
Malware, Encryption, and Rerandomization –
Everything is Under Attack?

Herman Galteland and Kristian Gjøsteen??

Department of Mathematical Sciences, NTNU – Norwegian University of Science and
Technology, Trondheim

{herman.galteland, kristian.gjosteen}@math.ntnu.no

Abstract. A malware author constructing malware wishes to infect a
specific location in the network. The author will then infect n initial
nodes with n different variations of his malicious code. The malware
continues to infect subsequent nodes in the network by making similar
copies of itself. An analyst defending M nodes in the network observes
N infected nodes with some malware and wants to know if any sample is
targeting any of his nodes. To reduce his work, the analyst need only look
at unique malware samples. We show that by encrypting the malware
payload and using rerandomization to replicate malware, we can make
the N observed malware samples distinct and increase the analyst’s work
factor substantially.

Keywords: malicious cryptography, environmental keys, rerandomiza-
tion, provable security.

1 Introduction

Malware is software maliciously installed on a computer designed to give
functionality and behavior desired by the malware author, but not by the
legitimate computer owner.

Our goal is to study malware propagation and how to protect prop-
agating malware from analysis. We will not study the construction of
computer viruses or other types of malware, but rather how to construct
a scheme designed to encrypt malware such that we can hide the inten-
tions of the malware author.

1.1 Real World Examples

BurnEye [11] is a tool designed to protect binary files and is an exam-
ple on how to protect malware. The tool adds three protective layers to

? The final publication is available at Springer via http://dx.doi.org/

978-3-319-61273-7_12
?? This work is funded by Nasjonal sikkerhetsmyndighet (NSM), www.nsm.stat.no

a file: obfuscation, encryption, and a fingerprint layer. The latter layer
ensures that the file can only be run on a specific computer that has the
specifications stated by the fingerprint layer. The encryption layer uses a
user-chosen password as the encryption key such that the file can only be
executed (or analyzed) by someone with the proper password.

Gauss [8] is an example of sophisticated malware that uses encryption
to protect certain payloads. Gauss uses environmental keys to decrypt
the payload, where an environmental key is a key that is generated from
locally available data. The malware gathers local data on the infected
computer and hashes it to create decryption keys, where the string of
data that results in the correct key is selected by the malware author. The
malicious code can only be executed when the correct key is produced,
that is, when the malware infects the intended target. To our knowledge,
the contents of the encrypted payloads of Gauss are still unknown.

1.2 Malware Propagation

Consider a malware author whose objective is to attack some specific loca-
tion(s). The malware author’s goals is to hide his intentions and identity.
The malware author’s adversary is an analyst observing and defending
some network containing one or more of the malware author’s target(s).
The goal of the analyst is to detect malware targeting any part of the
network he is protecting. He also wants to discover the intentions and
the identity of the malware author. Hiding the mere existence of malware
from the analyst is a distinct problem and not one we consider in the
current work.

We use the following model to describe malware propagation (see
also Figure 1). The source S, the malware author, infects n initial nodes
with (different variations of) his malware and they, in turn, will infect
subsequent nodes in the network by making similar copies of themselves.
Every direct link to the malware author increases the analyst’s chances of
discovering the malware author’s identity, so to avoid identification, the
malware author should perform as few initial infections as possible and
use indirect paths to his intended target.

The analyst’s job is to defend M nodes in the network from any
possible malware threat and he has full knowledge of the environment
he is protecting. By observing the wider network the analyst can find N
malware samples.

The malware author will encrypt the malware payload to make the
analyst’s job harder. Encrypting the payload prevents reverse engineer-
ing of the malware code [4] and hides the intentions of the author. Since

S

. . .

.
...

...
...

...
...

...
...

...
...

.

n
N

Fig. 1. Illustration of the malware infection paths

obfuscation is hard, we use encryption keys derived from environmental
parameters, network triggers, or a combination of these [9]. Thus, the mal-
ware will have an encrypted payload, containing the malicious code, and
a cleartext loader which gathers environmental parameters to generate
decryption keys.

To generate the malware the author chooses environmental data cor-
responding to the intended target computer, hashes that data to create a
secret key, and encrypts the payload using the key. The malware is then
ready to be released. When the malware arrives on a new computer, the
cleartext loader will determine the environmental data of the infected
computer, hash the data to derive L > 1 keys, and try to decrypt the
payload using the L derived keys. If the decryption is a success under one
of the derived keys, the code will be executed. The cleartext loader makes
copies of the malware and infect subsequent nodes.

Since only the malware author knows the secret key, only the malware
author can create encryptions of the payload. This means that under
our propagation model, there are at most n distinct encrypted payloads
among the samples collected by the analyst. Each sample is encrypted
and has a unknown target. If the analyst wants to be sure that none of
these samples would attack the analyst’s network, the analyst needs to
do roughly L trial decryptions for each of his M nodes, which means that
his work factor is nML.

Instead of making exact copies of the malware to replicate it, we want
the loader to rerandomize [2, 6] the encrypted payload using techniques

When the malware, in the form of a cleartext loader and an encrypted payload, arrives
on a new host, the cleartext loader is executed and performs the following steps:

1. The encrypted payload is rerandomized before it is stored on the host.
2. The loader scans the host environment and determines the environmental data.
3. The loader hashes the environmental data to produce one or more keys.
4. The loader tries to decrypt the encrypted payload with each key.
5. If the decryption succeeds, the decrypted payload is executed.
6. The malware may also attempt to infect some other host, in which case the en-

crypted payload is rerandomized before it is transmitted to the new host.

Note that the malware will certainly use some polymorphic engine and other standard
malware techniques in order to provide a basic level of protection for the cleartext
loader and the encrypted payload.

Fig. 2. The malware attack process.

from asymmetric cryptography. The rerandomization process takes as in-
put an encrypted payload and some random numbers and produces a
new encrypted payload that encrypts the same malicious code. Hence,
the loader can produce several different-looking malware payloads to in-
fect subsequent nodes, without knowledge of the secret key. This process
is described in Figure 2.

To fully utilize the rerandomization process, we want it to produce
the payloads such that any two malware samples are indistinguishable.
If the analyst is unable to distinguish between malware samples then,
essentially, there are N unique variations of the malware in the network.
This means that the analyst need to do L trial decryptions of N samples
for M different nodes to ensure that none of the malware samples are
targeting any of his nodes. This will increase the workload to NML.
Since the malware creates new different variations of itself, the malware
author can now choose n to be small and possibly significantly reducing
the risk of detection.

Now, imagine a world filled with hundreds of different types of mal-
ware: all are encrypted, use rerandomization, are of the same size, use
the same loader, and otherwise look the same. Every new malware sam-
ple an analyst would discover needs to be analyzed. The analyst cannot
be certain of whether a new sample corresponds to one he has previously
determined is no threat, or a genuinely new piece of malware. Note that
this requires the various malware authors to agree on standard payload
sizes and a standard loader. If they do not, then the analyst can use these
pieces of information to classify samples.

The limitations with our scheme is that the analyst can always guess,
or predict, the target of the malware author. Also, if the malware reaches

its target, the payload will be decrypted and executed. If the analyst
notices the attack, he will be able to deduce the environmental key and
thus be able to decrypt the payload. This seems impossible to avoid.

Another limitation is that once an analyst discovers the key used for
one sample, he can easily discover all other samples corresponding to
that key. However, the malware author will hope that different analysts
are unwilling to reveal that they are under attack (they somehow consider
this fact sensitive) and that they therefore do not share discovered keys.
This means that one analyst’s success may not make all the other analyst’s
work easier.

1.3 Related Work

Traditionally, cryptography has been developed and used as a defense
against attackers. However, it is clear that cryptography can also be of
use to the attackers.

Young and Yung where the first to raise the concern about malicious
use of cryptography (cryptovirology) [13] and have several works related
to malware construction and propagation: A virus capable of encrypting
files on the victim’s computer and hold them for ransom [12]. A mobile
program that carries a rerandomizable ciphertext, which enables anony-
mous communication, where the program takes random walks through
a network in a system called Feralcore, and, at each node, the cipher-
text is rerandomized [14]. Utilizing a mix network to mix programs and
propagate malware [13].

The mix network and the mobile program mentioned use the idea of
universal re-encryption, by Golle et al. [6], to re-encrypt ciphertexts. The
process transforms the ciphertexts into a new ciphertext that encrypts the
same message and do not require knowledge about the public key. Similar
to universal re-encryption is the notion of rerandomization by Canetti et
al. [2].

Filiol showed that by encrypting malware payload [3, 4] one can pre-
vent anyone from analyzing the code and reverse engineer it, possibly
using the environmental keys of Riordan and Schneier [9] as the encryp-
tion key. Similar to Riordan and Schneier, secure triggers [5, 7] are used
to keep certain content private until some particular event occurs.

1.4 Overview

In Section 2.1 we describe the cryptosystem designed to encrypt and
rerandomize malware payload. In Section 2.2 we construct a basic scheme

based on ElGamal. In Section 2.3 we show that the basic scheme is se-
cure by using games, where the adversary is asked to distinguish between
ciphertexts encrypting the same message and ciphertexts encrypting two
different messages. That is, we will simulate whether the analyst is able
to distinguish malware samples. In Section 2.4 we construct an extended
scheme based on the basic scheme, which is capable of encrypting longer
messages. In Section 2.5 we show that the extended scheme is secure using
games. The procedure is similar to the security proof of the basic scheme.

2 Rerandomizable Encryption

We will in this section describe and construct the encryption scheme
designed to encrypt and rerandomize malware payload. We will construct
two (similar) example schemes, as proofs of concept, and show that it is
hard to distinguish between encrypted payload samples.

As a simplification we will denote payload as messages, encrypted
payload as ciphertexts, replication of malware as rerandomization of ci-
phertexts, and environmental derived keys as keys.

2.1 Preliminary

In our scheme we have an algorithm E encrypting messages, an al-
gorithm D decrypting ciphertexts, and an algorithm R rerandomizing
ciphertexts.

Encryption For a message m and a key k the encryption algorithm
E(k,m) outputs a ciphertext c.

Decryption For a ciphertext c and a key k the decryption algorithm
D(k, c) either outputs a message m or a special symbol indicating
decryption failure.

Rerandomization For a ciphertext c, encrypting a message m, the
rerandomize algorithm R(c) outputs a ciphertext c′, encrypting the
same message m.

We want the output distribution of the rerandomize algorithm to be
computationally indistinguishable from the output distribution of the en-
cryption algorithm. That is, it should be hard to determine if two different
ciphertexts encrypts the same message or not. We also want the system
to be correct, that is, we should almost always be able to decrypt all

ciphertexts output by the encryption algorithm. Since the output distri-
bution of the encryption and rerandomize algorithms are computationally
indistinguishable, ciphertexts output by the rerandomize algorithm will
also almost always be correct.

Correctness If c was output from E(k,m) then D(k, c) will always out-
put m except with negligible probability.

Rerandomization If c was output by E(k,m) then the output distri-
bution of R(c) should be computationally indistinguishable from the
output distribution of E(k,m).

We will not always be able to apply an arbitrary number of reran-
domizations to a ciphertext without getting decryption errors, which we
will see is the case in Section 2.4.

The security requirements of our cryptosystem reflects the intentions
of the malware author. It should be difficult to guess the malware author’s
target, and it should be hard to determine if two ciphertexts are the
encryption of the same message or not.

Key Indistinguishability It should be hard to say something about
which key a ciphertext has been encrypted under.

Indistinguishability It should be hard to decide if two ciphertexts, en-
crypted under the same key, decrypts to the same message or not.

2.2 Basic Scheme

We will construct a basic scheme based on the ElGamal cryptosystem
over a group G of prime order p generated by g. The basic scheme is
essentially the same as the encryption scheme proposed by Golle et al [6].
The algorithms of the scheme is the following.

Encryption For a message m ∈ G and a key k ∈ {1, . . . , p − 1} pick
r, s ∈ {1, . . . , p− 1} uniformly and output

c = (x, y, z, w) = (gr, gkr, gs, gksm).

Decryption For a ciphertext c = (x, y, z, w) and a key k ∈ {1, . . . , p−1}
check if xk = y. If not, output a symbol indicating decryption failure.
If it is, output

m = z−kw.

Rerandomize For a ciphertext c = (x, y, z, w) pick r′, s′ ∈ {1, . . . , p−1}
uniformly and output

c′ = (x′, y′, z′, w′) = (xr
′
, yr

′
, zxs

′
, wys

′
).

Note that if c = (x, y, z, w) was output by the encryption algorithm
then there exists parameters r, s, and k, and a message m such that

c = (x, y, z, w) = (gr, gkr, gs, gksm).

With input c the rerandomize algorithm will output a c′ = (x′, y′, z′, w′)
where

x′ = xr
′

= grr
′
,

y′ = yr
′

= gkrr
′
,

z′ = zxs
′

= gsgrs
′

= gs+rs
′
,

w′ = wys
′

= gksgkrs
′
m = gk(s+rs

′)m.

That is, c′ = (grr
′
, gkrr

′
, gs+rs

′
, gk(s+rs

′)m). Since r 6= 0, we get that
s + rs′ can take any value modulo p except s and all values are equally
probable. Hence, we get that the output distribution of the encryption
and rerandomize algorithms are computationally indistinguishable. Note
that the ciphertext c′ has the same form as a ciphertext output by the

encryption algorithm, that is, (gr̂, gk̂r̂, gŝ, gk̂ŝm), for some parameters r̂,
ŝ, and k̂, and message m.

We can now show the correctness of the decryption algorithm. Note
that for all ciphertexts c = (x, y, z, w) we have that xk = (gr)k = gkr = y,
which is true for ciphertexts output by both the encryption and rerandom-
ize algorithms. We can therefore retrieve the message m by computing

z−kw = (gs)−kgksm = g−ks+ksm = m.

Thus the decryption algorithm is correct.
It is possible to extend the basic scheme by encrypting several mes-

sages under the same key. For a set of messages m1,m2, . . . ,mn, we can
encrypt them as

(gr, gkr, gs1 , gks1m1, g
s2 , gks2m2, . . . , g

sn , gksnmn)

for a key k, and variables s1, s2, . . . , sn, and r. This is not a very efficient
method, and we will in Section 2.4 construct a different extended scheme
by using techniques from symmetric cryptography. In the next section we
will show that the basic scheme is secure.

2.3 Security of the Basic Scheme

We will in this section use games to show that the basic scheme is secure
given that it is hard to guess which environmental key the ciphertexts are
encrypted under.

The key encrypting the malware payload is derived from environmen-
tal parameters sampled by the loader. From the adversary’s perspective,
the collection of sampled parameter types can be considered as a proba-
bility space of possible decryption keys. We will denote this space by D. If
the size of D is large then the adversary is less likely to guess the correct
decryption key, where the size of D is determined by, most notably, the
number of different parameters the loader is gathering.

We want to show that the adversary is unable to distinguish between
ciphertexts and that his advantage is determined by D, that is, the prob-
ability of the adversary guessing the correct key. To do so, we will use a
sequence of games [10]. In our games we will start with simulating an ex-
periment where we ask the adversary to differentiate between two cases;
ciphertexts encrypting different messages, and ciphertexts encrypting the
same message.

Experiment Given two ciphertext c1, and c2, decide either

c1 = E(k1,m1)
c2 = E(k2,m2)

or
c1 = E(k1,m1)
c2 = R(c1)

for some messages m1,m2 and keys k1, k2.

We can show that the security of the scheme can be based on the
hardness of the Decisional Diffie-Hellman (DDH) problem [1] in the ran-
dom oracle model. The DDH problem is to distinguish between tuples
of the form (g, ga, gb, gab) and tuples of the form (g, ga, gb, gc), for some
a, b, c ∈ {1, . . . , p− 1}. Where the DDH assumption states that the DDH
problem is hard to solve.

To create the encryption keys, we will use a hashing oracle to hash
elements drawn from the probability space D. We will denote the hashing
oracle by H, where it should be impossible to get any information about
the input by looking that the output of the oracle.

Game 0 In the first game we will follow the experiment. If b = 0, we
will encrypt the two given messages under two different keys. If b = 1,
we will encrypt only one of the messages and rerandomize the resulting
ciphertext. In both cases, we send the ciphertexts to the adversary, who

Game 0:
u1, u2 ← D, k1 ← H(u1), k2 ← H(u2), b

r←− {0, 1}
Get m1,m2 from A

If b = 0 do:
r, r′, s, s′

r←− {1, . . . , p− 1},
c1 ← (x, y, z, w) = (gr, gk1r, gs, gk1sm1)

c2 ← (x′, y′, z′, w′) = (gr
′
, gk2r

′
, gs

′
, gk2s

′
m2)

Send c1, c2 to A

If b = 1 do:
r, r′, s, s′

r←− {1, . . . , p− 1},
c1 ← (x, y, z, w) = (gr, gk1r, gs, gk1sm1)

c2 ← (x′, y′, z′, w′) = (xr
′
, yr

′
, zxs

′
, wys

′
)

Send c1, c2 to A

Get b′ from A

Fig. 3. Game 0 of the basic scheme

replies with a bit b′ and the game ends. The full procedure of Game 0 can
be seen in Figure 3.

Let E0 denote the event that b = b′ in Game 0.

Game 1 We will stop the game if the adversary guesses one of the keys
correctly. If the adversary gives either u1 or u2 in one of its queries the
oracle will: flip a coin, b′

r←− {0, 1}, output b′, and stop the game. We will
denote this event by F1.

Let E1 denote the event that b = b′ in Game 1. Unless the event F1

occurs Game 1 behaves just like Game 0. Thus we have that E0∧¬F1 ⇐⇒
E1 ∧ ¬F1 and by the difference lemma we get that

|Pr[E0]− Pr[E1]| ≤ Pr[F1].

Game 2 Since the adversary can no longer use the oracle to get any
information about the keys without stopping the game, we are essen-
tially drawing our keys randomly from a set. That is, we draw k1, k2

r←−
{1, . . . , p − 1} uniformly and we will no longer query the hashing ora-
cle. Note that since the adversary can still query the hashing oracle, we
still need to draw samples from the space D to check if the adversary is
guessing the keys correctly.

Let E2 denote the event that b = b′ in Game 2. Since the adversary
can no longer get any information about the environmental keys from the

hashing oracle without stopping the game, the keys used are, essentially,
some random group elements. Hence, Pr[E2] = Pr[E1].

Game 3 We change how we compute the tuples such that we the en-
cryption algorithm do not require the keys as input. To do so we will
precompute the tuples before we receive the messages. That is, for some
uniform s, s′ ∈ {1, . . . , p− 1} and keys k1, k2, we will compute

(x, y, z, w) = (g, gk1 , gs, gk1s)

(x′, y′, z′, w′) = (g, gk2 , gs
′
, gk2s

′
)

before we receive the messages m1 and m2.

In the case b = 0, we will encrypt the two messages using the precom-
puted tuples. That is, we will pick a random element per message, r and
r′, and compute

c1 = (xr, yr, z, wm1) = (gr, gk1r, gs, gk1sm1),

c2 = (x′ r
′
, y′ r

′
, z′, w′m2) = (gr

′
, gk2r

′
, gs

′
, gk2s

′
m2).

In the case b = 1, we will encrypt one message and rerandomize the
computed ciphertext. To encrypt m1 we pick a random element r and
compute

c1 = (xr, yr, z, wm1) = (gr, gk1r, gs, gk1sm1).

To rerandomize c1 = (x̂, ŷ, ẑ, ŵ) we draw some uniform element r′ and s′,
as usual, and compute

c2 = (x̂r
′
, ŷr

′
, ẑx̂s

′
, ŵŷs

′
) = (xrr

′
, yrr

′
, zxrs

′
, wyrs

′
m1)

= (grr
′
, gk1rr

′
, gs+rs

′
, gk1(s+rs

′)m1).

Let E3 denote the event that b = b′ in Game 3. The output distribution
of the encryption algorithm in Game 2 and in Game 3 are exactly the
same, similarly for the rerandomization algorithm. Therefore, we have
that Pr[E3] = Pr[E2].

Game 4 We will change the way we create the second tuple, which we
use to encrypt the second message in the case b = 0. Now we will only
make one tuple for the first key k1 and use the first tuple to create the

second. Let (x, y, z, w) = (g, gk1 , gs, gk1s) be the first tuple, the second
tuple will then be

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)

= (g, ga+ck1 , gb+s, g(a+ck1)(b+s))

for some uniformly sampled a, b, c ∈ {1, . . . , p− 1}. Note that the second
tuple will still be computed before we receive the messages.

Let E4 be the event that b = b′ in Game 4. Since the new tuple results
in the same output space when it is used for encrypting messages we get
that Pr[E4] = Pr[E3].

Game 5 We will in this game change the rerandomize algorithm. The
output of the encryption and the rerandomize algorithm can be seen as
two vectors, (x, y) and (z, w). For the encryption algorithm the first vector
will always stay in the subgroup of G×G generated by (g, gk1), for a key
k1, and the second will always stay in the same coset of this subgroup.
The first vector in the output of the rerandomize algorithm also stay the
subgroup G×G generated by (g, gk1), however the second does not stay
in the same coset. That is, the output of the rerandomize algorithm looks
like

(grr
′
, gk1rr

′
, gs+rs

′
, gk1(s+rs

′)m)

for some r, r′, s and s′, where the sum of s+rs′ cannot be equal to s since
none of the variables used in the algorithm can be zero. Therefore, there
is a statistical difference of 1/p between the output distributions. We will
instead compute the rerandomization of the first ciphertext (in the case
b = 1) as

(grr
′
, gk1rr

′
, gs+rs

′+s̃, gk1(s+rs
′+s̃)m1),

where s̃ is a uniform element in {1, . . . , p−1}. The new sum s+rs′+ s̃ can
now be any value in {1, . . . , p− 1}, and all values are equally probable.

Let F5 be the event that s+ rs′+ s̃ = s, and let E5 be the event that
b = b′ in Game 5. Unless F5 occurs, Game 4 and Game 5 behaves the
same, that is, E4 ∧ ¬F5 ⇐⇒ E5 ∧ ¬F5 and by the difference lemma we
get that

|Pr[E4]− Pr[E5]| ≤ Pr[F5] =
1

p
.

Algorithm B((x, y, z, w)):
u1, u2

r←− D, b
r←− {0, 1}

a, b, c
r←− {1, . . . , p− 1}

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
Get m1,m2 from A

If b = 0 do:
r, r′

r←− {1, . . . , p− 1}
c1 ← (xr, yr, z, wm1)

c2 ← (x′ r
′
, y′ r

′
, z′, w′m2)

Send c1, c2 to A

If b = 1 do:
r, r′, s′, s̃

r←− {1, . . . , p− 1}
c1 ← (xr, yr, z, wm1)

c2 ← (xrr
′
, yrr

′
, zxrs

′+s̃, wyrs
′+s̃m1)

Send c1, c2 to A

Get b′ from A

Fig. 4. Algorithm B

Game 6 In the last game, we will turn the first tuple into the form
(g, ga

′
, gb

′
, gc

′
), for some uniform elements a′, b′, c′ ∈ {1, . . . , p − 1}. The

second tuple will then look like

(g, ga+a
′c, gb+b

′
, gab+ab

′+a′bc+cc′).

Both the encryption and rerandomization algorithms will output cipher-
texts which can result in any group element when decrypted.

Let E6 be the event that b = b′ in Game 6. Since we are using uniform
variables in the tuples the encryption and rerandomization algorithms are,
essentially, one-time pads. Hence, we get that Pr[E6] = 1/2.

To show the connection to the previous game we will use algorithm
B, see Figure 4. We claim that |Pr[E5]−Pr[E6]| = Advind-cpa

ddh , the DDH-
advantage (with respect to indistinguishably under chosen plaintext at-
tack, that is, semantic security). The input to the algorithm B is a tuple
(x, y, z, w) which looks like (g, ga, gb, gc), for some a, b, and c, where c can
be equal to ab. Therefore, the algorithm will simulate Game 5 and Game 6
depending on its input. When the input is on the form (g, ga, gb, gab), the
algorithm will proceed just as in Game 5, and therefore

Pr[B(g, ga, gb, gab) = 1 | a, b r←− {1, . . . , p− 1}] = Pr[E5].

If the input is on the form (g, ga, gb, gc) the algorithm proceed as in
Game 6 and we get that

Pr[B(g, ga, gb, gc) = 1 | a, b, c r←− {1, . . . , p− 1}] = Pr[E6],

where the DDH-advantage of B is equal to |Pr[E5]− Pr[E6]|.

Recap We can now use the results from the games to bound the advan-
tage of the adversary.

Adv(A) = |Pr[E0]− 1/2|
= |Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + Pr[E2]

− Pr[E3] + Pr[E3]− Pr[E4] + Pr[E4]

− Pr[E5] + Pr[E5]− Pr[E6] + Pr[E6]− 1/2|
≤ |Pr[E0]− Pr[E1]|+ |Pr[E4]− Pr[E5]|+ |Pr[E5]− Pr[E6]|

≤ Pr[F1] +
1

p
+ Advind-cpa

ddh .

By the DDH assumption the DDH advantage is negligible. Therefore, for a
large enough p, we get that the advantage of our adversary is determined
by the probability that A guesses or predicts the correct key, that is,
determined by the probability space D.

2.4 Extended Scheme

We will extend the basic scheme to longer messages by representing them
as bit strings. This change will also reduce the number of rerandomiza-
tions we can perform on a ciphertext. Therefore, we need to relax the
requirements of the cryptosystem slightly. The construction in this sec-
tion is very similar to the hybrid scheme by Golle et al [6].

Correctness If c was produced by iteratively applying R to the output
of E(k,m) at most n times, then D(k, c) will never output the failure
symbol and output m except with negligible probability.

We will require a pseudorandom function f : G → {0, 1}N mapping
group elements to bit strings of length N , for some large N ∈ N. We let
fL denote the truncation of the output to L bits, for L < N . We will
assume that group elements can be encoded as bit strings of length l/2.

Encryption For a message m ∈ {0, 1}L and a key k ∈ {1, . . . , p − 1}
pick r, s ∈ {1, . . . , p− 1} and γ ∈ G uniformly, output

c = gr||gkr||gs||gksγ||
(
fL+l(n+1)+1(γ)⊕ (m||1||0l(n+1))

)
.

Decryption For a ciphertext c = x||y||b′0 and a key k ∈ {1, . . . , p −
1} check if xk = y. If not, output a symbol representing decryption
failure. If it is, let b′0 = z0||w0||b0 and compute

b′1 = f|b0|(z
−k
0 w0)⊕ b0.

If the result b′1 ends in l′ ≥ l zeros, then the message is the result
minus the tail of zeros and exactly one 1. If the result does not end
with a tail of l′ zeros, then interpret b′1 as z1||w1||b1 and repeat the
procedure. If the decryption algorithm is repeated n+1 times, output
a symbol representing decryption failure.

Rerandomization For a ciphertext c = x||y||bα||bβ, where bβ is the last
l bits, pick r′, s′ ∈ {1, . . . , p− 1} and γ′ ∈ G uniformly, output

c′ = xr
′ ||yr′ ||xs′ ||ys′γ′||

(
f|bα|(γ

′)⊕ bα
)
.

Note that, before applying the rerandomize algorithm, bα looks like

gs||gksγ||
(
fL+ln+1(γ)⊕ (m||1||0ln)

)
for some s ∈ {1, . . . , p− 1}, key k, and γ ∈ G. The l last bits we discard,
i.e., bβ, is an “encryption” of l zeros. We can therefore only perform n
rerandomizations on a ciphertext before we get decryption failure, that
is, there are no tail of zeros left for the decryption algorithm to detect.
However, we get that the length of the ciphertext is preserved.

We will now show the correctness of the decryption algorithm. If c =
x||y||b′0 was output from the encryption algorithm, we have that xk =
gkr = y. Hence, we can write b′0 as z||w||b0, and compute

f|b0|(z
−kw)⊕ b0 = fL+l(n+1)+1(g

−ksgksγ)⊕ fL+l(n+1)+1(γ)

⊕ (m||1||0l(n+1))

= (m||1||0l(n+1)).

Since the result ends with a tail of l′ ≥ l zeros the output message is m.
Let c be a ciphertext that was produced by iteratively applying the

rerandomize algorithm to the output of E(k,m) t times, where 1 ≤ t ≤ n.
Write c as x||y||b′t, where x = gr1···rt+1 , y = gk(r1···rt+1), and b′t looks like

(gr1···rt)s
′ ||(gk(r1···rt))s′γt||

(
fL+l(n+1−t)+1(γt)⊕ b′t−1

)

for some s′, r1, . . . , rt+1 ∈ {1, . . . , p−1}, key k, and group element γt ∈ G.
Observe that for all 1 ≤ t ≤ n, we have that xk = y. Hence, we can write
b′t = zt||wt||bt and compute

f|bt|(z
−k
t wt)⊕ bt = fL+l(n+1−t)+1(g

−ks′(r1···rt)gks
′(r1···rt)γt)

⊕ fL+l(n+1−t)+1(γt)⊕ b′t−1
= b′t−1

where b′t−1 does not end with a tail of l′ ≥ l zeros (except with negligible
probability), since the ciphertext is also encrypted once using with the
encryption algorithm (in addition to the t rerandomizations). Therefore,
let b′t−1 = zt−1||wt−1||bt−1 and repeat the process t more times. In the
last iteration, we will perform the decryption on a bit string which looks
like z0||w0||b0, where we now have that b0 looks like

fL+l(n+1−t)+1(γ0)⊕ (m||1||0l(n+1−t))

which we know decrypts to the message m. That is, the decryption algo-
rithm is correct.

2.5 Security of the Extended Scheme

We will in this section show that the adversary is unable to distinguish
between encrypted ciphertexts and that his advantage is determined by
D, that is, the probability of the adversary guessing the correct key. As
in the proof of the basic scheme, we will use games to simulate the same
experiment. Since the two example schemes are similar the games will be
too.

Game 0 In the first game we will simulate the experiment. We ask the
adversary to differentiate between ciphertexts encrypting two different
messages and ciphertexts encrypting the same message. The full proce-
dure of the game can be seen in Figure 5.

Let E0 be the event that b = b′ in Game 0.

Game 1 We will stop the game if the adversary guesses one of the keys
correctly. If the adversary sends either u0 or u1 in one of its queries, the
oracle will flip a coin, b′

r←− {0, 1}, output b′, and stop the game. We will
denote this event by F1.

Game 0:
u1, u2

r←− D, k1 ← H(u1), k2 ← H(u2), b
r←− {0, 1}

Get m1,m2 from A

If b = 0 do:
r, r′, s, s′, γ, γ′ r←− {1, . . . , p− 1}
c1 ← gr||gk1r||gs||gk1sγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
c2 ← gr

′
||gk2r

′
||gs

′
||gk2s

′
γ′||

(
fL+l(n+1)+1(γ′)⊕ (m2||1||0l(n+1))

)
Send c1, c2 to A

If b = 1 do:
r, r′, s, s′, γ, γ′ r←− {1, . . . , p− 1}
c1 ← gr||gk1r||gs||gk1sγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
Write c1 as x||y||bα||bβ , where bβ is the last l bits

c2 ← xr
′
||yr

′
||xs

′
||ys

′
γ′||

(
f|bα|(γ

′)⊕ bα
)

Send c1, c2 to A

Get b′ from A

Fig. 5. Game 0 of the extended scheme

Let E1 denote the event that b = b′ in Game 1. If the event F1 does not
occur then Game 0 and Game 1 are equal. That is, E0∧¬F1 ⇐⇒ E1∧¬F1

and by the difference lemma we get that

|Pr[E0]− Pr[E1]| ≤ Pr[F1].

Game 2 Since the adversary can no longer use the oracle to get any
information about the keys without stopping the game, we are essen-
tially drawing our keys at random from a set. That is, we draw k1, k2

r←−
{1, . . . , p − 1} uniformly, and we will no longer query the hashing ora-
cle. Note that since the adversary can still query the hashing oracle, we
still need to draw samples from the space D to check if the adversary is
guessing the correct keys.

Let E2 denote the event that b = b′ in Game 2. Since the adversary
can no longer get any information about the environmental keys from the
hashing oracle without stopping the game, the keys used are, essentially,
some random group elements. Hence, Pr[E2] = Pr[E1].

Game 3 We change how we compute the tuples such that we the en-
cryption algorithm do not require the keys as input. We will therefore

precompute the tuples before we receive the messages. That is, for some
uniform s, s′ ∈ {1, . . . , p− 1} and key k1, k2, we will compute

(x, y, z, w) = (g, gk1 , gs, gk1s)

(x′, y′, z′, w′) = (g, gk2 , gs
′
, gk2s

′
)

before we receive the messages m1 and m2.
In the case b = 0, we will encrypt the two messages using the pre-

computed tuples. That is, we will pick r, r′, γ and γ′ uniformly, and
compute

c1 = xr||yr||z||wγ||
(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
= gr||gk1r||gs||gk1sγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
,

c2 = x′ r
′ ||y′ r′ ||z′||w′γ′||

(
fL+l(n+1)+1(γ

′)⊕ (m2||1||0l(n+1))
)

= gr
′ ||gk2r′ ||gs′ ||gk2s′γ′||

(
fL+l(n+1)+1(γ

′)⊕ (m2||1||0l(n+1))
)
.

In the case b = 1, we will encrypt one message and rerandomize the
computed ciphertext. That is, to encrypt, we pick r and γ uniformly, and
compute

c1 = xr||yr||z||wγ||
(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
= gr||gk1r||gs||gk1sγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
.

To rerandomize let c1 = xr||yr||bα||bβ, where bβ is the last l bits, pick two
element r′, s′ and a group element γ′, as usual, and compute

c2 = xrr
′ ||yrr′ ||xrs′ ||yrs′γ′||

(
f|bα|(γ

′)⊕ bα
)

= grr
′ ||gk1rr′ ||grs′ ||gk1rs′γ′||

(
f|bα|(γ

′)⊕ bα
)
.

Let E3 denote the event that b = b′ in Game 3. The output distribution
of the encryption algorithm in Game 2 and in Game 3 are exactly the
same, similarly for the rerandomization algorithm. Therefore, we have
that Pr[E3] = Pr[E2].

Game 4 We will only make one tuple and use it to create the second
one. The first tuple will be (x, y, z, w) = (g, gk1 , gs, gk1s) and the second
tuple looks will then be

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)

= (g, ga+ck1 , gb+s, g(a+ck1)(b+s))

Algorithm B((x, y, z, w)):
u1, u2

r←− D, b
r←− {0, 1}

a, b, c
r←− {1, . . . , p− 1}

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
Get m1,m2 from A

If b = 0 do:
r, r′γ, γ′ r←− {1, . . . , p− 1}
c1 ← xr||yr||z||wγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
c2 ← x′ r

′
||y′ r

′
||z′||w′γ′||

(
fL+l(n+1)+1(γ′)⊕ (m2||1||0l(n+1))

)
Send c1, c2 to A

If b = 1 do:
r, r′s′, γ, γ′ r←− {1, . . . , p− 1}
c1 ← xr||yr||z||wγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
Write c1 as xr||yr||bα||bβ , where bβ is the last l bits

c2 ← xrr
′
||yrr

′
||xrs

′
||yrs

′
γ′||

(
f|bα|(γ

′)⊕ bα
)

Send c1, c2 to A

Get b′ from A

Fig. 6. Algorithm B

for some uniformly sampled a, b, c ∈ {1, . . . , p− 1}.
Let E4 be the event b = b′ in Game 4. Since the new tuple results

in the same output space when it is used for encrypting messages we get
that Pr[E4] = Pr[E3].

Game 5 We will now make the first tuple to have the form (g, ga
′
, gb

′
, gc

′
),

for some uniform a′, b′, c′ ∈ {1, . . . , p−1}, where the second tuple will look
like

(g, ga+a
′c, gb+b

′
, gab+ab

′+a′bc+cc′).

Let E5 be the event b = b′ in Game 5. We will use algorithm B, see
Figure 6, to show that |Pr[E4]−Pr[E5]| is equal to the DDH-advantage.
If the input of the algorithm is a tuple on the form (g, ga, gb, gab), then the
algorithm proceed as in Game 4. If the tuple is on the form (g, ga, gb, gc),
then the algorithm proceed as in Game 5. Therefore, the DDH-advantage
is equal to |Pr[E4]− Pr[E5]|.

Algorithm B′((x, y, z, w)):
u1, u2

r←− D, b
r←− {0, 1}, h← Γ

a, b, c
r←− {1, . . . , p− 1}

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
Get m1,m2 from A

If b = 0 do:
r, r′, γ, γ′ r←− {1, . . . , p− 1}
c1 ← xr||yr||z||wγ||

(
hL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
c2 ← x′ r

′
||y′ r

′
||z′||w′γ′||

(
hL+l(n+1)+1(γ′)⊕ (m2||1||0l(n+1))

)
Send c1, c2 to A

If b = 1 do:
r, r′, s′, γ, γ′ r←− {1, . . . , p− 1}
c1 ← xr||yr||z||wγ||

(
hL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
Write c1 as xr||yr||bα||bβ , where bβ is the last l bits

c2 ← xrr
′
||yrr

′
||xrs

′
||yrs

′
γ′||

(
h|bα|(γ

′)⊕ bα
)

Send c1, c2 to A

Get b′ from A

Fig. 7. Algorithm B′

Game 6 In the last game, we will sample a function h from a family
Γ of all functions from G to {0, 1}N instead of using the function f . We
want to show that the pseudorandom function (PRF) f can reliably hide
the message. The PRF-advantage of an efficient adversary is defined by
his ability to distinguishing the function f from any function h sampled
from Γ . The PRF-advantage of the adversary is negligible assuming the
function f is pseudorandom. Just like for f , we will denote hL as the
truncation of the output to L bits.

Let E6 be the event b = b′ in Game 6. From Game 5 we have that
the new tuples looks like (g, ga

′
, gb

′
, gc

′
), for some random variables a′, b′,

and c′. Hence, we will not be able to retrieve γ when we try to decrypt
the ciphertext encrypting it. Since we are now using any function h, with
the random group element γ, to encrypt the message m we are essentially
XOR-ing a random bit string to the message. Therefore, the output ci-
phertexts of the encryption and rerandomization algorithms can be any
random bit string and we get that Pr[E6] = 1/2.

By using the algorithm B′, as seen in Figure 7, we can show that the
difference between Game 5 and Game 6 is equal to the PRF-advantage.
The algorithm draws a function h from the family Γ , which may be equal

to f . Hence, we get that the PRF-advantage is∣∣Pr[B′((x, y, z, w)) = 1 | f ← Γ]− Pr[B′((x, y, z, w)) = 1 | h← Γ]
∣∣

which is equal to |Pr[E5]− Pr[E6]|.

Recap We can now use the results from the games to bound the advan-
tage of the adversary.

Adv(A) = |Pr[E0]− 1/2|
= |Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + Pr[E2]

− Pr[E3] + Pr[E3]− Pr[E4] + Pr[E4]

− Pr[E5] + Pr[E5]− Pr[E6] + Pr[E6]− 1/2|
≤ |Pr[E0]− Pr[E1]|+ |Pr[E4]− Pr[E5]|+ |Pr[E5]− Pr[E6]|

≤ Pr[F1] + Advind-cpa
ddh (A) + Advprf(A).

Assuming that f is pseudorandom the PRF advantage is negligible, and
the DDH assumption states that the DDH-advantage is negligible. There-
fore, the advantage of the adversary is determined by the probability that
the adversary guesses or predicts the correct key, that is, determined by
the probability space D.

Acknowledgments

We would like to thank Adam Young for helpful discussions and com-
ments. We would also like to thank the anonymous reviewers for helpful
comments.

References

1. Dan Boneh. Algorithmic Number Theory: Third International Symposiun, ANTS-
III Portland, Oregon, USA, June 21–25, 1998 Proceedings, chapter The Decision
Diffie-Hellman problem, pages 48–63. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1998.

2. Ran Canetti, Hugo Krawczyk, and Jesper Nielsen. Relaxing chosen-ciphertext se-
curity. Cryptology ePrint Archive, Report 2003/174, 2003. http://eprint.iacr.org/.

3. Eric Filiol. Strong Cryptography Armoured Computer Viruses Forbidding Code
Analysis: the bradley virus. Research Report RR-5250, INRIA, 2004.

4. Eric Filiol. Malicious cryptography techniques for unreversable (malicious or not)
binaries. CoRR, abs/1009.4000, 2010.

5. Ariel Futoransky, Emiliano Kargieman, Carlos Sarraute, and Ariel Waissbein.
Foundations and applications for secure triggers. Cryptology ePrint Archive, Re-
port 2005/284, 2005. http://eprint.iacr.org/.

6. Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal Re-
encryption for Mixnets, pages 163–178. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2004.

7. Fritz Hohl. Time limited blackbox security: Protecting mobile agents from mali-
cious hosts, 1998.

8. Kaspersky Lab Global Research and Analysis Team. Gauss: Abnormal distribu-
tion. In-depth research analysis report, KasperSky Lab, August 9th 2012. se-
curelist.com/en/analysis/204792238/gauss abnormal distribution.

9. James Riordan and Bruce Schneier. Environmental key generation towards clueless
agents. In Giovanni Vigna, editor, Mobile Agents and Security, volume 1419 of
Lecture Notes in Computer Science, pages 15–24. Springer Berlin Heidelberg, 1998.

10. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004.

11. Ed Skoudis and Lenny Zeltser. Malware: Fighting Malicious Code. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2003.

12. Adam Young and Moti Yung. Cryptovirology: extortion-based security threats
and countermeasures. In Security and Privacy, 1996. Proceedings., 1996 IEEE
Symposium on, pages 129–140, May 1996.

13. Adam Young and Moti Yung. Malicious Cryptography: Exposing Cryptovirology.
John Wiley & Sons, 2004.

14. Adam Young and Moti Yung. The drunk motorcyclist protocol for anonymous
communication. In Communications and Network Security (CNS), 2014 IEEE
Conference on, pages 157–165, Oct 2014.

