 71
6.1 Future work . 72

Appendix A 73
A.1 �e recursion steps in Example 2.5.3 . 73
A.2 Con�gurations in Unscrambler X 10.3 . 76
A.3 Python Codes . 77
A.4 Pareto fronts of the cases given in Section 5.1 . 79
A.5 Hypervolumes of the cases given in Section 5.1 . 81
A.6 PCA and PLSR Results . 86
References . 95

List of Figures

2.1 Structure of the genome . 6
2.2 Grid example: green = vehicle and red = desired destination 8
2.3 �e multipoint crossover . 10
2.4 �e bit-�ip mutation . 10
2.5 �e framework of genetic algorithm. 11
2.6 �e example population in the R2 space . 15
2.7 Illustrate the crowding distance in an objective space withm = 2 objectives. Note

that zi = fopt (xi). 16
2.8 �e framework of NSGA-II . 18
2.9 Objective space of a Pareto approximation set . 20
2.10 �e objective space is based on Example 2.5.1 and shows a) the partitions ofHi (x2,F ,R),

for i = {1, 2, 3, 4} (shaded area), and b) the assignment of the hypervolume indi-
cator Ih (x2,F ,R) (color �lled area). �e area inside the blue lines shows the �xed
parts of the hypervolume (not a�ected if any arbitrary solution x ∈ P is removed
from P) . 22

2.11 An illustration to show that removing the dominated soltuions a and b will not
a�ect the overall hypervolume . 23

2.12 An overview of the recursion steps given in Section A.1 24
2.13 �e framework of HypE . 25
2.14 An illustration of the PCA model . 29
2.15 Mapping from the original coordinates to Principal Components 29
2.16 Full cross-validation . 30
2.17 A PCA model in Unscrambler X 10.3 . 31
2.18 An illustration of the PLSR model . 33
2.19 A PLSR model in Unscrambler X 10.3 . 33

3.1 Kinematics of the underwater snake robot . 37
3.2 Forces and torques acting on each link . 37

4.1 Constraint handling in MOEAs. �e green and orange sections represent the fea-
sible and infeasible solutions, respectively. 44

4.2 Chromsome representation of the lateral undulation and eel-like motion pa�erns 45
4.3 Chromsome representation of the modi�ed motion pa�ern 46
4.4 Chromsome representation of the Fourier series motion pa�erns 46
4.5 Chromsome representation of the multi-Fourier series motion pa�erns 47
4.6 Illustration of the optimization loop. 48

5.1 Lateral undulation: �e three cases with the best average hypervolume indicator. 52
5.2 Modi�ed: �e three cases with the best average hypervolume indicator. 53
5.3 Fourier series (k = 1): �e three cases with the best average hypervolume indicator. 53
5.4 Fourier series (k = 3): �e sample with N = 500 and highest hypervolume indicator. 54
5.5 Multi-Fourier series: �e three cases with the best average hypervolume indicator. 55
5.6 Distribution of ω and δ in the population P. 56
5.7 Comparison between NSGA-II and HypE with modi�ed motion. 56
5.8 Comparison of the Pareto front for modi�ed motion between NSGA-II and HypE.

�e HypE algorithm spreads the solutions more uniformly on the Pareto front
compared to NSGA-II. 57

5.9 Initial and �nal Pareto fronts of each motion pa�ern. 58
5.10 Final pareto fronts of each motion pa�ern without ω. 58
5.11 Lateral undulation: PCA overview . 59
5.12 Lateral undulation: Scores and Loadings . 60
5.13 Lateral undulation: Scores plot with NSGA-II and HypE. 60
5.14 Lateral undulation: �e PCA scores and loadings of cluster 1. 61
5.15 Lateral undulation: PCA scores and loadings of cluster 2. 61
5.16 Lateral undulation: reference ϕ∗i with low and high v̄ 61
5.17 Eel-like motion: Reference ϕ∗i with low and high v̄ 63
5.18 Modi�ed motion: Reference ϕ∗i with low and high v̄ 64
5.19 Fourier series (k = 1): Reference ϕ∗i with low and high v̄ 65
5.20 Fourier series (k = 3): Reference ϕ∗i with low and high v̄ 66
5.21 Multi-Fourier series: Reference ϕ∗i with low and high v̄ 67
5.22 Prediction models of all the motion pa�erns. 68

A.1 PCA – Con�gurations . 76
A.2 PCA – Full cross-validation . 76
A.3 Fourier series (k = 3): Pareto fronts for the case with N = 100 solutions 79
A.4 Fourier series (k = 3): Pareto fronts for the case with N = 300 solutions 80
A.5 Fourier series (k = 3): Pareto fronts for the case with N = 500 solutions 80
A.6 Lateral undulation: �e average hypervolume indicator, where cx and mx is the

crossover and mutation rate, respectively. 81
A.7 Modi�ed: �e average hypervolume indicator, where cx and mx is the crossover

and mutation rate, respectively. 82
A.8 Fourier series (k = 1): �e average hypervolume indicator, where cx and mx is

the crossover and mutation rate, respectively. 83
A.9 Fourier series (k = 3): �e average hypervolume indicator, where cx and mx is

the crossover and mutation rate, respectively. 84
A.10 Fourier series: �e average hypervolume indicator, where cx andmx is the crossover

and mutation rate, respectively. 85
A.11 Eel-like motion: PCA scores and loadings. 88
A.12 Modi�ed motion: PCA scores and loadings. 89
A.13 Fourier series motion: PCA scores and loadings. 90
A.14 Fourier series (k = 3): PCA overview . 91
A.15 Modi�ed motion: PCA scores and loadings of cluster 1. 91

A.16 Modi�ed motion: PCA scores and loadings of cluster 2. 92
A.17 Multi-Fourier motion: PCA scores and loadings. 93

List of Tables

2.1 Comparison of natural evolution and GA . 6
2.2 �e results in terms of genetics . 9
2.3 An example population . 14
2.4 �e computed entities . 14
2.5 Steps for computing the Pareto fronts. F1 is the initial front, and following Pareto

fronts are computed by decrementing nj of each solution in Si . �e new Pareto
fronts are made of solutions with nj = 0. 16

2.6 �e objective f1 values in the ascending order . 17
2.7 �e objective f2 values in the ascending order . 17
2.8 Terms and symbols used in multivariate analysis 28

3.1 Mathematical terms . 36

4.1 Genetic representation for lateral undulation and eel-like motion 45
4.2 Genetic representation for the modi�ed motion 45
4.3 Genetic representation for the Fourier series motion 46
4.4 Simulation paramters . 47
4.5 Cases for tuning the GA paramters . 49
4.6 �e population sizes for tuning the GA parmeters 50

5.1 Lateral undulation: �e Root Mean Squared Error (RMSE) of cluster 1 and 2 . . . 62
5.2 �e optimal GA paramters of each motion. 70

A.1 �e raw data of cluster 1 given in Figure 5.14 . 86
A.2 �e predicted gait paramters computed by the prediction model presented in Sec-

tion 5.2.4. 87
A.3 Eel-like: �e RMSE values of the PLSR model for cluster 1 and 2 88
A.4 Modi�ed: �e RMSE of the PLSR model . 89
A.5 Eel-like: �e RMSE values of the PLSR model for cluster 1 and 2 90
A.6 Fourier series (k = 3): some raw data of cluster 1 92
A.7 Fourier series (k = 3): some raw data of cluster 2 92
A.8 Fourier series (k = 3): �e RMSE values of the PLSR model for cluster 1 and 2 . . 93

List of Abbreviations
AUV Autonomous Underwater Vehicle
GA Genetic Algorithm
HypE Hypervolume Estimation Algorithm for Multi-objective Optimization
MOEA Multi-Objective Evolutionary Algorithm
MOP Multi-Objective Optimization Problem
NIPALS Nonlinear Iterative Partial Least Squares
NSGA Non-dominated Sort Genetic Algorithm
NSGA-II Non-dominated Sort Genetic Algorithm II
ODE Ordinary Di�erential Equation
PC Principal Component
PCA Principal Component Analysis
PLSR Partial Least Square Regression
PSO Particle Swarm Optimization
RMSE Root Mean Squared Error
SPEA2 Strength Pareto Evolutionary Algorithm 2
USR Underwater Snake Robot

Chapter 1

Introduction

1.1 Motivation
In the past few decades, the developement of Autonomous Underwater Vehicle has been of great
interest. A survey on design and control of some AUVs are given in [1]. �ere exist many dif-
ferent assignments accociated with AUVs. In [2], the authors mention some applications with
AUVs such as science missions, search and survey. Further application examples are presented in
[3], such as environmental monitoring, data collection, instrumentation, subsea site survey, drill
support, hydrotesting and commisioning subsea �eld developments, etc. �is thesis will focus on
AUVs that are inspired by biological snakes. �ese AUVs are called Underwater Snake Robot. �e
USR presented in this thesis will be based on the model given in [4]. �e advantage of using an
USR is that they can navigate in di�cult environments, and since the USR is basically a moving
arm manipulator, it can perform several manipulation tasks such as picking and placing objects.
Additional, the USR are module based models, which implies that arbitrary number of degrees
of freedom of the robot can be achieved by adding or removing modules [5, 6]. Despite all the
various advantages and applications of the AUVs, they share a common limitation, i.e., the energy
storage and power management [1, 2, 7, 8]. �is motivates us to investigate on energy e�cient
motions for long-term autonomy of the USR. One of the main challenges of USR is their adapt-
ability of di�erent motion pa�erns, and therefore, case study of �nding most energy e�cient gait
parameters of di�erent locomotions of the USR are presented in this thesis.

1.2 Related work
One of the �rst developed snake-like robot prototypes was done by Hirose [9]. In the paper, he de-
scribes di�erent propulsion experiments, where among them was the common motion of snakes
known as the serpentine locomotion (lateral undulation). In [5], the authors purpose a closed
form of the dynamic equations for the USR, where it can be applied to modern model-based con-
trol schemes. Furthermore, the model also takes into account both linear and nonlinear drag
forces, the added mass e�ect, the �uid moments and current e�ects. Additional to the proposed
model, the authors also present a mathematical formulation of the two most common locomotion
of the snakes, i.e., the lateral undulation and anguilliform (eel-like) motion. In [10], central pa�ern
generator (CPG) is applied to �nd gait parameters for an amphibious snake-like robot. �e con-

1

sidered locomotion of the snake robot where the serpentine and anguilliform for crawling and
swimming, respectively. �e locomotion is controlled by the CPG, which are neural networks
producing coordinated pa�erns of rythmic acitivity without any rhythmic inputs from sensory
feedback or from higher control centers [11]. �e CPG is used for online generating the gait pa-
rameters amplitude, frequency and total wavelength. Note that, in the paper, optimization is not
considered, just trajectory generation and how these gait parameters in�uence the locomotion
speed of the snake robot.

In [12], GA and Particle Swarm Optimization (PSO) are applied for �nding optimal swimming
gaits in hyper-redundant mechanisms (HRMs), which are snake-like robots. In the paper, the op-
timization problem is presented as a single-objective problem, with only considering the power
consumption. By having a constant velocity, GA and PSO were applied for �nding the optimal
swimming gait parameters that minimize the total energy over a given distance. �e obtained op-
timal gait parameters favored an anguilliform locomotion when energy recovery was considered,
while carangiform locomotion was favored when the energy recovery was disregarded. In [13],
the authors present a multi-objective optimization scheme for optimizing the energy e�ciency
of the USR model presented in [4, 5]. �e presented MOP has the goal of maximizing the aver-
age forward velocity and minimizing the corresponding average power consumption of the USR.
In the paper, the multi-objective optimization scheme is constructed by using the weighted-sum
method to combine the two objectives into a single criterion function. �en optimization with
PSO was applied for di�erent weighting factors, i.e., multiple single-objective optimization is done
with di�erent weighting factors. Furthermore, the obtained results in the paper were based on
the lateral undulation and eel-like motion. In [14], the authors present multi-objective optmiza-
tion problem of automatically design and optimized heterogeneous snake-like modular robot. �e
presented multi-objective goal is to maximize the modular robot forward moving behaviour and
minimize the complexity of the snake-modular using MOEAs.

Related work on motion pa�ern generators is given in [15]. In this paper, the authors present a
scheme for generating gait pa�erns of modular robots. �e presented scheme uses the CPG and a
gradient-free optimization algorithm referred to as Powell’s method [16]. �e gait pa�ern genera-
tor is based on the CPG model for producing coordinated oscilliations, and then optimization with
Powell’s method for obtaining fast locomotions. �e optimization in the pa�ern generator consid-
ers only the forward velocity of the modular robot. Another literature on gait pa�ern generators
are given in [17], where the authors use Truncated Fourier series (TFS) with GA for generating
bipedal locomotion. �e idea of this gait generator is to let GA optimize the gait parmaters that
TFS produces. �e TFS can be used as an approximation of arbitrary periodic functions, and with
the combination of GA, an e�cient locomotion may be obtained. In the paper, the presented opti-
mization problem is given as a single-objective problem, where the objective function is based on
the walk distance of the robot. In [18], the authors introduce a evolutionary method, called Inter-
actively Constrained Neuro-Evolution (ICONE) for generating a walking behaviour for a physical
humanoid robot. �e aim of ICONE, is to bias the search space of the problem towards the desired
structure. However, the restriction with ICONE , is that, the evolutionary method require domain
knowledge and user interaction to restrict the search spaces.

�is thesis will focus on the modeling of the USR presented in [5], and thus the MOP presented
in [13] will be considered. Instead of converting the MOP into single-objective optimization prob-
lems, we use MOEAs to optimize the multi-objective function as it is, which is a vector function
consist of the average power consumption and the average forward velocity. Furthermore, two

2

of the presented simulation results will also be based on the two common snake locomotions; (i)
lateral undulation and (ii) eel-like motion. �e other simulation results are based on three altered
motion pa�erns of the USR, where two of them are based on Fourier series. �e purpose of these
altered motions is to see if the MOEAs are able to generate di�erent optimal snake locomotions,
that consider the energy e�ciency of the USR.

1.3 Brief introduction to MOEAs
�e �eld of Genetic Algorithm (GA) was introduced way back in the 1960s, starting with John H.
Holland [19, 20]. �e idea Holland presented was helpful to many researchers, regarding how to
solve complex, single-optimization problems, e.g., problems with a nonlinear objective function
or search spaces that were hard to interpret. �e concept of GAs, based on the natural evolution of
biological organisms, which involves natural selection and reproduction, have proven themselves
to be a robust and practical tool for complex search and optimization problems [19, 21, 22]. �is
follows from that the algorithms are stochastic and derivative-free, and thus make them also
�exible and adaptable [23, 24]. Another property of GA is that it always consider a population of
solutions and thus parallelism may be introduced to increase the computational speed [25].

In reality, most optimization problems have multi-objectives, and thus many multi-objective
optimization methods using GAs, called Multi-objective Optimization Evolutionary Algorithms
(MOEAs), have been developed in the past three decades. Professor David E. Goldberg had a
huge in�uence on the development of the current existing MOEAs where he introduced non-
dominated ranking and selection. He also suggested the use of a niching technique to spread out
the solutions on the Pareto fronts [26, 27]. �us the selection scheme in most MOEAs consist of;
(i) mating selection and (ii) environmental selection. �e two of the �rst groundbreaking, still
popular and state-of-the-art elitist MOEAs are the NSGA-II and the Strength Pareto Evolutionary
Algorithm 2 (SPEA2) [28, 29]. In [30], a comparison of the two mentioned MOEAs on the Multi-
objective Environmental/Economic Dispatch shows that the results obtained by SPEA2 are be�er
than NSGA-II regarding convergence and diversity but at the expense of computational time.
Furthermore, a study on performance scaling on the two algorithms shows that both have poor
performance when the number of objectives are more than three [31]. Another study regarding
performance analysis of both algorithms in noisy environments given in [32], shows that NSGA-II
has be�er chance to �lter noise. However, in environments with low noise level, SPEA2 slightly
beats NSGA-II in performance.

In this thesis, an optimization problem with two objectives is considered for the USR presented
in [5]. Since the optimization problem only has two objectives, both NSGA-II and SPEA2 �t for
the task as the optimization solver. However, in this thesis, NSGA-II is chosen due to its computa-
tional time is be�er than SPEA2. Furthermore, we will compare the NSGA-II with a more recent
developed elitist MOEA called HypE [33]. Another recent developed MOEA to mention is the
Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D) [34]. �e concept of
this optimizer is to decompose the multi-objective problem into smaller subproblems and then
optimize each subproblem by using the information of its neighboring subproblems. However,
due to the decomposing of the multi-objective problem, the evaluation of the objective values of
each individual solution has to be iterative and thus with a complex multi-objective problem, the
computational time can be slow without parallel computing. In this thesis, the dynamic model

3

of the USR is complex, and thus parallel computing is recommended for evaluation of the whole
population.

1.4 Contributions of this thesis
�e �rst main contribution of this thesis is to investigate on multi-objective optimization methods
for �nding energy e�cient locomotion of the snake robot presented in [4, 5]. �e e�cient motion
pa�ern will consider both the average forward velocity and power consumption of the USR. �e
two mentioned objectives contradicts each other and thus, we present MOPs for di�erent snake
motion pa�erns. So far, the only known previous literature on investigation of energy e�cient
snake locomotion using multi-objective optimization is given in [13]. �e obtained simulation
results are based on the two common snake locomotion called lateral undulation and eel-like
motion. In respect to this paper, we present two alternative optimization scheme for �nding the
optimal gait parameters of the two mentioned motion pa�erns. �e two presented multi-objective
optimization schemes are the MOEAs called NSGA-II and HypE. Furthermore, we present pres-
imulations of �nding optimal GA parameters used in the MOEAs for the actual simulation results
of each motion pa�ern.

For the second main contribution of this thesis, we propose three altered locomotions of the
USR. �ese altered motion pa�erns do not have any well de�ned formulations. One of the main
assumptions of the altered motions, are that they are periodic motions. Furthermore, these loco-
motions are not inspired by either biological snakes or �shes. �e �rst presented altered motion
allow each joint of the USR to follow di�erent signal references with varying amplitudes. While
the last two presented motions are based on Fourier series. Previous literatures of using Fourier
series for pa�ern generators are presented in [17, 35]. However, energy e�cient multi-objective
optimization of the generated motion pa�erns are not considered in the literatures.

�e �nal contribution of this thesis is a multivariate analsyis of the simulation results of each
presented motion pa�ern. �e goal of this analysis is to �nd relationships between the motion
pa�erns. Furthermore, based on the multivariate analysis of the simulation results, we present
regression models that predict the optimal gait parameters of the motion pa�erns. �e aim of the
these regression models is to use them as a utility for obtaining optimal gait paramters based on
the desired average forward velocity and power consumption of the USR.

1.5 Outline of this thesis
�e outline of this thesis is as follows. Chapter 2 presents the theoretical background used in
this thesis. �e chapter gives an introduction to the theoretical background of GA, MOP, MOEA,
Fourier series and multivariate analysis. Chapter 3 presents the dynamic model of the USR and
its mathematical terms. Furthermore, the chapter presents the mathematical formulation of the
lateral undulation and eel-like motion, and also the formulation of the average forward velocity
and power consumption of the USR. In Chapter 4, the MOPs of each motion pa�ern is presented.
�e chapter also presents the implementation of NSGA-II and HypE. Furthermore, the simulation
study of this thesis is also given in this chapter. �e simulation results of this thesis will be
presented in Chapter 5, where we introduce di�erent simulation cases of each motion pa�ern.
Finally, the conclusions and future work will be given in Chapter 6.

4

Chapter 2

�eoretical background

In this chapter, the theoretical background for MOEAs will be introduced. �e �rst two Section 2.1
and 2.2, will be a brief introduction to natural selection and genetics followed by the interpretation
of Genetic Algorithm. In section Section 2.1, some terms used in GA will be presented, and in
Section 2.2 the concept of GA will be explained. �e concept of GA will be the backbone for
the two MOEAs called NSGA-II and HypE presented in Section 2.4 and 2.5, respectively. A brief
introduction to Fourier series will also be given in Section 2.6. Finally, multivariate analysis tools
used for interpreting data sets will be presented in Section 2.7.

2.1 A brief inntroduction to natural selection and genetics
According to Charles Darwin, biological species evolve based on the principle of the natural se-
lection, i.e., the ��est individuals have the best chance of surviving and thus pass their genetic
traits to the future generations [36]. To illustrate the natural selection as Darwin did, we consider
a population of brown and red foxes and assume that in overall the brown foxes are the stronger
individuals. Furthermore, assume a strict environment with few preys to feed on. �erefore, not
all individuals get to reproduce themselves. By the principle of natural selection, the brown foxes
have the highest probability of surviving and to pass their genetic traits as o�springs. �ese o�-
springs will, thus, inherit �t genetic traits from the previous generation and will possibly survive
and forward these traits to the future generations. Over successive generations, eventually, the
entire population will consist of only brown foxes. �is inspired John H. Holland to create an
algortithm called GA, which is based on a simpli�ed version of the natural evolution of biological
organisms [19]. In the next paragraph, a quick introduction to basic genetics and related terms
used in GA is given.

In nature, a set of rules is encoded in the genes and connected into long strings called chro-
mosomes. A chromosome is a DNA molecule and is a fraction of all the genetic material called
genome. �e genome is the set of all genes that de�ne the traits of an individual, and each gene
has an unique position on the chromosome called locus. Furthermore, each gene on the genome
represents a distinct trait in biology called allele. At each locus, there exist a composition of two
genes, one inherited from each parent. In genetics, we call this gene composition the genotype
and the observable se�ing of the genotype as the phenotype [22, 37]. An illustration of the genetic
structure is shown in Figure 2.1.

5

Chromosome 1 Chromosome 2 Chromosome n: : :

Locus 1 Locus 2 : : : Locus n

Chromosome 2

Genotype

Genome

Genotype

Gene 1 Gene 2 Phenotype

Allele

Figure 2.1: Structure of the genome

Example 2.1.1. Consider a genotype that represents the eye color. Furthermore, assume that
the allele of the genes are either the color brown or blue. �e genotype may therefore have
four di�erent se�ings, i.e, brown/brown, blue/blue, brown/blue and blue/brown. �e observable
se�ing (pheontype) of this genotype is either the eye color brown or blue. Note that even if we
have four di�erent se�ings of the genotype, only one of the two traits are observable. Further,
assume that the allele associated with brown color dominates the one with blue color. �is gives
the genotype with the se�ing brown/blue or blue/brown a phenotype with brown color. �us, the
chances for the eye color to be brown and for it to be blue are 75% and 25%, respectively.

2.2 Genetic algorithm — single objective optimization
�e natural evolution is the change of individuals over successive generations in terms to ge-
netic change, mutation and natural selections. �is gives the foundation for the concept of GA:
start with an arbitrary population of individuals (in this thesis called solutions), and from there,
over successive generations, a single �t individual is computed. Table 2.1 shows the comparison
between GA and the genetic terms introduced in Section 2.1 [25, p. 20]. Note that there are no

Table 2.1: Comparison of natural evolution and GA

Natural Evolution Genetic Algorithm
Genome Chromosome
Chromosome String
Locus String positition
Gene Trait
Allele Trait value
Genotype Se�ing
Phenotype Decoded se�ing

di�erence between the genome and the chromosome in GA. In this section, the schemes called
mating selection and variation will be introduced [38, p. 6], which in combination builds up the
Genetic Algorithm. �e Genetic Algorithm is commonly used to solve complex single objective

6

optimization and search problems. �is thesis focus on optimization problems of the form

min
x

fopt (x), for x ∈ X

subject to



ci (x) = 0, i ∈ E

ci (x) ≤ 0, i ∈ I
,

(2.1)

where X is the decision space, x is the solution, fopt (x) ∈ R is the objective function, E is the
set for all equality constraints and I is the set for all inequality constraints. Note that we can
tranform a maximization into a minimization problem by taking max

x
fopt (x) = min

x
− fopt (x).

Next, we de�ne the search space of GA in terms of the problem given in (2.1) as

D =

{
x ∈ X|

ci (x) = 0, ∀i ∈ E
ci (x) ≤ 0, ∀i ∈ I

}
⊂ X (2.2)

which equals the feasible region of (2.1) and contains all multisets over X. Every point in the
search space represents a solution in GA, which can further be highlighted by a �tness value [25].
�e �tness value determines how good a solution is with respect to the optimization problem.
�e goal in (2.1) is to �nd the global optimum 1 of the objective function subject to the given
constraints. However, in most optimization cases, especially GA (a stochastic approach), o�en
returns a local optimum 2 [39, Ch. 7]. In fact, it is not possible or very di�cult to determine the
global optimum. �us, the algorithm returns an approximation of the true global optimum. Some
local optimums can be avoided by selecting di�erent starting positions. �is may or may not
assist the solutions to reach a be�er approximation.

2.2.1 �e genetic representation
In GA, the chromosomes are the genetic representation of the solutions x in (2.1), made of genes
that represent the elements in x . Usually, �xed length binary strings are used to encode both
chromosomes and genes. Fixed size of chromosomes makes certain genetic operations simpler to
compute. To further explain the genetic representation, an example is given below.

Example 2.2.1. Consider an 8x8 grid shown in Figure 2.2. In this grid, a vehicle is located on the
green �eld and can move up, down, le� and right. �e red �eld is the desired destination. �e
optimization problem here is to minimize the number of steps the vehicle takes from its starting
position to its desired destination, and can be formulated as

min
x

fopt (x) = x1 + x2 + x3 + x4 (2.3)

subject to




x1 − 7 ≤ 0
x2 − 7 ≤ 0
x3 − 7 ≤ 0
x4 − 7 ≤ 0

, (2.4)

1�e global optimum x∗ implies that fopt (x) is smallest in the whole search space D.
2�e local optimum x∗ implies that fopt (x) is smallest in its neighbourhood N .

7

Figure 2.2: Grid example: green = vehicle and red = desired destination

where x1 = up, x2 = down, x3 = le� and x4 = right. �e number of steps is constrained to
the maximum of seven steps in each direction. �is gives us a search space D that covers the
entire grid. Note that this is a simpli�ed problem and thus the formulation of (2.3) includes no
consideration for when the vehicle moves outside the grid.

To represent the solution x in the form of a chromosome, determine the traits that each gene
represents. For this problem, it is intuitive to let the genes be x1, x2, x3 and x4, which are the di-
rections of the vehicle. �e binary string length of each gene should be long enough to cover the
search spaceD. In this case, a 3-bit long binary string (23−1 = 7) is su�cient. �e representation
of the chromosome has many di�erent composition of the genes (genotype). �ree possible com-
positions are concat (xb,1,xb,2,xb,3,xb,4), concat (xb,3,xb,2,xb,4,xb,1) and concat (xb,4,xb,1,xb,2,xb,3),
where the subscript b denotes the binary string representation, and concat (·) concatenates the
strings inside its argument. In this example, we let concat (xb,1,xb,4,xb,2,xb,3) be the encoded set-
ting of the chromosome. �e binary length of the chromosome is the binary length of each gene
combined together and thus the length is 4 ·3-bit = 12-bit long. Note that all possible se�ings will
give the same binary string length. �e importance of a se�ing is to keep an order of the location
of each gene on the chromosome (locus).

By inspecting the grid in Figure 2.2 and the constraints (2.4), the min and max value of (2.3)
can be observed as 11 and 28, respectively. �e �t solution, which is the min value, is to move 6
steps in the right and 5 steps in the up direction. �us, the representation for the �t chromosome
is therefore given as

101 110 000 000,

while the worst case solution is
111 111 111 111.

By using Table 2.1, we can summerize the results above in terms of genetics shown in Table 2.2.

8

Table 2.2: �e results in terms of genetics

Natural Evolution Genetic Algorithm
Chromosome 12-bit binary string
Gene up, down, le�, right
Allele 0-7
Genotype xb,1, xb,4, xb,2, xb,3
Phenotype x = [x1,x2,x3,x4]T

2.2.2 �e mating selection and variation scheme
In GA, the natural evolution consists of the schemes called mating selection and variation, and in
each generation, these schemes are performed on the population P. �ere exist many di�erent
genetic operators that build up the natural evolution in GA [40]. However, this thesis will focus
on the operators listed below.

1. Mating selection:
• Binary tournament selection

2. Variation:
• Multipoint crossover
• Bit-�ip mutation

2.2.2.1 �e binary tournament selection

In this operator, two arbitrary selected solutions in P compete for the variation pool, and respect
to the principle of the natural selection; the ��est solution wins the competition. �e selection
of the two solution in P is done randomly, which is important. If the selection was always the
��est solutions, the algorithm might neglect solutions with valuable genetic material that can
aid the convergence to the global optimum. Furthermore, with only selecting the ��est solution,
the algorithm will turn into a greedy optimization with increased chance of se�ling only on local
optimums. �e binary tournament selection is de�ned as

1. Select two random solutions in P

2. Compare the two solutions and select the ��est one

�e selected solution may be neglected in the next selection of parents to ensure that this solution
will only be chosen once for variation in a generation.

2.2.2.2 �e multipoint crossover

�e crossover is an operation that combine the genetic material between two parents to produce
o�springs. In [40], many di�erent methods to do crossover are presented. However, this thesis
will focus on the multipoint crossover. �e multipoint crossover selects 2k arbitrary points on the
chromosome, where k = {1, 2, 3, . . . }, and then do crossing in the selected sections. Note that the

9

1 1 1 1 1 1 0 0 1 1 0 0 1

0 0 0 1 1 0 0 0 1 1 0 1 1
1 1 1 0 1 1 0 1 0 1 0 0 1

Point 1 Point 2 Point 3 Point 4

0 0 0 0 1 0 0 1 0 1 0 1 1

Parent 1

Parent 2

Offspring 1 Offspring 2

Figure 2.3: �e multipoint crossover

operator selects arbitrary points, and so with �xed sized chromosomes, the process for crossing
will be more intuitive. �e multipoint crossover with k = 2 is illustrated in �gure 2.3.

Observe that with k = 1, the method will be identical to two-point crossover in [40]. �e
crossover operators need a parameter called the crossover rate. �is parameter is a probability pa-
rameter with �oat value from 0 to 1. �e crossover rate indicates the percentage of the population
P that underwent crossing in the previous generation and is usually set between 0.6 and 1.0 [41].

2.2.2.3 �e bit-�ip mutation

When two parents produce o�springs, there is a probability for the o�springs to mutate, which
is an alteration of the genetic material. In [40], introduces di�erent ways of mutating in GA.
However, this thesis will focus on the mutation operator called the bit-�ip mutation. �e mutation
operator selects a single arbitrary bit on the chromosome and �ips it from 1 → 0 or 0 → 1.
Figure 2.4 shows the illustration of the bit-�ip mutation.

1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0

Mutation point Alteration

Figure 2.4: �e bit-�ip mutation

�e operator includes a parameter called the mutation rate. It indicates the probability for a
mutation to occur a�er a crossover. Furthermore, the mutation rate is usually set between 0.001
and 0.010 [42]. A way to interpret the mutation rate is to look at the parameter as a trade-o�
between exploitation and exploration. What this implies is that for low values of the mutation
rate, we consider more exploitation, which means to use the currently best-known information
for convergence to an optimum. As for exploration, we consider solutions in the search space D
that have not been explored yet, that are solutions not in the current population P.

When the algorithm has reached a �t solution x∗, all solutions in P will have the same genetic
material, which means that all the chromosomes are identical. At this point, further iterations
in the algorithm will not yield any new results, since crossing between two identical parents
will produce o�springs with the same genetic information. �us, for locally x∗, the mutation
operator may help GA to escape its local optimum by applying perturbation in the form of genetic
alteration. However, a mutation operator with high mutation rate will make the algorithm become

10

a random search optimizer. �e cause of this behavior is due to frequent genetic alteration acts
as a random noise in the optimization.

2.2.3 �e �tness function
�e �tness function evaluates how good the solutions are in (2.1). If the objective function in (2.1)
is su�cient as a �tness function, one could, therefore, use the function as it is for evaluation of
the solutions. �ere are many ways of de�ning a �tness function. However, it is not always clear
on what a good �tness function is. To further explain this, let us go back to example 2.2.1. �e
given objective function (2.3) is not su�cient for evaluation of x . With this objective function, the
��est solution x∗ is for the vehicle to stand still in its starting point, that is x1 = 0,x2 = 0,x3 = 0,
and x4 = 0. As for the choice of the �tness function, there can be many variants, but a simple
one can be a function that punishes the vehicle with a high value if it does not reach the desired
destination. Another one is to add the euclidean distance between the vehicle and the desired
destination as a punish value. �is gives a way of dealing with the constraints given in (2.1), and
is called the penalty function. With penalty functions, infeasible solutions x < D can be punished.
�us, a �tness function can be denoted as

f f it (x) = fopt (x) + fpenalty (x) (2.5)

In [43], di�erent penalty functions are presented and can be used in GA. In the following Sec-
tion 2.4, a MOEA called NSGA-II is presented and has a �tness function in the form of a rank
system.

2.2.4 �e Genetic Algorithm framework
In this section we will introduce the framework of GA. �e implementation of GA is illustrated
in Figure 2.5. �e algorithm starts with evaluating an initialized population P. �e initialized

Initialize P

Evaluate P

End

Mating selection

Variation: P

Criteria?
Fulfilled

Not fulfilled

Figure 2.5: �e framework of genetic algorithm.

population can be fully randomized, or it can include some �t solutions of the problem. A�er

11

evaluating the solutions, the algorithm checks if the optimization criteria are ful�lled. If the crite-
ria are satis�ed, then stop the optimization. If not, the population will undergo a natural evolution,
and a new generation is generated. �e new population P will then be evaluated, and the process
repeats itself. In GA, the optimization criteria can be the desired number of generations reached.

2.3 Multi-objective optimization
�e outline for this section is to brie�y introduce MOP and de�nitions that can later be used
in solving such problems. In general, it is normal to have multiple objectives in an optimization
problem. �ese objectives usually contradict each other, and therefore not possible to �nd a single
solution. Wang et al. introduce a MOP for green supply chain network design, where the moti-
vation is to reduce the CO2 emission in companies [44]. �e MOP is the trade-o� between total
cost and CO2 emissions. �e objectives contradict because a reduction of emissions will increase
the cost.

In this thesis, the multi-objective problem is denoted in the same way as for a single objective
problem in Section 2.2

min
x

fopt (x) = [f1(x), f2(x), ..., fm (x)]

subject to



ci (x) = 0, i ∈ E

ci (x) ≤ 0, i ∈ I
,

(2.6)

where fopt (x) ∈ Z = Rm,Z is the objective space andm is the number of objective functions. In
MOP, the concept of optimality is not a single solution, but rather a set of non-dominated solutions.
�e terms dominance and Pareto optimal are de�ned by

De�nition 2.3.1. (Pareto dominance) Consider vector u,v ∈ Rn. �e vector u is said that to
dominatev if and only if

1. All elements in u are lesser or equalv , i.e.

ui ≤ vi∀i ∈ {1, 2, ...,n} and (2.7)

2. At least one element in u is strict lesser than v, i.e.

∃i ∈ {1, 2, ...,n} : ui < vi (2.8)

De�nition 2.3.2. (Pareto optimal) A given solution x ∈ D is said to be Pareto optimal in the
domainD if and only if there exists noy ∈ D such thatv = f (y) ∈ Rn dominatesu = f (x) ∈ Rn

From de�nition 2.3.2 [45], both the solution x and the vectoru are called non-dominated. �e
terms local and global optimum introduced in Section 2.2 will now be in the form of Pareto local
and global optimum front (set). �e optimality of Pareto fronts is de�ned as

1. A set of solutions P is called Pareto approximation front, if for every �t solution x∗ ∈ P
there exist a small neighbourhood N , such that, no x ∈ N dominates x∗.

12

2. A set of solutions P is called Pareto optimal front, if there exists no solution x ∈ D, that
dominates any member of x∗ ∈ P, where D is called the search space.

In MOP, the diversity of P is important. �us, we want to have the population P to cover as much
of the search space D, rather than around a single solution. As stated in [46], the goal in MOP is
to try to achieve Pareto optimal, but also keep the diversity in P. Furthermore, the term Pareto
optimal and approximation is like global and local optimum in single-objective optimization prob-
lem, respectively [47]. Unlike GA, the MOEA computes an approximation that is hopefully close
to the Pareto optimal front.

2.4 �e NSGA-II Multi-Objective Evolutionary Algorithm
�is section presents a MOEA called Non-dominated Sort Genetic Algorithm II. �e NSGA-II
includes a fast non-dominated sort algorithm that ranks the solutions in the population by its
non-dominance given in section 2.3. As highlighted in [48], its predecessor Non-dominated Sort
Genetic Algorithm (NSGA) had a high computational complexity for the sorting of non-dominated
solutions, lack of elitism and the need for a sharing parameter to keep diversity in the population
which needed tuning. �is motivated the researchers in the paper to develop NSGA-II, introducing
elitism to improve the convergence towards an approximation of the Pareto optimal front[48, 49].
�e elitism is done by storing all non-dominated solutions in each generation. Furthermore, A
crowding distance was also introduced, which estimates the density to keep the diversity in the
population. �e crowding distance is parameterless unlike the sharing parameter in NSGA.

2.4.1 A fast non-dominated sorting

�e concept of NSGA-II is to divide the solutions in D into di�erent pareto fronts Fi with the
help of a non-dominated sorting. �e solutions that are least dominated will be placed into the
lower fronts starting from F1. �us, for a given population P with N solutions, in worst case
there exist a maximum of N pareto fronts. �e case when one obtains N pareto fronts is when all
the solutions dominate each other, and thus leads to only one solution existing in each front.

To �nd out whether a solution xi is dominated, xi is compared with every other solution xj in
P. �e fast non-dominated sorting algorithm calculates two entities for each solution in P [48].
�e calculated entities are

1. ni - the number of solutions which dominate the solution i
2. Si - a set of solutions which solution i dominates

�e lowest level Pareto front F1 will therefore consist of solutions that have ni = 0, which states
that there are no solutions in P that dominate solution xi . When the �rst front is calculated, take
F1 and iterate through each solution xj in its set Si and decrease nj by one. For each entity nj
that reaches 0, place solution xj into a setH . When all the solutions have been iterated through,
let the setH be a new Pareto front F2 which is one level higher. For the following Pareto fronts,
repeat the process with the new computed front. �e non-dominated sorting is completed when
H = ∅.

13

Table 2.3: An example population

Solution Objectives

xi f1 f2

x1 1 3
x2 7 2
x3 8 6
x4 9 3
x5 3 4
x6 4 4
x7 5 7
x8 9 2

Example 2.4.1. Consider a population with objective values given in Table 2.3. Observe that
each solution has two corrsepsonding objective functions f1 and f2. With the notation given in
De�nition 2.3.2, we write u = fopt (x) = [f1, f2], and x ∈ (P ⊂ D), where P = {x1,x2, ...,x8},
such that u1 = f (x1) = [1, 3] and u2 = f (x2) = [7, 2]. To compute the non-dominated sort by
hand, we �rst calculate the two entities ni andSi for each x ∈ P. By comparing x1 with x2, we see
that the �rst element in u1 dominates u2 but the second element in u2 dominates u1, and hence
they are non-dominated with each other. For the comparison between x1 and x3,u1 dominatesu3
and we place x3 into S1 and increment the entity n3 by one. Table 2.4 shows the two entities for
each x , a�er comparing the solutions.

Table 2.4: �e computed entities

i Si ni

1 {x3,x4,x5,x6,x7} 0
2 {x3,x4,x8} 0
3 ∅ 4
4 ∅ 3
5 {x3,x6,x7} 1
6 {x3,x7} 2
7 ∅ 3
8 x4 1

Another way to compute the two entities ni and Si is to place the objective values in the
euclidean space R2 and compare the position of each solution. Note that this method is viable
since the number of objectives are lesser than three. �e location of the solutions in R2 are shown
in Figure 2.6. By taking an arbitrary solution xi , all other solutions xj are dominated by xi , if their
location is in the �rst quadrant of xi . For instance, let i = 1, then by investigating Figure 2.6,

14

solution x1 dominates x3, x4 , x5, x6 and x7. Observe that the solution x3 and x4 dominates no
other solutions and thus S3 = ∅ and S4 = ∅.

0 1 2 3 4 5 6 7 8 9 10

Objective 1, f
1

0

1

2

3

4

5

6

7

8

9

O
b

je
c
ti
v
e

 2
,

f 2

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

Figure 2.6: �e example population in the R2 space

From Table 2.4, taking solutions withni = 0, the initial Pareto frontF1 = {x1,x2}. Furthermore,
all xi ∈ F1 have a non-domination rank equal one, that is xi,rank = 1. Note that the non-domination
rank is based on the Pareto front level. To obtain the next Pareto front F2, start decrementing nj
of each solution dominated by F1, i.e., xj ∈ S1 and xj ∈ S2, then place each solution xj with nj = 0
into F2. �e following Pareto fronts are computed by repeating the process above with the new
computed Pareto front. Table 2.5 shows the calculation of each Pareto front.

2.4.2 �e crowding distance
�e measurement called the crowding distance keeps the diversity in P. �is measurement is
computed by taking the geometric position of one solution xi and compare its distance between
two closest solutionsxi+1 andxi−1. �e crowding distance can be interpreted as a cuboid enclosing
the solution xi and is illustrated in Figure 2.7 [48].

�e way to compute the crowding distance is proposed in [50], and is listed below

1. Sort the objective values in ascending order

2. Assign the �rst and last solution in the sorted set with in�nity crowding distance

3. For the remaining solutions, assign the crowding distance given by

dj = dj +
fi,j+1 − fi,j−1

max (fi) −min(fi)
, (2.9)

where dj is the crowding distance of solution xj , and fi,j is the objective value fi of xj .

15

Table 2.5: Steps for computing the Pareto fronts. F1 is the initial front, and
following Pareto fronts are computed by decrementing nj of each solution in
Si . �e new Pareto fronts are made of solutions with nj = 0.

i Si n3 n4 n5 n6 n7 n8

Initial Pareto front F1 = {x1,x2}

1 {x3,x4,x5,x6,x7} 3 2 0 1 2
2 {x3,x4,x8} 2 1 0

New Pareto front F2 = {x5,x8}

5 {x3,x6,x7} 1 0 1
8 {x4} 0

New Pareto front F3 = {x4,x6}

4 ∅
6 {x3,x7} 0 0

Final Pareto front F4 = {x3,x7}

zi−1

zj

zj−1

zj+1zi

zi+1cuboid i

cuboid j

f1

f2

Figure 2.7: Illustrate the crowding distance in an objective space with m = 2
objectives. Note that zi = fopt (xi).

Example 2.4.2. Let us go back to example 2.4.1. To compute the crowding distance for this
population, start sorting the objective values of f1 in the ascending order. Table 2.6 shows the
sorted list. �e crowding distances in the table are computed by (2.9). To take an example, the
crowding distance of x6 can be wri�en as

d5 = 0 + 5 − 3
9 − 1 =

2
8 = 0.250. (2.10)

When all the crowding distances have been computed with respect to f1, repeat the process for
f2. �e computed crowding distances with f2 are shown in Table 2.7. For the visualization of the
solutions position, see Figure 2.6. �e solution x3 has least solutions surrounding it, and thus it

16

has the highest crowding distance. �e crowding distance is not in�nity since x3 is not a boundary
point, which by inspection are x1, x2, x7 and x8.

Table 2.6: �e objective f1 values in the ascending order

xi f1 Crowding distance: dj
x1 1 inf
x5 3 0.375
x6 4 0.250
x7 5 0.375
x2 7 0.375
x3 8 0.250
x4 9 0.125
x8 9 inf

Table 2.7: �e objective f2 values in the ascending order

xi f2 Crowding distance: dj
x2 2 inf
x8 2 inf
x1 3 inf
x4 3 0.375
x5 4 0.575
x6 4 0.650
x3 6 0.850
x7 7 inf

2.4.3 �e environmental selection
To ensure diversity in the population, an operator (≥n) called “the crowded comparison” is in-
troduced [48]. �is operator is used to spread out solutions in the Pareto front uniformly. �e
operator is de�ned as, if xi ≥n xj then

1. �e non-domination rank xi,rank < xj,rank , or

2. �e non-domination rank xi,rank = xj,rank and the crowding distance di ≥ dj

Note that the non-domination rank is based on the level of the Pareto front, and therefore solutions
in the lower levels are considered be�er. �e crowding operator (≥n) selects the solution with the
highest crowding distance for spreading out the Pareto front. �is type of selection scheme is

17

called the environmental selection. �e reason for its name is that the selection takes into account
the location of x in the Pareto front.

2.4.4 �e NSGA-II framework
Similar to the GA framework introduced in Section 2.2.4, the NSGA-II framework starts with
initializing a population of solutions. However, the di�erence with NSGA-II is the non-dominated
sorting and the environmental selection. Furthermore, it also works for multi-objective problems.
Note that in NSGA-II, the �tness function is the non-domination rank and the crowding distance
of x. �us, the mating selection introduced in Section 2.2.2, consider solutions with the best rank
(solutions in the lower level Pareto fronts). Furthermore, with the crowding distance, the selection
further distinguish between �t solutions, e.g., for solutions with same rank, consider the one with
the best crowding distance. �e NSGA-II algorithm given in [50, p. 186] is illustrated in Figure 2.8.

Initialize P

Non-dominated
sorting

Evaluate P

End

Mating selection

Variation: Q

Evaluate Q

R = P
Ð

Q

Environmental
selection: P

Criteria?
Fulfilled

Not fulfilled

Figure 2.8: �e framework of NSGA-II

In NSGA-II, the number of solutions in Q equals the number of solution in P, i.e., |Q| = |P | =
N , where | · | denotes the cardinality of a set. �e new set Q will later be concatenated with P to
create a set R with 2N solutions. A�er concatinating the populations, a non-dominated sorting
is performed to get the Pareto fronts. By combining the two sets, the algorithm will take both
new and old solutions in consideration of generating the new P. �e steps for creating P in the
environmental selection are listed below.

1. Let P = ∅
2. Select the lowest level Pareto front Fi (starts with F1)
3. Assign crowding distance to the solutions.

18

4. Sort the crowding distance in the descending order.
5. If the number of solutions in Fi

⋃
P exceeds the maximum population number N , select

solutions with the highest crowding distance and place them inside P until it has N solu-
tions.

6. Else, place all solutions in the Pareto front into P and go back to step 2. and redo the process
with the next Pareto front level.

With the non-dominated sorting and the environmental selection, the overall complexity of the
algorithm is O (MN 2), where M is the number of objectives and N is the population size [51].

2.5 �e HypE Multi-Objective Evolutionary Algorithm

�is section brie�y introduce a MOEA called HypE presented in [33]. Unlike NSGA-II that ranks
the solutions with non-dominated sorting, the HypE assign ranks through a measure called the
hypervolume indicator. �e advantage of using hypervolumes is that the measure is known to
be the only quality indicator that is fully sensitive to Pareto dominance [33]. �is imply that, if
a Pareto approximation front Fa dominates another front Fb , the hypervolume indicator of Fa
is strictly be�er than Fb . Furthermore, if Fa achieves the highest possible indicator value, the
measure guarantees that Fa contains all Pareto optimal sets of a given problem [52]. With the
properties of the hypervolumes, the HypE algortihm works well for m > 3 MOP. However, the
worst-case runtime of computing the exact hypervolme indicator is O (Nm−1), which is exponen-
tial in the number of objective functions. In [33], an estimation of the hypervolume indicator is
introduced for MOP withm > 3, based on Monte Carlo simulation. However, this thesis focus on
MOP withm = 2 and thus the exact hypervolume indicator is considered.

2.5.1 Independent Pareto set dominance

In this section, the notation of Pareto dominance given in De�nition 2.3.1 will further be expanded
to yield between di�erent sets. �e notations are the same as the preference relation (4) given in
[33, 52].

De�nition 2.5.1. Let D be the search space, and Fa,Fb ∈ D be the Pareto approximation sets.
�en the set preference relation 4 on D is de�ned as

Fa 4 Fb :⇔ ∀y ∈ Fb ∃x ∈ Fa : x � y, (2.11)

where
x � y :⇔ fopt (x) ≤ fopt (y) for x ∈ Fa and y ∈ Fb (2.12)

Remark 2.5.1. In [33, 52], a term called weakly dominated is introduced. �is term imply that if
u weakly dominatesv , then u dominatesv regardless of which set they belong too. For instance,
let F ⊂ D, x ∈ X and that F weakly dominates x , then with respect to De�nition 2.5.1, it is
wri�en as F 4 {x }. Another example, a solution x ∈ X weakly dominates objective z ∈ Z imply
that fopt (x) dominates z.

19

2.5.2 Fitness assigning with hypervolume indicator
Bader and Zitzler [33] present a strategy for assigning �tness values that takes into account the
entire objective space Z weakly dominated by a population P, i.e., P 4 Z :⇔ ∀z ∈ Z ∃x ∈
P : x � z :⇔ fopt (x) ≤ z. �e �tness values will then be used in the mating selection to
distinguish between �t solutions. �is section will focus on the de�ntions and theorems of the
the hypervolume indicator based on lebesgue measure [33, Def. III.1].

De�nition 2.5.2. (Hypervolume indicator) Let F ∈ D be a Pareto approximation front and
R ⊂ Z be a reference set of mutually non-dominating objective vectors. �en the hypervolume
indicator IH can be de�ned as

IH (F ,R) := λ(H (F ,R)), (2.13)

where
H (F ,R) := {z ∈ Z| ∃x ∈ F ,∃r ∈ R : f (x) ≤ z ≤ r } (2.14)

and λ is the Lebesgue measure with

λ(H (F ,R)) =

∫
Rm

1H (F ,R) (z)dz (2.15)

and 1H (F ,R) being the characteristic function of H (F ,R).

Remark 2.5.2. �e set H (F ,R) is a subset ofZ and denotes the set of objective vectors enclosed
by fopt (x), for all x ∈ F and R. Furthermore, the set can be further split into partitionsH (S,F ,R),
that is

H (S,A,R) :=
[⋂
s∈S

H ({s},R)
] ∖ [⋃

x∈F \S

H ({x },R)
]
⊆ Z (2.16)

Example 2.5.1. Consider a Pareto approximation F = {x1,x2,x3,x4} , S1 = {x3,x4}, S2 = {x2}
and the reference set R = {r }. An illustration of the objective space H (F ,R) = {z ∈ Z| ∃x ∈
F ,∃r ∈ R : fopt (x) ≤ z ≤ r } is given in Figure 2.9.

r

f ¹x1º

f ¹x2º

f ¹x3º

f ¹x4º

H ¹S1; F; Rº

H ¹S2; F; Rº

H ¹F; Rº

Figure 2.9: Objective space of a Pareto approximation set

20

�e subset H (S1,F ,R) and H (S2,F ,R) is de�ned as

H (S1,F ,R) :=
[⋂
s∈S1

H ({s},R)
] ∖ [⋃

x∈F \S1

H ({x },R)
]

=

[
H ({x3},R)

⋂
H ({x4},R)

] ∖ [
H ({x1},R)

⋃
H ({x2},R)

] (2.17)

H (S2,F ,R) :=
[⋂
s∈S2

H ({s},R)
] ∖ [⋃

x∈F \S2

H ({x },R)
]

=

[
H ({x2},R)

] ∖ [
H ({x1},R)

⋃
H ({x3},R)

⋃
H ({x4},R)

] (2.18)

and is illustrated as the �lled color sections in Figure 2.9. Observe that,
•⋃

S⊆F

H (S,F ,R) = H (F ,R) (2.19)

Remark 2.5.3. It is infeasible to determine all distinct H (S,F ,R) due to combinatorial explosion
[33, p. 3s]. �us, the spli�ing in (2.16) will be extended to a more compact and de�ned as

Hi (x ,F ,R) :=
⋃
S⊆F
x ∈S
|S |=i

H (S,F ,R) (2.20)

Example 2.5.2. Consider the objective space of the Pareto approximation F and the reference R
given in Example 2.5.1. �en the compact spli�ing of Hi (x2,F ,R), for i = {1, 2, 3, 4} is de�ned as

H1(x2,F , r) = H ({x2},F ,R) (2.21)
H2(x2,F , r) = H ({x1,x2},F ,R) + H ({x2,x3},F ,R) (2.22)
H3(x2,F , r) = H ({x1,x2,x3},F ,R) + H ({x2,x3,x4},F ,R) (2.23)
H4(x2,F , r) = H ({x1,x2,x3,x4},F ,R) (2.24)

Figure Figure 2.10 shows an illustration of the spli�ing.

With the de�nitions and the remarks given above, a scheme can be de�ned for assigning
hypervolume indicator to each solution x in a population P [33, Def. III.2].

De�nition 2.5.3. Let F ∈ D and R ⊂ Z. �en the function Ih with

Ih (x ,F ,R) :=
|F |∑
i=1

1
i
λ(Hi (x ,F ,R)) (2.25)

gives for each solution x ∈ F the hypervolume that can be assigned to x with regard to the
overall hypervolume IH (F ,R).

Figure 2.10 illustrates the hypervolume indicator of a solution. �e following theorem shows
that the overall hypervolume IH (F ,R) is distributed among the distinct solutions [33, �. III.3].

21

r

f ¹x1º

f ¹x2º

f ¹x3º

f ¹x4º

H ¹F; Rº

1
6
λ¹H3¹x2; F; Rºº

1
4
λ¹H4¹x2; F; Rºº

1
4
λ¹H2¹x2; F; Rºº

1
6
λ¹H3¹x2; F; Rºº

1
4
λ¹H2¹x2; F; Rºº

λ¹H1¹x2; F; Rºº

Figure 2.10: �e objective space is based on Example 2.5.1 and shows a) the
partitions ofHi (x2,F ,R), for i = {1, 2, 3, 4} (shaded area), and b) the assignment
of the hypervolume indicator Ih (x2,F ,R) (color �lled area). �e area inside the
blue lines shows the �xed parts of the hypervolume (not a�ected if any arbitrary
solution x ∈ P is removed from P)

�eorem 2.5.4. Let F ∈ D and R ∈ Z. �en it holds

IH (F ,R) =
∑
x∈F

Ih (x ,F ,R) (2.26)

By using De�nition 2.5.3, each x ∈ P is assigned with a scalar value that determine their
ranks in the population. �e scalar value can then be used in the mating selection to determine
�t solutions for variation. In [33, Def. III.5], the environmental selection is formulated in terms of
the subset selection problem and is de�ned as.

De�nition 2.5.5. (Environmental Selection) Let F ∈ D, R ⊂ Z, and k ∈ {0, 1, . . . , |F |}. �e
hypervolume subset selection problem (HSSP) is de�ned as the problem of �nding a subsetP ⊆ F
with |P | = |F | − k such that the overall hypervolume loss is minimum, i.e,

IH (P,R) = max
F ′⊆F
|F ′ |= |F |−k

IH (F
′,R) (2.27)

From De�nition 2.5.5, the parameter k is the number of solutions that will be removed from F .
In HypE, the environmental selection resembles the one given in NSGA-II, i.e., both algorithms
consider a sorted non-dominated population R = P⋃

Q, which contain 2N solutions. �e al-
gorithm selects the lowest level pareto fronts Fi until it exceeds the population size N (ignore
higher level fronts). �is can be done, since dominated solutions do not a�ect the overall hyper-
volume. Figure 2.11 illustates the dominated solutions in the objective space. �e k solutions that
exceeds N will then be removed based on the environmental selection. �e two approaches of the
environmental selection can be[33, p. 5]:

1. Iterative: Assign hypervolume indicator to the population k times; each time, remove the
worst solution (lowest indicator value).

22

2. One shot: Assign hypervolume indicator to the population once and then remove k worst
solutions.

In this thesis, we will focus on the iterative approach. �ere is a drawback of using the scheme

r

f ¹x1º

f ¹x2º

f ¹x3º

f ¹x4º

H ¹F; Rº

f ¹aº

f ¹b º

Figure 2.11: An illustration to show that removing the dominated soltuions a
and b will not a�ect the overall hypervolume

given in De�nition 2.5.3, and that is the indicator also consider the �xed parts of the hypervolumes.
�e �xed parts are the portions of the hypervolumes that will not be a�ected if an arbitrary or
multiple solutions are removed from the population. Figure 2.10 illustrates the disadvantage of
De�nition 2.5.3. In [33, Def. III.6], a new extended scheme is presented to avoid this drawback
and is de�ned as.

De�nition 2.5.6. Let F ∈ D, R ⊂ Z, and k ∈ {0, 1, · · · , |F |}. �en the function

Ikh (x ,F ,R) := 1
|S|

∑
S∈S



∑
T⊆S
x ∈T

1
|T |

λ(H (T ,F ,R))


(2.28)

where S = {S ⊆ F | x ∈ S ∧ |S | = k } contains all subsets of F that include x and have cardinality
k gives for each solution x ∈ F the expected hypervolume loss that can be a�ributed to x when
x and k − 1 uniformly randomly chosen solutions from F are removed from F .

Remark 2.5.4. Observe that I 1
h
(x ,F ,R) = λ(H1(x ,F ,R)) and I |F |

h
(x ,F ,R) = Ih (x ,F ,R). �us,

De�nition 2.5.6 can be viewed as a generalization of De�nition 2.5.3. With k = 1, it is su�cient
to assign I 1

h
(x ,F ,R) = λ(H1(x ,F ,R)) to the solutions, and from Figure 2.10, x1 and x4 have the

lowest indicator value (based on the area size).

In the following theorem, a method for calculating Ik
h
(x ,F ,R) without averaging over all

subsets S ∈ S is introduced [33, �. III.7].

23

�eorem 2.5.7. Let F ∈ D, R ⊂ Z, and k ∈ {0, 1, . . . , |F |}. �en it holds

Ikh (x ,F ,R) =
k∑
i=1

αi
i
λ(Hi (x ,F ,R)), (2.29)

where

αi :=
i−1∏
j=1

k − j

|F | − j
(2.30)

Example 2.5.3. Let P = x1,x2, R = {r } and k = |P | = 2 where,

f (x1) = [1, 3] (2.31)
f (x2) = [3, 1] (2.32)

r = [4, 5] (2.33)

To compute the exact hypervolume indicator, we use the Algorithm 1 and 2 given in [33, Algo-
rithm 1-2]. �us, by calling doSlicinд(F =

⋃
x1∈P
{(x1, 0)},R = {r },k = 2,n = 2,V = 1,z = [∞,∞])

in Algorithm 1, the algorithm 2 starts a recursion method for computing the exact hypervolume
indicator for each x ∈ P. �e calculation of the exact hypervolume indicator is given in Sec-
tion A.1. Figure 2.12 shows an overview of the recursion steps.

i = 2 :

i = 1 :

i = 0 :

Step 1:1:1

Step 1:1:2

Step 1:1:3

doSlicinд¹F ;R;k = jF j;n;V ;zº

Step 2:1:1

Step 2:1:2

Step 2:1:3

Step 2:2:2

Step 2:2:3 Ih ¹x ;F ;Rº

Figure 2.12: An overview of the recursion steps given in Section A.1

�e exact hypervolume indicator for the population P with reference R is computed as

IH (P,R) =
∑
x∈P

Ih (x ,P,R) = Ih (x1,P,R) + Ih (x2,P,R) = 5 + 3 = 8 (2.34)

2.5.3 �e framework of HypE
�e framework of HypE is similar to the NSGA-II given in Section 2.4.4. �e only di�erence is that
HypE include �tness through hypervolumes. Figure 2.13 shows the framework of HypE. With the
exact hypervolume indicator has the �tness function, the worst-case complexity of the algorithm
is O (ND + DN log(N)), where D is the number of objectives and N the number of solutions.

24

Initialize P

Non-dominated
sorting

Evaluate P

End

Exact HV Indicator

Variation: Q

Evaluate Q

R = P
Ð

Q

Environmental
selection: P

Criteria?
Ful�lled

Not ful�lled

Mating Selection

Figure 2.13: �e framework of HypE

25

2.6 Fourier series

2.6.1 2π -Periodic functions
Let f be a 2π -periodic function. �en it is known that {cos(nt), sin(t)} for n ∈ N form a complete
orthogonal system over [−π ,π], and by using the the method for a generalized Fourier series with
f1(x) = cos(x) and f2(x) = sin(x) given in [53], the Fourier series for any f over [−π ,π] is given
by [54]

f (t) = a0 +
∑
n∈N

(ancos(nt) + bnsin(nt)) , for n ∈ N (2.35)

where

a0 =
1

2π

∫ π

−π
f (t)dt (2.36)

an =
1
π

∫ π

−π
f (t)cos(nt)dt , for n ∈ N (2.37)

bn =
1
π

∫ π

−π
f (t)sin(nt)dt , for n ∈ N (2.38)

2.6.2 A convergence result
In [55, pp. 584-585], the convergence of the Fourier series is given as

�eorem 2.6.1. Suppose that f is 2π -periodic and piecewise continous on [−π ,π]. �en its
Fourier series converges

a) to the value f (t) where f is continous, and
b) to the average of the right and le� hand limits of f where f is discontinous

2.6.3 2L-Periodic Functions
With a suitable change of variables, we can expand the fourier series given in (2.35) to be applied
on any function f with an arbitrary 2L period [55]. It is known that f (t + 2π) = f (t) if f is
2π -periodic, then f (t + 2L) = f (t) if f is 2L-periodic. Let c be a scaling parameter such that
f (c (t + 2π)) = f (ct + 2πc) = f (ct). �en with c = L

π , we get

f
(Lt
π
+ 2L

)
= f

(Lt
π

)
= a0 +

∑
n∈N

(ancos(nt) + bnsin(nt)) (2.39)

where

a0 =
1

2π

∫ π

−π
f

(Lt
π

)
dt (2.40)

an =
1
π

∫ π

−π
f

(Lt
π

)
cos(nt)dt , for n ∈ N (2.41)

bn =
1
π

∫ π

−π
f

(Lt
π

)
sin(nt)dt , for n ∈ N (2.42)

26

Now with change of variables t 7→ L
π t , the fourier series for an arbitrary 2L-periodic function f

will be given as

f (t) = a0 +
∑
n∈N

(
ancos

(nπt
L

)
+ bnsin

(nπt
L

))
(2.43)

where

a0 =
1

2L

∫ L

−L
f (t)dt (2.44)

an =
1
L

∫ L

−L
f (t)cos

(nπt
L

)
dt , for n ∈ N (2.45)

bn =
1
L

∫ L

−L
f (t)sin

(nπt
L

)
dt , for n ∈ N (2.46)

2.7 Multivariate Analysis
�is section presents two multivariate anlysis called PCA and PLSR. �e �rst method called PCA
takes the original variables and projects them onto smaller number of Principal Component (PC)
(latent variables). Each PC explains a portion of the total information of the original data. Fur-
thermore, the �rst PC explains most of the information and decreases in the following PCs. �e
PLSR models both X and Y data to �nd the latent variables in X that will best predict the latent
variables in Y . �ese latent variables are similar to the PCs in PCA, but are referred as factors.

2.7.1 So�ware
In this thesis, we consider the so�ware called �e Unscrambler X 10.3 for the multivariate analysis
tool. �e so�ware was originally developed by Harald Martens and then taken over by CAMO
So�ware[56, 57]. �e Unscrambler X 10.3 includes many tools for preprocessing and multivariate
analysis of data sets.

2.7.2 Multivariate analysis terms and symbols
�e mathematical terms and symbols used in Multivariate analysis are given in Table 2.8 are based
on the reference manual in [58].

2.7.3 Bilinear subspace model
Both PCA and PLSR use the bilinear subspace models to describe the structures in a multivariate
data set [56, 59]. �e bilinear subspace is a linear combination of the latent variables, which span
a subspace in the variable space. �e bilinear model of X ∈ Rn×m is given as

X̂ = TPT =
a∑
i=1

tip
T
i ∈ R

n×m (2.47)

27

Table 2.8: Terms and symbols used in multivariate analysis

Symbol Description Dimension
n Number of objects n = {1, 2, . . . }
m Number of X variables m = {1, 2, . . . }
k Number of Y variables k = {1, 2, . . . }
a Number of PC a = {1, 2, . . . }
1 Vector of ones 1 ∈ Rn

x̄ Column means of X x̄ ∈ Rm

ȳ Column means of Y ȳ ∈ Rk

X ,Y Data sets X ∈ Rn×m,Y ∈ Rn×k

T Scores of X T ∈ Rn×a

U Scores of Y U ∈ Rn×a

P Loadings of X P ∈ Rm×a

Q Loadings of Y Q ∈ Rm×a

E Resudials of X E ∈ Rn×m

F Resudials of Y F ∈ Rn×k

B Regression coe�cients b ∈ Rk

where tipT
i is the latent variable i (in PCA called Principal Component). �e resudial (error) model

that the bilinear subspace does not consider is given as

E = X − X̂ (2.48)

�e matrix T and P are called the scores and loadings, respectively. Each matrix reprents
di�erent information of X ;

1. �e scores ti ∈ [t1, . . . , ta] visualize the connections among the objects inX . �ey represent
the projection of the objects onto the loading vectors pi ∈ [p1, · · · ,pa]. Furthermore, the
scores can be viewed as an approximation of the objects regarding the latent variable.

2. �e loadings pi ∈ [p1, . . . ,pa] visualize the connections among the variables in X . Further-
more, the loadings can be interpreted as the mapping between the variable space and the
subpace in (2.47) [59, pp. 40-42].

2.7.4 Principal Component Analysis — PCA
In PCA, the goal is to �nd the maximum variance of the variables inX and represent the informa-
tion in PCs. Variables with li�le variation will be seen as noise since variables with insu�cient
variations have no meaningful information related to it. �e PCs are arranged in order of decreas-
ing explained variance and are orthogonal to each other. �e bilinear model of the PCA model is
given as

X = 1x̄T +
a∑
i=1

tip
T
i + E = 1x̄T +TPT + E (2.49)

where x̄ is the column means of the data set X . Figure 2.14 illustrates the PCA model (2.49) . �e

28

X

m

n

=
1

1

1

x̄
T
+

t1
n

p1
m

+

t2
n

p2
m

+ E

m

n

Figure 2.14: An illustration of the PCA model

residual E can be neglected when interpreting the results in the PCA model. �is is okay to do, if
the residual error is small. �e matrix P andT are de�ned as

P = eiд(XTX) ∈ Rm×a (2.50)
T = XP ∈ Rn×a (2.51)

where the properties of the loadings and scores are listed below [56]

• �e score vectors ti ∈ [t1, . . . , ta] are orthogonal to each other:

tit2 = 0, for alli , j (2.52)

• �e loading vectors pi ∈ [p1, . . . ,pa] are orthogonal to each other:

pip2 = 0, for i , j (2.53)

• �e loading vectors pi ∈ [p1, . . . ,pa] have unit length:

‖pi ‖ = 1, for all i = {1, . . . ,a}, (2.54)

where ‖·‖ denotes the euclidean norm.

With PCA, we may reduce the dimensionality of the data set, i.e., some variables may not have
signi�cant e�ect onX and can be ignored. �is reduced dimensionality will have a new coordinate
system made of PCs and is illustrated in Figure 2.15. A full explaination of all the mathematical

x2

x1

x̄ PC 1PCA

Reduced Dimension

Figure 2.15: Mapping from the original coordinates to Principal Components

formulations of the PCA is not given, but instead, we will focus on how to use PCA as a tool for
graphical interpretation of X . �e Unscrambler X 10.3 includes PCA and can be used to interpret

29

the data X in a graphical manner. It includes cross-validation, which is an operation to avoid or
reduce over��ing, i.e., ��ing to noisy variables. �is thesis will focus on the full cross-validtion,
where it leaves out one object in X to create a model and then validate the model to the le� out
object. �is is done n times to validate each object in X [56]. �e full cross-validtion is illustrated
in Figure 2.16. For computing the PCA models in Unscrambler X 10.3, the algorithm Nonlinear
Iterative Partial Least Squares (NIPALS) is used [59]. Furthermore, we consider mean center data,
no rotation and all weights to be equal one. �e con�gurations used for running PCA is given in
Section A.2.

x1

Validate x1

x2

Validate x2

X X

xn

Validate xn

X

Figure 2.16: Full cross-validation

2.7.4.1 Graphical interpreation — Scores and Loadings

Figure 2.14 shows the results of a PCA model in Unscrambler X 10.3. �e �gure shows a 2-D plot of
the scores and the correlation plot of the loadings. �e x and y axes are the principal components.
�e scores show structures, di�erences and similarities, and are connections between the objects
in X . In the scores plot, two di�erent clusters can be seen: (i) the le� cluster that goes vertically,
and (ii) the right cluster that goes horizontally. �is can be interpreted has there exists two di�er-
ent subsets of X that share similarities. �e objects that are close along the same PCA are similar.
Another important property on how to read the scores plot is the position of each object: objects
that are further away from the origin along the same PC have higher or lower variable values
than the mean value in terms of the loadings position. �us, scores cannot be interpreted without
loadings, and the same argument for the loadings. In Figure 2.14, the loadings are plo�et in a
correlation plot. Loadings that are on the same PC are highly correlated. Furthermore, loadings
close to each other are positively correlated, while loadings with opposite signs are negatively
correlated. Two loadings that are on di�erent PCs are uncorrelated. From Figure 2.14, the two
loadings on the right are positively correlated to each other, but are negatively correlated with the
loading on the le� (on PC 1). Furthermore, all three loadings are uncorrolated with the loading
on the top (on PC 2). �e steps for reading the loadings plot:

1. Look for high loadings (close to +1 or -1) and discard the small loadings (close to origin).
�e high loadings are meaningful and interpretable, while small loadings are badly valuated
by a particular PC.

2. Interpret the correlations of each loading.

�e bene�t of PCA is to interpret both scores and loadings at the same time. Objects with high
scores and loadings have variable values that are higher or lower than the average value. �at is,

1. positive scores and loadings: higher than average

30

Figure 2.17: A PCA model in Unscrambler X 10.3

2. postive scores and negative loadings: lower than average
3. negative scores and loadings: higher than average
4. negative scores and positive loadings: lower than average

�e larger the score value is, higher in�uence on the corresponding variable (either positive or
negative). Furthermore, the larger the loading of a variable, quicker increase of that variable as
the score increases.

2.7.4.2 Graphical interpretation — In�uence

�e noisy part of a PCA model is called outliers. �ese outliers are objects that do not �t well or
in�uence the model too much. �e outliers may cause one or more PCs to only focus on them
even if they are unimportant. In �e Unscrambler X 10.3, there various way to determine the
outliers:

• Look at the scores plot and see the objects that are far from the others or chaotic. In Fig-
ure 2.14, the object that is far bo�om right is most likely an outlier.

• Look at the in�uence plot and study the objects that might in�uence the model too much.
�ere are three cases in the in�uence plot that can determine the outliers.

1. Objects that lies in the fourth quadrant are �t but can in�uence the model.
2. Objects that lies in the second quadrant do not �t the PCA model, but they do not

in�uence the model too much.
3. Objects that lies in the �rst quadrant do not �t the PCA model and can in�uence it

(these are the worst kind of outliers).

From the in�uence plot in Figure 2.14, most of the objects are located in the third quadrant. �ese
�t well to the PCA model.

31

2.7.4.3 Graphical interpretation — Explained variance

�e plot that shows the explained variance in Figure 2.14 describes the explained variance in each
PC. From the plot, the �rst PC explains 86% of the variance, while PC 2 explains 11%. Furthermore,
the optimal number of PCs is three to describe PCA model. Even if the optimal number of PCs is
three, the �rst two PCs already explain 97% of the variance. �us, the �rst two PCs is su�cient
for this PCA model.

2.7.5 Partial Least Squares Regression — PLSR
�e di�erence between PCA and PLSR is that PCA maximizes the variance in a particular set X ,
while PLSR maximizes the covaraiance between two di�erent set X and Y . Usually, PLSR is used
for prediction of Y data (response) from X data (predictor). PLSR creates a model for both X and
Y such that the latent variables in X best predict the latent variables in Y . In context of PLSR, the
latent variables will be referred to as factors. In [60], the mathematical description of the PLSR
model is given as

X = TPT + E (2.55)
Y = UQT + F (2.56)

where T is de�ned as

T = XW ∗ (2.57)
W ∗ =W (PTW)−1 (2.58)

�e (2.56) is computed by the U -scores, Q-loadings and the residual F based on Y (a PCA
model ofY). �eW is the weight matrix that maps the X toT . �ey express howT are computed
from X to obtain orthogonal decomposition. In PLSR, the X data are used as predictors of Y, and
thus the prediction Ŷ is given as

Ŷ = TQT + F = (XW ∗)QT + F = XB + F (2.59)

whereB =W ∗QT =W (PTW)−1QT is the regression coe�cients, called the Beta coe�ctients. �e
residual E and F are negligible, even if they are shown in the equations. �is can be done, since
the residuals are usually small. Figure 2.18 shows an illustration of the mathematical description
of PLSR. �e scores and loadings in PLSR are interpreted in the same way as in PCA. With the
only di�erence that PLSR computes two di�erent score and loading matrices. Furthermore, the
link between T and U is a summary of the relationship between X and Y . �e T -scores is the
mapping from the objects in X , which is always available. �e U -scores are available when Y
is available, which is predicted by X . �us, T is the structure in X that best predict Y and U
is the structure in Y that is explained by X . Figure 2.19 shows a PLSR model overview in the
Unscrambler X 10.3.

�e PLSR overview shown in Figure 2.17, three of the plots describe the same informations
as in the PCA overview. �e new plot called Predicted vs. Reference show the prediction of the
variables and it shows the prediction of the selected variable. �e red points in the plot are the
Y -variables that are computed when building the PLSR model, i.e., the Y -variables were available.

32

X

m

n

=
1

1

1

x̄
T
+

t1
n

p1
m

+

t2
n

p2
m

+ E

m

n

Ŷ

k

n

=
1

1

1

ȳ
T
+

u1
n

q1k

+

u2
n

q2k

+ F

k

n

Figure 2.18: An illustration of the PLSR model

Figure 2.19: A PLSR model in Unscrambler X 10.3

�e blue points are the predicted Y -variables that are not included in the PLSR model. �e most
important element of the plot is the error measure RMSE. It gives the error of Y in absolute value
and it depends on the user to determine how high the RMSE can be. �e lower the RMSE, the
be�er is the prediction.

33

Chapter 3

Dynamic model of the underwater snake
robot

�is section will brie�y present some fundamental properties of the underwater snake robot, like
the forward velocity, average power consumption, kinematics and dynamics. Furthermore, we
want to de�ne the mathematical terms that will be used in the optimization for the upcoming
sections. �e underwater snake robot in this thesis is based on the dynamic model presented in
[5, 8, 13]. �e physical parameters for the dynamic model are chosen to be equal to the ones given
in [4, 13]. In addition to the model, we also use the low-level PD-controller presented in [13].

3.1 Mathematical terms and symbols

�e mathematical terms of the underwater snake robot are given in [5], which are summerized
in Table 3.1. Furthermore, some properties of the underwater snake robot are listed as:

• Consists of n rigid links of equal length 2l
• �e links are interconnected by n − 1 joints
• �e links have the same massm, and a moment of inertia 1

3mL2

• �e center of mass (CM) is located at the center of each link, and the mass is uniformly
distributed.

• �e total mass of the snake is, nm
In addition to the mathematical terms given in Table 3.1, the following vectors and matrices

given in [5], are used in formulating the kinematics and hydrodynamics of the underwater snake
robot.

A =

Addition matrix︷ ︸︸ ︷


1 1
. . .

. . .

1 1


, D =

Di�erence matrix︷ ︸︸ ︷


1 −1
. . .

. . .

1 −1


(3.1)

35

Table 3.1: Mathematical terms

Symbol Description Vectors
n �e number of links
l �e half length of a link
m Mass of each link
J Moment of inertia of each link
θi Angle between link i and the global x axis θ ∈ Rn

ϕi Angle of joint i ϕ ∈ Rn−1

(xi ,yi) Global coordinates of the CM of link i X ,Y ∈ Rn

(px ,py) Global coordinates of the CM of the robot pCM ∈ R2

ui Actuator torque of the joint between link i and link i + 1 u ∈ Rn−1

ui−1 Actuator torque of the joint between link i and link i − 1 u ∈ Rn−1

(fx ,i , fy,i) Fluid force on link i fx , fy ∈ Rn

τi Fluid torque on link i τ ∈ Rn

(hx ,i ,hy,i) Joint constraint force on link i from link i + 1 hx ,hy ∈ Rn−1

−(hx ,i ,hy,i) Joint constraint force on link i from link i − 1 hx ,hy ∈ Rn−1

where A,D ∈ R(n−1)×n. Furthermore,

e =
[
1 . . . 1

]T
∈ Rn, E =

[
e 0n×1

0n×1 e

]
∈ R2n×2

sinθ =
[
sinθ1 . . . sinθn

]T
∈ Rn, Sθ = diag(sinθ) ∈ Rn×n

cosθ =
[
cosθ1 . . . cosθn

]T
∈ Rn, Cθ = diag(cosθ) ∈ Rn×n

sgnθ =
[
sgnθ1 . . . sgnθn

]T
∈ Rn, θ̇ 2 =

[
θ̇ 2

1 . . . θ̇ 2
n

]T
∈ Rn

(3.2)

J = jIn, L = lIn, M =mIn

K = AT (DDT)−1, H =
(
In −

1
n

eeT
)−1

KT , V = AT (DDT)−1A
(3.3)

where e is the summation vector and DDT is assumed to be invertible.

3.2 �e kinematics of the underwater snake robot
In [5], Figure 3.1 and 3.2 illustrate the kinematics of the underwater snake robot, where vectors
in the global and local coordinate system are denoted with the superscript global and link,i, re-
spectively. Furthermore, the dynamic model is assumed to move in a virtual horizontal and �at
plane, and fully immersed in water. �is gives the underwater snake robot a total of n+ 2 degrees
of freedom (n links in the x − y plane) [5].

From Figure 3.1, the link angle θi (t) in each link i ∈ {1, . . . ,n} is de�ned as the angle between
the global x axis and link i , where counterclockwise is de�ned as the positive direction. �e joint
angle of joint i ∈ {1, . . . ,n − 1} is denoted by ϕi (t) and de�ned as

ϕi (t) = θi (t) − θi−1(t) (3.4)

36

Figure 3.1: Kinematics of the underwater snake robot

Figure 3.2: Forces and torques acting on each link

Furthermore, the angles and the joint angles are assembled in the vectorsθ (t) = [θ1(t), . . . ,θn (t)]T ∈
Rn and ϕ (t) = [ϕ1(t), . . . ,ϕn−1(t)]T ∈ Rn−1, respectively. In [5], the heading θ̄ (t) ∈ R of the un-
derwater snake robot is de�ned as the average of the link angles

θ̄ (t) =
1
n

n∑
i=1

θi (t), (3.5)

which also can be interpreted as the orientation. �e global frame position PCM ∈ R
2 of the center

37

of mass of the underwater snake robot is given by

PCM (t) =

[
px (t)
py (t)

]
=

[1
nm

∑n
i=1mxi (t)

1
nm

∑n
i=1myi (t)

]
=

1
n

[
eTX
eTY

]
, (3.6)

where (xi (t),yi (t)) are the global frame coordinates of the CM of link i , X(t) = [x1(t), . . . ,xn (t)]T ∈
Rn and Y(t) = [y1(t), . . . ,yn (t)]T ∈ Rn. Furthermore, the links constrained by the joints can be
expressed as

DX(t) + lA cosθ (t) = 0⇔DX(t) = −lA cosθ (t) (3.7)
DY(t) + lA sinθ (t) = 0⇔DY(t) = −lA sinθ (t). (3.8)

A more detailed derivation of the kinematics can be found in [5].

3.3 Hydrodynamic model
In this section, we will brie�y present the dynamics of the underwater snake robot. �e formula-
tion of the dynamics for the underwater snake robot is quite complicated. In [5], it is shown that
the global frame �uid forces on the links are given as

f (t) =
[
fx(t)
fy(t)

]
=

[
fAx (t)
fAy (t)

]
+



f I
Dx
(t)

f I
Dy
(t)


+



f II
Dx
(t)

f II
Dy
(t)


, (3.9)

where fAx (t) and fAy (t) represent the e�ects from added mass forces. Furthermore, the vectors f I
Dx

,
f I
Dy

and f II
Dx
(t), f II

Dy
(t) represent the e�ects from the linear and nonlinear drag forces, respectively.

�e �uid torques on all the links in matrix form are given by

τ (t) = −Λ1θ̈ (t) − Λ2θ̇ (t) − Λ3θ̇ (t) |θ̇ (t) |, (3.10)

where Λ1 = λ1In, Λ2 = λ2In and Λ3 = λ3In. For a more detailed derivation of the dynamics for the
underwater snake robot, see [5]. Observe the dot notation in the equtaion. �is simply implies
that θ̇ (t) and θ̈ (t) is the �rst and second derivative with respect to time t , respectively.

3.4 Equations of motion
In [5], it can be shown that the links of the underwater snake robot are constrained by the joints
according to Figure 3.2, and the force balance equations for all links may be expressed in matrix
form as

mẌ(t) = DT fx(t) + fx(t), mŸ(t) = DThy(t) + fy(t). (3.11)
Furthermore, we can compute the acceleration of CM by di�erentiating equation (3.6) twice with
respect to time, inserting equation (3.11) and cancel the constraint forces hx and hy when the link
accelerations are summed. �is gives the equation for acceleration of the CM as

P̈CM (t) =

[
p̈x (t)
p̈y (t)

]
=

1
n

[
eT Ẍ(t)
eT Ÿ(t)

]
=

1
nm

[
eT 01×n

01×n eT

]
f (t) =

1
nm

ET f (t). (3.12)

38

In [5], the torque balance equations for all links of the underwater snake robot in matrix form
is given by

Jθ̈ (t) = DTu(t) − lSθAThx (t) + lCθAThy (t) + τ (t). (3.13)
By inserting (3.11) into (3.13) and replacing Ẍ, Ÿ in (3.11) by the double derivatives with respect
to time in (3.7), we get:

Mθ θ̈ (t) +Wθ θ̇
2(t) + Vθ θ̇ (t) + Λ3θ̇ (t) |θ̇ (t) | − lSθKfDx (t) + lCθKfDy (t) = DTu(t), (3.14)

where fDx (t) = f I
Dx
(t)+ f II

Dx
(t) and fDy (t) = f I

Dy
(t)+ f II

Dy
(t) are the drag forces in x and y directions,

respectively, and u(t) ∈ Rn−1 the joint control input. �e complete equations of motion for the
underwater snake robot are given by (3.12) and (3.14). A more detailed derivation of the equations
of motion for the underwater snake robot can be found in [5].

3.5 Low-level joint controller for the underwater snake robot
In this thesis, the lateral and eel-like motion pa�ern for the snake robot is based on the sinusoidal
reference signal proposed in [5],

ϕ∗i (t) = αд(i,n) sin(ωt + (i − 1)δ) + γ , i ∈ {1, ...,n − 1}, (3.15)

where n is the total number of joints, α the amplitude, ω the frequency, δ the phase shi� between
the joints and ϕi is the di�erence in joint angles given by (3.4). �e scaling function д(i,n) for
the amplitude of joint i is used to create di�erent motion pa�erns for the snake robot. In this
thesis, the motion pa�erns called lateral undulation and eel-like motions are being focused on.
To achieve the lateral undulation, which is a sinusoidal motion with constant amplitude α , the
scaling function needs to be set to

д(i,n) = 1. (3.16)
�e eel-like motion pa�ern is a motion that starts with a small amplitude in the head of the snake
robot and then gradually increases towards the tail. To achieve this motion, the scaling function
g is set to

д(i,n) =
n − i

n + 1 . (3.17)

�e torque signalui in each joint is calculated as proposed in [5], with a PD controller to compute
the joints actuator torques from the joints reference angles given by

ui (t) = kp (ϕ
∗
i (t) − ϕi (t)) + kd (ϕ̇

∗
i (t) − ϕ̇i (t)), i ∈ {1, ...,n − 1} (3.18)

where kp > 0 and kd > 0 are constant control gains.

3.6 �e forward velocity and the average power consump-
tion

For an underwater snake robot, the propulsion is generated by the motion of the joints and its in-
teraction with the surrounding �uid. �is implies that the actuator torque (4.9) input to the joints

39

convert into a combination of joint motion and the energy that is dissipated by the �uid. Fur-
thermore, we assume that the underwater snake robot has perfect joints. �us, the total amount
of energy of the dynamic system generated by the controller (4.9) is a combination of the sum of
kinetic energy and the energy that dissipates to the surrounding �uid [8]. In physics, the change
of energy with respect to time (work) is given by the integral

∆E =

∫ t2

t1

τ̂ ω̂ dt , (3.19)

where τ̂ is the torque and ω̂ is the angular velocity. �us, the total energy consumption for the
propulsion of the dynamic model proposed in [13, 8], is given by

Es = Ekinetic + E f luid =

∫ T

0
*
,

n−1∑
i=1

ui (t)ϕ̇i (t)+
-
dt , (3.20)

where T is the time of a complete swimming cycle of the dynamic model, ui (t) is the actuation
torque of joint i given by the PD controller (4.9) and ϕi (t) the angular velocity of joint i de�ned
as

ϕ̇ (t) = θ̇i (t) − θ̇i−1(t). (3.21)

For a complete swimming cycleT , the average power consumption of the dynamic model is com-
puted by

Pavд =
1
T

∫ T

0
*
,

n−1∑
i=1

ui (t)ϕ̇i (t)+
-
dt , (3.22)

while the forward velocity is de�ned as

v̄ =

√
(px (T) − px (0))2 + (py (T) − py (0))2

T
, (3.23)

[13, 8]. �is forward velocity is computed by taking the traveling distance of the CM given by
(3.6) at the initial and the �nal points, and then divide the distance with the time of a complete
swimming time cycle T . Note that the actuator torque ui (t), the joint angle ϕi (t) and angular
velocity ϕ̇ (t) of joint i are time-dependent, but for our convenience, we will disregard the notation
of t , such that we simply write ui , ϕi and ϕ̇i in the upcoming sections.

40

Chapter 4

Methodology

In this chapter, a formulation of the multi-objective optimization problem for the dynamic model
is given. In addition to the formulation of the MOP, di�erent motion pa�erns of the snake robot
are also introduced. �e two most common motion pa�erns called the lateral undulation and
eel-like motion are inspired by the motion seen in nature, while the other motion pa�erns are
altered. �e purpose of the altered motion pa�erns is to let the MOEAs search for an e�cient
motion. �e shape of the altered motion pa�erns is di�cult to conclude since the formulation of
the pa�erns is not concrete. However, all the motion pa�erns are assumed to be periodic. �e
goal is to examine the advantages and disadvantages of each motion pa�ern. In this thesis, the
altered motion are called the modi�ed, Fourier series and multi-Fourier motion pa�ern. �e �rst
altered motion pa�ern (modi�ed) take the basis of the lateral undulation and eel-like motion,
while the two la�er motions are based on the Fourier series given in Section 2.6. �is chapter
also presents the steps for se�ing up the NSGA-II and HypE for solving the MOP, i.e., selecting
the chromosome representation, genotype, phenotype, etc. �e arrangement of this chapter is
given as follows. Section 4.1 and 4.2 present the MOP of the dynamic model and the constraint
handling, respectively. �e encoding and decoding of the genetic representation of the solution
x = gait parmaters are introduced in Section 4.3. A brief introduction of the implementation of
the MOEA and the simulator is given in Section 4.5. Finally, a simulation study, which gives an
overview of the simulations in this thesis is presented in Section 4.6.

4.1 �e multi-objective optimization problem
�is section presents the multi-objective optimization problem for each motion pa�ern. �e only
di�erences between each MOP are the constraints on the external parameters called the gait pa-
rameters. In the context of GA, the gait paramaters represent the genes in MOEAs. �e common
internal constraints of the MOP for all the motion pa�erns is given as

min
x

fopt (x)

subject to



���ϕ
∗
i

��� ≤ ϕ
max
i���ϕ̇

∗
i

��� ≤ ϕ̇
max
i

|ui | ≤ umax
i

,
(4.1)

41

where the physical constraints ϕmax
i and ϕ̇max

i are for the joints andumax
i for the servo motors [13].

�e goal in this MOP is to minimize and maximize the average power consumption (3.22) and the
forward velocity (3.23) of the underwater snake robot, respectively. �us, the multi-objective
function fopt is de�ned as

fopt (x) = [Pavд,−v̄]. (4.2)

4.1.1 Lateral undulation and Eel-like motion
In [13], the multi-objective optimization problem for the underwater snake robot with lateral
undulation and eel-like motion is de�ned as

min
α ,ω,δ

fopt

subject to



0 ≤ α ≤ αmax

0 ≤ ω ≤ ωmax

0 ≤ δ ≤ δmax

,
(4.3)

where the parameter α , ω and δ are the gait parameters given in (3.15). Furthermore, the given
gait parameters are not time-dependent.

4.1.2 Altered motion pattern 1 — Modi�ed motion
In this section, we expand the optimization problem for the USR with lateral undulation motion
given in (4.3) to include varying amplitudes in the joints, i.e., no common amplitude α in each
joint. �is is done by adding the vector д = [д1,д2, . . . ,дn−1] = [α1,α2, . . . ,αn−1] to be a decision
variable in the formulation of the MOP. �us, by including д, the optimization problem will be
de�ned as

min
ω,δ ,д

fopt

subject to



0 ≤ ω ≤ ωmax

0 ≤ δ ≤ δmax

0 ≤ дi ≤ αmax

.
(4.4)

For this optimization problem, the sinusoidal reference signal will therefore be given as

ϕ∗i (t) = дi sin(ωt + (i − 1)δ) + γ , i ∈ {1, ...,n − 1}. (4.5)

Note that with this MOP, the complexity in the search space D has signi�cantly increased com-
pared to the one in (4.3), i.e., the total number of decision variables will now be equaln+1 variables,
where n is the number of links. Whereas the number of decision variables in (4.3) is only 3.

4.1.3 Altered motion pattern 2 — Fourier series motion
Instead of using the sinusoidal reference signal given in (3.15) as the motion pa�ern, we want to
use a more general reference signal, e.g., in the form of Fourier series. �ere are some assumptions
to be made beforehand, e.g., the reference signal is a 2L-periodic and C2 smooth function. With

42

these assumptions and �eorem 2.6.1, its Fourier series converges to ϕ∗(t), ϕ̇∗(t) and ϕ̈∗(t). Since
ϕ∗(t) is 2L-periodic function, its Fourier series is given as

ϕ̂∗i (t) = a0 +
∑
k∈N

(
akcos

(
kπt

L

)
+ bksin

(
kπt

L

))
(4.6)

Furthermore, the underwater snake robot proposed in [5], has n-links and thus we further assume
that the reference signal (4.6) is equally phase shi�ed on all the joints such that

ϕ̂∗i (t) = a0 +
∑
k∈N

(
akcos

(
kπt

L
+ (i − 1)δ

)
+ bksin

(
kπt

L
+ (i − 1)δ

))
, i ∈ {1, ...,n − 1}. (4.7)

Addition to the phase shi� δ , we can set a0 = 0 to remove the o�set of the reference signal in (4.7),

ϕ̂∗i (t) =
∑
k∈N

(
akcos

(
kπt

L

)
+ bksin

(
kπt

L

))
, i ∈ {1, ...,n − 1}. (4.8)

By se�ing a0 = 0, we ensure that
∫ L

−L
ϕ∗(t)dt = 0. �e torque signal ui in each joint will be the

same as the other motion pa�erns, but now with the Fourier series (4.7) as the reference signal.
�is gives us

ui (t) = kp (ϕ̂
∗
i (t) − ϕi (t)) + kd (

˙̂
ϕ∗i (t) − ϕ̇i (t)), i ∈ {1, ...,n − 1}, (4.9)

where
˙̂
ϕ∗i (t) =

∑
k∈N

kπ

L

(
−ansin

(
kπt

L
+ (i − 1)δ

)
+ bncos

(
kπt

L
+ (i − 1)δ

))
(4.10)

¨̂
ϕ∗i (t) =

∑
k∈N

−

(
kπ

L

)2 (
ancos

(
kπt

L
+ (i − 1)δ

)
+ bnsin

(
kπt

L
+ (i − 1)δ

))
(4.11)

With this motion pa�ern, the formulation of the MOP is de�ned as
min
ω,δ ,a,b

fopt

subject to



0 ≤ ω ≤ ωmax

0 ≤ δ ≤ δmax

0 ≤ дi ≤ αmax

.
(4.12)

With this motion pa�ern, the complexity in the search space D is based on how many Fourier
coe�cients we inlcude in the reference signal, i.e., the total number of decision variables in (4.12)
is 2 + 2k , where k is the number of coe�cients.

4.1.4 Altered motion pattern 3 — Multi-Fourier series motion
�is motion pa�ern is based on the idea of the modi�ed motion, i.e., we assign unique Fourier
series to each joint. �us, with this motion pa�ern, each joint have their unique reference signal
they follow. �e reference signal for this motion pa�ern is given as

ϕ̂∗i (t) = a0 +
∑
k∈N

(
ak,icos

(
kπt

L
+ (i − 1)δ

)
+ bk,isin

(
kπt

L
+ (i − 1)δ

))
, i ∈ {1, ...,n − 1}. (4.13)

43

�e MOP with this motion pa�ern is given as

min
ω,δ ,a,b

fopt

subject to




0 ≤ ω ≤ ωmax

0 ≤ δ ≤ δmax

|ak,i | ≤ α
max

|bk,i | ≤ α
max

.
(4.14)

�e total number of decision variables with this motion pa�ern is 2 + 2k (n − 1), where k and n is
the number of Fourier coe�cients and links, respectively.

4.2 Constraint handling
In this thesis, the constraint handling used in the MOEA is a simple scheme that punishes the
infeasible solutions with an arbitrary �tness value [27, 61]. In NSGA-II, the �tness is in the form
of ranks, where the lowest rank are the be�er solutions. �erefore, in the constraint handling
scheme, we assign a higher rank to the infeasible solutions. �is is done by adding an arbitrary
value between 3−7 with its current rank. �us, with this method, we will not completely shut o�
the infeasible solutions so that they may still be selected. However, in the environmental selec-
tion, the feasible solutions will have the highest priority, e.g., �rst consider the feasible solutions
and then the infeasible solutions. �e scheme for creating the population P with the constraint
handling is illustrated in Figure 4.1. �e same concept applies to HypE, but instead of a rank

F1

F3

F1

F2

F3

F4

F2

R = 2N P = N

Figure 4.1: Constraint handling in MOEAs. �e green and orange sections
represent the feasible and infeasible solutions, respectively.

system, the solutions are assigned with a hypervolume indicator, where the �t solutions are the
solutions with highest hypervolume indicator. �us, instead of adding, we subtract an arbitrary
value of the hypervolume indicator of each infeasible solution.

4.3 Genetic representation
In this section, the genetic representation of each gait parameters presented in Section 4.1 will be
introduced. �is involves the encoding and decoding of the chromosome representation.

44

4.3.1 Lateral undulation, Eel-like and Modi�ed motion
�e gait parameters involved with this motion pa�erns are α ,ω and δ . Table 4.1 shows the genetic
representation of each gait parameters. �e upper bound value of the gait paramters given in

Table 4.1: Genetic representation for lateral undulation and eel-like motion

Gait Paramter Bit String Allele Phenotype
α 7-bit [0, 127] [0◦,αmax]
ω 7-bit [0, 127] [0◦,ωmax]
δ 7-bit [0, 127] [0◦,δmax]

Table 4.1 has been taken into account for selecting the bit string length of each gene. Note that
the maximum allele value for ω does not reach its maximum ωmax = 210◦ Nm. �is is acceptable
since small frequency di�erences is not so critical, and the same argument goes for α and δ . To
interpret this more, we will look at the decoding scheme for α , ω and δ . �e decoding of the gait
parameters in lateral undulation and eel-like motion are computed by dividing its current allele
value with its maximum value and then multiply with its boundary value. �is gives us,

α =
αint
αmax
int

αmax , ω =
ωint

ωmax
int

ωmax , δ =
δint
δmax
int

δmax (4.15)

where the subscript int represents the integer value of a speci�c gene. Consider αint = 64, then
the decoding of the α gene is given as α = 64

127 · 90 = 45.35◦ Nm. For the modi�ed motion pa�ern,
the only di�erence is that each joint has a unique reference signal similar to the lateral undulation
that they follow. �us, instead of a single α paramter, we have дi parameters. Table 4.2 shows the
genetic representation of the paramters. Furthermore, the decoding of each дi parameter is the

Table 4.2: Genetic representation for the modi�ed motion

Gait Paramter Bit String Allele Phenotype
дi 7-bit [0, 127] [0◦,αmax]

same as the α paramter, i.e.,
дi =

дi
дmax
i

αmax (4.16)

For the sake of simplicity, the chromosome representation of the motion pa�erns is selected in
the same order as they were presented in this thesis. Figure 4.2 and 4.3 show the chromosome
representation of lateral undulation, eel-like and modi�ed motion. From the �gures, the chrom-

α ω δ

Gene 1 Gene 2 Gene 3

Figure 4.2: Chromsome representation of the lateral undulation and eel-like
motion pa�erns

some length for lateral undulation and eel-like motion is 3 ·7-bits = 21-bits, while for the modi�ed
motion pa�ern is (n + 1) · 7-bits.

45

дiω δ
Gene 3Gene 1 Gene 2

: : :

Gene n+1

дn−1

Figure 4.3: Chromsome representation of the modi�ed motion pa�ern

4.3.2 Fourier and multi-Fourier series motion
For the Fourier series motion pa�erns, we replace α with Fourier coe�cients. Table 4.3 shows
the genetic representation of the Fourier coe�cients. In this motion pa�ern, we want to include

Table 4.3: Genetic representation for the Fourier series motion

Gait Paramter Bit String Allele Phenotype
a0 7-bit [0, 127] [−αmax ,αmax]
an 7-bit [0, 127] [−αmax ,αmax]
bn 7-bit [0, 127] [−αmax ,αmax]

negative values to the Fourier coe�cients and thus the decoding scheme for the coe�cients is
given as

a0 =




0, if
amax

0,int
2 ≤ a0,int ≤

amax
0,int
2 + 1

*
,

2a0,int
amax

0,int
− 1+

-
αmax , else

(4.17)

an =




0, if
amax
n,int

2 ≤ an,int ≤
amax
n,int

2 + 1

*
,

2an,int
amax
n,int

− 1+
-
αmax , else

, n ∈ N (4.18)

bn =




0, if
bmax
n,int

2 ≤ bn,int ≤
bmax
n,int

2 + 1

*
,

2bn,int
bmax
n,int

− 1+
-
αmax , else

, n ∈ N (4.19)

Note that the decoding scheme is uniformly, i.e., the value steps from zero to negative and postive
values is the same. For example, let a0,int = 62 and a1,int = 65 then using the decoding scheme
gives us a0 =

(
2·62
127 − 1

)
·90◦ = −

(
270
127

)◦
and a1 =

(
2·65
127 − 1

)
·90◦ =

(
270
127

)◦
. For the chromsome rep-

resentation, we will disregard a0 (no o�set) and consider the motion pa�ern (4.8). �e chromsome
representation of the Fourier and multi-Fourier series motion is shown in Figure 4.5 and 4.5. �e

a1ω δ

Gene 3Gene 1 Gene 2

: : :

Gene k+2

ak b1
: : : bk

Gene 2k+2

Figure 4.4: Chromsome representation of the Fourier series motion pa�erns

46

a1ω δ

Gene 3Gene 1 Gene 2

: : :

Gene (n-1)k+2

ak b1
: : : bk

Gene 2(n-1)k+2

Figure 4.5: Chromsome representation of the multi-Fourier series motion pat-
terns

total number of genes really depends on the number of Fourier coe�cients we select. For example,
let k = 1 then the total number of genes is 4 and 20 for Fourier and multi-Fourier series motion,
respectively. Note that the number of genes increases signi�cantly as the number of Fourier coef-
�cients increases. Since all the genes have the same bit string length, the chromosome length for
the Fourier and multi-Fourier series motion are therefore (2k+2) ·7-bits and (2(n−1)k+2) ·7-bits,
respectively. �e parameter L given in (4.7), is selected to be L = kπ

ω , where k is the number of
Fourier coe�cients. �is is to limit the maximum frequency, i.e., Lmin = kπ

ωmax ≤ L ≤ kπ = Lmax .

4.4 Simulation paramters
In this thesis, the simulation paramters such as the physical, hydrodynamic and �uid paramters
are based on the values given in [5, 13, 4]. Furthermore, the gains for the low-level joint actua-
tion controller (4.9) are selected identical to the values given in [13]. An overview of the model
paramters are given in Table 4.4.

Table 4.4: Simulation paramters

Symbol Value Unit Description
n 10 Number of links
l 0.18 [m] Length of each link
m 0.8 [kg] Mass of each link
a 0.055 [m] Elliptical section (major)
b 0.05 [m] Elliptical section (minor)
ρ 1000 [kg/m3] Fluid density
C f 0.03 Drag coe�cient in x
CD 2 Drag coe�cient in y
CA 1 Added mass coe�cient
CM 1 Added inertia coe�cient
kp 20 P-gain
kd 5 D-gain

4.5 Implementation
In section section, a brief introduction of the implementation for the MOEAs is presented. �e
implementation is done in Python 3.5 with the help of the python libraries called Numpy 1.13.0
and DEAP 1.1.0 [62, 63, 64]. �e Numpy library includes useful math operations and a powerful

47

N -dimensional array object, and DEAP includes a distributions of Evolutionary Algorithms, such
as NSGA-II, SPEA2, PSO, etc. However, the distributed evolutionary algorithms from DEAP are
not used in this thesis. All the algorithms are implemented from scratch. �e DEAP library is
used for storing the population and �tness values. Both the NSGA-II and HypE have the same
main interface, which is given in Listing A.1. �e only di�erence between those two is the en-
vironmental selection. �e implementation of the environmental selection for both NSGA-II and
HypE is shown in Listing A.2 and A.3, respectively. Furthermore, the number of crossover points
in the multi-point crossover is selected to be equal three. An illustration of the optmization �ow
is given in Figure 4.6. In HypE, there is a need for a reference R. �is reference is chosen to be the

MOEA
Motion

ode23tb solver

PD
Pa�ern

Python

MATLAB

Evaluate

Population

Constraints: c¹xº

P u;ϕ; Ûϕ
PCM ;Tϕ∗

Ûϕ∗
;
Üϕ∗

Pavд ; �v̄

Figure 4.6: Illustration of the optimization loop.

boundary points of the simluations in the R2 space. �ese boundary points were found by run-
ning some test simulation and are given as R = {[100,−2], [0, 0.05]}, where the �rst and second
element equal y1 = Pavд and y2 = −v̄ , respectively. Furthermore, the exact hypervolume indicator
in HypE is computed by the MATLAB codes provided in [65]. �e simulation model is imple-
mented in MATLAB 2017a and provided from supervisor Krsitin Y. Pe�ersen and co-supervisor
Eleni kelasidi [66]. Some modi�cation has been made in the simulator, i.e., including the MAT-
LAB function parfor in the Parallel Computing Toolbox. �is function helps the computation time
of evaluating the population; solving the Ordinary Di�erential Equations (ODEs) in parallel. �e
total number of solutions that can be evaluated in parallel depends on the number of physical
cores the computer have. With two cores, one can simulate two solutions at the same time. �is
is doable, since in Python, we decode all the solutions beforehand and then sending them to MAT-
LAB for evaluation. �e computer speci�cations used for running the simulations in this thesis
is a Intel® Core™ i7-6700 Processor with 32 DDR4 RAM. �is processor has four cores and thus the
simulation time is four times faster with the function parfor. �e solver used for computing the
ODEs was the ode23tb solver with a realtive and absolute error tolerance of 10−3. Furthermore, the
simulation total swimming time cycle T was set to 20 seconds.

4.6 Simulation study
In this section, we will present �ve di�erent scenarios for simulations and interpretations:

• Scenario 1: Find optimal GA paramters.
• Scenario 2: Simulations with optimal GA paramters.
• Scenario 3: Using multivariate analysis for interpretation.

48

�e �rst part consist of pre-simulations to �nd optimal or suboptimal GA parameters of each
motion pa�ern, i.e., the population size N , crossover rate and mutation rate. �ese parameters
will then further be used for the actual simulation results, were we will do a more thorough
interpretation of the results. �e tuning of the GA paramters is done by running consecutive
simulations with varying parameters. Table 4.5 shows the di�erent cases of varying the crossover
and mutation rate. �e role of the population size can be seen as a trade-o� between diversity and

Table 4.5: Cases for tuning the GA paramters

Case Crossover rate Mutation rate
1 0.6 0.050
2 0.6 0.100
3 0.6 0.150
4 0.7 0.050
5 0.7 0.100
6 0.7 0.150
7 0.8 0.050
8 0.8 0.100
9 0.8 0.150

computation time. �is implies that large initial population (expands more of the searching space)
can help MOEAs to escape local optimums but at the cost of slower runtime [67, 68]. �e choice
of the population size is not trivial, one could do error and trial of the population sizes. If we base
on the Shannon-Nyquist sampling theorem, which imply that converting a signal into numeric
sequence, one should have a sample-rate of at least two [69]. �us, in our case the population size
N would be,

N = (sample rate · 2n дenes)2 (4.20)

However, with this scheme, the population size will be tremendously large, e.g., with the modi�ed
motion and a sample-rate of two, the population size would be N = (2 · 211)2 = 37748736. Instead,
we will consider an alternative scheme, which is given as

N = (sample rate · n дenes)2. (4.21)

With (4.21) and a sample-rate of two, the population size for the modi�ed motion will be N =
(2 · 11)2 = 484, which is signi�cantly lesser. Table 4.6 shows the population sizes for tuning of
each motion pa�ern. �e tuning of GA parameters are computed with NSGA-II. A�er �nding the
optimal paramters, simulations are done for both NSGA-II and HypE.

49

Table 4.6: �e population sizes for tuning the GA parmeters

Motion pa�ern Number of genes Population size
Lateral undulation & Eel-like 3 N = {100, 200, 300}
Modi�ed 11 N = {200, 500, 800}
Fourier series (k = 1) 4 N = {100, 200, 300}
Fourier series (k = 3) 8 N = {100, 300, 500}
Multi-Fourier series 20 N = {200, 500, 800}

50

Chapter 5

Simulation results

�is chapter presents the simulations results. �e arrangement of this chapter is given as follows.
Section 5.1 presents the results of �nding the optimal GA parameters for the actual simulations.
In this section, the hypervolumes are used for comparison between the simulation cases given
in Section 4.6. Section 5.2 inspects the motion pa�erns of the actual simulations, using PCA and
PLSR. Furthermore, a regression model is constructed for each motion pa�ern.

5.1 Optimal GA paramters
In this section, we will �nd the optimal GA paramters for the actual simulations in Section 5.2.
To �nd the optimal GA paramters, we have to get a decent set of simulation data. Due to the long
computation time, we have set the number of samples of each motion pa�ern to be four. �us,
with four samples, the total number of simulation runs for each motion pa�ern in Table 4.6 is
4 · 9 · 3 = 108. Except for the Fourier series motion with k = 3 and multi-Fourier series. �ese
motion pa�erns are only simulated with one sample. �is is because of the time scope of this
thesis. To ensure that the solutions converge, we set the total number of generations to be equal
100. �is will give us a total number of 10800 generations to simulate for each motion pa�ern.
�e total number of data for comparison will therefore be overwhelmingly large. To give an
example, the Figures A.3-A.5 show all the simluation results for the Fourier serires (k = 3) motion
pa�ern. For simplicity, not all the simulation �gures are included, only the valuable data based
on the hypervolumes and how the soultions spread out the Pareto front are selected. Since we do
not know the optimal Pareto front, the hypervolume indicator is a good way for comparing the
simulation results.

5.1.1 Lateral undulation and Eel-like motion
�e hypervolume indicators for the lateral undulation given in Figure A.6, is an average of the
four simulation samples. �e �gure shows that all the simulation results converge, i.e., the hyper-
volume indicator stops increasing. From Figure A.6, we select the cases that give the best average
hypervolume indicator. �e selected cases are shown in Figure 5.1, and these were based on the
average hypervolume indicator given in Figure A.6d and A.6e. Observe that the Pareto front of
all the samples do not have any gaps, i.e., the solutions cover the entire front and are uniformly
spread out. In Figure 5.1a, the solutions have more space between them and is, therefore, less

51

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation: 100

pop = 100, cx = 0.70, mx = 0.100

pop = 100, cx = 0.70, mx = 0.100

pop = 100, cx = 0.70, mx = 0.100

pop = 100, cx = 0.70, mx = 0.100

(a) cx = 0.70, mx = 0.100, N =
100

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation: 100

pop = 200, cx = 0.70, mx = 0.050

pop = 200, cx = 0.70, mx = 0.050

pop = 200, cx = 0.70, mx = 0.050

pop = 200, cx = 0.70, mx = 0.050

(b) cx = 0.70, mx = 0.050, N =
200

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation: 100

pop = 300, cx = 0.70, mx = 0.100

pop = 300, cx = 0.70, mx = 0.100

pop = 300, cx = 0.70, mx = 0.100

pop = 300, cx = 0.70, mx = 0.100

(c) cx = 0.70, mx = 0.100, N =
300

Figure 5.1: Lateral undulation: �e three cases with the best average hyper-
volume indicator.

dense than the fronts in Figure 5.1b and Figure 5.1c. �e cause for this e�ect, is that the popula-
tion size N for this case is smaller. With the computer speci�cation given in Section 4.5, the total
simulation time for one generation was approximated:

• 25 seconds for N = 100
• 57 seconds for N = 200
• 1 minute and 33 seconds for N = 300

�us, by considering the average hypervolume indicator, the Pareto fronts and the computation
time, we select the optimal GA paramters for the lateral undulation and eel-like motion to be
N = 200, cx = 0.70 andmx = 0.050.

5.1.2 Modi�ed motion
�e same approach for selecting the optimal GA parameters in the previous section will be ap-
plied for the modi�ed motion. Figure A.7 shows the average hypervolume indicator for the cases
with the modi�ed motion. Observe that the hypervolume indicators in each sub�gure given in
Figure A.7 deviate more with each other compared to Figure A.6. �is implies that the search
space D in this case is not as simple as the search space of the lateral undulation. �at is not
so unexpected since the modi�ed motion includes more decision variables. Figure 5.2 shows the
three cases with the best average hypervolume indicator, respectively. Observe also that the so-
lutions cover most of the Pareto front. Further observation of the Pareto fronts shows that in
Figure 5.2a, some solutions are missing at the end. While the Pareto fronts in Figure 5.2b and 5.2c
resemble each other. �e total simulation time for one generation with the modi�ed motion was
about:

• 54 seconds for N = 200
• 2 minutes and 23 seconds for N = 500
• 4 minutes and 4 seconds for N = 800

Note that most of the hypervolumes for the case with N = 200 converge to a lower value than
N = 500 and N = 800, which means that with N = 200, the solutions either cover less of the

52

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation: 100

pop = 200, cx = 0.80, mx = 0.150

pop = 200, cx = 0.80, mx = 0.150

pop = 200, cx = 0.80, mx = 0.150

pop = 200, cx = 0.80, mx = 0.150

(a) cx = 0.80, mx = 0.150, N =
200

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation: 100

pop = 500, cx = 0.80, mx = 0.100

pop = 500, cx = 0.80, mx = 0.100

pop = 500, cx = 0.80, mx = 0.100

pop = 500, cx = 0.80, mx = 0.100

(b) cx = 0.80, mx = 0.100, N =
500

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation: 100

pop = 800, cx = 0.70, mx = 0.050

pop = 800, cx = 0.70, mx = 0.050

pop = 800, cx = 0.70, mx = 0.050

pop = 800, cx = 0.70, mx = 0.050

(c) cx = 0.70, mx = 0.050, N =
800

Figure 5.2: Modi�ed: �e three cases with the best average hypervolume indi-
cator.

Pareto fronts or converge to a local optimum worse than the others. �us, by considering the
computation time, the Pareto fronts and the hypervolumes, the GA paramters for the modi�ed
motion are selected to be N = 500, cx = 0.80 andmx = 0.100.

5.1.3 Fourier series motion
In this section, the optimal GA paramters will be decided for the Fourier series motion pa�ern.
Figure A.8 shows the average hypervolume indicator for the cases with k = 1. Observe that
the hypervolume indicators in the sub�gures resemble the indicators in Figure A.6. Figure 5.3
shows the samples based on the hypervolume indicator given in Figure A.8g. �ese hypervolumes

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation: 100

pop = 100, cx = 0.80, mx = 0.050

pop = 100, cx = 0.80, mx = 0.050

pop = 100, cx = 0.80, mx = 0.050

pop = 100, cx = 0.80, mx = 0.050

(a) cx = 0.80, mx = 0.050, N =
100

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation: 100

pop = 200, cx = 0.80, mx = 0.050

pop = 200, cx = 0.80, mx = 0.050

pop = 200, cx = 0.80, mx = 0.050

pop = 200, cx = 0.80, mx = 0.050

(b) cx = 0.80, mx = 0.050, N =
200

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation: 100

pop = 300, cx = 0.80, mx = 0.050

pop = 300, cx = 0.80, mx = 0.050

pop = 300, cx = 0.80, mx = 0.050

pop = 300, cx = 0.80, mx = 0.050

(c) cx = 0.80, mx = 0.050, N =
300

Figure 5.3: Fourier series (k = 1): �e three cases with the best average hyper-
volume indicator.

compared to the other sub�gures have the smallest deviation between them and also show that
the samples have good convergence. Observe that the sub�gures in Figure 5.3 are similar to each
other. Furthermore, since the hypervolume indicator end up in the same value and have the
same structure, the selection of the GA parameters for this motion pa�ern is not too crucial. �e
simulation time for one generation with this motion pa�ern was about:

• 40 seconds for N = 100

53

• 1 minutes and 25 seconds for N = 200
• 2 minutes and 10 seconds for N = 300

With the same arguments as in the previous sections, the selected optimal GA parameters for the
Fourier series with k = 1 motion are N = 200, cx = 0.80 andmx = 0.050.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation: 100

pop = 500, cx = 0.70, mx = 0.100

Figure 5.4: Fourier series (k = 3): �e sample with N = 500 and highest
hypervolume indicator.

For the Fourier series with k = 3 coe�cients, the total number of decision variables increases
to 8. Furthermore, with more Fourier coe�cients, the approximation of an optimal reference ϕ∗i
will be be�er. However, with more coe�cients, the search space D becomes more complicated.
�is can be seen in Figure A.9. �e hypervolume indicators of this case is not as smooth as
the hypervolumes in Figure A.8. Many of the samples converge to a local optimum with poor
Pareto fronts, shown in Figure A.3-A.5. By observations, almost all the samples in Figure A.5
give a su�cient Pareto front, compared to the samples in Figure A.3 and A.4. �is shows that
the quality of the Pareto fronts for this case are greatly a�ected by the population size N . With
a larger population size, the solutions cover more of the search space D, which may help the
MOEAs to avoid the local optimums. �us, the selected optimal GA parameters for this motion
pa�ern are based on the highest hypervolume indicator with N = 500, which gives cx = 0.70
and mx = 0.100. Furthermore, with these GA parameters, the approximated simulation time for
one generation was about 5 minutes and 42 seconds. Note the Pareto front shown in Figure 5.4
resembles the fronts in Figure 5.3. �is may or may not indicate that there are almost no di�erence
between k = 1 and k = 3 coe�cients. Further investigation of this motion pa�ern will be given
in the upcoming sections.

5.1.4 Multi-Fourier series motion
Figure A.10 shows the hypervolumes of the multi-Fourier series motion. �e observations of the
sub�gures show that not all the samples have converged. �is indicate that simulation with a total
number of generation equal 100 is not su�cient for this motion pa�ern. Figure 5.5 shows the best
selected samples. In Figure 5.5a the Pareto front is not as smooth as the fronts in Figure 5.5b and

54

5.5c. �e Pareto fronts in Figure 5.5b and 5.5c are quite similar to each other. However, the front
in Figure 5.5b is more extended and have a gap between the solutions at the end of the front.
�is gap shows that the solutions may not have converged to their optimal values yet or that the
search space D is too complexed for the MOEAs to evenly spread all the solutions on the whole
Pareto front. �e simulation time for one generation with this motion pa�ern was about:

• 4 minutes and 30 seconds for N = 300
• 6 minutes and 48 seconds for N = 500
• 9 minutes and 6 seconds for N = 800

Observe the long the simulation runtime for this motion pa�ern. �e cause for this long simula-
tion time is because to the number of decision variables (20 variables), which may bring the USR
model to operate in the infeasible search space. Furthermore, some of the samples with N = 300
had really poor performance. Based on the simulation time and Pareto fronts in Figure 5.5, the
optimal GA paramters for this motion pa�ern is selected to be N = 500, cx = 0.70 andmx = 0.150.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation: 100

pop = 300, cx = 0.60, mx = 0.150

(a) cx = 0.80, mx = 0.050, N =
100

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation: 100

pop = 500, cx = 0.70, mx = 0.150

(b) cx = 0.80, mx = 0.050, N =
200

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation: 100

pop = 800, cx = 0.70, mx = 0.050

(c) cx = 0.80, mx = 0.050, N =
300

Figure 5.5: Multi-Fourier series: �e three cases with the best average hyper-
volume indicator.

5.2 Simulations with optimal GA paramters

�is section presents the simulation results with the optimal GA paramters. �e number of gen-
erations for the modi�ed and the multi-Fourier motion have been increased to 200. �is is to
ensure that the population properly converges. For the lateral undulation, eel-like and Fourier se-
ries motion, the number of generations will stay the same, which is 100. �is section is organized
as follows: (i) An investigation of the common gait paramters ω and λ of each motion pa�ern.
(ii) Comparison between NSGA-II and HypE, using both the hypervolume indicators and Pareto
fronts. (iii) An investigation of the Pareto fronts for each motion pa�ern. (iv) �eoretical anlysis
of each motion pa�ern using the multivariate analysis introduced in Section 2.7.

55

5.2.1 Distribution of the gait paramters ω and δ
In this section, we inspect the distibution ofω and δ in the population of each motion pa�ern. �e
aim of this investigation is to check if it is possible to disregard eitherω or δ , to reduce the number
of decision variables. �e distribution of ω and δ in the population is shown in Figure 5.6. From

50 100 150 210

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Distribution of ω.

-5 18 36 54 72 90

0

0.05

0.1

0.15

0.2

0.25

(b) Distribution of δ .

Figure 5.6: Distribution of ω and δ in the population P.

Figure 5.6a, almost all the solutions have ω = ωmax . �is may indicate that the optimal frequency
is ωmax . One may therefore try and disregard ω by replacing it with ωmax . �e structure of the
phase shi� δ , is not as trivial as the frequency ω. Further investigation of this gait parameter is
done with multivariate analysis using PCA.

5.2.2 Comparison between NSGA-II and HypE
�e hypervolume indicator of the Pareto front for a particular motion is used for comparison be-
tween NSGA-II and HypE. �e modi�ed motion is considered for comparing the MOEAs. �is

20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

Algorithm: NSGA-II, Motion: Modified

Algorithm: HypE, Motion: Modified

(a) Modi�ed motion: Hypervol-
umes.

0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation: 200

(b) Modi�ed motion: NSGA-II.

0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation: 200

(c) Modi�ed motion: HypE.

Figure 5.7: Comparison between NSGA-II and HypE with modi�ed motion.

is due to the total number of decision variables the modi�ed motion has. Figure 5.7 shows the
hypervolume indicator of the Pareto fronts of both NSGA-II and HypE given in Figure 5.7b and

56

5 6 7 8 9 10 11 12 13 14 15

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Generation: 200

(a) Modi�ed motion: NSGA-II.

5 6 7 8 9 10 11 12 13 14 15

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Generation: 200

(b) Modi�ed motion: HypE.

Figure 5.8: Comparison of the Pareto front for modi�ed motion between
NSGA-II and HypE. �e HypE algorithm spreads the solutions more uniformly
on the Pareto front compared to NSGA-II.

5.7c, respectively. Observe that the Pareto front in Figure 5.7b extends a li�le bit furter on the
x-axis. �is extension a�ects the hypervolume indicator shown in Figure 5.7a. As a consequence,
the hypervolume indicator of the Pareto front computed by NSGA-II is larger than with HypE. By
observing the hypervolumes, both MOEAs seems to converge at the same rate. For further com-
parison between the MOEAs, a smaller section of the Pareto front is considered. Figure 5.8 shows
the Pareto front of NSGA-II and HypE between 5 ≤ Pavд ≤ 15. By comparing Figure 5.8a with
5.8b, we see that the Pareto front computed by HypE has a more uniformly spread out solutions
than NSGA-II. �e cause for this e�ect, is that HypE considers the hypervolume indicaotor for
spreading out the solutions.

5.2.3 Pareto fronts of the motion patterns

�e Pareto fronts of the �rst and last generation for each motion pa�ern are shown in Figure 5.9.
�e sub�gures show that the population P is arbitrary initialized in both NSGA-II and HypE and
ends up as the Pareto front in the last generation. Note that there exist no gaps in the Pareto fronts,
which is a good indication. �is shows that D of all the motion pa�erns is not too complexed.
Furthermore, observe that Figure 5.9a, 5.9d and 5.9e resembles each other and Figure 5.9c with
5.9f. �e only Pareto front that is unique or di�erent is the eel-like motion shown Figure 5.9b.
From the observations of the distribution plot of ω shown in Figure 5.6, resimulations of the
motion pa�erns with ω = ωmax are done. Figure 5.10 shows the Pareto fronts of the resimulated
motion pa�erns. �ese Pareto fronts resemble the fronts shown in Figure 5.9, with the exception
in Figure 5.10c and 5.10f, where solutions with low v̄ and Pavд in the modi�ed motion are missing.
In the upcoming sections, further interpretations of the motion pa�erns will be presented.

57

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Lateral undulation

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Eel-like

0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Modi�ed

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Fourier series (k = 1)

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) Fourier series(k = 3)

0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Multi-Fourier series

Figure 5.9: Initial and �nal Pareto fronts of each motion pa�ern.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Lateral undulation

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Eel-like

0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Modi�ed

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Fourier series (k = 1)

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) Fourier series (k = 3)

0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Multi-Fourier series

Figure 5.10: Final pareto fronts of each motion pa�ern without ω.

58

5.2.4 Multivariate analysis of �e motion patterns
�is section presents the interpretation of the motion pa�erns using multivariate analysis. �e
interpretation of the lateral undulation will be more detailed than the others. However, the inter-
pretation procedure is the same for all the motion pa�erns.

5.2.4.1 Lateral undulation

Figure 5.11 shows the PCA overview for the lateral undulation computed by NSGA-II. �e samples
in the scores plot shown in Figure 5.11a, are the solutions x ∈ P. In this plot, the samples are
highlighted with di�erent colors. �e colors repersent the average velocity of each sample, such
as:

• 0.0 ≤ v̄ < 0.2 m/s: blue color
• 0.2 ≤ v̄ < 0.4 m/s: red color
• 0.4 ≤ v̄ < 0.6 m/s: green color
• 0.6 ≤ v̄ < 0.8 m/s: light blue color
• 0.8 ≤ v̄ < 1.0 m/s: brown color

(a) Scores (b) Loadings

(c) In�uence (d) Explained Variance

Figure 5.11: Lateral undulation: PCA overview

By observing both the �gures Figure 5.11a and Figure 5.11c, some outliers can be identi�ed, i.e.,
the marked samples in the �gure. �e loadings plot given in Figure 5.11b, shows that samples with
high frequency ω also have high Pavд and v̄ . However, this model is hard to interpret because of
the outliers, which in�uence the PCA model signi�cantly. Note that the outliers are the samples
with low Pavд and v̄ , i.e., the blue samples which have average velocities between 0 and 0.2 m/s.

59

Observe also that from Figure 5.11d, the optimal number of PCs for this PCA model is equal to
two. To get a be�er PCA model, we recalculate the model without the outliers. �e new PCA
model is shown in Figure 5.12. �e scores plot in Figure 5.12a of this PCA model shows a more

(a) Scores. (b) Loadings

Figure 5.12: Lateral undulation: Scores and Loadings

(a) Lateral undulation: Scores with NSGA-II. (b) Lateral undulation: Scores with HypE.

Figure 5.13: Lateral undulation: Scores plot with NSGA-II and HypE.

visible structure of the solutions with less outliers, and it explains 99% variance with only two PCs.
Furthermore, the loadings plot shown in Figure 5.12b have also changed. In the loadings plot, the
variable ω has moved closer to origo. �is may indicate that the variable ω is badly valuated and
has insignifcant variance to not be interpretable in the PCA model. �e variable ω acts as noise
to the PCA model, i.e., the variable has insigni�cant variance. �us, with this observation, the
following PCA models are based on the Pareto fronts given in Figure 5.10. �e Figure 5.13a and
5.13b show the scores plot for the lateral undulation without ω computed by NSGA-II and HypE,
respectively. �e plots can be seen as almost re�ection of each other about the y-axis. However,
this is not important. What we are concerned about is the strucure of the scores. In Figure 5.13b,
the scores are less spread out and more dense than the scores in Figure 5.13a. Furthermore, some
distinct outliers can be detected in Figure 5.13a, while almost none outliers can easily be seen in
Figure 5.13b. �e cause for this di�erence in the scores structure is because HypE spreads out
the solutions more uniformly on the Pareto front than NSGA-II does. With this observation,
the following PCA models in this section and further sections will be based on the solutions
computed by HypE. In Figure 5.13b, two di�erent clusters can be seen: cluster 1, the marked
samples (rightmost vertical samples), and cluster 2, the unmarked samples. �ese two clusters

60

(a) Lateral undulation; Cluster 1 scores. (b) Lateral undulation: Cluster 2 loadings.

Figure 5.14: Lateral undulation: �e PCA scores and loadings of cluster 1.

(a) Lateral undulation: Cluster 2 scores. (b) Lateral undulation: Cluster 2 loadings.

Figure 5.15: Lateral undulation: PCA scores and loadings of cluster 2.

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(a) Low velocity, v̄ ≈ 0.3 m/s

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(b) High velocity, v̄ ≈ 0.8 m/s

Figure 5.16: Lateral undulation: reference ϕ∗i with low and high v̄ .

61

will be interpreted in seperate PCA models. Figure 5.14 shows the scores and loadings plot for the
cluster 1. In this PCA model, only one PC is su�cient to explain all the variance of the data set.
Observe that in cluster 1, the v̄ , Pavд and α are highly positively correlated to each other. �at is, if
α increases, so do v̄ and Pavд. �is can also be seen in the raw data of cluster 1 shown in Table A.1.
For the PCA model with cluster 2, two PCs are needed for explaining 99% of the variance. In the
loadings plot shown in Figure 5.15, the variable δ is positively correlated with α and negatively
correlated with Pavд and v̄ . Note that δ and v̄ are located on the same PC, which is PC-1. �us, as
δ decreases, v̄ increases. It is more di�cult to interpret the other two variables Pavд and α since
we must consider both PC-1 and PC-2. To interpret these variables, both the scores and loadings
plot must be examined together. �e structure of the samples resemble a convex curve and as we
move on this curve from right to le�, values of α decreases. But as soon as we pass the y-axis, the
curve starts moving towards postive y-values. �is has an oppisite e�ect on the α-values, i.e., the
e�ect of moving along the negative x-axis is reduced by the e�ect of moving along the postive
y-axis. For the variable Pavд, its value increases from moving right to le� on the convex curve,
but it increases more signi�cantly a�er passing the y-axis.

�e reference ϕ∗i shown in Figure 5.16, where each curve represents one joint, are the joint
references for low and high v̄ of the lateral undulation. In Figure 5.16a, we see that ϕ∗i has low
amplitudes between [-20,20]. Furthermore, note also that the phase shi� δ is large in the sub�gure.
For high velocity shown in Figure 5.16b, the amplitudes and the phase shi� ofϕ∗i has increased and
decreased, respectively. Note that these results correspond to the observations and assumptions
from interpreting the PCA models. A�er interpreting the PCA models, a PLSR model for both
cluster 1 and 2 is constructed. �e purpose of the PLSR models is to see if the gait parameters
α and δ can be predicted using the objectives Pavд and v̄ . �us, the predictors and responses in
the PLSR model will be the objectives and gait paramters, respectively. �e RMSE values a�er
constructing the PLSR models are shown in Table 5.1. From the RMSE table, the values of Factor

Table 5.1: Lateral undulation: �e RMSE of cluster 1 and 2

Cluster 1 Cluster 2
Factor α δ α δ

0 15.342 0.240 6.403 17.926
1 3.994 0.256 5.815 8.942
2 1.114 0.263 1.814 1.906

2 is the one we are concerned about. �e RMSE values of this factor are lesser than 5, which is
good. �is shows that the di�erences between the observed and predicted values are lesser than
5. �e Beta coe�cients of the PLSR models are computed as

B1 =



6.924 89.686
260.512 −7.216
−35.954 1.602


B2 =



69.356 106.988
1.149 0.286
−6.915 −11.378


(5.1)

With the Beta coe�cients, the regression model can be wri�en as
Ŷ1 = XB1 (5.2)
Ŷ2 = XB2 (5.3)

62

whereX =
[
1,Pavд, v̄

]
are the predictors and Ŷ = [α ,δ] are the responses. By inspecting the raw

data of cluster 1 given in Section A.6, the maximum v̄ is close to 0.2 m/s. �us, we can combine
the two regression models by le�ing

ŷ =



xB1, if v̄ ≤ 0.2 m/s
xB2, if v̄ > 0.2 m/s

(5.4)

Since the regression model takes both Pavд and v̄ as arguments for predicting the gait parame-
ters, the values for both objectives must therefore be available. As a consequence, a curve ��ing
function v̄ = f (Pavд) is created for mapping between Pavд and v̄ based on the Pareto fronts given
in Figure 5.10. �e curve function is created by using poly�t of degree 16 in MATLAB and is
used in the regression model. �erefore, by selecting an arbitrary Pavд, we can predict the gait
paramters. For example, consider that Pavд = 6 W with lateral undulation, then the corresponding
gait paramters are given as ŷ (Pavд) = [33.101, 37.707] = [α ,δ]. Some predicted gait paramters
with Pavд = {0, 0.2, . . . , 1, 2, 4, . . . , Pmax ≈ 28} W is given in Table A.2. Further interpretation of
the prediction models will be given in Section 5.2.5.

5.2.4.2 Eel-like motion

Same as the lateral undulation, the PCA model for the eel-like motion has two di�erent score clus-
ters. �e scores and loadings plot of the PCA model for the two clusters are shown in Figure A.11.
All the sub�gures resembles the �gures given in Figure 5.14 and 5.15. �us, the arguments given
for the lateral undulation in Section 5.2.4.1 will also apply for this motion pa�ern. �e only dif-
ference, is that, with eel-like motion, no samples with v̄ > 0.8 exist. Figure 5.17 shows that the
shape of ϕ∗i resembles the lateral undulation in Figure 5.16. �e only di�erence is the amplitude
α , which is larger in both low and high v̄ . However, the amplitudes of the eel-like motion has a
scaling function given in (3.17). �is scaling function will a�ect the amplitude of ϕ∗i to decrease
as we move closer to the head of the USR.

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(a) Low velocity, v̄ ≈ 0.3 m/s

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(b) High velocity, v̄ ≈ 0.8 m/S

Figure 5.17: Eel-like motion: Reference ϕ∗i with low and high v̄ .

63

5.2.4.3 Modi�ed motion

In this section, the interpretation of the modi�ed motion pa�ern is presented. Figure A.12 shows
the PCA scores and loadings of the model. In the loadings plot shown in Figure A.12b, the variable

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(a) Low velocity, v̄ ≈ 0.3 m/s:
ϕ∗i , i ∈ {1, 2, 8, 9}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(b) Low velocity, v̄ ≈ 0.3 m/s:
ϕ∗i , i ∈ {4, 5, 6}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(c) Low velocity, v̄ ≈ 0.3 m/s:
ϕ∗i , i ∈ {3, 7}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(d) High velocity, v̄ ≈ 0.8 m/s:
ϕ∗i , i ∈ {1, 2, 8, 9}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(e) High velocity, v̄ = 0.8 m/s:
ϕ∗i , i ∈ {4, 5, 6}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(f) High velocity, v̄ = 0.8 m/s:
ϕ∗i , i ∈ {3, 7}

Figure 5.18: Modi�ed motion: Reference ϕ∗i with low and high v̄ .

δ , д1, д2, and д9 are close to each other. �is imply that the variables are positively correlated with
each other. Furthermore, observe that the varables д5 and д6 are also positively correlated with
each other. �ese variables will therefore have a strong positive linear relationship between them.
By observing both the scores and loadings plot, some assumption of the modi�ed motion can be
made. �at is, high phase shi� δ and amplitudes of the tail (д1 and д2) and head (д9) joints cause
low v̄ (v̄ ≈ 0.2). For high v̄ (v̄ ≈ 0.8), the oppisite situation, i.e., lower δ and amplitudes in
the head and tail joints. Note that the scores resemble a convex curve and thus the values of д2,
д3 and д8 decreases faster than д9, when moving on this curve from right to le�. Since it is a
convex curve, the values of д4, д5 and д6 do not change that much on the right side of the y-axis.
However, moving from right to le� on this curve in the le� side of the y-axis, will increase the
values of these variables. Furthermore, note that д3 is most a�ected by PC-2, which imply that
this variable increases and decreases most when moving along the y-axis. �us, high v̄ with this
motion pa�ern can be seen as high and low amplitudes in the middle and end joints of the USR,
respectively. To strengthen these observations, plots of ϕ∗i with both low and high v̄ are given
in Figure 5.18. In Figure 5.18a-5.18c, the amplitude of ϕ∗i are somewhat close to each other. �us
the modi�ed motion with low v̄ resembles the lateral undulation. For high v̄ , the amplitudes in
Figure 5.18d are much lower than in Figure 5.18e, which corresponds to the observations made

64

from the PCA model. Note that only the high and low v̄ were investigated, the motion pa�ern
may vary in between 0.2 < v̄ < 0.8. It is hard to precisely tell how this pa�ern looks like, because
of all the varying amplitudes of each joint.

5.2.4.4 Fourier series motion

�e interpretation of the Fourier series motion is more complicated than the other motion pat-
terns. Figure A.13 shows the scores and loadings of two sample clusters for Fourier series with
k = 1. �e samples in Figure A.13a show that the v̄ is not dependent on δ , and that v̄ ≈ 0.2 m/s
have larger and lower a1 and b1 values, respectively. Note in the PCA model, just two PCs explain
100% of the variance. For the PCA model of cluster 2, 98% of the variance is explained with two

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(a) Low velocity, v̄ ≈ 0.30 m/s

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(b) High velocity, v̄ ≈ 0.80 m/s

Figure 5.19: Fourier series (k = 1): Reference ϕ∗i with low and high v̄ .

PCs. By observing the scores plot in Figure A.13c, no simple structures of the scores can be seen.
However, a similarity with the motion pa�erns in the previous sections can be observed, i.e., v̄
increases as δ decreases. Note that in the Figure A.13d, both a1 and b1 are located on the right
side of the y-axis. Unlike in Figure A.13b, where a1 and b1 are located on the opposite side of the
y-axis. Observe also that the variable a1 (furthest on the right side and closest to PC-1) is most
a�ected from moving along the x-axis. Furhtermore, by following the light blue scores from right
to le� to the brown colors, the value of b1 might not decrease as much as a1 does. Because b1
is located furhter away from PC-1. �e shape of the reference ϕ∗i for this motion pa�ern is hard
to take any assumptions. �erefore, plo�ing the referencce ϕ∗i with low and high v̄ shown in
Figure 5.19, will make it simpler to investigate this motion pa�ern. �e sub�gures resemble ϕ∗i in
Figure 5.16. �is indicate that the Fourier series with k = 1 approximates a reference ϕ∗i similar to
the lateral undulation. �is may be expected, since with k = 1, the addition between one cosine
and sine will generate a new sine function with a di�erent amplitude and phase shi�.

In the next simulation result, we will investigate the Fourier series motion with k = 3 coef-
�cients. �e PCA overview of this motion pa�ern is shown in Figure A.14. Some preprocess-
ing of the raw data have been done for removing noise and outliers. �e selected samples a�er

65

the preprocessing are shown in Figure A.14a, where the grey samples are insigni�cant (noise)
in the analysis. A�er seperating the outliers, two PCA models were con�ructed: one for right
and le� cluster. We isolate the two clusters by calling the right cluster for cluster 1, and the le�
for cluster 2. �e PCA scores of cluster 1 in Figure A.15a, show that the average velocity of the
samples lie in 0.2 < v̄ < 0.8 m/s. Furthermore, the loadings plot Figure A.15b shows that Pavд
and v̄ are negatively corrolated with δ . In the loadingds plot, the variables a2 and b1 are close
to the origin, which implies that these variable are insigni�cant and not interpretable. �e two
Fourier coe�cients that have most in�uence on the PCA model are the a3 and b3 . �ese two
varables are associated with the last cosine and sine terms of the Fourier series, which is given
as sin

(
kπt
L + (i − 1)δ

)
= sin(ωmaxt + (i − 1)δ). �e PCA model of cluster 2 shown in Figure A.16,

only the fourier coe�cient b3 is shown in the loadings plot. �is indicate that, for samples with
v̄ > 0.6 m/s, only the variance of b3 and δ a�ect the values of Pavд and v̄ . �us, the solutions in
this cluster are fully descibed by the last sine term of the Fourier series. In fact, the solutions in
cluster 1 are also most a�ected by the last sine term of the Fourier series. �is can be observed by
investigating the raw data of the clusters. A section of the raw data is shown in Table A.6 and A.7.
Observe from the raw data that the sign of a3 are di�erent between cluster 1 and 2. Furthermore,
almost all the Fourier coe�cients wiht low frequencies are close to zero. �is indicate that low
frequencies of the cosine and sine terms are insigni�cant and act as noise in PCA analysis. �e
reference ϕ∗i of this motion pa�ern shown in Figure 5.20, resembles the reference given in Fig-
ure 5.19. �is motion pa�ern may also be seen as an approximation of a motion pa�ern similar
to lateral undulation.

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(a) Low velocity, v̄ ≈ 0.30 m/s

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(b) High velocity, v̄ ≈ 0.8 m/s

Figure 5.20: Fourier series (k = 3): Reference ϕ∗i with low and high v̄ .

5.2.4.5 Multi-Fourier series motion

�e multivariate analysis of the multi-Fourier series is the most di�cult among the motion pat-
terns. It has a total of 19 decision variables. �e scores and loadings of the PCA model for this
motion pa�ern is given in Figure A.17. In the scores plot Figure A.17a, three di�erent clusters

66

can be seen. Even spli�ing up the three clusters into di�erent PCA models did not simplify the
interpretation of the data set. �us, the investigation of this motion pa�ern will be done by com-
paring the three di�erent clusters in the same PCA model. By observing the loadings plot and
considering the PC-1, the variables b5, a7 and a8 are negatively corrolated with the varables b1, b2,
b7, b8 and b9. Considering these variables and the le�most cluster shown in the scores plot. �e
solutions with 0.2 < v̄ < 0.6 may have ϕ∗i with low amplitude at the end joints, i.e., the head and
tail. �us the right cluster in the scores plot close to PC-1, may have the opposite e�ect, meaning
high amplitude at the end joints. Furhter investigation of the PCA model, shows that decreasing δ ,
increases the variable Pavд and v̄ . �is is the same as for the previous motion pa�erns presented in
this section. �e plot of reference ϕ∗i given in Figure 5.21, shows that the observations of the PCA
model given above were not precisely correct. Figure 5.21a shows that for low v̄ , the amplitude at
the head joints are small, which was assumed from the PCA model. However, the ampliute at the
tail joints are large. From the sub�gures 5.21a-5.21c, the motion pa�ern with low v̄ looks similar
to the eel-like motion, i.e., low and high amplitude at the head and tail joints, respectively. For
high velocity v̄ the motion pa�ern resembles the modi�ed motion pa�ern given in Figure 5.18,
with the exception of ϕ∗5.

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(a) Low velocity, v̄ ≈ 0.30 m/s:
ϕ∗i , i ∈ {1, 2, 8, 9}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(b) Low velocity, v̄ ≈ 0.30 m/s:
ϕ∗i , i ∈ {4, 5, 6}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(c) Low velocity, v̄ ≈ 0.30 m/s:
ϕ∗i , i ∈ {3, 7}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(d) High velocity, v̄ ≈ 0.80 m/s:
ϕ∗i , i ∈ {1, 2, 8, 9}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(e) High velocity, v̄ ≈ 0.80 m/s:
ϕ∗i , i ∈ {4, 5, 6}

0 1 2 3 4 5 6 7 8 9 10

-80

-60

-40

-20

0

20

40

60

80

(f) High velocity, v̄ ≈ 0.80 m/s:
ϕ∗i , i ∈ {3, 7}

Figure 5.21: Multi-Fourier series: Reference ϕ∗i with low and high v̄ .

5.2.5 Regression models for predicting the optimal gait paramters
�is section presents the regression models of each motion pa�ern, based on the PLSR models
constructed from the PCA models given in the previous sections. �e goal with the regression

67

models is to see if it is possible to predict the gait paramters using the objective values. If so,
then the models can be used as a utility for selecting optimal gait paramters based on the objec-
tive values. �e procedure of constructing the prediction models is presented in Section 5.2.4.1,
i.e., using the Beta coe�cients given in (5.1) and Section A.6 computed by the PLSR models of
each motion pa�ern. Figure 5.22 shows the regression models, where the observed solutions are
the Pareto front solutions given in Figure 5.10. �e average power used for predicting the gait
paramters of all the motion pa�erns is given as Pavд = {0, 0.1, 0.2, . . . , Pmax }. �e interpretation

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Lateral undulation

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Eel-like motion

0 5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Modi�ed motion

0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Fourier series (k = 1)

0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) Fourier series (k = 3)

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Multi-Fourier series

Figure 5.22: Prediction models of all the motion pa�erns.

of the prediction models is listed as follows:
1. Lateral undulation (Figure 5.22a): All the predicted objective values are located on the Pareto

front, and the range of Pavд for the predicted values corresponds to the observed values.
However, the model has problems of predicting values for Pavд > 23 W.

2. Eel-like motion (Figure 5.22b): All the predicted objective values are located on the Pareto
front, with a range of Pavд for the predicted solutions matching the ovserved solutions.
However, the model has problems of predicting values for Pavд > 25 W.

3. Modi�ed motion (Figure 5.22c): All the predicted objective values are located on the Pareto
front, and the range of Pavд for the predicted solutions corresponds to the observed solu-
tions. However, the model has di�culty of predicting solutions for low Pavд and Pavд > 42
W.

4. Fourier series motion with k = 1 (Figure 5.22d): �e range of Pavд for the predicted solutions
does not correspond to the observed solution. It has a maximum of Pavд ≈ 50. Furthermore,

68

the predicted solutions diverge from the Pareto front for Pavд > 22 W. �us, the regression
model for this motion pa�ern is poor.

5. Fourier series motion with k = 3 (Figure 5.22e): �e predicted solutions are alligned with
the Pareto front, and the range of Pavд for the predicted solutions extends a li�le bit past
the observed soltuions. A gap can be observed on the curve of the predicted solutions. �e
observed gap is a consequence of the noise in the data set presented in Section 5.2.4.4.

6. Multi-Fourier series motion (Figure 5.22f): �e prediction of the gait paramters of the multi-
fourier series is not su�cient. �e predicted solutions are gathered in the middle of the
Pareto front, and diverge at the ends of the prediction curve.

Note that proper data sets will produce good regression models, which is the case for the lateral
undulation, eel-like and modi�ed motion. �ese motion pa�erns had a noticable structure (convex
curve) of the samples in the scores plot. �e scores of the Fourier series with k = 3 had somewhat
good structures for the samples with high v̄ . From these observations, the regression models
for lateral undulation, eel-like and modi�ed motion predict the gait parameters with a su�cient
degree. Hence, these regression models can be used as a utility for obtaining the optimal gait
parameters with arbitrary Pavд. Note that all the prediction models have di�culty of predicting
the gait parmaters for low Pavд. �e cause of this e�ect, is that low Pavд can be seen as the noisy
part of the motion pa�ern.

5.3 Summary
�is section summerize the simulation results given in the previous sections. In Section 5.1 we
found the optimal GA paramters of the MOPs of each motion pa�ern, and the collection of the
optimal paramters of each motion pa�ern is given in Table 5.2. �e distribution of gait paramterω
and δ in Section 5.2.1 shows that the optimal value ofω wasωmax . With only the distribution plot,
no possible assumption could be made for δ . In Section 5.2.2, comparison betewen NSGA-II and
HypE shows that both methods were su�cient as optimization method for the MOPs. However,
HypE spreads out the solutions more uniformly on the Pareto fronts. �e Pareto fronts of the
actual simulations in Section 5.2.3, show that the solutions are evenly spread out with no gaps, in
both NSGA-II and HypE. �is section also shows that the Pareto fronts were still su�cient, even
a�er disregarding ω, i.e., se�ing ω = ωmax . Furthermore, by comparing the Pareto fronts of each
motion shows that the most energy e�cient motions are the modi�ed and multi-Fourier series.
For example, consider Pavд = 25W, the modi�ed motion has v̄ ≈ 0.9 m/s, while lateral undulation
and eel-like motion have v̄ ≈ 0.84 and v̄ ≈ 0.65 m/s, respectively. In Section 5.2.4, theoretical
analysis of each motion was done using multivaraite analysis. �e simulation study showed that
all the motion pa�erns had a common structure of δ , i.e., decreasing δ would increase Pavд and v̄ ,
and vice versa. Furthermore, all the outliers observed in the PCA models were solutions with low
Pavд and v̄ . �is indicate that, the solutions with low v̄ are hard to obtain. Further investigation
of the simulation study shows that the obtained motion from Fourier series turns out to be an
approximation of a motion pa�ern similar to lateral undulation, where the last sine term had the
highest in�uence on the motion. Furthermore, the Fourier series with k = 1 coe�cients was
su�cient for approximating of the lateral undulation. In Section 5.2.5, regression models of the

69

simulation results were presented. �e goal of the regression models was to see if it was possible
to predict optimal gait parameters using the objective values. �e presented models showed to be
feasible for prediction of the lateral undulation, eel-like and modi�ed motion.

Table 5.2: �e optimal GA paramters of each motion.

Motion Population size Crossover rate Mutation rate
Lateral undulation 200 0.70 0.05
Eel-like motion 200 0.70 0.05
Modi�ed motion 500 0.80 0.10
Fourier series (k = 1) 200 0.80 0.05
Fourier series (k = 3) 500 0.70 0.10
Multi-Fourier series 500 0.70 0.15

70

Chapter 6

Conclusions

In Chapter 4, we presented MOPs of �ve di�erent motion pa�erns for an USR, where the �rst two
motions are the common snake locomotions lateral undulation and eel-like motion. �e last three
are altered motions called modi�ed, Fourier and multi-Fourier series. �e objectives of the the
presented MOPs are the energy e�ciency of the USR presented in Chapter 3, where the multi-
objective of the MOPs is given as min fopt = [Pavд,−v̄]. For the optimization of these MOPs,
we presented two multi-objective optimization methods called NSGA-II and HypE. One of the
challenges with the MOEAs is �nding the optimal GA parameters, such as, the population size,
crossover rate and mutation rate. �ese optimal GA parameters were obtained by running mul-
tiple simulations and then comparing the best simulation results. �e obtainedned simulation
results show that the search space D of the MOPs was proper and thus the selction of the GA
parameters was trivial, except for the Fourier series with k = 3 coe�cients and multi-Fourier mo-
tion pa�ern. �ese motion pa�erns had a more di�cult search space and was greatly dependent
on the population size. However, larger population size leads to longer simulation runtime. �at
is, modi�ed motion with N = 800 and the computer speci�cation given in Section 4.5. �e total
runtime of 3600 generations is approximately 10 days.

�e presented simulation results in Section 5.2 investigate each motion pa�ern a�er obtaining
the optimal GA parameters in Section 5.1. �e obtained Pareto fronts showed that both NSGA-
II and HypE were su�cient as the optimization scheme. However, HypE had more uniformly
spread out solutions on the Pareto front, which is desired. Furthermore, the obtained Pareto
fronts showed that the modi�ed motion and multi-Fourier motion were the most energy e�cient
motion pa�erns regarding the achieved forward velocity and power consumption of the USR.

�e purpose of the simulation results is to �nd similarities between each motion pa�ern. �e
obtained results show that ω = ωmax was the optimal gait parameter for all the motion pa�erns.
However, this caused the modi�ed motion to miss solutions with low v̄ . It turns out that solu-
tions with low v̄ are hard to interpret, which was shown by using PCA presented in Section 5.2.4.
Further investigation based on PCA showed that the motion pa�erns shared the same structure
of the gait parameter δ , i.e., decreasing δ caused Pavд and v̄ to increase. �e presented PCA mod-
els were based on the solutions computed by HypE, because of its soltuions spreading compared
to NSGA-II. �is made the investigation of each motion more apparent due to the evenly spread
out solutions. �e comparison of each PCA showed that the obtained motion pa�ern from the
Fourier series had a similar locomotion as the lateral undulation. While the multi-Fourier series
had a similar pa�ern to eel-like and modi�ed motion for low and high v̄ , respectively. �e pre-

71

sented analysis also showed that the last sine term of the Fourier series had the most in�uence
of the obtained motion pa�ern, and hence it approximates a sinusoidal function similar to lateral
undulation. Furthermore, some of the gait pa�ern of the modi�ed motion were exposed through
the multivariate analysis: (i) similar to lateral undulation for v̄ ≈ 0.3 m/s, and (ii) high and low
amplitudes of the joint references for the middle and end joints, respectively, for v̄ ≈ 0.8 m/s.

Finally, we presented prediction models for predicting the optimal gait paramters using the
objective values. �e models were su�cient for predicting the gait parameters for the lateral
undulation, eel-like and modi�ed motion. With the obtained Pareto fronts and the prediction
models, the optimal gait parameters could be predicted through a trade-o�s between the power
consumption Pavд and the forward velocity v̄ .

6.1 Future work
�is thesis presented and investigated on two di�erent MOEA schemes for �nding e�cient gait
parameters of �ve di�erent locomotions of the USR. �e proposed optimization problem considers
both the forward velocity and the power consumption. It would be interesting to further add more
objectives into the optimization problem, such as minimizing the joint acceleration to prevent
wear and tear, or minimizing the number of joints while preserving the energy e�ciency of the
USR. �e problem that arises with more objectives than three, is that NSGA-II might not longer
be a feasible optimization solver. �e presented simulation results given in Chapter 5, showed
that through multivariate analysis, all the �ve motion pa�erns had a similar structure of the gait
paramter δ , i.e., the value of δ decreased as the forward velocity and power consumption increased
of the USR. Hence, in the future, the gait paramter δ can be disregarded from the optimization
problem, by having constant values of δ in each solution in the population. �e only thing to
consider is to uniformly decrease δ among the solutions. �is will reduce the total number of
decision variables of each motion pa�ern by one. For the motion pa�ern based on Fourier series
presented in Chapter 4, the simulation results showed that the sine terms had the most in�uence
on the locomotion of the USR, and therefore, one might disregard the cosine terms for reducing
the number of decision variables.

One possible future extension of this thesis, is to investigate on di�erent locomotion generator
of the USR. Some related work on di�erent locomotion generator were presented in Chapter 1,
such as, CPG and ICONE. By obtaining domain knowledge of the USR, one can try restricting
the search spaces using ICONE. Further extension is to investigate other regression analysis for
constructing the prediction models presented in Section 5.2.5.

72

Appendix A

A.1 �e recursion steps in Example 2.5.3
�e computation of each recursion step in Example 2.5.3 listed below.

• Step 1.1.1: Arguments,

i = 2, V = 1, F ′ = {(x1, 0), (x2, 0)}, z = [∞,∞] (A.1)

�e set UP , UR and U ,

UP = { f (x1) = [1, 3], f (x2) = [3, 1]}, UR = {r = [4, 5]}, U = UP ∪UR (A.2)

�e compuation of U ′ and V ′:

u∗ = min
u∈U

ui = 1⇒ zi = 1 (A.3)

U ′ = {u ∈ U |ui > u∗} = {[1, 3], [4, 5]} (A.4)
V ′ = V · (min

u ′∈U ′
u′i − u

∗) = 1 · (3 − 1) = 2 (A.5)

Next recursion step, F ′ = doSlicinд(F ′,R,k, i − 1,V ′,z = [∞, 1])
• Step 1.1.2: Arguments,

i = 1, V = 2, F ′ = {(x1,v = 0), (x2, 0)}, z = [∞, 1] (A.6)

�e set UP , UR and U :

UP = { f (x2) = [3, 1]}, UR = {r = [4, 5]}, U = UP ∪UR (A.7)

�e compuation of U ′ and V ′,

u∗ = min
u∈U

ui = 3⇒ zi = 3 (A.8)

U ′ = {u ∈ U |ui > u∗} = {[4, 5]} (A.9)
V ′ = V · (min

u ′∈U ′
u′i − u

∗) = 2 · (4 − 3) = 2 (A.10)

Next recursion step, F ′ = doSlicinд(F ′,R,k, i = 1,V ′,z = [3, 1])

73

• Step 1.1.3: Arguments,

i = 0, V = 2, F ′ = {(x1, 0), (x2, 0)}, z = [3, 1] (A.11)

�e set UP , UR:
UP = { f (x2) = [3, 1]}, UR = {r = [4, 5]} (A.12)

Update hypervolumes,

α =
|UP |−1∏
j=1

k − j

|F ′| − j
=

2 − 1
2 − 1 = 1 (A.13)

v1 = v1, v2 = v2 +
α

|UP |
·V = 0 + 2 = 2 (A.14)

Return, F ′ = (x1, 0), (x2, 2)
• Step 2.1.1: Arguments,

i = 2, V = 1, F ′ = {(x1, 0), (x2, 2)}, z = [∞,∞] (A.15)

�e set U ,
U = { f (x1) = [1, 3], r = [4, 5]} (A.16)

�e compuation of U ′ and V ′:

u∗ = min
u∈U

ui = 3⇒ zi = 3 (A.17)

U ′ = {u ∈ U |ui > u∗} = {[4, 5]} (A.18)
V ′ = V · (min

u ′∈U ′
u′i − u

∗) = 1 · (5 − 3) = 2 (A.19)

Next recursion step, F ′ = doSlicinд(F ′,R,k, i − 1,V ′,z = [∞, 3])
• Step 2.1.2: Arguments,

i = 1, V = 2, F ′ = {(x1, 0), (x2, 2)}, z = [∞, 3] (A.20)

�e set UP , UR and U ,

UP = { f (x1) = [1, 3], f (x2) = [3, 1]}, UR = {r = [4, 5]}, U = UP ∪UR (A.21)

�e compuation of U ′ and V ′:

u∗ = min
u∈U

ui = 1⇒ zi = 1 (A.22)

U ′ = {u ∈ U |ui > u∗} = {[1, 3], [4, 5]} (A.23)
V ′ = V · (min

u ′∈U ′
u′i − u

∗) = 2 · (3 − 1) = 4 (A.24)

Next recursion step, F ′ = doSlicinд(F ′,R,k, i − 1,V ′,z = [1, 3])

74

• Step 2.1.3: Arguments,

i = 0, V = 4, F ′ = {(x1, 0), (x2, 2)}, z = [1, 3] (A.25)

�e set UP , UR:
UP = { f (x1) = [1, 3]}, UR = {r = [4, 5]} (A.26)

Update hypervolumes,

α =
|UP |−1∏
j=1

k − j

|F ′| − j
=

2 − 1
2 − 1 = 1 (A.27)

v1 = v1 +
α

|UP |
·V = 0 + 4 = 4, v2 = v2 (A.28)

Return, F ′ = (x1, 4), (x2, 2)
• Step 2.2.2: Arguments,

i = 1, V = 2, F ′ = {(x1, 4), (x2, 2)}, z = [∞, 3] (A.29)

�e set U ,
U = { f (x1) = [3, 1],r = [4, 5]} (A.30)

�e compuation of U ′ and V ′:

u∗ = min
u∈U

ui = 3⇒ zi = 3 (A.31)

U ′ = {u ∈ U |ui > u∗} = {[4, 5]} (A.32)
V ′ = V · (min

u ′∈U ′
u′i − u

∗) = 2 · (4 − 3) = 2 (A.33)

Next recursion step, F ′ = doSlicinд(F ′,R,k, i − 1,V ′,z = [3, 3])
• Step 2.2.3: Arguments,

i = 0, V = 2, F ′ = {(x1, 4), (x2, 2)}, z = [3, 3] (A.34)

�e set UP , UR:

UP = { f (x1) = [1, 3], f (x2) = [3, 1]}, UR = {r = [4, 5]} (A.35)

Update hypervolumes,

α =
|UP |−1∏
j=1

k − j

|F ′| − j
=

2 − 1
2 − 1 = 1 (A.36)

v1 = v1 +
α

|UP |
·V = 4 + 1

2 · 2 = 5, v2 = v1 +
α

|UP |
·V = 2 + 1

2 · 2 = 3 (A.37)

Return, F ′ = (x1, 5), (x2, 3)

75

A.2 Con�gurations in Unscrambler X 10.3

Figure A.1: PCA – Con�gurations

Figure A.2: PCA – Full cross-validation

76

A.3 Python Codes

Listing A.1: �e main interface of NSGA-II and HypE
1 for gen in range(n gen, cg.n generations+1):
2 t1 = time.perf counter()
3 print("

==")
4 print(’Generation: %d’ % gen)
5 print(’Evaluate population’)
6

7 # Mating Selection & Breeding
8 offspring = moea.mating selection(population, chrom repr, toolbox, eng,

loggerObj.cx, loggerObj.mx)
9

10 # Evaluate Offsprings
11 invalid ind = [ind for ind in offspring if not ind.fitness.valid]
12 sim time = eval objective values(invalid ind, eng, motion, with omega)
13

14 # Environmental Selection
15 population = moea.environmental selection(population + offspring, eng)
16

17 # If Violations, Add Bad Fitness
18 assign violation ranks(population)
19

20 # Print Execution Time To Screen
21 elapsed time, elapsed computational time, estimated time =

compute elapsed time(t1, sim time, gen, elapsed time,
elapsed computational time, estimated time)

22

23 # Log Data To History
24 obj = [population[i].fitness.values for i in range(len(population))]
25 logData.save history(loggerObj, population, obj)
26

27 # Plot multi−objective values
28 plot objectives(obj, eng, gen, method name, motion)
29

30 # Store Result Data
31 if redundancy check:
32 store data with redundancy check(gen, loggerObj, cwd, result dir)
33 else:
34 store data(gen, loggerObj, cwd, result dir)
35 print("====================== End Of Optimization Run ======================")

Listing A.2: Assign crowding distance and create a population with lowest
rank and largest crowding distance

1 def create parent population(fronts):
2 """ Return P with lowest rank and largest crowding distance """
3 pop size = cg.pop size
4 P = []
5 container = []
6 n fronts = len(fronts)
7

77

8 # Move non−violated and violated fronts into different containers
9 for i in range(n fronts):

10 temp container = [[],[]]
11 for j in range(len(fronts[i])):
12 # Place feasible solutions in container 0
13 if fronts[i][j].violations[0] == np.double(0):
14 temp container[0] += [fronts[i][j]]
15 # Place infeasible solutions in container 1
16 else:
17 temp container[1] += [fronts[i][j]]
18 container += [temp container]
19

20 # Assign Crowding Distance. Consider Feasible Solutions First!
21 for i in range(2):
22 k = np.uint32(0)
23 while k < n fronts and len(container[k][i]) != 0 and len(P) <

pop size:
24 crowd front = crowding distance(container[k][i])
25 dist = [crowd front[q].crowd dist for q in range(len(crowd front

))]
26 j = np.argsort(dist)
27 k += 1
28 for r in j[::−1]:
29 crowd front[r].rank = k
30 P += [crowd front[r]]
31 if len(P) >= pop size:
32 break
33 return P

Listing A.3: Assign Hypervolume indicator and create a population with high-
est values

1 def create parent population(pop, eng):
2 """ Retur P with higest HV indicator """
3 P = []
4 N = cg.pop size
5 r = cg.reference
6

7 # Non−domination Sorting, pop = parents + offsprings
8 non dominated fronts = non dominated sort(pop)
9

10 # Select the first non−dominted fronts
11 for P1 in non dominated fronts:
12 if len(P) + len(P1) > N:
13 break
14 P += P1
15

16 # The number of overflow of solutions
17 k = len(P) + len(P1) − N
18

19 # Remove Solutions With Lowest Hypervolume (HV) Indicator
20 while k > 0:
21 # Calulcate HV indicator
22 objectives = [P1[i].fitness.values for i in range(len(P1))]

78

23 f = eng.hypeIndicatorExact(np.array(objectives).T.tolist(), r, k)
24

25 # Remove the solution with lowest HV indicator
26 i = np.argmin(f)
27 del P1[i]
28 k −= 1
29

30 # Return parent population with size N
31 return P + P1

A.4 Pareto fronts of the cases given in Section 5.1

A.4.1 Fourier Series with k = 3 coe�cients

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 100, cx = 0.60, mx = 0.050

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 100, cx = 0.60, mx = 0.100

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 100, cx = 0.60, mx = 0.150

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 100, cx = 0.70, mx = 0.050

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 100, cx = 0.70, mx = 0.100

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 100, cx = 0.70, mx = 0.150

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 100, cx = 0.80, mx = 0.050

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 100, cx = 0.80, mx = 0.100

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 100, cx = 0.80, mx = 0.150

Figure A.3: Fourier series (k = 3): Pareto fronts for the case with N = 100
solutions

79

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 300, cx = 0.60, mx = 0.050

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 300, cx = 0.60, mx = 0.100

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 300, cx = 0.60, mx = 0.150

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 300, cx = 0.70, mx = 0.050

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 300, cx = 0.70, mx = 0.100

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 300, cx = 0.70, mx = 0.150

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 300, cx = 0.80, mx = 0.050

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 300, cx = 0.80, mx = 0.100

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 300, cx = 0.80, mx = 0.150

Figure A.4: Fourier series (k = 3): Pareto fronts for the case with N = 300
solutions

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 500, cx = 0.60, mx = 0.050

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 500, cx = 0.60, mx = 0.100

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 500, cx = 0.60, mx = 0.150

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 500, cx = 0.70, mx = 0.050

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 500, cx = 0.70, mx = 0.100

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 500, cx = 0.70, mx = 0.150

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 500, cx = 0.80, mx = 0.050

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 500, cx = 0.80, mx = 0.100

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Generation: 100

pop = 500, cx = 0.80, mx = 0.150

Figure A.5: Fourier series (k = 3): Pareto fronts for the case with N = 500
solutions

80

A.5 Hypervolumes of the cases given in Section 5.1

A.5.1 Lateral Undulation

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.60, mx = 0.050

pop = 200, cx = 0.60, mx = 0.050

pop = 300, cx = 0.60, mx = 0.050

(a) cx = 0.60, mx = 0.050, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.60, mx = 0.100

pop = 200, cx = 0.60, mx = 0.100

pop = 300, cx = 0.60, mx = 0.100

(b) cx = 0.60, mx = 0.100, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.60, mx = 0.150

pop = 200, cx = 0.60, mx = 0.150

pop = 300, cx = 0.60, mx = 0.150

(c) cx = 0.60, mx = 0.150, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.70, mx = 0.050

pop = 200, cx = 0.70, mx = 0.050

pop = 300, cx = 0.70, mx = 0.050

(d) cx = 0.70, mx = 0.050, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.70, mx = 0.100

pop = 200, cx = 0.70, mx = 0.100

pop = 300, cx = 0.70, mx = 0.100

(e) cx = 0.70, mx = 0.100, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.70, mx = 0.150

pop = 200, cx = 0.70, mx = 0.150

pop = 300, cx = 0.70, mx = 0.150

(f) cx = 0.70, mx = 0.150, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.80, mx = 0.050

pop = 200, cx = 0.80, mx = 0.050

pop = 300, cx = 0.80, mx = 0.050

(g) cx = 0.80, mx = 0.050, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.80, mx = 0.100

pop = 200, cx = 0.80, mx = 0.100

pop = 300, cx = 0.80, mx = 0.100

(h) cx = 0.80, mx = 0.100, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.80, mx = 0.150

pop = 200, cx = 0.80, mx = 0.150

pop = 300, cx = 0.80, mx = 0.150

(i) cx = 0.80, mx = 0.150, N =
{100, 200, 300}

Figure A.6: Lateral undulation: �e average hypervolume indicator, where cx
andmx is the crossover and mutation rate, respectively.

81

A.5.2 Modi�ed Motion

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

pop = 200, cx = 0.60, mx = 0.050

pop = 500, cx = 0.60, mx = 0.050

pop = 800, cx = 0.60, mx = 0.050

(a) cx = 0.60, mx = 0.050, N =
{200, 500, 800}

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

pop = 200, cx = 0.60, mx = 0.100

pop = 500, cx = 0.60, mx = 0.100

pop = 800, cx = 0.60, mx = 0.100

(b) cx = 0.60, mx = 0.100, N =
{200, 500, 800}

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

pop = 200, cx = 0.60, mx = 0.150

pop = 500, cx = 0.60, mx = 0.150

pop = 800, cx = 0.60, mx = 0.150

(c) cx = 0.60, mx = 0.150, N =
{200, 500, 800}

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

pop = 200, cx = 0.70, mx = 0.050

pop = 500, cx = 0.70, mx = 0.050

pop = 800, cx = 0.70, mx = 0.050

(d) cx = 0.70, mx = 0.050, N =
{200, 500, 800}

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

pop = 200, cx = 0.70, mx = 0.100

pop = 500, cx = 0.70, mx = 0.100

pop = 800, cx = 0.70, mx = 0.100

(e) cx = 0.70, mx = 0.100, N =
{200, 500, 800}

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

pop = 200, cx = 0.70, mx = 0.150

pop = 500, cx = 0.70, mx = 0.150

pop = 800, cx = 0.70, mx = 0.150

(f) cx = 0.70, mx = 0.150, N =
{200, 500, 800}

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

pop = 200, cx = 0.80, mx = 0.050

pop = 500, cx = 0.80, mx = 0.050

pop = 800, cx = 0.80, mx = 0.050

(g) cx = 0.80, mx = 0.050, N =
{200, 500, 800}

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

pop = 200, cx = 0.80, mx = 0.100

pop = 500, cx = 0.80, mx = 0.100

pop = 800, cx = 0.80, mx = 0.100

(h) cx = 0.80, mx = 0.100, N =
{200, 500, 800}

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

pop = 200, cx = 0.80, mx = 0.150

pop = 500, cx = 0.80, mx = 0.150

pop = 800, cx = 0.80, mx = 0.150

(i) cx = 0.80, mx = 0.150, N =
{200, 500, 800}

Figure A.7: Modi�ed: �e average hypervolume indicator, where cx andmx is
the crossover and mutation rate, respectively.

82

A.5.3 Fourier Series Motion with k = 1 Fourier coe�cients

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.60, mx = 0.050

pop = 200, cx = 0.60, mx = 0.050

pop = 300, cx = 0.60, mx = 0.050

(a) cx = 0.60, mx = 0.050, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.60, mx = 0.100

pop = 200, cx = 0.60, mx = 0.100

pop = 300, cx = 0.60, mx = 0.100

(b) cx = 0.60, mx = 0.100, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.60, mx = 0.150

pop = 200, cx = 0.60, mx = 0.150

pop = 300, cx = 0.60, mx = 0.150

(c) cx = 0.60, mx = 0.150, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.70, mx = 0.050

pop = 200, cx = 0.70, mx = 0.050

pop = 300, cx = 0.70, mx = 0.050

(d) cx = 0.70, mx = 0.050, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.70, mx = 0.100

pop = 200, cx = 0.70, mx = 0.100

pop = 300, cx = 0.70, mx = 0.100

(e) cx = 0.70, mx = 0.100, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.70, mx = 0.150

pop = 200, cx = 0.70, mx = 0.150

pop = 300, cx = 0.70, mx = 0.150

(f) cx = 0.70, mx = 0.150, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.80, mx = 0.050

pop = 200, cx = 0.80, mx = 0.050

pop = 300, cx = 0.80, mx = 0.050

(g) cx = 0.80, mx = 0.050, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.80, mx = 0.100

pop = 200, cx = 0.80, mx = 0.100

pop = 300, cx = 0.80, mx = 0.100

(h) cx = 0.80, mx = 0.100, N =
{100, 200, 300}

10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

pop = 100, cx = 0.80, mx = 0.150

pop = 200, cx = 0.80, mx = 0.150

pop = 300, cx = 0.80, mx = 0.150

(i) cx = 0.80, mx = 0.150, N =
{100, 200, 300}

Figure A.8: Fourier series (k = 1): �e average hypervolume indicator, where
cx andmx is the crossover and mutation rate, respectively.

83

A.5.4 Fourier Series Motion with k = 3 Fourier coe�cients

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

(a) cx = 0.60, mx = 0.050, N =
{100, 300, 500}

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

(b) cx = 0.60, mx = 0.100, N =
{100, 300, 500}

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

(c) cx = 0.60, mx = 0.150, N =
{100, 300, 500}

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

(d) cx = 0.70, mx = 0.050, N =
{100, 300, 500}

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

(e) cx = 0.70, mx = 0.100, N =
{100, 300, 500}

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

(f) cx = 0.70, mx = 0.150, N =
{100, 300, 500}

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

(g) cx = 0.80, mx = 0.050, N =
{100, 300, 500}

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

(h) cx = 0.80, mx = 0.100, N =
{100, 300, 500}

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

(i) cx = 0.80, mx = 0.150, N =
{100, 300, 500}

Figure A.9: Fourier series (k = 3): �e average hypervolume indicator, where
cx andmx is the crossover and mutation rate, respectively.

84

A.5.5 Multi-Fourier Series Motion

10 20 30 40 50 60 70 80 90 100

35

40

45

50

55

60

65

70

75

80

85

90

(a) cx = 0.60, mx = 0.050, N =
{300, 500, 800}

10 20 30 40 50 60 70 80 90 100

35

40

45

50

55

60

65

70

75

80

85

90

(b) cx = 0.60, mx = 0.100, N =
{300, 500, 800}

10 20 30 40 50 60 70 80 90 100

35

40

45

50

55

60

65

70

75

80

85

90

(c) cx = 0.60, mx = 0.150, N =
{300, 500, 800}

10 20 30 40 50 60 70 80 90 100

35

40

45

50

55

60

65

70

75

80

85

90

(d) cx = 0.70, mx = 0.050, N =
{300, 500, 800}

10 20 30 40 50 60 70 80 90 100

35

40

45

50

55

60

65

70

75

80

85

90

(e) cx = 0.70, mx = 0.100, N =
{300, 500, 800}

10 20 30 40 50 60 70 80 90 100

35

40

45

50

55

60

65

70

75

80

85

90

(f) cx = 0.70, mx = 0.150, N =
{300, 500, 800}

10 20 30 40 50 60 70 80 90 100

35

40

45

50

55

60

65

70

75

80

85

90

(g) cx = 0.80, mx = 0.050, N =
{300, 500, 800}

10 20 30 40 50 60 70 80 90 100

35

40

45

50

55

60

65

70

75

80

85

90

(h) cx = 0.80, mx = 0.100, N =
{300, 500, 800}

10 20 30 40 50 60 70 80 90 100

35

40

45

50

55

60

65

70

75

80

85

90

(i) cx = 0.80, mx = 0.150, N =
{300, 500, 800}

Figure A.10: Fourier series: �e average hypervolume indicator, where cx and
mx is the crossover and mutation rate, respectively.

85

A.6 PCA and PLSR Results

A.6.1 Lateral undulation

Table A.1: �e raw data of cluster 1 given in Figure 5.14

Sample α [Nm] δ [Nm] Pavд [W] v̄ [m/s]
1 5.6693 90.0000 0.0215 0.0131
2 7.7953 90.0000 0.0396 0.0237
3 9.2126 90.0000 0.0540 0.0320
4 10.6299 90.0000 0.0698 0.0410
5 12.0472 89.2913 0.0899 0.0516
6 13.4646 89.2913 0.1084 0.0616
7 14.8819 90.0000 0.1235 0.0703
8 16.2992 90.0000 0.1425 0.0802
9 17.7165 90.0000 0.1616 0.0901
10 19.1339 90.0000 0.1809 0.0997
11 20.5512 90.0000 0.1998 0.1091
12 21.9685 90.0000 0.2186 0.1182
13 23.3858 90.0000 0.2369 0.1269
14 24.8031 90.0000 0.2548 0.1351
15 26.2205 90.0000 0.2720 0.1431
16 28.3465 90.0000 0.2971 0.1541
17 30.4724 90.0000 0.3197 0.1644
18 33.3071 90.0000 0.3486 0.1765
19 35.4331 90.0000 0.3686 0.1846
20 38.9764 90.0000 0.3986 0.1963
21 41.1024 90.0000 0.4148 0.2023
22 44.6457 90.0000 0.4383 0.2110
23 48.8976 90.0000 0.4624 0.2192
24 54.5669 90.0000 0.4892 0.2268
25 60.2362 89.2913 0.5254 0.2345

86

Table A.2: �e predicted gait paramters computed by the prediction model
presented in Section 5.2.4.

Pavд [W] α [Nm] δ [Nm]
0.000 9.634 89.565
0.200 18.414 90.053
0.400 41.858 89.887
0.600 52.984 79.087
0.800 50.554 74.766
1.000 48.752 71.482
2.000 42.815 60.109
4.000 36.161 45.951
6.000 33.101 37.707
8.000 31.605 32.037
10.000 31.149 28.079
12.000 31.251 25.037
14.000 32.028 23.108
16.000 32.985 21.473
18.000 34.378 20.557
20.000 36.001 20.020
22.000 37.721 19.642
24.000 39.774 19.812
26.000 41.935 20.159
28.000 42.616 18.070

87

A.6.2 Eel-like motion

(a) PCA scores of cluster 1 for eel-like motion. (b) PCA loadings of cluster 1 for eel-like motion.

(c) PCA scores of cluster 2 for eel-like motion. (d) PCA loadings of cluster 2 for eel-like motion.

Figure A.11: Eel-like motion: PCA scores and loadings.

Table A.3: Eel-like: �e RMSE values of the PLSR model for cluster 1 and 2

Cluster 1 Cluster 2
Factor α α δ

0 20.660 5.976 15.800
1 4.163 5.954 7.329
2 1.616 1.229 0.541

Beta coe�ctions of the PLSR model:

B1 =



9.336 90.000
273.122 0.000
−31.234 0.000


B2 =



98.960 115.778
1.759 −0.184
−9.947 −13.702


. (A.38)

88

A.6.3 Modi�ed motion

(a) PCA scores. (b) PCA loadings.

Figure A.12: Modi�ed motion: PCA scores and loadings.

Table A.4: Modi�ed: �e RMSE of the PLSR model

Factor δ д1 д2 д3 д4 д5 д6 д7 д8 д9

0 13.815 9.917 8.871 5.897 6.350 5.769 3.843 1.600 2.417 4.752
1 5.440 3.954 5.738 5.911 4.211 2.790 1.751 1.400 1.739 2.941
2 0.699 1.473 1.436 1.322 1.290 1.550 1.259 1.164 1.175 1.449

Beta coe�ctions of the PLSR model:

B =



91.885 69.957 75.560 69.679 58.325 50.229 46.110 42.624 43.145 46.915
−0.059 −0.091 0.659 1.517 1.576 1.175 0.705 0.291 0.140 0.233
−8.128 −5.544 −8.228 −8.361 −5.715 −3.261 −1.697 −1.118 −1.908 −3.806


.

(A.39)

89

A.6.4 Fourier Series Motion With k = 1 Fourier coe�cients

(a) PCA scores of cluster 1 for Fourier series. (b) PCA loadings of cluster 1 for Fourier series.

(c) PCA scores of cluster 2 for Fourier series. (d) PCA loadings of cluster 2 for Fourier series.

Figure A.13: Fourier series motion: PCA scores and loadings.

Table A.5: Eel-like: �e RMSE values of the PLSR model for cluster 1 and 2

Cluster 1 Cluster 2
Factor δ a1 b1 δ a1 b1

0 13.897 15.051 7.031 0.273 16.558 22.075
1 5.789 4.554 5.924 0.232 13.411 15.864
2 0.194 13.417 13.159 0.906 4.539 5.417

Beta coe�ctions of the PLSR model:

B1 =



89.332 −1.932 2.247
−11.472 363.496 −833.116

2.685 −62.033 153.240


B2 =



101.269 36.826 −39.511
0.211 −2.603 −1.624
−10.385 0.530 4.165


. (A.40)

90

A.6.5 Fourier Series Motion With k = 3 Fourier coe�cients

(a) Scores (b) Loadings

(c) In�uence (d) Explained Variance

Figure A.14: Fourier series (k = 3): PCA overview

(a) PCA scores. (b) PCA loadings.

Figure A.15: Modi�ed motion: PCA scores and loadings of cluster 1.

91

(a) PCA scores. (b) PCA loadings.

Figure A.16: Modi�ed motion: PCA scores and loadings of cluster 2.

Table A.6: Fourier series (k = 3): some raw data of cluster 1

Sample δ a1 a2 a3 b1 b2 b3 Pavд v̄

150 60.236 0.000 -1.429 -40.000 -1.429 0.000 18.571 1.790 0.400
151 60.236 0.000 0.000 -40.000 0.000 0.000 20.000 1.808 0.402
155 58.819 0.000 0.000 -40.000 0.000 0.000 10.000 1.871 0.408
156 58.819 0.000 0.000 -40.000 0.000 0.000 12.857 1.891 0.410
157 58.819 0.000 0.000 -40.000 0.000 0.000 14.286 1.903 0.411
160 58.110 0.000 0.000 -40.000 0.000 0.000 10.000 1.949 0.415
161 58.110 0.000 0.000 -40.000 0.000 0.000 12.857 1.970 0.417
162 58.110 0.000 0.000 -40.000 0.000 0.000 14.286 1.983 0.418
163 58.110 0.000 0.000 -40.000 0.000 0.000 15.714 1.996 0.419
167 57.402 0.000 0.000 -40.000 0.000 0.000 14.286 2.067 0.425
168 57.402 0.000 0.000 -40.000 0.000 0.000 15.714 2.081 0.426
169 55.984 0.000 0.000 -34.286 0.000 0.000 18.571 2.103 0.428

Table A.7: Fourier series (k = 3): some raw data of cluster 2

Sample δ a1 a2 a3 b1 b2 b3 Pavд v̄

435 25.512 0.000 0.000 34.286 0.000 0.000 10.000 13.340 0.760
436 24.803 0.000 0.000 34.286 0.000 0.000 7.143 13.410 0.761
439 24.803 0.000 0.000 34.286 0.000 0.000 8.571 13.616 0.763
440 24.094 0.000 0.000 34.286 0.000 0.000 5.714 13.745 0.764
441 24.803 0.000 0.000 34.286 0.000 0.000 10.000 13.866 0.766
444 24.094 0.000 0.000 34.286 0.000 0.000 8.571 14.130 0.768
445 24.803 0.000 0.000 34.286 0.000 0.000 11.429 14.162 0.769
447 24.094 0.000 0.000 34.286 0.000 0.000 10.000 14.394 0.771
450 23.386 0.000 0.000 34.286 0.000 0.000 8.571 14.643 0.773
451 24.094 0.000 0.000 34.286 0.000 0.000 11.429 14.704 0.774
453 23.386 0.000 0.000 34.286 0.000 0.000 10.000 14.919 0.776
457 22.677 0.000 0.000 34.286 0.000 0.000 10.000 15.441 0.780

92

Table A.8: Fourier series (k = 3): �e RMSE values of the PLSR model for
cluster 1 and 2

Cluster 1 Cluster 2
Factor δ a2 a3 b1 b3 δ b3

0 8.087 0.365 2.367 0.277 5.527 3.233 2.116
1 2.033 0.345 1.829 0.270 3.126 3.233 2.116
2 0.376 0.316 1.220 0.260 3.053 0.291 1.833

Beta coe�cients of the PLSR model:

B1 =



111.703 0.000 −3.340 −66.465 −2.008 0.000 40.593
2.344 0.000 −0.396 −3.524 −0.243 0.000 0.069
−13.989 0.000 0.915 8.557 0.554 0.000 −5.694


(A.41)

B2 =



82.093 0.000 0.000 34.286 0.000 0.000 70.696
−0.480 0.000 0.000 0.000 0.000 0.000 2.240
−6.648 0.000 0.000 0.000 0.000 0.000 −12.142


(A.42)

A.6.6 Multi-Fourier series

(a) PCA scores.
(b) PCA loadings.

Figure A.17: Multi-Fourier motion: PCA scores and loadings.

93

References

[1] Junku Yuh. Design and control of autonomous underwater robots: A survey. Autonomous
Robots, 8(1):7–24, 2000.

[2] Elgar Desa, R Madhan, and P Maurya. Potential of autonomous underwater vehicles as new
generation ocean data platforms. Indian Academy of Sciences, 2006.

[3] Robert D Christ and Robert L Wernli Sr. �e ROV manual: a user guide for remotely operated
vehicles. Bu�erworth-Heinemann, 2013.

[4] P. Liljebäck, Ø Stavdahl, K. Y. Pe�ersen, and J. T. Gravdahl. Mamba - a waterproof snake
robot with tactile sensing. In 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 294–301, Sept 2014.

[5] E. Kelasidi, K. Y. Pe�ersen, J. T. Gravdahl, and P. Liljebäck. Modeling of underwater snake
robots. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 4540–
4547, May 2014.

[6] W. Khalil, G. Gallot, and F. Boyer. Dynamic modeling and simulation of a 3-d serial eel-like
robot. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
37(6):1259–1268, Nov 2007.

[7] �omas B Curtin, James G Bellingham, Josko Catipovic, and Doug Webb. Autonomous
oceanographic sampling networks. Oceanography, 6(3):86–94, 1993.

[8] E. Kelasidi, K. Y. Pe�ersen, and J. T. Gravdahl. Energy e�ciency of underwater snake robot
locomotion. In 2015 23rd Mediterranean Conference on Control and Automation (MED), pages
1124–1131, June 2015.

[9] S. Hirose and M. Mori. Biologically inspired snake-like robots. In 2004 IEEE International
Conference on Robotics and Biomimetics, pages 1–7, Aug 2004.

[10] Alessandro Crespi and Auke Jan Ijspeert. Amphibot ii: An amphibious snake robot that
crawls and swims using a central pa�ern generator. In Proceedings of the 9th international
conference on climbing andwalking robots (CLAWAR 2006), number BIOROB-CONF-2006-001,
pages 19–27, 2006.

[11] Auke Jan Ijspeert. Central pa�ern generators for locomotion control in animals and robots:
a review. Neural networks, 21(4):642–653, 2008.

95

[12] AJ Wiens and M Nahon. Optimally e�cient swimming in hyper-redundant mechanisms:
control, design, and energy recovery. Bioinspiration & biomimetics, 7(4):046016, 2012.

[13] E. Kelasidi, M. Jesmani, K. Y. Pe�ersen, and J. T. Gravdahl. Multi-objective optimization for
e�cient motion of underwater snake robots. Arti�cial Life and Robotics, 21(4):411–422, 2016.

[14] Wei Shun Chee, Jason Teo, and Kota Kinabalu. Empirically comparing three multi-objective
optimization approaches for the automated evolution of snake-like modular robots. In Pro-
ceedings of the international conference on arti�cial intelligence and pa�ern recognition (AIPR),
Malaysia, pages 175–183, 2014.

[15] Alexander Sproewitz, Rico Moeckel, Jérôme Maye, and Auke Jan Ijspeert. Learning to move
in modular robots using central pa�ern generators and online optimization. �e International
Journal of Robotics Research, 27(3-4):423–443, 2008.

[16] Michael JD Powell. A fast algorithm for nonlinearly constrained optimization calculations.
In Numerical analysis, pages 144–157. Springer, 1978.

[17] N. Sha�i, M. H. Seyed Javadi, and B. Kimiaghalam. A truncated fourier series with genetic
algorithm for the control of biped locomotion. In 2009 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, pages 1781–1785, July 2009.

[18] Christian W Rempis and Frank Pasemann. An interactively constrained neuro-evolution
approach for behavior control of complex robots. Variants of Evolutionary Algorithms for
Real-World Applications, 87:305–341, 2012.

[19] John H Holland. Genetic algorithms. Scienti�c american, 267(1):66–72, 1992.

[20] Kenneth De Jong. Genetic algorithms: a 30 year perspective. Perspectives on Adaptation in
Natural and Arti�cial Systems, 11, 2005.

[21] John J Grefenste�e. Optimization of control parameters for genetic algorithms. IEEE Trans-
actions on systems, man, and cybernetics, 16(1):122–128, 1986.

[22] SN Sivanandam and SN Deepa. Introduction to genetic algorithms. Springer Science & Busi-
ness Media, 2007.

[23] �omas Back, Ulrich Hammel, and H-P Schwefel. Evolutionary computation: Comments
on the history and current state. IEEE transactions on Evolutionary Computation, 1(1):3–17,
1997.

[24] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review of al-
gorithms and comparison of so�ware implementations. Journal of Global Optimization,
56(3):1247–1293, 2013.

[25] S.N. Sivanandam and S.N. Deepa. Genetic Algorithms, pages 15–37. Springer Berlin Heidel-
berg, 2008.

[26] Ajith Abraham and Lakhmi Jain. Evolutionary multiobjective optimization. In Evolutionary
Multiobjective Optimization, pages 1–6. Springer, 2005.

96

[27] David E. Goldberg and John H. Holland. Genetic algorithms and machine learning. Machine
Learning, 3(2):95–99, 1988.

[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, Apr 2002.

[29] Eckart Zitzler, Marco Laumanns, Lothar �iele, et al. Spea2: Improving the strength pareto
evolutionary algorithm, 2001.

[30] RTF Ah King, K Deb, and HCS Rughooputh. Comparison of nsga-ii and spea2 on the multiob-
jective environmental/economic dispatch problem. University of Mauritius Research Journal,
16(1):485–511, 2010.

[31] Christian von Lücken, Benjamı́n Barán, and Carlos Brizuela. A survey on multi-objective
evolutionary algorithms for many-objective problems. Computational Optimization and Ap-
plications, 58(3):707–756, 2014.

[32] Lam T Bui, Daryl Essam, Hussein A Abbass, and David Green. Performance analysis of
evolutionary multi-objective optimization methods in noisy environments. In Proceedings of
the 8th Asia Paci�c symposium on intelligent and evolutionary systems, pages 29–39, 2004.

[33] Johannes Bader and Eckart Zitzler. Hype: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary computation, 19(1):45–76, 2011.

[34] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on de-
composition. IEEE Transactions on evolutionary computation, 11(6):712–731, 2007.

[35] N. Sha�i, A. Khorsandian, A. Abdolmaleki, and B. Jozi. An optimized gait generator based
on fourier series towards fast and robust biped locomotion involving arms swing. In 2009
IEEE International Conference on Automation and Logistics, pages 2018–2023, Aug 2009.

[36] Charles Darwin. On the origin of species by means of natural selection. 1859. London:
Murray Google Scholar, 1968.

[37] Mark Ridley. Evolution (3rd edn), 2004.

[38] Eckart Zitzler, Marco Laumanns, and Stefan Bleuler. A tutorial on evolutionary multiobjec-
tive optimization. Metaheuristics for multiobjective optimisation, pages 3–37, 2004.

[39] James E Gentle, Wolfgang Karl Härdle, and Yuichi Mori. Handbook of computational statistics:
concepts and methods. Springer Science & Business Media, 2012.

[40] S.N. Sivanandam and S.N. Deepa. Terminologies and Operators of GA, pages 39–81. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[41] AJ Umbarkar and PD Sheth. Crossover operators in genetic algorithms: a review. ICTACT
Journal on So� Computing, 6(1):1083–1092, 2015.

[42] �omas Back. Optimal mutation rates in genetic search. In Proceedings of the ��h interna-
tional conference on genetic algorithms, pages 2–8. Morgan Kaufmann, San Mateo, CA, 1993.

97

[43] Özgür Yeniay. Penalty function methods for constrained optimization with genetic algo-
rithms. Mathematical and Computational Applications, 10(1):45–56, 2005.

[44] Fan Wang, Xiaofan Lai, and Ning Shi. A multi-objective optimization for green supply chain
network design. Decision Support Systems, 51(2):262–269, 2011.

[45] C. M. Fonseca and P. J. Fleming. Multiobjective optimization and multiple constraint han-
dling with evolutionary algorithms. i. a uni�ed formulation. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 28(1):26–37, Jan 1998.

[46] S. Favuzza, M.G. Ippolito, and E. Riva Sanseverino. Crowded comparison operators for con-
straints handling in nsga-ii for optimal design of the compensation system in electrical dis-
tribution networks. Advanced Engineering Informatics, 20(2):201 – 211, 2006. Engineering
Informatics for Eco-Design.

[47] E. Zitzler, L. �iele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Performance assess-
ment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary
Computation, 7(2):117–132, April 2003.

[48] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, Apr 2002.

[49] Eckart Zitzler, Kalyanmoy Deb, and Lothar �iele. Comparison of multiobjective evolution-
ary algorithms: Empirical results. Evol. Comput., 8(2):173–195, June 2000.

[50] Aravind Seshadri. A fast elitist multiobjective genetic algorithm: Nsga-ii. MATLAB Central,
182, 2006.

[51] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, Apr 2002.

[52] Eckart Zitzler, Dimo Brockho�, and Lothar �iele. �e Hypervolume Indicator Revisited: On
the Design of Pareto-compliant Indicators Via Weighted Integration, pages 862–876. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[53] Eric W. Weisstein. Generalized fourier series. MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GeneralizedFourierSeries.
html, [Online; accessed 19-April-2017].

[54] Eric W. Weisstein. Fourier series. MathWorld–A Wolfram Web Resource. http://
mathworld.wolfram.com/FourierSeries.html, [Online; accessed 19-April-
2017].

[55] Charles Henry Edwards and David E.. Penney. Di�erential Equations and Boundary Value
Problems: Computing and Modeling, pages 572–589. Prentice Hall, 5th edition, 2014.

[56] Harald Martens and Tormod Naes. Multivariate calibration. John Wiley & Sons, 1992.

[57] CAMO So�ware. �e Unscrambler® X 10.3. 2014. http://www.camo.com/, [Online;
accessed 5-May-2017].

98

http://mathworld.wolfram.com/GeneralizedFourierSeries.html
http://mathworld.wolfram.com/GeneralizedFourierSeries.html
http://mathworld.wolfram.com/FourierSeries.html
http://mathworld.wolfram.com/FourierSeries.html
http://www.camo.com/

[58] CAMO So�ware. �e Unscrambler Appendices: Method References. 2017. http://www.
camo.com/TheUnscrambler/Appendices/, [Online; accessed 30-May-2017].

[59] Kim H Esbensen, Dominique Guyot, Frank Westad, and Lars P Houmoller. Multivariate data
analysis: in practice: an introduction to multivariate data analysis and experimental design.
Multivariate Data Analysis, 2002.

[60] Svante Wold, Michael Sjöström, and Lennart Eriksson. Pls-regression: a basic tool of chemo-
metrics. Chemometrics and intelligent laboratory systems, 58(2):109–130, 2001.

[61] Carlos M Fonseca and Peter J Fleming. Multiobjective optimization and multiple constraint
handling with evolutionary algorithms. i. a uni�ed formulation. IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part A: Systems and Humans, 28(1):26–37, 1998.

[62] Python Sofware Foundation. Python Language Referencem version 3.5. Available at http:
//www.python.org, 2017.

[63] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. �e numpy array: a structure for
e�cient numerical computation. Computing in Science & Engineering, 13(2):22–30, 2011.

[64] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, and
Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal of Machine Learning
Research, 13:2171–2175, jul 2012.

[65] J. Bader and E. Zitzler. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective
Optimization. TIK Report 286, Computer Engineering and Networks Laboratory (TIK),
ETH Zurich, November 2008. http://www.tik.ee.ethz.ch/sop/download/
supplementary/hype/, [Online; accessed 20-April-2017].

[66] MATLAB. version 9.2 (R2017a). �e MathWorks Inc., Natick, Massachuse�s, 2017.

[67] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. A large population size can be unhelp-
ful in evolutionary algorithms. �eoretical Computer Science, 436:54–70, 2012.

[68] Tobias Storch. On the choice of the population size. In Genetic and Evolutionary
Computation–GECCO 2004, pages 748–760. Springer, 2004.

[69] C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
Jan 1949.

99

http://www.camo.com/TheUnscrambler/Appendices/
http://www.camo.com/TheUnscrambler/Appendices/
http://www.python.org
http://www.python.org
http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/
http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/

	List of figures
	List of tables
	List of Abbreviations
	Introduction
	Motivation
	Related work
	Brief introduction to moea
	Contributions of this thesis
	Outline of this thesis

	Theoretical background
	A brief inntroduction to natural selection and genetics
	Genetic algorithm — single objective optimization
	Multi-objective optimization
	The NSGA-II moea
	The HypE moea
	Fourier series
	Multivariate Analysis

	Dynamic model of the underwater snake robot
	Mathematical terms and symbols
	The kinematics of the underwater snake robot
	Hydrodynamic model
	Equations of motion
	Low-level joint controller for the underwater snake robot
	The forward velocity and the average power consumption

	Methodology
	The multi-objective optimization problem
	Constraint handling
	Genetic representation
	Simulation paramters
	Implementation
	Simulation study

	Simulation results
	Optimal ga paramters
	Simulations with optimal GA paramters
	Summary

	Conclusions
	Future work

	Appendix
	The recursion steps in ex:compute exact hypervolumes
	Configurations in Unscrambler X 10.3
	Python Codes
	Pareto fronts of the cases given in sec:find optimal ga
	Hypervolumes of the cases given in sec:find optimal ga
	pca and plsr Results
	References

