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With the increasing amount of data generated by enterprises and general users,
cloud storage services have gained popularity because they provide a affordable
solution to store this data. Existing cloud services providers such as Google Drive
or Amazon S3 provide storage for millions of different clients, and they might take
advantage of this fact enabling cross-user data deduplication. Data deduplication
techniques allow to reduce storage costs and gain efficiency.

At first sight, cross-user data deduplication and encryption are incompatible. The
former consists of deleting duplicated copies of data uploaded for different users and
the latter (at least in the classical point of view) consist of encrypting data with
personal user keys. Therefore, the same file encrypted with different user keys will
generate different files, disabling the advantages of the data deduplication.

To address the problem, various schemes have been proposed. This project will
focus on one of these schemes, Message-Locked Encryption (MLE), whereby the
key is generated from the file itself. The project aims to analyze and evaluate the
security of using MLE in combination with different deduplication strategies. A
testing environment will be developed to assess the possible information leakage
incurred by the combination of various file-chunking strategies and MLE.
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Abstract

Cloud storage services have become a popular solution to store large
amounts of data generated by users and enterprises, because they provide
an affordable and practical solution. In order to gain efficiency and reduce
storage costs, cloud storage servers may remove duplicated copies of the
same stored data. This process is called cross-user data deduplication.
However, this beneficial procedure is not carried out if the users encrypt
their files with their personal keys. To make deduplication and encryption
compatible, we can deterministically encrypt a file using a key generated
from the file itself. This process is called Message-Locked Encryption
(MLE).

This thesis aims to analyze and evaluate the security of using MLE
in combination with different deduplication strategies. The information
leakage incurred by MLE and conventional encryption is studied. A
testing environment is also developed to test these schemes in order to
fullfil the objectives.

After the experiments, we have confirmed that a curious cloud storage
server may obtain information about the stored files even when they are
encrypted. This leakage is more significant for MLE scheme, but it also
exists when the users encrypt the files with their personal keys. This
confirms and advances the work of Ritzdorf et al. [18].
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Chapter1Introduction

With the increasing amount of data generated by enterprises and general users, cloud
storage services have gained popularity because they provide a affordable solution to
store this data. Existing cloud services providers such as Google Drive or Amazon S3
provide storage for millions of different users, who also may have one or more clients
(devices), and they may take advantage of this fact by storing duplicated information
only once. That is, if two different users upload the same data to the cloud server,
this data will be stored only the first time. This allows saving storage costs and gain
efficiency. This process is called data deduplication in the literature [4]. Studies have
shown that data deduplication can save large volume costs in applications where the
possibility of finding duplicated content is relatively high.

Cloud storage services have become a popular solution to store data generated
by users and enterprises, because they provide an affordable and practical solution.
In spite of this, several enterprises and general users are still reluctant to store
very sensitive data on them. It is worth stressing that when clients upload any
information to the cloud storage provider, they are losing the control over their data.
Therefore, they are putting their trust in the cloud server integrity and in the security
mechanisms that it uses. Thus, cloud storage clients could be interested in uploading
their data encrypted by themselves to the cloud, in order to achieve a secure cloud
storage system that protects their data.

At first sight, both concepts mentioned above, deduplication and encryption, are
incompatible. That is, the same file encrypted and uploaded by two different users
(each one with their personal key) will produce two different encrypted files in the
cloud. Data deduplication will not be possible because these files are completely
different after the encryption. Therefore, an encryption scheme (at least in its
conventional type, where each user has their key) disables the resource savings that
deduplication may provide.

To address this problem, the literature features several proposals for the concept
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2 1. INTRODUCTION

called secure data deduplication in the cloud [1] [2] [6] [16] [17] [19] [11]. All these
solutions share the objective of enabling deduplication and encryption at the same
time, in order to assure data confidentiality and resource savings. The main idea of
these proposals consists of obtaining the key from the file itself instead of from the
user identity. In this way, the same file generated from different users will have the
same encrypted content and the deduplication will be possible. These solutions are
called Message-Locked Encryption (MLE) in the literature [3].

In this thesis, we analyze the information leaked in both schemes, conventional
and MLE encryption, when they are used in a cloud storage service context. This
study may allow us to reach several conclusions related with the trade-off between
resource savings and information leaked in each encryption scheme, pointing out
which of them is more suitable for cloud storage service applications.

1.1 Objectives

The objectives of the document are summarized as follows:

– In order to carry out the experiments, a complete testing environment is
developed. This testing environment simulates a cloud storage provider, it
includes mechanisms to upload and download files from a client software and
saving them in a database hosted on a server. In this implemented environment
it will be possible to choose the encryption scheme and the deduplication
algorithm, in order to accomplish the following objectives.

– Data deduplication process is analyzed in detail. There are several dedu-
plication algorithms which split data in several small blocks in order to
obtain a better performance. These algorithms are implemented, tested and
compared between them through a set of experiments. To do that, a dataset
with approximately 78 GB of data is created and used to fulfill this goal.

– Encryption process in cloud storage systems is also analyzed. A Message-
Locked Encryption (MLE) scheme is implemented as well as a conventional
encryption one (where each user has their personal key). The information
leakage that it is possible to infer in each scheme is studied and tested through
several experiments. The trade-off between resource savings and security is
also discussed.

1.2 Structure of the report

The remainder of the document is structured as follows. Chapter 2 and 3 represents
the theoretical background related with the topic, this knowledge will have great
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importance in followings chapters. On the one hand, in Chapter 2, we describe the
data deduplication process and its variants in detail through previous literature.
On the other hand, Chapter 3 is related to the security issue in the cloud, through
previous literature, we explain the information that a cloud storage system may leak
in the proposed encryption schemes.

In Chapter 4, the developed testing environment is described in detail. Chapters
5 and 6 refer to the performed experiments, showing and discussing their results. The
former refers to experiments related to deduplication algorithms, and the latter refers
to tests performed in order to study the information leakage in cloud storage schemes
with encryption and deduplication enabled. Lastly, we conclude the document in
Chapter 7, extracting several conclusions.





Chapter2Data deduplication

Data deduplication is a technique that consists of deleting redundant copies of
identical data saved in a datastore. This procedure is used to save storage resources
in large databases, reducing the amount of stored data on them. The first data
deduplication solutions appeared almost at the same time as large-scale storage
systems, due to the necessity of an efficient management of redundant copies of data.
Firstly, it was used in back-up and local applications [4], but its growth appeared
with cloud storage providers.

Studies have shown that cross-user data deduplication can save volume costs by
more than 68% in primary storage systems and 83% in back-up storage [12]. In
addition, deduplication might improve the storage management stack, I/O efficiency
[10] and network bandwidth consumption if the deduplication process is done in the
client side [13].

Basically, data deduplication process consists of assigning one fingerprint (hash,
checksum...) for each deduplication unit (file, block...). In this way, it is possible
to uniquely identify each block using its fingerprint. This fingerprint will be used
to compare different blocks in order to detect and delete duplicated copies of data.
That is, if two blocks have the same fingerprint, it means that they come from the
same content and therefore, one of them could be deleted on the database.

Data deduplication techniques may be classified attending different categorization
criteria[15]. We will focus on the classifications based on locality and granularity.

2.1 Deduplication techniques categorized by locality

The location where the deduplication is carried out is one of the most common
categorization criteria. Basically, we may find server-side deduplication and client-
side deduplication.

5



6 2. DATA DEDUPLICATION

2.1.1 Server-side deduplication

In server-side deduplication, the deduplication procedure is made on the server. In
Figure 2.1 we can appreciate a server-side deduplication architecture. The client
uploads the file directly to the server, where the deduplication is performed. Thus,
the client is unaware of any deduplication process carried out in the server.

When the server receives the file, it splits the file in several blocks (chunking),
and it assigns a tag to each block (tagging). In the figure, the file is chunked in four
blocks; F1, F2, F3 and F4, and the tags T1, T2, T3 and T4 are assigned to each block,
respectively. Before storing the generated blocks, the server checks if they are already
stored in the database, comparing their tags. If the tag exists, the server will not
store the associated block (case of F1 and F2 in the figure), if not, the server will
store it on the database (case of F3 and F4).

F

F1 F2 F3 F4

T1 T2 T3 T4

CLIENT-SIDE SERVER-SIDE DATABASE

F

Chunking

Tagging
T1 T2 T3 T4

T3 T4

(T3, F3) (T4, F4)

Figure 2.1: Server-side deduplication architecture.

Notice that in server-side deduplication solution, the system is saving resources
in the storage process, but not in the communication client-server, since the user is
always sending the whole file, regardless of whether the file was already stored (this
fact is checked afterwards).

2.1.2 Client-side deduplication

In client-side deduplication, also called source-based deduplication, the deduplication
process is made in the client part of the architecture. In this architecture, the system
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is saving resources not only in the storage process, but also in the communication
client-server.

The Figure 2.2 represents a client-side deduplication architecture. Firstly, the
client chunks the data into several blocks and hashes them. In the figure the client
generates the tags T1, T2, T3 and T4 from the chunks F1, F2, F3 and F4. Then, the
server compares the generated tags with the stored tags on the database, checking
for their existence, and it returns to the client only the tags which are not stored. In
this way, if one tag is already stored on the database, the client will not send the
associated data segment over the network, preventing in this way duplicated copies
of the same data on the database and the bandwidth is saved in the communication.
In the figure, the chunks F1 and F2 were stored in the database previously, so the
storage server responds to the client sending only the new tags in order to the client
knows this fact as well. Finally, the client sends the new chunks to the server (F3
and F4 in the case of the figure) and they are stored on the database.

F

F1 F2 F3 F4

T1 T2 T3 T4

CLIENT-SIDE SERVER-SIDE DATABASE

Chunking

Tagging
T1 T2 T3 T4 T1 T2 T3 T4

T3 T4

(T3, F3) (T4, F4)

T3 T4

(T3, F3) (T4, F4)

Figure 2.2: Client-side deduplication architecture.

We can appreciate that each data segment sent to the server is compared with
the actual stored data (data originated from other users), that fact is called cross-
user data deduplication. As we have mentioned previously, the main advantage of
client-side data deduplication is the bandwidth saving, since it is very common that
different users upload the same content (films, programs. . . ). Therefore, these large
files are only transferred over the network the first time. In spite of these advantages,
is well-known that client side deduplication has side-channel security issues [9]. In
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Section 3.2.1, these attacks will be explained in more detail.

2.2 Deduplication techniques categorized by granularity

Another common classification for data deduplication systems is regarding the block
size or granularity. Granularity refers to the technique used to split data into blocks.
These blocks will be the basic unit for deleting duplicates.

2.2.1 File-based deduplication

One of the simplest approaches to split the data into chunks is file-based deduplication,
where the chunk is the whole file. One tag is assigned to each file, usually using a
hash function, and then the tags are compared to decide if two files are identical. On
the one hand, this method has fewer blocks to index and avoids the chunking process.
On the other hand, the storage space saved is less than in other strategies, although
it always depends on the target application. For instance, file-based deduplication
could be a good solution in applications where identical files are uploaded to the
server (licenses, software versions or files which always present the same content,
without modifications).

2.2.2 Fixed block-size deduplication

Another common granularity strategy is fixed block-size deduplication. It means
partitioning the file in small chunks with the same size and hashing their content
to obtain their fingerprints. In this case, the amount of data to compare in the
deduplication process is less than in file-based deduplication. Therefore, the matches
will be more probable and the deduplication performance will increase, but the index
table will be larger than in file-based deduplication.

Fixed-block size strategies could fail deduplicating in several situations. For
example, we suppose that two large files A and B have exactly the same content
except for one single byte at the beginning of the file B. In this particular case, all
the resultant blocks after the fixed-size chunk process will be different, although
the content is exactly the same except for the first byte. This well-known problem
related with fixed block-size deduplication is called “boundary-shifting” problem [7].
In Figure 2.3 is shown a graphical example of this issue, where F1 and F2 have been
chunked using a fixed block-size of 5. F1 and F2 contents are shifted by one byte, but
their blocks are different and therefore, all the blocks will be stored. This problem is
addressed using content-based chunking (CDC) [13].



2.2. DEDUPLICATION TECHNIQUES CATEGORIZED BY GRANULARITY 9

F1: A B C D E F G H I J K L M N O

F2: Z A B C D E F G H I J K L M N

Figure 2.3: Boundary shifting problem example.

2.2.3 Content-defined chunking (CDC)

Content-defined chunking (CDC) refers to a set of algorithms which share the
same purpose, that is to address the boundary-shifting issue associated with fixed
block-size deduplication. The chunk boundaries in fixed block-size deduplication are
set considering only the fixed size, but not the content of each block, and that is
the source of the "boundary-shifting" problem. CDC main purpose is to generate
content-based file chunks, thus obtaining variable size blocks. In this way, the block
boundaries are set depending on the content, fixing the "boundary-shifting" problem
mentioned above, as we may appreciate in Figure 2.4, where only the first block in
F2 is different from the blocks in F1 due to their contents are shifted by one byte.

F1: A B C D E F G H I J K L M N O

F2: Z A B C D E F G H I J K L M N O

Figure 2.4: Boundary shifting problem fixed.

2.2.3.1 Basic Sliding Window (BSW)

Basic Sliding Window (BSW) CDC algorithm, proposed for Low-bandwidth Network
Filesystem (LBFS) [13], is one of the first CDC algorithms. In BSW, the boundaries
are set considering the block content. However, maximum and minimum block size
thresholds are usually set in this algorithm. A minimum block size threshold is
desirable because if a set of very small blocks is obtained after the chunking procedure,
it will generate an index table too large on the server. This fact could cause that the
storage savings associated with deduplication will not be reached due to the overhead.
On the other hand, a maximum block size threshold is also desirable because if a set
of very large blocks are obtained, the deduplication matches are more difficult on the
server. Implementations of this algorithm have set these values around 4KB for the
minimum and 12KB for the maximum [20].

The purpose of the algorithm is sliding, byte by byte, a fixed-size window (e.g.
64B) across the file content. The sliding-window starts from the position of the
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minimum block size, and checks if the window content satisfies a certain condition in
that position. To evaluate it, the window content is hashed. If the hash satisfies a
pattern (e.g. the lowest N bits are all zeros) then a new chunk boundary is found. If
not, the sliding window moves ahead to the next byte. In this way, the sliding-window
is moving across the file content until the window content satisfies the condition. In
the particular case that the sliding window reaches the maximum block size (the
block boundary has not been found), the block boundary is forced on this point, thus
obtaining a block with the maximum chunk size.

File content:

Window content:

a b c d r s t u

c d

Compute
fingerprint

Satisfy
condition?

Slide the
window ahead

New block
boundary found

w H(w)

NOYES

Figure 2.5: Basic Sliding Window algorithm (BSW).

To obtain the hash (in order to check the condition), any hash function could
be used. But a rolling hash function as Rabin fingerprint (Definition 2.1) is more
efficient for this purpose, since the computation of the Rabin fingerprint of a region
B can reuse some computation of the region A, when A and B overlap.

Definition 2.1. Rabin fingerprint Rabin fingerprint scheme consists of n-
bit message m0, ...mn−1 as input. This rolling hash computes this message as a
polynomial of degree n-1 over the finite field GF(2): f(x) = m0+m1x+...+mn−1xn−1.
Then, a random irreducible polynomial p(x) of degree k over GF(2) is selected, and
we define the fingerprint of the message m to be the remainder r(x) after division of
f(x) by p(x) over GF(2).

It is worth stressing that sliding-window-based CDC algorithms require an extra
cost computation than solutions as fixed block-size deduplication. Recall also that
the sliding window moves byte by byte across all the range, and a rolling hash
computation has to be done in each byte. Although the complexity of rolling hash
computation is not high, large numbers of processes (large files) could affect the
system performance. Furthermore, the deduplication performance in BSW is not
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optimal since this algorithm only adopts one condition (one judgment function). This
fact could result in a high number of forced boundaries with the maximum chunk
size, and these forced chunks are not content-based.

2.2.3.2 Two Threshold Two Divisors CDC algorithm (TTTD)

The Two Threshold Two Divisors CDC algorithm (TTTD) [7] is designed to improve
the deduplication performance provided by BSW. TTTD adds a secondary condition
(divisor) in the algorithm, softer than main condition, whose purpose is to determine
back-up breakpoints. Except for this, the operation of this algorithm is similar to
BSW.

File content:

Window content:

a b c d r s t u

c d

Compute
fingerprint

Satisfy main
condition?

Satisfy
secondary
condition?

New boundary found

Slide the
window ahead

Possible boundary found
(back-up)

w H(w)

NO

YES

NOYES

Figure 2.6: Basic Sliding Window algorithm (BSW).

In TTTD, the sliding window starts from the position of the minimum chunk
size, computing a rolling hash function of the window content as in BSW. But
this time, it is checked if the fingerprint satisfies the main condition, if not, it is
checked if it satisfies the secondary one. If the fingerprint satisfies the secondary
condition, a back-up boundary is set, and the sliding window moves ahead. When
the sliding window reaches the maximum chunk size and any point has satisfied the
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main condition, the new boundary will be the first point that satisfied the secondary
one, if it exists.

TTTD can greatly reduce the number of forced breakpoints, and therefore, the
deduplication performance. However, the computation cost is the same or even worse
than BSW, because TTTD does nothing to reduce the execution time of rolling hash
process, and this time the judgment function is done twice in each byte, one for each
condition.

2.2.3.3 Leap-based CDC algorithm

In order to reduce the executing cost of the algorithm, leap-based CDC algorithm was
suggested [20]. The computation complexity of the judgment function in leap-based
CDC algorithm could be less than 2.5 times that of the BSW, depending on the
parameters.

In contrast to BSW algorithm, in which every position of the file corresponds
to one window, in leap-based algorithm every position corresponds to M windows,
where M is a fixed number. For instance, in Figure 2.7 M = 5.

A new chunk boundary is found when all the windows associated with the same
position satisfy the judgment function. Figure 2.7 illustrates the associated window
contents for the position "h" in the file. If one of the M windows related with the
point does not satisfy the condition (unqualified window), the new target position
will be set starting from the last point of this unqualified window.

File content:

Window 1 content:

Window 2 content:

Window 3 content:

Window 4 content:

Window 5 content:

a b c d e f g h i j k l m n

g h

f g

e f

d e

c d

Figure 2.7: Multiple windows in Leap-based CDC algorithm.

For instance, we suppose that in Figure 2.7 window 1 has satisfied the condition,
but window 2 does not (unqualified window). In this situation, it is not necessary
computing the rest of windows to know that "h" position will not be a boundary.
Then, the target point changes M-1 positions. So, the new target point will be "l",
window 1 will have to content "k l", and the last window (5 in the Figure) will have
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the content "g h". In this way, the algorithm is leaping over some target positions in
the process of searching new chunk boundaries.

If the maximum chunk size is reached and new chunk boundaries have not been
found, the chunk boundary will be forced in this point as in the BSW, originating a
chunk with the maximum chunk size.

2.3 Summary

Data deduplication is a desired process in cloud server providers, since it allows
saving large number of resources. The data deduplication process consists of splitting
files in several blocks and associate a tag to each one. If a certain block is already
stored in the cloud server, this block will not be stored once again although another
user uploads it. This fact allows avoiding duplicates in the cloud server. In Figure 2.8
it is shown the ways that we have used to categorize this process. On the one hand,
we have seen that they exist several chunking strategies in order to separate the files.
These strategies are as follows:

– File-based deduplication. There is no chunking process. The block is the
file itself.

– Fixed block-size deduplication. The file is separated in blocks of the same
size.

– Content-defined chunking (CDC). The file is split in blocks with variable
sizes depending on the content of the file.

On the other hand, it is possible to classify the deduplication process depending
on where it is located.

– Client-side deduplication. The chunking process is done by the user, and
it allows saving resources not only in the storage server, but also in the
communication.

– Server-side deduplication. All the deduplication process in done by the
server, and the user is unaware of it. The resources are only saved in the
storage server.
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Data deduplication

By granularity By locality

File-based deduplication

Fixed block-size deduplication

Content-defined chunking (CDC)

Basic Sliding Window (BSW)

Two-Threshold Two-Divisors (TTTD)

Leap-based CDC

Client-side deduplication

Server-side deduplication

Figure 2.8: Deduplication summary



Chapter3Encryption and information
leakage in cloud systems

When clients upload some information to the cloud storage provider, they are losing
the control over their data. Therefore, they are putting their trust in the cloud server
integrity and in the security mechanisms that it uses. Previous literature has shown
that this decision involves a certain degree of risk, which will be summarized in this
section.

An encryption mechanism is desirable to protect the confidentiality of the uploaded
data. The use of conventional encryption (a scheme where each user has their own
key) disables data deduplication and its advantages. In this section, Message-Locked
Encryption (MLE) is explained, one alternative of conventional encryption that
permits the use of data deduplication over a scenario with encryption.

In addition, the usage of data deduplication may imply an information leakage
that it could be carried out both by third parties and the storage server itself. In
this section, it will be also explained what information that a cloud storage system
with deduplication could leak even if encryption is enabled.

3.1 Message-Locked Encryption (MLE)

Conventional encryption and data deduplication processes performed at the same
time may present incompatibilities in cross-user deduplication scenarios, i.e., when
a file uploaded from different users is deduplicated. We suppose that two different
users, Alice and Bob, desire to upload the same file F to the cloud storage provider.
If the encryption process is skipped, Alice and Bob will upload the same file F into
the storage server and the deduplication process will be done correctly. Nevertheless,
we assume that Alice and Bob desire to encrypt the file before uploading it to the
server, to protect it against third parties, using for this purpose their user keys Ka

and Kb. The resultant files after the encryption will be Fa and Fb respectively, being
different between them, since they have been generated from different user keys. In

15
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this case, the deduplication process will not carry out in the server because Fa and
Fb are completely different.

As we may observe, conventional encryption comes at odds with deduplication.
The literature features a number of proposals for securing data deduplication in the
cloud. All these solutions share the objective of enabling cloud storage providers to
deduplicate encrypted data, ensuring confidentiality at the same time that they can
take advantage of the deduplication benefits.

To address the incompatibility between deduplication and confidentiality, Douceur
et al. [6] proposed a solution called Convergent Encryption (CE), that solved the
issue. The main idea consists of obtaining the key from the own file instead of from
the user identity. In this way, the same file generated from different users will have
the same encrypted content and the deduplication will be possible. In CE, the key is
the hash value of the file content.

As an example, we suppose that Alice and Bob desire to upload the same file
F , but they also want to assure confidentiality over the file content. Alice hashes
the file F in order to obtain the key K = H(F ), where H is a hashing function.
Bob does the same process, getting also K. Both Alice and Bob have the same
key, and after the encryption C = E(K, F ) they will obtain the same ciphertext
C. Thus, the same file encrypted by different users results in the same ciphertext,
enabling deduplication. Notice that the scheme is deterministic [8], and this attribute
is causing that encryption and deduplication can coexist.

This idea has been very significant in subsequent literature. As an example,
ClearBox [1] or DupLESS [2] secure deduplication solutions include CE or small
variations of it. The set of solutions that come from CE encryption are called Message
Locked Encryption (MLE) in the literature, because the message is locked under
itself.

Generally, any MLE scheme is based in a five-tuple of PT algorithms MLE =
(P,K, E ,D, T ) [3], the last two deterministic. However, to simplify the implementa-
tion, P (the public parameter generator) is omitted:

K ← Kp(M) The algorithm Kp is in charge of generate a key from a message M

given as input. To accomplish this task, a hash function is required. Hence, K
algorithm could be any hash common function as SHA-256 or SHA-3. Therefore,
the resultant key is a fingerprint of the file (or block) content, and it may be used
afterwards to encrypt, regardless of which user performs it. The user has to store
this key K securely.
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C ← Ep(M, K) The algorithm Ep is the encryption function. This algorithm needs
the key K generated with the algorithm Kp and the message M . The resultant
value is the ciphertext C. As encryption algorithm, it is common to use block cipher
algorithms such AES, with fixed Initialization Value (IV) due to it has to be a
deterministic function (same input has to result in the same output).

M ← Dp(C, K) The algorithm Dp is the decryption function. On inputs key K

and ciphertext C, this algorithm is able to recover the original message M . As well
as in the encryption function Ep, a block cipher decryption algorithm such AES is
common to use.

T ← T (C) The algorithm T is used to tag the ciphertext, in order to obtain a
fingerprint that represents the ciphertext C. The algorithm only needs the ciphertext
C as input, and it returns the desired tag T This function is useful to perform the
deduplication process easily, comparing tags instead of large chains of ciphertexts.
As well as in the Kp algorithm, a hash function as SHA-256 or SHA-3 may be used
for this purpose.

M Kp(M) K Dp(C, K) M

Ep(M, K) C T (C) T

Figure 3.1: Message-Locked Encryption (MLE). Algorithms K, E ,D, T and their
relations.

Therefore, an application of Message-Locked Encryption (MLE) mechanism could
be as follows. A client of the storage provider wants to upload a file M . To simplify
the example, it is supposed that file-based deduplication technique is used, and
therefore, the chunking process is skipped. Firstly, the user obtains the key K from
the file M using Kp(M), and it is stored locally by the user.

In the upload protocol, the user encrypts the file M using the previously stored
key K, applying the function Ep(M, K). When the ciphertext C is generated, the
user sends it to the storage server, where the deduplication process will be carried
out. The server tags the ciphertext C received from the user, applying T (C) and it
checks if it is already stored a ciphertext with the same tag. If not, the ciphertext C

is stored together with its associated tag T .

In the download protocol, the user requests the file M to the server. The latter
sends to the user the ciphertext C stored on it. Then, the user decrypts Dp(C, K)
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using the C received, the public parameter P and the corresponding key K stored in
the upload protocol. Finally, the user recovers the original file M .

3.2 Information leakage in cloud storage systems

As it is explained before, data deduplication is a very usual process carried out in
cloud storage providers with the goal of save resources. However, the usage of this
technique may imply an information leakage that it could be carried out both third
parties and the storage server itself.

Basically, it is possible to infer some information about the stored data in the
servers where deduplication is enabled. This is possible taking advantage of two
leaks: client-side information leakage and access traces information leakage.

3.2.1 Client-side information leakage

Harnik et al. [9] pointed the possibility of performing several attacks in a cross-user
data deduplication scenario with client-side architecture.

On the one hand, cross-user data deduplication is the most common cloud storage
scenario when the data is outsourced to a cloud storage server. That is, each
deduplication unit (file or block) is compared with the data of other users, and the
deduplication is performed if an identical copy is already stored in the cloud storage
server. On the other hand, client-side deduplication (Section 2.1.2) is commonly used
due to the bandwidth and storage savings that it provides.

It is worth mentioning that these attacks can only be performed in a scenario
where encryption is disabled or it is deterministic (the same input produces always
the same output).

3.2.1.1 File presence

This attack allows knowing if a certain file is stored (presence) or not (absence) in a
storage server. We suppose that a law authority wants to know if an illegal file is
stored in the cloud server, and this law authority has a copy of the illegal file.

To perform the attack, the law authority only has to try to upload the file and
check if the deduplication occurs. Firstly, the law authority will send the tags of the
file blocks. Then, the server will check if it has already stored the content associated
with these tags. If all the blocks are already stored, the server will send nothing to
the client later, and it will mean that the whole file is stored in the server. However,
if at least one uploaded tag does not coincide with the stored tags, it will mean that
the file is not stored.
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As we may observe, this attack is very straightforward, and it takes advantage
of the deterministic encryption leakage. Although the files are encrypted before
the uploading process, in deterministic encryption, the same plaintext will always
generate the same ciphertext. Therefore, the same file encrypted by one user and
the law authority will generate the same ciphertext, and the deduplication will occur
in the server.

Notice that in server-side deduplication this attack cannot be performed by a
third party as in client-side deduplication. That is because the server will not return
information to the user about the deduplication process. In spite of this, the storage
server itself could accomplish this attack in server-side deduplication as well, because
it knows when the deduplication is occurring.

3.2.1.2 Template attacks

The attack described above is only able to check if a file is stored or not in the cloud
provider server. Nevertheless, template attacks are able to guess some specific parts
of the target file. To perform this, a brute force attack is deployed.

As an example, we suppose that Alice and Bob are employees of the same
company. The company uses a common contract template to set the salaries and
further information about the employees. Alice is curious to know Bob’s salary.
She will be able to get it taking advantage of the information leakage of client-side
deduplication. She has to fill the contract template with Bob’s name and inserting a
set of possibles values in the field salary. The process is the same as the file presence
attack described above. Alice will check if the deduplication occurs (the file is not
stored) or not (the file is new). When Alice finds a salary when the deduplication
does not occur, it will mean that the inserted salary is the Bob’s salary.

3.2.2 Access traces information leakage

Ritzdorf et al. [18] analyzed the information leakage associated with data deduplica-
tion on a curious storage server, even if the information is encrypted. This leakage
comes from the access traces generated in the communication between client and
server.

It is worth remembering that to perform client-side attacks, encryption has to be
disabled or it has to be deterministic. However, in access traces attacks, the curious
storage server could acquire information even if conventional encryption is used (each
user encrypts the files with this own key).

In the scenario proposed by Ritzdorf et al. [18] it is supposed that the curious
storage server cannot guess or acquire the encryption keys, and it may only observe
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limited information related with the communication packets (as object ID, object
size and timestamp).

3.2.2.1 Storage Graph and deduplication fingerprints

Basically, the curious storage server has to generate a storage graph G and update it
when a user uploads new file blocks. Then, G will be useful to extract considerable
information about the stored files.

To construct the storage graph G, each file f is modeled as a tree T (f). Each
leaf node represents a deduplication unit of the file f . That is, if the used chunking
algorithm was content-defined chunking (CDC) or fixed block-size, each block is
represented in the graph as a leaf node of T (f). In file-based chunking algorithm,
T (f) will have only one leaf node.

Initially, G is empty and the file trees are added when the clients upload new files.
G is populated as follows: If the whole file f is deduplicated, we leave G unchanged.
Otherwise, we create a new tree T (f), initially only the root node. If an object of
f (we refer object as deduplication unit) cannot be deduplicated, a new leaf node
is created and linked with the root node of T (f). Otherwise, if the object can be
deduplicated, the root node of T (f) is connected to the node of G that represents
the stored object.

We may appreciate that each root node is connected to exactly one leaf node
in case of file-based deduplication. In fixed block-size deduplication, each root is
connected to at least one leaf node and most of the nodes have the same size (except
the last block in each file). In CDC, each root is connected to at least one leaf node
as well, but the nodes may have different sizes.

Definition 3.1. Deduplication fingerprint "The deduplication fingerprint is a
feature of a file that it has been chunked previously in the deduplication process.
The deduplication fingerprint consists of the number of blocks and the sizes of each
block."

In G, each file has its deduplication fingerprint (Definition 3.1), and it is denoted
as T (f). Given two files f1 and f2, we may say that they have the same deduplication
fingerprint if T (f1) is a valid isomorphism of T (f2) [18]. An isomorphism between
two deduplication fingerprints is valid if preserves number of nodes, edges and the
sizes of the leaves. For instance, we suppose that file f was chunked in three blocks
with sizes 20, 30 and 25 kB respectively. The deduplication fingerprint of f will
be [20, 30, 25]. We stress that the deduplication fingerprint is not valid to uniquely
identify files, because another file with the same number of blocks and block sizes
will have the same deduplication fingerprint, as we may observe in Figure 3.2. In the
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figure, f1 and f3 are the same file, thus they share the same deduplication fingerprint
2-3-3. However, f5 is completely different, but the deduplication fingerprint is the
same as f1 and f3. So, deduplication fingerprint is not valid to uniquely identify
files. Therefore, it is not actually a fingerprint, but it is a feature that can be used
to distinguish files in most of the cases.

F1 :

F2 :

F3 :

F4 :

F5 :

AB - CDE - XYZ

ST - MNOP - XYZ

AB - CDE - XYZ

EFG - RST - ABCDE

XY - JKL - OPQ

2 - 3 - 3

2 - 4 - 3

2 - 3 - 3

3 - 3 - 5

2 - 3 - 3

Figure 3.2: Deduplication fingerprints example.

3.2.2.2 Anonymity set

Definition 3.2. [18] Anonymity set The anonymity set of f is the set of
all possible files that have the same deduplication fingerprint as f"[18]. That is,
A(f) = {f ′ ∈ {0, 1}∗ : T (f ′) ' T (f)}.

The anonymity set (Definition 3.2) clearly depends on the chunking algorithm
used in the system. Below it is explained how to quantify the anonymity set in
file-based, fixed-sized blocks and content-based fingerprints.

Firstly, file-based deduplication consists only in one block, that is, the whole file.
In this algorithm, the deduplication fingerprint of a file with n bytes will have exactly
one node of size n. Therefore, all the files with the same size n will have the same
deduplication fingerprint (although their contents are different).

Secondly, fixed-sized blocks deduplication consists in a set of blocks with the
same size, except the last one, that contains the remaining bytes. Therefore, if we
have a file f with n bytes, where B is the chosen block size, we will obtain n/B

blocks with size B and one block (the last one) with size n mod B. Notice that all
the files with the same number of blocks of size B and the same block size in the last
chunk will have the same deduplication fingerprint.
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Lastly, CDC consists in a set of blocks of variable size found taking into account
the content of the file itself. Unlike previous schemes, a file f with size n could
have different deduplication fingerprints depending on its content. Notice that CDC
algorithm causes an additional leakage, that is, two files chunked using CDC will
share the same deduplication fingerprint only if they have the same number of blocks
and all the block sizes match. Besides, it is worth remembering that in CDC the
blocks are separated depending on the file content. Therefore, if two files share the
same deduplication fingerprint, the probability that both files are actually the same
file is higher than in file-based or fixed-size blocks schemes.

3.2.2.3 Candidate set

Definition 3.3. [18] Candidate set The candidate set of f in G (denoted as
C(f, G)) is the set of files stored on S— and hence represented in G— that have the
same deduplication fingerprint as f .

To compute C(f, G) the procedure consists in going through each root node of G.
That is, we start initially with C(f, G) = ø, then the deduplication fingerprint of
each root node is checked. In the case that the deduplication fingerprint of the root
node f ′ is the same as the deduplication fingerprint of f , f ′ will be a candidate and
therefore f will be added to C(f, G). When all G has been parsed, we have obtained
the number of stored files with the same deduplication fingerprint as f .

3.2.2.4 Possible attacks

Taking advantage of the leaked information by the processes described above, a set
of attacks may be performed. Firstly, C(f, G) may provide some information about
the stored files in the database without the knowledge of the encryption keys. For
example, a straightforward leakage consists in checking the absence of a given file
f . If C(f, G) = ø after parsing all G, it means that none of the stored files has
the same deduplication fingerprint as f . Therefore, the adversary is certain that
f is not stored in the database. However, if C(f, G) 6= ø does not mean that f is
stored in the database, we only know that at least one stored file shares deduplication
fingerprint with f .

To know more information about the presence of a given file in the database, the
anonymity set is required. If the size of the candidate set is exactly the same as the
anonymity set, it means that all possible files that have the deduplication fingerprint
of f are stored on the database, and therefore, it is possible to conclude that the
file is stored in the database. Otherwise, if the size of the candidate set is smaller
than the size of the anonymity set, it is not possible to affirm that f is stored. It is
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only possible compute the probability that the file f is stored, which it is denoted by
Probability of Storage (PoS) [18].

To obtain PoS, the model is based in a Bayesian Network which consists of three
random variables, X, D and G. Firstly, variable X represents the set of all files stored
on S. The probability distribution of X depends on the file popularity and storage
combinations (for example, some chapters of the same series has high probability to
be stored together). Secondly, variable D denotes the deduplication algorithm used
in the scheme (it is considered that it is known). Lastly, variable G represents the
known storage graph. It is possible to obtain PoS as:

PoS(f, G0, D0) = P (f ∈ X|G = G0, D = D0)

3.3 Summary

Encryption is a desired process in cloud server providers, since clients outsource their
confidential data to them. Following the Figure 3.3. Encryption process may be
done in two different ways:

– Conventional encryption. Each user encrypts the files with his personal
key before uploading the content to the server. This encryption scheme makes
no possible cross-user deduplication process, since the same file uploaded by
two different users will produce two different ciphertexts in the server.

– Message-Locked Encryption (MLE). MLE is a deterministic encryption
scheme where the key is generated from the file (or block) itself. Therefore,
the same file uploaded by two different users will produce the same encrypted
output. This feature makes possible cross-user deduplication in the server.

Previous literature has shown that it is possible to infer some information from
the deduplication process both third parties and the cloud server provider itself. The
leakage may be classified by its nature in two different types.

– Client-side information leakage. This leakage comes from the information
that the client may infer about the deduplication process (if it occurs or not).
Performing side-channel attacks, the adversary may know the presence or
absence of a given file in the server. It is also possible to carry out template
attacks. In client-side deduplication, side-channel attacks can be accomplished
by third parties and the cloud server itself. However, in server-side deduplication,
they can be only performed by the cloud server itself. It is worth mentioning
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that these attacks can only be carried out in scenarios where the encryption is
disabled or it is deterministic (e.g. MLE).

– Access traces information leakage. The leaked information in this vulner-
ability may be only inferred by the cloud server itself. The leaked information
has less value than side-channel attacks, however, this information may be also
obtained in scenarios where conventional encryption is used. It is possible to
determine the absence and the Probability of Storage (PoS) of a given file.

Both encryption schemes will be tested in Chapter 6 in order to check and verify
the information leakage described in this section.

Encryption in cloud storage

Conventional encryption Message-Locked Encryption

Access traces information leakage Client-side information leakage

Figure 3.3: Encryption scheme summary



Chapter4Testing environment

In order to satisfy the project goals, a testing environment has been developed where
several experimental tests will be performed afterwards. This testing environment
fulfills all the needed requirements to allow us to carry out the desired experiments.
This section presents a detailed description of the environment operation, its imple-
mented features and usage documentation. In addition, the dataset that will be used
to perform the experiment is explained, its features and how it has been generated.

4.1 General description

The system architecture represents a cloud storage provider where deduplication
and encryption is enabled. Basically, the architecture is divided in two parts, the
client-side and the server-side (the database belongs to the server-side). The server
side represents the cloud storage provider itself, meanwhile the client side represents
the software used by the clients to upload and download files. It is supposed that
the server is located in the cloud, therefore, the server is shared for all the clients of
the service. This scenario is called cross-user deduplication.

4.2 System features

In this section, it will be described the available characteristics which have been im-
plemented in our testing environment in order to accomplish the proposed objectives.

4.2.1 Available chunking algorithms

The developed system allows choosing the chunking algorithm by the user. Four
chunking algorithms are available:

– Fixed block-size chunking. In this algorithm the input file is separated into
blocks of the same given size.

25
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– Basic Sliding window (BSW). BSW is one of the three implemented CDC
algorithms in the system. BSW operation was explained in Section 2.2.3.1. In
this algorithm, in order to check the condition, a hash function is required.
The purpose of this hash function is not related to a security issue. The goal is
to obtain a tag of the content as fast as possible to check if the tag satisfies a
certain condition. Therefore, the security features of the hash function are not
an important characteristic for this purpose. MD5 function has been selected
in the implementation, but another hash function (e.g. SHA-256) or a rolling
hash function (Rabin fingerprint Definition 2.1) could have been selected as
well. In this implementation, the window content satisfies the condition when
the last 12 bits of its fingerprint are zero. To set this condition, several tests
were done in order to obtain a suitable value.

– Two Threshold Two Divisors (TTTD). TTTD is one of the three imple-
mented CDC algorithms in the system. TTTD operation was explained in
Section 2.2.3.2. As BSW, MD5 was selected as a hash function to compute the
window content. In this implementation, a content of the window satisfies the
first condition when the last 12 bits of its fingerprint are zero. For the second
condition, only the last 11 bits have to be zero. To set these conditions, several
tests were done in order to obtain the suitable values.

– Leap-based CDC algorithm. Leap-based CDC algorithm is the last CDC
implemented algorithm in the system. Leap-based algorithm operation was
explained in Section 2.2.3.3. As in the others CDC implemented algorithms,
MD5 was selected as a hash function to compute the window content. In the
implementation, 10 windows are set, and all the windows must have a zero in
their last bit to satisfy the condition. To set the condition and the number of
windows, several tests were done in order to obtain the suitable values.

4.2.2 Available encryption schemes

It is also possible to choose the encryption scheme by the user. Two encryption
schemes have been developed to be selected:

– Conventional encryption. In this scheme, the file is encrypted and decrypted
with the user personal key. The user has to provide a personal key saved locally
to the software. If the user does not have a key, the software will generate and
save it in the user directory. AES operating in Counter Mode (CTR) is used
as the block cipher for the encryption and decryption processes.

– Message-Locked Encryption (MLE). This scheme was detailed in Section
3.1. In this algorithm, the user does not have to provide any user key to the
software since the own algorithm will generate the keys from the file content.
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On the one hand, to generate the keys and to tag the resultant blocks, SHA-256
is used as the hash function. On the other hand, for encryption and decryption
processes, AES operating in Counter Mode is used. The counter CTR has a
fixed value in this algorithm for all the users, because the algorithm has to be
deterministic.

4.3 System documentation

The system documentation is divided into two subsections: upload and download
protocols. The former refers to the processes between the user provides a file to the
client software and the server stores it in the database, and the latter refers to the
processes between the user requests the stored file and the user obtains it.

In both processes, the library Crypto++ [5] has been used to perform crypto-
graphic operations. Crypto++ is a free C++ class library of cryptographic schemes
where the individual files in the compilation are all public domain. Crypto++ func-
tions have been validated by NIST and CSE for FIPS 140-2 level 1 conformance
[14].

4.3.1 Upload protocol

In this section, the implemented upload protocol is described in detail.

4.3.1.1 Upload process description

In Figure 4.1 it is shown the upload process for MLE. The user passes by input the
file that the user wants to upload to upload.cpp. This script acts as a software client
and it has been developed in C++. upload.cpp chunks the input file (using a chunking
algorithm selected by the user) and hashes the resultant blocks, obtaining K1, K2
and K3 in the figure example. These hashes will be the keys to encrypt the file
blocks, and they will be also stored on the user directory (they will be needed for the
download protocol). To each encrypted block is wrapped a tag (T1 T2 and T3) before
connecting with the server. These tags are generated from the keys. In the server, it
has been implemented a service for the upload process, called store_file.php, and it
will have the role of saving the blocks on the database (a SQL table) performing the
deduplication (note that in the Figure C3 was already stored on there, and it is not
stored again).

For conventional encryption, the process has small differences from MLE. In
Figure 4.2 we can appreciate that the key is also a input that the user has to pass
to the upload.cpp script. In case that the user does not pass the key, upload.cpp
generates a new user key and stores it on the user directory. In this way, the user
can use that key in future occasions. Another difference from MLE process is that
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F F

F1F2F3

K1K2K3K1K2K3

C1C2C3

T1T2T3

User files upload.cpp store_file.php SQL Table

Chunking

H(F )

E(K, F )

H(K)
(T1, C1), (T2, C2), (T3, C3) T1, T2, T3

T1, T2

C1, C2

Figure 4.1: MLE: Implemented upload protocol

the tags are generated from the encrypted blocks, and these tags are also stored on
the user directory (in this case, the tags will be the input for the download process).

4.3.1.2 Argument management

In order to upload and store a certain file, the script upload.cpp has to be called from
the command line or a proper Integrated Development Environment (IDE) providing
the appropriate value arguments.

– input_file. The target file path has to be passed. This argument is compulsory.

– keygen_mode. This argument is in charge to set the encryption scheme. If a
personal key path is passed, the system will use it in a conventional encryption
scheme. However, if the value conv is passed, the system will use a conventional
encryption scheme as well, but this time a new personal key will be generated
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F F

F1F2F3

K

C1C2C3

T1T2T3T1T2T3

User files upload.cpp store_file.php SQL Table

Chunking

E(K, F )

H(C)
(T1, C1), (T2, C2), (T3, C3) T1, T2, T3

T1, T2

C1, C2

Figure 4.2: Conventional encryption: Implemented upload protocol

and saved in the user directory, for future occasions. Lastly, if the value mle
is passed, Message-Locked Encryption scheme will be used. This argument is
also compulsory.

– chunking_algorithm. This argument is used to select the chunking algorithm.
The possible values are fixed to fixed block-size chunking algorithm, bsw to
Basic Sliding Window (BSW), tttd to Two Threshold Two Divisors (TTTD)
and lb to leap-based CDC algorithm. This argument is also compulsory.

– chunk_size. This argument refers to a fixed chunk size selected by the user.
This argument is optional, and it is only used if the value fixed is set as chunking
algorithm. 8kB is the default value.

– min_chunk_size. This argument is used to set a minimum chunk size. It is
optional, and it is only used in CDC algorithms. 4kB is the default value.
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– max_chunk_size. This argument is used to set a maximum chunk size. It
is optional, and it is only used in CDC algorithms. 12kB is the default value.

4.3.1.3 Client-server data exchange

The script upload.cpp is in charge of splitting a given file and encrypting the resultant
blocks. In addition, it associates each block with one tag. The script will create, in
the user directory, a new text file with these tags (this information will be required
in the download protocol in order to recover the file from the server). When this
task is finished, upload.cpp sends all this information to the cloud server. Because it
is only a testing environment, localhost is used as a cloud server for this purpose,
but any other server could be used as well. A service to receive and store files from
different users has been developed in the server, called store_file.php.

Therefore, a JSON is sent using a POST request from upload.cpp to store_file.php.
This JSON is filled with an array of JSON Objects, each one with two properties,
tag and content.

4.3.1.4 Data storing service

In the cloud server (in our case, hosted in localhost), a MySQL database has been
created in order to store all file blocks uploaded from upload.cpp. This database
includes one table, called StoredBlocks, where the incoming data is stored. This table
has two columns, tag and content. The former is the PRIMARY KEY, and it is used
to identify the latter. The SQL query to create the table is as follows:

CREATE TABLE StoredBlocks (
tag VARCHAR(255) NOT NULL PRIMARY KEY,
content MEDIUMTEXT NOT NULL

) ;

To save new data, it is checked if the content block is already stored, in order
to perform the deduplication process. Below it is shown the SLQ query used to
accomplish this task.

INSERT INTO StoredBlocks ( tag , content )
VALUES ( ’ tag_value ’ , ’ content_value ’ )
ON DUPLICATE KEY UPDATE tag=tag ;

4.3.2 Download protocol

In this section, the implemented download protocol is described in detail.
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4.3.2.1 Download process description

In Figure 4.3 it is shown the download process for MLE scheme. The generated
keys in the upload protocol are the input for this process. download.cpp script
generates again the tags that correspond to the uploaded blocks and it request them
to retrieve_file.php, an implemented service on the server for this purpose. When
download.cpp receives the encrypted blocks from the server, it only needs to decrypt
them (using the passed keys) and joins the blocks to obtain the original file again.

K1K2K3

T1T2T3

F1F2F3

FF

User files download.cpp retrieve_file.php SQL Table

H(K)
T1, T2, T3 T1, T2, T3

C1, C2, C3C1, C2, C3

D(C, K)

Joining

Figure 4.3: MLE: Implemented download protocol

The process does not change too much for conventional encryption scheme (Fig-
ure 4.4), where the tags generated from the upload process are passed to download.cpp.
This time, the decryption process is done with the user key, which is necessary to be
passed to download.cpp as well.

4.3.2.2 Argument management

In order to download a file from the server, the script download.cpp has been developed.
This script may be called from the command line or an Integrated Development
Environment (IDE) providing the appropriate value arguments. These arguments
are as follows:

– tag_file. The path of the generated tag file in the upload process. This
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Figure 4.4: Conventional encryption: Implemented download protocol

information allows the software knowing which file is requested to be download.
This argument is compulsory.

– decryption_mode. This argument refers to the decryption scheme. There
are two possible values: conv, to use conventional encryption, and mle, to use
Message-Locked Encryption. This argument is also compulsory.

– key_file. The path of the personal key. This argument is only required in
conventional encryption scheme.

4.3.2.3 Data retrieval service

The script download.cpp, after reading the arguments, prepares a request to the
server with the tags provided by the user, using JSON format. In the server, it has
been developed a service hosted, called retrieve_file.php. In this service, the server
gets the tags provided by download.cpp and checks for their existence in the table
StoredBlocks, retrieving their associated content. The SLQ query used is as follows:

SELECT content FROM StoredBlocks
WHERE tag = ’ tag_value ’

The service retrieve_file.php fills a JSON similar than the one used in the upload
protocol, with two properties, tag and content. This information is sent to the user
script download.php, where the blocks will be decrypted and the original file will be
reconstructed.
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4.4 Dataset generation

The dataset represents the set of files that will be uploaded to the cloud storage
server. These files have to satisfy several conditions in order to obtain relevant results
in the experiments. The dataset requirements are as follows:

– The files should have overlap between them. That is, the files have to be
compound with similar data, because it is valuable that deduplication occurs in
the experiments. It is worth remembering that one of the goals of the project
is measuring the deduplication performance in different chunking algorithms,
and it will not be possible to fulfill if it does not exist overlap between files.

– The dataset has to be large enough in order to obtain relevant results.

– The file size distribution has to be similar to a real cloud storage dataset, to
reproduce a reliable scenario.

Considering the requirements mentioned above, the selected procedure to generate
the dataset is divided in two stages. Firstly, a large file with 5 GB of random data is
generated. Secondly, the dataset files are created from the content of the large file,
therefore, the content of the files will be small parts of the large file and it will not
be difficult to find overlap between these files.

The creation of each file consists of two random variables, startpoint and filesize.
The former means the point that the file begins to read over the large file. For
example, if the startpoint of the file F is 3.128, it will mean that the file starts in
the byte number 3.128 in the large file. The latter means the file size, that is, the
number of bytes that it will read in the large file starting from the startpoint.

The startpoint variable may be completely random in the range (0, 5GB), but
filesize variable has to follow several patterns in order to reproduce a real cloud
storage server scenario. It has been used as a reference the dataset used in Ritzdorf
et al. document [18]. That dataset corresponds to 13.4 TB of data extracted from a
subset of a publicly available collection.

Finally, it has been created 50.000 files, generating a dataset of 78.8 GB with an
average file size of 4 MB. A detailed distribution of file sizes is shown in Table 6.2:
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Table 4.1: Dataset file size distribution

File size range Number of files
All 50.000

1B - 1KB 12.500
1KB - 4KB 12.500
4KB - 8KB 5.000
8KB - 16KB 4.500
16KB - 32KB 3.500
32KB - 100KB 3.500
100KB - 300KB 3.500
300KB - 1MB 3.500
1MB - 10MB 1.000

10MB - 100MB 400
100MB - 1GB 100



Chapter5Chunking algorithms experiments

The chunking stage in every deduplication scheme has great importance in order
to save storing resources in the cloud. In this section it is explained the performed
experiment in order to compare the four developed chunking algorithms: fixed
block-size, Basic Sliding Window (BSW), Two-Threholds Two-Divisors (TTTD) and
leap-based CDC algorithm.

5.1 Experiment description

For this experiment, the generated dataset 4.4 will be uploaded to the cloud stor-
age server using different chunking strategies. During the upload process, several
parameters will be caught in order to extract conclusions about the deduplication per-
formance that provides each algorithm. The four algorithms used in the experiment
are explained in Section 2.2, and they are:

– Fixed size blocks chunking With a block size of 8KB.

– Basic Sliding Window (BSW) With minimum block size of 4KB and
maximum block size of 12KB, getting a block size average of around 8KB.

– Two-Thresholds Two-Divisors (TTTD) As in BSW, it has been set 4KB
and 12 KB as minimum and maximum block sizes, respectively.

– Leap based CDC As in the others CDC algorithms, it has been set 4KB and
12 KB as minimum and maximum block sizes, respectively. This values will
generate a block size average of around 8KB.

In the upload process, the parameters that it has been measured are as follows:

– Required time This variable refers to the CPU time that is necessary to
upload the whole dataset using a particular chunking algorithm. The CPU time

35
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is the amount of seconds that the CPU needs to complete the process. Notice
that this time may be different depending on the computer where the process is
executed. Because of it, the dataset has been uploaded in the same computer for
every chunking algorithm. Therefore, for this parameter, the relation between
the different times for each algorithm will have more importance than the
number of seconds that it has been required to complete the process.

– Deduplication performance This variable refers to the percentage of blocks
that it has not been stored in the database because they already exist. That is,
the percentage of removed blocks. Higher deduplication performance results in
a more efficient way to save storage resources.

– Percentage of forced blocks This variable is only measured in CDC algo-
rithms. It refers to the number of blocks that has the maximum size (forced
blocks). The purpose of a CDC algorithm is finding block boundaries depending
on the content of the file, and when the maximum size is reached, the boundary
is forced and it does not respond to a file content reason. Measuring this
variable will allow us to conclude if a higher number of forced blocks may make
the final deduplication performance worse.

5.2 Results and discussion

In Figure 5.1 it is shown the required time to upload the whole dataset for each
chunking algorithm.

Fixed blocks BSW TTTD Leap based

1

2

3

·104

algorithm time(s)
Fixed blocks 6.940

BSW 33.234
TTTD 35.180

Leap based 15.918

Figure 5.1: Required time to upload the dataset for each chunking algorithm
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As we can appreciate, the fastest algorithm is fixed block-size chunking. This
is because it is the simplest one. To implement fixed block-size algorithm is not
necessary reading byte by byte the target file, and the computational cost to run
is smaller than in the rest of the algorithms. With this algorithm, all the files were
uploaded to the cloud server in 6.940 seconds.

Regarding CDC algorithms, they needed more time to finish the task. This fact is
more dramatic for BSW and TTTD algorithms, which this task took around 5 times
more time than fixed block-size algorithm to be completed. It is worth remembering
that these algorithms consist of a sliding window which parses all the file byte by
byte, computing one (BSW) or two (TTTD) hash functions for each position, and
checking if the window content satisfies a condition. This fact is reduced in leap
based CDC algorithm. This algorithm took around 2,3 times more time than fixed
block-size algorithm. Leap based mechanism is similar than the other two analyzed
CDC algorithms, but this one is focused on reducing the computational cost of CDC
algorithms. Leap based mechanism permits skip several bytes in the parsing process,
with the purpose of improving the efficiency. The obtained results show that indeed
leap based algorithm fulfills their purpose, being the more efficient CDC algorithm
with regard to execution time.

In Figure 5.2 is shown the deduplication performance for each chunking algorithm.
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Figure 5.2: Percentage of deduplicated blocks.

At first sight, it is clear the difference between the deduplication ratio obtained
from fixed block-size algorithm and any of the CDC algorithms. Only 2,03% of the
blocks have been deduplicated in fixed block-size algorithm, while in CDC algorithms
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this number comes to 89% approximately.

With regard to the low percentage obtained in fixed block-size algorithm, it is due
to the boundary shifting problem (explained in Section 2.2.2). This issue has been
specially relevant in the experiment as a result of how the files have been generated.

Boundary shifting problem is more significant when two files overlap in their
content but they do not start at the same point. For example, if we have two files,
F1 and F2, and both share exactly the same content, except from 1 byte at the
beginning of F2. The resultant number of deduplicated blocks will be zero because
all the blocks are shifted by one byte.

To generate the dataset (Section 4.4), all the files (78,8 GB) are extracted from
the same 5GB of content, but each file begins in a different start point of that 5GB
of data, (this fact adds a difficulty and it is useful to check the behavior of each
algorithm). In case of fixed the algorithm ineffective since the boundary shifting
problem appears in almost all the blocks, failing in its purpose of remove duplicated
content.

Notice that if all the dataset files have been generated starting from the same
byte, the number of deduplicated blocks would have been much higher. In real
datasets, where entire files share the same content, fixed block-size algorithm will
have resulted in higher deduplication ratio as well.

With reference to CDC algorithms, the deduplication ratios obtained are similar
between them. The percentage is high for all of them (around 89,5%) and it means
that they have been able to manage correctly the boundary shifting issue which
has caused a very low ratio in fixed block-size algorithm. In these algorithms, the
boundary shifting issue only affects the first block of the file. These first blocks could
have been the cause that the deduplication ratio is not higher. It is worth mentioning
that the maximum deduplication ratio that it could be possible to reach is 93,65% in
this experiment. That is because the used dataset (78,8 GB) comes from the same
5GB. Therefore, the minimum size that the server could store for this task is 5GB,
and this number corresponds with a deduplication ratio of 93,65%.

In Figure 5.3 it is shown the percentage of forced blocks in each CDC algorithm.
TTTD algorithm was created with the purpose of reducing the number of forced
blocks. A forced block is a block with the maximum size, that is, blocks with forced
boundaries instead of boundaries generated from the file content. The results show
that TTTD purpose is reached, for this algorithm the percentage of forced blocks is
only 2,07% of the total blocks. However, BSW and Leap based algorithms produce
more forced blocks, 13,58% and 7,93% respectively.
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Figure 5.3: Percentage of forced blocks (not content defined) for each CDC algo-
rithm.

In spite of this, as we have seen in Figure 5.2, the deduplication ratios are very
similar between them, and the possible differences originated from this fact has been
irrelevant in this experiment.

To sum up, this experiment has shown that it is necessary that a chunking
algorithm has to be based on the content of the file, generating boundaries from
characteristic of the content itself. We have seen that fixed block-size algorithm
has not satisfied the deduplication performance required for a cloud storage server
application. This algorithm could be useful in particular applications, but never in a
generic storage server.

With regard to the different CDC tested algorithms, the number of deduplicated
blocks has been very similar, but leap based CDC algorithm has needed around
0,5 times less time to complete its task for all the files belonging to the dataset.
Therefore, we may conclude that leap based CDC algorithm is suitable for cloud
storage server applications, because it offers a good trade-off between deduplication
performance and computational cost.





Chapter6Information leakage experiments

In this chapter the experiments related with the information leakage are explained. A
curious cloud storage system, where deduplication is enabled, may obtain information
about the stored data even when they is encrypted. In the experiments, two schemes
are analyzed: Conventional encryption (each user has their personal key) and Message-
Locked Encryption (MLE).

6.1 Information leakage in MLE scheme

6.1.1 File presence/absence attack

The first experiment that has been done in MLE encryption scheme consists of
checking the presence or absence of a particular file in the server. In this experiment,
it is supposed that the cloud server is curious about the uploaded files, in order to
guess enough information about the files to verify if a certain file is stored on it.

To perform the experiment, firstly, the generated dataset (Section 4.4) is uploaded
to the curious cloud storage server. In this process, the cloud server does not need
to execute another process in parallel. That is, the server only has to carry out the
deduplication procedure, associating a tag to each uploaded encrypted file.

Once all the files have already been stored, the server will check if two different
files are stored on it. One of the files (F1) belongs to the dataset, but not the other
(F2).

After the execution of the attack, the results were successful as expected. The
curious server only had to encrypt the files F1 F2 with the keys generated from the
files themselves, and hashing the encrypted files to check if the obtained tags are
stored on the server.

41
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6.1.2 Template attack

For this experiment, an enterprise contract template is created. This template
consists of header information related to the enterprise, the name and salary of the
employee. It is assumed that the curious storage server knows the contract template.
As an example, the server administrator is an employee of the enterprise, and the
contract template is the same for all the employees.

The curious server wants to know the salary of John Doe, an employee of the
enterprise. Therefore, the server knows the header information, the field "Employee
name: John Doe", and the salary "Salary: X$", where X is the value that the server
will try to guess performing a brute-force attack.

For each attempt, the storage server sets a value for the salary and it hashes the
resultant file in order to obtain the key. Then, the server encrypts the file and it
hashes the result, to get the tag. If the tag exists in the server, it means that the
selected salary is indeed the right salary.

In the experiment, in each attempt, the salary was the previous computed value
plus 10$, starting from 700$. John Doe’s salary was set on 2000$. The server took
63 seconds in guessing the value.

6.1.3 Discussion

It is worth remembering that the implemented cloud service does not give any
information to the user about the deduplication process. Although the chunking
process is done in the client side, the user sends the tags and the block files at the
same time (the user does not send first the tags, and the block files afterwards, as in
Figure 2.2). Therefore, these attacks can only be performed by the storage server
in our case. Notice that, if a client-side deduplication system as in Figure 2.2 is
developed, any third party (any attacker different from the cloud storage server)
could accomplish both experiments because they could have access to the same
information about the deduplication process that the cloud storage server has.

In our testing environment, if an attacker (different from the storage server itself)
desires to get some information about the uploaded files from a certain user, he will
have to eavesdrop the channel between the selected victim and the storage server.
Then, the attacker could reproduce a storage database with the sniffed information
(notice that this database will have information uploaded only from a particular
victim). From this point, the attacks will have the same steps as mentioned above,
but this time they will be targeted against the content uploaded by a selected user,
instead of all the cloud service clients.

These attacks may be carried out due to the deterministic nature of MLE



6.2. INFORMATION LEAKAGE IN CONVENTIONAL ENCRYPTION SCHEME 43

encryption scheme. This deterministic feature allows the cross-user deduplication
and that makes MLE valuable. That is, if several countermeasures which avoid
the deterministic MLE characteristic are introduced (e.g. adding randomization in
key generation process), MLE encryption will not able to gather deduplication and
encryption in the same architecture, and it will be useless.

In spite of this, several countermeasures could be introduced to reduce the impact
of these attacks. For instance, a trusted key server could be introduced as a third
party. In this new architecture, the user will not generate the key himself and he will
need to request a key for each file to a key server, the latter will always generate the
same key for the same file. Notice that this architecture is also deterministic, but
this time, the key server could deny the connection coming from a particular client
if the latter is doing a high number of requests in a short period. In this way, the
trusted key server could be used to avoid brute-force attacks (e.g. template attacks).

6.2 Information leakage in conventional encryption scheme

Conventional encryption scheme (where each user has their own key) does not allow
data deduplication and, therefore, it does not permit a correct way to save the
resources on the system. In spite of this, it is interesting to test the leakage related
with this encryption scheme to compare it with the information leakage in MLE.

As we have explained in Section 3.2.2, a curious storage server is able to extract
information about the stored files from the access traces generated in the communi-
cation between client and itself. In the scenario proposed by Ritzdorf et al. [18], it
is supposed that the curious storage server cannot guess or acquire the encryption
keys, and it may only observe limited information related with the communication
packets (as object ID, object size and timestamp).

6.2.1 Experiment description

For this experiment it is worth remembering the concepts deduplication fingerprint
(Definition 3.1) and candidate set (Definition 3.3). As we have seen in Section 3.2.2,
in this scheme it is possible to know the absence of a file (if a file is not stored)
as long as there are not collisions between deduplication fingerprints. Therefore, it
is interesting to test if deduplication fingerprint collisions are common enough to
disguise this leakage or they are unlikely and therefore, the leakage is completely
feasible.

The experiment is based in a test called cross-dataset validation performed in
Ritzdorf et al. document [18]. Due to the similarities between both experiments, the
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obtained results will be compared with the results in Ritzdorf et al. document [18]
in the discussion.

To perform the experiment, several changes were needed on the implemented
server to transform it in a curious cloud storage server. In the new server, when a
user uploads a file, the server computes its deduplication fingerprint and it is stored
in a table called "Trees". This table will be checked each time that a user uploads a
file. That is, the storage server will compute the number of candidates (number of
deduplication fingerprint collisions) for each uploaded file by a user. In this way, if
the number of candidates of an uploaded file is zero, it will mean that the file did
not exist previously in the database. However, if the number of candidates obtained
are one or more, it will mean that the file could be stored in the database previously,
because one or more deduplication fingerprint collisions have been produced. In this
case, it is not possible to ensure the presence or absence of the file. The process to
set up the experiment was as follows:

– The generated dataset 4.4 (Dataset 1) will be uploaded to the implemented curi-
ous cloud storage server. In this upload process, each deduplication fingerprint
related with each file will be stored into the table "Trees" on the server.

– A second dataset is generated (Dataset 2). All the files belonging to this dataset
are different from the files in dataset 1. Thus, we previously know the absence
of the dataset 2 files in dataset 1. The experiment will measure the frequency of
deduplication fingerprint collisions in several file size ranges. In the dataset, the
same number of files are set for each range. In total, 13 ranges have been set,
generating in this way a line with 13 points in the graph. Further information
related with file size distribution of dataset 2 is showed in Table 6.1.

– Dataset 1 and dataset 2 are uploaded for each deduplication algorithm im-
plemented: Fixed block size algorithm, Basic Sliding Window (BSW), Two-
Thresholds Two-Divisors (TTTD) and leap-based CDC. Therefore, each algo-
rithm will mean a different curve in the resultant graph. For each file in dataset
2, the server will check the number of candidates for each uploaded file (notice
that we previously know that all the files were not stored, and we can compute
the precision of the attack). If the number of candidates is zero, it will mean
that the file was not stored and the leakage has been achieved. However, if the
number of candidates is one or more, it will not possible to infer the absence of
the file, and the leakage is not achieved.

To sum up, for each file of dataset 2 we record the number of candidates in dataset
1, and determine the precision of the leakage knowing that the files in dataset 2 are
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Table 6.1: Dataset 2 file size distribution where 8KB is the selected block size in
fixed block size algorithm, and the range between 4KB and 12KB is the selected
block size range in CDC algorithms.

File size range Number of files
1B - 1KB 250
1KB - 4KB 250
4KB - 6KB 250
6KB - 8KB 250
8KB - 12KB 250
12KB - 16KB 250
16KB - 24KB 250
24KB - 32KB 250
32KB - 64KB 250
64KB - 100KB 250
100KB - 300MB 250
300KB - 1MB 250
1MB - 10MB 250

different from the files of dataset 1. So that, if the obtained number of candidates is
zero, it means that the leakage works, and it does not work in any other case.

6.2.2 Experiment results

The obtained results are showed in Figure 6.1. The horizontal axis represents the
file size. The vertical axis means the percentage of precision of the leakage, in
other words, the percentage of files that the number of candidates obtained was zero
(deduplication fingerprint collisions were not produced).

We may observe that all CDC algorithms present a similar curve, being different
from fixed block-size one. This fact means that the selection of one of the three CDC
algorithm implemented does not imply a different behavior in this graph. For this
reason, CDC algorithms will not be discussed separately this time, and they will be
grouped together as CDC algorithms.

Regarding CDC algorithm curves, they remain on zero until 2KB. Notice that
the minimum block size is 4KB in the experiment, so that, in files with sizes lower
than 4KB, their deduplication fingerprints consist of only one node with the file size.
This fact causes that deduplication fingerprint collisions are common in this range,
making the leakage inefficient in these file sizes (none of the uploaded files in this
range returned zero candidates).
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Figure 6.1: Cross-dataset experiment results. Block size 8KB in Fixed blocks and
blocks between 4KB and 12KB in CDC algorithms.

Table 6.2: Cross-dataset experiment results. Block size 8KB in Fixed blocks and
blocks between 4KB and 12KB in CDC algorithms.

File size range Fixed blocks BSW TTTD Leap based
1B-1KB 0 0 0 0
1KB-4KB 1.2 1.2 1.2 1.2
4KB-6KB 27.2 49.6 56.4 54.8
6KB-8KB 28 95.6 95.6 85.2
8KB-12KB 54.4 96.4 96.4 99.2
12KB-16KB 54.8 98.4 98.4 97.2
16KB-24KB 76.4 97.2 98.2 100
24KB-32KB 78 100 100 100
32KB-64KB 96 100 100 100
64KB-100KB 92.8 100 100 100
100KB-300KB 98.4 100 100 100
300KB-1MB 99.6 100 100 100
1MB-10MB 100 100 100 100
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However, the situation changes in a short range, between 4KB and 8KB, where
the percent of precision increases dramatically from 1,2% to 90% approximately. In
this range, two files with the same size could have different deduplication fingerprints.
This fact does not occur in file sizes lower than 4KB (minimum chunk size). For
instance, a file with size of 5867 B could have these deduplication fingerprints: (5867,
4000−1867, 4001−1866, 4002−1865, ... or 5866−1). For this reason, as we increase
the file size, the collisions are more unlikely and the precision of the leakage is higher.
For file sizes more than 28KB, we can appreciate that the percent of precision is
100%. This means that the number of candidates was zero for each file higher than
28KB.

With regard to fixed block-size algorithm, the general shape is similar than CDC
algorithms. But this time, the growth is done afterwards, that is, the percent of
precision reaches 100% later (around 1MB). It means that the leakage is less probable
than CDC algorithms in files with sizes between 8KB and 1MB. Therefore, fixed
block-size algorithm disguises better than CDC algorithm against this leakage in
medium-sized files. That is because the probability of collision between two files
is higher using file block-size algorithm. As an example, two different files with
size of 24016B, chunked with a block size of 8000B, they always will have the same
deduplication fingerprint (8000− 8000− 8000− 16, in this case). Notice that in CDC
algorithms that fact does not occur because of the block can have any chunk size
between 4KB and 12KB in the experiment.

As it was pointed before, this experiment was also done in Ritzdorf et al. document
[18] with another dataset. The results obtained by them are shown in Figure 6.2. It
is worth mentioning that the dataset used in that paper is 160 times larger than our
dataset.

As we may appreciate, they are also comparing file-based deduplication. But for
our experiment, we will focus only in CDC and fixed block-size results.

At first sight, we may observe a similar behavior of the curve which represents
CDC. Nevertheless, the curve which represents fixed block-size has different shape.
This difference comes from the dataset size. The more is the number of files, the
more is also the probability of two files have exactly the same size, and therefore,
the same deduplication fingerprint (only in fixed block-size algorithm case). Thus,
we may notice that the number of file affects more in the percent of precision of this
leakage for fixed block-size algorithm, however, in CDC algorithms this fact has less
influence.

From this experiment, we can conclude that it is possible to know the absence
of a file in a cloud server in most of the cases when the file is larger than 2-3 times
the average block size in CDC algorithms. However, if the cloud server uses fixed
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Figure 6.2: Cross-dataset experiment results. Fixed block-size of 4KB and block
size average of 4KB for CDC algorithm. Source: Ritzdorf et al. document [18]

block-size algorithm to split the files in blocks, it will be required larger files to have
more probability of success (zero candidates for a given file, that proves the absence
of the file).

In order to analyze the possible countermeasures to avoid this leakage, it is worth
recalling that the leakage comes from the possibility that a curious storage server has
to know the right file size from the encrypted file. It is also worth stressing that the
storage server has not the control of the encryption mechanisms performed by the user
to encrypt the file, because the user sends the file encrypted by herself. Therefore,
the user could add some bits at the beginning or at the end of the encrypted file in
order to disguise the real size of the file. In this way, if the curious storage server
desires to know the absence of that file, it will need to add the same number of bits
at the beginning or at the end in order to obtain the same file size than the uploaded
file to perform the attack. But this information is unknown by the storage server.
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Cloud storage providers are able to reduce their storage costs taking advantage
of data deduplication procedure. Namely, they store the same content only once,
removing duplicated copies and saving storage costs and bandwidth.

In this document, data deduplication process has been analyzed in detail. In
addition, it has been studied the information leaked due to deduplication procedure
to a curious storage server for different encryption schemes. Regarding the objectives
indicated in Section 1.1, the concluding remarks are showed as follows:

– A testing environment has been implemented to test encryption schemes in
a cloud storage service architecture. This environment has the capabilities to
upload files to a storage server and download them from it. Besides, it allows
to select the desired chunking algorithm to separate the files in blocks between
the four available algorithms (fixed block-size, BSW, TTTD and leap based
CDC) and it also permits to choose the desired encryption scheme between
conventional encryption (each user has their own key to encrypt) and MLE.
This testing environment has resulted useful to develop the experiments.

– Data deduplication process has been analyzed in detail. Four different
chunking algorithms have been implemented and tested. After the experiments,
we have confirmed that CDC algorithms have better deduplication ratio than
fixed block-size algorithms, because they are able to find duplicates in a more
effective way. This difference has been large enough to discard fixed block-
size algorithm as a suitable algorithm to separate file in blocks in order to
search duplicates. We also have noticed that CDC algorithms require more
computational cost than fixed block-size. In this aspect, leap-based CDC
algorithm has resulted the most efficient algorithm against BSW and TTTD
(the other two CDC algorithms analyzed), where the computational cost was
too much high.
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– MLE scheme has been tested in order to analyze the information leaked in
this architecture. As a result of the experiments, we may conclude that a
curious cloud storage server may know the absence or presence of a given file.
In addition, it is possible to carry out a template attack in order to guess
certain information of a file when the attacker has the template which that
file comes from. Besides, if client-side deduplication scheme has been selected,
these attacks can be accomplished by any user of the cloud server. For all
these reasons, we may conclude that the information leaked by MLE scheme is
significant enough to consider it as an insecure scheme.

– Conventional encryption scheme has also been tested in order to compare
the information leaked by this scheme and MLE. As a result of the experiments,
we may conclude that in conventional encryption scheme a curious cloud storage
server could know the absence of a given file. This leakage is more effective
if CDC has been selected as chunking algorithm. If fixed block-size has been
chosen as chunking algorithm, the leakage is more effective is the file size is
large. As we may observe, this leakage is less significant than in MLE, but it is
also possible to infer some information in this scheme.

After the experiments, on the one hand, MLE has shown to be an insecure scheme.
In spite of this, the trade-off between confidentiality and resource savings could be
valuable depending on the application. On the other hand, the information leaked
from conventional encryption scheme is less significant, but this scheme does not
allow an efficient way to save resources in a cloud storage server, disabling cross-user
data deduplication.

For all these reasons, we may conclude that conventional encryption could be
used in files where the confidentiality plays an important role. In addition, in order
to avoid the leakage, several bytes could be introduced at the beginning or the end
of the file, in order to disguise the real file size. For the rest of the files, MLE scheme
could be used in order to save resources on the server. Therefore, the use of one of
them will depend on the target application.

However, it is possible to continue working in this topic. Regarding data dedu-
plication process, the design of a new chunking algorithm which may reduce the
computational cost could be interesting in order to improve the existing algorithms.
In addition, with regard to the coexistence of encryption and deduplication in cloud
servers, MLE presents a relatively good trade-off between confidentiality and resource
savings, but as we have shown in the conclusions, this scheme still presents several
security issues. The development of another encryption scheme, or an improvement of
MLE could be also interesting in order to test and analyze their security mechanisms
and the possible leakage that they might incur.
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