
A Simulator for the Development of
Autonomous Robots

Christer Mathiesen

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK

Department of Engineering Cybernetics

Submission date: June 2017

Norwegian University of Science and Technology

Problem statement

An autonomous robot needs to be able to locate itself in its environment and make in-
formed decisions based on the surroundings. In addition to measuring states pertaining
to the state or the robot, like inertial measurements, autonomy requires sensory interac-
tion with the environment to gather information. Typically this can include recording
camera images and track features from frame to frame to estimate motion relative to the
scene, and active laser ranging to measure distances as a complementary and redundant
way to understand scene structure.

Inherently, an autonomous robot is an embedded computer system running algorithms
to perform navigation based on sensor fusion to estimate location, guidance to plan
movement trajectories and control to execute them. This poses a considerable challenge
during systems development, as the software is not testable in and of itself without being
embodied in the robot hardware interacting with an external environment. It might be
impractical, time-consuming and even dangerous to include all or a part of the physical
components of an embedded system in day to day development. Therefore it is often
beneficial to emulate some parts of the system hardware and software in a simulation.

To aid the development of a set of navigation and control algorithms for an autonomous
robot we wish to replace all input/output capabilities and interaction with the physical
world with a standalone simulator interfacing with the rest of the system completely as
is. In terms of its inputs and outputs, the simulator must provide

1. Force and torque actuation on a quadrotor body in response to control input.

2. Six degrees of freedom rigid body dynamics resulting from the actuation.

3. Sensor data output for the navigation filter to provide control feedback, including

• inertial measurements,

• camera images,

• laser scanner range measurements.

i

ii

Preface

This thesis is submitted to the Department of Engineering Cybernetics at the Norwegian
University of Science and Technology, as the final compulsory part of the degree of Master
of Science in Engineering Cybernetics. It is directly motivated by, and done in the context
of, the startup company Versor with work starting late fall 2016. In that effect, the work
has not been done in isolation, but I acknowledge that the work presented here is my own.
While the added overhead of starting a business when you are supposed to be writing
your thesis is demanding, it is an obvious reward that the results of this work as it stands
not only will be the culmination of far too many years of school, but serve an active role
in ongoing commercial software development.

To my supervisor, Tor Onshus, I want to display gratitude for accepting my thesis pro-
posal and being patient with the presentation of evidence, or lack thereof, that progress
was being made on the thesis. I want to show appreciation to my Versor co-founders,
Eirik Worren Legernæs and Erlend Sierra. Without you I would not have anything better
to do with my time than to actually write my thesis. I am looking forward to continue
working with you making a convincing showing that we seemingly know what we are
doing. So far it has been an experience I would never be without. My only regret is that
we didn’t get an even bigger camera calibration board for our office. Finally, I want to
thank my parents, who I know will be reading this, for always supporting and believing
in me, especially when it was needed the most. You are great, and I love you.

Christer Mathiesen
Trondheim, June 5, 2017

iv

Abstract

A simulator for the development of vision-based navigation, guidance and control al-
gorithms of an autonomous flying robot is implemented. The simulator is a drop-in
replacement for all system input/output and interfaces with the rest of the system as
is. Synthetic data is generated in the form of inertial measurements, camera images
and scanning laser range measurements. Computer graphics are used to generate image
projections of a virtual scene, emulating calibrated intrinsic parameters of a specific cam-
era. The effects of optical distortion from a wide angle lens are emulated using iterative
methods, and the apparent duality between image distortion and undistortion methods
is presented. Depth images are produced to calculate distance measurement to specific
points in the virtual scene, and a depth buffer sampling model is created to generate
point cloud scans for a simulated scanning laser sensor. The sensor data is used as input
to a sensor fusion filter providing navigation feedback to guidance and control algorithms
running in real-time. General six-degrees of freedom rigid body dynamics is simulated
with a quadrotor actuation model responding to control input, closing the loop between
control and navigation allowing for full system integration and testing on the desktop
with minimal overhead. Visualization tools are demonstrated as a graphical interface to
interact with the headless simulation, for real-time visual verification of system status.

v

vi

Sammendrag

En simulator er implementert for å forenkle utviklingen av kamera-basert navigasjon,
guidance og kontroll av en autonom flyvende robot. Simulatoren erstatter all system-
input/output og kommuniserer med resten av systemet som det er. Syntetiske data
genereres i form av treghetsmålinger, kamerabilder og avstandsmålinger. Datagrafikk
brukes for å generere spesifikke kamerabilder av en virtuell scene. Forvrengningseffek-
ten av en bredvinklet linse er emulert gjennom iterative metoder, og det presenteres en
åpenbar dualitet mellom forvrengning og retting av bilder. Dybdebilder produseres for å
beregne avstanden til spesifikke punkter i scenen, og en modell for sampling av dybde-
bufferet framstilles for å generere en punktsky for en simulert laserskanner. Sensordataen
benyttes i et navigasjonsfilter for kontroll-tilbakekobling i ekte tid. Dynamikk i seks fri-
hetsgrader for generelle stive legemer med en modell av et kvadkopter simuleres i henhold
til kontrollinput, for lukket sløyfe verifisering og full systemintegrasjonstesting. Et grafisk
grensesnitt demonstreres for å visualisere systemstatus i real-time.

vii

viii

Contents

List of Figures xiv

List of Tables xv

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Objectives . 4
1.4 Contributions . 5
1.5 Outline . 5

2 Rigid Body Dynamics 7
2.1 Kinematics . 7

2.1.1 Coordinate frames . 7
2.1.2 Frames of reference . 8
2.1.3 Differential equations . 9

2.2 Kinetics . 10
2.2.1 Inertial frames of reference . 10
2.2.2 Newton-Euler equation of motion 11

2.3 Navigational kinematics . 13
2.3.1 Inertial reference frame approximations 13
2.3.2 Earth-centered, Earth-fixed reference frame 14
2.3.3 Local-level navigational reference frame 17

2.4 Numerical solution . 18
2.4.1 Angular integration . 18
2.4.2 Linear integration . 19

3 Quadrotor Actuation 21
3.1 Forces and torques . 21
3.2 Quadrotor model . 22
3.3 Rotor model . 23

3.3.1 Propeller aerodynamics . 23
3.3.2 DC motor electromechanics . 24
3.3.3 Electronic speed controller dynamics 25

ix

4 Inertial Measurements 29
4.1 Accelerometer . 29

4.1.1 Measurement model . 30
4.1.2 Generating a measurement . 30

4.2 Gyroscope . 31
4.2.1 Measurement model . 31
4.2.2 Generating a measurement . 32

5 Camera Images 33
5.1 Pinhole camera . 33

5.1.1 Pinhole camera model . 33
5.1.2 Pixel coordinate transform . 34

5.2 OpenGL camera . 35
5.2.1 Viewing Frustum . 35
5.2.2 Projection matrix . 36
5.2.3 View matrix . 37

5.3 Constructing OpenGL camera from pinhole camera 38
5.3.1 Projection matrix . 38
5.3.2 View matrix . 39

5.4 Optical distortion . 40
5.4.1 Distortion models . 40
5.4.2 Fisheye camera model . 41
5.4.3 Image distortion . 41
5.4.4 Image undistortion . 44

6 Laser Range Measurements 47
6.1 Distance measurement . 47
6.2 2D laser scan . 49

6.2.1 Frustum subdivision . 50
6.2.2 Sampling . 52
6.2.3 View matrix . 53

6.3 3D laser scan . 53
6.4 Point cloud . 54

7 Implementation 55
7.1 Rigid body dynamics . 57
7.2 Quadrotor actuation . 57
7.3 Inertial measurements . 59
7.4 Camera images . 59
7.5 Laser range measurements . 61

8 Results 65
8.1 Vehicle dynamics . 65
8.2 Camera images . 67

8.2.1 Validation by navigation . 69
8.3 Laser range measurements . 71

8.3.1 Occupancy map . 72

x

8.4 Final remarks . 73

9 Conclusion 75
9.1 Further work . 76

References 77

xi

xii

List of Figures

1.1 Simplified autopilot architecture . 3

2.1 Vector ~x, and unit axes of coordinate frames a and b 7
2.2 Configuration of two arbitrarily moving reference frames 8
2.3 Global ECEF frame, local navigational frame, body frame 15
2.4 Reference ellipsoid and normal gravity model 16
2.5 Integration of angular velocity . 18
2.6 Integration of velocity . 19

3.1 Quadrotor lift forces and resulting moments about body center 22
3.2 Torques generated by the four spinning rotor actuators 22
3.3 Speed feedback control of brush-less DC motor 26

5.1 Pinhole camera projection . 34
5.2 Pinhole camera projection to pixel coordinates 35
5.3 Viewing frustum . 36
5.4 OpenGL perspective frustum and camera frame 37
5.5 Perspective unprojection . 38
5.6 Direct method of image distortion . 41
5.7 Indirect method of image distortion . 43
5.8 Direct method of image undistortion . 44
5.9 Indirect method of image undistortion 45
5.10 Duality of image distortion and undistortion 46

6.1 The scene depth of a point . 48
6.2 2D laser scanner sampling points in the plane 49
6.3 Lidar frustum subdivision . 50
6.4 Sampling points at equidistant angles in one frustum scan 51
6.5 Sampling points in the vertical field of view 53

7.1 Interaction between headless simulator, flight code and visualization . . . 55
7.2 Rendering of the simulated quadrotor body 56
7.3 Transient rotor output in response to an increasing input 58
7.4 Image taken with the IDS camera . 60
7.5 Direct image distortion and undistortion 63

xiii

7.6 Indirect image distortion and undistortion 64

8.1 Real-time rendering of the quadrotor flying in a virtual scene. 65
8.2 Navigational estimate of the body frame pose 66
8.3 Simulated camera images with fish-eye distortion 68
8.4 Trajectory of estimated positions from simulated run 69
8.5 Estimated position and orientation from simulated run 70
8.6 Visualization of lidar point cloud . 71
8.7 Occupancy map generated with lidar measurements 72
8.8 Side-by-side comparison of a simulated run versus a real run 74

xiv

List of Tables

7.1 Defining parameters of the WGS84 reference ellipsoid 57
7.2 Quadrotor rigid body parameters . 57
7.3 Rotor model parameters . 58
7.4 Accelerometer and gyroscope parameters 59
7.5 Camera projection parameters . 60
7.6 Camera distortion parameters . 61
7.7 Lidar parameters . 62
7.8 Lidar model parameters . 62

xv

xvi

1 Introduction

This thesis will document the principal implementation of a simulator to aid the devel-
opment of navigation, guidance and control algorithms for an autonomous flying robot.
Specifically, the work will focus on generating synthetic sensor data and simulating ap-
propriate vehicle dynamics in response to control inputs.

1.1 Background

Automation of mobile robots presents a significant opportunity for industry to save time
and cost and reduce the need for human involvement in potentially dangerous work. Mo-
bile robots with a sufficient degree of autonomy can operate with little to no supervision
where humans cannot or should not work. We will consider the defining characteristic
of an autonomous robot regardless of high-level goal as being able to locate itself within
its environment and make informed decisions on where to go and what to do based on
the surroundings. It is not enough for the robot to be concerned with its own state and
measure signals pertaining to the system only, like inertial measurements and satellite
navigation signals, but to make use of exteroceptive sensors to acquire information about
the environment. Typically this can include recording camera images and track features
from frame to frame to estimate motion relative to the surroundings, and laser ranging to
measure distances as a complementary and redundant way to understand scene structure.

An autonomous robot is inherently an embedded computer system running algorithms
to perform navigation to fuse sensor data and estimate location, guidance to initiate
locomotion based the location and an understanding of the environment, and control to
actuate those decisions into movement. This poses a considerable challenge during system
development, as the software is not testable in and of itself without being embodied in the
robot hardware interacting with an external environment. It might be impractical, time-
consuming and even dangerous to include all or even a part of the physical components
of an embedded system in day to day development. Therefore it is often beneficial to
emulate in a simulation some parts of the system hardware and software.

Simulation is widely used when it comes to the design of embedded control systems. Typ-
ically a mathematical model of the vehicle or plant is developed and run as a simulation
in a software prototyping framework, and the desired control and navigation algorithms

1

are designed in the same prototyping environment and tested via the simulated model,
emulating the performance of the final embedded system interacting with the physical
world. However, the simulation tools used during the initial design phase can be extended
and used favourably during the development of the embedded software where the actual
embedded algorithms interact with a fully or partially simulated external system. This
is called hybrid simulation or hardware-in-the-loop simulation[5].

In its penultimate form, hardware-in-the loop simulation involves the embedded system
perform completely as is during development and testing, including sensors and actuators.
Only the process itself is simulated, and its dynamic response to actuators and the result-
ing sensor input. This necessitates the simulation itself being embedded in hardware, to
perform A/D conversions and possibly mechanically actuate to stimulate the appropri-
ate signals in the sensor measurements. Obviously artificially generating physical sensor
inputs may require considerable realization efforts[13]. This level of emulation is often
impractical or downright impossible depending on the sensor in question, but nonetheless
offers the most real testing conditions possible for executing an embedded system and
has been employed with success to assess the performance of satellite launcher control
systems, real-time flight simulation training and in aerospace and automotive design.

Differentiating between the control system being tested, executing the real algorithms on
real hardware, and the controlled system including process dynamics, sensor and actuator
hardware, a considerably more affordable approach is to simulate the controlled system in
full. This still involves A/D conversions to interact with the control system over the same
electrical interface, but is considerably easier to realize in that the sensors and actuators
themselves are software. The cost is the errors involved in the modeling of the sensors
and actuators and not being able to test the physical hardware. It is easy to identify the
inherent trade-off between the detail and realism offered by the simulator and the scope
needed to realize it.

A further trade-off might be to rid away with the A/D converters entirely and emulate
that part of the embedded software, bypassing hardware entirely and communicating
directly with the simulator over a suitable higher-level interface. On a microcontroller
this interface might typically be a serial port to a desktop computer running the simulator.
As long as the rest of the control system runs as is on the embedded platform, it is still
considered hardware-in-the-loop simulation, albeit in a weak form, where all hardware
except the computing platform is simulated in addition to a small part of the software.
In contrast, if the control system code is running on the same desktop computer as the
simulator, forgoing the serial connection and execution on a microcontroller entirely, we
have a so-called software-in-the-loop simulation[13]. We will use this as a starting point
when motivating the design of a simulator to aid the development of navigation, guidance
and control algorithms for an autonomous flying robot.

1.2 Motivation

The work documented in this thesis is specifically motivated by work done with the
student startup Versor developing an autopilot for an autonomous flying robot relying

2

on sensor fusion of camera images and inertial measurements to navigate and range
measurements from a lidar to map the surroundings. In particular it was discovered that
testing code on real in-the-air hardware would create too much overhead and become
non-effective in the long run. And the need for a simulator to test code as much as
possible on the desktop during development, became apparent.

Ready-made robot simulators exist[10] and are in active development[16], and provide
proof that the need for such a tool is real. However, creating an in-house solution from
scratch offers many benefits: i) complete control of the physics engine and the generated
sensor data, ii) customization by design without the need to develop peripheral plugins,
and most importantly iii) effortless integration with the autopilot system, with adherence
to the same proprietary communication system without the need for a hack to bridge gaps
between communication mediums.

Figure 1.1 diagrams the overall autopilot system, in a simple form. In essence it con-
sists of four main modules, navigation, guidance, control and input/output (IO), all
running on Linux and communicating through socket based messaging. The IO module
has a high-level interface connection, USB and Ethernet, to cameras, laser sensors and
a microcontroller IO-board providing low-level electrical interfacing with actuators and
inertial sensors. The microcontroller additionally performs high-frequency, low-latency
closed-loop control of the actuators, so a small portion of the control codes actually resides
outside Linux.

IO

Navigation

Guidance

Control

Figure 1.1: Simplified autopilot architecture. The dotted line indicates the part replaced
by simulation.

In light of the previous discussion on hardware-in-the-loop simulation during embedded
development, the question is what should be the scope of the simulator - which part of the
overall system, if any, should it replace and emulate in addition to actuator response and

3

sensor data. It seems interfacing with the IO-board at all is overly complex: Interfacing
at the actual electronic level involves hardware and A/D converters. Additionally, the
complexities and error modes of direct communication with the actual sensors will not and
can not be modeled in the simulation, so the code responsible for the interface cannot
be said to be sufficiently tested with such a simulation. Alternatively, given that the
complexity of the simulation involved necessitates a desktop implementation, interfacing
the simulator with the microcontroller board through a serial interface is not default
operation for the embedded code, and changing it to fit the purpose of the simulation
seems to void the entire purpose of the exercise which is to test the real code as is.

The question is then if the Linux IO module should be left unchanged. While it is
relatively easy for the desktop simulator to communicate through network sockets and
serial ports, this again seems overly complex as it requires spoofing of particular sensor
protocols byte for byte, bit by bit, in order to test the fairly trivial code, compared
to the rest of the system, which handles the sensor interfaces. One reason for this is
that interfacing with the sensors is straight-forward to test in a desktop setting, without
a full-scale demonstration in order to fly. Testing code correctness here does then not
necessarily warrant the overhead of a simulator. Not to mention the fact that again the
actual error modes of the sensors will remain untested anyway.

It seems the remaining reasonable alternative is to simulate the entire IO module and
provide the same high-level sensor data to the navigation module in response to control
input as a result of the vehicle dynamics. The modules are in their final form embedded on
a system on a module running Linux. Aside from cross compilation to allow for differing
architectures, in principle there is little difference between the code running on the em-
bedded platform or on the desktop, and the network based inter-module communications
would facilitate both equally. If we identify the embedded case as a hardware-in-the-loop
simulation and the desktop case as software-in-the-loop, then it is clear that running em-
bedded Linux blurs the definition between hardware and software-only in the loop, and
makes the distinction in this case redundant. In either case, what is achieved is a perfectly
transparent simulation in which the real part of the system not simulated does not feel
the difference between operation in the real world and the simulated world. Given this
proposed scope of the simulator we will describe in more detail the exact responsibilities
required from the implementation.

1.3 Objectives

The main objectives of this work is to

1. Implement a headless simulator as a drop-in replacement of the input/output mod-
ule to interact with the rest of the system in 1.1 as is. It should be performant
enough to execute in real-time1

1Throughout we will use the term real-time to mean satisfactory average execution time in order to
inspect results live, and not as it relates to low-latency response times to satisfy any strict real-time
demands.

4

2. Generate synthetic sensor data, including

• Inertial measurements consisting of acceleration and angular velocity. The
measurement should emulate the noise characteristics of a specific IMU.

• High frame rate camera images generated according to the intrinsic calibration
parameters of a specific camera. The optical distortion effects of a wide-angle
fisheye-like lense will have to be synthesized.

• Range measurements from a scanning lidar. The generated data should repli-
cate the field of view, range limitations and sampling frequency and density
of a specific laser scanner.

3. Simulate general six-degrees of freedom rigid body dynamics as a result of a set of
force and torque actuation inputs.

4. Model the force and torque actuation of a general quadrotor body in response to
control input.

5. Develop visualization tools to interface with the headless simulator and the rest of
the system, for live visual verification of relevant system states.

1.4 Contributions

The contributions of this thesis are considered to be

• The simulator itself. As the implementation source code itself will be kept propri-
etary, the contribution of this thesis is to uncover the basic modeling principles and
implementation details.

• The derivation of relating proper acceleration to an alternative observer frame in
order to correctly evolve terrestrial motion, and in particular the suggestion not to
include gravity as a fictitious force when solving the Newton-Euler equation.

• The outlined method of generating an OpenGL projection matrix from intrinsic
pinhole camera parameters.

• The presentation of the proposed duality between image distortion and undistortion
methods, and the practical demonstration favouring the so-called indirect methods
over direct methods.

• The method of frustum subdivision and a depth buffer sampling model to generate
a point cloud emulating the measurements of a scanning lidar.

1.5 Outline

• Chapter 2: A fundamental study of rigid body dyhamics begins with describing the
basic differential kinematic equations of motion. The results will be used repeatedly,

5

including to derive the body-centric Newton-Euler equation of motion describing
the relationship between forces and torques acting on a rigid body and the resulting
accelerations.

• Chapter 3: A simple model of quadrotor actuation to describe the forces and
torques acting on the body will be derived based on the configuration of the rotor
actuators and their response to a control input.

• Chapter 4: Based on a measurement model for accelerometers and gyroscopes, a
set of inertial measurements are generated in accordance with the simulated body
dynamics.

• Chapter 5: Using graphics programming and the concept of an OpenGL camera,
camera images of a 3D scene are constructed, replicating the perspective of a specific
camera given its intrinsic calibration parameters. An effort is made to replicate the
optical distortion effects of a wide-angle lense, and in particular the duality between
image distortion and undistortion methods is presented.

• Chapter 6: The same graphical programming techniques are used to generate a
set of ideal laser range measurements of a 3D scene to simulate the expected data
from a typical scanning lidar.

• Chapter 7: Implementation specifics are described with a focus on detailing nu-
merical values for modeling parameters, in relation to the specific sensor compo-
nents.

• Chapter 8: The qualitative results from the simulation are presented through
visualization, and the validity of the simulation and its role in ongoing software
development is discussed.

• Chapter 9: Conclusion and further work.

6

2 Rigid Body Dynamics

We will derive the basic equations of motion for rigid body systems, as a means to simulate
the movement of a body in response to external forces. A rigid body does not deform,
and so the analysis reduces to describing the change in position and orientation of the
body frame over time. The material is in large part based on Modeling and Simulation for
Automatic Control [8] (Egeland and Gravdahl 2003) but an independent effort has been
made to derive key equations which are otherwise not derived or derived using coordinate
free vectors.

2.1 Kinematics

Kinematics studies the geometry of motion. It describes the possible motions of rigid
body configurations, without concern for forces or torques necessary to cause the motion.
The important equation derived in this section is (2.5), which relate the acceleration of
a point in one coordinate frame to another.

2.1.1 Coordinate frames

~x

Figure 2.1: Vector ~x, and unit axes ({~i,~j,~k} 7→ {red, green, blue}) of coordinate frames
a (thick) and b (thin).

A vector is a geometrical object with a magnitude and direction. It can be graphically
represented as an arrow pointing from A to B, as ~x in figure 2.1. This vector does not
care what coordinate system is used to describe it, it is coordinate free, and cares only
about the laws of vector algebra. However, to describe the vector numerically, we need to

7

represent its length and direction in relation to some system of coordinates, a coordinate
frame. In such a state we have a coordinate vector described in terms of the coordinate
frame basis. Defining two Cartesian coordinate frames a and b, with orthogonal unit axes
vectors ~a0, ~a1, ~a2 and ~b0, ~b1, ~b2, respectively, a vector ~x is resolved in turn as

xa =

xa0xa1
xa2

 xb =

xb1xb1
xb2

where xai = ~x · ~ai and xbi = ~x ·~bi. The frames are meant to be identical except for their
orientation relative to ~x. Their relative orientation is described by the rotation matrix[8,
(6.83)] Ra

b where (Ra
b)ij = ~ai · ~bj such that

xa = Ra
bx

b (2.1)

Throughout we will use the rotation matrix Ra
b to mean a passive coordinate frame

transform from b to a, never an active rotation of a vector within a frame. The frame
b is considered a local frame with respect to a and conversely a as global with respect
to b. This is the passive, local-to-global convention as described in [25]. To describe the
inverse transformation, from a to b we will use Ra

b
>.

2.1.2 Frames of reference

a

b

p

~xab

~x~xp

Figure 2.2: Configuration of two arbitrarily moving reference frames, a and b, and point
p.

So far coordinate frames have only differed in their relative orientations. We can extend
this by adding relative positioning between frames to develop the more general concept
of a coordinate frame of reference.

Consider the relative position ~xab from the center of frame a to the center of frame b.
It can be resolved in both frames, respectively xaab and xbab, and for any vector xb in b
pointing to an arbitrary point p, the vector to the same point in a is

xap = xaab + Ra
bx

b (2.2)

8

The relationship can be described with a matrix operation involving homogeneous coor-
dinates, a homogeneous transform

(
xap
1

)
=

(
Ra
b xaab

0> 1

)(
xb

1

)
(2.3)

2.1.3 Differential equations

To study the dynamic relationship between coordinate vectors, time differentiation of
(2.1) gives

ẋa =
d

dt

(
Ra
bx

b
)

= Ra
b ẋ

b + Ṙa
bx

b

Based on the orthogonal properties of the rotation matrix it is easily shown that [8,
(6.225)] Ṙa

b = Ra
b (ω

b
ab)
× where (ωbab)

× is the skew symmetric matrix of the so-called
angular velocity vector ωbab of frame b relative to frame a resolved in, or seen from, b.
Simple substitution then leads to the basic kinematic equation

ẋa = Ra
b

(
ẋb + (ωbab)

×xb
)

(2.4)

as given by [8, (6.275)], relating the time derivative of ~x as seen from b to the time
derivative of ~x as seen from a. As shown in figure 2.2, we can combine (2.4) with (2.2)
to relate the velocity of some arbitrarily moving point p between reference frames a and
b which are also moving arbitrarily:

ẋap = ẋaab + Ra
b

(
ẋb + (ωbab)

×xb
)

Again, using (2.4), further time differentiation gives us the acceleration of point p seen
from a, given the acceleration of p as seen from b:

ẍap = ẍaab + Ra
b

[
d

dt

(
ẋb + (ωbab)

×xb
)

+ (ωbab)
× (ẋb + (ωbab)

×xb
)]

= ẍaab + Ra
b

[
ẍb + (ω̇bab)

×xb + 2(ωbab)
×ẋb + (ωbab)

×(ωbab)
×xb
]

as stated in [8, (6.404)]. This is a very important result, and will be used repeatedly in
this work to relate the acceleration of a point between reference frames. For convenience,
labeling r as position, v as linear velocity, a as linear acceleration, and α as angular
acceleration we get

9

aap = aaab + Ra
b

[
ab + (αbab)

×rb + 2(ωbab)
×vb + (ωbab)

×(ωbab)
×rb
]

To reiterate, given the acceleration of a point p in b, ab, and an arbitrary acceleration
and rotation between frames a and b, the equation returns the acceleration of the point
in relation to, and resolved in, frame a: aap. However, it turns out to be convenient, and
equally valid, to resolve the resulting acceleration in the b frame:

abp = abab + ab + (αbab)
×rb + 2(ωbab)

×vb + (ωbab)
×(ωbab)

×rb (2.5)

where abp = (Ra
b)
>aap and abab = (Ra

b)
>aaab

1. (2.5) will be used to evolve the solution to
the kinetic Newton-Euler equation in an arbitrarily moving reference frame of choice.

2.2 Kinetics

In contrast to kinematics, we will use the term kinetics to mean the study of motion in
relation to its causes. The important result here is the derivation of the Newton-Euler
equation of motion (2.6), relating the forces and torques acting on a rigid body to the
resulting linear and angular accelerations in relation to an inertial frame of reference.

2.2.1 Inertial frames of reference

While reference frames in physics can be used to describe the position and orientation
of an observer in space, a so called inertial reference frame is a more abstract concept.
Inertial reference frames are a subset of all possible reference frames, in which none exhibit
any linear acceleration or angular velocity in respect to each other or, by definition, in
absolute terms. This means an accelerometer moving with an inertial frame would detect
no acceleration, and a gyroscope would detect no angular velocity.

Physical laws take the same, simplest form in all inertial frames, as the physics of a system
in an inertial frame have no causes external to the system[34]. In terms of Newton’s
second law, for example, this means there is no proper, i.e inertial, acceleration without
an acting force, and vice versa. General relativity implies there are no true inertial frames
around gravitating bodies. An accelerometer fixed to the surface of the Earth, in a non-
inertial frame, would experience an upwards proper acceleration of about 1 g despite not
undergoing any coordinate acceleration or movement in the coordinate frame. The only
force acting on the body is the normal force from the ground stopping the body from
free-falling along its inertial path to the center of the Earth. Gravity, then, does not cause
proper acceleration and, in terms of general relativity, is not a force, just a consequence
of the curvature of space-time. Due to, but not limited to, the curvature of space-time at
the surface of the Earth, in contrast to Newton’s second law there is a mismatch between
the forces acting on the body and the experienced acceleration.

1Be aware that with this notation that abp = (Ra
b)
>
ẍb
p 6= ẍb

p, and correspondingly for abab.

10

As is stands, a coordinate frame fixed to the surface of the Earth is not a good repre-
sentation of an inertial frame, and there are better approximations to be made. We will
derive the Newton-Euler equation of motion in its true form relating to inertial space.
However, for now it is sufficient to be aware of inertial space as a concept without need
to define an approximate inertial frame of reference for absolute positioning.

2.2.2 Newton-Euler equation of motion

To derive the Newton-Euler equation of motion we start with Euler’s extension of New-
ton’s second law of physics[8, (7.32),(7.33)]:

f ibc = maic

τ ibc =
d

dt

(
Mi

b/cω
i
ib

)
The first equation relates a force f ibc acting on the body b with a line of action through
the mass center c and the resulting proper linear acceleration aic of the mass center in
inertial space. Notice that both terms are resolved in the inertial frame i, but the body-
centric version f bbc = mabc is equivalent, and equally valid, as long as abc is the same proper
acceleration of the mass center, only resolved in the body frame, i.e abc = (Ri

b)
>aic and

f bbc = (Ri
b)
>f ibc

The second equation relates a torque τ ibc equalling the total moment of the body around
c to the time rate of change in linear momentum Mi

b/cω
i
ib. The Inertia tensor Mi

b/c of
the body around c is not constant under rotation when resolved in an inertial frame, so
it is not completely straight forward to derive the body-centric description. Introducing
the similarity transform[8, (7.80)] Mi = Ri

bM
b
bc(R

i
b)
>, where Ṁb

bc = 0 by definition, and
using (2.4), we get

d

dt

(
Mi

b/cω
i
ib

)
=

d

dt

(
Ri
bM

b
b/cω

b
ib

)
= Ri

b

(
d

dt

(
Mb

b/cω
b
ib

)
+ (ωbib)

×Mb
b/cω

b
ib

)
= Ri

b

(
Ṁb

b/cω
b
ib + Mb

b/cω̇
b
ib + (ωbib)

×Mb
b/cω

b
ib

)
= Ri

b

(
Mb

b/cω̇
b
ib + (ωbib)

×Mb
b/cω

b
ib

)
The torque in body frame τ bbc = (Ri

b)
>τ ibc is then

τ bbc = Mb
b/cα

b
ib + (ωbib)

×Mb
b/cω

b
ib

The results is the body-centric Newton-Euler equations of motion[8, (7.90)], expressed
compactly in a six-dimensional matrix equation as

11

(
mI 0
0 Mb

b/c

)(
abc
αbib

)
+

(
0

(ωbib)
×Mb

b/cω
b
ib

)
=

(
f bbc
τ bbc

)
(2.6)

Notice that the result does not explicitly refer to any absolute location and orientation
of any inertial reference frame, and only linear accelerations and angular velocity. The
result of (2.6) expects a body frame centered in the center of mass. The more general
result takes into consideration a given offset rb from body center o to mass center c. Then,
using (2.5), where vb = ṙb = 0, ab = r̈b = 0

abc = abo + (αbib)
×rb + (ωbib)

×(ωbib)
×rb (2.7)

where abo is the proper acceleration of the body frame center. Solving for abo the force
equation becomes

f bbo = m
(
abo + (αbib)

×rb + (ωbib)
×(ωbib)

×rb
)

where[8, (7.17)] f bbo = f bbc is the resultant force vector with line of action through o.
For the torque τ bbo to equal the total moment of the body around o we have[8, (7.18)]
τ bbo = τ bbc + (rb)×f bbc where τ bbc and f bbc are given by (2.6) in terms of accelerations. We will
use (2.7) and the parallel axes theorem[8, (7.85)] Mb

b/o = Mb
b/c −m(rb)×(rb)× to derive

the very pleasing result of [8, (7.95)]:

τ bbo = τ bbc + (rb)×f bbc

= (ωbib)
×Mb

b/cω
b
ib + Mb

b/cα
b
ib +m(rb)×abc

= (ωbib)
×Mb

b/oω
b
ib + Mb

b/oα
b
ib +m(rb)×abo

+m(ωbib)
×(rb)×(rb)×ωbib +m(rb)×(rb)×αbib

+m(rb)×(ωbib)
×(ωbib)

×rb +m(rb)×(αbib)
×rb

= (ωbib)
×Mb

b/oω
b
ib + Mb

b/oα
b
ib +m(rb)×abo

The last identity first follows from the cross product anti-commutative property a×b =
−b× a and distributive property a× (b + c) = a× b + a× c giving

(rb)×(rb)×αbib + (rb)×(αbib)
×rb = (rb)×

(
(rb)×αbib + (αbib)

×rb
)

= 0

Secondly, the skew symmetric identity[8, (6.33)] (a×b)× = a×b× − b×a× and the cross
product identity a× a = 0 gives

12

(ωbib)
×(rb)×(rb)×ωbib + (rb)×(ωbib)

×(ωbib)
×rb

=
(
(ωbib)

×(rb)× − (rb)×(ωbib)
×) (rb)×ωbib

= −
(
(ωbib)

×(rb)
)×

(ωbib)
×rb

= 0

Using the defining skew symmetric propetry (rb)× = −(rb)×> the end result is the general
body-centric Newton-Euler equation of motion[8, (7.96)]

(
mI m(rb)×>

m(rb)× Mb
b/o

)(
abo
αbib

)
+

(
m(ωbib)

×(ωbib)
×rb

(ωbib)
×Mb

b/oω
b
ib

)
=

(
f bbo
τ bbo

)
(2.8)

Notice that with rb = 0, the general case reverts to the simpler (2.6). Solving (2.8) for
the accelerations vector, we get

(
abo
αbib

)
=

(
mI m(rb)×>

m(rb)× Mb
b/o

)−1(
f bbc
τ bbc

)
−
(
m(ωbib)

×(ωbib)
×rb

(ωbib)
×Mb

b/oω
b
ib

)
(2.9)

where the so-called inertia matrix 2 is decidedly invertible[11]. Notice that when rb = 0,
the decoupling of the linear and angular acceleration of (2.8) is easier to solve in that
only the inertia tensor needs to be inverted.

2.3 Navigational kinematics

Observe that the result of solving the Newton-Euler equation is the inertial linear and
angular accelerations. Integrating these results directly leads to a change in position and
orientation in an inertial reference frame. This poses a practical problem, and ideally we
would like to integrate the solution in an alternative observational frame of reference.

2.3.1 Inertial reference frame approximations

As mentioned when introducing inertial reference frames, no inertial frames exist near
gravitational bodies. Consider a so-called Earth-centered inertial frame (ECI), like the
Geocentric Celestial Reference Frame, non-rotating and fixed at the center of the Earth.
The Earth is free-falling around the Sun and an ECI is considered inertial with good
approximation sufficient for many applications, like satellites orbiting the Earth[28]. At
least on a shorter time scale where the interplay from gravitational attraction of other
heavenly bodies such as the Sun and the Moon causing secondary gravitational effects like
precession and nutation of the Earths rotational axis can be neglected. It is important

2Not to be confused with the inertia tensor Mb
b/o.

13

to note that an ECI is only approximately inertial at a small region of space around its
center, where space-time is approximately flat. For applications in space involving orbital
motion it makes sense to employ an ECI, as orbital objects free falls around the Earth
and does not experience any acceleration relative to the reference frame. Additionally
the equations of motion for orbital motion are simpler in a non-rotating frame.

For terrestrial applications, the opposite is true. An object fixed to the surface of the
Earth would experience a proper acceleration of about 1 g upwards. Employing an ap-
proximate inertial frame of reference like an ECI does in itself nothing to remedy this
as its inertial assumption is only valid near the center of the Earth or in free fall. This
means for terrestrial applications the effects of gravity will have to be correctly compen-
sated for, regardless if an ECI is used or not. Setting aside the effect of gravity, we will
assume any given ECI is sufficiently inertial for our purposes. However, it seems unnec-
essarily complicated to relate terrestrial motion to a non-rotating frame fixed to distant
stars. A geocentric view employing an Earth-fixed frame rotating with the Earth is more
convenient.

The Earth rotates around its own axis once per day. This results in a very small angular
rate and its reasonable to ask whether or not it can be ignored for our purposes, and
let the Earth-fixed frame be considered sufficiently inertial. What should be considered
sufficiently inertial depends on the technology involved in the application and the sensi-
tivity of the instruments[28]. For our purposes we rely on simulating gyroscopic data for
sensitive inertial measurement units that can detect this kind of angular rate. We decide
it is a worthwhile effort not to rely on the Earth-fixed frame as sufficiently inertial, and
to include the effects of the rotation of the Earth around its own axis. Using an alter-
native frame as an observational frame of reference means we do not have to define and
relate to a particular ECI, but we have to take care when integrating the solution to the
Newton-Euler equation, as we shall see.

2.3.2 Earth-centered, Earth-fixed reference frame

When deciding on an Earth-fixed observational frame of reference it is clear that an Earth-
centered one offers many advantages. It shares a center with an ECI and experience only
relative angular velocity, no linear velocity. The result is that the kinematic equations
relating inertial and Earth-fixed accelerations are easy to express in the Earth-centered,
Earth-fixed (ECEF) case. Additionally, a geocentric Earth-centered frame offers a con-
venient point of reference for global terrestrial movement. For now, assume an ECEF
frame, called the Earth frame e is defined. Let i denote an arbitrary ECI frame considered
sufficiently inertial. Given a body frame located at reb in the Earth frame and a solution
abo of (2.9), it is clear from (2.5), the acceleration of the body in the Earth frame3 is

aeb = Re
ba
b
o︸ ︷︷ ︸

Proper acc.

− aeie︸︷︷︸
g-force

− (αeie)
×reb︸ ︷︷ ︸

Euler acc.

− 2(ωeie)
×veb︸ ︷︷ ︸

Coriolis acc.

− (ωeie)
×(ωeie)

×reb︸ ︷︷ ︸
Centripetal acc.

(2.10)

3This is only applied to linear acceleration, as angular acceleration is integrated to angular velocity
directly in its inertial form.

14

e

~ωie

w

b

λ

φ

Figure 2.3: Global ECEF Earth frame e, local navigational frame w, and body frame b.

Assuming the Earth rotates with a fixed angular rate, then αeie = 0. While e remain
fixed at the center of Earth and not strictly accelerating away from the center it might be
tempting to allow aeie = 0 as well. But due to the effects of the curvature of space-time
around the Earth, gravity has to be compensated for. Therefore, the correct approach it
to set what we call the g-force aeie equal to the negative gravity at reb, as if the e frame
is accelerating away from the free-fall trajectory of an inertial frame towards the center
of the Earth. The remaining detail is to only let aeie influence the movement of the rigid
body, presumably above Earth’s topographical surface and far away from the center,
while the Earth frame itself remains stationary in the center. Computationally, this is
exactly what we want, but for semantic consistency we have to concede that aeie 6= 0 does
not result in actual relative movement between the Earth frame and the Earth center.

The more conventional approach is to include gravity multiplied with the body mass as a
pseudo force on the right hand side of (2.8). This would be equivalent but with the side
effect that you do not get the proper, inertial acceleration when solving the equation,
but one including acceleration due to gravity. The proper acceleration is required when
for example describing accelerometer measurements. Without the proper acceleration at
hand there is a need to subtract gravity from the non-proper description of acceleration
to achieve the wanted result. This is seen in [8, p. 258], [25, (215)], [24, (4.1)]. To
define gravity in respect to a position reb we have to more accurately describe the Earth
frame. The Geodetic System 1984 (WSG84) defines a global geocentric reference frame,
an ellipsoid and geodetic reference surface for the Earth, and gravity models based on
these descriptions. WGS84 represents the best global geodetic reference system available
for the Earth at this time, for practical geopositioning and navigation[3].

The WGS84 reference coordinate frame is defined in the mass center of the Earth, with a
z-axis pointing in the direction of the IERS (International Earth Rotation and Reference
Systems Service) Reference Pole, an x-axis intersecting the IERS Reference Meridian
and the equatorial plane normal to the z-axis passing through the origin, and lastly a
y-axis completing a right-handed ECEF coordinate frame. The coordinate frame origin

15

also serves as the geometric center of the WGS84 Reference Ellipsoid of revolution (a
spheroid), where the z-axis serves as the rotational axis of revolution. If the Earth
to a first-order approximation is a rotating sphere, to a second-order approximation it
can be regarded as an equipotential ellispoid of revolution. The ellipsoid serves as a
uniform reference surface for geophysical purposes, such as map projections and satellite
navigation. In addition it serves as the reference surface for the normal gravity model of
the Earth.

rep=(x,y,z)>

~g

gr

gϕ
ϕ

ϕ

ϕ φ

gxy

gz

b

a

h

r

Figure 2.4: Reference ellipsoid and normal gravity model. Ellipsoidal form exaggerated
for effect. Theoretical gravity ~g normal to the ellipsoid. Decomposed in spherical com-
ponents gr, gϕ or rectangular components gxy, gz.

The WGS84 ellipsoid is defined as an equipotential surface with a specific theoretical
gravity potential U which is independent of the density distribution within the ellipsoid
and uniquely determined with the four defining parameters of the ellipsoid given in table
7.1. The theoretical normal gravity model defines the gravitational magnitude γ0 of the
gradient of the potential function U at the surface of the ellipsoid, for a given geodetic
latitude φ[3, (4-1)]:

γ0(φ) = γe
1 + k sin2 φ√
1− e2 sin2 φ

where k = bγp
aγe
− 1, e2 = 1 − b2

a2
for the normal gravity γe at equator, normal gravity γp

at the poles, semi-major axis a and semi-minor axis b as defined in [3]. The gravitational
field of an ellipsoid is of great practical value as it is mathematically simple, and yet the
deviations from the theoretical normal field to the actual gravity field are small. The
normal gravity model can be extended to a closed form solution for any point below or
above the ellipsoid. Equations [3, (4-5)–(4-20)] define gr, gϕ as the spherical components
of the normal gravity corresponding to a point P given by rep = (x, y, z)>, in geodetic

16

ellipsoidal coordinates as (λ, φ, h)> and in geocentric spherical coordinates as (λ, ϕ, r)>,
as shown in figure 2.4. Projecting the spherical components onto our wanted rectangular
ECEF coordinates, we get

gx = gxy cosλ

gy = gxy sinλ

gz = gr sinϕ+ gϕ cosϕ

where gxy = gr cosϕ − gϕ sinϕ is the projection onto the equatorial plane, and λ =

arctan 2(y, x), ϕ = arctan 2(z,
√
x2 + y2) are the longitude and geocentric latitude, re-

spectively. The resulting gravity vector in point P is then gep = (gx, gy, gz)
>.

2.3.3 Local-level navigational reference frame

While the Earth frame is a practical means to relate global positioning, in many cases
relating to a reference frame for more local navigation is convenient. We define here the
local reference frame, the world frame w, fixed to the Earth on or near its surface as
shown in figure 2.3. It will remain static in the Earth frame and defined by its position
rew and orientation Re

w. To define the pose it is very convenient to use the reference
ellipsoid and normal gravity model.

The position rew is aptly described by a geodetic longitude and latitude and a height
above the ellipsoid. For a given ellipsoidal point (λ, φ, h)> the corresponding rectangular
coordinates are given by [3, (4-14),(4-15)]:

x = (N + h) cosφ cosλ

y = (N + h) cosφ sinλ

z = (N(1− e2) + h) sinφ

where N = a√
1−e2 sin2 φ

is the radius of curvature in the prime vertical, and e2 = 1− b2

a2
as

before. Then rew = (x, y, z)>. The orientation Re
w can be set with the z-axis normal to

the ellipsoidal surface, with yaw as a free parameter, by applying the rotation between
the local gravitation gw = (0, 0,−1)> normalized for convenience, and the global normal
gravitation gew at the origin. This is outlined also in section 7.1. It is convenient to
initialize a rigid body in terms of its local world coordinates. Given a wanted initial state
rwwb, Rw

b and velocities veb , ωbwb we have

reb = rew + Re
wr

w
wb Re

b = Re
wR

w
b

veb = Re
wv

w
b ωbib = (Re

b)
>ωeie + ωbwb

where obviously ωbew = 0. Conversely, to transform back to the local frame, to observe a
global Earth coordinate, we have

17

rwwb = (Re
w)>(reb − rew) Rw

b = (Re
w)>Re

b

vwb = (Re
w)>veb ωbwb = ωbib − (Re

b)
>ωeie

2.4 Numerical solution

From the accelerations vector (aeb,α
b
ib)
> derived from (2.10) after solving (2.9) we want

to evolve the velocity, position and orientation of the body over time and keep track of
the state xb =

(
reb,v

e
b ,q

e
b,ω

b
ib

)>. It is important to keep track of the angular velocity
relative inertial space as it is required to solve (2.8). Although rotation matrices are
used throughout to mathematically represent orientation transformation for reasons of
simplicity, quaternion representations are more numerically efficient and favored during
implementation4. We will deal with a mathematical description of quaternions here only,
as it pertains to quaternion integration from angular velocity. The same passive, local-

to-global convention described in [25] is used, meaning that xa = Ra
bx

b and
(

0
xa

)
=

qab ⊗
(

0
xb

)
⊗ q̃ab are equivalent descriptions.

2.4.1 Angular integration

tk tk+1

ωbib(tk)

ωbib(tk+1)

ω̄bib(tk)

Figure 2.5: Integration of angular velocity. The mean is found and transformed to the
Earth frame to integrate orientation.

Let a solution αbib be given. Clearly ω̇bib = αbib. A numerical solution is found using
Euler’s first order method of numerical integration[8, (14.44)]. With a time step ∆t, the
method offers a global error Ek+1 = O(∆t), and the angular velocity state is evolved as

4Without the construction being necessary for implementation, the rotation matrix from a quaternion
q = (qw,qv)

> is[25, p. 14]: R{q} = (q2w − q>v qv)I+ 2qvq
>
v + 2qw(qv)

×

18

ωbib(tk+1) = ωbib(tk) +αbib∆t

However, it is necessary to obtain the angular velocity ωbeb in the Earth frame in order to
integrate the orientation. From [8, (6.269)] we have ~ωib = ~ωie + ~ωeb. Then, clearly

ωbeb(tk+1) = ωbib(tk+1)−Rb
eω

e
ie

We also define the mean

ω̄beb(tk) =
ωbeb(tk+1) + ωbeb(tk)

2

Then from [25, (4.2.2)], a first order angular integration of the orientation in Earth is

qeb(tk+1) = qeb(tk)⊗
[
q
{
ω̄beb(tk)∆t

}
+

∆t2

24

(
0

ωbeb(tk)× ωbeb(tk+1)

)]

where[25, (107)] q {φu} =

(
cos(φ/2)
u sin(φ/2)

)
for unit vector u.

2.4.2 Linear integration

tk tk+1

veb(tk)

veb(tk+1)

aeb(tk)
+∆taeb(tk)

−∆t

Figure 2.6: Integration of velocity based on the mean of the acceleration resolved with in
the current and next orientation.

Given ae from (2.10). Observe that ae depends on the orientation Re
b. Therefore, the

acceleration resolved in e will not be same before and after the angular acceleration
step. Defining aeb(tk)

− as the acceleration resolved according to Re
b(tk) before the angular

integration, and aeb(tk)
+ resolved according to Re

b(tk+1) after the integration, we calculate
the mean value āeeb as shown in figure 2.6

19

āeeb(tk) =
aeb(tk)

− + aeb(tk)
+

2

Clearly v̇eb = aeb, and ṗeb = veb . Employing a semi-implicit variation of Euler’s method[38],
velocity is first integrated and the updated value used immediately to evolve position:

veb(tk+1) = veb(tk) + āeeb∆t

peb(tk+1) = peb(tk) + veb(tk+1)∆t

20

3 Quadrotor Actuation

The equations of motion derived in the last chapter pertains generally to rigid bodies
and is applicable for all mobile robots given a set of force and torque actuation inputs.
Here we will focus on developing an actuation model for a quadrotor, also known as a
quadcopter. We start with a simple model of a symmetric rigid body with four rotors
generating independent thrust and torque and derive the full actuation map for this
simplified model. The focus is solely on control actuators, and any potential interfering
forces from the environment, like ground collision forces or wind disturbance, have been
ignored.

3.1 Forces and torques

Consider a force f bj resolved in body frame, with some line of action through the body.
Let rbj be the arm from the mass center c to some arbitrary point on the line of action.
Consider also a torque τ bj . A torque is defined here as the moment of a set of forces with
zero resultant force, meaning the moment - or torque, is the same about any point.

For a set S of nf forces and nτ torques acting on the body we have the resultant force
without specification to a line of action[8, (7.1)]

f bb =

nf∑
j=1

f bj

and the total moment about the center of mass c[8, (7.4)]

µbb/c =
nτ∑
j=1

τ bj +

nf∑
j=1

rbj × f bj (3.1)

It can be shown[8, (7.10)] that the set S of forces and torques with resultant force f bb and
moment µbb/c about c is equivalent to a force f bbc = f bb with a line of action through c in
combination with a torque τ bbc = µbb/c. That is, both sets will have the same resultant

21

force and same momentum about any point on b. For an offset rb from c to a point o
then from [8, (7.17),(7.18)] we have

(
f bbo
τ bbo

)
=

(
I 0

(rb)
×

I

)(
f bbc
τ bbc

)

3.2 Quadrotor model

The rigid body quadrotor model will be defined as a symmetric configuration with a set
of four rotors with moment arms rbj from the center actuating a lift force and momentum
as shown in figure 3.1 as well as individual torques shown in figure 3.2.

b

a0

~f1
~f2

~f0

~f3
~r1 × ~f1

~r2 × ~f2
~r0 × ~f0

~r3 × ~f3

Figure 3.1: Quadrotor lift forces and resulting moments about body center.

b

a0

~τ1

~τ2

~τ0

~τ3

Figure 3.2: Torques generated by the four spinning rotor actuators.

For arms in the symmetric X-configuration numbered 0, .., 3 as specified in figure 3.1 and
body frame as shown, the positions of the actuators are

22

rb0 =

√
2
2
r√

2
2
r

0

 , rb1 =

√
2
2
r

−
√
2
2
r

0

 , rb2 =

−
√
2
2
r√

2
2
r

0

 , rb3 =

−
√
2
2
r

−
√
2
2
r

0

for a given arm length r. From the actuator frames aj defined as in 3.1, 3.2 it is clear
that

f
aj
j =

 0
0
f jz

 , τ
aj
j =

 0
0
τz

This means it is very convenient to define

Rb
ai

=

1 0 0
0 1 0
0 0 1

for all actuators, such that f bj = f

aj
j and τ bj = τ

aj
j . For reasons of simplicity, and because

the symmetric nature of the quadrotor model warrants it, we will assume the body frame
is centered in the rigid body mass center. A body frame defined as in 3.1, with axes
coinciding with the principal axes of inertia, the axis of symmetry, of the body then the
inertia tensor[8, (7.82)] Mb

bc =
∫
b
[(rb)

2
I− rb(r)>]dm takes on a simple form with the

principal moments of inertia on the diagonal:

Mb
b/c =

Mxx 0 0
0 Myy 0
0 0 Mzz

where Mxx = Myy.

3.3 Rotor model

An actuator setup for a quadrotor will typically feature a high-bandwidth electronic speed
controller taking control inputs and applying a voltage duty cycle to drive a brush-less
DC motor which torques a driveshaft, spinning the propeller. We will derive a simplified
model for the total response, from control input to force output, modeling the dynamics
of the components involved, in turn.

3.3.1 Propeller aerodynamics

The airfoil of a spinning propeller blade will experience a lift force L and drag force D
respectively normal to and in the direction of the flow across the foil[36]

23

L =
1

2
CLρV

2A

D =
1

2
CDρV

2A

where ρ is the density of air, V the speed of the air across the foil, A the area of the
foil, and the dimensionless coefficients CL and CD are a function of the angle of attack
of the foil to the air flow, and the Reynolds number. A combined effect of the lift and
drag force creates a thrust T and a torque Q aligned with the the axis of rotation for the
propeller[14]

F = CFρD
4n2

Q = CQρD
5n2

where D is the diameter of the propeller, n is the propeller rotations per second, and CF
and CQ dimensionless coefficients dependent on various geometric propeller properties,
the Reynolds number and a dimensionless expression of the propeller’s speed of advance.
In an effort to simplify modeling with a minimum realization of parameters, we let F =
KFω

2, Q = KQF where the necessary parameters will detailed with the correct units,
and values given according to the implementation in section 7.2.

In addition to the drag-induced torque Q at stationary operation, when the propeller
rotation speed is changed, the change in angular momentum of the propeller, τ = Iω̇
after Euler’s law, will induce a counter-acting torque −τ on the body due to conservation
of angular momentum. We then have

f bj =

0
0
F

 , τ bj =

 0
0

±(Iω̇ +KQF)

 (3.2)

where +/− accompanies clock-wise and counter-clockwise rotor operation around the
body z-axis, respectively.

3.3.2 DC motor electromechanics

An electric motor with rotary motion has a stationary part called the stator and a rotary
part called the rotor. An armature current interferes with a permanent electromagnetic
field, causing relative rotation between the stator and rotor. The motor shaft fixed to
the rotor then rotates in response to this internal motor torque. In a constant field
DC motor, the armature circuit is attached to the rotor and is driven by a current ia
alternating on/off in response to the applied voltage ua. A simple model for the dynamics
of the motor response is[2, (2.63)-(2.67)]

24

Iω̇ = τ − τe
τ = Ktia

ea = Keω

ua = Raia + La +
d

dt
ia + ea

where ω is the achieved angular shaft speed, I the combined rotor and load moment of
inertia, τ the driving torque, τe an external load torque, Kt and Ke motor coefficients, ea
the counter-electromotive force, and Ra, La parameters of the internal armature circuit.
This is concicely modeled as the transfer function[8, (3.52)]

h(s) =
ω

ua
(s) =

1
Ke

(1 + sTm)(1 + sTa)
(3.3)

where Ta = La
Ra

, Tm = IRa
KeKt

are the electrical and mechanical time constants, respectively.
A reasonable modeling assumption is La << Ra such that the dynamic response of the
electronics is much faster than the mechanics, giving Ta << Tm, and the response time
of the electronic circuit can reasonably be neglected from the modeling dynamics. The
result is a simple first order impulse response

h(s) =
1
Ke

1 + sTm

3.3.3 Electronic speed controller dynamics

A quadrotor setup will typically feature a brush-less DC (BLDC) motor. Compared to
a brushed DC motor, a BLDC motor will have the armature circuit on the stator to
avoid having a mechanical interface to feed the armature. BLDC motors are therefore
mechanically simple, but require complex control electronics and regulated power supply
to sequentially energize the stator coils generating a rotating electric field which drags
the rotor around with it[39].

For a given operating range with constant motor load a BLDC motor will have a linear
relationship between applied voltage and motor speed, given that the supply voltage is
well regulated. This enables the motor to operate synchronously in an open loop fashion,
to some extent. However, when load is proportional to shaft speed and the range of
operation is substantial, as is the case with quadrotors, a BLDC motor driven in open-
loop mode will exhibit severe non-linear characteristics[20] not present in the simple model
(3.3).

It is therefore crucial to employ feedback in the electronic speed controller to regulate the
speed of the motor. Feedback is available either through Hall-effect sensors embedded
in the stator to indicate the relative positions of stator and rotor, or by monitoring the

25

back-induced emf in the windings in a sensorless setup. An electronic feedback speed
controller is typically implemented as a PI controller[27].

hpi(s) h(s)

τe

ua

Kω

r e ω
−

Figure 3.3: Speed feedback control of brush-less DC motor.

The transfer function of a PI controller is given by[2, (9.46)]

hpi(s) =
ua
r

(s) = Kp
1 + sTi
sTi

for controller gain Kp and time constant Ti. We assume input r ∈ [0, 1], adjusted for
with the angular rate scaling factor Kω. The closed loop response as seen in figure 3.3 is

H(s) =
ω

r
(s) =

h0(s)

1 +Kωh0(s)

Substituting in h0(s) = hpi(s)h(s) the result is closed loop impulse response

H(s) =
Kp(1 + sTi)

sKeTi(1 + sTm) +KωKp(1 + sTi)

In principle, the electronic speed controller is a black box, and neither the controller
algorithm nor the parameter tuning is known. However, the important characteristics
to model are: i) achieving an overall linear response from control input to motor speed
output. This is achieved when we employ a linear model both for the motor and the
controller. In practice there might be non-linearities in both parts that we do not model,
but which in turn by design cancel each other out. ii) The dynamic response of the closed
loop system. If we assume a well-tuned controller, a reasonable modeling simplification
is to assume Ti ≈ Tm. Canceling terms in H(s) this then allows us to approximate the
entire controller and motor dynamic response with a simple first order transfer function

H(s) =
K

1 + sT
(3.4)

where K = 1
Kω

, T = KeTi
KωKp

. The corresponding state space model is given by

ω̇(t) =
Kr(t)− ω(t)

T

26

Solving with first order Euler integration we get the motor shaft speed necessary to
employ the propeller thrust and torque model in (3.2)

ω(tk+1) = ω(tk) +
Kr(tk)− ω(tk)

T
∆t (3.5)

All the parameters necessary to implemented this rotor model are specified in section 7.2.

27

28

4 Inertial Measurements

An inertial measurement unit is an electronic device measuring proper acceleration and
angular velocity using a combination of accelerometers and gyroscopes. Given the initial
position, velocity and attitude of the IMU, dead reckoning of the current state is possible
to achieve through integration. However, due to measurement errors this solution is in
practice accurate only for a very limited amount of time and inertial measurements alone
are rarely used for navigational purposes without other aiding sensors. Basically, there
are two categories of these measurement errors, stochastic and systematic[15]. System-
atic errors include scale factor errors, cross-axis sensitivity due to mounting misalignment
and g-dependency. Systematic errors are fixed and/or a function of the sensor input and
environmental conditions, but can be measured and somewhat compensated for during
factory or user calibration, although might degrade over time and during different oper-
ating conditions.

Stochastic errors are random in nature, and include white noise disturbances which cannot
be removed during calibration. The objective here is to model the output from an IMU
in order to simulate its sensor data with the same general characteristics as seen from the
point of view of a user. The purpose is then not to model systematic errors which can
somewhat be compensated for with calibration, but to add stochastic noise to the inertial
signals . This will include discrete white measurement noise and a slowly changing bias.

4.1 Accelerometer

An accelerometer behaves conceptually as a mass spring damper which, when undergoing
acceleration, is displaced relative to the surrounding casing. It is important to note an
accelerometer measures only proper acceleration[37]. That is, as described in section
2.2.1, acceleration relative to any inertial frame of reference as a direct result of specific
non-gravitational forces acting on the body.

Modern accelerometers, often implemented as microelectromechanical systems (MEMS),
utilize piezoresistive or capacitive electronic components to convert mechanical motion
to an electrical signal. Most such MEMS accelerometers are by design only sensitive
to acceleration in one direction. Three such devices can be integrated perpendicularly
in-plane and out-of-plane on a single die to offer full three-axis coverage.

29

4.1.1 Measurement model

For each axis, our measurement model[21, (2)] will include discrete sampling white noise
na and a slowly changing ba added to the proper acceleration a such that for the x-axis
measurement

ãx = ax + bax + na (4.1)
na ∼ N (0, σ2

a)

where na is assumed to be normally distributed with zero mean and σa standard deviation.
The measurements for the y and z axes are modeled exactly the same way. The bias is
modeled as a first order Gauss-Markov process, widely used to model random errors[23,
(1)]

ḃax = − 1

Tba
bax + nba

nba ∼ N
(
0, σ2

ba

)
where nba is a continuous white noise driving signal with σba standard deviation. Tba is
the process time constant.

4.1.2 Generating a measurement

Let proper body-accelerations abo, αbib be given from solving (2.9). Assume an offset rbs
from the body frame to the origin of a user defined sensor frame s presumably located
somewhere in the IMU device and, here by definition, aligned with the IMU axes of
measurement. Then, the kinematic transform (2.5) gives the proper acceleration of the
sensor frame origin, resolved in the body frame according to

abs = abo + (αbib)
×rbs + (ωbib)

×(ωbib)
×rbs

Given the orientation of the sensor frame in the body frame, Rb
s, the result in the sensor

frame is easily obtained as ass = (Rb
s)
>
abs. Similarly for the angular acceleration, αsis =

(Rb
s)
>
αbib. Assume the placement of each accelerometer axis in the IMU is offset a small

distance from the chosen sensor frame origin. Let rsx be the offset from the origin to the
x-axis accelerometer. Then again from (2.5) we have

asx = ass + (αsis)
×rsx + (ωsis)

×(ωsis)
×rsx

Notice that with rsx = 0, asx = ass. The single-axis acceleration ax is then the element
corresponding to the axis: ax = asx(0). Similary we find ay = asy(1) and az = asz(2)
constructed with offsets rsy, rsz.

30

Adding noise and bias according to the measurement model (4.1), we get the discrete
sampling of the measurement signal;

ãx(tk) = ax(tk) + bax(tk) + na(tk)

The bias is discretely updated according to[23, (2)]

bax(tk) =

(
1− ∆t

Tba

)
bax(tk) + nba(tk)

√
∆t

for a sampling period ∆t. The process to generate y and z axis measurements is identical.
How to generate nka and nkba and initialize the bias process, is detailed in the Implemen-
tation of section 7.3. After clamping the results to accommodate for accelerometer range
limitations and clipping, the combined measurements give a 3-axis measurement in the
sensor frame:

ãss(tk) = (ãx(tk), ãy(tk), ãz(tk))
>

4.2 Gyroscope

Amodern gyroscope is typically a vibrating structure gyroscope implemented with MEMS
technology. The construction is simpler than conventional rotating disc gyroscopes, and
operate by determining the rate of rotation from the Coriolis force acting on the support-
ing structure of a vibrating object when undergoing rotation. The gyroscope measures
angular velocity around one axis, and similarly to the accelerometer three perpendicular
gyroscopes can be arranged to form a 3-axis measurement.

4.2.1 Measurement model

Using the identical noise and bias measurement model from (4.1), the angular velocity
around the x axis is

ω̃x = ωx + bωx + nω

nω ∼ N (0, σ2
ω)

and equivalent for the y and z axis. The discrete sampling noise nω is assumed to
be normally distributed with zero mean and σω standard deviation. Again the bias is
modeled as a first order Gauss-Markov process

31

ḃωx = − 1

Tbω
bωa + nbω

nbω ∼ N
(
0, σ2

bω

)
where nbω is a continuous white noise driving signal with a σbω standard deviation. Tbω
is the time constant.

4.2.2 Generating a measurement

Let ωbib be given from the rigid body state vector. Given Rb
s then ωsis = (Rb

s)
>
ωbib for

the same IMU sensor frame provided for the accelerometer. We let the axes of the
sensor frame determine the axes of measurement, so by definition they are both aligned.
However, compared to the accelerometer, it is irrelevant where the sensor frame is located
relative to the gyroscopes as long as the axes align - the angular velocity will be the
same. Therefore there is no need to decompose ωsis further, and the 3-axis generated
measurement is simply expressed as

ω̃sis(tk) = ωsis(tk) + bω(tk) + nω(tk)

where the bias is updated according to

bω(tk) =

(
1− ∆t

Tbω

)
bω(tk) + nbω(tk)

√
∆t

How to generate nkω and nkbω and initialize the Gauss-Markov process will be detailed in
section 7.3.

32

5 Camera Images

A camera is an optical instrument for capturing images of a scene onto photographic
film, or an electronic image sensor in the case of a modern digital camera. The camera
lense captures the incoming light and brings it to focus on the image sensor where light
is turned into discrete signals. Camera images can provide a mobile robot with valuable
information on scene structure and content. Distinct and recognizable feature patches
can be tracked from image to image, and the process of triangulation can be used to
estimate the position of a feature in three-dimensional space to infer the motion of the
robot relative to the scene and/or scene depth.

In this chapter we will discuss the generation of camera images from a given virtual 3D
scene. The perspective properties of a specific camera will be emulated according to
its intrinsic camera calibration parameters. In addition a considerable effort is made to
simulate the effects of optical lense distortion to generate images that can be input to
the rest of the system as a drop-in replacement for real images exhibiting these distortion
effects.

5.1 Pinhole camera

The word camera is derived from the latin camera obscura, a natural optical phenomenon
that occurs when an image of a scene is projected onto a flat surface in a dark room
through a small hole allowing light in from the outside. The image that forms on the
surface is an inverted (left-right and top-bottom) two-dimensional perspective projection
of the scene. An pinhole camera is the most straightforward implementation of the camera
obscura effect; a light-proof box with a tiny aperture pinhole without a lens projecting
an inverted image onto the opposite side of the box.

5.1.1 Pinhole camera model

The pinhole camera model[35] describes the perspective transformation of an ideal pinhole
camera, from a point xc = (X, Y, Z)> in the camera frame to a point (x, y)> in the image
plane a focal length f ′ away from the pinhole, as shown in figure 5.1

33

(
x
y

)
= −f

′

Z

(
X
Y

)
Notice that the perspective transformation scales with the focal length f ′, the distance
from the aperture to the image plane. Also notice the negative relation which as evident
from figure 5.1 inverts coordinates from left to right and top to bottom on the image.

c

xc=(X,Y,Z)>

f ′

(x,y)>

Figure 5.1: Pinhole camera projection. A point xc in the camera frame, centered at the
pinhole aperture, is projected onto a flat image plane a focal length f ′ away from the
pinhole.

5.1.2 Pixel coordinate transform

The pinhole camera model is extended to map the image coordinates to pixel coordinates,
to facilitate the pixelization of a discrete image sensor. Let dx and dy be the size of a pixel
in metric units in the horizontal and vertical direction of the image plane, respectively,
to allow for a non-square image sensor. We want the top left corner of an image to have
pixel coordinate (0, 0)>. Defining the pixel coordinate of the center point (cx, cy), the
metric units to pixels coordinate mapping is then given by

(x, y)> 7→
(
x

dx
+ cx,

y

dy
+ cy

)>
Additionally, to simplify the pinhole camera model to do away with the inverted projec-
tion, we project onto a virtual image plane as if in front of the pinhole. Let the virtual
image plane be placed the same metric focal length f ′ in front of the pinhole as shown in

34

figure 5.2. For simplicity we define the focal lengths fx = f ′

dx
, fy = f ′

dy
in pixel units. The

pinhole projection model to pixel coordinates is then

(
x
y

)
=

(
cx
cy

)
+

(
fx 0
0 fy

)(
X
Z
Y
Z

)
(5.1)

c

xs=(X,Y,Z)>

f ′

2dxcx
2
d
y
c
y

(0,0)

(2cx,2cy)

(x,y)

Figure 5.2: Pinhole camera projection to pixel coordinates. A point xc is projected onto
a virtual image plane a metric focal length f ′ in front of the center of the camera frame.

The parameters fx, fy, cx and cy that make up the perspective projection are called the
intrinsic parameters of the camera.

5.2 OpenGL camera

Open Graphics Library (OpenGL) is a cross-language computer graphics API to achieve
GPU accelerated rendering of 2D and 3D vector graphics. It is cross-platform and offers
numerous language bindings to be callable from most popular programming languages[30].
We will use the concept of an OpenGL camera to render a 3D scene to a 2D image,
simulating the perspective properties of a given set of intrinsic parameters.

5.2.1 Viewing Frustum

In computer graphics the viewing frustum determines the region of space in front of a
camera that will be viewable and rendered to a screen1. Objects not inside the frustum,
for example in front of the near plane or behind the far plane, will be clipped from view
and not rendered. The shape of the frustum, that is the width and height in relation to
the near plane distance from the camera, determines the perspective projection of the

1Or a non-default user created FrameBuffer Object for off-screen rendering.

35

Figure 5.3: The viewing frustum determines the region of space in front of a camera that
will be rendered.

camera. This means the viewing frustum is also a perspective frustum. The frustum
parameters are then used to construct the OpenGL projection matrix.

5.2.2 Projection matrix

We will make a difference between perspective projection and perspective transformation.
A perspective projection is performed by the pinhole camera model, where the X and
Y coordinates are divided through by Z to achieve perspective scaling, and the Z value
discarded as the projection is onto a flat image surface always a focal length away from the
pinhole. In computer graphics, a perspective transformation is used to map (X, Y, Z) 7→
(x, y, z) where X and Y are scaled perspectively but a notion of the Z value is kept in z
as the depth in the scene relative to the near and far planes. The z-buffer value is in turn
used to perform depth-testing and back-face culling to determine what objects should be
rendered or are culled from view behind others.

To achieve this, homogenous coordinates [33] are used. For a 3D projective space, 3+1
homogeneous coordinates are needed to represent a point, where an extra coordinate W
is added. W = 0 is used to represent points at infinity using finite coordinates, and
is otherwise a scaling factor to achieve perspective forshorterning the same way the Z
value is used in perspective projection. This then allows perspective transformations to be
mathematically possible and expressable as a matrix multiplication. Perhaps confusingly,
in OpenGL this matrix is called the Projection matrix

Consider the point xcg = (X, Y, Z)> in an OpenGL camera frame cg as defined in figure
5.4. Notice the camera is looking down its negative z-axis. In homogeneous coordinates
the same point is represented as (xcg ,W)> = (X, Y, Z,W)>, where W is the scaling
factor and W = 1 for normal perspective scaling. For the viewing frustum parameters
l, f, b, t, n, fz

2 as shown in figure 5.4, the OpenGL projection matrix[4, (II.18)]

2Not to be confused with the focal length f

36

cg

(0,0,−fz)>

(l,t,−n)>

(r,b,−n)>

Figure 5.4: OpenGL perspective frustum and camera frame cg. The shape of the frustum
defines the properties of the perspective transformation and its parameters are used to
define the projection matrix.

xc
yc
zc
wc

 =

2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −(fz+n)
fz−n

−2fzn
fz−n

0 0 −1 0

X
Y
Z
W

 (5.2)

defines the perspective transform from homogeneous coordinates to the clip coordinates
(xc, yc, zc, wc)

>. Notice that despite the near and far plane being down the negative z-
axis from the camera, the frustum parameters n and fz are actually positive values, due
to an OpenGL convention. The actual perspective forshortening is achieved by diving
through the wc = −Z coordinate, where the scaling parameter wc by default is set to 1
and discarded, yielding the normalized coordinates

xnyn
zn

 =

xc/wcyc/wc
zc/wc

If any coordinate is is outside the range −wc < xc, yc, zc < wc it is outside the view-
ing frustum and clipped from view, so the resulting coordinates are normalized −1 <
xn, yn, zn < 1, where the projection matrix actually maps −zn to +1 and so forms a
left-handed coordinate system.

5.2.3 View matrix

The projection matrix transforms coordinates defined in the camera space, xcg = (X, Y, Z)>.
In world coordinates the same point is given by xwp = rwc +Rw

cgx
cg where rwc is the position

of the camera in the world frame, resolved in the world frame. Conversely, to express a
point xwp in the camera frame, we have xc = Rw

cg
>(xcg − rwc).

Let the corresponding homogeneous coordinate be (xcg , 1)> for normal perspective scal-
ing W = 1 out of simplicity. Constructing a homogeneous transformation matrix, the
perspective transformation(5.2) from world coordinates becomes

37

xc
yc
zc
wc

 =

2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −(fz+n)
fz−n

−2fzn
fz−n

0 0 −1 0

︸ ︷︷ ︸

Projection matrix

(
Rw
cg
> −Rw

cg
>rwc

0> 1

)
︸ ︷︷ ︸

View matrix

(
xwp
1

)
(5.3)

The view matrix then describes the position and orientation of the world coordinate
frame, as seen from the camera frame, and is used to appropriately position the camera
in relation to world objects.

5.3 Constructing OpenGL camera from pinhole camera

To emulate the camera images from a specific camera, modeled as an ideal pinhole camera,
the OpenGL viewing frustum needs to be specified in terms of the intrinsic pinhole camera
parameters.

5.3.1 Projection matrix

c

xcA=(−cx nf ,−cy
n
f
,n)

>

xcB=(cx nf ,cy
n
f
,n)

>

A=(0,0)>

B=(2cx,2cy)>
f ′

Figure 5.5: Perspective unprojection, from 2D pixel coordinates to 3D points on the near
plane.

Consider an ideal pinhole projection model, with an ideal square pixels image sensor and
resulting focal length in pixel units f = f ′

d
, where d is the side length of a pixel in metric

units. Then from (5.1)

(
x
y

)
=

(
cx
cy

)
+ f

(
X
Z
Y
Z

)
The inverse operation, unprojecting an image pixel coordinate to a 3D space, is readily
given by

38

(
X
Y

)
=
Z

f

(
x− cx
y − cy

)
(5.4)

for any given Z value. Consider the image coordinates A = (0, 0)> and B = (2cx, 2cy)
>

as shown in figure 5.5. Unprojecting these points to corresponding points xcA, xcB on the
near plane a distance Z = n away from the camera, leads to

xcA =

(
−cx

n

f
,−cy

n

f
, n

)>
xcB =

(
cx
n

f
, cy

n

f
, n

)>
defined in the pinhole camera frame c as shown in figure 5.5. From figure 5.4 the same
points on the near plane are defined in the OpenGL camera frame cg, in terms of the
viewing frustum parameters, according to

x
cg
A = (l, t,−n)>

x
cg
B = (r, b,−n)> .

Comparing the camera frames in the two figures it is clear that a mapping between frames
is given by (X, Y, Z)> 7→ (X,−Y,−Z)>. We then have the relation

(l, r) =

(
−cx

n

f
, cx

n

f

)
(b, t) =

(
−cy

n

f
, cy

n

f

) (5.5)

This then determines the shape of the viewing frustum, for a given near plane parameter
n. The far plane parameter fz does not affect the perspective transformation, only the
resulting z value which is used for depth-testing and back-face culling. The parameter
fz can in principle be chosen arbitrarily as long as the scene is correctly clipped, but be
aware that the distance between the near and far plane should be as short as possible due
to a depth precision problem at the far plane causing a potential depth precision error
known as z-fighting [1].

5.3.2 View matrix

To construct the view matrix let the observed body state rwb , Rw
b be given. Let the camera

have a body frame offset rbc, Rb
bc. Apparent from figures 5.4, 5.5 the orientation of the

39

OpenGL camera is given statically in the camera frame as Rc
cg , involving a 180◦ rotation

around the x-axis. Then the entries for the view matrix from (5.3) then are

rwc = rwb + Rw
b r

b
bc

Rw
cg = Rw

b R
b
cR

c
cg

5.4 Optical distortion

Due to the effect of using a lens in an actual camera, the projected image will experience
distortion, a deviation from rectilinear projection. The main effect is straight lines in a
scene not remaining straight in the image. This will be very noticeable with a wide-angle
lens.

5.4.1 Distortion models

Consider the pinhole projection model of (5.6). Let (u, v)> =
(
X
Z
, Y
Z

)>, and define h0 :
R2 7→ R2 such that

h0

((
u
v

))
=

(
cx
cy

)
+

(
fx 0
0 fy

)(
u
v

)
(5.6)

To simplify notation we will abuse the vector function notation (x, y)> = f(u, v) to
have the same exact meaning as (x, y)> = f((u, v)>) within this context. To add lens
distortion to the pinhole model, let f : R2 7→ R2 be a distorting function such that the
nested function

h(u, v) = h0 (f(u, v))

is the final perspective projection to distorted image coordinates (x, y)> = h(u, v). A
commonly used distortion model includes radial distortion as well as tangential disto-
rion[24, (5.4)-(5.7)]

f(u, v) = dr

(
u
v

)
+ dt (5.7)

dr =
(
1 + k1r

2 + k2r
4 + k3r

6
)

dt =

(
2uvt1 + (r2 + 2u2)t2
2uvt2 + (r2 + 2v2)t1

)

for the radial distance r2 = u2 + v2 and distortion parameters k1, k2, k3, t1, t2. While this
function might be sufficient to model barrel distortion in typical wide-angle lenses, for
extra wide-angle lenses the fisheye camera model is more applicable.

40

5.4.2 Fisheye camera model

A fisheye camera has an ultra wide-angle lens producing strong distortion intended for
panoramic or hemispherical images, by forgoing entirely with rectilinear projection. The
basic effects of a fisheye lens can be modeled as[18]

g0(u, v) =
arctan(r)

r

(
u
v

)
such that (x, y)> = h0 (g0(u, v)) is an ideal fisheye camera model. Similarly to the pinhole
camera model, the fisheye camera model can also be extended with radial and tangential
distortion effects similar to (5.7), according to[18]

f(u, v) =

(
dθ αdθ
0 dθ

)
g0(u, v) (5.8)

dθ = (1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8)

θ =
arctan(r)

r
(5.9)

for distortion parameters α, k1, k2, k3, k4. For small α << 1, it is clear that g0 is a good
approximation for f , where only the dominant radial fisheye effects are modeled.

5.4.3 Image distortion

By applying the distortion function, the lense distortion effects of a real image can be
added to an ideal generated image.

(u, v)>

(x, y)> = hi(u, v) (x′, y′)> = hr(f(u, v))

(x′, y′)> = hr(f(h
−1
i (x, y)))

Figure 5.6: Direct method of image distortion. Each pixel in the undistorted source image
(blue) is fed directly to the distorted destination image (red). The mapping is visualized
with f(u, v) = g0(u, v).

41

Direct method

Consider two images constructed with the following projections

(x, y)> = hi(u, v)

(x′, y′)> = hr (f(u, v))
(5.10)

as shown in figure 5.6. The distortion function is only applied to one projection, and
the projection transforms hi, hr are not necessarily the same. Let the images be called
the distorted image and the undistorted image, respectively, for the projection with and
without the distortion function applied. From (5.10) it is tempting to write the distorted
image coordinates in terms of the undistorted:

(x′, y′)> = hr
(
f
(
h−1i (x, y)

))
(5.11)

where the inverse unprojection function is readily available:

(u, v)> = h−1i (x, y) =

(
1
fx

0

0 1
fy

)(
x− cx
y − cy

)

We then have defined what we will call the distortion map d : (x, y) 7→ (x′, y′), such
that d(x, y) = hr

(
f
(
h−1i (x, y)

))
. To distort an image it is possible apply the value for

each source pixel (x, y)> directly to the destination d(x, y) in the distorted image being
generated. The distortion map is fine to apply directly on a set of sparse pixels as shown
in figure 5.6, but turns out to be problematic in order to distort an image in practice as
the direct feed-forward of undistorted source pixels does not guarantee a smooth coverage
of all the pixels in the distorted destination image. We will call this the direct method of
image distortion. In contrast, it turns out there is an alternative way to distort an image
using the inverse distortion function.

Indirect method

Going back to (5.10) we instead write the coordinates of the undistorted image in terms
of the distorted image:

(x, y)> = hi
(
f−1
(
h−1r (x′, y′)

))
(5.12)

Compared to (5.11), (u, v)> = f−1 (h−1r (x′, y′)) is not readily available due to the inverse
distortion function f−1, as the inverse of high-degree polynomial like (5.7) and (5.8)
is practically impossible to solve through algebraic manipulation. A solution is found
through iterative methods.

For a given coordinate (x′, y′)>, the problem is finding (u, v)> = f−1(u′, v′), where
(u′, v′)> = h−1r (x′, y′)>. Equivalently stated, find a (u, v)> such that (u′, v′)> = f(u, v).

42

(u, v)>

(x, y)> = hi(u, v) (x′, y′)> = hr(f(u, v))

(x, y)> = hi(f
−1(hr(x

′, y′)))

Figure 5.7: Indirect method of image distortion. Each pixel in the distorted destination
image (blue) is pulled from the undistorted source image (red). The mapping is visualized
with f(u, v) = g0(u, v).

This allows for an iterative solution searching for the (u, v)> that best fits (u′, v′)>, using
only the direct application of f . We solve this using Gauss-Newton minimization[32],
with the residual function

r

((
u
v

))
=

(
u′

v′

)
− f

((
u
v

))
The iterative steps are then given by(

uk+1

vk+1

)
=

(
uk
vk

)
+
(
Jf
>Jf

)−1
Jf
>r

((
uk
vk

))
for the Jacobian Jf . The procedure, including stating the Jacobian for a given distortion
function, is given in section 7.4. We then define what we will call the undistortion map
u : (x′, y′) 7→ (x, y), such that u(x′, y′) = hi (f

−1 (h−1r (x′, y′))). To distort an image it
is clear that for each destination pixel (x′, y′)> in the distorted image, the appropriate
source value is located in the undistorted image at pixel coordinate u(x′, y′). While the
iterative process of finding the best inverse function fit for each pixel is time consuming,
the entire map is easily precomputable, as the coordinate map is the same regardless of
pixel values for each image.

The only remaining problem is discretization of coordinates. While the map inputs
discrete pixel coordinates, the result is not necessarily so. Truncating coordinates directly
will result in aliasing issues. A solution is found by bilinear interpolation. For every source
coordinate (x, y)> = u(x′, y′)>, let (i, j)> = (bxc, byc)>. Let the differences between the
actual coordinates and the floored pixel coordinates be

dx = x− i
dy = y − j

43

The final distorted image value v(x′, y′) is then found by bilinear interpolation[31] the
source image values at the four corner points

v(x′, y′) =
(
(1− dx) dx

)(v(i, j) v(i, j + 1)
v(i+ 1, j) v(i+ 1, j + 1)

)(
(1− dy)
dy

)

5.4.4 Image undistortion

A closely related operation is that of image undistortion, undoing the effects of lense
distortion. Typically, image undistortion would be used on the receiving end of the cam-
era images, for example in a feature tracker. To simulate the images of a real camera,
only image distortion operations like the one already presented is necessary. However,
we will still derive the method of image undistortion here as it is helpful to use undistor-
tion to verify the results of a distortion operation. Similarly to image distortion, image
undistortion is also readily describable in terms of direct and indirect application of the
undistortion map and distortion map, respectively. Of course the direct method here
still has the same coverage problem as for image distortion which makes it unsuited for
practical application.

(u′, v′)>

(x, y)> = hi(f
−1(u′, v′)) (x′, y′)> = hr(u

′, v′)

(x, y)> = hi(f
−1(h−1r (x′, y′)))

Figure 5.8: Direct method of image undistortion. Each pixel in the distorted source
image (blue) is fed directly to the undistorted destination image (red). The mapping is
visualized with f−1(u, v) = g0

−1(u, v) computed through Gauss-Newton.

Consider again the same exact two image projections from (5.10). To undistort an image,
we want to apply a distortion-type operation to the already distorted image. We want
to motivate the idea that image undistortion is the exact inverse operation of image
distortion. To make it clear, we can express the same two image projections, but with
an inverse distortion operation applied to the rectilinear, undistorted image, and present
the distorted image as a seemingly rectilinear pinhole projection. This is readily shown
if we let (u′, v′)> = f(u, v). Then an equivalent description of (5.10) is

(x, y)> = hi(f
−1(u′, v′)

(x′, y′)> = hr (u′, v′)

44

(u′, v′)>

(x, y)> = hi(f
−1(u′, v′)) (x′, y′)> = hr(u

′, v′)

(x′, y′)> = hr(f(h
−1
i (x, y)))

Figure 5.9: Indirect method of image distortion. Each pixel in the undistorted destination
image (blue) is pulled from the distorted source image (red). The mapping is visualized
with f−1(u, v) = g0

−1(u, v) computed through Gauss-Newton.

Using the same exact distortion map from (5.11) and undistortion map (5.12), figures 5.8,
5.9 show the direct method of image undistortion through applying the undistortion map
on the distorted image, and the indirect method through applying the distortion map over
the undistorted image. Comparing with image distortion we see that it is in principle
arbitrary what we define as the distorted image to begin with, as long as the correct
distortion map is applied to the correct image in order to achieve the wanted effect. To
state it explicitly, we have the direct and indirect methods of image undistortion:

Direct method To undistort an image it is possible to apply the value for each source
pixel (x′, y′)> in the distorted image directly to the destination (x, y)> = u(x′, y′) in the
undistorted image being generated.

Indirect method To undistort an image it is clear that for each destination pixel
(x, y)> in the undistorted image, the appropriate source value is located in the distorted
image at pixel coordinate (x′, y′)> = d(x, y).

There is an apparent duality between image distortion and undistortion, as presented in
figure 5.10. As discussed, direct methods are useless in practice, and indirect methods
are to be preferred. A proof by example is given in section 7.4.

45

U
N
D
IS
T
O
R
T
IO

N
D
IS
T
O
R
T
IO

N

DIRECT INDIRECT

hrfh
−1
i hif

−1h−1r

hrfh
−1
ihif

−1h−1r

Figure 5.10: Duality of image distortion and undistortion, in terms application of the
distortion and undistortion maps.

46

6 Laser Range Measurements

A Lidar, also known as a light radar, or as the acronym LiDAR for Light Detection And
Ranging, is an active laser sensor scanner which emits laser light pulses, and the time of
flight of the return signal is determined to measure the distance travelled. The returning
light is not a pure mirror-like reflection, but the result of a backscattering effect. The
lidar can provide a mobile robot with sampled range measurements of the environment
to infer an understanding of scene structure in a way which compliments passive camera
imagery. There are two principal ways to model lidar range measurements[22]:

• A depth image sampling across the field of view of the lidar simultaneously, without
concern for beam dynamics or the movement of the sensor in between samples.

• A series of individual reflected signals that in turn are emitted, processed and
converted to range measurements.

There is a general trade-off between modelling accuracy and run-time performance. The
former method is achievable using computer graphics depth buffer rendering and sampling
and is in general quite fast. The generation of individual laser beams, particularly involv-
ing modeling of their physical interaction with the reflecting surfaces, can be achieved
using ray tracing techniques, but is in general terribly slow and not suited for real-time
operation.

The objective of this work is to simulate range measurement resulting from an ideal laser
scanner, without concern for backscattering and other laser beam dynamics as it interacts
with the environment. The method of depth buffer rendering is used to sample the buffer
at pixels corresponding to the internal angle of the laser scanner . However, a method of
frustum subdivision is presented to divide the wide field-of-view of the lidar into sections,
modeling the temporal displacement of the sensor between each frustum. This offers a
convenient tradeoff between modeling accuracy and performance.

6.1 Distance measurement

The distance to an object illuminated with a laser pulse can be determined by comparing
the time of return to the time of emission to calculate the time of flight ∆t and the
resulting distance d = 1

2
c∆t, for the speed of light, c. A Lidar setup typically involves

47

a rotating laser scanner, but we will begin with introducing how to generate a single
distance measurement of a 3D scene using the depth buffer of an OpenGL camera.

cg

xcg=(X,Y,Z)>

−Z

Figure 6.1: The scene depth of a point xcg = (X, Y, Z)>.

Consider a point xcg = (X, Y, Z)> and the perspective transform coordinates (xc, yc, zc, wc)
>,

and the final normalized coordinates (xn, yn, zn)> = (xc/wc, yc/wc, zc/wc)
> where wc =

−Z, resulting from applying the projection matrix in (5.2) to a homogeneous coordinate
(xcg , 1)>. Using the definition of the projection matrix it is possible to reconstruct the
3D coordinates for a sampled image point. Let (x, y)> be a given pixel coordinate, where
x ∈ [0, w − 1], y ∈ [0, h − 1] for the image width and height. A depth buffer contains
the corresponding depth value z ∈ [0, 1]. The normalized coordinate is then zn = 2z − 1.
Using zn = zc/wc = −zc/Z and the definition of the projection matrix (5.2) we get

zn =

(fz+n)
fz−n Z + 2fzn

fz−n

Z

We want to unproject the depth value to a 3D point defined in the camera frame as
defined in figure 5.2. Solving for the Z coordinate in the cg camera and employing the
map Z 7→ −Z to convert from the cg frame looking down the negative z-axis, we get a
positive Z depth aligned with the c frame, according to

Z =
2fn

(f + n)− zn(f − n)
(6.1)

Z-depth is not the same as radial distance, as all points on a vertical plane a distance Z
in front of the camera have the same depth Z, but differing distance depending on X,
Y , as shown in figure 6.1. Using the pinhole unprojection from (5.4) we can recreate the
point xc = (X, Y, Z)> for the given Z value:

(
X
Y

)
=
Z

f

(
x− cx
y − cy

)
(6.2)

This is all the information necessary to create an explicit distance measurement for a
single laser pulse

48

d =
√
X2 + Y 2 + Z2

6.2 2D laser scan

dk

φk

φ

Figure 6.2: 2D laser scanner sampling points in the plane, within its horizontal field of
view. Each distance measurement in frame Li (thin) is resolved in the principal lidar
frame L (thick).

A 2D lidar sampling points at equidistant angles in the plane of a rotating laser scanner
is modeled as shown in figure 6.2. Assume the lidar samples K points per scan, has a
horizontal field of view φ, a 2π − φ dead-zone, and a given maximum range D.

The lidar distance measurement will be resolved in the lidar frame L with principal axes
as shown in figure 6.2. For each sample, the scanner has rotated an angle φk and samples
the point xLkk = (0, 0, dk)

> in the internal scan frame Lk.

xLk = Rk(φk)

 0
0
dk

 , k = 0, . . . , K − 1 (6.3)

where Rk(φk) = RL
Lk

is described by a rotation of φk around the common y-axis. It is
important to note that although the scanner is rotating quickly, each angle in a scan is not
sampled simultaneously, but sequentially. It can be compared to a rolling shutter effect in
many CMOS camera image sensors wherein the image sensor is scanned sequentially from
top to bottom, and not simultaneously like with a global shutter typical for a CCD image
sensor, like we assumed when modeling the camera. This is an important characteristic
we would like to emulate when simulating a laser scan, and to make the case explicit the
notation x

L(tk)

k is used to denote a single sample resolved in the principal lidar frame, at
time tk. Be aware that R(φk) of course only depends on the angle φk.

49

6.2.1 Frustum subdivision

θn

Figure 6.3: Lidar scan subdivided in frustum sections to offer temporal granularity with
little overhead. Notice the darker grey edge of the frustum. This area is not strictly
within the radial distance limit D from the scanner origin, and increases with the size of
the frustums.

To fully emulate temporal displacement between each sample using depth-buffering, each
sample would have to be constructed with its own camera, as all pixels within one image
are sampled simultaneously. This is impractical for at least two reasons. First, although
each rendered image scales down proportionally to the number of cameras, the overhead of
rendering many separate images will cause a significant overhead in the graphics rendering
pipeline, assumed not to scale well with a large number of cameras. Secondly, a lidar
might typically have a scan rate of several tens of hertz, with several hundred, if not
thousands samples per scan. This means a sampling rate on the order of 10 kHz. This is
simply impractical to achieve in any real-time sense due to the short sampling period.

To simulate a laser scan we will therefore subdivide a scan into several equally wide
sections, each corresponding to a viewing frustum to cover the entire horizontal field-
of-view of the scanner. All points within a sector are sampled simultaneously, but the
temporal displacement between each frustum scan is modeled. The number of frustums
is an important characteristic. Too many frustums causes an overhead and performance
problem as discussed. Not enough frustums and the granularity will introduce modelling
errors. As is evident from the darker grey edges in figures 6.3, 6.4, the corners of the
frustum is not strictly within the radial range limit D from the scanner origin. While
the lidar range itself might not be strictly limited to an exact radius, in principle this
modelling inaccuracy grows with the size of the frustums. Depending on the number
of frustums chosen, frustum subdivision is considered a good tradeoff between modeling
accuracy performance.

Let N be the number of frustums per scan. The points in each frustum are sampled from
the view of a local frame Ln rotated an angle

50

θn = φ

(
k + 0.5

N
− 1

2

)
, n = 0, ..., N − 1

from the principal L frame. The half field of view angle φ
2
is subtracted to offset θn = 0

to the middle sector pointing along the principal z-axis, at least in the case of an odd
number of sectors. Assuming the lidar scans with a rate of fs scans per second, then a
counting θtk can be updated according to

θtk+1
= fmod (θtk + 2πfs∆t+ π, 2π)− π

to determine which frustum, if any, is active at the current time tk.

(2cx,cy)(0,cy)

(Xn
i ,Y

n
i ,Z

n
i)

>

f

αi

f tan(αi)

Figure 6.4: Sampling points at equidistant angles in one frustum scan, and the corre-
sponding pixels in the depth buffer.

As shown in figure 5.2, a virtual image plane a metric f ′ away from the camera has a
width 2dxcx and height 2dycy. For an ideal, square pixel image sensor like the OpenGL
camera where d = dx = dy it is then clear that at a distance f = f ′

d
away from the camera

the virtual image plane is 2cx wide and 2cy high, in pixel units1. Each frustum will have
a horizontal field of view α = φ/N . From figure 6.4 it is then clear that for a given α and
wanted horizontal pixel resolution w,

f =
w

2 tan(α/2)
(6.4)

where cx = w
2
. For a horizontal 2D scan, we only need to sample an image along y = 0,

and so we can construct the frustum where h = 1, cy = h
2
and the necessary frustum

parameters are given from (5.5). The far plane have to be set to emulate the range limit
D of the lidar. That is fz = D.

1We will allow this combination of metric and pixel units as we are only interested in the ratio cx/f
and cy/f , where the pixel size d is divided out.

51

6.2.2 Sampling

For K total samples per scan we have M = K
N

samples per frustum at equidistant angles
given by

αi = α

(
i+ 0.5

M
− 1

2

)
, i = 0, ...,M − 1

where half frustum angle α
2
is subtracted to offset αi = 0 to the middle of the frustum,

as shown in figure 6.4. w should be chosen to have sufficiently many pixels to sample,
so that each angle samples a unique pixel. In short we want w > 2M . For a given
sampling angle αi it is clear from figure 6.4 that the corresponding coordinate to sample
is (cx − f tan(αi), cy)

>. Rounding off to nearest integer, between [0, w − 1] × [0, h − 1],
the pixel coordinates to sample are

(
xi
y

)
=

(
[cx − f tan(αi)]

w−1
0

[cy]
h−1
0

)

From (6.1) the depth Zn
i is given from sampling the depth buffer, and from (6.2) the

resulting coordinates are

(
Xn
i

Y n
i

)
=
Zn
i

f

(
xi − cx
y − cy

)

Then, applying the rotation to transform from the frustum frame Ln to the principal
frame L we get

xL(tn)

i,n = Rn (θn)

Xn
i

Y n
i

Zn
i

Creating the explicit distance measurement dni =

√
Xn
i
2 + Y n

i
2 + Zn

i
2 is not necessary.

However, if we did, we get the equivalent result by applying an extra rotation transform
for the internal frustum sampling angle αi:

xL(tn)

i,n = Rn (θn)Ri (αi)

 0
0
dni

Comparing to figure 6.2 it is clear that φk = θn+αi, and in fact Rk (φk) = Rn (θn)Ri (αi)
corresponding to the model (6.3).

52

6.2.3 View matrix

The view matrix has to be set up for each individual frustum. Let the simulated state
rwb , Rw

b be given, along with a body-sensor offset rbbL, Rb
L. To construct the view matrix

we additionally have to apply a rotation for the current frustum within the lidar frame
in addition to transforming to the OpenGL camera frame cg. Then

rwL = rwb + Rw
b r

b
bL

Rw
cg = Rw

b R
b
LR

L

Ln
RLn
cg

where RL
Ln

= Rn(θn). Transforming a point xwp from world coordinates to camera coor-
dinates, xcg = Rw

cg
>(xwp − rwL), and the view matrix is of course

T4×4 =

(
Rw
cg
> −Rw

cg
>rwL

0 1

)

6.3 3D laser scan

(Xn
i,j ,Y

n
i,j ,Z

n
i,j)

>

f
βi

f
ta
n
(β
j
)

Figure 6.5: Sampling points in the vertical field of view of a laser scanner.

By extending the frustum with a less than planar vertical field of view, a 3D laser scanner
is readily available. We will model the 3D lidar as a vertical array of Q scanners angled
equidistantly apart over a certain vertical field of view β, each in turn working exactly
like a planar 2D scanner like before.

Similarly to the horizontal field of view, we have f = h
tan(β/2)

. Solving for the horizontal
resolution h and substituting in (6.4) we get

h = w
tan(β/2)

tan(α/2)

where cy = h/2. h then needs to be scaled through w to achieve sufficient resolution
h > 2Q, depending on β and Q. For the Q vertical arrays, the sampling angles are

53

βj = β

(
j

Q
− 1

2

)
, j = 0, ..., Q− 1

where again the half field of view angle β
2
are subtracted to offset βj = 0 to align with

the center of the frustum. Clearly, the corresponding point to sample in the image buffer
is

(
xi
yj

)
=

(
[cx − f tan(αi)]

w−1
0

[cy + f tan(βj)]
h−1
0

)
resulting in Zn

i,j via the depth buffer and

(
Xn
i,j

Y n
i,j

)
=
Zn
i,j

f

(
xi − cx
yj − cy

)
Finally, the sample resolved in the principal lidar frame is given by

xL(tn)

i,j,n = Rn (θn)

Xn
i,j

Y n
i,j

Zn
i,j

6.4 Point cloud

If the state rwL , Rw
L is observable, which it is by definition through the simulation, the

samples, xL(tn)

i,j,n in the general case of a 3D scanner, can be transformed from the moving
lidar frame to the static world frame w, creating a consistent point cloud. Let the observed
state xwb , Rw

b be given. For the static body-sensor offset rbbL, Rb
L we have

xwL = xwb + Rw
b r

b
bL

Rw
L = Rw

b R
b
L

A point xL(tn)

i,j,n resolved in the world frame, as a part of a consistent world point cloud, is
then given by

xwpi,j,n = xwL (tn) + Rw
L (tn)xL(tn)

i,j,n (6.5)

54

7 Implementation

The simulator is implemented as a headless program as a drop-in replacement for the
inpout/output module as given by figure 1.1. It is written entirely in C++14, relying on the
open source and permissively licensed libraries Eigen[9], a header-only template library for
linear algebra, and OpenSceneGraph[19], a C++API for 3D graphics programming using
OpenGL commonly used for visual simulation and scientific visualization and modeling.

On top of bare OpenGL, OpenSceneGraph offers a C++API and a scene graph convenient
to structure the contents of a scene. Details as they relate to OpenSceneGraph specifically
will not be included, as the point of the exercise is to convey the methods in terms of
standard OpenGL principles. Additionally, the API specific implementation details are
fairly boilerplate, and it is in the interest of this discussion to be API agnostic. Rendering
of camera images and lidar depth images are done off-screen via non-default user-defined
FrameBuffer Objects as explained in 7.4, 7.5. OBJ files for geometry definition, including
linked materials and textures, were used to provide geometry to the virtual scene for
off-screen and on-screen rendering, as well as a model of the quadrotor shown in figure
7.2 for visualization of simulation states.

VIS

SIM

FLIGHT

(a) Flight code running as is with the simulator
replacing the input/output module.

VIS

REAL

FLIGHT

(b) Embedded flight code interacting with the
real world through sensors and actuators.

Figure 7.1: Simplified overview of the interaction between the headless simulator, the
flight code and the visualization tools. Real-time visualization is available of real and
simulated sensor data, the navigational output, and the simulated states if the simulator
is running.

55

In addition to the simulator proper, a significant amount of work have been dedicated to
creating visualization tools for verifying and debugging the development of the simulator
itself and the rest of the navigation, guidance and control flight code, through real-
time visualization of internal simulator rigid body states, simulated sensor data and
navigational states from flight. The visualization tools created offers a, mostly one way,
graphical user interface to the overall system, including the simulator, and itself interfaces
with the headless simulator and flight code through the same proprietary messaging
framework. All visualization is created using OpenSceneGraph. The implementation of
the tools themselves is to be considered a part of the overall work done for this thesis,
but will not be described in any further detail other than stating their role in the overall
system. Again, the API code is considered fairly boilerplate, and uninteresting to include
in the discussion in any significant detail. The visualization will mainly be used in
chapter 8 to convey the results of the simulation, which in turn will convey the results of
the visualization.

Figure 7.2: Rendering of the simulated quadrotor body. The body frame as well as poses
for the actuators and camera sensor is shown.

In the simulator, each rigid body structure has a set of attached actuators and sensors
as shown in figure 7.2. Additionally each body has a set of collision points to calculate
rudimentary interaction with the ground, but this is not elaborated further. Also, in
addition to the rotors, an actuator to calculate rudimentary wind force disturbance is
included but also left out of the discussion of the overall implementation. The main
loop iterates with a time step equal to the IMU sampling period given in table 7.4. For
each iteration, forces and torques for each actuator is calculated according to (3.2) and
(3.5) based on the latest control input, and the total actuation input is given by (3.1).
Acceleration is found from (2.9), and each sensor is triggered to potentially generate data
given the proper acceleration, the rigid body state in the Earth frame and the world
frame, and the sensor body offset. Lastly the Earth frame acceleration is found from
(2.10) and states are evolved according to the numerical integration scheme of section
2.4.

56

7.1 Rigid body dynamics

The WGS84 reference ellipsoid and normal gravity model was implemented with the
defining parameters in table 7.1 as given by table [3, (3.1)]. The world frame is located in
relation to the reference ellipsoid with a set of longitude, latitude and height coordinates
(λ, φ, h)> as shown in section 2.3.3. As explained, the orientation Re

w of the world frame
can be set with the z-axis normal to the ellipsoidal surface, with yaw as a free parameter,
by applying the rotation between the local gravitation gw = (0, 0,−1)>, normalized for
convenience, and the global normal gravitation gew at the point of origin. The orientation,
computed as a quaternion, is readily available using Eigen:

Eigen::Quaterniond::FromTwoVectors(gw,gew)

Description Symbol Value Units
semi-major axis a 6378137.0 m

reciprocal of flattening 1/f 298.257223563 1
angular velocity of the Earth ω 7292115.0e-11 rad/s

gravitational constant of Earth1 GM 3986004.418e8 mm2/s2

Table 7.1: Defining parameters of the WGS84 reference ellipsoid.

7.2 Quadrotor actuation

Without specification to a particular hardware platform, a very simple, symmetric model
of a micro aerial vehicle sized quadrotor was implemented, with reasonable physical pa-
rameters given in table 7.2. The objective for the modeling here is to offer a reasonable
dynamic model for a quadcopter of a certain size, with as few parameters as possible,
and not necessarily the most accurate model of any given hardware platform based on
system identification methods.

Description Symbol Value Units
mass m 1.5 kg

arm length r 0.20 m
moment of inertia around x-axis Ixx 0.05 kgm2

moment of inertia around y-axis Iyy 0.05 kgm2

moment of inertia around z-axis Izz 0.1 kgm2

Table 7.2: Quadrotor rigid body parameters.

Similarly, we want to arrive at a reasonable dynamic model for the rotor actuators, with
hopefully a simple parametrization. We will not perform system identification in order to

1Including mass of Earth’s atmosphere.

57

best simulate a particular hardware setup. The dynamic characteristics we are interested
in emulating is a first order response from control input to angular speed given by (3.4)
and the resulting thrust and torque of (3.2).

Description Symbol Value Units
motor input constant K 1000 rad/s
motor time constant T 0.1 s

propeller force constant KF 1e-5 N/(rad/s)2

propeller torque constant KQ 0.1 m
rotor inertia I 5e-5 kgm2

Table 7.3: Rotor model parameters.

We will determine reasonable values for the necessary rotor parameters given in table
7.3 from basic principles. The Kv rating of a motor is a significant characteristic. It is
inversely proportional to Ke from (3.3), although with different units, i.e Kv ∼ 1

Ke
. The

Kv value is the revolutions per minute the motor needs to turn to produce 1V of counter-
electromotive force. For a quadrotor of this size with 8-9 inch propellers, a typical motor
used might have a Kv = 1000 rating, achieving approximately 10 000 RPM at maximum
throttle, depending on the battery voltage and the load. When 10 000 RPM ≈ 1000 rad/s,
from (3.4) at stationary behaviour we see that ωmax = Krmax, rmax = 1, so a reasonable
value is K = 1000rad/s. If we want this maximum throttle to correspond to for example
10 N, this leads to KF = 1× 10−5 N/(rad/s)2. KQ should equal the moment arm of the
torque, the propeller diameter, up to a scale factor depending on CQ/CF . Typically, for a
0.2 m propeller diameter, KQ = 0.1 m. The approximate moment of inertia I for a small
propeller 0.2 m diameter is typically[12] 5× 10−5 kgm2. The first order response time
was simple guesstimated to have a time constant on the order of 0.1 s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

300

400

500

600

700

800

900

1000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(a) Angular speed (blue) and angular speed
rate of change (red).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Force (blue) and torque (red) as a result of
drag and angular speed rate of change.

Figure 7.3: Transient rotor output in response to an increasing input (dotted black).
MATLAB implementation with parameters from 7.3.

58

7.3 Inertial measurements

The particular accelerometer and gyroscope that was implemented in this was modeled
after the ADIS16488[7] inertial measurement unit. It has an internal sampling rate of
9.84 kHz, and an averaging/decimation filter which reduces the update rate to 2.46 kHz.
The user can choose an additional decimation rate to discretely sample this signal at
potentially decreased rates. We choose a sampling rate of 1.23 kHz.

The sampling causes discrete measurement white noise, proportional to the square of the
sampling period[26]. The data-sheet provides output noise standard deviations of 1.5mg
and 0.16deg/s for the accelerometer and gyroscope respectively, where g is the standard
gravity. While it is uncertain what the corresponding sampling rates are, we will use the
given output noise as standard deviations in our discrete white noise models, with the
disclaimer that the actual discrete sampling error deviation might be off by a factor of√

2. The final parameters are given in table 7.4. The biases are modeled as first order
Gauss-Markov processes with large time constants, with parameters guesstimated in the
same way they are used as noise parameters in the navigation filter.

Description Symbol Value Units
acc discrete noise std σa 0.0147 m/s2

gyro discrete noise std σω 0.0028 rad/s

acc bias driving noise std σba 1e-5 m/s2√
Hz

gyro bias driving noise std σωa 1e-5 rad/s√
Hz

acc bias time constant Tba 1e3 s
gyro bias time constant Tbω 1e3 s
sampling frequency 1/∆t 1230.0 Hz

Table 7.4: Accelerometer and gyroscope parameters.

To implement the generation of the measurements, the normal distribution feature of the
C++Standard Library added in C++11 is used. To model n ∼ N (0, σ2) simply declare
std::normal_distribution<> n {0,σ}. Then draws are done according to [6] using a
Mersenne Twister pseudorandom number generator. The accelerometer and gyroscope
biases are initialized with a draw from a standard distribution with a standard deviation
of 1.0 deg/s and 0.05 m/s2, respectively. Finally, as the exact location of the accelerometer
sensor in the IMU is unknown, the internal offsets rsx, rsy, rsz were simply set to zero.

7.4 Camera images

To render an image off-screen, OpenSceneGraph was used to create a windowless OpenGL
graphics context. The image is stored in 2D array image buffer with the greyscale pixel
format GL_LUMINANCE of type GL_UNSIGNED_BYTE. The image buffer is attached to a
GL_COLOR_ATTACHMENT of the Framebuffer Object[29] rendered to by the camera viewing
the scene, instead of the Default Framebuffer drawing to screen.

59

Figure 7.4: Image taken with the IDS camera. Heavy distortion resulting from the wide-
angle lense.

The particular camera that was simulated is the IDS UI-3241LE, with a wide-angle
fisheye-like lense producing distorted images as seen in figure 7.4. The camera produces
greyscale images at w×h = 1280×1024 resolution, at up to 60 frames per second. Using
the fisheye camera model[18], the camera was calibrated with OpenCV with distortion
parameters given in table 7.6 and intrinsic parameters given by the real column in table
7.5.

Description Symbol Ideal Real
focal length, horizontal units fx 225 5.5910e2
focal length, vertical units fy 225 5.5954e2
principal point offset, x-axis cx 1280 6.3992e2
principal point offset, y-axis cy 1024 5.2171e2

Table 7.5: Camera projection parameters in pixel units.

The real and ideal projections correspond to hr and hi from (5.10), respectively. The
ideal parameters are used to specify the perspective frustum of the OpenGL camera. In
principle, hi is arbitrary, as the generated image is projected according to hr through
the (un)distortion map. However, the application of the fisheye distortion maps pixels
towards the center of the image. When the undistorted and distorted images are the same
size this creates a significant black border around the edges as shown in figures 7.5, 7.6,
where the pixel value is undefined outside the range of the sourced undistorted image.
When generating an ideal OpenGL image to source from, the field of view and resolution
of the source image can be artificially enhanced. Scaling down the focal length achieves

60

Symbol Value
k1 -1.5363e-2
k2 1.2678e-2
k3 -1.2716e-2
k4 -1.5363e-2
a 0.0

Table 7.6: Camera distortion parameters.

a greater field of view, allowing more of the scene to be viewable and reducing the black
border. However, without increasing the resolution correspondingly there are significant
aliasing issues. The ideal parameters of 7.5 reflects this, with a 1

2
x reduction of the focal

length in addition to a 4 x increase in resolution as a result of doubling cx, cy.

Figure 7.5 shows the application of direct undistortion and subsequent distortion to the
original IDS image from 7.4. They both show noticeable black line artifacts disturbing the
image resulting from the inability of the direct mapping from source pixels to smoothly
cover the destination image. Therefore, indirect methods as shown in figure 7.6 were
implemented in practice to simulate camera images. The necessary undistortion map is
precomputed at startup, employing Gauss-Newton iteration to find the best fit (u, v)>

such that (u, v)> = f(u′, v′), where (u′, v′)> = h−1r (x′, y′) for every destination pixel
(x′, y′)> as described in chapter 5. For the fisheye-distortion function, the Jacobian is
given without further justification

Jf =

(
∂f1/∂u ∂f1/∂v
∂f2/∂u ∂f2/∂v

)
=

(
u2B + A uvB
uvB v2B + A

)
where

A =
arctan(r)

r
, B =

1

r2(r2 + 1)
− A

r2

The iteration can be started with (u′, v′)> as the best guess, or a numerical approximation
of g−10 (u′, v′) for faster converge times. The camera frame rate was implemented at 20 fps,
meaning one in about 60 simulator steps will result in a camera trigger. When a frame
needs to be rendered, it takes significantly longer than the time step ∆t for the calling
function to return. Therefore the drawing of a frame is implemented as a background
thread to support non-blocking operation. The camera allows synchronization with the
IMU by calling a callback at every trigger stamping the corresponding frame id into the
stream of inertial measurements.

7.5 Laser range measurements

To construct distance measurements, depth values from the scene are rendered to a
depth buffer. Similarly to creating the camera images, a windowless OpenGL graphics
context was created. The depth values are stored in a w × h array with the depth

61

pixel format GL_DEPTH_COMPONENT of type GL_FLOAT. The depth buffer is attached to the
GL_DEPTH_ATTACHMENT of the Framebuffer Object[29] rendered to by the camera viewing
the scene.

The particular lidar that was simulated is the Hokuyo UST-20LX. It is a planar 2D laser
scanner, with parameters as given by table 7.7. The method described in chapter 6 is
general in that it allows the construction of laser scanners with arbitrary horizontal and
vertical field of view, but the scope of the final implementation is limited to the 2D planar
case modeled as given in table 7.8. Similarly to the camera images, the drawing of a lidar
depth image is scheduled to a background thread to support non-blocking operation of
the main loop.

Description Symbol Value Units
horizontal field of view φ 270 deg

samples per scan K 1080 1
maximum detection range D 20 m

scanrate fs 40 Hz

Table 7.7: Lidar parameters.

Description Symbol Value Units
number of frustums N 9 1

field of view per frustum α 30 deg
samples per frustum M 120 1
horizontal resolution w 256 px
vertical resolution h 1 px

Table 7.8: Lidar model parameters.

62

(a) Undistorted image with very noticeable black line artifacts.

(b) Distorted image with a faint black line artifact in the middle of the image.

Figure 7.5: The original image undistorted (top) and subsequently distorted (bottom)
using direct distortion methods. The direct method causes black lines to appear in the
images.

63

(a) Undistorted image.

(b) Distorted image.

Figure 7.6: The original image undistorted (top) and subsequently distorted (bottom)
using indirect distortion methods.

64

8 Results

We present the results from the simulator as it currently stands. The focus will be
to showcase how the simulation of vehicle dynamics and sensor data successfully have
been used in the development of navigation, guidance and control algorithms. This is
purposefully a qualitative overview of the results rather than a quantitative analysis of
all data generated as this is considered the most effective way to document and convey
the validity of the results.

8.1 Vehicle dynamics

Figure 8.1: Real-time rendering of the quadrotor flying in a virtual scene.

The simulated sensor data can be used as input to the navigation filter to make state
estimates available for motion control feedback. However, clearly this information is al-
ready available from the underlying rigid body dynamic simulation. This means, through

65

simulation of vehicle dynamics alone, herein including the quadrotor actuation model and
rigid body dynamics, the simulator can close the loop without generating sensor data and
replace the navigation module by simply spoofing its output directly.

(a) The current pose estimate, and initial frame.

(b) A track of current and all past poses.

Figure 8.2: Navigational estimate of the pose of the body frame relative to the initial
frame when the module was started. If the rigid body is initialized aligning with the
world frame, then the pose outputs reveal the state in the world frame1.

In section 1.2 it was explained that the underlying IO-board being replaced by simulation
contains low-latency closed-loop control of the actuators to stabilize the angular rate
of the quadrotor. This code was reimplemented in the simulator, but left out of the
implementation discussion as it pertains to application specific throttle mixing. The
satisfactory tuning of the real angular rate controller will filter out a lot of imperfections
in the platform specific dynamics and offer a more ideal rigid body able to track a given set
of angular rates at a bandwidth an order of magnitude higher than that of the higher-level
velocity and attitude controls. While the actuation model was not made to emulate the
specific dynamics of any particular quadrotor, this means that with a rate controller tuned
for the specific underlying platform, whether real or simulated, the resulting dynamic
response of the rigid body is very comparable in the real and the simulated case.

In fact, this was verified during the first flight and total system integration test of the

66

overall system. Higher-level control gains were tuned against the simulated body and
used as is as a very successful starting point during the first flight, requiring minimal
adjustment to optimize performance against the real platform. It is important to disclaim
that any work on the real system is not to be considered a part of this thesis work. But
the two are of course related, and it is mentioned as qualitative evidence of the potential
effectiveness of simulation. While neither the purpose of the flight was to log flight
dynamic data, nor the purpose of the simulator to emulate a particular flight dynamic,
any potential quantitative comparison between the two are considered outside the scope
of this discussion.

8.2 Camera images

The camera images are not directly input to the navigational filter, but fed through a
tracker running hardware accelerated computer vision algorithms to find features and
track them between frames. It is very important to disclaim that any work with the
tracking is not done by the author and should not be considered in any way a part of
the work involved in this thesis. The visualization of the tracking is used here only to
document the validity of the generated camera images and explain their use in the ongoing
development of the overall system.

The focus of this implementation has not been performance. The simulator does not have
any strict demands for real-time performance as it does not operate in absolute time but
in nominal discrete time intervals, and there is no interaction with any physical system
with actual real-time demands. However, for the human interfacing with the simulator,
particularly through live visualization, it is very convenient if the execution is able to
perform approximately real-time in order to deliver live results as they are expected. We
will discuss performance in short, here.

It is not straight-forward to measure rendering execution times in the OpenGL pipeline
as things are not necessarily drawn when the call to draw is scheduled or finished when
the call returns. The graphics card driver maintains a FIFO buffer at the front end of
the graphics card where from the application point of view a draw is finished when the
driver returns from the buffer. The total rendering execution time then depends on how
fast the CPU can feed the pipe with data, the bandwidth of the data bus between the
CPU and the graphics card buffer, and the actual vertex and fragment shader processing.

The rendering time depends on the complexity of the scene, for example rendered with or
without lighting calculations. Although the executions times were not directly observable,
it was experienced that the main crux in rendering times were the size of the undistorted
source image. To generate the 1280 × 1024 pixel image as shown in 8.3, a 2560 × 2048
images of four times the pixel count was rendered, as explained in the implementation
details in order to reduce the black border around the edges with minimal aliasing. This
not only effects the GPU execution time, but the CPU time for each frame, as the

1When the state ‘estimates’ are given by the simulated navigation module the rigid body states are
the world frame is used directly, and so the world frame and the initial local navigation frame align by
definition

67

(a) Camera image from a front-facing camera attached to the
body.

(b) The same camera image overlaid tracking information.

Figure 8.3: Simulated camera images with fish-eye distortion. Features tracked with
computer vision algorithms from frame to frame is shown overlaid in figure 8.3b. New
features are colored in red and progressively turn blue.

68

number of values that have to be interpolated increase as well. On average the graphics
rendering was timed to take approximately 30 ms and the CPU distortion-mapping and
interpolation 20 ms on the relevant desktop workstation. This means 20 images per second
is at the very limit of what the simulator can provide in soft real-time. Reducing the size
of the source image significantly reduces the execution times, but produces a black border
in the distorted image that is not optimal for the tracker performance. It is seen that
the execution times can benefit from a hardware accelerated GPU implementation of the
pixel-by-pixel distortion mapping, as the CPU execution times contribute to a significant
part of the total execution time for each frame.

8.2.1 Validation by navigation

We will show the validity of the generated camera images and inertial measurements by
documenting their use as input to a visual-inertial sensor fusion filter. Again it must
be disclaimed that the work on the filter is in no way the work of the author. Figure
8.4 shows the estimated trajectory from a simulated run, post-processed in a MATLAB
implementation of the filter. The output is very comparable to that of real data, with
the same consistency and accuracy of results. In addition to offline MATLAB processing,
the C++implementation of the filter was successfully run live using generated sensor data
from the simulator.

0

0.5

1

1.5

z

-4
-2

0

x

42 2

y

04 -2
-4

Figure 8.4: Trajectory of estimated positions from a 100 s long simulation run. The
results were post-processed in MATLAB from logged inertial data and tracked features.

The filter is model-free, that is it does not assume anything about the dynamics under-
lying the sensor data, except of course the fundamental laws of kinematics. Model-free
algorithms, then, can be tested in isolation from any vehicle dynamics. An implementa-
tion can be tested using real logged data. While verifying filter performance using real
data is crucial, apparent drawbacks during development include that the hardware inte-
gration needs to be available, the practical overhead of logging several runs to generate
statistically verifiable results, and the potential inconsistencies in the data which might
interfere in the analysis of the filter. In addition data is only fed into the filter without
the ability to use the estimation output as feedback to control the motion generating the
sensor data, and closing the loop. This is crucial for the full integration test of the entire
system, where navigation, guidance and control are interdependent. Without a field test
this is only possible with simulated sensor data in combination with simulated vehicle
dynamics closing the loop between control input and navigation output.

69

(a) Estimated position.

(b) Estimated orientation, converted to Euler angles. Notice
the yaw wraps to [−180°, 180°].

Figure 8.5: Estimated position and orientation from the same run shown in 8.4. The best
estimate is shown in blue while a 3 σ uncertainty envelope is shown in black.

70

8.3 Laser range measurements

The 2D planar lidar was implemented. A visualization of the range measurements from a
scan is shown in figure 8.6. What is shown is not directly the output from the lidar data,
which is resolved in the lidar frame at the time of each frustum rendering. Rather the
measured points were converted to the world frame, which is consistent between scans, at
the time of generation using the body frame pose directly available from the rigid body
simulation to output a point cloud valid in the world frame, according to (6.5). This is
done to make the visualization pixel perfect, as evident in the figure where the points
visualized as 4 pixel wide dots are visible from both sides of the walls modeled as a 2D
quad with zero depth. This is turn confirms the correctness of the lidar data, for each
frustum and for each scan.

For the lidar parameters given in table 7.8, for a 40 Hz scan rate, 9 live and 3 dead
zone frustums per scan each frustums is allotted an average of approximately 2000 µs.
A timing of the drawing calls as seen from the CPU revealed an average execution time
of well under 1000 µs, depending on the complexity of the scene and the other parallel
rendering jobs in the pipeline. This means a frustum subdivision on the order of 10
frustums are acceptable, verifying the method. However, it was seen that the execution
times scaled poorly with a significant amount of frustums per scan, presumably as the
frame rendering is not the bottleneck but rather the added overhead of piping many small
jobs to the graphics card buffer. We then see that the method of conservative frustum
subdivision offers a a nice trade-off between modelling accuracy and performance.

Figure 8.6: Visualization of lidar point cloud, in green, resulting from a single scan. The
point cloud was resolved in the world frame, using the body frame pose directly available
from the rigid body simulation. The result is a pixel-perfect point cloud.

71

8.3.1 Occupancy map

Compared to the point cloud data, the actual output data from a simulated lidar scan was
used to update a occupancy map using the open source OctoMap library[17], for demon-
strational effect to validate the generated lidar data. The OctoMap library implements
an octree datastructure and algorithms to update an occupancy grid in a probabilistic
fashion to establish a map denoting free, occupied and unknown spaces. We will not
document the implementation in any detail, only mention that occupancy mapping is a
very real use case for actual lidar data and an effective tool for any autonomous robot.
Generating and updating occupancy maps in real-time is essential in order to test guid-
ance algorithms based on dynamic route planning in any given scene, and the simulation
of lidar data and vehicle dynamics offers this possibility from the desktop.

(a) Partial map before the area has been sufficiently scanned.

(b) A more complete map after all areas have been scanned.

Figure 8.7: Real-time rendering of the occupancy map generated with lidar measure-
ments2. The lidar frame measurements are transformed to a consistent frame based on
the current estimate of the body frame pose.

2The scans used to build the maps shown were generated with a vertically oriented lidar, in contrast
to what is visualized in figure 8.6.

72

8.4 Final remarks

As it stands, the simulator has been used with good effect during the development of em-
bedded flight control and navigation algorithms for an autonomous quadrotor. Through
extensive use of the simulator, control parameters were tuned, navigation algorithms were
verified and guidance programs were tested. In combination with independent testing and
verification of the embedded IO module and corresponding IO board, and all necessary
hardware integration, the first ever full flight test of the entire system was performed
successfully, demonstrating autonomous navigation indoors, without motion capture or
any other external signals. It is important to reiterate that the overall work done on
the system should not be considered work done by the author as a part of this thesis.
However, it bares mentioning as it demonstrates the effectiveness of the results. In figure
8.8 we show a comparison between a simulated flight and the aforementioned first ever
real flight to sell the idea of the one-to-one correspondence between actual flight and
simulated flight.

73

(a) Simulated flight.

(b) Real flight.

Figure 8.8: Side-by-side comparison of a simulated run versus a real run. Each over-
laid with the camera images including features (top-left) and navigational pose estimate
(bottom-left). During the real run only the pose estimates were available live for real-
time visualization due to wifi band-width constraints. The camera images were logged
live and played-back offline.

74

9 Conclusion

For a navigation, guidance and control system running on Linux, a desktop simulator like
the one presented in this thesis has proven to be an effective development tool wherein
only a minimal part of the system involved with interfacing with the real world through
sensors and actuators is replaced with a simulation of the hardware and vehicle dynamics.
The rest of the system can run as it would on the embedded platform and benefit from
the simulator providing valuable live feedback for testing and further development. Using
network-based communication the simulator can also interface with the system running on
the embedded platform to provide final validation of the compiled binary and dynamically
linked libraries completelyas is before field testing.

For an autonomous mobile robot dependent on acquiring information about its environ-
ment, through camera imagery and laser range measurements, it was shown that graphics
programming through the use of OpenGL is a readily available strategy. An OpenGL
camera is easily constructed from a set of intrinsic camera parameters, and the effects
of optical distortion of a wide-angle lense was shown to be emulated with an indirect
application of the inverse distortion function. Utilizing the definition of the OpenGL
projection matrix, depth buffer values can be unprojected into three-dimensional coor-
dinates to provide range measurements. An array of OpenGL cameras was arranged to
simulate the range measurement data from a typical scanning lidar, sampling the depth
buffers accordingly to emulate scanning samples at equidistant angles.

While the sensor data can be used as input to a navigation filter to estimate state avail-
able as feedback input for the motion control, it is clear that this information is already
perfectly available from the rigid body dynamics. This means, through dynamic simu-
lation alone the simulator can close the loop without involving navigation or generating
any sensor data. This alone was shown to be a valuable tool to be used during the devel-
opment and testing of guidance and control algorithms, where the visual tools were used
extensively.

Model-free navigation algorithms can be tested in isolation from any vehicle dynamics,
with either logged or real-time data. While it is crucial to test with real data in order to
validate the results, it is also limited as the hardware sensor setup needs to be available,
there might be inconsistencies in the data which interferes with the validation of the filter,
and there is no integration of the estimation output as feedback to the rest of the system.
Without a field test, this is only achievable with simulated sensor data and simulated

75

vehicle dynamics closing the loop between control input and navigation output. While
we see that it is very constructive to test navigation algorithms in a variety of ways,
including with real and simulated data, we conclude that the proposed simulator is an
indispensable tool in the development of vision-based autonomous robots.

9.1 Further work

• Currently, the simulator is limited to provide inertial measurements, camera im-
ages and lidar measurements, to facilitate local navigation based on visual-inertial
sensor fusion not reliant on external positioning signals. However, when global
navigation satellite signals are available they provide excellent information of the
global position. A worthwhile extension would be to simulate a receiver for a global
positioning system. The fundamentals of such an implementation are already in
place through the WSG84 reference ellipsoid.

• The simulator is currently restricted to quadrotor actuation models only. This is
reasonable as the controls being tested are limited to quadrotors as well for the time
being, but seeing as the system in large part is model-free, including the navigation
and guidance as well as rigid body dynamics and the sensor data being simulated,
it seems reasonable to extend the simulator with additional mobile robots actuation
models. For example that of a fixed-wing aerial vehicle.

• While the undistortion map is computed offline, the process of mapping and in-
terpolating every pixel in every image is time consuming, and at 20 images per
second it is pushing the performance limits of the development desktop computer.
Performance has not been the focus of this work, but it is clear that the pixel by
pixel image distortion operation could benefit from hardware acceleration in form
of a GPU implementation.

76

References

[1] Song Ho Ahn. OpenGL Projection Matrix. [Online; accessed 19-May-2017]. 2017.
url: http://www.songho.ca/opengl/gl_projectionmatrix.html.

[2] JG Balchen, T Andresen, and BA Foss. “Reguleringsteknikk Department of Engi-
neering Cybernetics”. In: Norwegian University of Science and Technology, Trond-
heim, Norway (2003).

[3] MJ Boyle. Department of Defense World Geodetic System 1984-It’s definition and
relationship with local geodetic systems. Tech. rep. DMA Technical Report 83502.2.,
Washington, DC, 1987.

[4] Samuel R Buss. 3D computer graphics: a mathematical introduction with OpenGL.
Cambridge University Press, 2003.

[5] D Salvio Carrijo, A Prieto Oliva, and W De Castro Leite Filho. “Hardware-in-loop
simulation development”. In: International Journal of Modelling and Simulation
22.3 (2002), pp. 167–175.

[6] cppreference. url: http://en.cppreference.com/w/cpp/numeric/random/
normal_distribution.

[7] Analog Devices. ADIS16488, Tactical Grade Ten Degrees of Freedom Inertial Sen-
sor. [Online; accessed 25-May-2017]. 2014. url: http://www.analog.com/media/
en/technical-documentation/data-sheets/ADIS16488.pdf.

[8] Olav Egeland and Jan Tommy Gravdahl. Modeling and simulation for automatic
control. Vol. 76. Marine Cybernetics Trondheim, Norway, 2002.

[9] Eigen. url: http://eigen.tuxfamily.org/index.php?title=Main_Page.
[10] Gazebo. url: http://gazebosim.org/.
[11] Fathi Ghorbel, B Srinivasan, and Mark W Spong. “On the positive definiteness and

uniform boundedness of the inertia matrix of robot manipulators”. In: Decision and
Control, 1993., Proceedings of the 32nd IEEE Conference on. IEEE. 1993, pp. 1103–
1108.

[12] Martin Hepperle. Propulsion by propellers. [Online; accessed 25-May-2017]. 2005.
url: http://www.mh-aerotools.de/airfoils/prop_precession_english.htm.

[13] R Isermann, J Schaffnit, and S Sinsel. “Hardware-in-the-loop simulation for the
design and testing of engine-control systems”. In: Control Engineering Practice 7.5
(1999), pp. 643–653.

[14] Andreas Torp Karlsen. On Modeling of a Ship Propulsion System for Control Pur-
poses. 2012.

77

http://www.songho.ca/opengl/gl_projectionmatrix.html
http://en.cppreference.com/w/cpp/numeric/random/normal_distribution
http://en.cppreference.com/w/cpp/numeric/random/normal_distribution
http://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16488.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16488.pdf
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://gazebosim.org/
http://www.mh-aerotools.de/airfoils/prop_precession_english.htm

[15] Henry Martin, Paul Groves, and Mark Newman. “The Limits of In-Run Calibration
of MEMS Inertial Sensors and Sensor Arrays”. In: Navigation 63.2 (2016), pp. 127–
143.

[16] Microsoft. AirSim. url: https://github.com/Microsoft/AirSim.
[17] Octomap. url: https://octomap.github.io.
[18] OpenCV. Camera Calibration and 3D Reconstruction. [Online; accessed 20-May-

2017]. 2017. url: http://docs.opencv.org/2.4/modules/calib3d/doc/
camera_calibration_and_3d_reconstruction.html#fisheye.

[19] OpenSceneGraph. url: http://www.openscenegraph.org.
[20] Deep Parikh, Jignesh Patel, and Jayesh Barve. “Quad-copter UAV BLDC Motor

Control: Linear v/s non-linear control maps”. In: Nirma University Journal of En-
gineering and Technology 4.1 (2015), p. 25.

[21] Minha Park and Yang Gao. “Error and performance analysis of MEMS-based iner-
tial sensors with a low-cost GPS receiver”. In: Sensors 8.4 (2008), pp. 2240–2261.

[22] S Parkes et al. “LIDAR-based GNC for Planetary Landing: Simulation with PANGU”.
In: DASIA 2003. Vol. 532. 2003.

[23] Alex G Quinchia et al. “A comparison between different error modeling of MEMS
applied to GPS/INS integrated systems”. In: Sensors 13.8 (2013), pp. 9549–9588.

[24] MA Shelley. “Monocular visual inertial odometry on a mobile device”. PhD thesis.
Master’s thesis, Technischen Universitat Munchen, 2014.

[25] Joan Sola. Quaternion Kinematics for the error-state Kalman filter. 2017.
[26] Henning Thielemann. “Sampling-rate-aware noise generation”. In: arXiv preprint

arXiv:1103.4118 (2011).
[27] Daniel Torres. “Sensorless BLDC control with back-EMF filtering using a majority

function”. In: Microchip Technology (2008).
[28] David A Vallado. Fundamentals of astrodynamics and applications. Vol. 12. Springer

Science & Business Media, 2001.
[29] OpenGL Wiki. Framebuffer Object — OpenGL Wiki, [Online; accessed 25-May-

2017]. 2016. url: http://www.khronos.org/opengl/wiki_opengl/index.php?
title=Framebuffer_Object&oldid=13801.

[30] OpenGL Wiki. Language bindings — OpenGL Wiki, [Online; accessed 19-May-
2017]. 2017. url: http://www.khronos.org/opengl/wiki_opengl/index.php?
title=Language_bindings&oldid=13839.

[31] Wikipedia. Bilinear interpolation — Wikipedia, The Free Encyclopedia. [Online;
accessed 26-May-2017]. 2017. url: https://en.wikipedia.org/w/index.php?
title=Bilinear_interpolation&oldid=774133139.

[32] Wikipedia. Gauss–Newton algorithm — Wikipedia, The Free Encyclopedia. [Online;
accessed 20-May-2017]. 2017. url: https://en.wikipedia.org/w/index.php?
title=Gauss%E2%80%93Newton_algorithm&oldid=777220376.

[33] Wikipedia. Homogeneous coordinates — Wikipedia, The Free Encyclopedia. [Online;
accessed 19-May-2017]. 2017. url: https://en.wikipedia.org/w/index.php?
title=Homogeneous_coordinates&oldid=775375830.

[34] Wikipedia. Inertial frame of reference — Wikipedia, The Free Encyclopedia. [On-
line; accessed 15-May-2017]. 2017. url: https://en.wikipedia.org/w/index.
php?title=Inertial_frame_of_reference&oldid=766679372.

78

https://github.com/Microsoft/AirSim
https://octomap.github.io
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#fisheye
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#fisheye
http://www.openscenegraph.org
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Framebuffer_Object&oldid=13801
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Framebuffer_Object&oldid=13801
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Language_bindings&oldid=13839
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Language_bindings&oldid=13839
https://en.wikipedia.org/w/index.php?title=Bilinear_interpolation&oldid=774133139
https://en.wikipedia.org/w/index.php?title=Bilinear_interpolation&oldid=774133139
https://en.wikipedia.org/w/index.php?title=Gauss%E2%80%93Newton_algorithm&oldid=777220376
https://en.wikipedia.org/w/index.php?title=Gauss%E2%80%93Newton_algorithm&oldid=777220376
https://en.wikipedia.org/w/index.php?title=Homogeneous_coordinates&oldid=775375830
https://en.wikipedia.org/w/index.php?title=Homogeneous_coordinates&oldid=775375830
https://en.wikipedia.org/w/index.php?title=Inertial_frame_of_reference&oldid=766679372
https://en.wikipedia.org/w/index.php?title=Inertial_frame_of_reference&oldid=766679372

[35] Wikipedia. Pinhole camera model — Wikipedia, The Free Encyclopedia. [Online;
accessed 18-May-2017]. 2017. url: https://en.wikipedia.org/w/index.php?
title=Pinhole_camera_model&oldid=765888275.

[36] Wikipedia. Propeller — Wikipedia, The Free Encyclopedia. [Online; accessed 16-
May-2017]. 2017. url: https : / / en . wikipedia . org / w / index . php ? title =
Propeller&oldid=777005778.

[37] Wikipedia. Proper acceleration — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 3-June-2017]. 2017. url: https://en.wikipedia.org/w/index.php?
title=Proper_acceleration&oldid=764365523.

[38] Wikipedia. Semi-implicit Euler method — Wikipedia, The Free Encyclopedia. [On-
line; accessed 4-June-2017]. 2016. url: https://en.wikipedia.org/w/index.
php?title=Semi-implicit_Euler_method&oldid=744922107.

[39] Padmaraja Yedamale. “Brushless DC (BLDC) motor fundamentals”. In: Microchip
Technology Inc 20 (2003), pp. 3–15.

79

https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model&oldid=765888275
https://en.wikipedia.org/w/index.php?title=Pinhole_camera_model&oldid=765888275
https://en.wikipedia.org/w/index.php?title=Propeller&oldid=777005778
https://en.wikipedia.org/w/index.php?title=Propeller&oldid=777005778
https://en.wikipedia.org/w/index.php?title=Proper_acceleration&oldid=764365523
https://en.wikipedia.org/w/index.php?title=Proper_acceleration&oldid=764365523
https://en.wikipedia.org/w/index.php?title=Semi-implicit_Euler_method&oldid=744922107
https://en.wikipedia.org/w/index.php?title=Semi-implicit_Euler_method&oldid=744922107

	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Objectives
	Contributions
	Outline

	Rigid Body Dynamics
	Kinematics
	Coordinate frames
	Frames of reference
	Differential equations

	Kinetics
	Inertial frames of reference
	Newton-Euler equation of motion

	Navigational kinematics
	Inertial reference frame approximations
	Earth-centered, Earth-fixed reference frame
	Local-level navigational reference frame

	Numerical solution
	Angular integration
	Linear integration

	Quadrotor Actuation
	Forces and torques
	Quadrotor model
	Rotor model
	Propeller aerodynamics
	DC motor electromechanics
	Electronic speed controller dynamics

	Inertial Measurements
	Accelerometer
	Measurement model
	Generating a measurement

	Gyroscope
	Measurement model
	Generating a measurement

	Camera Images
	Pinhole camera
	Pinhole camera model
	Pixel coordinate transform

	OpenGL camera
	Viewing Frustum
	Projection matrix
	View matrix

	Constructing OpenGL camera from pinhole camera
	Projection matrix
	View matrix

	Optical distortion
	Distortion models
	Fisheye camera model
	Image distortion
	Image undistortion

	Laser Range Measurements
	Distance measurement
	2D laser scan
	Frustum subdivision
	Sampling
	View matrix

	3D laser scan
	Point cloud

	Implementation
	Rigid body dynamics
	Quadrotor actuation
	Inertial measurements
	Camera images
	Laser range measurements

	Results
	Vehicle dynamics
	Camera images
	Validation by navigation

	Laser range measurements
	Occupancy map

	Final remarks

	Conclusion
	Further work

	References

