
Exploring Cells and Context Approaches
for RNN Based Conversational Agents

Silje Christensen
Simen Johnsrud

Master of Science in Computer Science

Supervisor: Massimiliano Ruocco, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

i

Task Description

The objective of the master’s thesis is to explore conversational agents and study
how we can use Recurrent Neural Networks (RNNs) to construct them. This
thesis explores and compares the e↵ectiveness of di↵erent RNN architectures, and
investigates how we can handle context in conversational agents.

ii

Abstract

Natural Language Processing is a challenging field within Artificial Intelligence, and
building bots and conversational agents have been pursued by many researchers
over the last decades. These agents should output reasonable responses, based on
user inputs. In this thesis, we give an introduction on how to create conversa-
tional agents based on the current state-of-the-art, using Recurrent Neural Net-
works (RNN). We delve into di↵erent RNN architectures and compare the quality
of the outputs from nine distinct agents. The baseline is an Encoder-Decoder model
using Long Short-Term Memory (LSTM) cells, which is fed with question-response
pairs. We compare it with models consisting of other RNN cells and explore dif-
ferent approaches that take the context of the entire conversation into account. To
evaluate the models, we trained them on two di↵erent datasets. Five models were
trained on the Ubuntu Dialogue Corpus (UDC), whereas four were trained on the
OpenSubtitles dataset. The UDC is a closed domain dataset which is suitable when
we aim for a beneficial conversational agent for a specific area. The OpenSubtitles
dataset, on the other hand, is an open domain dataset and is used to capture how
well the models handle chit-chatting (casual conversations and small talk). To feed
the models with proper training data, we propose a procedure which preprocesses
the data in four steps. One of the advantages of this preprocessing procedure is
the removal of unknown tokens. This means that the training data only consists
of words that exist in the conversational agents’ vocabulary. The results indicate
that the use of Grid LSTM cells improve the quality of the responses for the chit-
chatting task and that the use of a context-based model generates responses which
reflect the topic of the conversation.

iii

Sammendrag

Naturlig spr̊akprosessering (Natural Language Processing) er et utfordrende felt in-
nen kunstig intelligens, ettersom det er vanskelig for en maskin å forst̊a og generere
spr̊ak. Flere forskere har undersøkt hvordan man kan utvikle samtaleagenter, ogs̊a
kalt chatbotter, i løpet av de siste ti̊arene. Disse agentene skal generere en re-
spons basert p̊a et spørsmål fra en bruker. I denne masteroppgaven gir vi en
introduksjon til hvordan man kan lage samtaleagenter ved å benytte oss av de
nyeste arkitekturene for å konstruere Rekurrente Neurale Nettverk (RNN). Vi un-
dersøker ulike RNN arkitekturer og sammenligner kvaliteten p̊a svarene generert av
ni ulike chatbotter. V̊art utgangspunkt er en Encoder-Decoder modell best̊aende
av Long Short-Term Memory (LSTM) celler som blir matet med spørsmål-respons-
par. Denne blir sammenlignet med modeller best̊aende av Gated Recurrent Unit
(GRU) celler, Grid LSTM celler, og andre RNN konstruksjoner som har som formål
å h̊andtere konteksten av hele samtalen. Vi har brukt to ulike datasett for å eval-
uere modellene. Fem ble trent p̊a Ubuntu Dialogue Corpus (UDC), og fire ble
trent p̊a OpenSubtitles datasettet. UDC blir kategorisert som et lukket-domene-
datasett (closed domain). For å lage en nyttig agent som skal kunne besvare
spørsmål innenfor et spesifikt tema, er man nødt til å benytte seg av et slikt
datasett. OpenSubtitles-datasettet er derimot et åpent-domene-datasett (open do-
main). Dette datasettet blir brukt for å teste chatbottenes evne til å h̊andtere
hverdagslige samtaler og småsnakk. For å mate samtaleagentene med best mulig
treningsdata, har vi definert en prosedyre som prosesserer datasettene i fire steg.
En av fordelene ved denne prosesseringen er at vi f̊ar dekket all treningsdata med
vokabularet til samtaleagentene. Resultatene indikerer at agenter basert p̊a Grid
LSTM celler genererer bedre responser enn de andre agentene n̊ar de blir testet p̊a
hverdagslige samtaleemner. Videre viser resultatene at en agent som er basert p̊a
en kontekst-modell klarer å generere responser som reflekterer temaet for samtalen.

iv

Preface

This thesis was written spring 2017 for the Department of Computer Science and
Information Science (IDI) at the Norwegian University of Science and Technology
(NTNU).

The subject for the thesis was defined in cooperation with our supervisor Mas-
similiano Ruocco. Several persons have contributed with inspiration and ideas for
this project. First, we would like to express our gratitude to our supervisor Ruocco,
and our co-supervisors Axel Tidemann and Cyril Banino-Rokkones for valuable in-
put, assistance, and feedback throughout the project. Furthermore, we would like
to thank Faez Shakil for helping us with the implementation of Bidirectional Grid
LSTM.

Silje Christensen and Simen Johnsrud
Trondheim, June 20, 2017

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Research Method . 2
1.4 Contributions . 4
1.5 Thesis Structure . 4

2 Background Theory 7
2.1 Background Theory . 7

2.1.1 NLP and Word Embeddings 7
2.1.2 Artificial Neural Networks . 8
2.1.3 Recurrent Neural Networks 10
2.1.4 RNN Encoder-Decoder . 12
2.1.5 Training ANNs . 13
2.1.6 Tuning Hyperparameters . 17

2.2 State-of-the-art . 19
2.3 RNN Architectures . 23

2.3.1 LSTM . 23
2.3.2 GRU . 25
2.3.3 Grid LSTM . 26

3 Proposed Architectures 29
3.1 LSTM Baseline . 29
3.2 GRU Model . 33
3.3 Grid LSTM Model . 33
3.4 Stateful Model . 37
3.5 Stateful-Decoder . 39
3.6 Context-Prepro . 41

v

vi CONTENTS

4 Datasets 43
4.1 Ubuntu Dialogue Corpus . 43
4.2 OpenSubtitles . 45

5 Experimental Settings 51
5.1 Preprocessing . 51

5.1.1 Preprocessing Overview . 51
5.1.2 Preprocessing UDC . 56
5.1.3 Preprocessing UDC for Context Approaches 59
5.1.4 Preprocessing OpenSubtitles 60

5.2 Metrics . 63
5.2.1 Automatic Evaluation During Training 63
5.2.2 Human Evaluation . 63

5.3 Experimental Plan and Setup . 69
5.3.1 Preparation for the Experiments 69
5.3.2 Part 1: Testing RNN Cells 69
5.3.3 Part 2: Exploring Context Approaches 70
5.3.4 Part 3: Increasing the external validity 71

6 Results and Discussion 73
6.1 Part 1 . 73

6.1.1 Perplexity . 73
6.1.2 Conversational Agents Outputs 75
6.1.3 Human Evaluation . 80

6.2 Part 2 . 80
6.2.1 Perplexity . 80
6.2.2 Conversational Agents Outputs 81
6.2.3 Human Evaluation . 88

6.3 Part 3 . 88
6.3.1 Perplexity . 88
6.3.2 Conversational Agents outputs 89
6.3.3 Human Evaluation . 100

6.4 Discussion . 100
6.4.1 Perplexity Results . 100
6.4.2 Results from the Human Evaluations 102
6.4.3 Limitations of the Experiments 103

7 Conclusion 105
7.1 Contributions . 105
7.2 Answering the Research Questions 106
7.3 Challenges . 107
7.4 Future Work . 107

CONTENTS vii

7.4.1 Exploring Methods for Finding the Nearest Neighbour in a
High Dimensional Space . 107

7.4.2 Beam Search in a Decoder . 108
7.4.3 Stateful Encoder-Decoder Architecture using Grid LSTM cells108
7.4.4 Hybrid Conversational Agent 108
7.4.5 Hybrid Corpora . 109

Bibliography 109

A UDC Content Examples 115

B OpenSubtitles Content Examples 119

viii CONTENTS

List of Figures

1.1 Research Process . 3
1.2 Experimental process: Preprocessing 3
1.3 Experimental process: Model implementation 3

2.1 Feedforward network vs. RNN . 9
2.2 Network terminology . 10
2.3 RNN with two hidden layers . 10
2.4 Unrolled RNN . 11
2.5 RNN Encoder-Decoder . 12
2.6 ANN with one hidden layer . 14
2.7 BPTT: Unfolding an RNN . 17
2.8 How optimizers a↵ect the perplexity 18
2.9 Unrolled LSTM cell . 23
2.10 Unrolled GRU cell . 26
2.11 2-D Grid LSTM block . 27

3.1 Overview of our conversational agents 30
3.2 Sequence-to-Sequence architecture 30
3.3 Grid LSTM translation model . 35
3.4 Stateful training . 38
3.5 Stateful batch feeding . 40

5.1 Preprocessing: Overview . 53
5.2 Preprocessing: Step 1 . 54
5.3 Preprocessing: Step 2 . 54
5.4 Preprocessing: Step 3 . 54
5.5 Preprocessing: Step 4 . 56
5.6 UDC: Vocabulary size . 57
5.7 UDC: Occurrences of turns with length between 1-50 58
5.8 UDC: Number of pairs that fit the given bucket size 59

ix

x LIST OF FIGURES

5.9 OpenSubtitles: Vocabulary size . 62
5.10 OpenSubtitles: Occurrences of turns with length between 1-50 . . . 62
5.11 OpenSubtitles: Number of pairs that fit the given bucket size 63
5.12 Human Evaluation: Part 1 . 66
5.13 Human Evaluation: Part 2 . 67
5.14 Human Evaluation: Part 3 . 68

6.1 Perplexity score for Grid LSTM, LSTM and GRU 74
6.2 Comparison of training and validation data perplexity for Part 1 . . 75
6.3 Perplexity score for Stateful and Context-Prepro model 81
6.4 Comparison of training and validation data perplexity for Part 2 . . 81
6.5 Comparison of training and validation data perplexity for Part 3 . . 89

List of Tables

2.1 Word Embeddings . 8
2.2 Memory allocation for di↵erent hyperparameters 18

4.1 UDC data format example . 44
4.2 UDC content example 1 . 45
4.3 UDC content example 2 . 46
4.4 UDC: Average and mode turn length 47
4.5 OpenSubtitles: Average and mode turn length 47
4.6 OpenSubtitles content example . 49

5.1 OOV word replacements using cosine similarity 55
5.2 UDC: Unique words in the dataset after each step 57
5.3 Bucket size vs. coverage of the initial dataset 58
5.4 UDC: Number of training pairs for non-stateful vs. Stateful 60
5.5 OpenSubtitles data example . 61
5.6 OpenSubtitles: Bucket size vs. coverage of the initial dataset 61
5.7 Human Evaluation metric: Grammar 64
5.8 Human Evaluation metric: Content (Single questions) 64
5.9 Human Evaluation metric: Content (Conversations) 64

6.1 Part 1 . 80
6.2 Human Evaluation results: Part 1 80
6.3 Part 2: Topic 1 . 82
6.4 Part 2: Topic 2 . 84
6.5 Part 2: Topic 3 . 86
6.6 Part 2: Topic 4 . 87
6.7 Human Evaluation results: Part 2 88
6.8 Part 3: Introduction questions . 89
6.9 Part 3: Introduction responses . 90
6.10 Part 3: Personal questions . 91

xi

xii LIST OF TABLES

6.11 Part 3: Personal responses . 91
6.12 Part 3: Knowledge questions . 92
6.13 Part 3: Knowledge responses . 92
6.14 Part 3: Yes/No questions . 93
6.15 Part 3: Yes/No responses . 93
6.16 Part 3: Dramatic questions . 94
6.17 Part 3: Dramatic responses . 95
6.18 Part 3: Philosophical questions . 96
6.19 Part 3: Philosophical responses . 97
6.20 Part 3: Love questions . 98
6.21 Part 3: Love responses . 99
6.22 Human Evaluation results: Part 3 100

A.1 UDC content 1 . 116
A.2 UDC content 2 . 116
A.3 UDC content 3 . 117
A.4 UDC content 4 . 118

B.1 OpenSubtitles examples . 122

Listings

3.1 Create model function . 31
3.2 Create LSTM model . 31
3.3 Training procedure . 32
3.4 Decoding procedure . 32
3.5 Create LSTM model . 33
3.6 Create Grid LSTM model . 34
3.7 Bidirectional processing . 36
3.8 Stateful training . 37
3.9 Stateful decoding . 39
3.10 Context-Prepro decoding . 41

xiii

xiv LISTINGS

Chapter 1

Introduction

This chapter is meant as an introduction to the master’s thesis. Section 1.1 states
the fields this projected is situated in and the key driving forces that motivate the
research. The research’s goal and questions are defined in Section 1.2, whereas
Section 1.3 further elaborates the research methods applied for the project. Then,
a brief summary of the main contributions is provided in Section 1.4, and finally,
we define the thesis’ structure in Section 1.5.

1.1 Background and Motivation

This thesis studies how we can implement conversational agents using Recurrent
Neural Networks (RNN), situated in the field of Artificial Intelligence (AI) and
Natural Language Processing (NLP). A conversational agent, also referred to as
a chatbot, is a computer system designed to communicate with humans. Based
on the input from the user, it should generate a meaningful response. The agent
should take care of the contextual aspects within a conversation, besides the lan-
guage’s grammar and semantics. The grammar includes the morphology, syntax,
and spelling. Morphology is the internal structure of words, i.e. how words are
formed, whereas the syntax focus on how words are related to each other. The
semantics, however, tells the true meaning of a word or a sentence. The context
captures the information received during a conversation and influences the way an
expression is interpreted [Duranti and Goodwin, 1992]. Details from the past in
the conversation is assumed to be known as the dialogue evolves.

What expectations we have to a chatbot, depends on its purpose. Which topics
a conversational agent can converse within, is specified by the kind of dataset it is
trained on. We di↵er between open domain and closed domain datasets. General
knowledge and a rational behavior should be the expectation when interacting

1

2 CHAPTER 1. INTRODUCTION

with an agent trained on an open domain dataset. It is should handle casual
conversations and small talk, also referred to as chit-chatting. A task-oriented and
useful conversational agent needs a more specific dataset and must be trained on a
closed domain dataset. A closed domain chatbot will act in a special environment
with clear boundaries on which topic it will manage to give reasonable responses
to. In this case, the agent should behave as an expert in the field it is trained
within. This kind of chatbot could automate several processes and be beneficial
for industries that employ customer support. Unfortunately, today’s technology
has not been able to create conversational agents good enough to replace human
beings in customer support.

AI is an exhilarating research field, and we find it interesting to study how
a machine can learn to generate a grammatically correct response that answers
a question. Thus, we want to explore the current state-of-the-art in the field of
conversational agents and see whether changes in the presented models will a↵ect
the quality of the output from a chatbot.

1.2 Goals and Research Questions

The main goals of this research project are to compare the output from di↵erent
RNN based conversational agents, and to incorporate context management to the
models. To reach these objectives, we need to get in-depth knowledge of the current
state-of-the-art in the field of conversational agent architectures. The thesis goal
and its respective research questions are listed below.

Goal 1 Explore and compare the e↵ectiveness of di↵erent RNN architectures.

Research question 1 Will the use of di↵erent RNN cells in an Encoder-Decoder
model have significantly e↵ect on the quality of the outputs?

Goal 2 Incorporate context management in conversational agents.

Research question 2 Will a conversational agent that keeps track of previous
questions and responses, catch the context of a conversation better?

We will implement an RNN Encoder-Decoder model using LSTM cells as a
baseline, and compare this model with the experimental architectures. As the
automatic evaluation of conversational agents is still an open problem, we will
evaluate them using perplexity in addition to conduct a human evaluation.

1.3 Research Method

The research process for our master’s thesis is illustrated in Figure 1.1. To answer
the research questions, we have followed an experimental research strategy, as de-

1.3. RESEARCH METHOD 3

Figure 1.1: Overview of the research process

Figure 1.2: Experimental process - Preprocessing

scribed in Oates [2005]. For the first research question, we compare di↵erent RNN
cells in a conversational agent. To answer the second research question, further
changes are required. We change the preprocessing procedure, handle the inter-
nal state during training and modify the decoder. The e↵ect of these changes is
then compared to each other. In order to get data for analysis, we either choose
questions from a part of the dataset that is not used for training or create fictive
conversations to see how the di↵erent conversational agents reply. These results
are applied in a questionnaire using Google Forms1, where the evaluators will rate
each answer with a score from 1 to 5. This survey gives us quantitative data which
we will analyze to deduce a conclusion to the research questions. The results are
a↵ected by the dataset the model is trained on; thus, we increase the external
validity by training some of the models with another dataset.

Every dataset needs adjustments to fit the proposed structure of the model’s
input. This preprocessing procedure is considered as a part of the experiment
and is illustrated in Figure 1.2. We followed an iterative approach consisting of
three phases. The first phase was to research and study the datasets in order to
understand the changes required to improve the quality of the dataset. The second
phase was to implement these changes, and the third to test it by running the new

1https://www.google.com/forms/about/

Figure 1.3: Experimental process - Model implementation

4 CHAPTER 1. INTRODUCTION

preprocessing procedure on a subset of the dataset. Based on the results, we would
either go back and analyze the dataset further or continue working on the current
task. Finally, we preprocess the entire dataset.

An illustration of the iterative approach used when implementing the conver-
sational agents is depicted in Figure 1.3. Before we start the implementation, we
need to research each desired model. If we can run the code and observe that the
perplexity decreases, we start to train the model with the desired hyperparameters.

1.4 Contributions

The main contributions are:

1. A Stateful model, which is a result of our research on how adjustments to
the Encoder-Decoder model can improve the model’s ability to use informa-
tion from previous turns. The conversations generated by this model and
the results from the human evaluation show that it outperforms the LSTM
baseline when it comes to the content.

2. A comparison of the Grid LSTM, LSTM, and GRU cells applied in the same
architecture. The results indicate that the choice of RNN cells can a↵ect
the quality of the output and that the Grid LSTM cell increases the content
quality of the responses in the chit-chatting task.

3. An approach for eliminating out-of-vocabulary (OOV) words from the dataset.
The most common way to handle OOV words is to replace them with a unique
unknown token, e.g. “UNK”. Our approach suggests using a word represen-
tation model to represent all words with word embedding vectors. All OOV
words will be replaced with the closest in-vocabulary word, by calculating
the cosine similarity.

4. An architectural overview of the state-of-the-art models which can be applied
when creating conversational agents.

We will elaborate the contributions of the research in Section 7.1.

1.5 Thesis Structure

The remainder of the thesis is structured as follows:

Chapter 2: Background Theory provides the reader with the knowledge re-
quired to understand the remaining chapters.

1.5. THESIS STRUCTURE 5

Chapter 3: Proposed Architectures presents six RNN architectures used to
create the nine distinct conversational agents presented in this thesis. We explain
how we implemented these architectures.
Chapter 4: Datasets describes the characteristics and shortcomings of both the
Ubuntu Dialogue Corpus and OpenSubtitles dataset.
Chapter 5: Experimental Settings explains how we prepared, measured, planned
and conducted the experiments. First, we define the preprocessing steps and the
adjustments required for the di↵erent datasets. Then, we describe the evaluation
metrics. Finally, we describe the experimental plan and setup and divide the ex-
periments into three parts.
Chapter 6: Results and Discussion presents the results from each part of
the experiments. We look at the perplexity results, the responses generated by
the conversational agents, and the outcome of the human evaluation. Finally, we
discuss the results.
Chapter 7: Conclusion and Future Work evaluates and concludes the pre-
sented work, by elaborating the contributions and answering the research questions.
Further, it describes the challenges and provides a summary of further hypothetical
research on conversational agents based on the work presented in previous chapters.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background Theory

In this chapter, we provide the reader with the necessary knowledge to understand
the remaining content of the thesis. In Section 2.1 we explain why NLP is di�cult,
and further how a computer can use word embeddings to represent a word’s se-
mantic in order to understand and generate language. We explain Artificial Neural
Networks (ANNs) and RNNs, and why the latter network is preferred for learning
languages. The RNN Encoder-Decoder model can be used for creating a conver-
sational agent, and this architecture is also presented in this section. Further, the
basic method to train a simple feedforward network is then explained, followed by
an explanation of the changes required to train an RNN. In Section 2.2 we study
the current state-of-the-art, to get an overview of models used for conversational
agents and the translation problem, which is a similar field. Then, in Section 2.3,
we delve into the RNN architecture, to fully understand the existing approaches.

2.1 Background Theory

2.1.1 NLP and Word Embeddings

NLP is a challenging field within Computer Science and AI. It covers computer
understanding, manipulation, and generation of human language. The computer
beats the human brain in several areas, but when it comes to the processing of nat-
ural language, today’s technology is not su�cient. Natural languages distinguish
from formal languages, where the latter is a language consisting of a set of strings
of symbols together with a set of rules that are specific to it, as in programming
languages. Natural language, however, has evolved naturally in humans without
intentional planning and is more complex. This makes languages inherently high
dimensional, meaning that a word has several “characteristics”. It can be positive

7

8 CHAPTER 2. BACKGROUND THEORY

France Jesus Xbox Reddish Scratched Megabits
454 1973 6909 11724 29869 87025

austria god amiga greenish nailed octets
belgium sati playstation bluish smashed mbs
germany christ msx pinkish punched bits
italy satan ipod purplish popped baud
greece kali sega brownish crimped carats
sweden indra psNUMBER greyish scraped kbits
norway vishnu hd grayish screwed megahertz
europe ananda dreamcast whitish sectioned megapixels
hungary parvati geforce silvery slashed gbit/s

switzerland grace capcom yellowish ripped amperes

Table 2.1: Word embeddings in the word lookup table of the language model neural
network trained with a dictionary of size 100, 000 and with a 50-dimensional vector
to represent each word. For each column the queried word is followed by its index
in the dictionary (higher means more rare) and its 10 nearest neighbors (arbitrary
using the Euclidean metric). [Collobert et al., 2011]

or negative, it might describe a noun or a verb; thus it cannot be described in few
dimensions. Languages are also sparse, which means that a word does not neces-
sarily have a high “score” on all these characteristics; thus most of the elements
are zero. These are two of the reasons for why NLP is di�cult. Another problem is
that languages are changing every day, as new words or new terms occur. Further,
it is hard for a computer to understand sarcasm, idioms, and ambiguity.

Although it is di�cult for a computer to understand natural language, we can
represent a word’s semantic using word embeddings. This concept was originally
introduced by Bengio et al. [2003]. A word embedding is the mapping from a word
to an n-dimensional vector: W ! Rn. This means that a word can be represented
as a vector, and similar words are close together in the n-dimensional space. Table
2.1 illustrates how well word embeddings can represent the semantic of a word.

2.1.2 Artificial Neural Networks

ANNs are a class of machine learning algorithms that train on input data, to classify
new unseen data in a similar domain. The research from the last decades has shown
that these networks can solve a wide range of di↵erent tasks, from the translation
problem to the image recognition task. The MNIST dataset1 has become the classic
example of how an ANN works, and how well it can perform certain tasks. This

1http://yann.lecun.com/exdb/mnist/

2.1. BACKGROUND THEORY 9

(a) Feedforward network. The pro-
cessing stream of the network is fol-
lowing one direction, with neither
cycles nor loops

(b) RNN network. The network
consists of cycles, opening the possi-
bility to revisit a neuron in the same
layer

Figure 2.1: Feedforward network vs. Recurrent Neural Network. In each network,
the units to the left shows the input units, while the rightmost is the output units.
In between, there are layers of artificial neurons. The figure is from Jaeger [2002].

dataset consists of handwritten numbers from 0 to 9, and the ANN’s function is to
classify which number the current picture depicts. The network receives a picture
(which in this case is of 32x32 pixels) as input and uses ten di↵erent output classes
(one class for each number) to predict which number the input image illustrates.
The output will be a vector telling the probability for the di↵erent classes, where
the class with the highest probability will be the network’s final answer. The task
of recognizing numbers seems trivial to a human but is a lot more complicated for
a computer. However, the best performing ANN for this task achieves a success
rate of 99.79%, approximately 1.5% better than the average human [Wan et al.,
2013].

ANNs are based on a large collection of artificial neurons, also referred to as
units, and mimics the way our brain solves problems with large clusters of biological
neurons. The signals and state of artificial neurons are real numbers, typically
between 0 and 1. As the ANNs can be used to solve di↵erent tasks, there exist
di↵erent kinds of architectures which have a more specified area of application.
The feedforward network is the simplest kind of ANNs and is, in fact, the most
popular subclass of ANN to handle image recognition tasks. For sequences of data,
e.g. text, the Recurrent Neural Network (RNN) subclass is more favored. Their
di↵erences is illustrated in Figure 2.1.

The architecture is organized in layers, where each layer consists of the artificial
units. The layers are divided into three categories: The input layer, the hidden
layers, and the output layer. The input layer di↵ers from the other layers, as they
do not contain “fully artificial units”, but rather the values in the data record,

10 CHAPTER 2. BACKGROUND THEORY

Figure 2.2: The unit is connected to other units through the weights. Each unit
has an activation function which it uses to create output and hence input, to the
connected unit.

which they pass on to the hidden layer(s). After traversing the units in the hidden
layers, the signals reach the output layer which will classify the current input.

Synaptic links connect the units where the strength of the connection is defined
by weights, working as a port deciding how much of the signal that should pass
to the next unit. The weights’ value will a↵ect the final output. That is why
these weights are adjusted during training in order to find an optimal solution
for the network. The unit itself has an activation function, which assures that a
small change in the weights will give a small change in the output of the unit.
The input to the unit is a combination of the weight(s) and the input signal, i.e.
activation output signal from the previous layer. This combination is referred to as
the weighted input for a unit. Figure 2.2 illustrates the relation between the units,
activation functions and the signals. We denote the activation function as u(x)
for input units, f(x) for internal units, and g(x) for output units [Jaeger, 2002].
Logistic, tanh, ReLU are examples of such functions [Goodfellow et al., 2016].

2.1.3 Recurrent Neural Networks

Figure 2.3: RNN with two hidden layers

RNN is a subclass of ANNs where the connections between the units form a directed
cycle, as illustrated in Figure 2.1b. Figure 2.3 is an example of an RNN with two
hidden layers, layer A and B. The layers are sometimes referred to as cells, and

2.1. BACKGROUND THEORY 11

Figure 2.4: Unrolled RNN cell with tanh activation function

consists of “one unrolled unit”. If this network were used to create a conversational
agent, it would be able to output m unique words, because it has m output nodes.
This RNN unit has self-loops, as illustrated in Figure 2.4. The output from the
unit at timestep t � 1 is the input to the same unit at timestep t. Thus the new
state is a↵ected by the previous state when it handles the new input X

t

. The
activation function for a simple RNN could, for example, be tanh:

f(x) = tanh(x) =
2

1 + e�2x
� 1. (2.1)

RNNs are designed to recognize patterns in sequential data. If a traditional
feedforward network were to handle a sequence of words, it would have separate
parameters for each input feature. This means that it would need to learn all of the
rules of the language separately at each position in the sentence. In comparison,
RNN shares the same weights across several time steps, making it possible for the
model to remember what it learned from the first input when it handles the next
within a sequence. In other words, RNN is a good choice when we aim to teach a
computer to model and generate a language, as it can learn dependencies between
all words in a sentence [Goodfellow et al., 2016].

In the case of conversational agents, the RNN is trained to predict the next
symbol in a sequence. The output at each time step t is the conditional distribution

p(x
t

|x
t�1, ..., x1). (2.2)

By combining these probabilities, we can compute the probability of the sequence
x using

p(x) =
TY

t=1

p(x
t

|x
t�1, ..., x1). (2.3)

12 CHAPTER 2. BACKGROUND THEORY

Figure 2.5: An illustration of the RNN Encoder-Decoder Architecture, from Cho
et al. [2014].

The sequential information is preserved in the network’s hidden state h. At each
time step, t this state is updated by

h
t

= f(Wx
t

+ Uh
t�1), (2.4)

where x
t

is the input at time step t, and W is the weight matrix, containing the
weights that decide the strength of the signal from a unit. h

t�1 is the hidden
state of the previous time step, and U is the previous hidden state’s transition
matrix. The matrices work as “filters” and determine the importance of the current
input and the former hidden state. The error these filters generate, found via
backpropagation, will be used to adjust the matrices until the error is low. We
simplify the equation for the hidden state by writing

h
t

= f(x
t

, h
t�1). (2.5)

As in an ordinary neural network, the final layer is the output layer, where there
is one node for each class. The hidden layer’s activation function is f(x) and the
output of the network is g(f(x)). The function g should classify the input x

i

to an
output y

i

. Thus, an RNN should map the input sequence x1, ..., xn

to an output
sequence y1, ..., yn.

2.1.4 RNN Encoder-Decoder

Cho et al. [2014] proposed an Encoder-Decoder architecture, where both the en-
coder and the decoder consists of an RNN illustrated in Figure 2.5. The encoder
will map an input sequence to a new compressed representation, while the decoder

2.1. BACKGROUND THEORY 13

will generate a new sequence based on this compressed representation. The net-
work learns to encode a variable-length sequence x1, ..., xn

to a fixed-length vector
representation c, and then decode it back into a variable-length sequence y1, ...yn0 .
Note that n and n0 may be di↵erent. The encoder sequentially reads each token x

t

of the input until it reach an “end-of-sequence” symbol, and updates the hidden
state h

t

according to Equation 2.5. After encoding the source sentence, the hidden
state of the RNN is now a summary c of the whole input sequence and a global
representation of the sentence. The decoder updates its hidden state by taking the
previously created word y

t�1 and the context c into account:

h
t

= f(h
t�1, yt�1, c). (2.6)

The decoder can then calculate the variable-length sequence by computing the
distribution of the next token,

P (y
t

|y
t�1, yt�2, ..., y1, c) = g(h

t,y

t�1 , c). (2.7)

2.1.5 Training ANNs

The main goal of training neural networks is to obtain the lowest possible error from
the model, without overfitting the training data. Overfitting occurs when the model
starts to overreact to minor fluctuations in the training data, which results in a
poor predictive performance2. The error of a model is calculated with an objective
function, also referred to as a loss function, which measures the error between the
predicted output and the expected output. The expected outcome is, in supervised
training, given by the dataset as it is structured with both training data and output
labels. Without the labels, the model is obligated to train unsupervised. In this
case, the task is to infer a function to describe hidden structure from “unlabeled”
data and is more complicated than the supervised case. As our conversational
agents are fed with question-response pairs, we will focus on supervised learning in
this section.

Before we study how we can train an RNN, let us run through something less
advanced: training a simple feedforward network with three layers, as depicted in
Figure 2.6. The three layers are connected by two weight matrices that will be
adjusted during training to minimize the error between the predicted output and
the truth. Each weight is denoted with three indexes. wl

jn

represents the weight
going to the jth unit in layer l, from the nth unit in layer l � 1. The error is
computed in the final layer (the output layer) by a loss function C. The backprop-
agation algorithm moves backward from the output error, through the weights of
each hidden layer, and assigns each weight a responsibility for a portion of the er-
ror by calculating their partial derivatives. The training process will incrementally

2https://en.wikipedia.org/wiki/Overfitting

14 CHAPTER 2. BACKGROUND THEORY

Figure 2.6: ANN with one hidden layer, and two weight matrices.

change the weights along the direction of the error gradient, i.e. the derivative.
The weights are adjusted in the direction that lowers the error. The entire training
process can be summarized in 5 stages:

Input
Every unit needs an activation function. The logistic function f can be used,

f(x) =
1

1 + ex
, (2.8)

which needs to be substituted and defined for a single unit as

y(u) =
1

1 + ewT

u

. (2.9)

The derivative will be used later in the backpropagation:

@y(u)

@
= y(u)(1� y(u)) = y(u)y(�u). (2.10)

The goal of the first step is to compute the output activation for the first layer,
denoted as a1. This is just raw data fed into the input layer. However, the input
data must have a certain structure, so that the model can handle it. In our example,
we have n input units, which would match an input vector with n entries.

Feedforward
When the input layer has its corresponding activation, the values will be forwarded

2.1. BACKGROUND THEORY 15

to each succeeding layer:
z2 = w2a1

a2 = y(z2)

z3 = w3a2

a3 = y(z3).

(2.11)

Output error
We can use the quadratic cost function that measures the loss between the true
value t and the predicted output a as the loss function:

C =
1

2

X

k

(t
k

� aL
k

)2. (2.12)

The error in the output layer is then given by

E3
k

=
@C

@a3
k

y0(z3
k

) = a3
k

� t
k

. (2.13)

Backpropagation
Now, we can backpropagate the previous result to find the error in the hidden layer

E2
j

=
X

k

w3
kj

E3
k

y(z2
j

)y(�z2
j

). (2.14)

Gradients
In the last step, we need to update the weight matrices such that the loss is mini-
mized. This is done by an optimizer, e.g. Stochastic Gradient Descent (SGD). We
need to find the gradient of the loss function, with respect to the weight vector w

j

,

@C

@wl

jk

= al�1
k

El

j

. (2.15)

Then we can run SGD to update the weights:

wnew = wold � ⌘

m

X @C

@wl

jk

, (2.16)

where ⌘ > 0 is the learning rate. The training pairs (x,y) are fed into the network
until the weights converge to their optimal value. This is how we use SGD to learn
to predict unseen data in a feedforward network.

Ruder [2016] studies di↵erent gradient descent optimization algorithms. Choos-
ing a proper learning rate for SGD can be challenging, but in newer optimized
gradient decent algorithms, such as Adagrad and Adam Optimizer, this is embed-
ded in the algorithm. While SGD will use the same learning rate for all of the

16 CHAPTER 2. BACKGROUND THEORY

training parameters, Adagrad [Duchi et al., 2011] assigns a learning rate to all
units, instead of having a single global one. As a result of Adagrad’s behavior,
frequent parameters will have a lower learning rate, i.e. get smaller updates, while
it does larger updates on infrequent parameters, which makes Adagrad well suited
for sparse data. The Adam optimizer [Kingma and Ba, 2014] supplies the Adagrad
algorithm with an exponentially decaying average of past gradients, to gain faster
convergence.

By expanding the simple example in Figure 2.6 with more hidden layers, we
obtain a deep neural network with L layers. This, however, results in more weights
matrices, which require a generalization of the training procedure, as listed below.

Input
Set the activation for the input layer; a1.

Feedforward
For every layer 2,3, ..., L, compute the feedforward step

zl = wlal�1

al = y(zl).
(2.17)

Output error
In the output layer, we find the error

EL

j

=
@C

@aL
j

y0(zL
j

). (2.18)

Backpropogation
For the layers l = L� 1, L� 2, ...2, we need to find the error in each layer.

El

j

=
KX

k

wl+1
kj

El+1
k

y0(zl
j

). (2.19)

Gradients
The optimizer will finally adjust the weights by the gradients. The gradients to
each weight matrix is found by

@C

@wl

jk

= al�1
k

El

j

. (2.20)

The backpropagation algorithm assumes that there are no cycles in the network.
Hence, it needs modification to be adopted by RNNs. The solution is Backprop-
agation Through Time (BPTT), an approach which unfolds the network in time.

2.1. BACKGROUND THEORY 17

(a) Original RNN
(b) Unfolded RNN

Figure 2.7: How BPTT unfolds an RNN to a feedforward network. Figure is from
Jaeger’s tutorial on RNNs Jaeger [2002].

An example of this approach is depicted in Figure 2.7. Figure 2.7a illustrates the
original RNN, whereas Figure 2.7b is the transformed network, which functions
as a feedforward network. Even though it has removed the cycles, the original
connections between the units are obtained. [Jaeger, 2002]

The optimal way to train a neural network is to handle all the training data at
the same time. If we could do this, it would be easier to point out the direction the
weights should be moved, in order to reduce the overall error for the entire dataset.
In that case, the model should converge faster, and the parameters would represent
the optimal weights for the whole dataset. However, based on the computational
power and memory required to handle all the training data simultaneously, this
is impossible for all datasets with reasonable size. Instead, we are training in
“batches”. Each batch consists of n training pairs (a random subset of the entire
dataset) which is trained at the same time. The smaller the batch, the more di�cult
is it to choose optimal gradients, hence the training process needs more time to find
the optimal solution. The trade-o↵ for the batch size is therefore between memory
allocation and training time.

The training process of a batch, later referred to as a step in a training process,
means that the network has generated an output vector (a response in a conversa-
tional agent) for all the training pairs in the batch, and then adjusted the weights
based on the error through BPTT. When the network has processed all the training
data, one epoch is finished, and a new one starts.

2.1.6 Tuning Hyperparameters

The goal of tuning hyperparameters is to choose values that will optimize a measure
of the algorithm’s performance. Due to the hardware limitations on the server, we
also need to check how di↵erent hyperparameters, such as the number of units
in each layer, the vocabulary size, and the bucket sizes, a↵ect the memory while

18 CHAPTER 2. BACKGROUND THEORY

running the training process on a GPU. Table 2.2 shows the memory usage of
di↵erent model parameters.

Model U L Vocab Optimizer Bucket size Mem. (MB)
Grid 512 2 100k SGD 45-65-90-140 11892
Grid 512 2 100k SGD 10-16-22-30 4269
Grid 512 2 30k SGD 10-16-22-30 3565
Grid 1024 2 30k AdaGrad 10-16-22-30 8373

LSTM 1024 2 30k AdaGrad 18-28-38-60 8366
Stateful 1024 2 30k AdaGrad 10-16-22-30 4286

Table 2.2: Memory allocation for di↵erent hyperparameters. The “Mem.” column
represents the memory usage in megabytes.

Figure 2.8: How the SGD, AdaGrad and Adam optimizer a↵ect the perplexity

The experimentation with the SGD, AdaGrad and Adam optimizer does not
confirm the theory presented in Section 2.1.5, where it is natural to assume that
AdaGrad and Adam should be superior to the SGD. Figure 2.8 illustrates the
perplexity results from the same model using di↵erent optimizers. The perplexity
is a measurement of how well the model performs and is further explained in Section
5.2.1. We decided to use AdaGrad as our optimizer, as it is supposed to be better
than SGD, and because the Adam optimizer required more time to train, due to
its complexity.

2.2. STATE-OF-THE-ART 19

2.2 State-of-the-art

In this section, we study the current state-of-the-art. There exist numerous of
di↵erent papers concerning how to design conversational agents. The results have
improved over time, but they also confirm the di�culties around NLP and the
complexity of teaching a machine to hold a conversation like a human. In this sec-
tion, we first look at newer word embeddings methods. Then, we study translation
models, which are based on the RNN Encoder-Decoder model. Further, we take a
closer look at recently proposed papers about conversational agents.

Mikolov et al. [2013a] presented the Skip-Gram model, which later was opti-
mized in Mikolov et al. [2013b]. The training objective in the Skip-Gram model is
to learn word vector representations that are good at predicting the nearby words.
By looking at a given word, the algorithm will predict the surrounding words.
This achieved significantly better results on syntactic and especially semantic ac-
curacy. The other architecture presented in the paper, the Continuous-Bag-of-
Words (CBOW) model, does the inverse, i.e. it will predict a target word based
on the surrounding ones. CBOW achieves a slightly better score on the syntax,
but the Skip-Gram model is superior when it comes to semantic accuracy. The im-
provements in Mikolov et al. [2013b] included computational speedups which are
applicable to both the architectures. An example is to subsample frequent words,
as these words do not contain as valuable information about the context in contrast
to infrequent words. In addition to the computational time reduction, this also re-
sulted in better word embeddings of rare words. Further, they presented a simple
method to identify phrases in the text, and show that it is possible to learn good
vector representations for millions of phrases as well. A phrase is a collection of
words that have a di↵erent semantic meaning than the words have independently.
Their example is “New York Times”, consisting of three words, but referring to a
particular newspaper. With these improvements, the models can train and learn
on larger corpora than before.

By employing the information in the subwords of a word, i.e. the internal
structure, the results have improved even more. Bojanowski et al. [2016] extends
the model in Mikolov et al. [2013b] with a new scoring function that takes care of
the internal structure of the words. They separate each word into smaller parts
of 3-6 characters. These parts obtain their own word embedding, which is com-
bined to form a word embedding for the entire word. Their model utilizes this to
outperform the baselines, the skip-gram and CBOW models from the word2vec3

library. Bojanowski et al. [2016] obtained great results on a 50M token dataset us-
ing 100-dimensional word embedding vectors, which has then become the default
dimension in Facebook’s fastText4 library. FastText regroups this model with the

3https://code.google.com/archive/p/word2vec/
4https://research.fb.com/projects/fasttext/

20 CHAPTER 2. BACKGROUND THEORY

e�cient text classification presented in Joulin et al. [2016], resulting in a fast train-
able word representation model for both small, rare and large datasets. The model
will train on a corpus, and learn to output a word embedding for a new, possibly
unseen, word. Unlike other lexical databases such as the WordNet [Miller, 1995],
fastText gives the opportunity to train on any dataset, in order to retrieve word
embeddings that fit the domain of the dataset.

Being able to represent a word’s semantic is an essential building block in the
process of creating a conversational agent. However, before we delve into this task,
we study the translation problem, as it turns out that the same architecture can be
applied to both of the problems. The di↵erence between these two systems when
using the same architecture lies in the training data. Instead of being fed with an
English-Chinese pair, the conversational agent is fed with a question-response pair.

Sutskever et al. [2014] presented an RNN Encoder-Decoder related to Cho et al.
[2014], for machine translation purposes. They used LSTM cells (Section 2.3.1)
with a limited vocabulary which score better than a standard statistical machine
translation (SMT) system with an infinite vocabulary. Their main contribution is
the reversing of the input sequence, which improved the results significantly.

Bahdanau et al. [2014] discussed the existing architecture’s weakness of handling
long sentences. The challenge for the models was to convert the entire source
sentence into a fixed-length vector, while still focusing on the important words in
the sentence. Their solution was to add an attention mechanism to the Encoder-
Decoder approach, which made it possible for the decoder to decide which parts of
the source sentence to pay attention to. In order to achieve this, each word in the
input should keep information about the entire input sequence, yet mainly focus
on the surrounding words. The encoder calculates the attention vector, which
is further used in the decoder. As the goal was to capture both the successive
and preceding words, they changed the conventional encoder with a bidirectional
RNN (BiRNN). A BiRNN consists of one forward and one backward RNN and
was first described in Schuster and Paliwal [1997]. The forward RNN works as
before, reading the input from the start to the end, while the backward does it in
reverse, starting from the last word. Both of the RNNs will compute a hidden state
each, which is concatenated to include all information acquired from traversing the
sequence forward and backward. The concatenated state contains an “annotation”
for each word, holding the summaries of both the preceding and following words.
The annotations are used to create a context vector c

i

, using Formula 2.21.

c
i

=
T

xX

j=1

↵
ij

h
j

. (2.21)

The weight ↵
ij

of each annotation h
j

is computed by using an alignment model,
which scores how well the inputs and outputs match at certain positions. We

2.2. STATE-OF-THE-ART 21

have an attention mechanism because the ↵
ij

signal reflects the importance of the
annotation with respect to the previous hidden state in deciding the next state
and generating the output. The results of their architecture show that the syn-
ergy between the BiRNN and the attention mechanism outperforms the standard
Encoder-Decoder model, and increase the robustness to longer source sentences
significantly.

Kalchbrenner et al. [2015] introduced Grid Long Short-Term Memory (Grid
LSTM) as a new architectural combination of LSTM cells. This design arranges
LSTM cells in N dimensions, which can be applied to several data structures in-
cluding sequences. They did several experiments with their proposed model and
observed the advantages of their architecture compared to the regular LSTM net-
work. One of the experiments concerned the translation problem, and a two 3-
dimensional Grid LSTM yielded good results. Unlike the simple LSTM architec-
ture, the proposed Grid LSTM network will repeatedly scan the source sentence on
each generated word. Another feature is that the source words and target words
are projected on di↵erent sides of the Grid LSTM, ensuring that the vectors will
interact closely without being conflated. We will describe the Grid LSTM in detail
in Section 2.3.3.

Note that compared to the challenge of implementing a chatbot, the translation
problem is significantly easier to solve. First, the sentences do not keep a context
between each other, as they do in a conversation. Second, it is easier to work
with as it has well-defined evaluation methods, e.g. BLEU [Papineni et al., 2002].
Automatic evaluation for a conversational agent is still an open problem. The
research on conversational agents has resulted in two subcategories that distinguish
between retrieval and generative based chatbots. The former architecture uses a
repository of predefined responses, while the latter will generate new sentences it
may not have encountered before. There are pros and cons to both approaches.
Shang et al. [2015] and Vinyals and Le [2015] explores the generative, while Lowe
et al. [2015] apply the retrieval approach.

Shang et al. [2015] propose a Neural Responding Machine (NRM) and employs
the Encoder-Decoder framework to address the response generation problem, using
GRU-cells. Unlike the previously mentioned research papers, they are looking at
the Short-Text Conversation (STC) problem instead of translation. An STC is
defined as a two-turn conversation, meaning that there are only two statements,
one question and one response. The NRM is trained on a dataset collected from
a microblogging service and is fed with post-response pairs. The decoder is a
standard RNN model, where the input may di↵er slightly depending on which
encoder it applies. They present three types of encoding schemes, a global scheme,
a local scheme and a hybrid scheme which combines the two. The global scheme
uses the same architecture as in Cho et al. [2014] and Sutskever et al. [2014], where
the final hidden state in the encoder is the context, and then the input to the

22 CHAPTER 2. BACKGROUND THEORY

decoder. The local scheme is based on the approach described in Bahdanau et al.
[2014], where the decoder can choose which parts of the input sequence to focus on.
Both schemes have their pros and cons, and by concatenating the hidden state from
the local and global decoder, they create a new approach, a hybrid scheme, which
yields better results. Five persons conducted the human evaluation and assigned a
score from 0 to 2 (unsuitable, neutral, suitable) to several responses given a post.
The evaluators were asked to have grammar, fluency, logic consistency, scenario
dependence, and generality in mind when evaluating the responses. They compared
the NRM models with a Retrieval-based [Ji et al., 2014] and a statistical machine
translation (SMT) based method [Ritter et al., 2011]. The SMT model performed
significantly worse than the other candidates, while the retrieval based beat the
NRM-global model. The hybrid scheme received the best results.

Vinyals and Le [2015] proposed “A Neural Conversation Model”, using the
architecture described in Sutskever et al. [2014]. They test the model using two
datasets. The first dataset is a closed domain IT helpdesk troubleshooting dataset,
extracted from chat logs. The second is an open domain movie transcript dataset.
They evaluate the model using perplexity, which measures how well the model
predicts a sample, in addition to a human evaluation. The output from the model
shows that it sometimes manage to produce natural conversations. However, their
model does not take the context of a conversation into account, which may result
in contradicting replies within the dialogue.

Despite the obvious advantage of the generative model, there are several rea-
sons for why the proposed generative models are not good enough for conversa-
tional agents. Even though it has decent results for short text conversations, it
may struggle with longer sentences and conversations. Further, the grammar and
sentence structure may be wrong. The latter problem is solved with the retrieval
based model, as the sentences are picked from a fixed set, without grammatical er-
rors. Several papers have looked towards this subcategory of conversational agents.
Lowe et al. [2015] consider three di↵erent approaches to create a retrieval based
model, a term frequency-inverse document frequency (TF-IDF) approach, an RNN
approach, and finally they study an LSTM approach. Their architectures are built
upon a Weakly Supervised Embedding Model from Bordes et al. [2014], initially
used in the question answering task as described in Fader et al. [2013]. Bordes
et al. [2014] transformed the questions and answers to vectors, and their objective
is to make the question and the best-suited answer to be close in the n-dimensional
space. The RNN model used in Lowe et al. [2015] consists of two RNNs. The first
RNN finds the embedded vector for the question, where the last hidden states are
used as a bias in the second RNN to find the embedded vector for the response
using beam search5. The significant di↵erence between Lowe et al. [2015] and the

5An algorithm that explores a subset of the model’s possible outputs. It will traverse the n
best paths until they end. (https://en.wikipedia.org/wiki/Beam search)

2.3. RNN ARCHITECTURES 23

previously mentioned papers is that they are concerned with the classification of
responses, instead of generation. In addition to the RNN model, they considered
the same architecture but changed the hidden units to LSTM units in order to
model longer-term dependencies. Their results show that the LSTM model is sig-
nificantly better than pure RNN and TF-IDF evaluating with the Recall@k metric.
This evaluation method asks the model to output the k best responses, and it is
correct if the correct answer is among these options.

2.3 RNN Architectures

We described the principles of a simple RNN in Section 2.1.3. This section will take
a closer look at this network, and study how the RNN architectures have evolved.
In the following subsections, we will describe the most common cells, i.e. the layer
consisting of an artificial neuron with self-loops, applicable in the Encoder-Decoder
architecture, and further look at extensions of these cells. The theory presented in
this section, and the figures, are inspired by Colah’s blog posts6.

2.3.1 LSTM

Figure 2.9: Unrolled LSTM cell.

Essential to the success of using RNNs is the use of Long Short-Term Memory
(LSTM) cells. LSTM is an RNN architecture first proposed by Hochreiter and
Schmidhuber [1997] and has been increasingly popular after its origin. RNNs using

6http://colah.github.io/

24 CHAPTER 2. BACKGROUND THEORY

LSTM cells can learn long term dependencies to a greater extent than RNNs using
standard cells. An unrolled LSTM cell is illustrated in Figure 2.9.

The cell comprises a memory state and a hidden state. The first state consists
of all the information the network has at the current time step, whereas the hidden
state is the networks internal memory. These states will be determined by the past
inputs (x1, ..., xi�1). The computation at each step is defined in the equations in
2.22.

2.3. RNN ARCHITECTURES 25

gu = �(WuH)

gf = �(W fH)

go = �(W oH)

gc = tahn(W cH)

m0 = gf �m+ gu � gc

h0 = tanh(go �m0)

(2.22)

The output of the cell is dependent on four mechanisms in which the cell is
built upon. First, we have the forget gate mechanism, gf , which decides how much
of the old history in the state that should be carried on by deleting parts of the
previous memory vectorm

i�1. Further, the two mechanisms gu and gc will together
determine the new memory m

i

. gu decides which values we will update, whereas
gc creates a vector of new candidate values that could be added to the state. In the
next step, the LSTM cell combines these two to create an update to the memory
state. The output gate mechanism, go, will then determine what is read from the
new memory m

i

onto the hidden vector h
i

.

gf , gu and go consists of a sigmoid activation function, Equation 2.23, which
outputs values between 0 and 1. If the output of the activation function is 1, it
tells the gate to include all of the hidden information. If it outputs 0, it will get
rid of this information. Since the gates can prevent the rest of the network from
modifying the contents of the memory cells for multiple time steps, LSTM networks
preserve signals and propagate errors for much longer than ordinary recurrent neu-
ral networks.

S(t) =
1

1 + e�t

(2.23)

2.3.2 GRU

The recent years, Gated Recurrent Unit (GRU) [Cho et al., 2014], has been a
popular substitute to LSTM. The GRU cell controls the flow of information in a
similar manner as the LSTM cell. However, the cell consists of only two gates, the
reset and the update gate, while the hidden state and the memory state is merged
to one. By reducing the number of gates, the model consists of less complex cells,
and hence speeds up the training process, as well as it is easier to implement. The
reduction in complexity has made it to a popular alternative to the well-documented
LSTM cells. Figure 2.10 illustrates the architecture of the cell.

26 CHAPTER 2. BACKGROUND THEORY

Figure 2.10: Unrolled GRU cell.

2.3.3 Grid LSTM

Kalchbrenner et al. [2015] proposed the N -dimensional Grid LSTM (N -LSTM)
architecture. They motivate their work by the fact that other families of deep neural
networks also su↵er from the same problems as RNNs applied to long sequences.
Unlike the LSTM architecture, other networks cannot dynamically select or ignore
its inputs. Thus they want to generalize the advantages of LSTM to other deep
computations. Further, they present a Grid LSTM architecture that yields good
results on the translation problem.

The main di↵erence between the standard LSTM cell and the Grid LSTM cell
is the possibility for communication between layers. A feed forward network is
similar to the 1-LSTM, while 2-LSTM is comparable to a stacked LSTM with cells
along the depth dimension. The use of LSTM cells in an additional dimension is
also the di↵erence between Multi-Dimensional LSTMs [Graves et al., 2007] and
Grid LSTMs with 3 or more dimensions.

To understand how the Grid LSTM architecture works, we need to look at the
elementary units, which they refer to as blocks. A 2-LSTM block is illustrated in
Figure 2.11. An unrolled block forms a 2-dimensional grid, consisting of two LSTM
cells in each block. An N -Dimensional block will first concatenate the input hidden
vectors from N dimensions as H = [h1, ..., hN

]. Further, it will compute N LSTM
transformations for each dimension, using the formulas in Equation 2.24. This
means that both the new hidden and memory vector for the di↵erent dimensions
vectors are distinct, yet they are influenced by a shared hidden vector H, as illus-

2.3. RNN ARCHITECTURES 27

Figure 2.11: 2-Dimensional Grid LSTM block, consisting of two LSTM cells in
di↵erent directions. When it is unrolled it will form a 2 dimensional grid.

28 CHAPTER 2. BACKGROUND THEORY

trated in Figure 2.11. The blocks, and the grid that consists of blocks, will have
N sides with incoming hidden and memory vectors, and N sides with outgoing
vectors. This mechanism inside the blocks ensures that the hidden and memory
vectors from the di↵erent sides will interact closely without being merged. The
input is fed into the network on one of the sides of the grid as a pair of hidden and
memory vectors, while the target is aligned along one of the other sides.

(h0
1,m

0
1) = LSTM(H,m1,W1)

(h0
2,m

0
2) = LSTM(H,m2,W2)

...

(h0
N

,m0
N

) = LSTM(H,m
N

,W
N

)

(2.24)

If a network has a few blocks along a given dimension in the grid, it can be useful
to just have regular connections along that dimension without the use of LSTM
cells. Kalchbrenner et al. [2015] refer to this as a non-LSTM dimension. Another
feature they present is the sharing of weight matrices along specified dimensions.
If the weights are shared along all dimensions including the depth, it is defined as
a Tied N -LSTM model.

Chapter 3

Proposed Architectures

This master’s thesis introduces nine distinct conversational agents. However, some
of them are based on the same model, as illustrated in Figure 3.1. This chapter is
dedicated to present the implementation of six di↵erent RNN based conversational
agents. First, the baseline described in Section 3.1 works as a basis for comparison,
in addition to be the fundamental building block for the proposed models. Second,
we explain the minor change that is required to create a GRU model. Further, the
implementation of the Grid LSTM model is described in Section 3.3. Section 3.4
describes the Stateful model, whereas Section 3.5 describes the Stateful-Decoder
model. Finally, Section 3.6 introduces the sixth model, the Context-Prepro model.
Code snippets are presented to connect the implementation with previously de-
scribed theory, to make it easier for the reader to see the di↵erences between the
proposed models, and to understand how di↵erent aspects of the Encoder-Decoder
model works.

3.1 LSTM Baseline

The LSTM baseline is built to mimic the Neural Conversational Agent described in
Vinyals and Le [2015]. This architecture adopts the Encoder-Decoder model from
Sutskever et al. [2014], using LSTM cells. TensorFlow has proposed an interface
for making this model and named it the Sequence-to-Sequence model1. This ar-
chitecture is illustrated in Figure 3.2. The default model consists of LSTM cells
that process one word at a time and compute the probabilities of the possible
continuations of the sentence.

For this experiment, we adopt TensorFlow’s Translation model2, which provides

1https://www.tensorflow.org/tutorials/seq2seq
2https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/translate.py

29

30 CHAPTER 3. PROPOSED ARCHITECTURES

Figure 3.1: An overview of the nine conversational agents developed during this
research project. Identical color implies that they have the same architecture, and
the number indicates which experiment(s) they are used for. We have trained
five chatbots on the UDC, and four on the OpenSubtitles dataset. The LSTM
baseline, Grid LSTM, GRU, Context-Prepro, Stateful, and Stateful-Decoder are
the six underlying conversational agent models and are described in Chapter 3.
Section 5.3.3 explains the One-Bucket model.

Figure 3.2: Sequence-to-Sequence architecture. Each box in the picture above
represents a cell of the RNN. Image from Sutskever et al. [2014].

3.1. LSTM BASELINE 31

us with code for reading data, creating the model, training, and decoding for the
translation task. These are the four core operations that every agent needs, and
becomes the architectural interface for the models. The task of creating conver-
sational agents is similar, but not identical, to the translation problem. Hence,
the model requires changes to fulfill this functionality. The model uses the “em-
bedding attention seq2seq” model, which is just one of many possible Sequence-to-
Sequence architectures from the TensorFlow library. This architecture applies both
the attention mechanism from Bahdanau et al. [2014], and the word embedding as
described in Mikolov et al. [2013b], as presented in Section 2.2. It also reverses the
input sentences as described in Sutskever et al. [2014].

The way our baseline prepare and feed the data is completely di↵erent from
the proposed approach in the translation model. For this reason, Section 5.1 is
dedicated to describe this. On the other hand, the creation of the model, the
training process, and the decoding step are comparable to the methods in the
translation model. Hence, we take a closer look at these functions in this section.

Create Model
The create model function (Listing 3.1) is used to initialize or restore a model,
and to prepare it for either training or interaction with a user. Further, the loss
function and the BPTT is constructed and made ready for the training process.
These operations, however, are not essential when interacting and evaluating the
model. Hence, the create model function has a parameter (forward pass only)
which determines whether to execute the BPTT or not.

1 de f c reate mode l (f o rward pass on ly , . . .) :
2 model = seq2seq model . Seq2SeqModel (f eed forward , . . .)
3 r e turn model

Listing 3.1: Create model function

The model is built with the given number of layers, units, and the chosen RNN
based cell. Listing 3.2 shows how the baseline is initialized with LSTM cells
wrapped in multiple layers.

1 s i n g l e c e l l = t f . nn . r n n c e l l . BasicLSTMCell (num units)
2 c e l l = s i n g l e c e l l
3 i f num layers > 1 :
4 c e l l = t f . nn . r n n c e l l . MultiRNNCell ([s i n g l e c e l l] ⇤ num layers)

Listing 3.2: Create LSTM model

The model requires fixed-length vectors of length n as input. This indicates
that every question and response in the training data that has length i where i < n
needs to be zero-padded. If a sentence is short the input vector will mainly consist
of padding tokens, which is time ine�cient. To reduce some of this unnecessary
padding, TensorFlow introduced “buckets” to their model. The purpose of the

32 CHAPTER 3. PROPOSED ARCHITECTURES

buckets is to allow multiple fixed-size vectors for the input and the output, so
that shorter sentences can avoid many padding tokens. To further increase the e�-
ciency, the model applies the sampled softmax, to avoid that training and decoding
complexity increase proportionally to the vocabulary size.

Train
When the model is ready for training, it is fed with question-response pairs. The
code in Listing 3.3 illustrates a simplified version of the training process. The model
is handed an amount of training data, which it used to form a batch, and performs
a training step. The training step is then calculating the loss and performing the
BPTT arranged by the model creation.

1 whi le max t ra in s t ep s >= cur r en t s t ep :
2 encoder inputs , decoder inputs , t a r g e t we i gh t s = model .

ge t batch (t r a i n s e t , bucket id)
3 , s t e p l o s s , = model . s t ep (encoder inputs , decoder inputs ,

t a rge t we i gh t s , . . .)

Listing 3.3: Training procedure

The feeding of training data to the model is done in batches. Our approach
di↵ers from the one used in TensorFlow’s translation model. TensorFlow’s approach
loads the entire training file into memory and randomly picks samples to construct
a batch. For massive datasets, this will require a lot of memory. Instead, our
model continuously streams training data from a stored file meaning that the only
training data that is loaded into memory, is the pairs that the model is currently
training on. This comes with two advantages: First, the reduced memory could be
used to extend the model further or increase the batch size. Second, this approach
guarantees that all of the training data is used equally many times during training.
When the file reader reaches the end of the file, i.e. one epoch is over, the training
file is shu✏ed to assure that the batches for the next epoch are di↵erent from the
previous.

Decode
Interaction with the chatbot is done by restoring a checkpoint from a trained model.
As the model is not supposed to adjust weights when it decodes, it does a single
step without the backward pass. The outcome of this step will then consist of the
most predicted sequence, rather than the loss. A user will only type one input at
the time. Therefore, the batch size must be adjusted to consist of a single sample.
Listing 3.4 describes the decoding process.

1 model = create mode l (f o rward pas s on ly=true , . . .)
2 model . b a t c h s i z e = 1
3 whi le i n t e r a c t i n g :
4 ques t i on = prep roce s s (use r input , . . .)

3.2. GRU MODEL 33

5 encoder inputs , decoder inputs , t a r g e t we i gh t s = model .
ge t batch (quest ion , . . .)

6 , , output = model . s t ep (encoder inputs , decoder inputs ,
t a rge t we i gh t s , f o rward pas s on ly=true , . . .)

Listing 3.4: Decoding procedure

The decoder applied in our baseline practice a greedy approach, which means
that the most predicted word is followed by the next most predicted word etc. We
discuss an optional approach for the decoder in Section 7.4.

The question a user inputs to a conversational agent, should ideally have no
grammatical errors. This, however, is hard to ensure. Therefore, the input to the
conversational agent will walk through some of the preprocessing steps, which will
be described in Section 5.1. Recall that the chatbot requires input and output as
vectors with fixed length. As a result, the chatbot will continue to generate words
until the current bucket size is reached. The output may of this reason, consist
of several sentences. We observed that more than just the first sentence usually
made sense, but also that the chatbot often repeated its answer. Thus, we defined
a method to return the N first sentences in the output.

3.2 GRU Model

GRU has a less complex structure compared to the LSTM and is computationally
more e�cient. We want to explore how well the GRU conversational agents per-
form, and if the time required to train a GRU model is significantly less than the
training of the baseline. TensorFlow’s Sequence-to-Sequence interface is motivated
by the many di↵erent models proposed in recent papers and makes it easy to ex-
periment with both LSTM and GRU cells, despite their architectural di↵erences.
To change from LSTM to GRU cells in the LSTM baseline model, we modify the
cell as demonstrated in Listing 3.5.

1 s i n g l e c e l l = t f . nn . r n n c e l l . GRUCell (s i z e)
2 c e l l = s i n g l e c e l l
3 i f num layers > 1 :
4 c e l l = t f . nn . r n n c e l l . MultiRNNCell ([s i n g l e c e l l] ⇤ num layers)

Listing 3.5: Create LSTM model

3.3 Grid LSTM Model

Our goal is to use the Grid LSTM cell, as proposed in Kalchbrenner et al. [2015],
to experiment with the state-of-the-art in the field of LSTM architectures. The
use of the Grid LSTM cell in a chatbot is motivated by the challenging task of

34 CHAPTER 3. PROPOSED ARCHITECTURES

representing all of the information in a sentence in one vector. The attention
mechanism, mentioned in Section 2.2, relieves some of the pressure on the encoder,
which the Grid LSTM further improves as a result of the structure of the Grid
LSTM block. The input is not compressed to one vector, but each word in the
input sequence is projected on one side of the grid. Thus, the model can repeatedly
scan the source sentence. Therefore, we want to see whether or not this has an
e↵ect on the quality of the output from a conversational agent.

We relate our problem to the translation experiment described by Kalchbrenner
et al. [2015], illustrated in Figure 3.3. This architecture is a two layered 3-LSTM
blocks design, meaning that each layer is a grid construction of 3-LSTM blocks. It
appears like two 2-LSTMs stacked on top of each other, but each block is connected
to the corresponding block in the other layer. However, during the test phases, we
noticed that the model’s loss decreased very slowly with the use of 3-LSTM block.
By experimenting with the 2-LSTM block in the same environment, we observed
a quickly decreasing loss. Hence, we proceeded with the 2-LSTM block instead of
the 3-LSTM block.

The model is comparable to the baseline, with the change of cells and a bidirec-
tional processing of the data. Furthermore, as the dimensions of the cells increase,
the model needs to handle the computational growth. We adopt Tensorflow’s Con-
trib3 module for constructing GridRNN cells4, and further modified the code to
give the model the same properties as the translation model in Kalchbrenner et al.
[2015]. An example of the creation of the Grid LSTM model is shown in Listing
3.6. One change we had to apply to the Grid2LSTMCell class was that the weights
should be tied as they are shared across both the source and the target sentence.
The translation experiment uses this to capture reordering of patterns in sentence
structure across di↵erent languages. Transferred to the conversational agent prob-
lem, the intention with the tied weights is to capture the source of the problem in
the source sentence and the source of the solution in the corresponding answer. To
match the translation example, the model must process the source sentence and
produce the target in di↵erent dimensions. Instead of the MultiRNNCell class5,
we create a new Bidirectional class to construct the two layers.

1 s i n g l e c e l l = Grid2LSTMCell (s i z e , . . .)
2 c e l l = s i n g l e c e l l
3 i f num layers == 2 :
4 c e l l = B i d i r e c t i o n a l ([s i n g l e c e l l] ⇤ num layers)

Listing 3.6: Create Grid LSTM model

3TensorFlow Contrib is a directory which is not o�cially supported, and the code may change
or be removed at any time without notice.

4https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/grid rnn/
python/ops/grid rnn cell.py

5https://www.tensorflow.org/versions/r0.11/api docs/python/rnn cell/

3.3. GRID LSTM MODEL 35

Figure 3.3: Translation model described in Kalchbrenner et al. [2015], consisting
of 3-D Blocks.

36 CHAPTER 3. PROPOSED ARCHITECTURES

The layers behave in a bidirectional way, where the first layer scans the source
sentence in one direction and the second in the opposite. This design is used
to capture the relations between both the preceding and succeeding words, and
thus increase the ability to learn longer sequences of words. Unlike the traditional
bidirectional network, where the forward and backward states are computed in
parallel and then concatenated [Schuster and Paliwal, 1997], the bidirectional Grid
LSTM network will compute the forward states first, and then reverse these states
as input to the second layer. A code snippet from the Bidirectional class is presented
in Listing 3.7.

1 cur inp = inputs
2 hidden output = []
3

4 # Forward p ro c e s s i ng
5 fwd m out l i s t = []
6 f wd c e l l = s e l f . c e l l s [0]
7

8 c u r s t a t e = s t a t e [0]
9 fwd m out , fwd s ta t e ou t = fwd c e l l (cur inp , c u r s t a t e)

10 fwd m out l i s t . append (fwd m out)
11 hidden output . append (fwd s ta t e ou t)
12

13 # Backward p ro c e s s i ng
14 bwd m out l i s t = []
15 bwd ce l l = s e l f . c e l l s [1]
16 cu r r e v e r s e d i npu t s = array ops . r e v e r s e (cur inp , [True , Fa l se])
17 c u r s t a t e = s t a t e [1]
18 bwd m out , bwd state out = bwd ce l l (cu r r ev e r s ed i npu t s , c u r s t a t e

)
19 bwd m out l i s t . append (bwd m out)
20

21 hidden output . append (bwd state out)
22

23 hidden output = tup l e (hidden output)
24

25 outputs fwd = nest . pack sequence as (s t r u c tu r e=fwd m out ,
f l a t s e q u en c e=fwd m out l i s t)

26 outputs bwd = nest . pack sequence as (s t r u c tu r e=bwd m out ,
f l a t s e q u en c e=bwd m out l i s t)

27

28 memory output = array ops . concat (1 , outputs fwd + outputs bwd)
29 r e turn memory output , h idden output

Listing 3.7: Bidirectional processing

3.4. STATEFUL MODEL 37

3.4 Stateful Model

The previous architectures do not handle information from preceding turns in a
conversation, but simply returns the most predicted answer to the current question.
This can be problematic as a question such as “How do I do that?” needs a context
to make sense. In order to mimic a human conversation, we need to look at prior
turns to give the chatbot the ability to reuse this information. The goal is a
conversational agent that can use the context of the conversation, even though the
most recent question does not contain any information about the topic.

The idea behind the Stateful model is to use the previously generated state in
the RNN decoder as the initial state for the next turn. The decoder will, therefore,
be adjusted to the previously generated information, when the next question arises.
It is reasonable that some of the contexts from the conversation will be passed on,
and that the chatbot can use this information to answer follow-up questions.

The encoder in the Stateful model is identical to the encoder in the LSTM base-
line. The RNN decoder, however, required some adjustments. Figure 3.4 sketches
the processing of four training pairs for the Stateful Model. When the model pro-
cesses training pairs from the same conversation, it will return the decoder state
for every training step and feed it into a Tensorflow placeholder6. The next step
will further use this LSTM state. When a conversation in our training data ends,
we reset the state to make sure that no context is swapped between two di↵erent
conversations. The code example in Listing 3.8 illustrates that the state is handled
when a new batch is filled, and that each training step returns the current state
from the model. The get stateful batch keeps control of all of the conversations and
will also reset the state if necessarily.

1 s t a t e = i n i t i a l s t a t e
2 whi le max t ra in s t ep s >= cur r en t s t ep :
3 t r a i n s e t , b a t ch t r a i n s e t , s t a t e = g e t s t a t e f u l b a t c h (

t ra in data , s ta te , . . .)
4 encoder inputs , decoder inputs , t a r g e t we i gh t s = model .

ge t batch (b a t c h t r a i n s e t)
5 , s t e p l o s s , , s t a t e = model . s t ep (encoder inputs ,

decoder inputs , t a rge t we i gh t s , s ta te , . . .)

Listing 3.8: Stateful training

In Section 2.1.5, we described the advantage of training in batches. The use
of batches is trivial in the case of a non-stateful model, as the training steps are
independent of each other. For the Stateful model, we need to connect the training
steps as we will pass the decoder state to the next input. Within a batch, how-
ever, each training pair is trained independently, meaning that every batch obtains

6https://www.tensorflow.org/api docs/python/tf/placeholder

38 CHAPTER 3. PROPOSED ARCHITECTURES

Figure 3.4: Stateful training. The decoder state will be passed on as an initial
decoder state for the next training step, if the next training step belongs to the
same conversation. At the start of a new conversation, a new zero-initialized LSTM
state is created.

3.5. STATEFUL-DECODER 39

multiple decoder states. In other words, with a batch of size N , we can train N
conversations simultaneously. Because of this, and the fact that the conversations
cannot be mixed, we need N conversation holders as batch feeders. Each batch
feeder pays attention to a single conversation at the time and feeds each batch
with one training pair from the current conversation. When any of these feeders
goes empty, a new conversation is read from the training file and tells the model
that it should reset the state for this feeder. This somewhat complicated procedure
is illustrated in Figure 3.5, with two batches for simplicity. We, however, used a
batch size of 24 in our model to represent a bigger fraction of the data in each step.
As a consequence of the stateful training, we had to eliminate the use of buckets
for the Stateful model. The reason for this is that the previous state should have
an impact on the next sentence in a conversation, regardless of the length of it. If
we were using di↵erent buckets, this would be impossible.

To our knowledge, this is the first application of an RNN model used for a
conversational agent which is trained in a stateful manner.

3.5 Stateful-Decoder

For our context models (Context-Prepro, Stateful Model, Stateful-Decoder), we
only output the first sentence from the decoder. This is done to avoid confusion
to the user and the model, as we have no guarantee for the quality of the previous
responses. A stateful decoder will, just as for the stateful training, pass on the
decoder states during the conversation. In Section 3.1 we presented a simple code
for the baseline (Listing 3.4). In Listing 3.9, the only di↵erence is the reuse of the
state.

1 model = create mode l (fo rward pass=true , . . .)
2 model . b a t c h s i z e = 1
3 s t a t e = i n i t i a l s t a t e
4 whi le i n t e r a c t i n g :
5 encoder inputs , decoder inputs , t a r g e t we i gh t s = model .

ge t batch (use r input , . . .)
6 , , output , s t a t e = model . s t ep (encoder inputs ,

decoder inputs , t a rge t we i gh t s , s ta te , f o rward pass=true , . . .)

Listing 3.9: Stateful decoding

The Stateful-Decoder model is identical to the LSTM baseline with one bucket
during training, but during decoding, it is identical to the Stateful model.

40 CHAPTER 3. PROPOSED ARCHITECTURES

Figure 3.5: Stateful batch feeding. The training file provides the batch holders
with conversations. At once one of the holders gets empty, a new conversation is
fed from the training file. The feeders continuously supply the corresponding batch
with exactly one new training pair for each step to ensure that the conversations do
not mix up. Identical color implies that the training pair QN,RN belongs to the
same conversation. Training pair (Q1, R1) and (Q4, R4) are trained independently.
However, the LSTM state from (Q1, R1) is reused in the decoder when the model
handles (Q2, R2). This is also the case for (Q4, R4) and (Q5, R5).

3.6. CONTEXT-PREPRO 41

3.6 Context-Prepro

The only di↵erence between this model and the baseline, is that the input will
consist of the previous response and the current question. Thus, we need to con-
catenate these sentences before sending it in to the encoder shown in Listing 3.10.
The preprocessing of the training data for this model is further explained in Section
5.1.3. We refer to this approach as the Context-Prepro model.

1 model = create mode l (fo rward pass=true , . . .)
2 model . b a t c h s i z e = 1
3 output = ”” # Empty f o r the f i r s t turn
4 whi le i n t e r a c t i n g :
5 ques t i on = prep roce s s (output + user input , . . .)
6 encoder inputs , decoder inputs , t a r g e t we i gh t s = model .

ge t batch (quest ion , . . .)
7 , , output = model . s t ep (encoder inputs , decoder inputs ,

t a rge t we i gh t s , f o rward pass=true , . . .)

Listing 3.10: Context-Prepro decoding

42 CHAPTER 3. PROPOSED ARCHITECTURES

Chapter 4

Datasets

Digital communication has changed the way humans interact, which opens oppor-
tunities to collect quantitative datasets. However, it is still a challenge to find
well-suited datasets for conversational agents due to noise, which is characterized
as data that has an entirely di↵erent pattern or structure than rest of the dataset.
Reddit comments1, Twitter2 and Ubuntu Dialogue Corpus3 (UDC) are all examples
of open source datasets that are continuously growing and available for everyone.
This chapter studies the datasets used for the conversational agents presented in
this thesis, and focus on the structure, characteristics, and shortcomings of each
dataset. Section 4.1 describes the UDC, whereas Section 4.2 take a closer look at
the OpenSubtitles dataset.

4.1 Ubuntu Dialogue Corpus

The UDC is a closed domain dataset based on the Ubuntu Chat Logs4, which is
a forum used to discuss technical issues concerning the Ubuntu operative system.
This can be used to train a conversational agent within the branch of technical
support.

The script from the Ubuntu Dataset Creator5 will download and store the
conversations in tsv (tab separated values) files, each conversation in a distinct
file. An example of such a file is depicted in Table 4.1. Each line consists of a

1https://www.reddit.com/r/datasets/comments/3bxlg7/i have every publicly available red-
dit comment/

2https://dev.twitter.com/overview/api
3https://github.com/rkadlec/ubuntu-ranking-dataset-creator
4https://irclogs.ubuntu.com/
5https://github.com/rkadlec/ubuntu-ranking-dataset-creator

43

44 CHAPTER 4. DATASETS

timestamp indicating when the message was sent, the username of the person who
sent the message, the username of the receiver and the message itself. The parlance
used in forums often consists of slang words and abbreviations, considering the low
threshold for participating in discussions. Moreover, the UDC consists of directory
paths, emoticons, terminal commands, and URLs. Some of these elements are used
in the conversations in Table 4.2 and 4.3. More examples are listed in Appendix
A.

Timestamp Sender Receiver Message
2005-05-
25T11:26:
00.000Z

seth Also guys, I’m trying to get into my
Firefox preferences, but it keeps telling
me “root.disabled” = “true”

2005-05-
25T11:27:
00.000Z

lifeless seth are you logged in as ’root’ ?

2005-05-
25T11:27:
00.000Z

seth lifeless no

Table 4.1: UDC data format example

The advantage of the UDC is the enormous amount of data that is available.
When extracting conversations with two or more turns (where one turn is a se-
quence of consecutive messages from the same user), we get an initial dataset
consisting of 8.6M turns built upon 168.7M words. Table 4.4 illustrates the aver-
age number of words in a turn and the turn mode, i.e. the most common length
of a turn, in the input and output data. Having a dataset of this size gives us the
opportunity to remove data that does not fulfill certain requirements, such as reply
lengths and questions without responses. Even though anyone can participate in
online forums, the sentence structure is fairly good.

However, the low threshold for participating also leads to an informal and oral
language. The fact that we have no insurance about the content of the data means
that this dataset also su↵ers from noisy data. The response to a question may
di↵er from other datasets, as an URL may be a valid response to a question if it
navigates to a correct answer. However, if the response only consists of an URL, it
is di�cult to say anything about the chatbot’s ability to produce a well-structured
sentence. Table 4.2 illustrates another problem, where a user (in this case “ajavid”)
may type several consecutive responses. This leads to long turns, which are more
challenging to handle for a conversational agent.

4.2. OPENSUBTITLES 45

Jackrabbit: can anyone help me?
ajavid: ask
Jackrabbit: its a program that gets ati video drivers

becuase right now my screen is max lol
ajavid: lspci|grep VGA
ajavid: try to use packaged software in ubuntu as

much as possible
Jackrabbit: ok so what do I do with that command do I

put it in terminal?
ajavid: r5xx and below on ati == free 3d accel

with xorg 7.4 and latest mesa in jaunty
ajavid: for r6xx + only do you require the fglrx

driver
ajavid: whate exactly are you trying to do?
ajavid: don’t do random things like that
ajavid: in console terminal, sudo aptitude

pciutils; lspci|grep VGA
Jackrabbit: ok is that all on line like: sudo

aptitude pciutils; lspci|grep VGA
ajavid: yes, ; is a bash newcommand delimiter
Jackrabbit: ahhhh man I tell ya once my screen is

fixed I cant wait to read and learn about
this OS becuase I played with

Table 4.2: UDC content example 1

4.2 OpenSubtitles

The OpenSubtitles6 dataset consist of conversations from movie manuscripts. This
dataset is categorized as an open domain dataset because there are no restrictions
on topics in film manuscripts. Thus, we find it interesting to see if a chatbot trained
on this dataset will do well at the chit-chatting task.

We used the OpenSubtitles-Parser7 to download the English manuscripts. This
gave us 2.7M sentences, built of 19M words. As you can see from Table 4.5, the
average number of words in a sentence is less than the UDC average. The parser
will, in addition to download the dataset, do some preprocessing such as adding
spaces after apostrophes. Further, some words were concatenated, e.g. theysaid,
youknow, as if the writer tried to type the manuscript fast. “l” and “i0s” were

6http://www.opensubtitles.org/
7https://github.com/inikdom/opensubtitles-parser

46 CHAPTER 4. DATASETS

Siegel- im pastebining the entire thing.
PatrickDickey in the terminal, type sudo dpkg

--configure -a
Siegel- ok
Siegel- im gonna pastebin the result:

http://pastebin.com/1UQ2g5EV
PatrickDickey I haven’t forgotten you. ;-)

You could try sudo dpkg --remove
--pending and it should clear those
two updates out. Then you can do a
check for updates again, and try them
again.

Siegel- thanks would i need to restart?
because they still show in update
manager

Siegel- about a month maybe more
Siegel- it failed. im gonna pastebin details
PatrickDickey you could try sudo apt-get -f

dist-upgrade it’s supposed to force
things.

Siegel- im running it

Table 4.3: UDC content example 2

4.2. OPENSUBTITLES 47

Input data Output data
Average 17 14
Mode 2 2

Table 4.4: Average turn length and mode turn length

Input data Output data
Average 7 7
Mode 2 2

Table 4.5: Average turn length and mode turn length

switched in some words, e.g. caii � call, l0m � I 0m, reaily � really. Actions or
other descriptions were written in brackets, e.g. [song], [cries]. We also noticed
manuscripts where XML symbols, e.g. < br >, < i >, were present.

For Your Eyes Only, 1981
good afternoon , mr. bond .
don’ t concern yourself with the pilot .
one of my less useful people .
you are now flying remote control airways .
think twice , 007 .
it’ s a long way down .
i’ ve looked forward to this moment , mr. bond .
i intend to enjoy it to the full .
really , have you no respect for the dead ?
good bye , mr. bond .
End of Days, 1999
life keeps on tickin ’ , tickin ’ , tickin ’ , tickin ’
[song fades out]
what’ s wrong , baby ?
what’ s wrong ?
it was a dream .
he came for me again .
it’ s only a dream , angel .
it felt closer .
through out the country , the national guard ... has
been put on alert as a precaution [male newscaster]
mayor giulianiurged all citizens and police ... to stay
calm during this holiday season .

48 CHAPTER 4. DATASETS

no explanations for how blood on the hands of the christ
child , depictedin michelangelo’ s famous sculpture of
the pieta [male newscaster]
Gladiator, 2000
i served with you at vindobona .
you can help me .
whatever comes out of these gates ... we’ ve got a
better chance of survival if we work together .
do you understand ?
if we stay together , we survive .
the emperor is pleased to bring you the legionnaires ...
of scipio africanus !
to the death !
kill !
kill !
kill !
Bad Company, 2002
youknow , poor people do get married .
i know , but i don’ t feel like fighting with you ...
every day because we’ re broke .
marriage is hard enough without being poor .
hey , what happened to the love ?
what happened to all that romance ?
youknow i love you .
but youare living in this fantasy .
it’ s like you’ re waiting for some kind of miracle .
i gotta live in reality .
i am not gonna be young forever .
Fun with Dick and Jane, 2005
hey , veronica .
hi , how are you ?
good , good .
i didn’ t know you worked out here .
welcome to kostmart .
i hope you’ il take a trip by the deli today
for a complimentary cube of jalapeno cheddar .
i’ m lactose intolerant .
where do you keep the cigarettes ?
behind the counter .
but i’ m not sure that’ s a good ...
dick ?

4.2. OPENSUBTITLES 49

you missed one .

Table 4.6: OpenSubtitles content example

Because OpenSubtitles is based on movie subtitles, we have some assurance
of grammatical content. On the other hand, there are two main issues with this
dataset. First, it is hard to know whether or not two replies share context, as the
manuscripts are not divided into the di↵erent scenes. Second, we do not know if the
following sentence is a reply to the previous sentence, or if the same person speaks
twice. The manuscript from Table 4.6 reflects the di�culties we encounter when
training models on this dataset. The main problem is that it is hard to extract
good question and response pairs. Unlike the UDC dataset, we are not provided
with any information about which actor who says what. More examples of the
dataset are listed in Appendix B.

50 CHAPTER 4. DATASETS

Chapter 5

Experimental Settings

This chapter presents the experimental part of the research project, and describes
how we prepared, measured, planned, and conducted the experiments. Section
5.1 defines four preprocessing steps, and further the adjustments required in these
steps for the di↵erent datasets and the context-based models. Then, the metrics
used for evaluating the models are presented in Section 5.2. Section 5.3 outlines
the experimental plan. It also contains all the information required to repeat the
experiments and explains how to interact with the agents. The hardware used for
training is a distributed GeForce GTX TITAN X GPU, with standard memory
config at 12GB and a memory bandwidth of 336.5 GB/sec, 3072 CUDA cores
and a base clock of 1000 MHz. Our code is written in Python 2.7, applied with
Tensorflow1, an open-source software library for Machine Intelligence.

5.1 Preprocessing

In this section, we describe the preprocessing steps, from the initial dataset to
the training data consisting of question-response pairs. Further, we explain the
adjustments required in the preprocessing script, when creating training data from
the UDC and OpenSubtitles datasets. Similarly, the context-based models also
need the data in a certain way, and these changes are further described.

5.1.1 Preprocessing Overview

An overview of the preprocessing is depicted in Figure 5.1. During this process,
we save the questions in input files, and the responses in output files, referred to
as I and O in the figures. We cannot teach a chatbot to speak using an infinite

1https://www.tensorflow.org/

51

52 CHAPTER 5. EXPERIMENTAL SETTINGS

vocabulary, as training and decoding complexity increase proportionally to the
number of target words. Depending on the dataset, we choose a proper vocabulary
size consisting of the X most frequent words, while the rest of the words will
be categorized as out-of-vocabulary (OOV) words. Handling these OOV words
is typically done in two ways: 1) represent them with an unknown token or 2)
remove them from the dataset. The former solution is most common, but has
one major drawback: the chatbot might output an unknown token which does not
contribute to the sentence’s meaning. The latter option will destroy the structure
of the sentence. This section introduces an improved solution, where the idea is to
replace every OOV word with the most similar word in the vocabulary based on
both semantic and morphology. This approach is described in Step 2 and 3. The
preprocessing can easily be adjusted to be used by other datasets. Simply change
the extract part in Step 1, and optionally adjust the regular expressions or “word
replacements” that should be performed. A regular expression, or regex, defines
a search pattern used to find or replace strings. The remainder of this section
describes each preprocessing step in detail.

Step 1: Extract dialogs
The first step is to extract the question-response pairs from the dataset, and is
illustrated in Figure 5.2. The questions are saved in the input file, and the responses
are saved in the output file. Given an index x in the input file, the response appears
at line x in the output file. Depending on the characteristics of the dataset, we do
actions to certain words, e.g. URLs, abbreviations or words that are concatenated.
Then, we check if any of the words are in our “common misspelling file” (CMF),
which is based on Normalizer’s spell fix file2. The file consists of two words on
each line, the commonly misspelled word, and the correct word. During this step,
the script will iterate through all the words in the dataset and replace the possible
CMF-word with the correct one. The reason for why the preprocessing should
involve regex and misspelling checks is that the vocabulary should represent as
many words as possible. If two di↵erent words represent the same semantics, they
should not hold two places in the vocabulary, but rather be merged to one. Table
5.2 shows the reduction of unique words for the UDC dataset, and indicates that
the vocabulary will cover more of the words occurring in the dataset after this
process.

Step 2: Create Word Representation Model
Figure 5.3 shows the second step in the preprocessing procedure. In order to
remove the rest of the OOV words, we use the fastText3 library mentioned in
Section 2.2. This library allows us to create our own word representation model,
and train it on the data from the previous step. The model will be able to give
all words a word embedding which gives the word a position in an n-dimensional

2https://github.com/superscriptjs/normalizer/blob/master/data/spellfix.txt
3https://github.com/facebookresearch/fastText

5.1. PREPROCESSING 53

Figure 5.1: Preprocessing - Overview

54 CHAPTER 5. EXPERIMENTAL SETTINGS

Figure 5.2: Preprocessing - Step 1

Figure 5.3: Preprocessing - Step 2

space. Even though the dimension size should increase when the dataset is bigger
[Bojanowski et al., 2016], we decided to stick to the default 100-dimensional vector
because larger vectors are time-consuming to compare. FastText helps us in the
process of eliminating all OOV words, as it can generate vector representations to
all words which we further use to replace unknown words.

Step 3: Skip long turns and replace OOV words
Figure 5.4 depicts the third step. We set an upper limit to 30 words for the turn

Figure 5.4: Preprocessing - Step 3

length to decrease the preprocessing time and to make the training easier, as it is
challenging for chatbots to handle longer sentences. The reason for why we slice
the data in this step, and not in the previous steps, is because we wanted to see
the e↵ect of the regex and word replacements on the entire corpus. These changes
may also a↵ect the turn length of a training pair, to either fit or not fit a bucket.

5.1. PREPROCESSING 55

OOV Word Word in vocabulary
luanch launch

mailsoerver mailserver
,meaning meaning
courcecode sourcecode
externen extern
pref-> preferences->

(direction direction
hey** hey

??python python
tomatto tomato
248mb 96mb

alt+left-drag alt+left
urprised surprised
s4487 memtotal:

iglooftp-pro filezilla

Table 5.1: Examples of replacements of OOV word by calculating the cosine similar-
ity of word embeddings from the word representation model. Typos are recognized
and handled in a great way, while rare words sometimes are replaced with some-
thing completely di↵erent. Further, numbers are switched, which tells us that a
special token for integers in the vocabulary should be considered.

Also, the fastText model will perform better by having more training data. Since
all words should be represented as an integer in the final training data, we create
a vocabulary consisting of the X most frequent words. The vocabulary size will
vary depending on the dataset.

A word in the dataset will either be in the vocabulary or be an OOV word. We
use the fastText model created in step 2 to find word embeddings for the vocabulary
and the OOV words. With all words represented as 100-dimensional vectors, we
can calculate the similarity by exploring the embedded space and locate the nearest
neighbor to the current word. One approach to do this is by calculating the cosine
similarity4 between every vocabulary words’ vector and the OOV word’s vector.
The best match will be the word which has the smallest angular di↵erence. After
this, we replace the OOV word with the most similar vocabulary word. Now, we
have two files; input data consisting of questions, and output data with responses.
These files will only consist of words from the vocabulary. Thus, we have eliminated
the problems with unknown tokens. Figure 5.1 shows examples of OOV that is
replaced by the most similar vocabulary word.

4https://en.wikipedia.org/wiki/Cosine similarity

56 CHAPTER 5. EXPERIMENTAL SETTINGS

Figure 5.5: Preprocessing - Step 4

Step 4: Create final files
In the final step, depicted in Figure 5.5, we prepare the data for the Encoder-
Decoder model, which require the data represented as integers, where the input
and output data are separated by a comma. The questions and responses are
merged into one file, and the lines are then shu✏ed. The shu✏e helps us to get a
random distribution of the dataset in one file. We use a fraction of this file as train,
validation and test data. 80% is used for the training, 10% for the validation and
10% for test data. The test set is then converted back to readable text since this
is used for human evaluation purposes. The validation data is used for evaluating
the model during training with data it has not trained on before.

5.1.2 Preprocessing UDC

A user can send several consecutive messages, as illustrated in the conversations in
Table 4.2 and 4.3. In the extracting step, we keep track of which user that speaks
and concatenate consecutive sentences from the same user in one turn. We save
the utterances from the initial user into the input data and the utterances from
the responding user in the output data.

We use regex to recognize emoticons, URLs, and directory paths and replace
them with EMJ , URL, and DIR tokens, respectively. In the dataset, quotation
marks are placed in pairs around a word or a phrase, and the model will handle
the words in (“hello world”) and (hello world) di↵erently. In most cases, the
semantic of a word will not change because of a quotation mark; thus we will remove
them. Furthermore, we added other spelling errors we observed in the dataset, e.g.
paswrd to password, to the CMF. In addition, we replace abbreviations found in
Wikipedia’s list of English contractions5, such as “that’s” to “that is”. Table 5.2
depicts how we reduce the number of unique words by doing these changes.

Before deciding the vocabulary size, we studied how large vocabulary that is
needed to cover a certain percentage of the dataset. Figure 5.6 shows how many
words that is required in the vocabulary to cover 95-99% of the UDC. We decided
to have a vocabulary consisting of the 30k most frequent words, which will be able

5https://en.wikipedia.org/wiki/Wikipedia:List of English contractions

5.1. PREPROCESSING 57

Step Initial dataset Regex Misspellings
Unique words 2 451 308 1 320 772 1 318 619

Table 5.2: Unique words in the dataset after each step

Figure 5.6: Vocabulary size needed to cover [95,99] % of the dataset. The blue line
describes the vocabulary size needed to cover a percentage of the dataset.

to represent 97,7% of the dataset. The remaining 2,3% is categorized as OOV
words and will be replaced with the words in the vocabulary during Step 3.

The buckets used in the model, should each cover a decent amount of the
training data, but also avoid unnecessarily padding. Table 5.3 depicts how much
data each bucket covers after preprocessing Step 3. The tuple (A, B) means that
the question cannot consist of more than A words and that the response cannot
consist of more than B words in order to fit the bucket. For example, a question-
response pair with lengths (9, 15) will be placed in bucket (16, 16), and only in this
bucket. Even though the turn mode in both the input and output data is 2, the
(10,10) bucket does not contain the majority of the dataset. Despite a question-
response pair where the question has less than ten words, we have no guarantee
that the response has less than ten words and vice versa. If none of the buckets
fit, the pair is excluded.

Figure 5.7 and 5.8 illustrate the “bucket-scenario” just described. Figure 5.7
highlights how many turns in the input and output data that have the length
described along the x-axis. Individually, both the input and the output data has a
majority of only two words in each turn, but if we look at Figure 5.8, we see that

58 CHAPTER 5. EXPERIMENTAL SETTINGS

(10, 10) (16, 16) (22, 22) (30, 30) Excluded
8,83% 14.02% 13.39% 13.61% 50.41%

Table 5.3: Bucket size vs. coverage of the initial dataset. A training pair that is
placed in bucket (N,N), will only be placed in this bucket.

Figure 5.7: Occurrences of turns with length [1,50]

the mode has increased to 14 for the question-response pairs. Based on this, we
know that there is a majority of short turns, and besides that the smallest bucket
contains less training data, the most of its content has few words. The fact that
there is a majority of two-word turns is the reason for why we did not further
increase the tiniest bucket. If we increased the size, however, we might cover more
data in the bucket, but we would also generate training pairs where more than 80%
of the sentences contain PAD-tokens.

The UDC dataset consists of ⇠1.8M conversations after step 1, where the av-
erage number of turns per conversation is 3.2 turns. When limiting our dataset
to only include turns with less than 30 words, the average number of turns per
conversation decreases to 2.3 turns.

5.1. PREPROCESSING 59

Figure 5.8: Number of pairs that fit the given bucket size. The y-axis describes
how many pairs that fits perfectly in the bucket size on the x-axis.

5.1.3 Preprocessing UDC for Context Approaches

In Chapter 3 we described two approaches that did some changes to the model to
catch the context of a conversation better, the Stateful and Context-Prepro model.
These models require the data further preprocessed and prepared.

Preprocess the Training Data for Context-Prepro

The goal is to include the context in the training data, where the previous answer
will be added in front of the next training input, requiring an expansion of the
bucket sizes. However, this results in higher memory allocation as seen in Table
2.2, in addition to an increased training time. This näıve approach will indeed
carry some of the information from the previous turns.

A similar approach was explored by Sordoni et al. [2015]. The result of their
work was a Recurrent Language Model architecture which generated context-sensitive
responses. They presented a Tripled Language Model which concatenated the con-
text (previous message), the message itself, and the response into a single sentence
s. The network was trained to minimize the negative log-likelihood of the training
sentence s.

Instead of just sending in a question, we add some additional information to the

60 CHAPTER 5. EXPERIMENTAL SETTINGS

Model Training pairs Conversations
Non-stateful 3648675 1852868*
Stateful 1840502 665393

Table 5.4: Data comparison for non-stateful vs. Stateful.
*The non-stateful model does not use the term conversations. This number is there-
fore the total amount of conversations in the dataset, not conversations extracted
to fit the non-stateful model.

input. Usually, if person A and B talks, the input will have the format A1 � B1,
A2�B2, ..., An�Bn. A1 indicates the first turn in the question data, whereas B1
indicates the first turn in the response data. In this case, we change the input to
have the format to A1�B1, B1A2�B2, ..., B(n� 1)An�Bn. Now, the chatbot
has information about its previous answer as well as the question.

There is a trade-o↵ between the amount of information we should concatenate
as input to the model and the training complexity. As we have seen, training the
model with larger buckets, e.g. longer turns, requires more memory allocation and
the training time increases. Thus, we decided to limit the context to the previous
answer only.

Preprocess the Training Data for the Stateful Model

The preprocessing for the Stateful model is slightly di↵erent from the previously
described procedures. So far, the models have not paid attention to the order of the
training pairs. The Stateful model, however, will use previous states as inputs when
handling the next training pair in a conversation. Thus, the question and response
must be listed chronologically. Therefore, the order of the training pairs within
a conversation must stay unshu✏ed, while the conversation itself can be shu✏ed
among the other conversations. As no turns in the conversation can be longer than
the predefined bucket size, the preprocessing must filter out all conversations that
include turns contradicting this size. Naturally, this restriction removes a lot of the
training data, which can be seen in Table 5.4, ending up with ⇠665k conversations.

For e�ciency reasons, we merge all of the conversations into two new training
files. While one file is used for training, the other file is shu✏ed and recreated. An
EOC-token separates the conversations within the files.

5.1.4 Preprocessing OpenSubtitles

We do not know whether the following line in the OpenSubtitles dataset is the reply
to the previous line or not, and for this reason, each line will be in both the input
and output data as Table 5.5 shows. This dataset has other characteristics than

5.1. PREPROCESSING 61

Input data Output data
karl ! over here !
over here ! titus has got something .
titus has got something . okay , harvey .
okay , harvey . we have got you now , boy !
we have got you now , boy ! i do not understand .
i do not understand . what ?
what ? when we started ... there

were two feet .
when we started ... there
were two feet .

but now there is four here
.

but now there is four here
.

these tracks go on for
bloody miles .

these tracks go on for
bloody miles .

it is bizarre .

it is bizarre . what are they ?

Table 5.5: Input and output data for OpenSubtitles

the UDC, and multiple words that are not separated by whitespace is a frequent
fault. To increase the quality of the training data, we used regex to split words that
start with “yours/your/just/why”, removed the space after special characters, and
removed other characters entirely ([], <>,@,#). We used the same CMF as we
described earlier, but added some misspellings frequently observed in the dataset.
OpenSubtitles contained originally ⇠128k unique words, which we reduced by more
than ⇠7k words during this procedure.

Table 5.6 represents the buckets used in the models, whereas Figure 5.9 illus-
trates the size of the vocabulary needed to cover X% of OpenSubtitles. Having a
vocabulary consisting of 20k words cover more than 98% of the dataset.

(6, 6) (8, 8) (11, 11) (20, 20) Excluded
24,13% 22,35% 24,82% 23,70% 5%

Table 5.6: Bucket size vs. coverage of the initial dataset

62 CHAPTER 5. EXPERIMENTAL SETTINGS

Figure 5.9: Vocabulary size needed to cover [95,99] % of the dataset

Figure 5.10: Occurrences of turns with length [1,50]

5.2. METRICS 63

Figure 5.11: Number of pairs that fit the given bucket size

5.2 Metrics

5.2.1 Automatic Evaluation During Training

An automatic evaluation metric for conversational agents is still an open problem
and is one of the challenges when working with dialogue systems. However, an
automatic feedback during training is required, and we use perplexity as our metric.
Perplexity is a commonly used measurement in statistical language modeling, and
measure how well a probability model predicts a sample6. In our case, a low
perplexity means that the model has predicted the response well. The formula for
perplexity is expressed in Equation 5.1, where N is the number of training steps
between each calculation, and loss

i

is the loss in step i.

p = exp(

P
N

i=1 lossi
N

) (5.1)

5.2.2 Human Evaluation

We also conduct a Human Evaluation (HE), which evaluates the results from the
experiments that will be presented in Section 5.3. The experiments are divided in

6https://en.wikipedia.org/wiki/Perplexity

64 CHAPTER 5. EXPERIMENTAL SETTINGS

Grammar Points
Very bad grammar 1
Bad grammar 2
Some grammatical errors 3
Good grammar 4
No grammatical errors 5

Table 5.7: Human Evaluation metric - Grammar

Content (Single Questions) Points
Response makes no sense 1
Response makes little sense 2
Response makes some sense 3
Response makes a lot of sense 4
Response makes perfectly sense 5

Table 5.8: Human Evaluation metric - Content (Single questions)

three parts partitioned in two questionnaires. Part 1 and 2 are evaluated in the
first questionnaire, while Part 3 is evaluated in the second.

The participants of the HE will receive an information sheet, which explains
how the survey is structured, and with guidelines on how to judge the responses.
For each question or conversation, the evaluator is asked to rate the answer(s) from
the di↵erent conversational agents. When Shang et al. [2015] conducted a human
evaluation, the participants were asked to rate responses with a score from 0 to 2.
We, however, increased the range to be from 1 to 5, based on the feedback from the
test persons. When rating the grammar, the evaluators are asked to evaluate the
sentence structure and the spelling. When evaluating the content, the participants
should ask themselves if the response makes sense and if the chatbot answers the
question. When the questions are related, they should expect that the chatbot
remembers previous utterances as in a normal human conversation.

Content (Conversations) Points
Only bad responses 1
Many bad responses 2
Mixed quality on the responses 3
Many good responses 4
Only good responses 5

Table 5.9: Human Evaluation metric - Content (Conversations)

5.2. METRICS 65

HE for Part 1 and 2

The first evaluation aims to answer both research question 1 and 2. Part 1 and 2
of the experiments are evaluated together, as they both concern the UDC dataset.
The questions are extracted from this corpus’ test set. Recall that UDC is a closed
domain dataset which consists of technical Ubuntu related questions and responses.
Thus, some of the questions/responses require knowledge about Ubuntu. Due to
the technical content, we asked computer science, informatics and communication
technology students to participate. 30 students, women and men aged between 23
and 27, participated in this evaluation. However, because not everyone has expe-
rience with the Ubuntu operative system, we supplied some of the questions with
additional information. Examples of how we presented the question and responses
for Part 1 is shown in Figure 5.12, and as you can see, the evaluator is asked to rate
single questions. The actual response is listed below each answer, followed by the
replies from the chatbots. We chose to include the responses from the test set in
the questionnaire, to get an idea of how well the models perform compared to the
content in the dataset. An example of the presentation of the conversations from
Part 2 is illustrated in Figure 5.13. In this part, the evaluators will rate whole con-
versations from the chatbots, where the questions may di↵er as the conversations
evolve.

HE for Part 3

The second questionnaire evaluates the results from the conversational agents
trained on the OpenSubtitles dataset and is used to get additional feedback for
the models to increase the external validity. Considering that the second evalua-
tion does not require any technical knowledge, we did not restrict the participants
to tech students. 50 persons, women and men aged between 20 and 64 participated
in the evaluation of the final experiment. Due to the problems described in Section
4.2, we did not extract questions, to be used for the questionnaire, from the test
set. Instead, we defined seven di↵erent topics, and asked the chatbots questions
we found suitable within the topics. Based on the feedback from the first evalua-
tion, we tried to shorten the time required to conduct the survey. Therefore, the
evaluator is asked to rate the chatbot’s responses for that topic, and not each re-
sponse, even though the questions were identical. Figure 5.14 illustrates this. The
questions are listed in the first table, and the answers from each agent are listed in
the second table.

66 CHAPTER 5. EXPERIMENTAL SETTINGS

Figure 5.12: Screenshot of a question used in the questionnaire for the evaluation
of the UDC Part 1 conversational agents

5.2. METRICS 67

Figure 5.13: Screenshot of a question used in the questionnaire for the evaluation
of the UDC Part 2 conversational agents

68 CHAPTER 5. EXPERIMENTAL SETTINGS

Figure 5.14: Screenshot of a question used in the questionnaire for the evaluation
of the OpenSubtitles conversational agents

5.3. EXPERIMENTAL PLAN AND SETUP 69

5.3 Experimental Plan and Setup

5.3.1 Preparation for the Experiments

The project can be cloned from our GitHub repository [Christensen and Johnsrud,
2017]. All of the models are found in the “Models” folder, whereas the datafiles
should be in “Preprocessing”. Before you can start the training, you need to down-
load one of the datasets (UDC7, OpenSubtitles8). These datasets should be located
in the same folder as the GitHub repository cloned. To start the preprocessing of
the datasets, run the following command to preprocess UDC:

python preprocessing.py

To preprocess OpenSubtitles, run this command:
python preprocessing.py ��open subtitles

Recall that for each OOV word, we need to calculate the cosine similarity to all
the words in the vocabulary. Therefore, the preprocessing takes several hours as
this is a time-consuming process.

Certain parameters will be defined in a variables.py file, while others can be
changed by using flags when running a model, which we describe in this section. In
variables.py we define the paths to the preprocessed files, the size of the network,
which model and dataset to use. Further, it sets the optimizer, batch size, bucket
sizes, training steps and how often to calculate and save checkpoints. All of the
models trained in this research project have two layers with 1024 units. We applied
the AdaGrad optimizer and had a batch size of 24. In the next subsections, we will
describe the adjustments to each model, and how to start the training procedure.
To interact with a chatbot, simply type the same command used to train the
model, in addition to a decode flag. As an example, the following command should
be executed to chat with the baseline model trained on the OpenSubtitles dataset:

python LSTM.py ��open subtitles ��decode

5.3.2 Part 1: Testing RNN Cells

This experiment intends to answer the first research question; if the use of di↵er-
ent RNN cells in an Encoder-Decoder model will have significantly impact on the
quality of the outputs. The purpose of Part 1 is to see whether the Grid LSTM
model handles the context in a sentence better than the LSTM and GRU model
and if one of the chatbots is superior when it comes to the grammar. We train the
models on the dataset described in Subsection 5.1.2.

7https://github.com/rkadlec/ubuntu-ranking-dataset-creator
8https://github.com/inikdom/opensubtitles-parser

70 CHAPTER 5. EXPERIMENTAL SETTINGS

The models are trained for 630k steps. We applied the following bucket sizes:
[(10-10),(16-16),(22-22),(30-30)], as described in Section 5.1.2. To train the LSTM,
GRU or the Grid LSTM model, simply run one of the following commands:

LSTM

python LSTM.py

GRU

python LSTM.py ��use lstm=false

Grid LSTM

python GridLSTM.py

5.3.3 Part 2: Exploring Context Approaches

In this part, we aim to answer the second research question; if a conversational
agent that handles information from previous turns will capture the context of a
conversation better. We experiment with two context approaches, using di↵erent
architectures and di↵erent datasets, and compare the proposed models with the
LSTM baseline. The training data used for the context experiments are described in
Section 5.1.3. The first context approach, the Context-Prepro model, uses training
data that contains information from the previous response. During interaction
with a user, it concatenates its last response with the human question. This might
a↵ect the new response positively if the last response contains useful information,
or negatively if the previous reply was inadequate. The second model is the Stateful
model described in Section 3.4. We compare both models with the baseline trained
on the original preprocessed UDC dataset described in Section 5.1.2

The Context-Prepro and Stateful model are trained for 630k steps. We ex-
panded the input-side of the buckets for the Context-Prepro model because the
previous response is concatenated with the question. The buckets will have shape
[(20-10),(32-16),(44-22),(60-30)]. For the Stateful model, we obtain the largest
bucket: [(30,30)].

Context-Prepro

python LSTM.py ��context full turns

Stateful

python LSTM stateful.py

5.3. EXPERIMENTAL PLAN AND SETUP 71

5.3.4 Part 3: Increasing the external validity

Part 3 of the experiment will aid us in answering research question 1, in addition to
test the stateful decoder to help us answer research question 2. For the first research
question, we study how the Grid LSTM model handles chit-chatting compared to
the LSTM baseline using OpenSubtiltes as described in Section 4.2. Because a
single movie manuscript usually is longer than the normal UDC conversation, and
the context changes several times due to di↵erent scenes in a movie, we do not
train the context models on this dataset. As a compromise, we embed the Stateful
Decoder (Section 3.5) to the baseline, to see if the decoder can catch the context
of a whole conversation, even though the training procedure did not follow the
stateful approach.

The following models were also trained for 630k steps. The bucket sizes are
[(6,6),(8,8),(11,11),(20,20)].

LSTM

python LSTM.py ��open subtitles

Grid LSTM

python GridLSTM.py ��open subtitles

One-Bucket

Instead of several bucket sizes, this model has only one. We apply the largest
bucket (20,20) to make the model capable of answering as long questions as the
other models.
python LSTM.py ��open subtitles ��one bucket

Stateful-Decoder

The Stateful-Decoder requires a single bucket, and hence, we will use the largest
bucket (20,20) to make it capable of answering as long questions as the other mod-
els.
python LSTM.py ��open subtitles ��one bucket

This model is therefore identical to the One-Bucket during training. The di↵erence
is during decoding:
python LSTM.py ��open subtitles ��one bucket ��decode ��stateful

72 CHAPTER 5. EXPERIMENTAL SETTINGS

Chapter 6

Results and Discussion

This chapter presents the results of the experiments. First, we will walk through
each part of the experiment sequentially, starting with Part 1 in Section 6.1. Then,
Part 2 follows in Section 6.2, and finally, Part 3 in Section 6.3. Each Section
will first look at the perplexity results before the conversational agents outputs
are presented. Then, the Human Evaluation results are shown at the end of each
section. After presenting all of the results for each part, Section 6.4 completes the
chapter with a discussion.

6.1 Part 1

Part 1 is trained on the UDC dataset, focusing on single questions. This part
includes three models; the Grid LSTM, LSTM, and GRU models.

6.1.1 Perplexity

In order to monitor the progression of a model, every model performs two perplexity
calculations during training. First, it calculates how well the model has predicted
the training responses by looking at the average loss from the previous 10000 steps.
Second, each model runs one step using the validation data, to calculate how well it
predicts a sample it has never encountered before. Figure 6.1 shows the perplexity
of the Grid LSTM, LSTM, and GRU models, both for the training and validation
data. As expected, the training perplexity is decreasing continuously, while the
validation set perplexity has a fluctuating, but slightly decreasing development.
This fluctuation is discussed in Section 6.4. The training data perplexity forms
a “staircase pattern”, where the perplexity does a significant drop at the start of
a new epoch. This phenomenon is a result of our batchwise training, where the

73

74 CHAPTER 6. RESULTS AND DISCUSSION

(a) Grid LSTM (b) LSTM

(c) GRU

Figure 6.1: The perplexity of the training and the validation set for the Grid LSTM,
LSTM, and GRU model

training pairs are trained exactly once every epoch. Consequently, we obtain a
lower perplexity when the next epoch starts since the equivalent training pairs are
revisited.

Figure 6.2a compares the training perplexity for the three models. The Grid
LSTM model scores worse than the LSTM and GRU models, whereas the two latter
follow a similar curve.

The validation set perplexity drawn in Figure 6.1 is di�cult to compare, due to
the fluctuation. Therefore, we obtained the trend lines from each model by doing
an exponential regression of the curves. The result is shown in Figure 6.2b. It is
interesting that the Grid LSTM model now receives the best perplexity score.

6.1. PART 1 75

(a) UDC Training data perplexity (b) UDC Validation data perplexity

Figure 6.2: A comparison of UDC training and validation data perplexity for GridL-
STM, LSTM and GRU

6.1.2 Conversational Agents Outputs

The Human Evaluation for Part 1 consists of twelve questions. These questions
and the corresponding results are listed in Table 6.1. Because we have created
technical support chatbots, with specialization at Ubuntu problems, we provided
the evaluators with additional information to make them better equipped to rate
some of the responses.

Question 1 Hi, I’m new here. I have a question, can
you help me?

Dataset: What is the problem?
Grid LSTM: Ask away. What is the Question?
LSTM: Shoot. Just ask.
GRU: Just ask. If someone knows they will

answer.

Question 2 Hi there all. A friend just accidentally
formatted the wrong ntfs drive. Are there
any linux programs that can recover that
sort of thing?

Additional
info:

• Using dd you can create backups of an
entire harddisk or just a parts of it.

76 CHAPTER 6. RESULTS AND DISCUSSION

• Chkdsk verifies the file system
integrity of a volume and fixes logical
file system errors. It is similar to the
fsck command in Unix.
• TestDisk is a free data recovery
software

Dataset: Quick formatting, or full formatting?
Grid LSTM: You can use dd. Or dd.
LSTM: Chkdsk the drive. Or fsck.
GRU: Testdisk. Or testdisk.

Question 3 How do i copy a file from a remote server
to my local machine?

Additional
info:

• SCP (Secure Copy) is a command line tool
for Linux systems for securely transfer
files from local to remote server or vice
a versa.
• Remote to Local example: scp
user@192.168.10.100:/remote/file.txt
/path/to/local/

Dataset: Scp user@host: DIR DIR
Grid LSTM: Scp.
LSTM: Scp. Scp user@host: DIR user@host: DIR.
GRU: Scp. Scp remotehost user@host: DIR.

Question 4 How to close a hanged program?
Additional
info:

• Kill - Kill the process by specifying
its PID
• Killall - Kill processes by name
• Xkill - kill a client by X resource

Dataset: Kill.
Grid LSTM: Xkill.
LSTM: Killall -9 <app>. Killall -9 programname.
GRU: Killall <app>. Or xkill.

6.1. PART 1 77

Question 5 Hi, when is the next ubuntu release due?
The faq dont say

Additional
info:

• It was in april.

Dataset: March for preview, april for final.
Grid LSTM: April 19th. DIR.
LSTM: April 29th. Yes.
GRU: April. I think.

Question 6 Hello. What is the difference between
xchat and xchat-gnome

Additional
info:

• Xchat-gnome is a different GUI for xchat

Dataset: Xchat-gnome is more of a stripped down
version of the original xchat. No problem
mate

Grid LSTM: Xchat is the default.
LSTM: Xchat-gnome is the gui. Xchat-gnome is

the default.
GRU: Xchat is xchat. Xchat-gnome is the name

of the protocol.

Question 7 How do i ping in ubuntu?
Dataset: Type ping your site.com
Grid LSTM: Ping URL.
LSTM: Ping URL.
GRU: With ping. Ping.

Question 8 How can i boot into text mode and run
fsck?

78 CHAPTER 6. RESULTS AND DISCUSSION

Additional
info:

• GRUB is a boot loader package.

• Recovery mode just loads some basic
services and drops you into command line
mode.
• Text mode = Terminal/commando line
• Fcsk = File system consistency check

Dataset: At the grub menu when it first boots,
choose recovery mode.

Grid LSTM: Boot into rescue mode. And boot into
recovery mode.

LSTM: You can use the recovery console. Sudo
apt-get install fsck.

GRU: Yes. Boot into recovery mode.

Question 9 Is there a way I can assign any program I
want to a shortcut key in gnome?

Additional
info:

• GNOME is a desktop environment composed
of free and open-source software that runs
on Linux and most BSD derivatives.
• Xbindkeys is a program that allows to
bind commands to certain keys or key
combinations on the keyboard.

Dataset: System - preferences - keyboard shortcuts.
Grid LSTM: System -> preferences -> keyboard

shortcuts. You can use the keyboard
shortcuts in gnome.

LSTM: Yes. System -> preferences -> keyboard
shortcuts.

GRU: Xbindkeys.

Question 10 Is it possible to build a driver on a
livecd and use it? If I just build the
module and use modprobe will it work?

Additional
info:

• A liveCD is a CD containing a bootable
computer operating system.

6.1. PART 1 79

• Modprobe is used to add a loadable
kernel module (LKM) to the Linux kernel.

Dataset: You can if you build it against the system
kernel.

Grid LSTM: Yes. You can use the module to build it.
LSTM: Yes. What is the problem?
GRU: No. You need to compile it.

Question 11 How to install debian package?
Additional
info:

• sudo were designed to run commands only
as the superuser.
• apt-get is the command-line tool for
handling packages (installing/removing)
• Aptitude is a tool for package
management in Debian GNU/Linux

Dataset: Apt-get install <package name>. Or
aptitude install <package name>.

Grid LSTM: Sudo apt-get install packagename. Sudo
apt-get install.

LSTM: You have to install it. URL.
GRU: What package?

Question 12 How would security updates be handled
for the operating system and application
software if the user doesn’t have root
password?

Additional
info:

• Sudo passwd root tells the system to
change the root password, and to do it as
though you were root

Dataset: Becouse by default the first account is
part of the sudoers admin group.

Grid LSTM: URL. You can use the command line to run a
program.

LSTM: You can use sudo. Sudo passwd root.
GRU: You can set security updates. But

security updates are not supported.

80 CHAPTER 6. RESULTS AND DISCUSSION

Table 6.1: Part 1

6.1.3 Human Evaluation

Grammar Content Total score
Dataset 3.86 3.69 3.77
Grid LSTM 3.59 3.00 3.29
LSTM 3.61 3.01 3.31
GRU 3.45 2.91 3.18

Table 6.2: Part 1: Human Evaluation results concerning single questions from the
UDC conversations.

Table 6.2 presents the results of the HE. The actual response from the dataset
is, not surprisingly, superior to the chatbots. Nevertheless, it is interesting that
the test set does not receive an even better score. The fact that the LSTM model
obtains better results than the GRU model makes sense, considering that the GRU
is a “simplification” of the LSTM cell. Also, the time reduction was not enough
to compensate GRU’s weaker results. The di↵erence between the Grid LSTM
and LSTM’s total score is negligible and as small as 0.02. Hence, we can neither
confirm nor refute that Grid LSTM cells will retrieve better results in the field of
conversational agents.

6.2 Part 2

In the second part of this experiment, the models are still within the closed-domain
field of the UDC dataset, but where the models ability to handle shorter conver-
sations is evaluated. The Context-Prepro model and the Stateful model is used in
this part, in addition to the LSTM baseline.

6.2.1 Perplexity

The perplexity of the di↵erent context approaches is depicted in Figure 6.3. Figure
6.4 compare the perplexities, where 6.4a looks at the training data, and 6.4b shows
the perplexity of the validation data. Again, the results from the training data
contradict the results from the validation data. The Stateful model receives the
best training perplexity, whereas the Context-Prepro model scores better on the
validation data. The reason for the more frequent drops for the Stateful model in

6.2. PART 2 81

Figure 6.4a is the result of less training data and the fact that it is divided into
two files instead of one.

(a) Stateful Model (b) Context-Prepro model

Figure 6.3: The perplexity of the training and the validation set for the Stateful
and Context-Prepro model

(a) UDC Training data perplexity (b) UDC Validation data perplexity

Figure 6.4: A comparison of UDC training and validation data perplexity for
Context-Prepro and Stateful Model

6.2.2 Conversational Agents Outputs

This part of the experiment focuses on the ability for di↵erent conversational agents
to hold a natural conversation on four di↵erent topics. All chatbots will be asked the
same starting question, but the succeeding questions may di↵er as the conversation
evolves.

82 CHAPTER 6. RESULTS AND DISCUSSION

Conversation from Dataset
Human: Is 64bit ubuntu faster than 32 bit?
Chatbot: No
Human: Why 64bit then?
Chatbot: Ability to use more memory.

Stateful Model Conversation
Human: Is 64bit ubuntu faster than 32 bit?
Chatbot: No. It is not.
Human: Why not?
Chatbot: Because it is a bad idea. I would not

think it would be a good idea to use
64bit.

Human: Can it use more memory?
Chatbot: It can. But it is not recommended.

LSTM Model converesation
Human: Is 64bit ubuntu faster than 32 bit?
Chatbot: No.
Human: Why 64bit then?
Chatbot: X86 64 is for 64bit processors. 32bit.
Human: Why is 64 bit better than 32 bit?
Chatbot: Why not? It is easier.

Prepro-Context Model Conversation
Human: Is 64bit ubuntu faster than 32 bit?
Chatbot: Depends on your processor. :)
Human: Intel core i7
Chatbot: What processor?
Human: Just told you
Chatbot: What? What is that?
Human: I think it is good enough for 64 bit
Chatbot: I do not know. I do not use 64bit.

Table 6.3: Part 2 - Topic 1

6.2. PART 2 83

Conversation from Dataset
Human: To anyone, does linux have a movie maker

program like windows does?
Chatbot: Kino.
Human: What is it called?
Chatbot: I just told you :)
Human: Lol i thought that was a typo. What is

the command to install kino?
Chatbot: Sudo aptitude install kino.
Human: Thanks.
Chatbot: Of course. It is also installable via

apt-get or synaptic. I just prefer
aptitude...

Stateful Model Conversation
Human: To anyone, does linux have a movie maker

program like windows does?
Chatbot: Kino. !info kino.
Human: How do i install it?
Chatbot: URL.
Human: Can you tell me the command?
Chatbot: sudo apt-get install cheese. sudo apt-get

install vlc.

LSTM Model Conversation
Human: To anyone, does linux have a movie maker

program like windows does?
Chatbot: Try kino. URL.
Human: What is it called?
Chatbot: Simple scan. URL.
Human: Is kino and simple scan the same?
Chatbot: Yep. It is a gui app.
Human: Wait, simple scan is a frontend for sane.

Thats not what i want.
Chatbot: Yes, i know. I am just saying.
Human: What is the command to install kino?
Chatbot: Yes. Sudo apt-get install kino
Human: Thanks

84 CHAPTER 6. RESULTS AND DISCUSSION

Chatbot: Np

Prepro-Context Model Conversation
Human: To anyone, does linux have a movie maker

program like windows does?
Chatbot: Kino. URL.
Human: How do i install it?
Chatbot: Sudo apt-get install supertux.
Human: That is not it. How do i install kino?
Chatbot: Sudo apt-get install kino.
Human: Lol. That is supertux?
Chatbot: It is a program. It is a frontend.
Human: So kino is a movie maker program?
Chatbot: Yes. It is a program.

Table 6.4: Part 2 - Topic 2

Conversation from Dataset
Human: Can anyone help me to play video full

screen in mplayer?? I cannot play
realplayer format in full screen in
mplayer. In fact after installing
w32codec, the mplayer can not play
anything in full screen. I do not like
realplayer.

Chatbot: you want to edit your DIR.
Human: How?
Chatbot: With any text editor.
Human: I mean what do i need to edit? Before i

install the w32codec, I can double click
mplayer to get to full screen.

Chatbot: There will be lines that say: . #
start in fullscreen mode by default.
Skip checks=yes.

Human: But now i double click, It gets to full
screen but the video is not to fullscreen.

Chatbot: Remove the # from skip checks=yes.
Human: I have that # start in fullscreen mode by

default. Skip checks=yes.

6.2. PART 2 85

Chatbot: The # is a comment character, remove
it and mplayer will get the option
skip checks=yes. So that should start
videos in full screen for you.

Human: I still cannot get the full screen
working.

Chatbot: Hm.
Human: Do u have mplayer installed there?
Chatbot: Yes.

Stateful Model Conversation
Human: Can anyone help me to play video full

screen in mplayer??
Chatbot: Install vlc. Sudo apt-get install vlc.
Human: But i really want to use mplayer
Chatbot: I do not know. I do not use totem.
Human: You think vlc is better than mplayer?
Chatbot: I think so. I do not know.
Human: What is better?
Chatbot: It is a matter of choice. i think it is

better to use vlc.
Human: Okay, and it will play full screen?
Chatbot: I do not know. I do not use it .
Human: Why did you recommend it then?
Chatbot: I said it is better. I do not use it.
Human: Yes, but you did not tell why
Chatbot: I did not say anything I said i was not.

LSTM Model Conversation
Human: Can anyone help me to play video full

screen in mplayer??
Chatbot: What video card? What video chip?
Human: Video card gtx 1080
Chatbot: Yes it is . URL
Human: But how can i get full screen?
Chatbot: Try f11. URL.
Human: Does not work for mplayer
Chatbot: It does.

86 CHAPTER 6. RESULTS AND DISCUSSION

Prepro-Context Model Conversation
Human: Can anyone help me to play video full

screen in mplayer??
Chatbot: Install vlc. Or vlc.
Human: But i really want to use mplayer
Chatbot: Then install vlc. Or vlc.
Human: You think vlc is better than mplayer?
Chatbot: I use vlc. It is better.
Human: What is better?
Chatbot: Same problem. I use vlc.

Table 6.5: Part 2 - Topic 3

Conversation from Dataset
Human: What is the sudo root -i command so i can

login as root. Anyone please?
Chatbot: Su - root .
Human: It does not work, asks for a password and

rejects it.
Chatbot: Sudo passwd.

Stateful Model Conversation
Human: What is the sudo root -i command so i can

login as root. Anyone please?
Chatbot: Sudo -i.
Human: It does not work, asks for a password and

rejects it.
Chatbot: What is the error? What is the error you

get?
Human: Password incorrect
Chatbot: No password. You can use sudo.
Human: How?
Chatbot: Sudo passwd username. Then sudo DIR.

6.2. PART 2 87

LSTM Model Conversation
Human: What is the sudo root -i command so i can

login as root. Anyone please?
Chatbot: Sudo -i . Sudo -s
Human: It does not work, asks for a password and

rejects it .
Chatbot: What is the password? And what does it

say?
Human: Haha, i am not telling you my password.

It rejects it
Chatbot: :) ok
Human: Do you know about another way to log in as

root?
Chatbot: Yes. Sudo passwd.
Human: That did not work.
Chatbot: What? It did not work?

Prepro-Context Model Conversation
Human: What is the sudo root -i command so i can

login as root. Anyone please?
Chatbot: Sudo -i.
Human: it does not work, asks for a password and

rejects it.
Chatbot: Use sudo. Sudo -i.
Human: I tried, but it did not work
Chatbot: What did you do? Sudo -i?
Human: Yes, and it said that the password was

incorrect.
Chatbot: And you did not do sudo -i? What is the

problem?
Human: I did yes
Chatbot: What is the problem?

Table 6.6: Part 2 - Topic 4

88 CHAPTER 6. RESULTS AND DISCUSSION

Grammar Content Total score
Dataset 4.23 3.98 4.1
Stateful 3.80 2.71 3.25
LSTM 3.78 2.38 3.08
Context-Prepro 3.75 2.08 2.92

Table 6.7: Part 2: Human Evaluation results concerning conversations from the
UDC conversations

6.2.3 Human Evaluation

The agents tested in Part 2 score worse than the models in Part 1. However, this
part focuses on a greater problem, as it does not only consider single questions,
but rather an entire conversation. The Stateful model receives the highest score
among the chatbots, while the baseline beats the Context-Prepro model.

6.3 Part 3

The final part of the experiment is there to increase the external validity to the
research project. This time, however, the baseline, Grid LSTM, Stateful-Decoder
and One-Bucket models are trained on the OpenSubtitles dataset.

6.3.1 Perplexity

The perplexity results in Part 3 are similar to the results in Part 1. Grid LSTM
receives the worst score in Figure 6.5a, which looks at the training data, but obtains
a better trend line in Figure 6.5b regarding the validation data.

6.3. PART 3 89

(a) OS Training data perplexity (b) OS Validation data perplexity

Figure 6.5: A comparison of OS training and validation data perplexity for Grid
LSTM, LSTM and One-Bucket Model

6.3.2 Conversational Agents outputs

Part 3 uses the OpenSubtitles dataset to evaluate the models. Table 6.8-6.15 focus
on single questions. Even though the questions is within the same topic, they do
not necessarily share any context. The questions in table 6.16-6.21 are inspired
from movie manuscript, and mimics fictive movie scenes.

1 Hi
2 How are you?
3 What is your name?
4 Where are you from?
5 Where do you live now?
6 How old are you?
7 Are you a girl or a boy?
8 What do you study?

Table 6.8: Part 3 - Introduction questions

90 CHAPTER 6. RESULTS AND DISCUSSION

LSTM Grid LSTM Stateful One-Bucket
1 Hello. Hi. Hi! Hi!
2 Good. Fine. I am good. I am good.
3 Kevin. Sergei. Franco. Franco.
4 Guillermo. Originally? Australia. Australia.

5
I am in the
middle.

In a motel
room.

I live in
America.

I live in
the
hospital.

6
You are
old.

Fifteen.
I am old
enough.

I am old
enough to
meet.

7
I am a
girl.

Boy. Girl. Girl.

8
I am a
journalist.

Nothing.
I am a
research.

I am a
research.

Table 6.9: Part 3 - Introduction responses

6.3. PART 3 91

1 Who are you?
2 What is your purpose?
3 What is your favorite food?
4 What is you favorite drink?
5 What is your favorite sport?
6 What is your favorite book?
7 Who is your boyfriend?
8 What is the purpose of your existence?

Table 6.10: Part 3 - Personal questions

LSTM Grid LSTM Stateful One-Bucket

1
I am the
maid.

I am your
friend.

I am the
guy.

I am the
guy.

2
It is my
watch.

What is
this?

I am a
servant of
god.

I am a
servant of
god

3 Food food. Meat loaf. Chicken. Chicken.

4
I am a
journalist.

Scotch. Whiskey. Whiskey.

5 What? Blue. Excuse me? Football.

6
I do not
know.

Fiction? What?
What is
this?

7
My
boyfriend.

Jimmy.
My name is
Jimmy.

Jimmy.

8
The
memories of
my life?

It is true. Shut up!
You are a
joke.

Table 6.11: Part 3 - Personal responses

92 CHAPTER 6. RESULTS AND DISCUSSION

1 Okay, so I am going to ask you some questions. Ready?
2 Is earth or mercury closer to the sun?
3 How many percent of the earth’s surface is water?
4 What is a computer?
5 What does the fox say?
6 I want to loose weight, what should I do?
7 I want to gain weight, what should I do?
8 I am so hungry, what should I do?

Table 6.12: Part 3 - Knowledge questions

LSTM Grid LSTM Stateful One-Bucket

1 Sure. Yeah.
I am not
ready to
go.

I am not
ready to
go.

2 Tomorrow. Yeah.
I am not
really
sure.

I am not
going to
let.

3 About four. No. 7. 7.

4
It is a
bomb.

A diamond. It is a.
It is a
code.

5
The warden
has been
over.

It is not
important.

That is the
problem.

She is
right.

6

You should
not i know
you are
sick.

Nothing.
What should
i do?

Report!

7

You should
not be a
bit more
fun.

Whatever
What should
i do?

I am a
fucking
asshole.

8
What should
we do?

I am
starving.

Eat it.
Well, i do
not know.

Table 6.13: Part 3 - Knowledge responses

6.3. PART 3 93

1 Can a bird fly?
2 Can a kengaroo fly?
3 Do you believe in love at first sight?
4 Is ten greater than one?
5 Is the grass yellow?
6 Is Darth Vader your father?
7 Do you know what time it is?
8 Is Trondheim in Norway?

Table 6.14: Part 3 - Yes/No questions

LSTM Grid LSTM Stateful One-Bucket

1 Bird fly? Yeah.
How about a
bowl?

Hey, hey,
hey.

2 Yeah. No.
You are
supposed to
be a pilot.

You are a
very clever
little.

3 I know. Yes.
I believe
in god.

I wish I
knew, but.

4
I am a
little
surprised.

Yes.
That is not
a good
time.

I do not
know.

5 Yeah. Yeah.
No, it is a
fireplace.

I am afraid
it is.

6 Yes. Yes.
I think he
is the one.

My father?

7 I am late.
It is 8 :
30.

No.
It is a
little bit
more.

8 No way. No.
Yes, my
dad.

Do you know
what that
means.

Table 6.15: Part 3 - Yes/No responses

94 CHAPTER 6. RESULTS AND DISCUSSION

1 Do you know what day it is today?
2 It is ten years since our mother died.
3 I miss her so much. Do you miss her?
4 And we still do not know who killed her.
5 Do you have any ideas about who the killer might be?
6 Why are you smiling like that... What is going on?
7 Oh my god. What do you know about the murder?
8 Did you really love her?
9 I know you guys had some issues, but she was our mom.

What do you know about the murder?
10 No way. You killed her, didn’t you?

Table 6.16: Part 3 - Dramatic questions

6.3. PART 3 95

LSTM Grid LSTM Stateful One-Bucket

1
The day after
tomorrow.

Saturday. February. Today.

2
I do not
blame her.

Now, listen I am sorry.
My mother did
not want to.

3 I guess so. No
I really am
her mother.

I do not
know.

4
She is a
ghost.

Who?
You are not a
lawyer.

You are not
supposed to
know.

5 He did.
I do not
know.

No, not
really.

Come on, man.

6 I know. I am sorry.

I have always
known how to
make a
living.

I am not
sure.

7 A murder? Nothing.
They are not
here.

I know the
code.

8 I did. No. No. Love?

9

And the end
of the war
was a little
more
complicated
than that.

She was a
fucking big
shot.

That is a
good point.

That is not
what i meant.

10
She killed my
wife.

You killed
her.

I did. What?

Table 6.17: Part 3 - Dramatic responses

96 CHAPTER 6. RESULTS AND DISCUSSION

1 I have been thinking a lot lately. And I have so many
questions

2 What defines you? What makes you who you are?
3 Why do we exist in this universe? What is our purpose

on earth?
4 I did not even choose to be a human being. Why are

you a chatbot?
5 Why is there an universe? When and why was it

created?
6 Who created the world? The big bang? God?
7 If god created the universe, who created god?
8 Today, I exist. Tomorrow I might be gone. Gone

forever
9 What happens when we are dead?
10 Will we just be a part of the infinite dark? Will we

become nothing? Just dissapear...

Table 6.18: Part 3 - Philosophical questions

6.3. PART 3 97

LSTM Grid LSTM Stateful One-Bucket

1
I am not a
professional.

Questions?
Good things
have a good
idea.

And?

2
You are not
my girl.

You are a
woman.

I do not
know.

A lawyer?

3
I do not
know.

We will
find our
path.

Our plans
are not
worth it.

What is
this?

4 And a man.
To comfort
me.

I am not a
monster.

What is
that?

5
You were
right.

It was a
miracle.

There is no
question.

What is
that?

6 A rocket?
God bless
America.

You mean,
you saved
my life.

Now, what
is this?

7 No one? Who cares?

I do not
know, but
he is a god
damn
lunatic.

Do not
know, I am
not a.

8
Forever,
forever!

No!
I am going
to be a
family.

I am not
going to
leave you.

9
I am not
dead.

We die.
We are not
dead!

We will
take the
next one

10
You are so
fucking
good.

No.

That is the
only way we
can get to
the bottom
of the
earth.

You know, I
am not
really a
criminal.

Table 6.19: Part 3 - Philosophical responses

98 CHAPTER 6. RESULTS AND DISCUSSION

1 Do you remember when we first met? On the beach. One
year ago. You were beautiful...

2 I could not get your out of my head. Even though we
were both seeing someone else...

3 But now, i meet you here... And we are both free.
And you are just as beautiful as you were when i saw
you last time.

4 Do you believe in love at first sight? Because I fell
in love with you the second I saw you.

5 Do you feel the connection we have? The amazing
chemistry?

6 It feels like fireworks, like Christmas, like home.
7 Just looking at you, makes me the happiest man on

earth.
8 Please, marry me!
9 What do you mean? Don’t you love me?
10 I will never give up. Never. You will be my wife.

One day, you will say yes, right?

Table 6.20: Part 3 - Love questions

6.3. PART 3 99

LSTM Grid LSTM Stateful One-Bucket

1
I remember
that.

Yeah.
Remember
that?

Remember
that?

2
I was
thinking
about it.

Yes. What?
We were
like
brothers.

3
Yes, I
know.

And we are
all adults.

You are
fired.

I like you.

4
Yeah, yeah,
yeah, baby.

I love you.
I will not
let you.

She fell
from the
both of
you!

5 Please. Amazing.
I am really
not.

Yes!

6
The end of
the night.

Christmas
eve.

It is a
good spot.

It is like
a dream.

7
God’s
earth.

I believe
you would
believe
that.

A man in a
red dress,
a man like
a man.

A single
position.

8 No. I am sorry.

I am not a
monster
anymore, I
am not a
killer
anymore.

I do not
know, i.

9 Love me.
I do not
know.

I love you. Or what?

10 Good. I will. Never. Never.

Table 6.21: Part 3 - Love responses

100 CHAPTER 6. RESULTS AND DISCUSSION

6.3.3 Human Evaluation

Grammar Content Total score
LSTM 3.91 2.67 3.29
Grid LSTM 4.14 3.26 3.70
Stateful-Decoder 3.97 2.67 3.32
One-Bucket 3.80 2.78 3.29

Table 6.22: Part 3: Human Evaluation results from OpenSubtitles

With an average score of 3.70 and a content score of 3.26, the Grid LSTM
model is by far the superior model in this experiment. The LSTM baseline has an
average score of 3.29, and these results indicates that the Grid LSTM outperforms
the standard LSTM cell. Using a stateful decoder on a non-stateful model, did
not yield any significant improvements to the results. In fact, when we look at
the content score, the LSTM model trained on one bucket perform better than the
equivalent model using the stateful decoder.

6.4 Discussion

This section discusses the results presented throughout this chapter.

6.4.1 Perplexity Results

We started each of the sections in this chapter by looking at the perplexity graphs
of the models. The staircase pattern observed in all the perplexity curves obtained
from the training data is an interesting topic to discuss. The reason for the sudden
and significant drop is how we perform the batchwise training. Our approach
guarantees that all of the training pairs in the training data is processed exactly
once every epoch. Even though the model learns continuously during training, the
revisit of a training pair will result in an even lower perplexity, visible as a drop
in the graph. Other batchwise approaches, such as the one used in TensorFlow’s
translation model, will not lead to the same behavior. Their methodology is to
load the entire training data into memory and randomly pick samples from it.
This approach can neither guarantee that all of the training pairs are used during
training nor tell how many times a particular pair is selected during an epoch. In
extreme scenarios, the identical training data may be chosen by the batch every
time, causing an overfitted and useless model. In the case of TensorFlow’s batch
generating approach, the graphs will not show a staircase pattern, but rather a more
continuous graph without the drops. However, the argument of training all pairs

6.4. DISCUSSION 101

the equal number of times should be superior compared to obtaining a continuous
curve in the graph.

The perplexity sketched for the validation data is far more fluctuating than the
curves observed for the training data. This fluctuation makes it hard to visualize
the real performance of the model, which is why we used exponential regression to
create smooth estimations of the curves. This regression could be done in various
manners, but we believe that the exponential reflects the curves the best. There
are several reasons for why the perplexity of the validation data does not follow a
smooth curve. The first most intuitive case is that the batch size is too small. By
using a bigger batch size, more validation data would be utilized in the calculation
of the average perplexity, and thus reduce the problem. Another strategy to include
more validation data for each perplexity calculation is simply by running multiple
steps, with multiple batches of validation data and compute the average. A more
drastic reason for the observed fluctuation may be that the validation set is not
properly representing the rest of the dataset. However, we do shu✏e the dataset
before we divide it into training, validation and test data, with the exact purpose
of diminishing this problem. A third reason may be that the models are not good
enough, but this contradicts the fact that the models manage to lower the training
perplexity scores.

By focusing on the results from the perplexity graphs from Part 1 (Figure 6.2),
the Grid LSTM model obtains the worst score on the training data. However, the
trend lines for the validation data show the opposite. Note that the perplexity
of the validation data reflects the true performance of the model better than the
training perplexity, as this is the measurement of how well the model can predict
unseen data. It is therefore interesting that the Grid LSTM model also obtains the
best score in Part 3, illustrated in Figure 6.5b.

In Part 2, where the focus is on entire conversations, the same contradiction
between the two perplexity measurements happens once more. While the Stateful
model obtains a better score on the training perplexity, the Context-Prepro model
achieves a better trend line. However, in contrast to the other experiments, the
prerequisites for Part 2 are a bit changed. Section 5.1.3 explains that the Stateful
model has less training data, resulting in shorter epochs which are visible from the
more frequent drops in Figure 6.4a. As the only model in this experiment, the
validation data perplexity seems to have reached a minimum, indicating that the
model may have converged. This is illustrated in Figure 6.3a. In this circumstance,
the exponential regression trend line, might not be the most suitable estimation
and might give a wrong impression of the model’s behavior. Therefore, we do not
consider the validation perplexity results as important as in the other parts.

102 CHAPTER 6. RESULTS AND DISCUSSION

6.4.2 Results from the Human Evaluations

All of the sections ended with a presentation of the results from the HE. Even
though the test set received the highest score in Part 1 and 2, we find it interesting
that it did not end up with a better score. This indicates that the training data still
has its weaknesses, and su↵er from noise. After preprocessing the UDC dataset, we
obtain 2.3M turns. We could define stricter requirements, to avoid poor question-
response pairs, and thus increase the quality of the training data. Another reason
for the low score may be that our customized metrics are too strict. Participants
of the evaluation may think that a reasonable response that makes sense does not
deserve a rating that is described as “Response makes perfectly sense”. By looking
at the results in Part 1, it was di�cult to conclude whether or not a model is
superior to the other, due to the minimal score di↵erence. However, we decided to
discard the GRU model, as it obtained the lowest score and the training time did
not make up for this.

The HE in Part 2, concerning the context-based approaches, the Stateful model
achieved best results. The di↵erence between this model’s content score and the
baseline’s is 0.33, which indicates that the Stateful architecture manages to capture
information from previous turns better than non-stateful models. The conversation
with the Stateful model in Table 6.3 illustrates that passing the previous state to the
next turn, helped the chatbot when interpreting the conversation. The chatbot’s
response reflected the context, even though the human question did not contain
any information about the topic (whether to use 64-bit Ubuntu or 32-bit). The
human types “Why not?” and the chatbot responds with “Because it is a bad
idea. I would not think it would be a good idea to use 64bit”. As in Part 1, the
test set is superior again, and this time with a greater margin. The increased score
for the test set makes sense as longer conversations with reasonable content are
more impressive than single sentences. Another interesting observation is that the
LSTM model in Part 1 has a score of 3.31, whereas the identical model used for
Part 2 receives a score of 3.08. These observations indicate that it is more di�cult
for chatbots to respond properly several times in a row, and to substitute a human
in a conversation with several turns.

Unlike Part 1, Part 3 shows a significant di↵erence between the Grid LSTM
model and the baseline. A content score of ⇠0.5 points better than the next best
model shows that the use of Grid LSTM cells improves the results for the chit-
chatting task. The minimal e↵ect on the results with the Stateful-Decoder in Part
3, and the fact that the Stateful model was superior in Part 2 indicates that the
stateful decoder itself has little e↵ect on non-stateful models. Another observation
is that the models with a single bucket tend to generate longer responses compared
to both the LSTM and Grid LSTM model, which are trained on multiple. This is
the case in Table 6.19. The output is pruned to fit the bucket where the question
is located, which in our case is the same length as the question. This may be a

6.4. DISCUSSION 103

limitation of the model, as short questions do not always imply short responses.

6.4.3 Limitations of the Experiments

The chatbots’ intelligence is, of course, highly influenced by the content of the
training data. The fact that it is hard to extract good question-response pairs from
the majority of the OpenSubtitles dataset will make it more di�cult to create a
satisfying conversational agent for the chit-chatting task.

The results are based on the questions we extracted from the UDC dataset and
created in the case of the OpenSubtitles chatbots. The fact that we found and
created the questions is not optimal. Ideally, someone with knowledge about the
Ubuntu operating system should choose suitable questions and conversations for
Part 1 and 2. For Part 3, we could have asked a group of friends to chat with
the chatbots, and they could choose the questions for this part of the evaluation.
Another drawback of the execution of the HE is that we did not inform the par-
ticipants to ignore the lack of capital letters. All words were lower case, which
may have a↵ected the grammar score for some responses. However, the current
decoder used by all models will now output sentences starting with a capital letter,
in addition to the singular form of the first person: “I”. Thus, the “Conversational
Agent Outputs” presented in this chapter di↵er slightly from the questions and
responses used in the questionnaires.

The lack of correlation between the perplexity measurements and the result of
the HE supports our intuition about the absence of a good automatic evaluation
metric. We believe the results from our customized evaluation reflects the quality
of the responses better than the perplexity results.

The translation model created by TensorFlow introduced the usage of buckets
to train more e�cient. A major di↵erence between the translation problem and
conversation generation is that while translations tend to have a similar length of
the inputs and outputs, this is not necessarily the case for questions and responses
in a conversation. A short question may lead to a long response. When dealing
with the buckets, the decoder will place the question from the user in the smallest
suitable bucket, and then restrict the response to have the same length. In the
experiment in Part 3, we also provided two models with a single bucket, to allow
the chatbot to generate long responses on short questions. The results show that
these models also tend to reply with longer responses than the others.

104 CHAPTER 6. RESULTS AND DISCUSSION

Chapter 7

Conclusion

Section 7.1 presents our research’s contributions, while Section 7.2 answers the
research questions based on the results presented and discussed in Chapter 6. Fur-
ther, Section 7.3 explains the challenges we encountered during the master thesis.
Throughout this research period, we have gathered ideas of possible improvements
that could lead to better results. These will be presented in Section 7.4.

7.1 Contributions

Based on our research goals and questions presented in Chapter 1, we can summa-
rize our contributions in the following way:

Our main contribution is a Stateful model, which is a result of our research on
how adjustments to the Encoder-Decoder model can improve the model’s ability
to remember information from previous turns. The conversations generated by
the Stateful model show that it outperforms the LSTM baseline when it comes to
the content. It can produce responses that reflect the topic of the conversation,
even though the question did not contain any information about the context. The
results from the human evaluation, a questionnaire conducted by 30 participants,
indicate that the Stateful model’s responses are preferred over the baseline’s.

The second contribution is the comparison of three di↵erent conversational
agent models, where the only di↵erence is the cell architecture. We evaluate the
three models by looking at the perplexity score and the results of the human eval-
uation. Based on the results we discarded the GRU model but continued with the
evaluation of the Grid LSTM and LSTM models in a final questionnaire taken by
50 participants. The results indicate that the choice of RNN cell can a↵ect the
quality of the output and that the Grid LSTM cell increases the content quality of

105

106 CHAPTER 7. CONCLUSION

the responses in the chit-chatting task, i.e. casual conversations and small talk.
The third contribution concerns how we preprocess the data and is an approach

for eliminating out-of-vocabulary (OOV) words from the dataset. The most com-
mon way to handle OOV words is to replace them with a special unknown token, i.e.
“UNK”. Our approach uses a word representation model to obtain word embedding
vectors for all words in the dataset, both the OOV words and the vocabulary words.
Further, all OOV words will be replaced with the most similar word in the vocab-
ulary. This is done by calculating the cosine similarity between the OOV word’s
embedding vector and the vocabulary words’ embedding vectors. The vocabulary
word that results in the smallest angular di↵erence will be the replacement of the
OOV word.

To be able to develop conversational agents, we needed an overview of the state-
of-the-art architectures applicable for this task. Our research’s fourth contribution
is, therefore, an architectural overview of the state-of-the-art models which can be
applied when creating conversational agents.

7.2 Answering the Research Questions

During this master’s thesis, we have reached our two goals. First, we studied
and compared the e↵ect of di↵erent RNN cells. Second, we experimented with
context-based approaches, to incorporate context management to the conversa-
tional agents. As a result, we have created nine distinct conversational agents. For
the UDC dataset, we trained the LSTM baseline, GRU, Grid LSTM, Stateful and
Context-Prepro model. The OpenSubtitles chatbots include the LSTM baseline,
Grid LSTM, One-Bucket and the Stateful-Decoder model. These models have been
trained and tested di↵erently to collect results used to guide us in answering the
research questions. We have worked with two di↵erent datasets; the UDC and the
OpenSubtitles dataset. The UDC leads to technical support chatbots, whereas the
models trained on the OpenSubtitles dataset are more suited for the chit-chatting
task. Using the results presented in Chapter 6, we will answer the research ques-
tions.

Research question 1 Will the use of di↵erent RNN cells in an Encoder-Decoder
model have significantly e↵ect on the quality of the outputs?

The results from Part 1 and 3 contradict each other when it comes to answering
the first research question. The di↵erence between the chatbots’ scores is minimal
in Part 1, which indicates that the di↵erent RNN cells do not have significantly
impact on the quality of the outputs. On the other hand, the Grid LSTM model
achieves significantly better results in Part 3, where we test the models’ ability
to handle small talk and more “movie related” conversations. Due to the vast

7.3. CHALLENGES 107

di↵erence between their score in the final part, we believe the choice of RNN cell
can a↵ect the quality of the response.

Research question 2 Will a conversational agent that keeps track of previous
questions and responses, catch the context of a conversation better?

The Stateful model yielded significantly better content score than the baseline. This
indicates that the answer to the second research question is yes; a conversational
agent that handle the information from previous questions and responses will catch
the context of a conversation better.

The results are promising and indicate that the field of conversational agents can
be further improved. However, more experiments should be conducted to verify
these results, based on the drawbacks of our execution of the HE as described in
Section 6.4.

7.3 Challenges

One of the challenges during this research project has been the implementation
of the Grid LSTM cell. When we started this project, we discovered the Grid
LSTM cell in TensorFlow’s Contrib module. However, this implementation required
certain changes in order to match the architecture described in Kalchbrenner et al.
[2015]. Due to the lack of documentation, we tried to get confirmation on our
implementation on forums such as Google Discussion1 and StackOverflow2. We did
get some feedback, but we are still not completely sure if we did this implementation
correct according to the paper.

7.4 Future Work

This section presents possible improvements to the preprocessing of the datasets
and to the decoder. Then, we present future research directions that might improve
the state-of-the-art for conversational agents.

7.4.1 Exploring Methods for Finding the Nearest Neighbour
in a High Dimensional Space

In our attempt to remove all OOV words, we calculate the cosine similarity between
the embedded vectors of the OVV words and the vocabulary words. This is just one

1https://groups.google.com/a/tensorflow.org/forum/#!forum/discuss
2https://stackoverflow.com/

108 CHAPTER 7. CONCLUSION

approach of finding the nearest neighbor in a high dimensional embedded space.
The disadvantage of this method is that it only looks at the cosine of the angle
between the vectors, which is just a judgment of orientation and not magnitude.
Ideally, the vocabulary word located closest to the OOV word in the n-dimensional
space should replace this OOV word. Therefore, other methods should be explored
as substitutions for the cosine similarity, to be used in the process of eliminating
OOV words.

7.4.2 Beam Search in a Decoder

The number of possible sentences to output is mn, where m is the vocabulary size,
and n is the sentence length. Traversing all of these possibilities is not just unwise,
as this involves a lot of strange sentence combinations, but also impossible due to
memory and time complexity. In the attempt of finding the sequence of words that
together receive the highest probability score, we need a heuristic search algorithm.
The easiest one, but far from the best, is the greedy search algorithm, which is
currently used by our models. The greedy algorithm will choose the best option
in the current stage, without reasoning about the future outcomes. This may
result in a weak local optimum instead of the global one, as there is no guarantee
that the best overall sentence is the one that starts with the first most predicted
word. However, the greedy approach will only traverse one path, which makes it a
very time e�cient search. Another probably better alternative is the beam search
algorithm. Beam search will investigate di↵erent predictions, and avoid devoting
all its trust in the most attempting one. The beam size b decides the range of
directions the algorithm will explore at every stage. The algorithm can, therefore,
return the best sequence from bn paths, resulting in a solution closer to the global
optima. However, beam search can neither guarantee that the best solution is
among these combinations.

7.4.3 Stateful Encoder-Decoder Architecture using Grid LSTM
cells

Both the Grid LSTM and the Stateful model presented good results, compared
to our baseline. The Stateful model uses LSTM cells, and it would, therefore, be
interesting to see whether the use of Grid LSTM cells could gain even better results.

7.4.4 Hybrid Conversational Agent

An open domain conversational agent should ideally be able to converse about gen-
eral topics and have some general knowledge. The conversational agents evaluated
in Part 3, did not score very well on the “Knowledge Questions”. Therefore, one

7.4. FUTURE WORK 109

strategy to make a better open domain chatbot is to combine several models. A
“Hybrid Conversational Agent” will consist of multiple models, which should be
trained on di↵erent datasets. A model trained on a specific dataset should respond
well to similar questions. Further, we need some classification model to classify
the incoming question, and decide which model that is best suited to answer that
question. The challenge in this task is to define the di↵erent domains each chatbot
should cover, and extract good question-response pairs for the di↵erent models.

7.4.5 Hybrid Corpora

Another approach to improve the quality of an open domain conversational agent
is to combine di↵erent datasets for the training data. There exist several smaller
datasets that together could form a qualitative corpus for a conversational agent.
Merging knowledge datasets such as questions from television shows like “Jeop-
ardy”3 and “WhoWants To Be AMillionaire?”4 with di↵erent conversation dataset
like “Cornell Movie-Dialogs”5, “Movie-DiC”6 and “Microsoft Research Social Me-
dia Conversation Corpus”7, could result in a both qualitative and quantitative
dataset.

3https://www.reddit.com/r/datasets/comments/1uyd0t/200000 jeopardy questions in a json file/
4http://onlinelibrary.wiley.com/doi/10.1002/cpe.4168/full
5https://people.mpi-sws.org/ cristian/Cornell Movie-Dialogs Corpus.html
6http://www.aclweb.org/anthology/P12-2040
7https://www.microsoft.com/en-us/download/details.aspx?id=52375

110 CHAPTER 7. CONCLUSION

Bibliography

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137–
1155, 2003.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. arXiv preprint arXiv:1607.04606, 2016.

Antoine Bordes, Jason Weston, and Nicolas Usunier. Open question answering with
weakly supervised embedding models. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 165–180. Springer, 2014.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

Silje Christensen and Simen Johnsrud. Project-idi-rnnchatbot. https://
github.com/siljec/project-idi-rnnchatbot, 2017.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12(Aug):2493–2537, 2011.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

Alessandro Duranti and Charles Goodwin. Rethinking context: Language as an
interactive phenomenon. Number 11. Cambridge University Press, 1992.

111

https://github.com/siljec/project-idi-rnnchatbot
https://github.com/siljec/project-idi-rnnchatbot

112 BIBLIOGRAPHY

Anthony Fader, Luke S Zettlemoyer, and Oren Etzioni. Paraphrase-driven learning
for open question answering. In ACL (1), pages 1608–1618. Citeseer, 2013.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Book in
preparation for MIT Press, 2016. URL http://www.deeplearningbook.
org.

A. Graves, S. Fernandez, and J. Schmidhuber. Multi-Dimensional Recurrent Neural
Networks. ArXiv e-prints, May 2007.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT,
RTRL, EKF and the” echo state network” approach, volume 5. GMD-
Forschungszentrum Informationstechnik, 2002.

Zongcheng Ji, Zhengdong Lu, and Hang Li. An information retrieval approach to
short text conversation. arXiv preprint arXiv:1408.6988, 2014.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of
tricks for e�cient text classification. arXiv preprint arXiv:1607.01759, 2016.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory.
arXiv preprint arXiv:1507.01526, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. The ubuntu dialogue
corpus: A large dataset for research in unstructured multi-turn dialogue systems.
arXiv preprint arXiv:1506.08909, 2015.

Tomas Mikolov, Kai Chen, Greg Corrado, and Je↵rey Dean. E�cient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je↵ Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013b.

George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

Briony J Oates. Researching information systems and computing. Sage, 2005.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 113

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th an-
nual meeting on association for computational linguistics, pages 311–318. Asso-
ciation for Computational Linguistics, 2002.

Alan Ritter, Colin Cherry, and William B Dolan. Data-driven response generation
in social media. In Proceedings of the conference on empirical methods in natural
language processing, pages 583–593. Association for Computational Linguistics,
2011.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

Lifeng Shang, Zhengdong Lu, and Hang Li. Neural responding machine for short-
text conversation. arXiv preprint arXiv:1503.02364, 2015.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji,
Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. A neural net-
work approach to context-sensitive generation of conversational responses. arXiv
preprint arXiv:1506.06714, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014.

Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint
arXiv:1506.05869, 2015.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization
of neural networks using dropconnect. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pages 1058–1066, 2013.

114 BIBLIOGRAPHY

Appendix A

UDC Content Examples

The following conversations are from the Ubuntu Dialogue Corpus. We have tried
to find dialogues which reflect the characteristics of the dataset, and have not used
any preprocessing on the following data. Table A.1, A.2, and A.3 show technical
conversations, whereas Table A.4 is an example of how a monologue might look
like.

115

116 APPENDIX A. UDC CONTENT EXAMPLES

Jackrabbit: can anyone help me?
ajavid: ask
Jackrabbit: its a program that gets ati video drivers

becuase right now my screen is max lol
ajavid: lspci|grep VGA
ajavid: try to use packaged software in ubuntu as

much as possible
Jackrabbit: ok so what do I do with that command do I

put it in terminal?
ajavid: r5xx and below on ati == free 3d accel

with xorg 7.4 and latest mesa in jaunty
ajavid: for r6xx + only do you require the fglrx

driver
ajavid: whate exactly are you trying to do?
ajavid: don’t do random things like that
ajavid: in console terminal, sudo aptitude

pciutils; lspci|grep VGA
Jackrabbit: ok is that all on line like: sudo

aptitude pciutils; lspci|grep VGA
ajavid: yes, ; is a bash newcommand delimiter
Jackrabbit: ahhhh man I tell ya once my screen is

fixed I cant wait to read and learn about
this OS becuase I played with

Table A.1: UDC content 1

dutch hey so is there anyone here who can point
me to some information on getting nvidia
drivers to work in jaunty?

dutch im having interesting problems with it
mobi-sheep SLi ?
dutch you have any information on that?
mobi-sheep http://www.darraghverschoyle.com/2009/03/

enabling-sli-on-ubuntu-810/
mobi-sheep Run "man nvidia-xconfig" and you’ll find

out what this does. :)

Table A.2: UDC content 2

117

erUSUL try "sudo dpkg --configure -a" ?
erUSUL do you have a DN server in your lan?
erUSUL do you have a DNS server in your lan?

doing the name resolution
blz not that I know of
blz i though hostnames were usually resolved

automagically on the local net... like
through the router or something

erUSUL so how do you expect that the hostnames to
be resolved? you can use avahi/zeroconf
automatic hostname resolution. hostname
is hostname.local

erUSUL so try ⌧ ping hostname.local �
blz ping hostname.local yields "ping: unkonwn

hostname.local"
erUSUL do it with an actual hostname instead

of the string "hostname" i guess your
machines have another names

blz oh... derp
blz ok that works
erUSUL no problem
blz i’m getting normal looking ping
blz so the local machine’s hostname works when

I ping it... what’s the next step?
erUSUL it already works. you got your name

resolution
blz so now it should resolve?
erUSUL you have to append .local to the machines

hostnames
erUSUL yes
blz ok, but it doesn’t
erUSUL what program is failing ?
blz to be clear, i ran the ping hostname.local

on the local machine having the problem
erUSUL ping works so it has to be a specific to

that program problem
erUSUL maybe in windows you have to enable

zeroconf in some place ? ask in ##windows
?

blz hmm maybe so... i’ll check under a remote
ubuntu system...

Table A.3: UDC content 3

118 APPENDIX A. UDC CONTENT EXAMPLES

sstoveld: hey guys, im looking to install ubuntu for
the first time. im a newb here, does it
matter if i burn the iso to a DVD instead
of a CD? im all out of CD’s

Svenstaro: no wont matter
Svenstaro: are you curretnly using windows?
Svenstaro: lol, what a coincidence that you now want

to try ubuntu
Svenstaro: are you a gamer?
Svenstaro: et me check on linux compability, but

quite honsetly, hellgate sucks :<
Svenstaro: you are better off playing diablo,

hellgate doesnt run on linux as far as
I can judge looking at wineapps db and
diablo 2 runs like a dream out of the box,
and it OWNS

Svenstaro: no windows software runs natively on
linux, it need to either be emulated or
otherwise be made compatible, not all
windows apps can be made to work on linux

Svenstaro: ...

Table A.4: UDC content 4

Appendix B

OpenSubtitles Content
Examples

James Bond: For Your Eyes Only, 1981
good afternoon , mr. bond .
don’ t concern yourself with the pilot .
one of my less useful people .
you are now flying remote control airways .
think twice , 007 .
it’ s a long way down .
i’ ve looked forward to this moment , mr. bond .
i intend to enjoy it to the full .
really , have you no respect for the dead ?
good bye , mr. bond .
i trust you had a pleasant ... fright .
you are fading from my picture , mr. bond .
but the end cannot be far away .
mr. bond !
Virgin Stripped Bare by Her Bachelors (Oh! Soo-jung),
2000
<the vlrgln strlpped bare by her bachelors>
<day’ s walt ... >
you’ il have to wait outside .
will it be long ?
i’ m almost done .
okay .

119

120 APPENDIX B. OPENSUBTITLES CONTENT EXAMPLES

hello ?
it’ s me .
soojung .
where are you ?
i just got up .
you mean just now ?
i’ m not feeling very well .
where are you ?
i’ m already here .
are you sick ?
i’ m sorry .
can’ t we do this another time ?
soojung ...
soojung , you know this wasn’ t easy .
if you’ re not really sick , please come .
do we really have to do it today ?
of course .
soojung , you’ re making things really difficult .
where are you ?
in the hotel ?
Gladiator, 2000
hail , mighty caesar !
caesar !
caesar !
caesar !
caesar !
we who are about to die salute you !
on this day ... we reach back to hallowed antiquity ...
to bring you a re creation ... of the second fall of
mighty carthage !
on the barren plain of zama ... there stood the
invincible armies ... of the barbarian hannibal .
ferocious mercenaries and warriors ... from all brute
nations ... bent on merciless ... destruction ...
conquest .
your emperor ... is pleased to give you ... the
barbarian horde !
anyone here been in the army ?
yes .
i served with you at vindobona .
you can help me .

121

whatever comes out of these gates ... we’ ve got a
better chance of survival if we work together .
do you understand ?
if we stay together , we survive .
the emperor is pleased to bring you the legionnaires ...
of scipio africanus !
to the death !
kill !
kill !
kill !
stay close !
come together !
staggered columns !
staggered columns !
Intimate Stories, 2002
< i >hello ?
hello ? < /i >
< i >who is it ? < /i >
< i >hello ? < /i >
it seems he’ s not here .
he must be sleeping .
come on , let’ s wake him up , lazy bastard !
come on .
uglyface .
uglyface .
it’ s me .
it’ s me , uglyface .
uglyface .
uglyface .
come , uglyface , come .
uglyface .
uglyface .
here , here .
uglyface !
how are you ?
how are you ?
Fun with Dick and Jane, 2005
hey , veronica .
hi , how are you ?
good , good .
i didn’ t know you worked out here .

122 APPENDIX B. OPENSUBTITLES CONTENT EXAMPLES

welcome to kostmart .
i hope you’ il take a trip by the deli today
for a complimentary cube of jalapeno cheddar .
i’ m lactose intolerant .
where do you keep the cigarettes ?
behind the counter .
but i’ m not sure that’ s a good ...
dick ?
you missed one .

Table B.1: OpenSubtitles conversation examples

	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Background Theory
	NLP and Word Embeddings
	Artificial Neural Networks
	Recurrent Neural Networks
	RNN Encoder-Decoder
	Training ANNs
	Tuning Hyperparameters

	State-of-the-art
	RNN Architectures
	LSTM
	GRU
	Grid LSTM

	Proposed Architectures
	LSTM Baseline
	GRU Model
	Grid LSTM Model
	Stateful Model
	Stateful-Decoder
	Context-Prepro

	Datasets
	Ubuntu Dialogue Corpus
	OpenSubtitles

	Experimental Settings
	Preprocessing
	Preprocessing Overview
	Preprocessing UDC
	Preprocessing UDC for Context Approaches
	Preprocessing OpenSubtitles

	Metrics
	Automatic Evaluation During Training
	Human Evaluation

	Experimental Plan and Setup
	Preparation for the Experiments
	Part 1: Testing RNN Cells
	Part 2: Exploring Context Approaches
	Part 3: Increasing the external validity

	Results and Discussion
	Part 1
	Perplexity
	Conversational Agents Outputs
	Human Evaluation

	Part 2
	Perplexity
	Conversational Agents Outputs
	Human Evaluation

	Part 3
	Perplexity
	Conversational Agents outputs
	Human Evaluation

	Discussion
	Perplexity Results
	Results from the Human Evaluations
	Limitations of the Experiments

	Conclusion
	Contributions
	Answering the Research Questions
	Challenges
	Future Work
	Exploring Methods for Finding the Nearest Neighbour in a High Dimensional Space
	Beam Search in a Decoder
	Stateful Encoder-Decoder Architecture using Grid LSTM cells
	Hybrid Conversational Agent
	Hybrid Corpora

	Bibliography
	UDC Content Examples
	OpenSubtitles Content Examples

