
Performance analysis and enhancement
of the iSHAKE algorithm

Jaime Perez Crespo

Master of Telematics - Communication Networks and Networked Services

Supervisor: Danilo Gligoroski, IIK

Department of Information Security and Communication Technology

Submission date: June 2017

Norwegian University of Science and Technology

Title: Measuring and enhancing the performance of iSHAKE
Student: Jaime Pérez Crespo

Problem description:

After successfully implementing the iSHAKE algorithm, a proper performance
analysis and comparison against other similar algorithms is needed to evaluate its
efficiency. Such an analysis will help identify possible improvements that can be done
to boost performance and find optimal default settings for the algorithm, as well as
to provide a better picture of its strengths and benefits.

The goal of this work is then to perform such comparison and optimise the imple-
mentation of iSHAKE, making it available in a public repository and automatically
tested for conformance (i.e. host it in github with continuous integration offered
by travis-ci). In addition, possible use cases where iSHAKE could be implemented
successfully will be studied, such as its application to the git version control system.

Responsible professor:
Supervisor: Danilo Gligoroski, IIK

Abstract

In the era of the Big Data, immense amounts of data are being gener-
ated and processed every second. Research facilities like the European
Large Hadron Collider (LHC) in Geneva generate massive amounts of
information every second1. When data in such large volumes needs to be
processed by certain cryptographic algorithms to add integrity to it or
even digitally sign it, traditional sequential hash functions are unable to
cope with it.

Incremental hash functions have been proposed [BGG94] to alleviate
some of the issues. However, they imply significant downsides and are still
not enough to process the amounts of data that we generate nowadays.
An innovative algorithm called iSHAKE has been suggested to allow
a more efficient use of parallelism [MGS15] and in our previous work
[PC16], we demonstrated the concept with a naive implementation. Now,
we present an improved library that allows us to take the most out of
modern CPUs, outperforming even the fastest algorithms available, and
evaluate the advantages of using iSHAKE for several use cases.

1CERN has an illustrative blog post describing the volume of data generated in their experiments,
and how to rebuild and store it for its later use by scientific researchers. It can be found here:
http://home.cern/about/computing/processing-what-record.

http://home.cern/about/computing/processing-what-record

Acknowledgements

I would like to thank my family and friends for their support, and
especially Maria for being so patient and understanding.

My gratitude goes to Danilo Gligoroski too for his help and enthusiasm
around this project, as well as to my friends and colleagues at UNINETT
for making it easier for me to work on this thesis.

Contents

List of Figures vii

List of Tables ix

List of Acronyms xi

1 Introduction and related work 1
1.1 The scale problem . 3

1.1.1 Merkle trees . 4
1.1.2 Incremental hashes . 5

1.2 iSHAKE . 6
1.3 Outline of this report . 8

2 Improving the implementation 9
2.1 Bug fixes . 9

2.1.1 Memory management . 9
2.1.2 Modulo operations . 11
2.1.3 Empty inputs . 12

2.2 Improvements . 12
2.2.1 Frequent operations . 13
2.2.2 Keccak implementation . 13
2.2.3 Parallel computation . 15
2.2.4 Appending blocks efficiently in full mode 16
2.2.5 Efficient use of memory . 17
2.2.6 Python interfaces . 19

3 Performance evaluation 21
3.1 Methodology . 22
3.2 Test platforms . 23
3.3 Optimal configuration . 25
3.4 Performance comparison . 31

3.4.1 Algorithms . 31
3.4.2 Results . 33

v

4 Use cases 39
4.1 The Git Version Control System . 39

4.1.1 Challenges . 40
4.1.2 Using iSHAKE . 41

4.2 BitTorrent . 44
4.2.1 Challenges . 45
4.2.2 Using iSHAKE . 46

5 Conclusions and future work 49
5.1 Future work . 50

5.1.1 Portability . 50
5.1.2 High-Performance Distributed Computing 50
5.1.3 Underlying hash function . 51

References 53

Appendices
A Header file of the iSHAKE library 57

B Usage of the tools provided 63

C Performance measurements 67
C.1 Hash algorithm comparison . 67
C.2 iSHAKE evaluation . 71
C.3 ParallelHash evaluation . 98

List of Figures

1.1 Example of a Merkle tree . 5
1.2 Example of an incremental hash algorithm 6
1.3 General description of the iSHAKE algorithm 7

2.1 Conversion of an array of bytes to an array of unsigned 64-bit integers. . 13
2.2 Commutative addition operation performed over two arrays of unsigned

64-bit integers. 14
2.3 Parallel processing of iSHAKE blocks 16
2.4 Original iSHAKE blocks . 19
2.5 Optimised iSHAKE blocks . 19

3.1 CPU cycles taken by iSHAKE 128 to process each input byte for 1024
blocks of variable size and a variable number of threads. 26

3.2 CPU cycles taken by iSHAKE 128 to process each input byte for 1024
blocks of variable size and a variable number of threads. Detail of the
best performing block sizes. 27

3.3 Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 500 bytes. 28

3.4 Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 1 KiB. 28

3.5 Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 10 KiB. 29

3.6 Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 100 KiB. 30

3.7 Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 1 MiB. 30

3.8 Minimum wall time taken by different algorithms to process 1 GiB of data. 34
3.9 Minimum CPU cycles per byte observed for different algorithms and

configurations. 35

4.1 Git blob object . 40
4.2 Recomputing Git tree objects . 44

vii

4.3 Using iSHAKE in BitTorrent . 46

List of Tables

3.1 Statistical comparison of different algorithms (nepenthe) 36
3.2 Statistical comparison of different algorithms (bigmem) 36

C.1 Wall time comparison of different algorithms (bigmem) 67
C.2 Wall time comparison of different algorithms (bigmem) 69
C.3 iSHAKE 128 performance analysis (nepenthe) 72
C.4 iSHAKE 128 performance analysis (nepenthe, with header overhead) . . 75
C.5 iSHAKE 256 performance analysis (nepenthe) 78
C.6 iSHAKE 256 performance analysis (nepenthe, with header overhead) . . 82
C.7 iSHAKE 128 performance analysis (bigmem) 85
C.8 iSHAKE 128 performance analysis (bigmem, with header overhead) . . . 88
C.9 iSHAKE 256 performance analysis (bigmem) 92
C.10 iSHAKE 256 performance analysis (bigmem, with header overhead) . . . 95
C.11 ParallelHash 128 performance analysis (nepenthe, generic64) 99
C.12 ParallelHash 256 performance analysis (nepenthe, generic64) 100
C.13 ParallelHash 128 performance analysis (nepenthe, lane complementing) . 101
C.14 ParallelHash 256 performance analysis (nepenthe, lane complementing) . 102
C.15 ParallelHash 128 performance analysis (bigmem, generic64) 103
C.16 ParallelHash 256 performance analysis (bigmem, generic64) 104
C.17 ParallelHash 128 performance analysis (bigmem, lane complementing) . 105
C.18 ParallelHash 256 performance analysis (bigmem, lane complementing) . 106

ix

List of Acronyms

API Application Programming Interface.

BEP BitTorrent Enhancement Proposal.

blob Binary Large Object.

CAVP Cryptographic Algorithm Validation Program.

CAVS Cryptographic Algorithm Validation System.

CERN Conseil Européen pour la Recherche Nucléaire (European Organization for
Nuclear Research).

CI Continuous Integration.

CPU Central Processing Unit.

DDR3 Double Data Rate type 3.

ECRYPT European Network of Excellence in Cryptology.

FIPS Federal Information Processing Standard.

LHC Large Hadron Collider.

MD5 Message Digest 5.

NIST National Institute of Standards and Technology.

NSA National Security Agency.

P2P Peer-to-Peer.

SHA-1 Secure Hash Algorithm 1.

xi

SHA-3 Secure Hash Algorithm 3.

SIMD Single Instruction, Multiple Data.

SSE Streaming SIMD Extensions.

SUPERCOP System for Unified Performance Evaluation Related to Cryptographic
Operations and Primitives.

VAMPIRE Virtual Applications and Implementation Research Lab.

VCS Version Control System.

XOF Extendable-Output Function.

Chapter1Introduction and related work

A hash function or algorithm can be defined as a mathematical, deterministic,
irreversible function that can be applied to data of any length in order to obtain a
fixed-size output that corresponds univocally to the input [FS03, Chapter 6].

Functions like that provide certain interesting properties that can be used in
computer science. For example, they are useful to reduce big inputs to a fixed-size
string that univocally identifies the originating input. Since they are deterministic,
the same input produces always the same output, and as such, they can be used to
verify the integrity of the input (that is, verify that the input has not been modified
in transit or by some malicious third party).

Sometimes, we just don’t want to store the original data, but still be able to verify
it. Passwords are a good example of this. Keeping a hash of a password instead of
the password itself is more secure for the end user (as no system administrator needs
to be trusted to hold the user’s password and in case of a security breach or a data
leak, the original passwords won’t be in the public domain), and it still allows us to
authenticate the user by hashing the password provided and comparing the resulting
hash with the one we have stored. In this use case, though, we need a particularly
strong hash function that meets some additional properties.

A cryptographic hash function is a hash function that needs to fulfill certain extra
requirements, just because the features provided by the function are paramount to
the security of the system relying on them. In addition to being deterministic and
irreversible, cryptographic hash functions must adhere to the following principles:

– They need to be optimised so that their performance is suitable for most use
cases.

– The slightest change in the input must trigger a change of most –if not all–
the output, such as no correlation between two almost identical inputs can be

1

2 1. INTRODUCTION AND RELATED WORK

established by observing their resulting hashes. This is known as the avalanche
effect.

– It is infeasible to find (or build) two different inputs that produce the same
output. This is called a collision in the hash algorithm.

Why are those properties so important? A non-deterministic function cannot be
used because it doesn’t generate always the same output. Imagine how could we
verify a user’s password in the previous example if the hash function used does not
produce the same output every time we process the same input. Similarly, if the hash
function is reversible, we can obtain the input given the output. Going back to the
same example again, this would mean the ability to recover the user’s password from
the stored hash, running the whole system pointless. This is known in cryptography
as a preimage attack, and the ability of a hash function to resist it is called preimage
resistance [RS09]. Preimage resistance depends also on the avalanche effect because
a relation between the output and the input can be used to obtain an unknown input
from its output. Imagine an external observer that notes the relationship between
both in a certain hash algorithm. Now, in order to recover the input corresponding to
a given output (a preimage attack), the observer can compute the hashes of random
inputs, keeping the results to analyze the relationships and modify the input fed to
the algorithm every time such as its result keeps getting closer to the hash we want
to reverse. When both the computed hash and the given one match, we have found
the original input.

Finally, when we talk about collisions in hash algorithms, we need to make a
distinction between two different cases. A collision attack consists in finding any
two different inputs producing the same hash. Of course, given the fixed-size of
the output, the pigeonhole principle guarantees that collisions will occur1. However,
when it is computationally difficult to find those collisions, we say that the hash
function exhibits collision resistance.

On the other hand, when we are given a certain input and we want to find another
one that produces the same hash (as opposed to finding any two inputs), we call
that a second preimage attack. For a cryptographic hash function, it is essential to
offer second preimage resistance. Let us present another example for this. Imagine a
digital signature scheme where we have both the original input and the corresponding
signature, the latter being the hash of the input encrypted with the private key
of the signer. If we are able to find any other input that produces the same hash
that was encrypted by the signer, we can say that the alternative message was the

1The mathematical pigeonhole principle states that when a number n of items are to be stored
in a set m of containers, with n > m > 0, then at least one of the m containers must contain more
than one item.

1.1. THE SCALE PROBLEM 3

subject of the signature and that won’t be deniable (known as non-repudation), as
the signature will match [Sch96, Chapters 2, 20].

1.1 The scale problem

So far, we have discussed all the security-related properties expected from a crypto-
graphic hash function. However, we left aside one very important aspect: performance.

Let’s go back to the digital signature example we just used to illustrate the
importance of performance in context. A sharp reader could be thinking at this point
why using a hash function at all, instead of just encrypting the entire data with the
private key of the signer. As it turns out, public key or asymmetric cryptography is
incredibly expensive in computational terms, so such an approach would significantly
slow down the process and ruin the user experience. This is analogous to public key
encryption: instead of encrypting some input with someone else’s public key, we use
a much faster symmetric encryption algorithm to encrypt with a randomly generated,
fixed-size key and then encrypt that key using asymmetric encryption. So, similarly,
digital signatures use hash functions to reduce the size of the input to something
affordable for the asymmetric encryption algorithm.

When the size of the input to process (whether process means here to encrypt it
or sign it) grows, the algorithm that does the initial processing needs to be extremely
fast as the demand for computational resources has been shifted from the public key
algorithm to the symmetric encryption or hashing ones.

Even though algorithms evolve and with the years we change from using one
to the other, their core principles remain the same. On the other hand, we have
increasing amounts of data sources generating much more information than we can
process. In some cases, that information needs to be processed in a way that requires
the use of a hash function, and if that function is not able to cope with the size of
the data it is being fed, we can then say that the system does not scale.

Let us present one last example to illustrate this problem. Assume we have a log
of events that grows when each new event is appended to the end. Now, imagine that
events are produced by hundreds of devices connected to the network, and that, on
average, the log has a new event appended every second. If we want to use that log as
a papertrail, we need to make sure to add integrity to it, so that we can demonstrate
in court that it has not been altered. Maybe we even want to digitally sign it. Let’s
pretend that the hash algorithm we use for that takes 1.5 seconds to process the
entire log at its current state, which in turn keeps growing and growing (leading to
longer processing times) while more devices keep sending their events (eventually
leading to more frequent events). If the rate in which we receive events is higher than

4 1. INTRODUCTION AND RELATED WORK

the rate in which we process them, the system simply chokes and stops working.

This example is a good depiction of the problem we attempt to solve here. We
not only need a hash function that performs better than any other, but also a model
that allows us to scale in use cases like that, completely independent of the size of
the input.

In general, a typical approach to resolve any scalability or performance issues con-
sists in allowing the use of parallelism to distribute the work among different workers
and collect the results when they are ready to combine them in one final, unique
outcome. However, most hash functions tend to process the input data sequentially,
in a way tha does not allow parallel processing to improve the performance.

Our proposal, called iSHAKE, attempts to resolve this problem not only dramat-
ically enhancing the performance of traditional, sequential hash algorithms, but also
changing the paradigm to allow the modification of the input with the recomputation
of the resulting hash in constant time (O(1)) without compromising any of the
fundamental properties of a cryptographic hash algorithm.

1.1.1 Merkle trees

An intuitive way to resolve the problem at hand would be to build a tree whose leaves
are equal-size blocks containing the input data split in order, then apply the hash
function to those leaves and use the resulting hashes as input for another iteration of
the algorithm, until only one hash operation is performed. In computer science, this
is called a hash tree or a Merkle tree [Mer82], and the main advantage is that blocks
can then be hashed in parallel. An additional feature provided by this model is that
a change in a particular block does not require to process the entire input again, but
only the block that has been modified, plus all the intermediate hashes that connect
that block to the top of the tree. Figure 1.1 shows an example of such a structure.

Unfortunately, Merkle trees have several disadvantages that make them less
suitable as a solution in this context:

– If being able to recompute the resulting hash without processing the entire
input is a requirement, all the intermediate hashes must be kept for every given
input, constituting a significant data overhead.

– Sequential processing of the input is even slower than when using a regular
hash algorithm (if no parallelism is used), as more hash operations are needed
(one for each node of the tree).

– Recomputing the resulting hash after a block has changed in a Merkle tree
needs logarithmic time (O(log n)), with a total number of log2(n) + 1 hash

1.1. THE SCALE PROBLEM 5

block 1 block 2 block 3 block 4

hash 0/0 hash 0/1 hash 1/0 hash 1/1

hash 0 hash 1

final hash

Figure 1.1: Example of a Merkle tree with four blocks. The input is divided into
equal-size blocks, which are then processed using the hash function. A binary tree is
built out of the resulting hashes, subsequently applying the hash function to them in
a loop, until one single hash operation is performed to obtain the final hash.

operations. While this is a significant improvement over the linear time needed
by sequential algorithms (O(n)), it could still be much better.

– Hash operations can only be executed in parallel in the same level of the tree,
as for each level the hash operations require the hashes of the next level to
be available. This means, for instance, that the hash operations needed to
recompute a hash upon a change in a block cannot be performed in parallel.

This set of issues makes it less convenient to use regular Merkle trees to solve our
problem, and we need therefore a different solution.

1.1.2 Incremental hashes

A more generic way to approach the problem is usually known as incremental hash
algorithms [BGG94]. While a Merkle tree can be considered an incremental hash
algorithm itself, multiple proposals exist suggesting the reduction of the depth of the
tree (effectively improving the performance) or even the use of different functions to
process the input depending on the depth of a particular node in the tree [BDPVA14].
Figure 1.2 gives an overview of their behaviour.

Some incremental hash algorithms can provide a significant improvement in
performance respect to Merkle trees. However, they still imply a big data overload
as we need to keep all the intermediate hashes computed in the tree if we want to be
able to modify the final hash upon a change in the input. This limitation is always
present unless we process the intermediate hashes in a different way.

6 1. INTRODUCTION AND RELATED WORK

data ...

block 1 block 2 ... block n − 1 block n

f f ... f f

hash 1 hash 2 ... hash n − 1 hash n

f

digest

Figure 1.2: Example of an incremental hash algorithm. In this case, the incremental
hash algorithm divides the input data into blocks, and applies the hash function
over each block, concatenating the results in the same order as the blocks. The
resulting concatenation of hashes is passed again to the input of the hash function,
obtaining the final digest. Different incremental hash algorithms may have more
levels of indirection, increasing the amount of intermediate hashes used.

1.2 iSHAKE

As we have seen, incremental hash algorithms come at a price in terms of data
overhead that we need to keep to get the most out of them. An alternative to a
tree-based incremental hash algorithm is iSHAKE [MGS15], which proposes to stop
building hash trees and combine the intermediate hashes with an efficient commutative
operation that can be reversed. If we can reverse this combine operation, we can
then remove, update and add new blocks without the need to keep all intermediate
hashes, just by recomputing the hash corresponding to the block or blocks affected.
Figure 1.3 illustrates this proposal.

Our previous work presented an initial implementation of iSHAKE [PC16], fea-
turing the ability to insert, update and delete blocks from any given hash and its
corresponding original input. Having the ability to perform those operations is key

1.2. ISHAKE 7

data ...

block block ... block block

block 1 h block 2 h ... block n − 1 h block n h

f f ... f f

hash 1 hash 2 ... hash n − 1 hash n

+

digest

Figure 1.3: General description of the iSHAKE algorithm. The input is split into
blocks of size block size. Each block is appended with a header of variable size
depending on the mode of operation. The hash function f is then applied to each
block, and the resulting hashes are combined together with a commutative, reversible
operation to form the final digest.

to guarantee a constant time for recomputations of the resulting hash upon a change
in the input, while significantly reducing (or even removing) the data overhead
introduced by most incremental hash algorithms. We made this implementation
publicly available2 for anyone willing to test it and used a system similar to NIST’s
Cryptographic Algorithm Validation System to test our code automatically thanks
to a Continuous Integration platform.

Now, we present an improved implementation providing complete parallelization
of all the operations and improving the performance dramatically, up to the point
that it can compete with the fastest hash algorithms in the market.

2See http://github.com/jaimeperez/ishake.

http://github.com/jaimeperez/ishake

8 1. INTRODUCTION AND RELATED WORK

1.3 Outline of this report

This project demonstrates in practice the main advantages of the aforementioned
iSHAKE incremental hash algorithm. We start by describing all the fixes and
improvements made to the original implementation in Chapter 2. Next, we present a
set of experiments as well as their results, comparing iSHAKE with other sequential
and incremental hash algorithms in Chapter 3. We will also study the possible
application of our solution to existing, real-world use cases, in Chapter 4, and finalise
presenting our conclusions in Chapter 5.

Chapter2Improving the implementation

The first goal of the work presented here was to improve the existing implemen-
tation as much as possible, making it suitable for use in production environments,
and enabling us to measure its performance in fair conditions against other existing
algorithms. As such, a full code review was carried out to identify possible bugs and
weaknesses, as well as possible improvements that could emerge from changes in the
design decissions originally taken.

This chapter presents that work in a comprehensive and exhaustive manner. We
will go through the different issues found during the code review and explain their
fixes in detail. We will also review the improvement areas outlined in our previous
work [PC16] and discuss the actions taken to tackle them.

2.1 Bug fixes

Software has bugs. We could even argue that bugs are an inherent property of
software, based on the fact that software is written by humans who will inevitably
make mistakes. Therefore, it is our responsibility to acknowledge this as a fact and
assume our software will have bugs that we need to fix. This is the only way we
can actually focus on tracking them down, understanding why they happened, and
providing appropriate fixes. During our code review, we identified and fixed a set of
bugs that we describe in this section.

2.1.1 Memory management

Programming in C [ISO99] is difficult. The amount of freedom the language provides
the programmer with comes at a price, that being the complexity and the myriad of
details that need to be taken into account even in the simplest algorithms. Mem-
ory management is one of the most typical examples of this, especially for those
programmers used to languages that take care of memory automatically, so that its

9

10 2. IMPROVING THE IMPLEMENTATION

management is completely transparent to them and they are not used to manually
allocating and freeing memory to store their data.

We identified an issue with memory management in our iSHAKE implementation,
related to the way we passed iSHAKE blocks around to the API functions. In an
attempt to make it easier to handle variables, pass-by-reference arguments were
used only when the block was supposed to be modified by the function call (e.g.
during a block insertion or deletion, the block previous to the one we are inserting or
deleting needs to be modified to point to the appropriate next block in the chain),
and pass-by-value arguments were used the rest of the time.

This has proven to be a mistake, as in C passing an argument as a reference does
not only imply the capability to modify the contents of the referenced variable, but
also different areas of memory being used. In this particular example, an iSHAKE
block contains, in turn, more references to memory addresses that contain the data
of the block, and that data is not copied over to the stack when using pass-by-value
arguments, but the reference to the data itself.

In a scenario with sequential processing, this would not show up as an issue
because blocks are processed one at a time, and that means we won’t release the
memory associated with a block before we are done processing it. However, when
parallelism is introduced, multiple branches of execution would be competing to
access the same data (remember we are using references instead of copying data over
from one function to another), and race conditions occur. The most typical example
was some code freeing the memory where we had read the data of a block, while
another code was waiting its turn to process that data, leading to a later access to
unallocated memory.

This is obviously a serious issue that could lead to all kinds of errors, from
segmentation faults due to code accessing memory that was previously freed in the
worst case, to incorrect results of the algorithm due to the processing of data in
memory that doesn’t correspond to the real input.

The way to resolve a problem like this is using pass-by-reference arguments
regardless of whether we intend to modify the contents of an argument or not.
Defining a new ishake_block type as a reference to a ishake_block_t struct makes
it possible to harmonize all function signatures and implementations. Additionally,
all dynamically-allocated memory is now freed by the code that processes the contents
stored in that memory, instead of by the code that allocated that memory in the first
place. This might be more complicated since it is then easier to lose track of allocated
memory and give room to memory leaks, but it is the only way to avoid the issue
described here without using complicated, additional synchronization mechanisms.

2.1. BUG FIXES 11

2.1.2 Modulo operations

Another typical source of bugs in C is the so-called off-by-one. Those issues are
usually due to the programmer counting one less (or one extra) item in a sequence,
ignoring the fact that counts start at 0 in the language. It can also happen when
performing computations that depend on the number of bits used (e.g. confusing
the power of two with the number of bits in a word). The latter was the case when
computing the modulo operations that combine together the hashes of every block.

In iSHAKE, the results of applying the hashing algorithm to each block are
combined together using a commutative operation per each 64-bit word. If, for
example, we have an input divided into two blocks, the two digests resulting from
applying the hash algorithm to each block are merged by iterating over each 64-bit
word of the digests and adding both together, modulo 264. This modulo operation
is needed to ignore overflows when the addition of both input integers cannot be
expressed in 64 bits. It also makes it easy and fast to compute the operation in 64-bit
architectures.

The issue at hand was due to the modulo operation using the UINT64_MAX constant
defined in stdint.h. Since a 64-bit computer cannot handle numbers greater or equal
to 264 directly (as that value corresponds to the 65th bit), UINT64_MAX represents
the maximum value an unsigned, 64-bit integer can take, which is 264 − 1 (64 bits
set to 1). This means we were applying a modulo operation that did not allow the
highest number possibly contained in a 64-bit word (264− 1), with fatal consequences
under certain circumstances.

For example, if we add 0x00 to the maximum unsigned 64-bit integer (0xFF FF
FF FF FF FF FF FF) we should return the same number, as we are adding zero. The
result of this operation was zero, though, as 0xFF FF FF FF FF FF FF FF is 264 − 1
, and every number modulo itself yields zero as the result. In the case of an overflow,
the result of the operation was short by one. For example, adding 0x01 to 0xFF FF
FF FF FF FF FF FF should yield 0x00 as a result, but 0x01 was returned instead,
due to the way the modulo operation was implemented (remember that the number
264 cannot be represented in a 64-bit computer directly).

The issue was resolved by letting the processor handle the addition (or subtraction)
itself, which basically means ignoring the overflow and performing the modulo
operation automatically, instead of implementing that modulo operation ourselves.
This way, the bug due to the upper bound being short by one is no longer an issue,
as that bound is set by the architecture of the processor, not by the programmer.

12 2. IMPROVING THE IMPLEMENTATION

2.1.3 Empty inputs

Every hash algorithm must be able to process an empty input and produce a
deterministic output for it. While this held true for iSHAKE in append-only or
fixed-size mode, it did not for the alternative full or variable-size mode. The issue,
located in the ishake_append() function of the API provided, was due to a bug
when no input had been processed at the time of calling. The condition evaluating
whether we need or not to process any remaining data did not take into account the
mode in use, but the number of bytes awaiting for processing or the number of bytes
already processed.

This condition alone worked fine when running in append-only mode. This is
because, in this mode, the header of the blocks contains a self-incrementing index.
When no data was provided at all, the condition would hold true as no bytes were
processed so far. The code would then add a new block with the remaining data (in
this case, no data at all) and the current index plus one, that being 1 as the index
was initialized to 0. So in case no data is passed to iSHAKE at all, an empty block
indexed with number 1 would be the input for the underlying hash function.

However, this behaviour does not work in full mode, because the block header
consists of a nonce identifying the block, and the nonce of the next block in the chain.
Since no data was provided, an empty block could be used, but the algorithm doesn’t
have a nonce to identify that block. While the required nonce could be randomly
generated for this case, that would break the mandatory requirement to produce
deterministic output, as the result would vary depending on the aforementioned
nonce.

The fix for the issue consists in a check for the mode of operation, skipping the
processing of any remaining data or an additional empty block when running in
full mode. We keep that way the expected behaviour in append-only mode while
leaving the responsibility to add an empty block to the user. This means iSHAKE
can generate a total of 264 outputs from an empty input, depending on the nonce
associated with the empty block.

2.2 Improvements

During our previous work [PC16] we identified several areas where iSHAKE could
be improved significantly in terms of performance or usage simplicity. Additionally,
our tests during the present work showed additional room for improvement. Here,
we outline those improvements and make some usage suggestions based on our
experience.

2.2. IMPROVEMENTS 13

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 ...

64 64 ...

Figure 2.1: Conversion of an array of bytes to an array of unsigned 64-bit integers.

2.2.1 Frequent operations

One of the areas of improvement we previously identified was the operations that
are executed most frequently. Apart from the underlying hash algorithm, we also
perform several operations for each processed block:

– The conversion of the resulting hash from an array of bytes to an array of
unsigned 64-bit integers, as depicted in figure 2.1. This is needed in order
to perform the commutative operation from the output generated by the
underlying hash function.

– A commutative operation to combine the computed digest of the block with the
global digest computed so far. This is done by adding or subtracting together
unsigned 64-bit integers, as depicted in figure 2.2.

Both operations take a non-negligible amount of resources since they essentially
need to iterate over the resulting digest with linear complexity (O(n)) depending
on the length of the digest. After testing different alternatives with regard to the
implementation, we observed no significant improvement in any of them, concluding
that compiler optimisations are good enough to optimise both operations without
the need for further optimisation in the code itself.

2.2.2 Keccak implementation

In our initial implementation of iSHAKE, described in [PC16], we decided to use a
tiny implementation of the Keccak sponge function1. As we explained then, the
decision to use that implementation was based on the assumption that it was nearly

1The keccak-tiny library is the work of David León Gil, and it is available under a Creative
Commons 0 (CC0) open source license here: https://github.com/coruus/keccak-tiny.

https://github.com/coruus/keccak-tiny

14 2. IMPROVING THE IMPLEMENTATION

64 64 ...

+ +

64 64 ...

64 64 ...

Figure 2.2: Commutative addition operation performed over two arrays of unsigned
64-bit integers.

as fast as the original implementation by the Keccak team2 known as the Keccak
Code Package3, and that it was simple to use and build.

Our initial evaluation about the simplicity of this implementation was too opti-
mistic, as we had to adapt it to our needs in order to be able to process large sets of
data in chunks. With regard to its performance, our tests showed that our initial
assumption was, unfortunately, wrong too. The official implementation can be up
to a couple orders of magnitude faster than the keccak-tiny library, and that had
a serious impact on the performance of our iSHAKE library itself. As an example,
while we measured approximately 103 seconds to process 1 GiB of data with the
iSHAKE 256 algorithm using the keccak-tiny implementation, our new development
using the Keccak Code Package takes less than 4 seconds to process the same data
in one of our test machines.

The difference in performance is really noticeable and critical for our purpose to
demonstrate the efficiency of iSHAKE when competing with other hash algorithms.
Therefore, the iSHAKE implementation has been updated to use the Keccak
Code Package, allowing for architecture specific optimisations. This official Keccak
implementation provides multiple builds optimised for different architectures, with the
most meaningful for our interests being the generic optimisation for 64-bit platforms,
and the lane complementing transform optimisation, described in [BDP+12].

As we will demonstrate later in Chapter 3, the change of the underlying Keccak
implementation allows us to dramatically improve the performance of iSHAKE to

2The Keccak team is the group of authors of the Keccak sponge function that was finally
chosen by NIST to become the SHA-3 standard [Nat15]. This group of authors are also the
proponents of the Sakura tree-based incremental hash algorithm [BDPVA14]

3This is the official implementation published under a CC0 open source license by the Keccak
team here: https://github.com/gvanas/KeccakCodePackage.

https://github.com/gvanas/KeccakCodePackage

2.2. IMPROVEMENTS 15

be able to compete with other extremely fast hash algorithms and even outreach
their performance under certain circumstances, unleashing all the advantages of our
model.

2.2.3 Parallel computation

The iSHAKE algorithm has two main advantages over regular, sequential hash
algorithms. First, it allows for very efficient hash recomputing when the input
changes, without the need to process the entire input again. Second, parallel
processing of the input is possible as it is divided into self-contained blocks that can
be passed directly to the underlying hash function.

During our previous work, we demonstrated its efficiency recomputing a hash
upon a change in the input, and our new implementation based on the Keccak
Code Package will help us compare it to other similar algorithms. However, that
original implementation lacked the ability to exploit processor parallelism and was,
therefore, equivalent to any other sequential processing algorithm.

A new implementation has been made to allow the programmer to specify the
number of threads to use for processing. We used a worker-dispatcher model, where
the main thread of execution (the dispatcher) reads the input data and divides
it into blocks. Those blocks are appended their corresponding header and added
to a task structure that indicates what operation to perform on the given block.
Tasks are pushed to a heap, from where a set of worker threads pull the tasks for
processing. In this case, the completion of a task involves both the computation of
the digest corresponding to the block and the combination of that resulting digest
into the final digest. Figure 2.3 describes the model as implemented. This particular
approach allows us to take the most out of the available resources to compute the
hash corresponding each block and combining it with the current hash with the
commutative operation. The downside to our model is the complex synchronization
that is required between the dispatcher and the worker threads, and also among the
latter.

Note that our implementation makes use of POSIX threads (commonly known
too as pthreads), meaning the library can be used only in systems with support
for them. Most UNIX-like operating systems typically include versions of POSIX
threads, like Linux, macOS, Solaris, Android or the BSD family of operating systems.
Microsoft Windows provides a subsystem implementing parts of the pthread API,
but no attempts to build the library on that platform have been made, and therefore
we can’t offer any guarantee that it would work on it. In any case, and while proper
support for native threading in Microsoft platforms is developed, the pthread library
remains as a new dependency when building iSHAKE.

16 2. IMPROVING THE IMPLEMENTATION

worker

t2

worker

t1
...

worker worker

dispatcher

b1 b2 b3

push

heap

task 1

task 2

b1 op1

b2 op2

input ...

Figure 2.3: Parallel processing of iSHAKE blocks by means of a worker-dispatcher
model.

This improvement is key to demonstrate iSHAKE’s abilities compared to other
hash algorithms. While most functions are optimised to be executed taking the most
out of a single processor, using, for example, SIMD instruction sets (Single instruction,
multiple data [HP11]) like Intel’s Streaming SIMD Extension (SSE* [Int17]), iSHAKE
is designed to take the most out of parallel architectures where multiple cores are
available, a situation typical nowadays in most CPUs. Taking this even further,
and given the similarity of our model with the split-apply-combine strategy for
data analysis [Wic11], we can easily adapt the algorithm to work with similar or
derived models like Hadoop’s MapReduce [DG04], in order to take advantage of high-
performance computing clusters. On the other hand, iSHAKE can of course benefit
from any optimisations provided by the underlying hash function too, maximizing
the performance both per block and per input.

2.2.4 Appending blocks efficiently in full mode

During our previous work [PC16], we noticed a design optimisation that can be
performed to iSHAKE in full mode. Appending blocks by the end of any given input
is extremely efficient in append-only mode. This is because, in that mode, indices are
used to identify each block, instead of random nonces. This means we can avoid the
need to build a linked list of blocks to keep track of the relative order between them,
and therefore we don’t need to keep any additional data other than the resulting
digest. However, an interesting consequence of this simplification is that we don’t

2.2. IMPROVEMENTS 17

need to apply the underlying hash algorithm to any existing block in order to append
a new one.

In full mode, though, we need to keep such a linked list of blocks to keep their
relative order, as the order cannot be established using random identifiers instead of
an index. When the linked list is built forward, that is, each block has a pointer in its
header to the next block in the list, appending a block to any existing input means
that we need to hash the new block and modify the last existing one. Block updates
in iSHAKE require two hash operations, since the old version of the block needs to
be removed from the resulting hash first, and then the new version of the block (with
the same identifier, but now also with a pointer to the newly appended block) needs
to be added. Therefore, appending a new block implies three hash operations in full
mode, compared to the single hash operation needed in append-only mode. This can
have a significant impact on the performance of the algorithm in full mode, as it
can take up to three times the time needed to process any given input compared to
append-only mode.

Given that any input data would initially be read sequentially (from the beginning
to the end), when using iSHAKE in full mode, every block processed by the algorithm
implies three hash operations instead of just one. The obvious solution to this issue
is to invert the direction of the linked list of blocks, such as blocks have a pointer to
the previous block instead of the next one. That way, when appending blocks by the
end of the chain, the last block does not need to be modified at all, and only one
hash operation is needed in turn.

The drawback of using a reversed list of blocks is that prepending blocks to any
given input is now much more inefficient, as it then needs three hash operations
instead of the single one needed before. However, we consider this case where blocks
are prepended much less frequent than its counterpart, and therefore this change in
the design of iSHAKE has been implemented in the reference library, changing also
the API provided in the signatures of the ishake_insert() and ishake_delete()
functions.

2.2.5 Efficient use of memory

The iSHAKE API provides the programmer with a significant freedom over the
parameters of the algorithm. One of the most critical parameters with regard to
performance is the block size to use. It affects not only the performance but also the
result of the algorithm. While this freedom is an advantage from the user’s point of
view, as they are able to fine tune the algorithm for their needs, some guidance is
needed to make sure the best choices are made.

When we are concerned about optimising the performance of an algorithm, we

18 2. IMPROVING THE IMPLEMENTATION

need to make sure that the computer running it will use its resources in the most
efficient way. This includes maximizing the use of memory so that both the operating
system and the machine do not waste it by dividing it into fixed-size chunks.

Modern 32 and 64-bit architectures use a minimum page size of 4 KiB [Int17].
Some other architectures like the UltraSPARC Architecture 2007 require a minimum
page size of 8 KiB [Ora10]. Considering this, it is a sound idea to use block sizes
such as they are multiple of a full page. Choosing the best block size is a complicated
task depending on multiple factors, such as the estimated size of the data to process
(whether it’s a small, medium or large input), any previous restrictions, et cetera.

We recommend in any case using block sizes that are multiple of the page size on
all architectures where the algorithm is going to be used. This gives us the flexibility
to adapt the block size to whatever fits best for the average size of input that we are
going to process, but at the same time makes sure that blocks will fit perfectly in
a certain number of pages. As a general recommendation, block sizes should be a
multiple of 8 KiB to cover most common architectures.

An additional consideration needs to be made regarding the difference of block
size and the amount of data included in a block. In our previous work, no such
difference was made [PC16], leading to blocks of block size + header size length,
as described by picture 2.4. This, however, makes it difficult to use optimal block
sizes, as they would be affected by the mode the algorithm is running on (due to the
difference in the length of the headers used).

We suggest changing the paradigm so that the header is part of the block size,
as depicted in figure 2.5. That way, the block size can be fixed regardless of the
execution mode and the header size, and it is then the amount of data that fits into
the block that varies depending on each case.

The API provided by iSHAKE did not make any assumptions, so it was the
responsibility of the programmer to pass a block size to the ishake_init() func-
tion that takes into account the size of the header. The library has been modified
accordingly to make it simpler to use so that the block size specified during ini-
tialization includes the size of the corresponding header. This change affects the
ishake_append() function, which is the only function in the API that builds blocks
itself. For the rest of the functions, the programmer is responsible for providing
blocks that fit (including their headers) completely within the block size specified
during initialization.

2.2. IMPROVEMENTS 19

data header
block size 8/16 bytes

Figure 2.4: Original iSHAKE blocks. The data included in the block is appended
with a header that will vary its size depending on the mode of operation of the
algorithm.

data header
8/16 bytes

block size

Figure 2.5: Optimised iSHAKE blocks. The amount of data in bytes per block
equals the block size minus the number of bytes reserved for the header.

2.2.6 Python interfaces

The iSHAKE library comes with a couple of utilities that allow us to use the library
through a command-line interface, the ishakesum and ishakesumd binaries. While
the former allows us to hash completely any input using iSHAKE, the latter uses its
own file name conventions to allow us to recompute the hash for any given input,
inserting, deleting or updating blocks from files in a directory structure. Both utilities
are however difficult to use and require significant infrastructure in order to use the
iSHAKE commands.

We have implemented a wrapper library in Python to allow programmers of this
language to use iSHAKE easily while retaining the performance optimisations of the
implementation written in C. In conjunction with the Python Fire library provided
by Google4, an interactive command-line utility was also implemented, allowing
users to hash any input and perform iSHAKE commands interactively with very
simple code written in Python. This way, users can split the input into blocks and
handle those programmatically to pass them to iSHAKE, and use its commands to
recompute any existing hash. This is an important step forward in making iSHAKE
more flexible and easier to use.

4Python Fire is a Python library to create interactive command-line interfaces from any Python
object. See https://github.com/google/python-fire for more information.

https://github.com/google/python-fire

Chapter3Performance evaluation

In our previous work [PC16] we focused on an implementation of the iSHAKE
algorithm that would allow us to demonstrate its intuitive superiority over traditional
sequential hash algorithms when recomputing a hash for an input that has been
changed. Our experiments proved us right, showing a dramatic improvement when we
need to recompute a hash for large inputs. However, the underlying implementation
of the SHAKE extendable output function that we used at the time was far from
optimal and caused our results to be significantly slower than they should.

Additionally, the lack of a parallelized implementation of the algorithm made it
also difficult to test the performance of iSHAKE in a different scenario: hashing a
large input from the beginning to the end, leveraging parallelism to speed up the
process.

Both issues have been resolved in the library, and our current iSHAKE reference
implementation is now optimised for most architectures thanks to the use of the
Keccak Code Package and built-in support for threads, as described in sections 2.2.2
and 2.2.3, respectively. This allows us to focus on testing the performance of the
algorithm when processing entire inputs instead of recomputing an existing hash
and comparing that performance to other existing algorithms, both new and well
established. Additionally, we test iSHAKE with different settings in terms of block
size and the number of worker threads, in order to assess the best configuration with
regard to the performance of the algorithm when processing large inputs.

In this chapter we present the results of our tests, as well as the methodology
and infrastructure used to take the measurements we needed (see Appendix C for
the full list of measurements used through this text), and introduce the algorithms
we compare against.

21

22 3. PERFORMANCE EVALUATION

3.1 Methodology

In order to carry out our tests in the most reliable way to get significant, trustworthy
results, we have used different platforms and software. The main rule is to execute
the test in isolation, with no other software running at the same time, except for
the basic services provided by the operating system. We diversified the types of
platforms and operating systems used too, in the hope to find meaningful differences
that could lead us to further optimise the algorithm.

In some cases, we reused existing benchmarking tools to test other algorithms.
When testing iSHAKE, though, a custom benchmarking tool was built in C in order
to minimize any external factors that could add a bias to the results or affect them
in any way. The source code of this tool (called testPerformance) is also distributed
with iSHAKE and can be adapted to perform the tests we need.

In general, we follow the same approach as the SUPERCOP toolkit1 developed
by the VAMPIRE laboratory2, the third laboratory run by ECRYPT II3. Inputs of
different sizes are passed through the tested algorithms while counting the number
of CPU cycles used in the processing. That number is then divided by the total
amount of bytes in the input in order to obtain the number of cycles used per byte
by the algorithm, giving a more precise measurement of its efficiency that can be
easily compared.

Where measuring the CPU cycles taken by the algorithm is not possible (for
example, when measuring algorithms for which we do not have a benchmarking tool),
the standard command-line utilities are used, and we measure the wall time4 taken
to process the input. Even though CPU time5 could be considered more accurate to
test the time taken by an algorithm to complete, we decided not to use it for two
different reasons:

1SUPERCOP stands for System for Unified Performance Evaluation Related to Cryptographic
Operations and Primitives and it measures the performance of hash functions and ciphers. See
https://bench.cr.yp.to/supercop.html

2The Virtual Applications and Implementations Research Lab focuses their work on the imple-
mentation of cryptographic algorithms, with a special focus on efficiency and security. For more
information, see http://hyperelliptic.org/ECRYPTII/vampire/.

3The European Network of Excellence in Cryptology II, or ECRYPT II, is a European initiative
funded by the European Commission, under contract number ICT-2007-216676. It aims at the
improvement and strengthening of the state of the art and adoption of cryptology, as well as to
facilitate cryptographic research on a pan-European level. See http://www.ecrypt.eu.org/ for more
information about this initiative.

4Wall time is the time elapsed according to the computer’s internal clock, and should match
the time measured by an external observer.

5CPU time is the time the CPU spends executing user code, that is, the code of the algorithm
being measured without any system calls or any other code run in the kernel of the operating
system.

https://bench.cr.yp.to/supercop.html
http://hyperelliptic.org/ECRYPTII/vampire/.
http://www.ecrypt.eu.org/

3.2. TEST PLATFORMS 23

– As we are interested in measuring the performance of iSHAKE for real-world
use cases, it is useful to know the time taken by the algorithm as experienced
by the end user, rather than the time taken by the CPU to execute it, which
could be misleading depending on external factors.

– Given that user code and system calls are interleaved and it is therefore very
difficult to measure the time taken only in user land, the operating system
will use internal mechanisms to measure that time instead of just sampling
the start and end time for the entire execution. This has a side effect that
punishes particularly the measurements in iSHAKE, as CPU time will include
the time taken by all threads of execution to complete. This means that even
if the algorithm completes very fast by leveraging parallelism, CPU time will
be much higher than in other algorithms, as it will measure the execution time
of each thread and sum all of them together.

We present here the results for two kinds of experiments. First, we will change
the configuration options of iSHAKE and measure the performance when processing
a variable-size input in order to determine the best setup, and establish some basic
guidelines to optimise performance. Secondly, we will run the same input through
different hash algorithms while measuring the time taken to process it, so that we
can compare them in terms of speed.

Every measurement presented here has been taken as either the average or the
best figure observed for a set of repeated executions of the tested algorithm with
the same input and configuration unless explicitly stated otherwise. Please refer
to Appendix C for the complete list of measurements used to compile the results
presented in this chapter.

Finally, input data is generated dynamically with the dd command, using the
/dev/zero virtual device as input, and producing blocks of a size equal to iSHAKE’s
block size minus 8 bytes for its header (we use append-only mode for simplicity).
This data is passed then via a pipe mechanism to the appropriate command so that
it resides in memory at all times and we avoid any external bottlenecks such as disk
storage.

3.2 Test platforms

Before we go on and present the result of our experiments, we need to describe the
two different platforms used to carry the tests out. Two different machines were used,
a laptop computer and a server machine, called nepenthe and bigmem, respectively.
Here we present all their main characteristics in terms of both software and hardware.

24 3. PERFORMANCE EVALUATION

nepenthe

This is a laptop computer manufactured by Apple Inc. during 2015, with the following
characteristics:

– Architecture: AMD64

– Microarchitecture: Haswell/Crystalwell (0306C3h)

– CPU manufacturer : Intel Corporation

– CPU model: Core i7 4980HQ

– CPU year : 2014

– CPU speed: 2.8 GHz

– Number of cores: 4

– Number of threads: 8

– Number of CPUs: 1

– Total number of threads: 8

– Level 1 cache: 64 KiB (per core)

– Level 2 cache: 256 KiB (per core)

– Level 3 cache: 6 MiB (shared)

– Memory size: 16 GiB

– Memory speed: 1600 Mhz

– Memory type: DDR3

– Operating system: macOS Sierra 10.12.5

bigmem

This is a server computer hosted in the Department of Telematics at NTNU, used
mainly to benchmark software and test use cases that require large amounts of
memory (hence its name). It has been used indeed to run SUPERCOP benchmarks
in the past. Here are the relevant characteristics:

– Architecture: AMD64

– Microarhitecture: Nehalem (206e6)

3.3. OPTIMAL CONFIGURATION 25

– CPU manufacturer : Intel Corporation

– CPU model: Xeon X7560

– CPU year : 2010

– CPU speed: 2.26 GHz

– Number of cores: 8

– Number of threads: 16

– Number of CPUs: 4

– Total number of threads: 64

– Level 1 cache: 64 KiB (per core)

– Level 2 cache: 256 KiB (per core)

– Level 3 cache: 24 MiB (shared, per CPU)

– Memory size: 1 TiB

– Operating system: Ubuntu Linux 16.04.2 LTS (GNU/Linux 4.4.0-78-generic
x86_64)

3.3 Optimal configuration

For this experiment, we change the configuration of iSHAKE 128 and evaluate its
performance for variable-size and fixed-size inputs. In this case, we would like to
establish a method for determining optimal configuration parameters under given
circumstances, and therefore the tests were carried out only in the machine called
nepenthe. The results presented here are not to be taken as default values for the
algorithm (although they could present a valid guideline to choose those defaults), but
just as a way to find those defaults depending on the use case at hand. Furthermore,
we feel the need to emphasize that changing certain settings of the algorithm would
result in a change of the output itself, as it is the case with the block size.

First, we pick different block sizes (500 bytes, 1 KiB, 10 KiB, 100 KiB and 1
MiB, respectively), and measure the cycles per byte employed by iSHAKE to process
variable-size inputs using different amounts of worker threads (from zero up to twice
the number of CPU threads available minus one). For each configuration (block size
and the number of threads), we process the input twenty times after calibrating our
instrumentation tools, and we pick the best value in the series (that being the lowest
amount of cycles per byte). Input consists always of 1024 blocks of the size given,
hence resulting in different overall lengths.

26 3. PERFORMANCE EVALUATION

0 2 4 6 8 10 12
0

10

20

30

40

50

number of threads

cy
cl
es

pe
r
by

te 500 B
1 KB
10 KiB
100 KiB
1 MiB

Figure 3.1: CPU cycles taken by iSHAKE 128 to process each input byte for 1024
blocks of variable size and a variable number of threads.

Figure 3.1 shows the data collected with each line representing a different block
size. As we can observe, very small block sizes lead to much worse performance
rates, as the algorithm needs to call the underlying hash function many more times,
with the subsequent increase in resources needed to process the input. As we can
observe, a configuration with small block sizes performs better with a reduced amount
of threads (or even no threads at all), from what we can guess that the overhead
introduced by the use of multiple threads is higher than the resources needed to
process such small blocks.

As we increase the block size, the performance in cycles per byte tends to be
similar, and therefore we provide figure 3.2 to have a better glimpse on the differences.
There we can observe that 10 KiB blocks are still too small to provide the best
performance. If we increase the block size too much (up to 1 MiB in this case), we
see also a degradation of the performance, while the 100 KiB block size performs best
in this test. Subsequent tests showed that the optimal block size in this platform was
around 52 KiB, which is coherent with our assessment to have a block size multiple
of the page size used by the system (in this case, 13 pages).

An interesting observation that we can make out of figure 3.2 is that the best
performance overall happens when using only 4 worker threads, matching the number

3.3. OPTIMAL CONFIGURATION 27

2 4 6 8 10 12
1

1.5

2

2.5

3

3.5

4

number of threads

cy
cl
es

pe
r
by

te
10 KiB
100 KiB
1 MiB

Figure 3.2: CPU cycles taken by iSHAKE 128 to process each input byte for 1024
blocks of variable size and a variable number of threads. Detail of the best performing
block sizes.

of cores available in the machine. While it could make sense to think that the best
performance would happen when using as many threads as CPU threads are available
(8 in this case), further tests performed in bigmem confirmed this observation too.
Our intuitive explanation for this behaviour is that even if we have more CPU
threads available, cache misses impose a degradation in performance as every two
CPU threads share the level 2 cache (which is only 256 KiB per core in this machine,
meaning it is relatively simple to fill it up with data so that 100 KiB blocks are
evicted before being processed, and the CPU needs to fetch them from the level 3
cache or even from system memory). In that case, a number of worker threads that
equals the number of cores instead of the number of CPU threads, means that we
can optimise the level 2 cache so that no worker threads compete for it during the
hash operation, obtaining the best performance observed in our measurements.

For the second part of this experiment, we fix the size of the input data to 1 GiB
approximately (by adjusting the total number of blocks depending on the block size),
and vary the block size and number of threads. For each combination of both, we
gather the corresponding measurements and keep the best figures obtained, as we
did previously.

28 3. PERFORMANCE EVALUATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

14
.4

2

15
.6

9

19
.7

3

52
.1

9

52
.8

9

55
.8

2

56
.4

57
.2

2

57
.0

3

58
.4

8

57
.5

7

58
.2

58
.3

7

58
.7

2

5.
54 6.
03 7.
58

20
.0

6

20
.3

3

21
.4

6

21
.6

8

21
.9

9

21
.9

2

22
.4

8

22
.1

3

22
.3

7

22
.4

4

22
.5

7

number of threads

Cycles per byte
CPU Wall time

Figure 3.3: Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 500 bytes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

12
.0

3

10
.5

9

6.
87

20
.1

6

15
.8

8

15
.9

8

15
.9

5 18
.1

6

18
.6

1 20
.2

7

18
.3

8

19
.8

3

20
.1

7

21
.5

5

4.
63

4.
07

2.
64

7.
75

6.
1

6.
14

6.
13 6.

98 7.
15 7.
79

7.
07 7.
62 7.
75 8.
28

number of threads

Cycles per byte
CPU Wall time

Figure 3.4: Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 1 KiB.

3.3. OPTIMAL CONFIGURATION 29

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1
2
3
4
5
6
7
8

8.
39

6.
55

3.
47

2.
71

2.
21 2.
32

2.
31 2.
41 2.
48 2.
72

2.
51

2.
47 2.
53

2.
483.

23

2.
52

1.
34

1.
04

0.
85

0.
89

0.
89

0.
93

0.
95 1.
04

0.
96

0.
95

0.
97

0.
95

number of threads

Cycles per byte
CPU Wall time

Figure 3.5: Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 10 KiB.

When using small block sizes such as 500 bytes and 1 KiB, we observe again that
both the wall time and the cycles per byte increase with the number of threads used,
while the optimal configuration seems to be between 0 and 2 threads, depending
on the case. Both are depicted in figures 3.3 and 3.4, respectively. In any case, the
test confirms that no matter the size of the input, using very small block sizes is
counter-productive and degrades the performance of the algorithm significantly.

Moving on to the next block sizes (10 KiB, 100 KiB and 1 MiB), figures 3.5, 3.6
and 3.7 show the performance of iSHAKE 128 with each of them. The tests yield
very similar results, and surprisingly, this time the number of threads that offer the
best performance is always around 8, matching the number of CPU threads available.
However, the results are very similar for every number of threads above or equal to
the number of cores, which could suggest that, in fact, cache misses are a problem
important enough to minimize the performance gain that we could get by using
more threads, while the increase in the size of the input makes the overhead of using
more threads less important, obtaining an overall improvement. In any case, we
can observe a clear correspondence between the number of cycles per byte used by
the algorithm to process the input and the wall time elapsed, and this second test
confirms our initial results about medium-sized blocks offering the best performance.

30 3. PERFORMANCE EVALUATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1
2
3
4
5
6
7
8

8.
39

6.
28

3.
28

2.
55

2.
33

2.
21

2.
16

2.
16

2.
12 2.
28

2.
23

2.
17 2.
25

2.
15

3.
22

2.
41

1.
26

0.
98

0.
9

0.
85

0.
83

0.
83

0.
81 0.
88

0.
86

0.
84

0.
87

0.
82

number of threads

Cycles per byte
CPU Wall time

Figure 3.6: Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 100 KiB.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1
2
3
4
5
6
7
8

8.
38

6.
84

3.
63

2.
74

2.
54

2.
51

2.
39

2.
43

2.
31

2.
2 2.
29

2.
29

2.
28

2.
27

3.
22

2.
63

1.
4

1.
05

0.
98

0.
96

0.
92

0.
93

0.
89

0.
85

0.
88

0.
88

0.
88

0.
87

number of threads

Cycles per byte
CPU Wall time

Figure 3.7: Cycles per byte and CPU wall time when hashing 1GiB of data split in
blocks of 1 MiB.

3.4. PERFORMANCE COMPARISON 31

3.4 Performance comparison

In our second experiment, we compare iSHAKE with other algorithms, both regular
sequential algorithms, as well as others designed to exploit parallelism to speed up
the processing. In this case, we measure the time taken by the algorithms compared
to hash 1 GiB of data generated with the dd utility as in the previous experiment, in
order to minimize the bottlenecks.

For each algorithm tested we take 50 samples and compute the main statistical
properties of the data set obtained, allowing us to compare them in a meaningful
way. But before presenting our results, let us enumerate the algorithms chosen and
explain why they were picked for this comparison.

3.4.1 Algorithms

One of the goals of the work presented here is to demonstrate the feasibility of
iSHAKE as a widely used hashing algorithm, as well as its superiority in terms of
performance when we need to process large inputs. For this reason, we have chosen
several algorithms that are either heavily widespread or that incorporate the idea of
parallel processing on their design. First we present the list of algorithms compared.

MD5

Message Digest 5 (MD5) [Riv92] was designed by Ronald Rivest in 1992 to be used
as a cryptographic hash function. Although multiple issues have been published and
the algorithm is considered broken for any security-related uses6, it is still widely
used for its speed [Sig15]. Even though its use is in decline nowadays, MD5 is still
taken as a reference in terms of performance, and many modern algorithms set its
speed as the goal to reach. For this reason, we consider MD5 is an algorithm relevant
enough in our comparison, and we include it in our experiments here.

6MD5 has a long trail of security issues and has been subject to extensive cryptanalysis. Den
Boer and Bosselaers were able to find two different initialization vectors in 1993 that produced an
identical digest, causing a pseudo-collision in the compression function. Later, in 1996, Dobbertin
was able to confirm a collision in the compression function.

The main problem with MD5 is the length of the resulting digest, being only 128 bits, making it
affordable in computational terms to perform a birthday attack. In order to evaluate this weakness,
the MD5CRK project was started in March 2004, and it took barely five months to succeed [BCH06]
[HPR04]). Further cryptanalysis was published a year later, in March 2005, demonstrating the
possibility to create two X.509 certificates with different public keys and the same MD5 digest
[LWdW05]. Just a few days later, Vlastimil Klima improved the algorithm enough to be able to
find MD5 collisions in just a few hours with a simple laptop [Kli05].

Years later, in 2010, the first single-block collision ever published was announced [XF10] and later
enhanced [Ste12]. Eventually, research demonstrated that it is possible to find collisions in MD5 in
less than a second using any modern computer [XLF13]. All these issues forced the approval of an
informational RFC to add security considerations to the use of MD5 [CT11].

32 3. PERFORMANCE EVALUATION

SHA-1

Secure Hash Algorithm 1 (SHA-1) is a cryptographic hash algorithm designed by the
National Security Agency of the United States of America (NSA) and standardised
by NIST in a Federal Information Processing Standard [Nat95]. SHA-1 produces
160 bits of output, usually encoded in 40 hexadecimal digits. Due to the birthday
paradox7, brute force attacks should be able to find collisions in 280 evaluations, a
number that has been unfeasible so far for current technology. However, cryptanalysts
have found several weaknesses in SHA-1, downgrading its security to around 263

operations, and eventually demonstrating a full collision of the algorithm8.

SHA-1 is heavily used worldwide, and plenty of other algorithms and protocols
still rely on it not only as a regular hash function but also with security purposes.
Since the first real-world collision was published in early 2017 [SBK+17] after its
deprecation by NIST in 2011 and later disallowance after 2013 [BR11], many of those
still using it have finally started to migrate to other hash algorithms for their use
cases, where iSHAKE could demonstrate valuable. It is, therefore, our intention by
including SHA-1 in our comparison to show the suitability of iSHAKE in those cases.
We will get back to this later on and assess the possibility of using iSHAKE instead
of SHA-1 for several use cases in Chapter 4.

BLAKE2

The BLAKE2 cryptographic hash function [AS15] is an improved version of BLAKE,
the original function designed by Aumasson et al. for the NIST SHA-3 hash function
competition. BLAKE made it to the final round with other four algorithms, but the
competition ended up with Keccak being selected as the new SHA-3 algorithm and
standardised in [Nat15].

Based on Dan Bernstein’s ChaCha stream cipher [Ber08], it provides two flavours:
BLAKE2b optimised for 64-bit platforms, and BLAKE2s optimised for 8 to 32-
bit platforms. It also includes parallel variants for both, called BLAKE2bp and

7The birthday paradox, in probability theory, refers to the probability to find two persons with
the same birthday in a set of n randomly chosen people. In cryptography, this probabilistic model
is used to downgrade the security of a hash function with n bits output, so that a collision can be
found in 2n/2 evaluations instead of the 2n required by a standard brute force attack.

8Initial cryptanalysis on SHA-1 focused on versions of the algorithm with reduced rounds [RO05].
Later studies were able to reduce the time required to find a collision in the algorithm from 280 to
269 [WYY05] and 263 [Coc07] attempts. In 2015, an attack named the SHAppening was published,
allowing a freestart collision attack on SHA-1’s compression function requiring only 251 operations
[SKP15]. However, it wasn’t until February 2017 that Google Inc. announced the first public
collision ever found in SHA-1 [SBK+17].

Even though collisions are still expensive with current hardware, experts have been warning about
the use of SHA-1 as a cryptographic hash function for years. The National Institute of Standards
and Technology issued a special publication [BR11] back in 2011 deprecating the algorithm until
the end of 2013, and disallowing its use starting in 2014.

3.4. PERFORMANCE COMPARISON 33

BLAKE2sp, respectively, that exploit multiple cores or Single Instruction, Multiple
Data CPUs to improve the performance. Finally, the BLAKE2x variants can produce
digests of arbitrary length, equivalent to the SHAKE Extendable-Output Function
(XOF) defined by the SHA-3 standard [Nat15].

For all these reasons, and given the claim of the authors that BLAKE2 can be
as fast as MD5, it feels natural to compare the performance of iSHAKE against it,
especially given the attention that BLAKE2 has been receiving since its conception.

KangarooTwelve

KangarooTwelve [BDP+16] is an Extendable-Output Function based on the Keccak-
f [1600] permutation reduced to 12 rounds, as opposed to the original 24 rounds
featured by the SHA-3 cryptographic hash function and the SHAKE XOF. This
reduction has been deemed secure by the authors given that the best published
collision attacks have been able to break Keccak only up to 6 rounds [DDS13,
DDS14, QSLG17, SLG17].

The algorithm is a direct competitor of BLAKE2, featuring arbitrary output
length, high performance (thanks to the use of multiple cores and SIMD instruction
sets of modern CPUs to provide a high degree of parallelism), tree hashing, final
node growing and Sakura encoding [BDPVA14]. As such, it is also an interesting
competitor of iSHAKE, especially given that both use the same underlying Keccak-p
permutation.

ParallelHash

ParallelHash is one of the four SHA-3 derived functions standardised by NIST in
[KCP16]. As the previously mentioned BLAKE2 and KangarooTwelve, it can be
used as an XOF to produce arbitrary-length outputs, and it was designed to exploit
the parallelism available in modern processors to enhance the performance when
hashing very large inputs. We consider it, therefore, an interesting competitor of
iSHAKE and include it in our experiments to be able to compare its performance.

3.4.2 Results

In this experiment, we measured the wall time and cycles per byte taken by different
algorithms, including iSHAKE with different configurations and optimisations, to
process 1 GiB of data. From all the samples taken, we took the best values observed
for each of them in order to compare their performance.

Figure 3.8 shows the wall time taken by some of the algorithms compared. In
this case, we test iSHAKE in the best configuration observed so far, with 52 KiB

34 3. PERFORMANCE EVALUATION

0 0.5 1 1.5 2 2.5 3

iSHAKE256

iSHAKE128

BLAKE2bp

BLAKE2b

SHA1

MD5

0.83

0.67

2.68

1.58

2.46

1.59

seconds

Figure 3.8: Minimum wall time taken by different algorithms to process 1 GiB of
data.

blocks and 8 worker threads in the nepenthe machine. As we can see, both flavours
of iSHAKE, offering 128 and 256-bit security equivalence, outperform all the other
algorithms tested by a big margin. It uses around 42% of the time taken by the best
competitor, BLAKE2b which is the best performer among the rest of the algorithms,
just ahead of MD5, confirming the claim of the authors that it can be as fast as
the latter. SHA-1 is slightly worse than these two, taking almost an additional
second to process the data. The worst algorithm in this comparison is BLAKE2bp,
which surprisingly takes even more time than SHA-1 to process the input. This
is particularly puzzling given that this variant of BLAKE2 is supposed to take
advantage of parallelism in order to speed up the computations, but it takes more
than a second more than the regular version of the algorithm.

In the second figure, 3.9, we show the best cycles per byte measurements obtained
in the nepenthe machine for a set of algorithms that take advantage of parallelism,
including iSHAKE 128. In this case, we measured iSHAKE with two different
configurations: one without any parallelism at all, just using sequential processing;
the other, using iSHAKE with seven worker threads. The latter is by far the
best performing algorithm, with as low as 1.65 cycles per byte of input, ahead
of KangarooTwelve, which is the second best performing algorithm in this test.
This is particularly relevant, as both iSHAKE and KangarooTwelve use the same
underlying Keccak-p permutation. However, while iSHAKE uses the 24 rounds of
the permutation defined in SHA-3, KangarooTwelve reduced this number to 12 rounds

3.4. PERFORMANCE COMPARISON 35

0 2 4 6 8

iSHAKE128 (sequential)

ParallelHash256

ParallelHash128

KangarooTwelve

iSHAKE128 (7 threads)

8.04

6.64

5.32

2.72

1.65

cycles/byte

Figure 3.9: Minimum CPU cycles per byte observed for different algorithms and
configurations.

instead, and should, therefore, be much more efficient. This result demonstrates the
power of iSHAKE leveraging the parallel processing of blocks in multiple cores, as it
is able to outperform an algorithm using half of the permutation rounds and one
single, sequential hash execution, as opposed to one hash function execution with 24
rounds per each block in our case.

ParallelHash, on the other hand, offers surprisingly low performance in this
test, in both the 128 and 256-bit security equivalent versions. We believe that an
implementation of this algorithm that uses multiple cores at the same time, instead
of just SIMD instructions to achieve parallelism, could offer much better figures than
the ones shown here. To the best of our knowledge, there are no such implementations
at the moment of this writing, though.

Finally, we compile a set of measurements for all the algorithms compared in
figure 3.8 (see Appendix C for the full tables with all samples) and compute the
most relevant statistical properties for each set, like the average, standard deviation,
quartiles and 90th percentile. Table 3.1 shows the statistics for the values measured
in the nepenthe machine, while table 3.2 presents the same information for the values
obtained in bigmem.

36 3. PERFORMANCE EVALUATION

M
D
5

SH
A
1

B
LA

K
E
2b

B
LA

K
E
2b

p

iS
H
A
K
E
12
8

(8
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
12
8

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

average 1, 6101 2, 5079 1, 5956 2, 8454 0, 7027 0, 9299 0, 9012 0, 9938
std dev 0, 0143 0, 0422 0, 0108 0, 0543 0, 0243 0, 0541 0, 1003 0, 0785
min 1, 59 2, 457 1, 576 2, 682 0, 668 0, 827 0, 694 0, 854
max 1, 657 2, 612 1, 633 3, 136 0, 776 1, 026 1, 144 1, 184

median 1, 608 2, 4885 1, 595 2, 8355 0, 6985 0, 937 0, 9075 0, 995
90-perc. 1, 627 2, 5674 1, 6081 2, 8688 0, 7305 0, 9991 1, 0126 1, 1065
1-quart. 1, 5992 2, 4725 1, 5892 2, 83 0, 6857 0, 9007 0, 8515 0, 9322
3-quart. 1, 616 2, 5397 1, 601 2, 8467 0, 716 0, 9652 0, 947 1, 0387

Table 3.1: Statistics for some algorithms hashing 1 GiB of data,
nepenthe.

M
D
5

SH
A
1

B
LA

K
E
2b

B
LA

K
E
2b

p

iS
H
A
K
E
12
8

(8
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
12
8

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)
average 2, 777 4, 2162 2, 5098 3, 6034 1, 1052 1, 3394 1, 0378 1, 2652
std dev 0, 1681 0, 2901 0, 1654 0, 4543 0, 2108 0, 1848 0, 2078 0, 2088
min 2, 45 3, 79 2, 22 2, 29 0, 79 1, 02 0, 72 0, 88
max 2, 99 5, 47 2, 78 4, 4 1, 53 1, 78 1, 41 1, 65

median 2, 785 4, 185 2, 55 3, 725 1, 035 1, 295 0, 98 1, 29
90-perc. 2, 98 4, 361 2, 68 4, 142 1, 401 1, 563 1, 321 1, 523
1-quart. 2, 75 4, 105 2, 52 3, 2025 0, 93 1, 1925 0, 8825 1, 055
3-quart. 2, 91 4, 34 2, 64 3, 905 1, 29 1, 4875 1, 21 1, 4275

Table 3.2: Statistics for some algorithms hashing 1 GiB of data,
bigmem.

3.4. PERFORMANCE COMPARISON 37

As previously observed, nepenthe yields better performance measurements than
bigmem. However, there is a significant difference between the two of them in terms of
the optimisations used. The Keccak Code Package provides two possible optimisations
to build the library on 64-bit platforms: one generic set of optimisations, and another
using those optimisations plus a feature called lane complementing described in the
Keccak implementation overview [BDP+12]. If we observe the results in table 3.2,
iSHAKE offers better performance when using the lane complementing transform.
However, this feature seems to be counter-productive under certain circumstances,
as we can see in table 3.1 with the measurements in nepenthe. Further investigation
is needed to properly assess the origin of this issue, although the lack of some SIMD
instructions in the mobile processor used by the latter is likely to be the root of this
performance penalty.

Chapter4Use cases

When a new system or algorithm is designed, it is done with the intention to resolve
a problem or to obtain a benefit respect to the starting point. The process starts
with the general description of a use case where the new algorithm or system could
help, but that needs to be translated into practical, real-world examples that can
actually be implemented for people to benefit from our work.

In this chapter, we evaluate some of those possible real-world scenarios where
iSHAKE could be used to improve the current situation and assess how it could
technically fit in the existing systems and software.

4.1 The Git Version Control System

Git is an open source Version Control System (VCS) used to keep track of changes in
documents, and its most typical use is to manage software projects. Git was created
in 2005 by Linus Torvalds (author of the Linux kernel) together with other kernel
developers, precisely for the development of the Linux project itself. Therefore, speed
and integrity of the data were some of the key design principles in mind when Git
was conceived.

One of the main innovations made by Git was the introduction of digests as
identifiers for commits, instead of using traditional, sequential revision numbers
[Sin11]. This way of working introduces some challenges, but mostly adds the
flexibility needed to manage very complex and big projects. In general, everything in
Git is an object:

– Blobs (Binary Large Objects) hold the contents of files, although they include
no metadata about them (like file names or timestamps of any kind). Figure
4.1 represents the structure and process to build a blob object.

39

40 4. USE CASES

“blob” size
contents

blob name

deflate()

hash()

Figure 4.1: Git blob object. The contents of a file are prepended the literal word
“blob” followed by the size of the contents. The resulting object is passed through a
hash function to obtain the name of the blob, and fed afterwards to a deflate function
to compress it and generate the final object.

– Trees contain lists of one or more file names, with each of them being either
blobs or other trees. They act as directory entries on a file system, and in
general constitute a Merkle tree containing all trees and blobs that are part of
the repository being tracked. The top tree object in the structure reflects the
current status of all files and directories at a given point in time.

– Commits are the way Git builds a history of changes in a repository. They
contain a pointer to the top level tree object, additional metadata describing
the change (for example who did it, a message explaining the commit or a
timestamp), and a link to any parent commit or commits.

– Tags are a way to attach additional metadata to any object. They are typically
used to specify version numbers or to digitally sign a specific commit.

In Git, all objects have names, and their names are the hexadecimal-encoded
40-byte hash result of applying the SHA-1 algorithm to the contents of the object.
Therefore, any given change in a repository (by means of a commit) is then identified
by a SHA-1 hash, the same way objects are also identified by their corresponding
hashes.

4.1.1 Challenges

Given the use of hashes made by Git to identify objects, collisions are a critical
problem in the system. Hashes need to be unique, no matter how many objects
there are in the system, and if two objects generate the same hash, a collision occurs
and the object database can get corrupted. Even worse, a third-party capable of
mounting a second preimage attack on SHA-1 would be able to rewrite the history
kept by Git without nobody noticing.

4.1. THE GIT VERSION CONTROL SYSTEM 41

Due to the recent developments made to break SHA-1 [SBK+17], the Git com-
munity has been discussing a plan to change the underlying hash algorithm used to
identify objects1. While SHA3 with 256-bit security was the first algorithm chosen
in the discussion, the algorithm which will be finally used is still undecided and
arguments have been made in favour of SHAKE, KangarooTwelve of BLAKE22. A
document has been collaboratively written to draft a transition plan to support other
hash functions and phase out SHA-1, describing the requirements and needs for the
new algorithm (or algorithms)3.

4.1.2 Using iSHAKE

There are two different scenarios in Git where iSHAKE could be proven useful:

– Repositories with very large amounts of objects (either representing files,
meaning lots of blob and tree objects, or a very long history, meaning many
commit objects.).

– Repositories with very large files.

Both cases are not as uncommon as one might think. A good example is the
Git repository where Microsoft keeps the source code of its Windows operating
system, which has been recently in the news due to its very large size (300 GiB)4.
In general, well-established projects that have been around for many years and
are well maintained are prone to a huge history, originating enormous amounts of
objects. In some cases, when Git is used not only to manage source code but also
binary contents5, the size of the files managed can also be a challenge, degrading the
performance.

Switching Git to use iSHAKE might bring interesting advantages to tackle the
particular issues that arise in such extreme scenarios while keeping it simple enough
so that common users of the system do not experience any performance degradation
or side effects.

1See this email thread for a complete discussion on the topic: https://public-inbox.org/git/
20170304011251.GA26789@aiede.mtv.corp.google.com/.

2See https://public-inbox.org/git/91a34c5b-7844-3db2-cf29-411df5bcf886@noekeon.org/ for an
interesting discussion initiated by the Keccak team, suggesting alternatives to SHA3 also based on
Keccak.

3See https://goo.gl/gh2Mzc.
4See https://arstechnica.com/information-technology/2017/02/microsoft-hosts-the-windows-

source-in-a-monstrous-300gb-git-repository/ for more details on how Microsoft handles this reposi-
tory and how they had to extend Git to support such an extreme use case.

5Backup tools have been developed on top of Git, such as bup (https://bup.github.io/). In a use
case like this, an entire disk might end up being stored in a Git repository, significantly increasing
its size and posing a challenge for Git itself.

https://public-inbox.org/git/20170304011251.GA26789@aiede.mtv.corp.google.com/
https://public-inbox.org/git/20170304011251.GA26789@aiede.mtv.corp.google.com/
https://public-inbox.org/git/91a34c5b-7844-3db2-cf29-411df5bcf886@noekeon.org/
https://goo.gl/gh2Mzc
https://arstechnica.com/information-technology/2017/02/microsoft-hosts-the-windows-source-in-a-monstrous-300gb-git-repository/
https://arstechnica.com/information-technology/2017/02/microsoft-hosts-the-windows-source-in-a-monstrous-300gb-git-repository/
https://bup.github.io/

42 4. USE CASES

Efficient processing of large files

Given the performance advantage of iSHAKE over other hash algorithms that we have
seen in Chapter 3, iSHAKE could contribute significantly to improve the performance
of Git when handling very big files. There are two different ways Git could benefit
from the use of iSHAKE in this particular regard:

– When adding new large files. In that case, the entire file needs to be processed
(plus a header prepended by Git for every blob object), and the parallelism
offered by iSHAKE can significantly reduce the processing time for the file
as we have seen, provided that the machine where the file is processed has
multiple cores allowing parallel computation.

– When modifying existing large files. In this case, using iSHAKE allows Git to
modify an existing hash (if the file already existed, it had a name corresponding
to its hash) in constant time, depending only on the number of blocks involved
in the modification. This is possible due to the order in which Git processes
blobs, computing their corresponding hash first and then deflating the contents
using zlib6 7. This way, the hash operation is performed before the changes are
propagated to the entire blob due to the avalanche effect in the compression
function. Had it been the other way around (compress first, then compute the
hash) as it was in the beginning of Git, such optimisation would not have been
possible.

Efficient handling of changes

In Git, both trees and commits include in their contents pointers to other Git objects,
those being either blob objects or other trees. These pointers consist in the name of
the blobs, with those names being the result of passing the contents through a hash
algorithm.

When a change happens in a blob or a tree object, the tree objects involved need
to be hashed again. This can also be costly in terms of performance if the objects are
big enough. However, we can propose a change to make changes much more efficient
by avoiding passing the affected objects through the hash function.

Consider a tree where a single file has been changed, and therefore so has its
corresponding blob name. This means we need to hash the tree object again to
reflect this change and repeat the operation if the tree object has any parents. Let

6Zlib is a popular compression library. See https://zlib.net/.
7Git’s user manual specifies this order of operations for recent versions of Git, while the original

version compressed the blobs before computing the SHA-1 hash. See http://schacon.github.io/git/
user-manual.html#object-details for more information.

https://zlib.net/
http://schacon.github.io/git/user-manual.html##object-details
http://schacon.github.io/git/user-manual.html##object-details

4.1. THE GIT VERSION CONTROL SYSTEM 43

us imagine the contents of a tree object as iSHAKE blocks instead, where the first
block contains the basic header identifying the object as a tree, the size field counting
the number of other objects included, and the ordered list of objects by type and
name in the file system (the names of the files or the directories). The content of
the tree object, right after this initial header and list, is the list of iSHAKE hashes
corresponding, in the same order, to each referenced object.

With this structure, Git can efficiently handle changes by leveraging iSHAKE’s
ability to update blocks. When a blob object changes its contents and therefore its
corresponding hash (its name), the tree object that references it only needs to update
the corresponding iSHAKE block to recompute its own hash:

1. Hash the changed object using iSHAKE .

2. Inflate (decompress) the tree object that references the changed object.

3. Take the name of the tree object (its hash) and use the commutative operation
to subtract the old name of the changed object from it.

4. Finally, use the commutative operation again to add the hash of the updated
object (its new name).

Note that, in this case, we are not appending headers to the iSHAKE blocks.
This is like that to allow us directly reuse final iSHAKE hashes corresponding to
other objects without recomputing them, and it is possible because order between
these iSHAKE “blocks” (Git objects) is irrelevant. The order is kept by listing the
file names and the object names in the same order inside of the tree object, but the
relative order between objects has no meaning whatsoever. The structure of these
new tree objects and the process to recompute their hashes is illustrated by figure
4.2.

Better resistance to collisions

One of the downsides of iSHAKE, as we have previously seen, is the length of
the resulting hash (a minimum of 2688 bits for the 128-bit security equivalent)
[MGS15, Wag02]. This would have an impact in Git in the sense that the space
needed to store the hashes of the objects would significantly increase (almost seventeen
times in the best-case scenario). However, this space can be shortened by using the
binary hashes instead of their hexadecimal representation.

While this can be a serious pitfall, the use of iSHAKE could deliver some
advantages in Git regarding collision resistance. Since iSHAKE uses the Keccak
sponge function, which has proven very resistant to collisions and cryptanalysis so

44 4. USE CASES

abc... def...
tr
ee

bl
ob

012...

“tree” 2

“blob” file
“tree” dir

abc...
a0b...

012...	 abc...⊕ def...

“tree” 2

“blob” file
“tree” dir

def...
a0b...

update()

update()

Figure 4.2: Recomputing Git tree objects. First, we update the affected blob object
by computing the iSHAKE hash of the new version. Secondly, we recompute the
iSHAKE hash of the tree pointing to the updated object by subtracting the old hash
of the blob and adding the new one just obtained.

far, Git could benefit from that to minimize the risk of a collision even in the biggest
repositories conceivable. Additionally, given that iSHAKE uses itself an extendable
output function, Git can benefit from that in case that the minimum hash length
proves insufficient in the future to increase the length of the hashes without breaking
any existing repositories.

4.2 BitTorrent

BitTorrent is a peer-to-peer (P2P) protocol created by Bram Cohen in 2001, intended
to allow the efficient exchange of large amounts of data through a network where
all nodes (peers) collaborate together in the distribution. The BitTorrent protocol
is standardised and extended by means of documents called BEPs (BitTorrent
Enhancement Proposals), and the main document defining the protocol is BEP 3
[Coh08].

The file or files distributed with the BitTorrent protocol are split into blocks
called pieces. In order to bootstrap the distribution, a torrent file or metainfo file is
created containing (among other things) the concatenated SHA-1 hashes of every
piece in order. That way, when a BitTorrent client completes the download of a piece

4.2. BITTORRENT 45

from another peer, it can verify it by computing its SHA-1 hash and comparing that
to the corresponding hash stored in the metainfo file.

4.2.1 Challenges

The BitTorrent protocol faces several challenges emerging from its design and the
hash function chosen to provide integrity, SHA-1, especially after a collision was
found on it [SBK+17]. This has an important consequence for the protocol in terms
of integrity, as an attacker able to mount a second preimage attack could distribute
a tampered block to other peers without them noticing. While this sounds still as
a remote possibility, advanced cryptanalysis may be able to exploit the weaknesses
of SHA-1 further, up to the point where such an attack is feasible. For this reason,
the BitTorrent community has already started a discussion to transition away from
SHA-1 to another cryptographic hash function8.

Performance is perhaps the most recurrent issue for hash functions, and BitTorrent
is not an exception, given that the protocol is intended to enable the exchange of
very large quantities of data. That data needs to be split into pieces and the SHA-1
hash needs to be computed for each of them. This can be quite resource-consuming
in older hardware or when the input data is indeed very large. It is important to
note that all peers in the distributed network suffer from this problem, as the pieces
must be hashed both when the torrent file is created and when they are received
from another peer (called a seeder in BitTorrent’s jargon).

Additionally, the size of the torrent or metainfo file can also be an issue. Since
it stores the SHA-1 hashes for each piece (20 bytes per raw, binary hash), its size
depends directly on the number of pieces. Bigger torrent files are more difficult to
distribute, and they can suppose an overload for the machines that store and serve
them. It is therefore common practice to increase the size of the pieces considerably
to reduce the size of the torrent file. However, that leads to fewer pieces, and
clients of the protocol take longer to obtain them and to be able to serve them
themselves, reducing the efficiency of the distributed architecture. A BEP document
is available with a proposal to use Merkle trees to compute the hashes and store only
the root of the tree in the torrent file [Bak09]. Unfortunately, without a change in
the hash algorithm used, the suggested model does not solve the integrity issue as a
malicious peer could serve crafted uncle or sibling hashes in order to ensure that the
modified piece can be verified against the root of the tree. Refer to [Bak09] for more
information on how such extension to BitTorrent would work in practice.

8An interesting discussion has been taking place during the last few months, both on what hash
algorithm to use, and even how to change the design to optimise the protocol using Merkle trees.
See https://github.com/bittorrent/bittorrent.org/issues/58.

https://github.com/bittorrent/bittorrent.org/issues/58

46 4. USE CASES

h0
⊕

h1
⊕ ... ⊕

hn = H

p0 p1 ... pn

Figure 4.3: Using iSHAKE in BitTorrent. Pieces are hashed using iSHAKE
(meaning they can be divided into smaller blocks for parallel processing) and the
resulting hashes joined with the commutative operation. Note that the indices used
in the headers of the iSHAKE blocks must continue increasing between pieces to
keep their relative order.

4.2.2 Using iSHAKE

The main advantage of using iSHAKE in BitTorrent could be, unsurprisingly, a
performance enhancement. Since the protocol already splits the input into equal-sized
blocks called pieces, it is intuitive to apply iSHAKE to compute the hashes for them
as if they were blocks of the function. There is even a further optimisation that we
can carry out, in the case where the pieces are so big that the computation of their
respective hashes can also be optimised.

We propose therefore a two-tier architecture where the pieces are split into
iSHAKE blocks themselves to allow the optimisation of larger piece sizes. The
resulting iSHAKE hashes are subsequently joined with the commutative, reversible
operation to obtain a final digest H that is included in the torrent file (instead of
the pieces key containing the hashes of every single piece [Coh08]), as depicted in
figure 4.3.

With this approach, we can obtain better performance when hashing individual
pieces, as well as the entire input, thanks to the parallelism offered by iSHAKE.
Additionally, we reduce the size of the torrent file as it now contains a fixed-size
hash (with a variable length depending on the iSHAKE variant and chosen hash
length), facilitating its distribution over the web. Both features can offer a dramatic
improvement to the protocol.

There is one missing aspect, though. Peers need to be able to verify the integrity
of a piece that has just been downloaded. However, its corresponding hash is no
longer part of the torrent file. We need a mechanism similar to the one described in
[Bak09], so that a seeder (the BitTorrent peer that servers a given piece) provides
not only the contents of the piece but also the delta δ between that piece and the
iSHAKE hash H stored in the torrent file. This delta is the iSHAKE hash resulting
of removing the piece from the final hash H (δ = H 	 h), so that the peer receiving
the piece can compute the hash of the piece h and add it to δ (x = δ ⊕ h). If the
result equals to H, then the piece is verified.

4.2. BITTORRENT 47

While this allows us to verify the integrity of a piece, it offers no security at all
against tampered pieces distributed by a malicious peer, since that rogue peer can
modify the piece at will, compute its corresponding hash h′, and give other peers
another delta δ′ result of removing the modified piece from H: δ′ = H 	 h′. This
δ′ will, of course, allow the verification of the tampered piece, and even though the
modification will be detected upon completion of all pieces (as the result of joining
all hashes together will not give H as a result), it is impossible to determine which
piece was the offending one due to iSHAKE’s very own nature.

In order to add proper integrity to pieces when using iSHAKE, we suggest one
final tweak to the protocol that also allows us to simplify it. Let us call the peer that
creates a torrent the initial seeder or S0. When creating the torrent file, this peer
creates a pair of cryptographic keys, one public and one private, keeping the private
key for itself and including the public key in the torrent file. The peer starts then
the distribution of the pieces, sending their contents to other peers, as well as their
corresponding hashes hi. Imagine S0 sends a piece pi to S1. Additionally to sending
the contents of the piece, S0 computes the corresponding hash hi and signs it with
its private key, creating the signature sigi. By sending to S1 both the hi hash and
its signature (hi‖sigi), S1 is now able to verify the signature of hi and, if it matches,
continue to verify that the the hi hash matches with the one computed for the piece
pi it just received.

If at any later point in time, another peer S2 receives the same piece pi from S1,
it can follow the same procedure to verify the integrity of the file. Since hi was signed
with S0’s private key, which is not available to any other peer Sn, a malicious seeder
cannot alter the contents of a piece and distribute it without other peers noticing.
This means, of course, that all peers in the network must keep both the hashes for
each piece and their corresponding signatures, given that the signatures cannot be
recomputed by any peer other than S0. Eventually, when a peer Sn completes the
download of all pieces in a torrent, their hashes can be combined together with the
commutative operation and compared to the global hash H stored in the torrent
file for an additional integrity verification. This solution allows us to provide strong
integrity verifiability as well as authentication, while keeping anonymity9 and the
size of the torrent files constant and relatively small.

We realise that the model proposed here implies a relatively significant change to
the BitTorrent protocol, and introduces additional cryptographic operations:

9Due to the cryptographic key pair being generated for a given torrent, it is not possible to
track it to a specific person, or even track different torrent files created by the same individual. On
the other hand, if full authentication is required –including the identity of the creator of a torrent
file as well as non-repudiation–, the model suggested here easily allows it by fixing the key pair used
by the user and tying it to a known identity.

48 4. USE CASES

– The initial seeder needs to compute the digital signature for each piece hash,
rather than just the hashes themselves. This is a one-time operation per piece,
though.

– All other peers need to perform a digital signature verification for each piece
received, although these operations happen scattered in time.

Although these extra operations have their own burden in terms of performance,
we believe that our proposal here can provide a noticeable improvement in terms
of security and resistance to collisions of the protocol (meaning better protection
against malicious peers trying to alter pieces), as well as the overall performance and
scalability when piece sizes are chosen carefully, given that the iSHAKE variant and
hash length can be adjusted to cope better with any possible issues derived from
future cryptanalysis of the algorithm.

Chapter5Conclusions and future work

We have presented here our work to enhance the performance of iSHAKE, demon-
strating the theoretical advantages laid out in the original design [MGS15]. In our
previous, naive development [PC16], we demonstrated the core concepts of iSHAKE
and why it is superior when a hash needs to be updated after a change in the
input, thanks to the ability that it provides to insert, delete and update blocks.
We demonstrated that all those operations can be performed in constant time, as
oposed to the linear time taken by traditional sequential algorithms. Even other
incremental algorithms based on Merkle trees cannot offer such a high performance,
as the amount of hash operations still depends on the size of the input data.

Now we have introduced full parallelism in our implementation, not only at
the lowest levels possible, taking advantage of the optimisations provided by the
underlying hash function, but also at higher levels where blocks can be processed in
parallel by different cores or even machines.

Using this enhanced implementation, we laid out a set of experiments to measure
its performance and compare it to other hash algorithms, both sequential and
incremental, such as MD5, SHA-1, BLAKE2 or ParallelHash. The results we
obtained helped us show the advantages of our model and propose it as a serious
contestant. Furthermore, we elaborated several examples where an incremental hash
algorithm like this could prove useful, and even assessed how to use it to improve
widely-used protocols and tools, like BitTorrent and Git, respectively.

Our results show that iSHAKE can provide a solid enhancement in terms of
performance compared to sequential hash algorithms, and it provides also the foun-
dations for further high-performance processing, taking our model to greater levels
of parallelism. However, as any other system, the advantages are usually balanced by
drawbacks, and informed decisions need to be taken to adapt the use of the algorithm
to each individual use case.

49

50 5. CONCLUSIONS AND FUTURE WORK

In Chapter 2 we made some suggestions to fine tune iSHAKE to optimise its
performance while being able to make a sound judgment on other desired properties
like compatibility or portability. Later on, in Chapter 4, we presented a couple of use
cases where iSHAKE could be introduced instead of other hash functions, in this case
SHA-1. Our proposals there should serve as an illustration of the benefits of using
iSHAKE while giving also context enough for the reader to understand the intricacies
of applying such an advanced algorithm to existing use cases and considering all
possible implications and side effects.

All in all, we believe the present work demonstrates the feasibility of the iSHAKE
algorithm as a high-performance hash function when the amount of data to process
is significantly large and real-time requirements exist.

5.1 Future work

There is still a lot of work and research that we can do to further improve iSHAKE
and take advantage of its model to obtain even better performance. In this section,
we discuss two possible approaches that should be considered.

5.1.1 Portability

Our current iSHAKE implementation depends on the availability of the POSIX
threads API, which is available in most UNIX-like operating systems. This makes it
more difficult to build and use the library in other operating systems where the API is
not present, and therefore we assume the need to provide an implementation that can
be built in those operating systems lacking pthread support without compromising
the parallel-processing capability at the core of iSHAKE.

Work should be carried out to test building the library in multiple operating
systems and modifying what’s needed to allow its use in the most commonly used
platforms.

5.1.2 High-Performance Distributed Computing

One of the two major developments that we can perform to take the most out of
iSHAKE’s parallel computation model is the use of High-Performance Distributed
Computing infrastructures to run the algorithm. We have demonstrated the advantage
of parallel computation by leveraging the threading capabilities offered by the
operating system to significantly reduce the processing time when more than one
CPU is available. Such a scenario is relatively common nowadays with the advances in
hardware, but the concept itself can be easily extrapolated to other high-performance
architectures where a cluster of machines is used to distribute computing tasks.

5.1. FUTURE WORK 51

We have already mentioned before Hadoop’s MapReduce model [DG04], based on
a strategy for data analysis commonly known as split-apply-combine [Wic11]. The
MapReduce paradigm enables high scalability across an unlimited number of servers
in a Hadoop cluster. The process is as follows:

1. First, the Map task is executed, taking an input and converting it into smaller
pieces with some sort of characterization, order, or any other properties that
are interesting for our purposes.

2. Secondly, the Reduce task is performed by the worker nodes, taking the output
of the Map task and processing it according to some kind of logic.

This general model can be applied to boost the performance of iSHAKE by
distributing the hash operations across a set of worker nodes. In this case, the Map
stage consists in the original input being split into blocks, which are then appended
their own headers. These blocks are then sent to the cluster for the Reduce stage,
where nodes apply the underlying hash algorithm to them to obtain a digest for each
block. Finally, all digests are joined together using the commutative operation with
no particular restriction in terms of their relative order.

Such a paradigm would allow us to improve even more the performance of iSHAKE
for those use cases where real-time and high-performance are paramount. Further-
more, the model is generic enough so that it can be applied to a multitude of use cases
and specific infrastructures, allowing for all kinds of customised implementations.

5.1.3 Underlying hash function

Due to the very own nature of iSHAKE, the hash function used to process each block
of input is interchangeable. The SHAKE extendable output function was chosen
to take advantage of its variable-length output and its superior speed compared to
regular SHA-3. The fact is that one of the main criticisms that SHA-3 has faced since
it was standardised was that it was slow when implemented in software (hardware
implementations, on the other hand, are overtly faster than any other competitors)
compared to other contestants of the SHA-3 competition1. In general, it is believed
that the issue here is the extremely conservative security parameters used for the
different versions of SHA-3, affecting also the SHAKE variants2. The latter, though,
is slightly faster thanks to some implementation advantages, but still slower than

1See https://bench.cr.yp.to/results-sha3.html for an extensive performance comparison of the
SHA-3 competition contestants.

2David Wong wrote an interesting article explaining the issue in his blog, available here:
https://cryptologie.net/article/393/kangarootwelve/.

https://bench.cr.yp.to/results-sha3.html
https://cryptologie.net/article/393/kangarootwelve/

52 5. CONCLUSIONS AND FUTURE WORK

other contestants and much slower than the BLAKE2 function, which was not part
of the competition.

These allegations against SHA-3 led many people to use the aforementioned
BLAKE2 function instead of SHA-3, like Argon2 [BDK16] (the winner of the Password
Hashing Competition3) or the libsodium library4, and even the Keccak team issued
an statement commenting on the issue5. For this reason, they also decided to
introduce a new algorithm called KangarooTwelve [BDP+16], which is essentially a
variant of the Keccak sponge function with a reduced number of rounds from the
original 24 to 12, considering this as more than enough to guarantee the security of
the function (given that after all the cryptanalysis and scrutiny that Keccak has
been put through, researchers have been only able to break it up to six rounds) while
providing an important boost in speed.

Provided that we trust the claims of the Keccak team about the security of
KangarooTwelve, it is natural for us to consider an implementation of iSHAKE using it
instead of the SHAKE extendable output functions. As we have observed in our tests,
KangarooTwelve is indeed closer to the speed that iSHAKE can provide with optimal
configuration, and therefore a good candidate to speed up our performance even
more, combining the fastest Keccak-derived design with our highly-parallelisable
model.

Looking further into the future, our choice to stick to Keccak or derived functions
can provide us an interesting benefit if hardware starts to incorporate logic into
their instruction sets to implement the sponge function, as it is expected to happen.
At that point, the benefit of parallel computation would be added on top of an
underlying hash function that will be extremely fast already thanks to hardware
optimisations.

3See https://password-hashing.net/.
4See https://libsodium.org.
5The statement about the speed of SHA-3 in all its variants is available here: http://keccak.

noekeon.org/is_sha3_slow.html.

https://password-hashing.net/
https://libsodium.org
http://keccak.noekeon.org/is_sha3_slow.html
http://keccak.noekeon.org/is_sha3_slow.html

References

[AS15] Jean-Philippe Aumasson and Markku-Juhani Olavi Saarinen. The BLAKE2
Cryptographic Hash and Message Authentication Code (MAC). Internet Requests
for Comments, November 2015.

[Bak09] Arno Bakker. BEP 30: Merkle hash torrent extension, August 2009. Available at
http://bittorrent.org/beps/bep_0030.html.

[BCH06] John Black, Martin Cochran, and Trevor Highland. A Study of the MD5 Attacks:
Insights and Improvements. In Fast Software Encryption, 13th International
Workshop, FSE 2006, volume 4047 of Lecture Notes in Computer Science, pages
262–277. Springer, 2006. Available at http://www.iacr.org/cryptodb/archive/
2006/FSE/3237/3237.pdf.

[BDK16] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: New Generation of Memory-
Hard Functions for Password Hashing and Other Applications. In 2016 IEEE
European Symposium on Security and Privacy (EuroS P), pages 292–302, March
2016.

[BDP+12] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. Keccak implementation overview, version 3.2. Technical report, May
2012. Available at http://keccak.noekeon.org/Keccak-implementation-3.2.pdf.

[BDP+16] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. KangarooTwelve: fast hashing based on Keccak-p. Cryptology ePrint
Archive, Report 2016/770, August 2016. Available at http://eprint.iacr.org/2016/
770.

[BDPVA14] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Applied
Cryptography and Network Security: 12th International Conference, ACNS 2014,
Lausanne, Switzerland, June 10-13, 2014. Proceedings, chapter Sakura: A Flexible
Coding for Tree Hashing, pages 217–234. Springer International Publishing, 2014.

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20. Workshop Record of SASC
2008: The State of the Art of Stream Ciphers., January 2008. Available at
http://cr.yp.to/papers.html#chacha.

53

http://bittorrent.org/beps/bep_0030.html
http://www.iacr.org/cryptodb/archive/2006/FSE/3237/3237.pdf
http://www.iacr.org/cryptodb/archive/2006/FSE/3237/3237.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://eprint.iacr.org/2016/770
http://eprint.iacr.org/2016/770
http://cr.yp.to/papers.html#chacha

54 REFERENCES

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental Cryptography:
The Case of Hashing and Signing. In Advances in Cryptology - CRYPTO ’94,
14th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 21-25, 1994, Proceedings, volume 839 of Lecture Notes in Computer
Science, pages 216–233. Springer, 1994.

[BR11] Elaine B. Barker and Allen L. Roginsky. SP 800-131A. Transitions: Recommen-
dation for Transitioning the Use of Cryptographic Algorithms and Key Lengths.
Technical report, Gaithersburg, MD, United States, January 2011.

[Coc07] Martin Cochran. Notes on the Wang et al. 263 SHA-1 Differential Path. Cryptology
ePrint Archive, Report 2007/474, 2007. Available at http://eprint.iacr.org/2007/
474.

[Coh08] Bram Cohen. BEP 3: The Bittorrent Protocol Specification, January 2008.
Available at http://bittorrent.org/beps/bep_0003.html.

[CT11] Lily Chen and Sean Turner. Updated Security Considerations for the MD5
Message-Digest and the HMAC-MD5 Algorithms. RFC 6151, March 2011.

[DDS13] Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision Attacks on Up to 5
Rounds of SHA-3 Using Generalized Internal Differentials. In FSE, pages 219–240.
Springer, 2013.

[DDS14] Itai Dinur, Orr Dunkelman, and Adi Shamir. Improved Practical Attacks on
Round-Reduced Keccak. J. Cryptology, 27:183–209, 2014.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. In OSDI’04: Proceedings of the 6th Conference on Symposium on
Operating Systems Design and Implementation. USENIX Association, 2004.

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley, 1st edition,
March 2003.

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2011.

[HPR04] Philip Hawkes, Michael Paddon, and Gregory G. Rose. Musings on the wang et
al. md5 collision. Cryptology ePrint Archive, Report 2004/264, 2004. Available
at http://eprint.iacr.org/2004/264.

[Int17] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4, March 2017.

[ISO99] ISO. The ANSI C standard (C99). Technical Report WG14 N1124, ISO/IEC,
1999.

http://eprint.iacr.org/2007/474
http://eprint.iacr.org/2007/474
http://bittorrent.org/beps/bep_0003.html
http://eprint.iacr.org/2004/264

REFERENCES 55

[KCP16] John Kelsey, Shu-jen Chang, and Ray Perlner. SHA-3 Derived Functions:
CSHAKE, KMAC, TupleHash and ParallelHash. NIST special publication; NIST
special pub; NIST SP. National Institute of Standards and Technology, December
2016. Available at https://doi.org/10.6028/NIST.SP.800-185.

[Kli05] Vlastimil Klima. Finding MD5 Collisions – a Toy For a Notebook. Cryptology
ePrint Archive, Report 2005/075, March 2005. Available at http://eprint.iacr.
org/2005/075.

[LWdW05] Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding X.509 Certificates.
Cryptology ePrint Archive, Report 2005/067, 2005. Available at http://eprint.
iacr.org/2005/067.

[Mer82] R.C. Merkle. Method of providing digital signatures, January 1982. US Patent
4,309,569.

[MGS15] Hristina Mihajloska, Danilo Gligoroski, and Simona Samardjiska. Reviving the
idea of incremental cryptography for the zettabyte era use case: Incremental
hash functions based on sha-3. In Jan Camenisch and Dogan Kesdogan, editors,
iNetSeC, volume 9591 of Lecture Notes in Computer Science, pages 97–111.
Springer, 2015.

[Nat95] National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash
Standard. National Institute of Standards and Technology, April 1995.

[Nat15] National Institute of Standards and Technology. FIPS PUB 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. National Institute of
Standards and Technology, August 2015. Available at http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.202.pdf.

[Ora10] Oracle Corporation. UltraSPARC Architecture 2007, September 2010.

[PC16] Jaime Pérez Crespo. Implementation of the iSHAKE incremental hash algorithm.
Technical report, June 2016.

[QSLG17] Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. New Collision Attacks on
Round-Reduced Keccak. Cryptology ePrint Archive, Report 2017/128, February
2017. Available at http://eprint.iacr.org/2017/128.

[Riv92] R. Rivest. The MD5 Message-Digest Algorithm. Internet Requests for Comments,
April 1992.

[RO05] Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. Cryptology ePrint
Archive, Report 2005/010, 2005. Available at http://eprint.iacr.org/2005/010.

[RS09] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Ba-
sics: Definitions, Implications and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance. Cryptology ePrint Archive, Report
2004/035, July 2009. Available at http://eprint.iacr.org/2004/035.

https://doi.org/10.6028/NIST.SP.800-185
http://eprint.iacr.org/2005/075
http://eprint.iacr.org/2005/075
http://eprint.iacr.org/2005/067
http://eprint.iacr.org/2005/067
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://eprint.iacr.org/2017/128
http://eprint.iacr.org/2005/010
http://eprint.iacr.org/2004/035

56 REFERENCES

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
The first collision for full SHA-1. Cryptology ePrint Archive, Report 2017/190,
2017. Available at http://eprint.iacr.org/2017/190.

[Sch96] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code
in C, Second Edition. Wiley, 2nd edition, October 1996.

[Sig15] Silent Signal. Poisonous MD5 –Wolves Among the Sheep. https://blog.silentsignal.
eu/2015/06/10/poisonous-md5-wolves-among-the-sheep/, 2015.

[Sin11] E. Sink. Version Control by Example, chapter 12, pages 171–173. Pyrenean Gold
Press, 2011. Available at http://ericsink.com/vcbe/html/cryptographic_hashes.
html.

[SKP15] Marc Stevens, Pierre Karpman, and Thomas Peyrin. Freestart collision for
full SHA-1. Cryptology ePrint Archive, Report 2015/967, 2015. Available at
http://eprint.iacr.org/2015/967.

[SLG17] Ling Song, Guohong Liao, and Jian Guo. Non-Full Sbox Linearization: Applica-
tions to Collision Attacks on Round-Reduced Keccak. Crypto 2017 Proceedings,
August 2017. To appear.

[Ste12] Marc Stevens. Single-block collision attack on MD5. Cryptology ePrint Archive,
Report 2012/040, 2012. Available at http://eprint.iacr.org/2012/040.

[Wag02] David Wagner. A Generalized Birthday Problem. In Advances in Cryptology -
CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes
in Computer Science, pages 288–303. Springer, 2002.

[Wic11] Hadley Wickham. The Split-Apply-Combine Strategy for Data Analysis. Journal
of Statistical Software, Articles, 40(1):1–29, 2011.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the
Full SHA-1. In Advances in Cryptology - CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, volume 3621 of Lecture Notes in Computer Science, pages
17–36. Springer, 2005. Available at http://www.iacr.org/cryptodb/archive/2005/
CRYPTO/1826/1826.pdf.

[XF10] Tao Xie and Dengguo Feng. Construct MD5 Collisions Using Just A Single Block
Of Message. Cryptology ePrint Archive, Report 2010/643, 2010. Available at
http://eprint.iacr.org/2010/643.

[XLF13] Tao Xie, Fanbao Liu, and Dengguo Feng. Fast Collision Attack on MD5. Cryp-
tology ePrint Archive, Report 2013/170, 2013. Available at http://eprint.iacr.
org/2013/170.

http://eprint.iacr.org/2017/190
https://blog.silentsignal.eu/2015/06/10/poisonous-md5-wolves-among-the-sheep/
https://blog.silentsignal.eu/2015/06/10/poisonous-md5-wolves-among-the-sheep/
http://ericsink.com/vcbe/html/cryptographic_hashes.html
http://ericsink.com/vcbe/html/cryptographic_hashes.html
http://eprint.iacr.org/2015/967
http://eprint.iacr.org/2012/040
http://www.iacr.org/cryptodb/archive/2005/CRYPTO/1826/1826.pdf
http://www.iacr.org/cryptodb/archive/2005/CRYPTO/1826/1826.pdf
http://eprint.iacr.org/2010/643
http://eprint.iacr.org/2013/170
http://eprint.iacr.org/2013/170

AppendixAHeader file of the iSHAKE library

ishake.h
1 # include <stdint .h>
2 # include <math.h>
3 # include <pthread .h>
4

5 # include " modulo_arithmetics .h"
6

7 # ifndef _ISHAKE_H
8 # define _ISHAKE_H
9

10 /*
11 * Define a default block size of 100 KiB
12 */
13 # ifndef ISHAKE_BLOCK_SIZE
14 # define ISHAKE_BLOCK_SIZE 100*1024
15 # endif
16

17 /*
18 * Constants for the two different modes of operation .
19 */
20 # define ISHAKE_APPEND_ONLY_MODE 0 // fixed -size data
21 # define ISHAKE_FULL_MODE 1 // variable -size data
22

23 /*
24 * Type definition for a function that obtains the hash of some given
25 * data. This function is used internally and will be mapped to a
26 * function in the set of shake *)() or sha3 *() functions .
27 */
28 typedef int (* hash_function)(
29 uint8_t *,
30 size_t ,
31 const uint8_t *,
32 size_t
33);
34

35 /* data types */
36

57

58 A. HEADER FILE OF THE ISHAKE LIBRARY

37 /**
38 * Type used internally to represent the ID header appended to blocks
39 * in the variable size mode of iSHAKE .
40 */
41 typedef struct {
42 uint64_t nonce ;
43 uint64_t prev;
44 } ishake_nonce ;
45

46 /**
47 * The header appended to a block .
48 */
49 typedef struct {
50 unsigned char length ;
51 union {
52 ishake_nonce nonce ;
53 uint64_t idx;
54 } value ;
55 } ishake_header ;
56

57 /**
58 * A block to be used in the iSHAKE algorithm .
59 */
60 typedef struct {
61 unsigned char *data;
62 uint32_t data_lenp ;
63 ishake_header header ;
64 } ishake_block_t ;
65

66 /**
67 * A task for a thread to run the iSHAKE algorithm on a block .
68 */
69 typedef struct _task_t {
70 group_op op;
71 ishake_block_t * block ;
72 struct _task_t *prev;
73 } ishake_task_t ;
74 typedef ishake_task_t * ishake_stack_t ;
75

76 /*
77 * Type definition of the ishake main structure . It keeps the status of
78 * the algorithm at any given point in time.
79 */
80 typedef struct {
81 uint8_t mode; // mode of operation
82 uint64_t block_no ; // # of blocks processed
83 uint32_t block_size ; // size of blocks
84 uint16_t output_len ; // size of output (in bytes)
85 uint64_t proc_bytes ; // # of bytes processed
86 uint32_t remaining ; // # of bytes remaining
87 uint64_t *hash; // intermediate hash
88 unsigned char *buf; // buffer for data remaining

59

89

90 // threading related properties
91 uint16_t thrd_no ; // number of threads to use
92 pthread_t ** threads ; // list of threads
93 uint8_t done; // flag to signal we are done
94

95 pthread_mutex_t stack_lck ; // a mutex to control the stack
96 pthread_mutex_t combine_lck ; // a mutex for combine ops
97 pthread_cond_t data_available ; // condition for data availability
98 ishake_stack_t stack ; // the stack containing tasks
99 } ishake_t ;

100

101 /* ishake_ * API functions */
102

103 /**
104 * Initialize a hash. This function must be called in order to obtain a
105 * valid ishake state to use through the rest of the API.
106 */
107 int ishake_init (
108 ishake_t *is , // the iSHAKE struct
109 uint32_t blk_size , // the block size to use
110 uint16_t hashbitlen , // the length in bits of the output
111 uint8_t mode , // the mode of operation
112 uint16_t threads // the number of worker threads to use
113);
114

115

116 /**
117 * Append data to be hashed . Its size doesn ’t need to be multiple of
118 * the block size.
119 */
120 int ishake_append (
121 ishake_t *is , // the iSHAKE struct
122 unsigned char *data , // the data to append
123 uint64_t len // the length in bytes of the data given
124);
125

126

127 /**
128 * Insert a new block right before another . Its size MUST be exactly
129 * the same as the block size , and the prev pointer in the block
130 * must point to the previous block in the list.
131 *
132 * Pass NULL as next when inserting the last block .
133 */
134 int ishake_insert (
135 ishake_t *is , // the iSHAKE struct
136 ishake_block_t *new , // the new block
137 ishake_block_t *next // the next block
138);
139

140

60 A. HEADER FILE OF THE ISHAKE LIBRARY

141 /**
142 * Delete a block , updating the next block in the list to point to the
143 * block previous to the one we are deleting .
144 *
145 * Pass NULL as next when deleting the last block .
146 */
147 int ishake_delete (
148 ishake_t *is , // the iSHAKE struct
149 ishake_block_t *deleted , // the block to delete
150 ishake_block_t *next // the next block
151);
152

153

154 /**
155 * Update a block with new data. Old data must be provided too.
156 */
157 int ishake_update (
158 ishake_t *is , // the iSHAKE struct
159 ishake_block_t *old , // the old block
160 ishake_block_t *new // the new , modified block
161);
162

163

164 /**
165 * Finalise the process and get the resulting digest .
166 */
167 int ishake_final (
168 ishake_t *is , // the iSHAKE struct
169 uint8_t * output // a buffer to store the digest
170);
171

172

173 /**
174 * Obtain the hash corresponding to some chunk of data.
175 */
176 int ishake_hash (
177 unsigned char *data , // input data
178 uint64_t len , // the input length in bytes
179 uint8_t *hash , // a buffer to store the digest
180 uint16_t hashbitlen // the length of the digest
181);
182

183

184 /**
185 * Obtain the hash corresponding to some piece of data , performing
186 * the computation in parallel by threadno threads .
187 *
188 * Define ISHAKE_BLOCK_SIZE if you wish to modify the block size.
189 */
190 int ishake_hash_p (
191 unsigned char *data , // input data
192 uint64_t len , // the input length in bytes

61

193 uint8_t *hash , // a buffer to store the digest
194 uint16_t hashbitlen , // the length of the digest
195 uint16_t threadno // the number of worker threads to use
196);
197

198

199 /**
200 * Cleanup the resources associated to a given iSHAKE struct .
201 */
202 void ishake_cleanup (
203 ishake_t *is // the iSHAKE struct
204);
205

206 # endif // _ISHAKE_H

AppendixBUsage of the tools provided

sha3sum
sha3sum [-- shake128 |-- shake256 |--sha3 -224| - - sha3 -256| - - sha3 -384|

--sha3 -512] [-- bytes N] [--hex] [-- quiet] [--help] [file]

--shake128 Use 128 bit SHAKE .
--shake256 Use 256 bit SHAKE .
--sha3 -224 Use 224 bit SHA3.
--sha3 -256 Use 256 bit SHA3. Default
--sha3 -384 Use 384 bit SHA3.
--sha3 -512 Use 512 bit SHA3.
--bytes The number of bytes desired in the output . Only

for the SHAKE algorithm .
--hex Input is hex - encoded . Defaults to binary input .
--quiet Output only the resulting hash string .
--help Print this help.
file The file to hash. Data can also be piped into

the program .

ishakesum
ishakesum [- -128| - -256] [--hex] [--bits N] [--block -size N] [-- quiet]

[-- threads] [-- profile] [--help] [file]

--128 Use 128 bit equivalent iSHAKE . Default .
--256 Use 256 bit equivalent iSHAKE .
--hex Input is hex - encoded . Defaults to binary input .
--bits The number of bits desired in the output . Must

be a multiple of 64. Between 2688 and 4160
for iSHAKE 128 , and between 6528 and 16512
for iSHAKE 256. The lowest number for each
version is the default .

--threads The number of threads to use. No threads are
used by default .

--profile Measure the performance of the operation (s) to
run.

--block -size The size in bytes of the iSHAKE internal blocks .
--quiet Output only the resulting hash string .

63

64 B. USAGE OF THE TOOLS PROVIDED

--help Print this help.
file The file to hash. Data can also be piped into

the program .

sha3sumd
sha3sumd [- -128| - -256] [--bits N] [--block -size N] [-- quiet] [--help]

directory

--shake128 Use 128 bit SHAKE .
--shake256 Use 256 bit SHAKE .
--sha3 -224 Use 224 bit SHA3.
--sha3 -256 Use 256 bit SHA3. Default
--sha3 -384 Use 384 bit SHA3.
--sha3 -512 Use 512 bit SHA3.
--bytes The number of bytes desired in the output . Only

for the SHAKE algorithm .
--quiet Output only the resulting hash string .
--help Print this help.
directory The path to a directory whose contents will be

hashed in order . Every file in the directory
will be read and incorporated into the input ,
in the same order as they appear in the
directory .

ishakesumd
ishakesumd [- -128| - -256] [--bits N] [--block -size N] [-- quiet] [--help]

directory

--128 Use 128 bit equivalent iSHAKE . Default .
--256 Use 256 bit equivalent iSHAKE .
--bits The number of bits desired in the output . Must

be a multiple of 64. Between 2688 and 4160
for iSHAKE 128 , and between 6528 and 16512
for iSHAKE 256. The lowest number for each
version is the default .

--block -size The size in bytes of the iSHAKE internal blocks .
--mode The mode of operation , one of FULL or

APPEND_ONLY . Defaults to APPEND_ONLY .
--rehash The hash to use as a base , computing only those

blocks that have changed .
--threads The number of threads to use. No threads are

used by default .
--profile Measure the performance of the operation (s) to

run.
--quiet Output only the resulting hash string .
--help Print this help.
directory The path to a directory whose contents will be

hashed in order . Every file in the directory
will be read and incorporated into the input ,
in the same order as they appear in the

65

directory .

combine
combine [--add|--sub] hash1 hash2

--add Apply the addition operation . Default .
--sub Apply the subtraction operation .
--help Print this help.
hash1 The first operand to the operation requested .
hash2 The second operand to the operation requested .

AppendixCPerformance measurements

C.1 Hash algorithm comparison

nepenthe

AMD64; Haswell/Crystalwell (0306C3h); 2014 Intel Core i7 4980HQ; 4x2800MHz

Table C.1: Time taken (in seconds) by different algorithms to
process 1 GiB of data, sliced in blocks of 52 KiB (MD5, SHA1,
BLAKE2b, BLAKE2bp, iSHAKE 128 and iSHAKE 256).

M
D
5

SH
A
1

B
LA

K
E
2b

B
LA

K
E
2b

p

iS
H
A
K
E
12
8

(7
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
25
6

(7
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
12
8

(7
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

iS
H
A
K
E
25
6

(7
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

1, 614 2, 516 1, 595 2, 839 0, 668 0, 922 0, 694 0, 871
1, 613 2, 487 1, 585 2, 853 0, 697 0, 915 0, 701 0, 869
1, 62 2, 478 1, 589 2, 851 0, 776 0, 936 0, 754 0, 904
1, 637 2, 465 1, 576 2, 85 0, 689 0, 916 0, 725 0, 9
1, 657 2, 469 1, 608 2, 831 0, 676 0, 93 0, 751 0, 913
1, 633 2, 482 1, 579 2, 832 0, 688 0, 924 0, 719 0, 914
1, 615 2, 472 1, 581 2, 829 0, 681 0, 942 0, 845 0, 921
1, 626 2, 502 1, 584 2, 867 0, 692 0, 952 0, 815 0, 941
1, 627 2, 483 1, 593 2, 841 0, 67 0, 957 0, 768 0, 949
1, 619 2, 49 1, 597 2, 829 0, 675 0, 97 0, 799 0, 889
1, 647 2, 537 1, 594 2, 834 0, 701 0, 975 0, 811 0, 886

Continued on next page

67

68 C. PERFORMANCE MEASUREMENTS

Table C.1 – continued from previous page
M
D
5

SH
A
1

B
LA

K
E
2b

B
LA

K
E
2b

p

iS
H
A
K
E
12
8

(7
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
25
6

(7
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
12
8

(7
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

iS
H
A
K
E
25
6

(7
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

1, 627 2, 523 1, 592 2, 817 0, 694 0, 989 0, 847 0, 854
1, 613 2, 524 1, 597 2, 844 0, 685 0, 963 0, 87 1
1, 615 2, 603 1, 588 2, 853 0, 706 0, 895 0, 84 0, 947
1, 601 2, 48 1, 581 2, 844 0, 727 0, 927 0, 894 0, 967
1, 609 2, 485 1, 591 2, 83 0, 769 0, 938 0, 875 0, 939
1, 624 2, 54 1, 582 2, 837 0, 679 0, 898 0, 947 1, 054
1, 623 2, 469 1, 585 2, 836 0, 677 0, 925 1, 083 1, 008
1, 615 2, 477 1, 593 2, 828 0, 672 0, 897 0, 915 1, 007
1, 612 2, 477 1, 581 2, 835 0, 68 0, 909 0, 906 0, 908
1, 598 2, 509 1, 633 2, 835 0, 689 0, 829 0, 917 0, 925
1, 613 2, 477 1, 611 2, 831 0, 706 0, 841 0, 878 0, 963
1, 598 2, 47 1, 601 2, 832 0, 704 0, 835 1, 008 0, 98
1, 616 2, 457 1, 609 2, 864 0, 694 0, 827 1, 144 1, 008
1, 602 2, 478 1, 606 2, 83 0, 7 0, 85 1, 115 1, 034
1, 613 2, 524 1, 608 2, 843 0, 739 0, 969 0, 942 1, 038
1, 607 2, 467 1, 615 2, 796 0, 708 0, 877 0, 879 1, 003
1, 596 2, 464 1, 607 2, 682 0, 684 0, 915 0, 969 0, 967
1, 594 2, 466 1, 607 2, 969 0, 681 0, 92 0, 876 1, 02
1, 599 2, 471 1, 602 3, 136 0, 688 1, 026 0, 914 0, 994
1, 617 2, 541 1, 601 2, 838 0, 691 0, 945 0, 906 1, 017
1, 6 2, 539 1, 598 2, 826 0, 695 0, 925 0, 891 1, 08

1, 603 2, 539 1, 609 2, 828 0, 706 0, 966 0, 909 1, 134
1, 604 2, 527 1, 597 2, 847 0, 726 0, 962 0, 964 1, 073
1, 59 2, 543 1, 591 2, 852 0, 723 0, 961 0, 897 1, 127
1, 59 2, 554 1, 601 2, 846 0, 72 0, 955 0, 91 1, 184
1, 597 2, 56 1, 59 2, 813 0, 703 0, 955 0, 919 1, 12
1, 602 2, 612 1, 6 2, 832 0, 7 0, 95 0, 865 1, 07

Continued on next page

C.1. HASH ALGORITHM COMPARISON 69

Table C.1 – continued from previous page

M
D
5

SH
A
1

B
LA

K
E
2b

B
LA

K
E
2b

p

iS
H
A
K
E
12
8

(7
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
25
6

(7
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
12
8

(7
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

iS
H
A
K
E
25
6

(7
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

1, 601 2, 571 1, 589 2, 83 0, 675 1, 025 0, 898 1, 017
1, 602 2, 572 1, 598 2, 835 0, 693 0, 951 1, 07 1, 039
1, 608 2, 589 1, 597 2, 835 0, 716 0, 972 0, 953 1, 045
1, 616 2, 567 1, 592 2, 844 0, 69 1 0, 924 0, 967
1, 599 2, 547 1, 592 2, 832 0, 707 0, 999 0, 932 0, 996
1, 592 2, 496 1, 591 2, 885 0, 728 0, 971 0, 946 1, 034
1, 601 2, 558 1, 59 2, 913 0, 716 1, 005 0, 947 1, 105
1, 599 2, 474 1, 608 2, 887 0, 735 1, 016 0, 992 0, 93
1, 592 2, 472 1, 597 2, 828 0, 73 0, 84 0, 992 0, 97
1, 608 2, 46 1, 58 2, 836 0, 73 0, 858 0, 932 0, 994
1, 606 2, 477 1, 595 2, 83 0, 749 0, 831 1, 054 1, 132
1, 595 2, 458 1, 596 2, 838 0, 708 0, 842 0, 959 1, 085

bigmem

AMD64; Nehalem (206e6); 2010 Intel Xeon X7560; 32 x 2266MHz

Table C.2: Time taken (in seconds) by different algorithms to
process 1 GiB of data sliced in blocks of 52 KiB (MD5, SHA1,
BLAKE2b, BLAKE2bp, iSHAKE 128 and iSHAKE 256).

M
D
5

SH
A
1

B
LA

K
E
2b

B
LA

K
E
2b

p

iS
H
A
K
E
12
8

(8
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
12
8

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

2, 8 4, 21 2, 55 3, 91 1, 36 1, 63 1, 36 1, 58
2, 75 4, 37 2, 52 3, 81 0, 87 1, 46 0, 89 1, 07
2, 76 4, 16 2, 57 3, 58 1, 22 1, 14 0, 93 1, 4

Continued on next page

70 C. PERFORMANCE MEASUREMENTS

Table C.2 – continued from previous page

M
D
5

SH
A
1

B
LA

K
E
2b

B
LA

K
E
2b

p

iS
H
A
K
E
12
8

(8
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
12
8

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

2, 9 5, 47 2, 63 3, 93 0, 89 1, 19 0, 95 1, 18
2, 76 4, 35 2, 22 3, 84 1, 04 1, 52 1, 29 1, 1
2, 8 3, 92 2, 71 3, 88 0, 86 1, 13 0, 81 1, 11
2, 91 4, 21 2, 58 4, 01 0, 96 1, 66 1, 33 1, 41
2, 75 3, 8 2, 23 4, 16 0, 96 1, 25 0, 9 1, 3
2, 81 4, 09 2, 52 3, 2 0, 96 1, 02 0, 93 0, 88
2, 75 4, 14 2, 67 3, 25 1, 29 1, 62 1, 05 1, 11
2, 46 4, 34 2, 29 3, 97 1, 32 1, 5 1, 37 1, 42
2, 79 4, 15 2, 52 3, 8 1, 45 1, 49 1, 15 1, 13
2, 91 4, 33 2, 52 3, 7 1, 29 1, 29 1, 17 1, 65
2, 96 3, 87 2, 66 3, 56 1, 35 1, 16 0, 82 1, 39
2, 98 4, 09 2, 56 2, 87 1, 41 1, 39 0, 89 1, 5
2, 99 4, 15 2, 52 3, 19 0, 89 1, 25 1, 29 1, 49
2, 99 4, 36 2, 22 3, 18 1, 23 1, 43 0, 95 1, 22
2, 99 4, 14 2, 52 3, 86 0, 93 1, 38 1, 18 1, 22
2, 99 4, 35 2, 65 3, 79 1, 53 1, 14 0, 77 1, 24
2, 55 4, 13 2, 56 4, 04 0, 96 1, 29 1, 21 1, 32
2, 75 4, 36 2, 22 3, 09 1, 48 1, 22 1, 06 0, 97
2, 53 4, 15 2, 68 3, 78 0, 96 1, 5 1, 04 1, 56
2, 45 3, 79 2, 32 3, 19 0, 93 1, 22 0, 95 1
2, 54 4, 17 2, 52 3, 44 0, 99 1, 23 1, 21 1, 55
2, 78 4, 2 2, 52 3, 03 1, 12 1, 48 0, 91 1, 04
2, 91 4, 23 2, 64 3, 16 0, 79 1, 39 1, 29 1, 28
2, 96 4, 09 2, 55 3, 32 0, 95 1, 3 0, 76 1, 43
2, 98 4, 33 2, 52 3, 18 1, 03 1, 15 0, 81 1, 21
2, 56 3, 86 2, 22 4, 14 1, 29 1, 03 1, 32 1, 44
2, 75 4, 21 2, 66 3, 67 0, 9 1, 53 0, 73 1, 38

Continued on next page

C.2. ISHAKE EVALUATION 71

Table C.2 – continued from previous page

M
D
5

SH
A
1

B
LA

K
E
2b

B
LA

K
E
2b

p

iS
H
A
K
E
12

8
(8

th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
ge
ne
ri
c

op
ti
m
is
at
io
ns
)

iS
H
A
K
E
12
8

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

iS
H
A
K
E
25
6

(8
th
re
ad

s,
la
ne

co
m
pl
em

en
ti
ng

)

2, 8 3, 79 2, 29 3, 98 1, 4 1, 14 1, 21 1, 51
2, 75 4, 2 2, 68 4, 4 0, 79 1, 28 0, 72 1, 36
2, 76 4, 37 2, 57 3, 65 1, 18 1, 47 0, 83 1, 03
2, 89 3, 89 2, 52 3, 7 0, 91 1, 49 1, 1 0, 97
2, 96 4, 22 2, 78 3, 75 1, 02 1, 28 0, 78 0, 94
2, 98 3, 79 2, 64 3, 81 1, 32 1, 25 1, 01 1, 4
2, 56 4, 1 2, 55 4, 22 1, 25 1, 56 1, 41 1, 02
2, 76 4, 14 2, 22 2, 53 1, 01 1, 2 0, 88 1, 34
2, 45 4, 34 2, 68 2, 29 0, 91 1, 38 0, 93 1, 5
2, 56 5, 03 2, 57 3, 35 0, 88 1, 48 1, 37 1, 52
2, 77 4, 12 2, 22 3, 89 1, 29 1, 15 0, 81 1, 03
2, 9 4, 34 2, 68 3, 19 0, 89 1, 16 0, 93 1, 05
2, 75 4, 13 2, 57 3, 88 0, 98 1, 04 1, 22 1, 22
2, 81 4, 36 2, 53 3, 21 1, 05 1, 56 0, 76 1, 04
2, 76 4, 15 2, 22 3, 2 1, 34 1, 35 0, 91 1, 56
2, 46 4, 33 2, 67 3, 22 0, 92 1, 48 1, 08 1, 36
2, 46 4, 8 2, 56 4, 2 1, 06 1, 08 0, 86 1, 31
2, 8 4, 26 2, 22 3, 8 1, 18 1, 59 1, 31 1, 5
2, 91 4, 09 2, 68 4, 23 1, 14 1, 26 1, 13 1, 02
2, 95 4, 34 2, 57 4, 14 1, 53 1, 78 1, 32 1

C.2 iSHAKE evaluation

nepenthe

AMD64; Haswell/Crystalwell (0306C3h); 2014 Intel Core i7 4980HQ; 4x2800MHz

72 C. PERFORMANCE MEASUREMENTS

Table C.3: Performance measurements for iSHAKE 128 with
different configurations and a fixed block size of 8192 bytes (8 KiB),
including the block header.

blocks total bytes threads cycles/byte wall time
1 8192 0 12, 923 0, 00004
2 16384 0 12, 919 0, 00008
4 32768 0 12, 814 0, 00015
8 65536 0 11, 406 0, 00027
16 131072 0 10, 553 0, 00049
32 262144 0 9, 623 0, 0009
64 524288 0 8, 941 0, 00168
1 8192 1 28, 547 0, 00008
2 16384 1 19, 507 0, 00012
4 32768 1 12, 093 0, 00014
8 65536 1 9, 172 0, 00022
16 131072 1 8, 691 0, 00041
32 262144 1 8, 404 0, 00079
64 524288 1 8, 369 0, 00157
1 8192 2 33, 235 0, 0001
2 16384 2 16, 859 0, 0001
4 32768 2 8, 153 0, 0001
8 65536 2 5, 771 0, 00014
16 131072 2 5, 078 0, 00024
32 262144 2 4, 634 0, 00044
64 524288 2 4, 47 0, 00084
1 8192 3 27, 65 0, 00008
2 16384 3 15, 731 0, 00009
4 32768 3 7, 061 0, 00008
8 65536 3 5, 155 0, 00012
16 131072 3 4, 332 0, 0002
32 262144 3 3, 647 0, 00034
64 524288 3 3, 144 0, 00059

Continued on next page

C.2. ISHAKE EVALUATION 73

Table C.3 – continued from previous page
blocks total bytes threads cycles/byte wall time

1 8192 4 27, 29 0, 00008
2 16384 4 14, 149 0, 00008
4 32768 4 10, 027 0, 00012
8 65536 4 5, 91 0, 00014
16 131072 4 3, 637 0, 00017
32 262144 4 3, 299 0, 00031
64 524288 4 2, 728 0, 00051
1 8192 5 31, 472 0, 00009
2 16384 5 17, 768 0, 0001
4 32768 5 8, 615 0, 0001
8 65536 5 5, 419 0, 00013
16 131072 5 3, 819 0, 00018
32 262144 5 3, 076 0, 00029
64 524288 5 2, 606 0, 00049
1 8192 6 34, 9 0, 0001
2 16384 6 18, 389 0, 00011
4 32768 6 10, 31 0, 00012
8 65536 6 5, 965 0, 00014
16 131072 6 3, 96 0, 00019
32 262144 6 3, 109 0, 00029
64 524288 6 2, 681 0, 0005
1 8192 7 38, 64 0, 00011
2 16384 7 25, 307 0, 00015
4 32768 7 14, 813 0, 00017
8 65536 7 6, 762 0, 00016
16 131072 7 4, 356 0, 0002
32 262144 7 3, 241 0, 00031
64 524288 7 2, 754 0, 00052
1 8192 8 45, 787 0, 00014
2 16384 8 23, 941 0, 00014
4 32768 8 12, 12 0, 00014

Continued on next page

74 C. PERFORMANCE MEASUREMENTS

Table C.3 – continued from previous page
blocks total bytes threads cycles/byte wall time

8 65536 8 7, 156 0, 00017
16 131072 8 4, 397 0, 00021
32 262144 8 3, 384 0, 00032
64 524288 8 2, 78 0, 00052
1 8192 9 64, 761 0, 00019
2 16384 9 30, 952 0, 00018
4 32768 9 16, 564 0, 0002
8 65536 9 9, 397 0, 00022
16 131072 9 6, 133 0, 00029
32 262144 9 4, 591 0, 00043
64 524288 9 3, 481 0, 00065
1 8192 10 76, 751 0, 00023
2 16384 10 30, 936 0, 00018
4 32768 10 17, 84 0, 00021
8 65536 10 9, 893 0, 00023
16 131072 10 5, 77 0, 00027
32 262144 10 4, 004 0, 00038
64 524288 10 3, 225 0, 00061
1 8192 11 59, 6 0, 00017
2 16384 11 30, 821 0, 00018
4 32768 11 16, 722 0, 0002
8 65536 11 9, 485 0, 00022
16 131072 11 6, 102 0, 00029
32 262144 11 4, 208 0, 0004
64 524288 11 3, 253 0, 00061
1 8192 12 69, 769 0, 00021
2 16384 12 42, 364 0, 00025
4 32768 12 18, 804 0, 00022
8 65536 12 10, 659 0, 00025
16 131072 12 6, 432 0, 0003
32 262144 12 4, 366 0, 00041

Continued on next page

C.2. ISHAKE EVALUATION 75

Table C.3 – continued from previous page
blocks total bytes threads cycles/byte wall time

64 524288 12 3, 435 0, 00065
1 8192 13 64, 471 0, 00019
2 16384 13 35, 815 0, 00021
4 32768 13 21, 334 0, 00025
8 65536 13 12, 546 0, 0003
16 131072 13 7, 598 0, 00036
32 262144 13 5, 12 0, 00048
64 524288 13 4, 023 0, 00076

Table C.4: Performance measurements for iSHAKE 128 with
different configurations and a fixed block size of 8192 bytes (8 KiB),
excluding the block header.

blocks total bytes threads cycles/byte wall time
1 8192 0 10, 275 0, 00003
2 16384 0 10, 232 0, 00006
4 32768 0 9, 868 0, 00012
8 65536 0 9, 381 0, 00022
16 131072 0 8, 724 0, 00041
32 262144 0 8, 09 0, 00076
64 524288 0 7, 501 0, 00141
1 8192 1 16, 881 0, 00005
2 16384 1 10, 547 0, 00006
4 32768 1 9, 149 0, 00011
8 65536 1 7, 542 0, 00018
16 131072 1 7, 022 0, 00033
32 262144 1 6, 688 0, 00063
64 524288 1 6, 496 0, 00122
1 8192 2 18, 87 0, 00006
2 16384 2 9, 488 0, 00006
4 32768 2 6, 379 0, 00008

Continued on next page

76 C. PERFORMANCE MEASUREMENTS

Table C.4 – continued from previous page
blocks total bytes threads cycles/byte wall time

8 65536 2 4, 842 0, 00011
16 131072 2 4, 241 0, 0002
32 262144 2 3, 747 0, 00035
64 524288 2 3, 519 0, 00066
1 8192 3 37, 812 0, 00011
2 16384 3 15, 382 0, 00009
4 32768 3 8, 086 0, 0001
8 65536 3 4, 458 0, 00011
16 131072 3 3, 548 0, 00017
32 262144 3 2, 857 0, 00027
64 524288 3 2, 673 0, 0005
1 8192 4 23, 252 0, 00007
2 16384 4 14, 845 0, 00009
4 32768 4 8, 669 0, 0001
8 65536 4 5, 237 0, 00012
16 131072 4 3, 807 0, 00018
32 262144 4 3, 588 0, 00034
64 524288 4 3, 262 0, 00061
1 8192 5 33, 728 0, 0001
2 16384 5 20, 05 0, 00012
4 32768 5 10, 349 0, 00012
8 65536 5 6, 702 0, 00016
16 131072 5 5, 481 0, 00026
32 262144 5 3, 468 0, 00033
64 524288 5 2, 694 0, 00051
1 8192 6 44, 468 0, 00013
2 16384 6 23, 143 0, 00014
4 32768 6 12, 02 0, 00014
8 65536 6 6, 505 0, 00015
16 131072 6 4, 125 0, 00019
32 262144 6 3, 044 0, 00029

Continued on next page

C.2. ISHAKE EVALUATION 77

Table C.4 – continued from previous page
blocks total bytes threads cycles/byte wall time

64 524288 6 2, 57 0, 00048
1 8192 7 65, 234 0, 00019
2 16384 7 35, 43 0, 00021
4 32768 7 15, 908 0, 00019
8 65536 7 8, 969 0, 00021
16 131072 7 4, 806 0, 00023
32 262144 7 3, 143 0, 0003
64 524288 7 2, 608 0, 00049
1 8192 8 48, 723 0, 00014
2 16384 8 26, 579 0, 00016
4 32768 8 13, 507 0, 00016
8 65536 8 7, 74 0, 00018
16 131072 8 4, 751 0, 00022
32 262144 8 3, 36 0, 00032
64 524288 8 2, 643 0, 0005
1 8192 9 56, 407 0, 00016
2 16384 9 29, 034 0, 00017
4 32768 9 15, 355 0, 00018
8 65536 9 8, 785 0, 00021
16 131072 9 5, 056 0, 00024
32 262144 9 3, 817 0, 00036
64 524288 9 3, 419 0, 00064
1 8192 10 72, 015 0, 00021
2 16384 10 33, 352 0, 0002
4 32768 10 18, 112 0, 00021
8 65536 10 9, 044 0, 00021
16 131072 10 5, 707 0, 00027
32 262144 10 3, 772 0, 00036
64 524288 10 2, 923 0, 00055
1 8192 11 65, 055 0, 00019
2 16384 11 35, 221 0, 00021

Continued on next page

78 C. PERFORMANCE MEASUREMENTS

Table C.4 – continued from previous page
blocks total bytes threads cycles/byte wall time

4 32768 11 19, 537 0, 00023
8 65536 11 10, 675 0, 00025
16 131072 11 6, 041 0, 00028
32 262144 11 5, 024 0, 00047
64 524288 11 4, 066 0, 00076
1 8192 12 83, 212 0, 00024
2 16384 12 38, 766 0, 00023
4 32768 12 20, 274 0, 00024
8 65536 12 10, 726 0, 00025
16 131072 12 6, 352 0, 0003
32 262144 12 4, 125 0, 00039
64 524288 12 3, 461 0, 00065
1 8192 13 79, 755 0, 00023
2 16384 13 41, 705 0, 00024
4 32768 13 21, 467 0, 00025
8 65536 13 10, 992 0, 00026
16 131072 13 6, 57 0, 00031
32 262144 13 4, 827 0, 00045
64 524288 13 3, 637 0, 00068

Table C.5: Performance measurements for iSHAKE 256 with
different configurations and a fixed block size of 8192 bytes (8 KiB),
including the block header.

blocks total bytes threads cycles/byte wall time
1 8192 0 12, 923 0, 00004
2 16384 0 12, 919 0, 00008
4 32768 0 12, 814 0, 00015
8 65536 0 11, 406 0, 00027
16 131072 0 10, 553 0, 00049
32 262144 0 9, 623 0, 0009

Continued on next page

C.2. ISHAKE EVALUATION 79

Table C.5 – continued from previous page
blocks total bytes threads cycles/byte wall time

64 524288 0 8, 941 0, 00168
1 8192 1 28, 547 0, 00008
2 16384 1 19, 507 0, 00012
4 32768 1 12, 093 0, 00014
8 65536 1 9, 172 0, 00022
16 131072 1 8, 691 0, 00041
32 262144 1 8, 404 0, 00079
64 524288 1 8, 369 0, 00157
1 8192 2 33, 235 0, 0001
2 16384 2 16, 859 0, 0001
4 32768 2 8, 153 0, 0001
8 65536 2 5, 771 0, 00014
16 131072 2 5, 078 0, 00024
32 262144 2 4, 634 0, 00044
64 524288 2 4, 47 0, 00084
1 8192 3 27, 65 0, 00008
2 16384 3 15, 731 0, 00009
4 32768 3 7, 061 0, 00008
8 65536 3 5, 155 0, 00012
16 131072 3 4, 332 0, 0002
32 262144 3 3, 647 0, 00034
64 524288 3 3, 144 0, 00059
1 8192 4 27, 29 0, 00008
2 16384 4 14, 149 0, 00008
4 32768 4 10, 027 0, 00012
8 65536 4 5, 91 0, 00014
16 131072 4 3, 637 0, 00017
32 262144 4 3, 299 0, 00031
64 524288 4 2, 728 0, 00051
1 8192 5 31, 472 0, 00009
2 16384 5 17, 768 0, 0001

Continued on next page

80 C. PERFORMANCE MEASUREMENTS

Table C.5 – continued from previous page
blocks total bytes threads cycles/byte wall time

4 32768 5 8, 615 0, 0001
8 65536 5 5, 419 0, 00013
16 131072 5 3, 819 0, 00018
32 262144 5 3, 076 0, 00029
64 524288 5 2, 606 0, 00049
1 8192 6 34, 9 0, 0001
2 16384 6 18, 389 0, 00011
4 32768 6 10, 31 0, 00012
8 65536 6 5, 965 0, 00014
16 131072 6 3, 96 0, 00019
32 262144 6 3, 109 0, 00029
64 524288 6 2, 681 0, 0005
1 8192 7 38, 64 0, 00011
2 16384 7 25, 307 0, 00015
4 32768 7 14, 813 0, 00017
8 65536 7 6, 762 0, 00016
16 131072 7 4, 356 0, 0002
32 262144 7 3, 241 0, 00031
64 524288 7 2, 754 0, 00052
1 8192 8 45, 787 0, 00014
2 16384 8 23, 941 0, 00014
4 32768 8 12, 12 0, 00014
8 65536 8 7, 156 0, 00017
16 131072 8 4, 397 0, 00021
32 262144 8 3, 384 0, 00032
64 524288 8 2, 78 0, 00052
1 8192 9 64, 761 0, 00019
2 16384 9 30, 952 0, 00018
4 32768 9 16, 564 0, 0002
8 65536 9 9, 397 0, 00022
16 131072 9 6, 133 0, 00029

Continued on next page

C.2. ISHAKE EVALUATION 81

Table C.5 – continued from previous page
blocks total bytes threads cycles/byte wall time

32 262144 9 4, 591 0, 00043
64 524288 9 3, 481 0, 00065
1 8192 10 76, 751 0, 00023
2 16384 10 30, 936 0, 00018
4 32768 10 17, 84 0, 00021
8 65536 10 9, 893 0, 00023
16 131072 10 5, 77 0, 00027
32 262144 10 4, 004 0, 00038
64 524288 10 3, 225 0, 00061
1 8192 11 59, 6 0, 00017
2 16384 11 30, 821 0, 00018
4 32768 11 16, 722 0, 0002
8 65536 11 9, 485 0, 00022
16 131072 11 6, 102 0, 00029
32 262144 11 4, 208 0, 0004
64 524288 11 3, 253 0, 00061
1 8192 12 69, 769 0, 00021
2 16384 12 42, 364 0, 00025
4 32768 12 18, 804 0, 00022
8 65536 12 10, 659 0, 00025
16 131072 12 6, 432 0, 0003
32 262144 12 4, 366 0, 00041
64 524288 12 3, 435 0, 00065
1 8192 13 64, 471 0, 00019
2 16384 13 35, 815 0, 00021
4 32768 13 21, 334 0, 00025
8 65536 13 12, 546 0, 0003
16 131072 13 7, 598 0, 00036
32 262144 13 5, 12 0, 00048
64 524288 13 4, 023 0, 00076

82 C. PERFORMANCE MEASUREMENTS

Table C.6: Performance measurements for iSHAKE 256 with
different configurations and a fixed block size of 8192 bytes (8 KiB),
excluding the block header.

blocks total bytes threads cycles/byte wall time
1 8192 0 13, 585 0, 00004
2 16384 0 11, 863 0, 00007
4 32768 0 11, 908 0, 00014
8 65536 0 11, 601 0, 00027
16 131072 0 11, 496 0, 00054
32 262144 0 10, 632 0, 001
64 524288 0 9, 332 0, 00175
1 8192 1 19, 427 0, 00006
2 16384 1 14, 425 0, 00009
4 32768 1 10, 958 0, 00013
8 65536 1 9, 357 0, 00022
16 131072 1 8, 824 0, 00041
32 262144 1 8, 576 0, 00081
64 524288 1 8, 486 0, 00159
1 8192 2 28, 083 0, 00008
2 16384 2 13, 989 0, 00008
4 32768 2 7, 916 0, 00009
8 65536 2 6, 001 0, 00014
16 131072 2 5, 276 0, 00025
32 262144 2 4, 749 0, 00045
64 524288 2 4, 485 0, 00084
1 8192 3 26, 656 0, 00008
2 16384 3 15, 569 0, 00009
4 32768 3 7, 942 0, 00009
8 65536 3 5, 703 0, 00013
16 131072 3 4, 209 0, 0002
32 262144 3 3, 472 0, 00033
64 524288 3 3, 322 0, 00062

Continued on next page

C.2. ISHAKE EVALUATION 83

Table C.6 – continued from previous page
blocks total bytes threads cycles/byte wall time

1 8192 4 28, 717 0, 00009
2 16384 4 20, 981 0, 00012
4 32768 4 10, 83 0, 00013
8 65536 4 7, 284 0, 00017
16 131072 4 5, 59 0, 00026
32 262144 4 4, 615 0, 00043
64 524288 4 3, 481 0, 00065
1 8192 5 38, 603 0, 00011
2 16384 5 20, 861 0, 00012
4 32768 5 11, 388 0, 00013
8 65536 5 8, 219 0, 00019
16 131072 5 5, 498 0, 00026
32 262144 5 4, 095 0, 00039
64 524288 5 3, 225 0, 00061
1 8192 6 41, 196 0, 00012
2 16384 6 21, 919 0, 00013
4 32768 6 12, 36 0, 00015
8 65536 6 8, 323 0, 0002
16 131072 6 4, 811 0, 00023
32 262144 6 3, 956 0, 00037
64 524288 6 3, 054 0, 00057
1 8192 7 50, 592 0, 00015
2 16384 7 24, 555 0, 00014
4 32768 7 13, 016 0, 00015
8 65536 7 7, 224 0, 00017
16 131072 7 4, 837 0, 00023
32 262144 7 3, 407 0, 00032
64 524288 7 2, 773 0, 00052
1 8192 8 57, 056 0, 00017
2 16384 8 24, 032 0, 00014
4 32768 8 13, 039 0, 00015

Continued on next page

84 C. PERFORMANCE MEASUREMENTS

Table C.6 – continued from previous page
blocks total bytes threads cycles/byte wall time

8 65536 8 7, 196 0, 00017
16 131072 8 4, 674 0, 00022
32 262144 8 3, 374 0, 00032
64 524288 8 2, 817 0, 00053
1 8192 9 60, 215 0, 00018
2 16384 9 30, 75 0, 00018
4 32768 9 15, 779 0, 00019
8 65536 9 9, 059 0, 00021
16 131072 9 5, 842 0, 00027
32 262144 9 4, 369 0, 00041
64 524288 9 3, 686 0, 00069
1 8192 10 74, 138 0, 00022
2 16384 10 39, 939 0, 00024
4 32768 10 18, 974 0, 00022
8 65536 10 9, 028 0, 00021
16 131072 10 5, 916 0, 00028
32 262144 10 3, 855 0, 00036
64 524288 10 3, 097 0, 00058
1 8192 11 58, 93 0, 00017
2 16384 11 31, 502 0, 00019
4 32768 11 16, 355 0, 00019
8 65536 11 9, 275 0, 00022
16 131072 11 5, 481 0, 00026
32 262144 11 3, 788 0, 00036
64 524288 11 2, 996 0, 00056
1 8192 12 64, 286 0, 00019
2 16384 12 33, 937 0, 0002
4 32768 12 18, 006 0, 00021
8 65536 12 10, 871 0, 00026
16 131072 12 6, 049 0, 00028
32 262144 12 4, 135 0, 00039

Continued on next page

C.2. ISHAKE EVALUATION 85

Table C.6 – continued from previous page
blocks total bytes threads cycles/byte wall time

64 524288 12 3, 075 0, 00058
1 8192 13 72, 235 0, 00021
2 16384 13 37, 597 0, 00022
4 32768 13 19, 374 0, 00023
8 65536 13 11, 421 0, 00027
16 131072 13 7, 091 0, 00033
32 262144 13 5, 464 0, 00051
64 524288 13 4, 27 0, 0008

bigmem

AMD64; Nehalem (206e6); 2010 Intel Xeon X7560; 32 x 2266MHz

Table C.7: Performance measurements for iSHAKE 128 with
different configurations and a fixed block size of 8192 bytes (8 KiB),
including the block header.

blocks total bytes threads cycles/byte wall time
1 8192 0 29, 229 0, 00011
2 16384 0 28, 559 0, 00021
4 32768 0 28, 417 0, 00041
8 65536 0 28, 594 0, 00083
16 131072 0 28, 799 0, 00167
32 262144 0 28, 668 0, 00332
64 524288 0 28, 987 0, 00672
1 8192 1 89, 766 0, 00033
2 16384 1 58, 776 0, 00043
4 32768 1 43, 165 0, 00063
8 65536 1 34, 661 0, 00101
16 131072 1 31, 007 0, 0018
32 262144 1 30, 125 0, 00349
64 524288 1 27, 914 0, 00647
1 8192 2 83, 987 0, 0003

Continued on next page

86 C. PERFORMANCE MEASUREMENTS

Table C.7 – continued from previous page
blocks total bytes threads cycles/byte wall time

2 16384 2 55, 3 0, 0004
4 32768 2 35, 594 0, 00052
8 65536 2 21, 371 0, 00062
16 131072 2 19, 43 0, 00113
32 262144 2 17, 368 0, 00201
64 524288 2 15, 85 0, 00368
1 8192 3 89, 756 0, 00033
2 16384 3 50, 92 0, 00037
4 32768 3 44, 08 0, 00064
8 65536 3 20, 012 0, 00058
16 131072 3 13, 44 0, 00078
32 262144 3 11, 548 0, 00134
64 524288 3 10, 534 0, 00244
1 8192 4 92, 304 0, 00033
2 16384 4 39, 148 0, 00028
4 32768 4 23, 31 0, 00034
8 65536 4 15, 598 0, 00045
16 131072 4 12, 224 0, 00071
32 262144 4 9, 394 0, 00109
64 524288 4 10, 237 0, 00237
1 8192 5 97, 623 0, 00035
2 16384 5 48, 434 0, 00035
4 32768 5 26, 101 0, 00038
8 65536 5 16, 393 0, 00048
16 131072 5 11, 118 0, 00064
32 262144 5 8, 96 0, 00104
64 524288 5 8, 905 0, 00207
1 8192 6 121, 867 0, 00044
2 16384 6 57, 198 0, 00042
4 32768 6 31, 307 0, 00045
8 65536 6 19, 588 0, 00057

Continued on next page

C.2. ISHAKE EVALUATION 87

Table C.7 – continued from previous page
blocks total bytes threads cycles/byte wall time

16 131072 6 11, 338 0, 00066
32 262144 6 9, 596 0, 00111
64 524288 6 6, 626 0, 00154
1 8192 7 138, 573 0, 0005
2 16384 7 63, 084 0, 00046
4 32768 7 31, 847 0, 00046
8 65536 7 20, 718 0, 0006
16 131072 7 12, 596 0, 00073
32 262144 7 8, 349 0, 00097
64 524288 7 6, 338 0, 00147
1 8192 8 143, 224 0, 00052
2 16384 8 79, 999 0, 00058
4 32768 8 37, 76 0, 00055
8 65536 8 21, 348 0, 00062
16 131072 8 12, 541 0, 00073
32 262144 8 9, 166 0, 00106
64 524288 8 5, 784 0, 00134
1 8192 9 469, 506 0, 0017
2 16384 9 217, 667 0, 00158
4 32768 9 122, 623 0, 00178
8 65536 9 61, 78 0, 00179
16 131072 9 29, 555 0, 00171
32 262144 9 19, 217 0, 00223
64 524288 9 9, 817 0, 00228
1 8192 10 524, 895 0, 0019
2 16384 10 246, 581 0, 00179
4 32768 10 117, 896 0, 00171
8 65536 10 59, 237 0, 00172
16 131072 10 30, 33 0, 00176
32 262144 10 17, 8 0, 00206
64 524288 10 10, 803 0, 00251

Continued on next page

88 C. PERFORMANCE MEASUREMENTS

Table C.7 – continued from previous page
blocks total bytes threads cycles/byte wall time

1 8192 11 492, 951 0, 00179
2 16384 11 248, 64 0, 0018
4 32768 11 129, 264 0, 00187
8 65536 11 59, 13 0, 00171
16 131072 11 35, 054 0, 00203
32 262144 11 18, 308 0, 00212
64 524288 11 11, 75 0, 00273
1 8192 12 484, 063 0, 00175
2 16384 12 276, 596 0, 002
4 32768 12 123, 083 0, 00178
8 65536 12 62, 741 0, 00182
16 131072 12 32, 126 0, 00186
32 262144 12 19, 865 0, 0023
64 524288 12 10, 537 0, 00244
1 8192 13 526, 782 0, 00191
2 16384 13 250, 106 0, 00181
4 32768 13 96, 3 0, 0014
8 65536 13 65, 471 0, 0019
16 131072 13 35, 295 0, 00205
32 262144 13 20, 021 0, 00232
64 524288 13 13, 069 0, 00303

Table C.8: Performance measurements for iSHAKE 128 with
different configurations and a fixed block size of 8192 bytes (8 KiB),
excluding the block header.

blocks total bytes threads cycles/byte wall time
1 8192 0 28, 422 0, 0001
2 16384 0 28, 628 0, 00021
4 32768 0 28, 285 0, 00041
8 65536 0 28, 614 0, 00083

Continued on next page

C.2. ISHAKE EVALUATION 89

Table C.8 – continued from previous page
blocks total bytes threads cycles/byte wall time

16 131072 0 29, 033 0, 00168
32 262144 0 29, 077 0, 00337
64 524288 0 28, 999 0, 00673
1 8192 1 87, 932 0, 00032
2 16384 1 58, 8 0, 00043
4 32768 1 43, 547 0, 00063
8 65536 1 36, 569 0, 00106
16 131072 1 31, 273 0, 00181
32 262144 1 28, 368 0, 00329
64 524288 1 28, 13 0, 00652
1 8192 2 86, 422 0, 00031
2 16384 2 45, 238 0, 00033
4 32768 2 42, 462 0, 00062
8 65536 2 18, 981 0, 00055
16 131072 2 30, 845 0, 00179
32 262144 2 20, 335 0, 00236
64 524288 2 15, 494 0, 00359
1 8192 3 93, 024 0, 00034
2 16384 3 61, 451 0, 00045
4 32768 3 28, 603 0, 00041
8 65536 3 24, 652 0, 00071
16 131072 3 19, 625 0, 00114
32 262144 3 23, 204 0, 00269
64 524288 3 11, 366 0, 00264
1 8192 4 92, 472 0, 00034
2 16384 4 48, 22 0, 00035
4 32768 4 24, 159 0, 00035
8 65536 4 16, 168 0, 00047
16 131072 4 13, 627 0, 00079
32 262144 4 9, 761 0, 00113
64 524288 4 8, 094 0, 00188

Continued on next page

90 C. PERFORMANCE MEASUREMENTS

Table C.8 – continued from previous page
blocks total bytes threads cycles/byte wall time

1 8192 5 99, 421 0, 00036
2 16384 5 43, 012 0, 00031
4 32768 5 25, 47 0, 00037
8 65536 5 14, 648 0, 00043
16 131072 5 10, 918 0, 00063
32 262144 5 8, 592 0, 001
64 524288 5 7, 048 0, 00163
1 8192 6 411, 368 0, 00149
2 16384 6 223, 716 0, 00162
4 32768 6 106, 573 0, 00155
8 65536 6 56, 873 0, 00165
16 131072 6 30, 265 0, 00176
32 262144 6 17, 83 0, 00207
64 524288 6 11, 213 0, 0026
1 8192 7 456, 75 0, 00166
2 16384 7 198, 515 0, 00144
4 32768 7 105, 965 0, 00154
8 65536 7 58, 873 0, 00171
16 131072 7 31, 483 0, 00183
32 262144 7 17, 966 0, 00208
64 524288 7 11, 996 0, 00278
1 8192 8 498, 047 0, 00181
2 16384 8 231, 011 0, 00167
4 32768 8 109, 866 0, 00159
8 65536 8 61, 743 0, 00179
16 131072 8 33, 29 0, 00193
32 262144 8 18, 957 0, 0022
64 524288 8 10, 8 0, 0025
1 8192 9 468, 419 0, 0017
2 16384 9 240, 483 0, 00174
4 32768 9 121, 924 0, 00177

Continued on next page

C.2. ISHAKE EVALUATION 91

Table C.8 – continued from previous page
blocks total bytes threads cycles/byte wall time

8 65536 9 59, 833 0, 00173
16 131072 9 27, 72 0, 00161
32 262144 9 18, 205 0, 00211
64 524288 9 11, 368 0, 00264
1 8192 10 734, 45 0, 00266
2 16384 10 355, 304 0, 00258
4 32768 10 147, 487 0, 00214
8 65536 10 91, 926 0, 00267
16 131072 10 47, 687 0, 00277
32 262144 10 26, 496 0, 00307
64 524288 10 15, 596 0, 00362
1 8192 11 768, 357 0, 00278
2 16384 11 397, 019 0, 00288
4 32768 11 183, 576 0, 00266
8 65536 11 94, 718 0, 00275
16 131072 11 49, 611 0, 00288
32 262144 11 28, 368 0, 00329
64 524288 11 15, 351 0, 00356
1 8192 12 764, 029 0, 00277
2 16384 12 352, 14 0, 00255
4 32768 12 190, 034 0, 00275
8 65536 12 95, 802 0, 00278
16 131072 12 59, 823 0, 00347
32 262144 12 25, 621 0, 00297
64 524288 12 16, 201 0, 00376
1 8192 13 970, 83 0, 00352
2 16384 13 512, 628 0, 00372
4 32768 13 227, 928 0, 0033
8 65536 13 129, 791 0, 00376
16 131072 13 69, 338 0, 00402
32 262144 13 33, 437 0, 00388

Continued on next page

92 C. PERFORMANCE MEASUREMENTS

Table C.8 – continued from previous page
blocks total bytes threads cycles/byte wall time

64 524288 13 18, 661 0, 00433

Table C.9: Performance measurements for iSHAKE 256 with
different configurations and a fixed block size of 8192 bytes (8 KiB),
including the block header.

blocks total bytes threads cycles/byte wall time
1 8192 0 37, 205 0, 00013
2 16384 0 37, 05 0, 00027
4 32768 0 36, 891 0, 00053
8 65536 0 37, 097 0, 00108
16 131072 0 37, 351 0, 00217
32 262144 0 37, 293 0, 00432
64 524288 0 37, 371 0, 00867
1 8192 1 101, 506 0, 00037
2 16384 1 67, 057 0, 00049
4 32768 1 52, 315 0, 00076
8 65536 1 44, 863 0, 0013
16 131072 1 39, 512 0, 00229
32 262144 1 37, 077 0, 0043
64 524288 1 35, 927 0, 00833
1 8192 2 94, 357 0, 00034
2 16384 2 51, 023 0, 00037
4 32768 2 51, 095 0, 00074
8 65536 2 43, 793 0, 00127
16 131072 2 29, 924 0, 00174
32 262144 2 31, 81 0, 00369
64 524288 2 19, 745 0, 00458
1 8192 3 96, 422 0, 00035
2 16384 3 52, 869 0, 00038
4 32768 3 35, 434 0, 00051

Continued on next page

C.2. ISHAKE EVALUATION 93

Table C.9 – continued from previous page
blocks total bytes threads cycles/byte wall time

8 65536 3 25, 663 0, 00074
16 131072 3 22, 643 0, 00131
32 262144 3 15, 109 0, 00175
64 524288 3 14, 285 0, 00331
1 8192 4 100, 922 0, 00037
2 16384 4 52, 284 0, 00038
4 32768 4 36, 136 0, 00052
8 65536 4 26, 284 0, 00076
16 131072 4 14, 204 0, 00082
32 262144 4 11, 923 0, 00138
64 524288 4 10, 367 0, 0024
1 8192 5 93, 427 0, 00034
2 16384 5 58, 128 0, 00042
4 32768 5 29, 654 0, 00043
8 65536 5 21, 745 0, 00063
16 131072 5 16, 104 0, 00093
32 262144 5 10, 802 0, 00125
64 524288 5 8, 854 0, 00205
1 8192 6 114, 999 0, 00042
2 16384 6 67, 556 0, 00049
4 32768 6 36, 882 0, 00054
8 65536 6 21, 563 0, 00063
16 131072 6 15, 309 0, 00089
32 262144 6 9, 758 0, 00113
64 524288 6 7, 974 0, 00185
1 8192 7 143, 705 0, 00052
2 16384 7 68, 658 0, 0005
4 32768 7 41, 405 0, 0006
8 65536 7 20, 516 0, 0006
16 131072 7 13, 953 0, 00081
32 262144 7 9, 872 0, 00115

Continued on next page

94 C. PERFORMANCE MEASUREMENTS

Table C.9 – continued from previous page
blocks total bytes threads cycles/byte wall time

64 524288 7 7, 376 0, 00171
1 8192 8 167, 44 0, 00061
2 16384 8 76, 654 0, 00056
4 32768 8 37, 235 0, 00054
8 65536 8 21, 466 0, 00062
16 131072 8 13, 39 0, 00078
32 262144 8 9, 292 0, 00108
64 524288 8 6, 664 0, 00155
1 8192 9 183, 672 0, 00067
2 16384 9 92, 294 0, 00067
4 32768 9 42, 062 0, 00061
8 65536 9 23, 862 0, 00069
16 131072 9 15, 171 0, 00088
32 262144 9 9, 298 0, 00108
64 524288 9 7, 474 0, 00173
1 8192 10 205, 677 0, 00075
2 16384 10 100, 861 0, 00073
4 32768 10 41, 985 0, 00061
8 65536 10 28, 108 0, 00082
16 131072 10 15, 484 0, 0009
32 262144 10 12, 838 0, 00149
64 524288 10 6, 575 0, 00153
1 8192 11 232, 17 0, 00084
2 16384 11 119, 235 0, 00086
4 32768 11 49, 777 0, 00072
8 65536 11 32, 233 0, 00093
16 131072 11 18, 074 0, 00105
32 262144 11 10, 596 0, 00123
64 524288 11 8, 553 0, 00198
1 8192 12 475, 669 0, 00172
2 16384 12 248, 697 0, 0018

Continued on next page

C.2. ISHAKE EVALUATION 95

Table C.9 – continued from previous page
blocks total bytes threads cycles/byte wall time

4 32768 12 132, 389 0, 00192
8 65536 12 68, 574 0, 00199
16 131072 12 37, 949 0, 0022
32 262144 12 20, 793 0, 00241
64 524288 12 11, 82 0, 00274
1 8192 13 613, 048 0, 00222
2 16384 13 253, 259 0, 00184
4 32768 13 146, 518 0, 00212
8 65536 13 50, 642 0, 00147
16 131072 13 41, 983 0, 00243
32 262144 13 22, 107 0, 00256
64 524288 13 12, 085 0, 0028

Table C.10: Performance measurements for iSHAKE 256 with
different configurations and a fixed block size of 8192 bytes (8 KiB),
excluding the block header.

blocks total bytes threads cycles/byte wall time
1 8192 0 36, 96 0, 00013
2 16384 0 36, 928 0, 00027
4 32768 0 36, 836 0, 00053
8 65536 0 36, 646 0, 00106
16 131072 0 36, 768 0, 00213
32 262144 0 36, 831 0, 00427
64 524288 0 36, 716 0, 00851
1 8192 1 103, 955 0, 00038
2 16384 1 66, 627 0, 00048
4 32768 1 52, 354 0, 00076
8 65536 1 44, 385 0, 00129
16 131072 1 39, 191 0, 00227
32 262144 1 37, 855 0, 00439

Continued on next page

96 C. PERFORMANCE MEASUREMENTS

Table C.10 – continued from previous page
blocks total bytes threads cycles/byte wall time

64 524288 1 36, 019 0, 00835
1 8192 2 97, 829 0, 00035
2 16384 2 51, 946 0, 00038
4 32768 2 53, 022 0, 00077
8 65536 2 43, 912 0, 00127
16 131072 2 22, 537 0, 00131
32 262144 2 21, 564 0, 0025
64 524288 2 19, 626 0, 00455
1 8192 3 94, 4 0, 00034
2 16384 3 57, 31 0, 00042
4 32768 3 34, 197 0, 0005
8 65536 3 24, 59 0, 00071
16 131072 3 29, 635 0, 00172
32 262144 3 14, 496 0, 00168
64 524288 3 14, 988 0, 00348
1 8192 4 85, 656 0, 00031
2 16384 4 45, 868 0, 00033
4 32768 4 35, 222 0, 00051
8 65536 4 17, 108 0, 0005
16 131072 4 15, 966 0, 00093
32 262144 4 14, 127 0, 00164
64 524288 4 13, 467 0, 00312
1 8192 5 96, 674 0, 00035
2 16384 5 56, 023 0, 00041
4 32768 5 26, 755 0, 00039
8 65536 5 21, 63 0, 00063
16 131072 5 14, 267 0, 00083
32 262144 5 13, 704 0, 00159
64 524288 5 9, 539 0, 00221
1 8192 6 111, 392 0, 0004
2 16384 6 61, 868 0, 00045

Continued on next page

C.2. ISHAKE EVALUATION 97

Table C.10 – continued from previous page
blocks total bytes threads cycles/byte wall time

4 32768 6 35, 679 0, 00052
8 65536 6 22, 543 0, 00065
16 131072 6 13, 568 0, 00079
32 262144 6 11, 395 0, 00132
64 524288 6 7, 909 0, 00183
1 8192 7 136, 687 0, 0005
2 16384 7 75, 356 0, 00055
4 32768 7 38, 489 0, 00056
8 65536 7 19, 894 0, 00058
16 131072 7 14, 035 0, 00081
32 262144 7 12, 545 0, 00145
64 524288 7 7, 853 0, 00182
1 8192 8 141, 972 0, 00051
2 16384 8 76, 495 0, 00055
4 32768 8 38, 907 0, 00056
8 65536 8 23, 596 0, 00068
16 131072 8 13, 881 0, 00081
32 262144 8 10, 898 0, 00126
64 524288 8 6, 7 0, 00155
1 8192 9 172, 404 0, 00063
2 16384 9 88, 157 0, 00064
4 32768 9 42, 85 0, 00062
8 65536 9 23, 184 0, 00067
16 131072 9 15, 347 0, 00089
32 262144 9 9, 554 0, 00111
64 524288 9 6, 704 0, 00156
1 8192 10 468, 928 0, 0017
2 16384 10 243, 014 0, 00176
4 32768 10 115, 936 0, 00168
8 65536 10 54, 121 0, 00157
16 131072 10 32, 379 0, 00188

Continued on next page

98 C. PERFORMANCE MEASUREMENTS

Table C.10 – continued from previous page
blocks total bytes threads cycles/byte wall time

32 262144 10 19, 114 0, 00222
64 524288 10 11, 279 0, 00262
1 8192 11 508, 409 0, 00184
2 16384 11 274, 688 0, 00199
4 32768 11 97, 175 0, 00141
8 65536 11 61, 38 0, 00178
16 131072 11 31, 303 0, 00182
32 262144 11 19, 412 0, 00225
64 524288 11 12, 538 0, 00291
1 8192 12 524, 559 0, 0019
2 16384 12 269, 17 0, 00195
4 32768 12 119, 405 0, 00173
8 65536 12 64, 805 0, 00188
16 131072 12 36, 757 0, 00213
32 262144 12 20, 454 0, 00237
64 524288 12 13, 761 0, 00319
1 8192 13 515, 4 0, 00187
2 16384 13 289, 856 0, 0021
4 32768 13 124, 705 0, 00181
8 65536 13 66, 514 0, 00193
16 131072 13 36, 184 0, 0021
32 262144 13 21, 498 0, 00249
64 524288 13 13, 041 0, 00302

C.3 ParallelHash evaluation

nepenthe

AMD64; Haswell/Crystalwell (0306C3h); 2014 Intel Core i7 4980HQ; 4x2800MHz

C.3. PARALLELHASH EVALUATION 99

Table C.11: Performance measurements for ParallelHash 128
with a block size of 8192 bytes (8 KiB) and a variable size input.
Generically optimised 64-bit implementation.

bytes cycles cycles/byte
1625 13036 8, 022
2048 15358 7, 499
2580 18314 7, 098
3251 22232 6, 839
4096 27190 6, 638
5161 32946 6, 384
6502 40776 6, 271
8192 49356 6, 025
10321 61934 6, 001
13004 77336 5, 947
16384 95314 5, 818
20643 121130 5, 868
26008 148852 5, 723
32768 184062 5, 617
41285 233802 5, 663
52016 293844 5, 649
65536 365728 5, 581
82570 499937 6, 055
104032 630156 6, 057
131072 748924 5, 714
165140 925024 5, 601
208064 1258436 6, 048
262144 1578525 6, 022
330281 1990620 6, 027
416128 2506891 6, 024
524288 2840172 5, 417

100 C. PERFORMANCE MEASUREMENTS

Table C.12: Performance measurements for ParallelHash 256
with a block size of 8192 bytes (8 KiB) and a variable size input.
Generically optimised 64-bit implementation.

bytes cycles cycles/byte
1625 15251 9, 385
2048 18352 8, 961
2580 21290 8, 252
3251 24956 7, 676
4096 31406 7, 667
5161 37938 7, 351
6502 52553 8, 083
8192 60858 7, 429
10321 77388 7, 498
13004 96436 7, 416
16384 115362 7, 041
20643 146392 7, 092
26008 189672 7, 293
32768 233290 7, 119
41285 282942 6, 853
52016 362748 6, 974
65536 453244 6, 916
82570 558350 6, 762
104032 721844 6, 939
131072 882496 6, 733
165140 1112986 6, 74
208064 1407912 6, 767
262144 1810230 6, 905
330281 2266610 6, 863
416128 2876304 6, 912
524288 3919630 7, 476

C.3. PARALLELHASH EVALUATION 101

Table C.13: Performance measurements for ParallelHash 128
with a block size of 8192 bytes (8 KiB) and a variable size in-
put. Generically optimised 64-bit implementation, featuring lane
complementing.

bytes cycles cycles/byte
1625 13431 8, 265
2048 19370 9, 458
2580 23005 8, 917
3251 25412 7, 817
4096 30950 7, 556
5161 34614 6, 707
6502 39522 6, 078
8192 49072 5, 99
10321 63270 6, 13
13004 78840 6, 063
16384 100640 6, 143
20643 127118 6, 158
26008 157514 6, 056
32768 193436 5, 903
41285 243444 5, 897
52016 315598 6, 067
65536 385456 5, 882
82570 486480 5, 892
104032 626574 6, 023
131072 770488 5, 878
165140 994666 6, 023
208064 1251802 6, 016
262144 1578364 6, 021
330281 1938644 5, 87
416128 2501184 6, 011
524288 3074050 5, 863

102 C. PERFORMANCE MEASUREMENTS

Table C.14: Performance measurements for ParallelHash 256
with a block size of 8192 bytes (8 KiB) and a variable size in-
put. Generically optimised 64-bit implementation, featuring lane
complementing.

bytes cycles cycles/byte
1625 15709 9, 667
2048 17898 8, 739
2580 20792 8, 059
3251 25486 7, 839
4096 32088 7, 834
5161 38764 7, 511
6502 48172 7, 409
8192 60536 7, 39
10321 77052 7, 466
13004 95946 7, 378
16384 125618 7, 667
20643 152466 7, 386
26008 200750 7, 719
32768 239706 7, 315
41285 302120 7, 318
52016 381438 7, 333
65536 478320 7, 299
82570 603862 7, 313
104032 758628 7, 292
131072 955674 7, 291
165140 1203966 7, 291
208064 1516310 7, 288
262144 1910794 7, 289
330281 2406896 7, 287
416128 3029420 7, 28
524288 3815476 7, 277

C.3. PARALLELHASH EVALUATION 103

bigmem

AMD64; Nehalem (206e6); 2010 Intel Xeon X7560; 32 x 2266MHz

Table C.15: Performance measurements for ParallelHash 128
with a block size of 8192 bytes (8 KiB) and a variable size input.
Generically optimised 64-bit implementation.

bytes cycles cycles/byte
1625 24247 14, 921
2048 29540 14, 424
2580 34697 13, 448
3251 41783 12, 852
4096 50566 12, 345
5161 61234 11, 865
6502 75452 11, 604
8192 93237 11, 381
10321 117654 11, 399
13004 145896 11, 219
16384 186045 11, 355
20643 233736 11, 323
26008 291774 11, 219
32768 367458 11, 214
41285 462425 11, 201
52016 584211 11, 231
65536 731323 11, 159
82570 924831 11, 201
104032 1159445 11, 145
131072 1460779 11, 145
165140 1842004 11, 154
208064 2314646 11, 125
262144 2916593 11, 126
330281 3673312 11, 122
416128 4624589 11, 113
524288 5844027 11, 147

104 C. PERFORMANCE MEASUREMENTS

Table C.16: Performance measurements for ParallelHash 256
with a block size of 8192 bytes (8 KiB) and a variable size input.
Generically optimised 64-bit implementation.

bytes cycles cycles/byte
1625 27727 17, 063
2048 34767 16, 976
2580 40041 15, 52
3251 48770 15, 002
4096 61206 14, 943
5161 73446 14, 231
6502 91069 14, 006
8192 113974 13, 913
10321 145758 14, 122
13004 180928 13, 913
16384 233747 14, 267
20643 293074 14, 197
26008 366409 14, 088
32768 458694 13, 998
41285 577677 13, 992
52016 732054 14, 074
65536 911727 13, 912
82570 1153815 13, 974
104032 1447003 13, 909
131072 1818688 13, 875
165140 2294419 13, 894
208064 2881789 13, 85
262144 3635362 13, 868
330281 4578420 13, 862
416128 5768391 13, 862
524288 7263717 13, 854

C.3. PARALLELHASH EVALUATION 105

Table C.17: Performance measurements for ParallelHash 128
with a block size of 8192 bytes (8 KiB) and a variable size in-
put. Generically optimised 64-bit implementation, featuring lane
complementing.

bytes cycles cycles/byte
1625 21604 13, 295
2048 26412 12, 896
2580 31147 12, 072
3251 37507 11, 537
4096 45665 11, 149
5161 55086 10, 674
6502 68040 10, 464
8192 83785 10, 228
10321 105851 10, 256
13004 131470 10, 11
16384 168416 10, 279
20643 211525 10, 247
26008 263809 10, 143
32768 333449 10, 176
41285 419758 10, 167
52016 529867 10, 187
65536 663958 10, 131
82570 837417 10, 142
104032 1052648 10, 119
131072 1327232 10, 126
165140 1670885 10, 118
208064 2096867 10, 078
262144 2643296 10, 083
330281 3328642 10, 078
416128 4190177 10, 069
524288 5284901 10, 08

106 C. PERFORMANCE MEASUREMENTS

Table C.18: Performance measurements for ParallelHash 256
with a block size of 8192 bytes (8 KiB) and a variable size in-
put. Generically optimised 64-bit implementation, featuring lane
complementing.

bytes cycles cycles/byte
1625 24823 15, 276
2048 31090 15, 181
2580 35975 13, 944
3251 43886 13, 499
4096 55174 13, 47
5161 66190 12, 825
6502 82147 12, 634
8192 102924 12, 564
10321 131727 12, 763
13004 163551 12, 577
16384 209525 12, 788
20643 261959 12, 69
26008 327114 12, 577
32768 413250 12, 611
41285 519888 12, 593
52016 656690 12, 625
65536 825322 12, 593
82570 1042564 12, 626
104032 1307597 12, 569
131072 1646640 12, 563
165140 2074586 12, 563
208064 2609123 12, 54
262144 3290191 12, 551
330281 4144787 12, 549
416128 5219482 12, 543
524288 6578617 12, 548

	List of Figures
	List of Tables
	List of Acronyms
	Introduction and related work
	The scale problem
	Merkle trees
	Incremental hashes

	iSHAKE
	Outline of this report

	Improving the implementation
	Bug fixes
	Memory management
	Modulo operations
	Empty inputs

	Improvements
	Frequent operations
	Keccak implementation
	Parallel computation
	Appending blocks efficiently in full mode
	Efficient use of memory
	Python interfaces

	Performance evaluation
	Methodology
	Test platforms
	Optimal configuration
	Performance comparison
	Algorithms
	Results

	Use cases
	The Git Version Control System
	Challenges
	Using iSHAKE

	BitTorrent
	Challenges
	Using iSHAKE

	Conclusions and future work
	Future work
	Portability
	High-Performance Distributed Computing
	Underlying hash function

	References
	Header file of the iSHAKE library
	Usage of the tools provided
	Performance measurements
	Hash algorithm comparison
	iSHAKE evaluation
	ParallelHash evaluation

