
Mobile Autonomous Robot: Remote
Operation

Tommy Berntzen

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK

Department of Engineering Cybernetics

Submission date: June 2017

Norwegian University of Science and Technology

Title: Mobile autonomous robot: Remote operation

Student: Tommy Berntzen

Problem description

The goal of this thesis is to have a more complete system for a mobile au-

tonomous robot with a robot manipulator. This work is a continuation of

several theses and projects conducted on the same system previously, and

a direct continuation of the specialization project completed during the au-

thors penultimate semester. The main focus is the unification of previously

found solutions, so that everything operates on the same platform, and also

re-implementation of the solution for the robot manipulator, using the meth-

ods found during said project. In addition, a user manual was found to be

desirable, with the intent of making future work and implementations easier.

This should include a condensed guide to hardware and software used. To

complete these tasks, the student should:

• Use a suitable method to migrate previous solution to one on-board com-

puter.

• Implement a concept for control of the robot manipulator through Robot

Operating System.

• Explore viable concepts for a computer vision system for producing

depth maps using the availabe hardware.

• Expand Operator Control Station concept started during the preceding

work.

• Write a user manual for the whole robot system.

Supervisor: Tor Engebret Onshus

Summary and conclusion

Summary

This thesis aims to develop a concept for unifying previous solutions on the

topic of robotized maintenance and remote operation, as well as exploring

possible solutions for a stereo vision system to facilitate the development of

a collision avoidance system for use with the robot manipulator, which is a

part of the robot system. There has also been a development of a concept

for an Operator Control Station, intended to give the user remote presence

when executing various tasks and production of a user manual for the whole

system.

The system framework is based on Robot Operating System, serving as a

server on the on-board computer. The whole system is divided into a server

and a client, where the server is located on the mobile robot and the client

is a remote computer acting as an Operator Control Station. The server and

client communicate wirelessly through a LAN.

The robot manipulator, a SCORBOT-ER 4u manufactured by Intelitek, makes

use of proprietary software and hardware for communication with and con-

trol from a computer, making the manipulator non-compatible with operating

systems other than Microsoft Windows. Thus there was a need for an inter-

face in order to link the manipulator to the rest of the ROS system. To this

end, MATLAB was used to create an interfacing node for handling com-

mands sent to and from the robot manipulator.

A stereo vision system for producing depth maps was explored, using the

OpenCV library and two TP-Link IP cameras, which were the camera setup

that was available at the time of writing this thesis. The purpose of this was

i

to find a viable solution for facilitating a collision avoidance system for the

robot manipulator.

The Operator Control Station was developed on the Qt framework, and was

a continuation of previous attempts for implementing a graphical user inter-

face. It is divided into two modes, the Drive Mode, which is intended to

facilitate a previous solution for autonomous mapping and localization us-

ing SLAM, and the Manipulator Mode, which shows the control of the robot

manipulator with a joystick. Sensory feedback is given in both modes, and

consists of direct camera feeds and produced maps.

Lastly a user manual, called MAR User Manual, was written. It is produced

as a stand-alone document, and is meant to lighten the burden of research

when starting new projects on the system.

Conclusion
The previous solutions were successfully migrated to one on-board computer

through the use of a virtual machine, and an interface in MATLAB success-

fully connects the robot manipulator to the ROS system. A possible solution

for a stereo vision system was found, and it was concluded that satisfactory

results using the current hardware was not possible. A working concept for

an Operator Control Station was implemented for the robot manipulator, with

satisfactory performance. The user manual was produced to a satisfactory

standard. Thus, the conclusion is that the overall goals of this thesis was met.

ii

Sammendrag og konklusjon

Sammendrag

Denne oppgaven tar sikte på å utvikle et konsept for å forene tidligere løs-

ninger rundt temaet robotisert vedlikehold og fjernopperasjon, samt å ut-

forske løsninger for et stereosynsystem for å legge til rette for utviklingen av

et kollisjonsunngåelsessystem for bruk med robotmanipulatoren, som er en

del av robotsystemet. Det har også blitt gjennomført utvikling av et konsept

for en operatørkontrollstasjon (Operator Control Station), som skal gi bruk-

eren ekstern tilstedeværelse ved utførelse av ulike oppgaver, og produksjon

av en brukerhåndbok for hele systemet.

Systemrammen er basert på Robot Operating System, som tjener som server

på innebygd datamaskin. Hele systemet er delt inn i en server og en klient,

hvor serveren befinner seg på mobilroboten og klienten er en ekstern data-

maskin som fungerer som operatørkontrollstasjon. Serveren og klienten kom-

muniserer trådløst via et LAN.

Robotmanipulatoren, en SCORBOT-ER 4u produsert av Intelitek, benytter

seg av proprietær programvare og maskinvare for kommunikasjon med og

kontroll fra en datamaskin, noe som gjør at manipulatoren ikke kompatibel

med andre operativsystemer enn Microsoft Windows. Dermed var det behov

for et grensesnitt for å koble manipulatoren til resten av ROS-systemet. Til

dette formål ble MATLAB brukt til å opprette en grensesnittsnode for hånd-

tering av kommandoer sendt til og fra robotmanipulatoren.

Et stereosynsystem for å produsere dybdekart ble utforsket ved hjelp av OpenCV-

biblioteket og to TP-Link IP-kameraer, som var det av kamerasystemer som

var tilgjengelig under arbeidet med denne oppgaven. Hensikten med dette

iii

var å finne en levedyktig løsning for å legge til rette for et system for kol-

lisjonsunngåelse for robotmanipulatoren.

Operatørkontrollstasjonen ble utviklet ved hjelp av Qt-rammeverket, og var

en videreføring av tidligere forsøk på å implementere et grafisk brukergrens-

esnitt. Den er delt inn i to moduser, Drive Mode, som skal legge til rette

for en tidligere løsning for autonom kartlegging og lokalisering ved hjelp av

SLAM, og Manipulator Mode, som viser styringen av robotmanipulatoren

med en joystick. Sensorisk tilbakemelding er gitt i begge tilfeller, og består

av direkte kameraoverføringer og eventuelle produserte kart.

Til slutt ble en brukerhåndbok, kalt MAR User Manual, skrevet. Den er pro-

dusert som et frittstående dokument, og er ment å lette mengden av forskn-

ing som trengs for å komme i gang når nye prosjekter på systemet eventuelt

startes.

Konklusjon
De forrige løsningene ble overført til en innebygd datamaskin ved bruk av en

virtuell maskin, og et grensesnitt i MATLAB forbinder robotthåndtereren til

ROS-systemet på en tilfredsstillende måte. En mulig løsning for et stereosyn-

system ble funnet, og det ble konkludert med at tilfredsstillende resultater ved

bruk av gjeldende maskinvare ikke var mulig. Et fungerende konsept for en

operatørkontrollstasjon ble implementert for robotmanipulatoren, med god-

kjent ytelse. Brukerhåndboken ble produsert til en tilfredsstillende standard.

Dermed konkluderes det med at de overordnede målene for denne avhandlin-

gen oppfylt.

iv

Preface

This Master’s Thesis was written during the spring of 2017 at the Norwegian

University of Science and Technology, Department of Engineering Cyber-

netics. It concludes the 10th and final semester of the 5 year Master’s degree

program Cybernetics and Robotics.

This work is a continuation of previous work done on the robot system pre-

sented here. The overarching goal is to have a fully autonomous robot sys-

tem, with remote operation and control capabilities. This thesis contributes

to that end by exploring stereo vision systems using OpenCV for using with

a robot manipulator, as well as facilitating joystick control of the manipulator

through the Robot Operating System (ROS) framework.

One of the main challenges when starting was the vast variety of solutions to

build from, and proprietary software that needed to be circumvented in order

to use the ROS framework.

I want to thank my supervisor Tor Onshus for guidance and talks. I also want

to thank my fellow students, for interesting conversations and discussions

throughout the last year. Lastly, I want to thank my girlfriend Madelen for all

the support and motivation during this final semester.

It is assumed that the readers of this Thesis have some background in tech-

nology, and a basic understanding of programming and electronics.

Tommy Berntzen

Trondheim, June 2017

v

Contents

Summary and conclusion i

Sammendrag og konklusjon iii

Preface v

List of Figures xi

List of Acronyms xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Prerequisites and starting point 3

1.2.1 Preceeding work 3

1.3 Equipment and software 5

1.3.1 Hardware . 5

1.3.2 Software . 6

1.4 Thesis structure . 7

1.4.1 Appendices . 8

2 System concept 9

2.1 Introduction . 9

2.2 Robot Operating System 9

2.3 Implementation outline . 12

3 Robot manipulator 13

3.1 Introduction . 13

3.2 Background theory . 13

vii

CONTENTS

3.2.1 Forward kinematics 13

3.2.2 Inverse kinematics 15

3.3 Using a virtual machine . 15

3.3.1 VM networking . 16

3.4 Control through ROS . 18

3.4.1 Communicating with the USB Controller 18

3.4.2 Sending commands from ROS 19

4 Stereo vision system 21

4.1 Introduction . 21

4.2 Exploration of possible solutions 21

4.3 OpenCV . 24

4.4 Background theory . 24

4.4.1 Epipolar geometry 25

4.4.2 The essential and fundamental matrices 27

4.4.3 Undistortion . 29

4.4.4 Calibration . 29

4.4.5 Rectification . 30

4.4.6 Disparity map and triangulation 31

4.5 Camera setup and calibration 32

4.5.1 Camera setup . 32

4.5.2 Calibrating the cameras 32

4.6 Depth map and collision avoidance 34

4.6.1 Producing a depth map 34

4.6.2 The pan-tilt unit 36

4.6.3 Collision avoidance 36

5 Operator Control Station 39

5.1 Introduction . 39

5.2 Qt . 39

viii

CONTENTS

5.3 Main menu . 41

5.4 Manipulator mode . 42

5.4.1 Joystick . 43

5.5 Drive Mode . 43

6 MAR User Manual 45

7 Results 47

7.1 MATLAB interface . 47

7.2 Stereo vision system . 47

7.3 OCS . 49

7.4 User manual . 50

8 Discussion 51

8.1 General assessment of the system 51

8.1.1 Development tools 51

8.2 USB Controller interface 52

8.2.1 Assessment . 52

8.2.2 Weaknesses . 52

8.3 Stereo vision system . 53

8.4 OCS . 54

8.4.1 Joystick . 54

8.5 User manual . 55

9 Recommendations and further work 57

9.1 Stereo vision system . 57

9.2 Moving the OCS to Ubuntu 58

9.3 Joystick . 59

9.4 Eliminating the USB Controller 59

10 Bibliography 61

ix

CONTENTS

A MAR user manual index 67

B DVD Contents 69

C Camera matrices 71
C.1 Intrinsic matrices . 71

C.2 Extrinsic matrices . 71

D Installation and configuration 73
D.1 Hardware setup . 73

D.2 Installation . 73

D.3 Configuring the project . 74

D.3.1 ROS workspace . 74

D.3.2 Virtual machine . 74

D.3.3 Network configuration 74

D.4 System launch . 74

E Troubleshooting 77
E.1 Connecting to the Intelitek USB Controller from virtual ma-

chine . 77

E.2 Pan-tilt unit . 77

x

List of Figures

1.1 Platform concept . 2

2.1 System concept . 9

2.2 Example of a ROS setup 11

2.3 Abstracted view of the robot manipulator system 12

3.1 MATLAB interface concept 18

3.2 MATLAB communication concept 19

3.3 MATLAB node sample . 20

4.1 stereo_image_proc . 22

4.2 MATLAB Stereo Calibrator 23

4.3 Epipolar geometry . 26

4.4 Essential matrix . 27

4.5 Stereo rectification . 30

4.6 Triangulation . 31

4.7 Finding corners of chessboard 33

4.8 Rectified images . 34

4.9 CvBridge . 34

4.10 Camera view illustration 36

5.1 OCS Main menu . 41

5.2 OCS Manipulator mode . 42

5.3 OCS Drive mode . 44

7.1 Stationary depth map . 47

7.2 Original image . 47

7.3 Real-time stationary object 48

7.4 Real-time original image 48

xi

LIST OF FIGURES

7.5 Real-time object in motion 49

7.6 Real-time original image 49

7.7 Manipulator Mode activated 49

xii

List of Acronyms

API application programming interface. 24

DOF degrees of freedom. 14

GUI graphical user interface. 39

HID human interface devices. 43

IDE integrated development environment. 6

MAR mobile autonomous robot. 3

MTIS MATLAB Toolbox for the Intelitek Scorbot. 18

OCS Operator Control Station. 3

POV point of view. 36

PTU pan-tilt unit. 5

ROS Robot Operating System. 4

SLAM simultaneous localization and mapping. 4

SSD solid-state drive. 3

VM virtual machine. 12

xiii

Chapter 1

Introduction

1.1 Motivation
Global oil and gas demand continue to grow moderately [20], and there is

now a need to obtain the resources from more hostile and remote environ-

ments [10]. Thus the oil and gas companies are looking to lower production

cost and improve efficiency, quality and safety [10]. The potential for exten-

sive use of automation and robot technology is evident [3].

The oil and gas industry often presents harsh and even hazardous environ-

ments for their workers, often resulting in injuries or worse [16]. Robotic

systems could be designed to withstand most of the environmental hazards,

and would also be considered to be disposable, limiting the risk of platform

accidents to be purely economical. Designing the robots to work 24/7 could

also lower the risk of accidents altogether [3], increasing the accuracy and

work load capability when compared to normal human workers.

Development of robotic systems for topside oil & gas facilities as an alter-

native to subsea development has been extensively researched both academ-

ically and industrially. According to studies, the prospect of developing un-

manned wellhead platforms seem promising [33][4]. The concept is already

in wide use on the Danish and Dutch shelves, but the concept is new for

use on the Norwegian shelf [29]. The concept of normally-unmanned auto-

mated topside platforms has also been proposed as an alternative for larger

maintenance operations[1], as shown in Fig 1.1. This concept corresponds

to the Type 0 platform proposed by Ramboll in their report [33], a complex

platform that would include a helideck and fire water systems.

1

1.1. MOTIVATION

Figure 1.1: Platform concept, image from [1]

The most important scheduled operations on an offshore oil and gas facil-

ity include inspection monitoring and maintenance [10]. This means that

the robot must be able to navigate autonomously or semiautonomously, be

able to manipulate certain objects either autonomously or by teleoperation,

be equipped with sensors for position tracking and perception of surround-

ings and be able to relay information to a control station, preferably through

wireless communication [10].

This Master’s Thesis aims to contribute towards providing a workable con-

cept with regards to the topics discussed in this section. Focus on environ-

mental hazards and physical robustness of the robot system is a major part

of construction of such solutions for practical use [10]. This will however

not be addressed here, as the focus is on developing concepts and software

solutions in a closed environment.

2

CHAPTER 1. INTRODUCTION

1.2 Prerequisites and starting point
The project thesis written in the 9th semester[8], forms the basis for this

Master’s thesis. It was decided that the robotic system, hereby called the

mobile autonomous robot (MAR), would benifit from being migrated onto

one on-board computer, both for convenience and efficiency. This means

upgrading the solid-state drive (SSD) and reimplementing the solution for

the robot manipulator based on the solutions discussed in the aforementioned

project thesis. The hope is that this, along with the production of a user

manual for the whole system, will result in a full and usable system, and also

facilitate further development and parallel solutions. The current Operator

Control Station (OCS) also needs an overhaul, which will be addressed in

this thesis. Thus the main focus of this thesis will be the development of a

concept for control of the robot manipulator, exploration of a possible stereo

vision system using the current camera system, the development of a concept

for a more complete OCS, and the production of a user manual.

1.2.1 Preceeding work

There has been a lot of theses written on or about the robot system used in

this thesis. The concept was started as early as 2005, then as a standalone

robot manipulator, through to the mounting of the robot manipulator on a

mobile platform in 2013. This work is a direct continuation of the Project

Thesis written in the 9th semester, in the fall of 2016 [8]. As a part of that

thesis, there was given an evaluation of some of the previous works that might

be used as a basis for further work. A short recap of some of the earlier

work that has been done on this system will be given here, for convenience

and completeness. For a more complete survey of the previous work, please

consult the aforementioned project thesis.

Robot manipulator and telepresence: The system is built around the

3

1.2. PREREQUISITES AND STARTING POINT

SCORBOT-ER 4u. Kristian Bekken implemented a system for telep-

resence and collision avoidance for the robot manipulator in 2010[6],

which was a continuation of work dating back as far as 2005 [21].

Building the mobile platform: The robot manipulator was mounted on a

mobile platform in 2013, being the focus of the Master’s thesis writ-

ten by Petter Aspunvik [5]. This thesis has served as a manual for part

of the connections and functionality of the robot system.

Simultaneous localization and mapping (SLAM): Parallel to Aspunvik’s

building of the mobile platform, Mikael Berg developed a system for

SLAM written in the Go programming language [7]. The solution runs

within Windows 7, and was deployed on the on-board computer.

SLAM and Robot Operating System (ROS): During the spring of 2016,

Vegard Lindrup developed a system for SLAM, configured to run on

ROS [23]. The solution uses RTAB-Map to survey the surroundings,

and a built navigation stack to navigate autonomously against easy tar-

gets. He also developed functional concepts for remote control over

Bluetooth, and an OCS developed in Qt.

Oculus Rift and Leap Motion: During the spring of 2016, parallell to the

work of Vegard Lindrup, Ole Magnus Siqveland developed a concept

for using virtual reality with remote operations [47]. The solution uses

the Oculus Right and Leap Motion, a joystick and the Microsoft Kinect

to perform remote operations. The solution is not interesting in regards

to this thesis, but is included for completeness, and the fact that it might

be interesting for future work.

4

CHAPTER 1. INTRODUCTION

1.3 Equipment and software
A short list of the hardware and software used in this specific thesis will be

presented here. As a part of this Master’s thesis, a user manual for the robot

system in question has been written. For a full overview of the hardware

available on the robot system, consult the MAR User Manual, located on the

DVD in the folder MAR User Manual. The index of the user manual is found

in Appendix A.

1.3.1 Hardware

SCORBOT-ER 4u:
The SCORBOT-ER 4u is a robot manipulater designed for educational

purposes, by having an open structure for easy access. It has five axes

and a servo gripper, with optical encoders for each axis for feedback.

Produced by Intelitek.

USB Controller:
The USB Controller is designed by Intelitek to provide advanced con-

trol features to the SCORBOT-ER 4u, connected to a computer through

USB. It controls the 24V power supply to the manipulator motors, and

reads the encoder and microswitch signals on the robot manipulator. It is

connected to a computer via USB, and to the SCORBOT-ER 4u through

a proprietary

Pan-tilt unit (PTU):
Produced by Directed Perception (now FLIR), communicates with the

on-board computer through a control box.

IP cameras:
Two TP-Link TL-SC3430. They are H.264 Megapixel surveillance cam-

eras, and support video and audio transfer over most transfer protocols.

5

1.3. EQUIPMENT AND SOFTWARE

The viewing angle for each camera is 46◦horizontally and 35◦vertically.

Routers:
Two TP-Link TL-WR841N, 300Mbps Wireless N Routers.

Joystick:
Logitech Force 3D Pro. Supports movement in x-, y- and

z-directions, as well as having twelve configuration buttons, two fire-

buttons and a point-of-view hat.

1.3.2 Software

List of used software, frameworks, libraries and integrated development en-

vironments (IDEs), with specific packages or usage stated when deemed nec-

essary.

• MATLAB 2015b, toolboxes:

– Robotics System Toolbox

– ScorBotToolbox [25]

• ROS Indigo Igloo, additional packages:

– web_video_server

– flir_ptu_driver

– cv_bridge

• Qt 5.7

• Microsoft Visual Studio 2015 (for the C++ compiler, using MSVC 15

with Qt)

• OpenCV 2.4

6

CHAPTER 1. INTRODUCTION

1.4 Thesis structure

The thesis is divided into eight chapters covering various topics. Chapters 3-

6 are structured as modules covering the respective goals presented in the

problem description. In addition to this there is an enclosed DVD containing

the implementation files and relevant documents.

Chapter 2 - System concept

This chapter will present the overall concept of the complete MAR, before

outlining the concept for this specific thesis. It will also give a short intro-

duction to the ROS framework used.

Chapter 3 - Robot manipulator

This chapter presents some background theory for control of a robot manipu-

lator, as well as the implementation and work that was done concerning this.

Chapter 4 - Stereo vision system

This chapter presents the exploration of possible solutions for creating a

stereo vision system, using the available hardware, and a brief introduction to

the method that was chosen, as well as showing the implementation attempt

and procedure.

Chapter 5 - Operator Control Station

This chapter will give a brief introduction to the framework used to create the

OCS, and present the OCS concept with the intended functionality.

7

1.4. THESIS STRUCTURE

Chapter 6 - MAR User Manual

This chapter presents the motivation behind creating the user manual, as well

as an overview of the content of the finished product.

Chapter 7 - Results

This chapter presents the results of the various implementations.

Chapter 8 - Discussion

In this chapter, the implementations and results will be discussed, arguing for

the degree of success of the solutions.

Chapter 9 - Recommendations and further work

This chapter will present possible future work, and recommend changes to

the system to further improve the solutions.

1.4.1 Appendices

Appendix A - MAR user manual indexs
The full index of the MAR user manual.

Appendix B - DVD Contents
Description of the contents of the enclosed DVD.

Appendix C - Camera matrices
Camera matrices obtained during calibration.

Appendix D - Installation and configuration
Guide to installing, configuring and running the system

8

Chapter 2

System concept

2.1 Introduction
This chapter will give a brief outline of the modules implemented and the

system as a whole. It will start with a short introduction to ROS, which is

the base framework for the work and implementations, before presenting the

aforementioned modules. The abstracted system concept for the full MAR is

shown in Figure 2.1

Figure 2.1: System concept

2.2 Robot Operating System
ROS is a flexible framework for writing robot software [35]. The foundation

of ROS is a message passing interface providing inter-process communica-

9

2.2. ROBOT OPERATING SYSTEM

tion, referred to as middleware [39]. The built-in messaging system manages

all the details between distributed nodes via an anonymous and asynchronous

publish/subscribe mechanism. An example of the way message passing and

node registration works is found in Figure 2.2.

ROS acts like a meta-operating system, providing services such as hardware-

abstraction, low-level device control, package management and implemen-

tation of commonly-used functionality. Language independence, or the ease

of implementing the framework in any modern programming language, is an

overall goal of the ROS framework, and it is already implemented in C++,

Python and Lisp, with experimental libraries in Java and Lua [43]. The main

concepts in ROS is divided into three levels, the Filesystem level, the Com-

putation Graph level, and the Community level [38]:

• The Filesystem level consists of

– Packages: the main unit for organizing software. May contain nodes,

libraries, datasets, and so on.

– Metapackages: Specialized packages which represents a group of

related packages.

– Package manifests: Metadata about a package.

– Repositories: Collection of packages which share a common VCS

system.

– Message (msg) types: Message description that defines the data

structures for messages in ROS.

– Service (srv) types: Service descriptions, defines the request and

response data structures for services in ROS.

• The Computation Graph level consists of:

– Nodes: Processes that perform computation.

10

CHAPTER 2. SYSTEM CONCEPT

– Master: Provides name registration and lookup to the rest of the

Computation Graph.

– Parameters Server: Allows data to be stored by key in a central

location, part of the Master.

– Messages: Data structures for communication between nodes.

– Topics: A name that is used to identify the content of a message.

I.e. a node interested in a specific type of data subscribes to the

appropriate topic.

– Services: Defined by a pair of message structures, designed for re-

quest/reply interactions, not provided by the many-to-many, one-

way transport given by the publish/subscribe model.

– Bags: Format for saving and playing back ROS message data.

• The Community level consists of the ROS distributions, repositories

with code provided by various institutions, Wiki pages and general com-

munity communication (forums, mailing lists, etc.).

Figure 2.2: Example of a ROS setup, image from [11]

11

2.3. IMPLEMENTATION OUTLINE

For a more thorough look at ROS and its functionality, the reader should

consult Lindrup [23], or the ROS Wiki itself [44].

2.3 Implementation outline

Figure 2.3: Abstracted view of the robot manipulator system

The abstracted outline of the robot manipulator system is shown in Figure 2.3.

The main parts are the Server, which is the on-board computer running ROS,

the OCS, located on a remote computer, and the virtual machine (VM), facil-

itating the communication between the ROS system and the SCORBOT-ER

4u.

12

Chapter 3

Robot manipulator

3.1 Introduction
This chapter will present some theory behind the control of a robot manip-

ulator, as well as presenting the proposed solution for controlling the robot

manipulator, a SCORBOT-ER 4u, through the ROS framework. First, there

is a explanation of what was done to relocate the solution to the on-board

computer, which is one of the project goals. Next there is a presentation of

the developed concept for control, using MATLAB.

3.2 Background theory
This section will present a short summary of some of the key concepts re-

garding robot kinematics, included for completeness and convenience. For a

more thourough look at the theory behind kinematics, the reader is referred

to Bekken [6] and Berntzen [8]. Presented is an introduction to the two main

concepts, namely forward and inverse kinematics, which is based on the book

Robot modeling and Control [48]. Rotation matrices and coordinate system

representations will not be presented here, and the reader should consult the

aforementioned book for in-depth review of such topics.

3.2.1 Forward kinematics

A robot manipulator can be seen as a set of links connected by joints, which

are either revolute (rotary) or prismatic (linear). The concept of forward kine-

matics is to represent the position and orientation of the end effector, the end

13

3.2. BACKGROUND THEORY

of the robot arm interacting with the environment, in terms of the joint an-

gles/positions. As the SCORBOT-ER 4u is an articulated arm (all revolute

joints), the text will assume rotary capability when mentioning joints from

this point on. The joint configuration is usually defined relative to a fixed

coordinate system, called the base frame, to which all objects are referenced.

A simple example of this is given by a two-link planar robot, with two revo-

lute joints, i.e. 2 degrees of freedom (DOF). The (x,y) coordinates of the tool

would then be expressed as

x = a1cosθ1 + a2cos(θ1 + θ2)

y = a1sinθ1 + a2sin(θ1 + θ2)

where a1 and a2 are the lengths of the respective links. For robots with more

than 2 DOFs, i.e. n-link analysis, the mathematical representation becomes

more complex, and the concept called the Denavit-Hartenberg convention

is used to represent the configuration kinematics. This gives a systematic

approach to obtaining a homogeneous transformation matrix consisting of

the product of four basic transformations. An example is

Ai = Rotz,θiTransz,diTransx,aiRotx,αi
(3.1)

where the matrices Rot and Trans represents rotation and translation about

their respective axes related to link i and joint i, and the parameters ai, αi, di
and θi are the link length, link twist, link offset and joint angle, respectively.

Three of the four parameters will be constant for any given link, while the

fourth is denoted the joint variable (θi for revolute joints, and di for prismatic

joints). The forward kinematic equations can then be represented on a general

basis as the transformation matrix

H = T 0
n = A1A2 · · ·An

14

CHAPTER 3. ROBOT MANIPULATOR

3.2.2 Inverse kinematics

The problem of inverse kinematics can be said to be the opposite of forward

kinematics, i.e. the goal is to calculate the required joint configuration from

a desired position and orientation for the end effector. The general statement

of this problem is as follows: Given a 4x4 homogeneous transformation

H =

[
R o

0 1

]
∈ SE(3)

find a solution, or solutions, such that

T 0
n(q1, ..., qn) = H

where

T 0
n(q1, ..., qn) = A1(q1) · · ·An(qn)

as described in Eq. 3.2.1, where q are the joint variables. Here H is the

desired position and orientation of the end effector, so the task is to find the

values for the joint variables that satisfies Eq. 3.2.2.

3.3 Using a virtual machine
During the work with the preceding project [8], it was concluded that it would

be beneficial to gather all solutions on a single computer. The main argu-

ments are physical space utilization on the mobile platform, total weight and

software accessibility. Physical space and total weight is particularly impor-

tant considerations, as the wheel drive system has been proved to be some-

what fragile [23]. The main issue with realizing this is, as mentioned earlier,

the USB Controller for the SCORBOT-ER 4u, which requires a Windows

platform to communicate with the computer.

One possible solution is to circumvent the USB Controller completely. This

would mean to reconfigure the way that commands and readings are sent to

15

3.3. USING A VIRTUAL MACHINE

and from the Scorbot, and would probably be a very work-intensive endeav-

our. As this is out of the scope of this thesis, alternative solutions had to be

found. Using the program Wine, which emulates a Windows environment

in Ubuntu, was considered as a possible solution. However, as Wine did not

already provide support for the Scorbot setup, new implementations would

have to be made. Thus this solution was also discarded, as it would probably

take away too much time from the actual goals of the thesis.

The solution that was eventually chosen was to use a VM. The hypervisor

that was chosen is Virtualbox, primarily because of its freeware status, and

the ability to connect to USB devices. While the ability to use USB devices

is an extra feature that require the purchase of an extension to the program, it

seems to be free as long as it is under a student/academic license. Thus there

would be no infringement while using it in this project.

3.3.1 VM networking

Communication to and from the VM is crucial for the viability of this so-

lution. Not only does it have to receive commands over ROS topics, but it

should also be able to send confirmation messages back. Below follows a

brief list of some of the network types available through the Virtualbox in-

terface, and their primary uses. They are found in the VirtualBox manual,

chapter 6 [12].

NAT network: Network Address Translation is the default network-

ing mode in VirtualBox, and also the easiest. It works

by connecting the virtual machine to a "router", i.e.

the VirtualBox networking engine, which maps traffic

from and to the virtual machine transparently. Each

"router" is placed between the virtual machine and the

host. The downside of this is that just like a private net-

16

CHAPTER 3. ROBOT MANIPULATOR

work behind a router, the virtual machine is unreach-

able from the outside world.

Bridged networking: With bridged networking, a device driver on the host

system is used, that filters data from the physical net-

work adapter. The driver is thus called a "net filter"

driver. This allows VirtualBox to intercept data from

the physical network and inject data into it, ensuring

two-way communication. It is effectively creating a

new network interface in software, which when used

by the VM acts to the host as if the virtual machine is

physically connected to the interface using a network

cable.

Host-only networking: Host-only networking is a hybrid between bridged

networking and internal networking (not featured here).

In essence, it allows the VM to talk to the host com-

puter as if it was connected through a physical Ethernet

switch, without the need for a physical networking in-

terface. This does however not support communication

outside of the host.

There are several different networking modes available in VirtualBox, but

these three are the ones that are most likely to be used. The main networking

modes used in this project are NAT for access to the "outside" world, and

bridged networking for communication with the host computer. By design,

the virtual machine does not communicate directly with the OCS, as the in-

formation flow should pass through the ROS core. As all communication is

designed to go through the ROS core (which is located on the host computer),

host-only networking could also have been used.

17

3.4. CONTROL THROUGH ROS

Figure 3.1: MATLAB interface concept

3.4 Control through ROS

3.4.1 Communicating with the USB Controller

As mentioned in the preceding project thesis [8], the control of the Scorbot-er

4u is as of now limited to using a Windows 32-bit platform, which means that

the ROS implementation cannot be used directly. Following on the solutions

found during the earlier work, an interface has been developed in MATLAB.

This is done using the fact that MATLAB supports communication with ROS

systems through the Robotics Controller toolbox [24]. The communication

with the USB Controller [18] is done using the ScorBot Toolbox written by

Kutzer [25], which is a continuation of the MATLAB Toolbox for the In-

telitek Scorbot (MTIS) toolbox created by Esposito et al. [13], discussed in

the aforementioned project thesis [8].The interface concept is shown in Fig-

ure 3.1, and is inspired by the MoveIt! Scorbot-ER 4u implementation [28],

which was found during the work with the project thesis.

The actual link consists of a handful of subscribers and publishers, linking the

ROS topics to the appropriate ScorBot functions using callback functions. A

18

CHAPTER 3. ROBOT MANIPULATOR

Figure 3.2: MATLAB communication concept

sample of the code is shown in Figure 3.3. The implementation is event-

based through the callback functions, which means that action will only be

taken as new information is received. With careful publishing on the topics

subscribed to by the scor_ros node, this should provide a sufficient interface

for communicating with the ROS system seemingly natively.

A focus when designing the interface was that the interface itself shouldn’t

contain functionality not expected to be provided by a hardware interface.

This means that there shouldn’t be any complicated computations or deci-

sions being made by the interface, "out of reach" of the user. The only added

functionality is a hard-coded joint limit check to ensure the avoidance of self-

collision, implemented directly as a check before every movement. This may

however be expected to be handled by such a device, so they do not conflict

with the design philosophy.

3.4.2 Sending commands from ROS

The commands for the robot manipulator are sent from the OCS, the method

for sending these commands will be presented in Chapter 5. On the ROS

side they are received by a TCP socket, based on the implementation done

by Lindrup [23]. This then translates the information sent from the OCS, and

publishes the commands as the appropriate ROS topics.

19

3.4. CONTROL THROUGH ROS

Figure 3.3: MATLAB node sample

20

Chapter 4

Stereo vision system

4.1 Introduction
In this chapter, the work on exploring a possible solution for the stereo vision

system will be outlined. It will contain a summary of some of the methods

considered, a brief description of the method that was chosen, some back-

ground theory relating to the chosen method and a presentation of the result-

ing attempt at an implementation. Lastly, the results of the implementations

will be presented.

4.2 Exploration of possible solutions
There are numerous systems for stereo vision processing available. Below is

a presentation of some of the found possible solutions for processing stereo

images, and a short discussion as to whether or not they would be usable with

the current stereo camera setup available in this project.

Through ROS there is for example the image_pipeline stack, which includes

components for stereo image processing, depth processing and visualization

[42]. It is designed to process raw camera images into inputs to vision al-

gorithms in the categories mentioned [42]. However, it does require that

the images are gathered through a conforming ROS camera driver node, of

which there are individual stacks for a selection of cameras, including the

Microsoft Kinect [37]. Specifically, in terms of stereo image processing,

image_pipeline include the node stereo_image_proc, which undistorts and

colorizes raw images, as well as performing rectification and computation of

disparity maps [45]. The node setup is shown in Figure 4.1.

21

4.2. EXPLORATION OF POSSIBLE SOLUTIONS

Figure 4.1: stereo_image_proc, image from [45]

It is based on OpenCV vision algorithms, but as mentioned earlier, it requires

cameras that are supported by ROS camera drivers. In addition, it depends

on calibrated cameras, and for good results the cameras should be synchro-

nized [36]. This requires hardware support, which is not provided by the

TP-Link IP cameras used in this project. In order to utilize the supported

image processing tools provided by ROS, a set of camera drivers would have

to be implemented for the IP cameras, which is deemed out of the scope of

this thesis.

Another possibility would be to use RTAB-Map for processing the stereo

images [19]. This process would be similar to the solution presented in the

work of Lindrup for mapping with respect to the mobile platform [23]. It

does include a ROS wrapper, and would therefore fit in well with the rest of

the system, as demonstrated by Lindrup.

RTAB-Map uses the image_pipeline stack for processing the raw camera

images as well, and the issues with the previously discussed solution would

thus be inherited if using RTAB-Map.

MATLAB also provides algorithms and functions for processing stereo im-

ages, through the Computer Vision System Toolbox [50]. It contains apps

for camera calibration, and functions for undistorting and rectifying stereo

images. These functions, as it was with the aforementioned ROS stack, ref-

22

CHAPTER 4. STEREO VISION SYSTEM

Figure 4.2: MATLAB Stereo Calibrator

erence the OpenCV library.

Stereo camera calibration is done using the Stereo Calibration App, which

takes two sets of stereo images and produces rectified images as well as the

necessary camera matrices. The process was tested, and one of the results

from the calibration app is shown in Figure 4.2. As can be seen, the calibra-

tion app produced decent results.

Although MATLAB supports the ROS framework, a fact that is already uti-

lized in the implementation of the robot manipulator control, it is argued that

the addition of this method would only serve to increase the complexity of

the system, both in terms of navigating the solutions and running the system.

This is not desirable, as the system structure is already large.

The decision fell on exploring the possibility of using the OpenCV library

directly, trying to use the functionality of the library without going through

23

4.3. OPENCV

third-party solutions, to somehow circumvent the issue with camera synchro-

nization and lack of camera drivers.

4.3 OpenCV
OpenCV is an open source computer vision library, built to provide a com-

mon infrastructure for computer vision applications [30]. It has C++, C,

Python, Java and MATLAB interfaces and supports Windows, Linux, An-

droid and Mac OS [30]. According to the official website [30], the library

contains more than 2500 optimized algorithms, including stereo vision, fa-

cial recognition and tracking. It is released under the BSD license, and is

thus free for both academic and commercial use. The library has a modu-

lar structure that includes several shared and static libraries [31]. Below are

some of the modules that are used in this thesis, with descriptions according

to the application programming interface (API) reference [31]:

core: Basic data structures

imgproc: Image processing, including filtering, transformations

etc.

calib3d: Multiple-view geometry, camera calibration etc.

highgui: Interface to video capturing.

4.4 Background theory
In order to utilize collision avoidance, an overview of distances to the objects

are needed. As the equipment available consists of two cameras, mounted to

emulate the eye-orientation of a human, the concept of stereo imaging will

be used. Below follows an introduction to the theory behind stereo imaging,

and how to use that for creating depth maps. The following are the necessary

24

CHAPTER 4. STEREO VISION SYSTEM

steps when using stereo imaging with two cameras, according to Learning

OpenCV [9];

1. Mathematically remove radial and tangential lens distortion.

2. Adjust for angles and distances between cameras, i.e. rectification.

3. Locate the same features in both cameras, and produce a disparity map.

4. Knowing the cameras geometric arrangement, calculate distances using

triangulation.

This section will try to explain a few of the basic concepts of stereo vision,

for an in-depth look at the theory, the reader is referred to Chapter 9 of the

book by Hartley and Zisserman [17], and Chapter 12 of the book by Bradski

and Kaehler [9].

4.4.1 Epipolar geometry

The epipolar geometry between two views is the geometry of the intersection

of the respective image planes, where the pencil of planes, i.e. the set all of

planes through a line, uses the baseline as axis [17]. Figure 4.3 displays some

key concepts of epipolar geometry using two pinhole models. The points Ol

and Or correspond to the center of projection for the left and right camera,

respectively. The epipoles, el and er, correspond to the intersection of the

baseline in the corresponding image plane, or "the image of the center of

projection of the other camera" [9].

The point P is the actual viewed point, and the points pl and pr are the projec-

tions of that point on the respective image planes. The plane formed by the

viewed point P and the epipoles is called the epipolar plane, marked in grey

in the figure. The lines in the image planes through the respective epipole

and projection point are called epipolar lines. The facts stated here can be

summarized as follows (taken in part from [9]):

25

4.4. BACKGROUND THEORY

Figure 4.3: Epipolar geometry (Edited, original image from [9, p. 420])

• Every 3D point in view of both cameras is contained within the epipolar

plane.

• The epipolar constraint states that given a feature in one image, the cor-

responding feature in the second image must lie on the corresponding

epipolar line.

• The order of features is preserved, i.e. of two points visible in both

images, the leftmost point horizontally in one will also be the leftmost

point in the other.

If the cameras are row-aligned, i.e. the image planes are coplanar and the

image rows are exactly aligned, the epipole lines would go on to infinity [9].

Therefore, instead of searching through the corresponding epipolar line, a

search is conducted in the corresponding row. The algebraic representation

of epipolar geometry is called the fundamental matrix [17]. The fundamental

matrix contains information about the translation and rotation that relate the

cameras in physical space, as well as information about the intrinsics, the

internal properties like focal lengths and principal points, of both cameras

[9].

26

CHAPTER 4. STEREO VISION SYSTEM

4.4.2 The essential and fundamental matrices

The fundamental and essential matrices is used to represent the epipolar ge-

ometry algebraically [17]. The following mathematical definitions are from

[9].

Figure 4.4: Essential matrix1

Essential matrix

The essential matrix is purely geometrical, and relates the physical location

of the point P as seen by the left camera to the location of the same point

as seen by the right camera [9]. The goal of this is shown in Figure 4.4.

In other words, it relates the observed locations of pl and pr, as mentioned

earlier. A set of coordinates is defined with respect to either the left or right

camera. Centering the coordinate frame at Ol would mean that the location

of the point is denoted Pl. T is a vector from Ol to Or, which means that the

location of Or is T with respect to the coordinate frame centered at Ol. The

point P as seen by the right camera is then defined as Pr = R(Pl−T), where

R is the rotation matrix. The key is the introduction of the epipolar plane,
1Image from [9, p. 419]

27

4.4. BACKGROUND THEORY

mentioned earlier, which contains all the points and vectors used. ql and qr
are the points on the image planes in the image coordinates (pixels). The

equation for all points x on a plane with normal vector n, passing through a

point a, follows the constraint (x− a) ·n = 0. Considering that the epipolar

plane contains both Pl and T, this can be written as

(Pl − T)T (T × Pl) = 0

Rewriting the relationship between Pl and Pr, gives (Pl − T) = R−1Pr =

RTPr, which in turn gives

(RTPr)
T (T × Pl) = 0

Rewriting the cross product as a matrix multiplication gives T × Pl = SPl,

where S is a skew-symmetric matrix

S =


0 −Tz Ty

Tz 0 −Tx
−Ty Tx 0


This gives P T

r RSPl = 0, where RS = E, the essential matrix.

Fundamental matrix

The pixel coordinate p is related to the point in the image plane q by q =Mp

or p = M−1q, where M is the camera intrinsics matrix. This means the

equation for E can be written as

qTr (M
−1
r)TEM−1

l ql = 0

where the intrinsic matrix is given by

M =


fx 0 cx

0 fy cy

0 0 1


28

CHAPTER 4. STEREO VISION SYSTEM

Here, fx and fy are the focal lengths, given as a product of the physical focal

length (denoted f earlier) and the size of the individual camera elements, sx
and sy. I.e., fx = fsx and fy = fsy. cx and cy are parameters introduced

to model possible displacement of the center of coordinates on the projec-

tion screen away from the optical axis. Thus, the fundamental matrix F is

defined as F = (M−1
r)TEM−1

l . Note that if the images are rectified, and the

points are normalized by the focal lengths, the intrinsic matrix M becomes

the identity matrix, and F=E.

4.4.3 Undistortion

For real, non-pinhole lenses, the image model is usually not linear, and con-

tains a deviation, where the most important one is caused by radial distortion

[17]. In general, radial distortion is a type of deviation that depends on the

distance between the imaged point and the optical axis (the focal length), and

that changes the distance between the image center and the image point [15].

One instance of the effect is shown in Figure 4.5 (a).

4.4.4 Calibration

Camera calibration is the action of defining the instrinsic and extrinsic pa-

rameters of the cameras relative to a fixed world coordinate system [15]. In

short, stereo calibration means to find the rotation matrix R and the transla-

tion vector T between the two cameras, as discussed earlier.

Single camera calibration

Single camera calibration is a procedure to find a model of the camera’s ge-

ometry, as well as a distortion model of the lens [9]. These two combined

define the intrinsic parameters of a camera. In a sense, camera calibration

29

4.4. BACKGROUND THEORY

mathematically corrects the main deviations from the pinhole model that the

camera lenses imposes [9], as mentioned earlier.

Stereo calibration

By using single camera calibration for the two cameras separately, the point P

can be put in the camera coordinates by Pl = RlP+Tl and Pr = RrP+Tr for

the left and right camera, respectively. Here, Pl and Pr denote the locations

of the 3D point P in the respective coordinate systems, while Rl, Rr, Tl and

Tr denote the rotation and translation from the camera to the 3D point. The

two views of P are then related by Pl = RT (Pr − T), where R and T are the

desired rotation matrix and translation vector between the cameras, here into

the left coordinate frame [9]. This gives the simple relations

R = RrR
T
l

T = Tr −RTl

4.4.5 Rectification

Figure 4.5: Stereo rectification, image from [9, p. 438]

Image rectification is in essence to replace the images with two projectively

equivalent images on a common image plane, parallell to the baseline [15].

In these projections the epipolar lines run parallel with the x-axis, and match

30

CHAPTER 4. STEREO VISION SYSTEM

Figure 4.6: Triangulation, image from [9, p. 416]

up in both views [17]. This means that there is no disparity, i.e. difference in

point location, in the y-direction, and so the search for corresponding pixels

is much easier. The outcome of rectifying the images is shown in Figure 4.5.

Having the epipolar lines run parallel with the x-axis is another way of saying

that the epipoles should be mapped to an infinite point (0, 0, 0)T [17]. The

result will be four terms for each camera, namely a distortion vector, a rota-

tion matrix Trect, a rectified camera matrix Mrect and the unrectified camera

matrix M. These terms are used to make a map to interpolate pixels from the

original image to the new rectified image [9]. For a more in-depth look at

various algorithms and the underlying math, the reader is referred to Chapter

12 of Bradski [9] and Chapter 11 of Hartley and Zimmerman [17].

4.4.6 Disparity map and triangulation

The final step is triangulation, which produces a depth map using the geo-

metric arrangement of the cameras and the produced disparity map [9]. The

disparity is the difference in the image location of the same 3D point when

31

4.5. CAMERA SETUP AND CALIBRATION

projected under the perspective of the different cameras [46]. For a rectified

image, this means the difference in the location on the corresponding scan-

line, or pixel row. Figure 4.6 shows this notion for a perfectly undistorted

and aligned stereo setup. Here we can then see that the relationship between

the depth (or distance) to the object, and the disparity, is given by:

T − (xl − xr)
Z − f

=
T

Z
=⇒ Z =

fT

xl − xr
=
fT

d

In other words, the depth Z is inversely proportional to the disparity d.

4.5 Camera setup and calibration

4.5.1 Camera setup

During initial testing some there was experienced some lag between the cam-

eras, a currently unexplained phenomenon. To compensate for this there were

some tests done with different camera parameters and type of video being

collected. A compensation between quality and lag was found with stream-

ing MJPEG video at a resolution of 640x480, with Good video quality and

15 frames per second.

4.5.2 Calibrating the cameras

Before implementing stereo vision, the cameras had to be calibrated. The cal-

ibration is done with a slightly modified version of the function cv::stereoCalib,

a sample function from the openCV library2. The camera intrinsic matrices

were found with a resolution of 640x480, and will need to be scaled for

different resolutions. The extrinsic matrices should not need to be scaled.

These matrices are the key to performing operations on the cameras, and it
2http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_

reconstruction.html

32

http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

CHAPTER 4. STEREO VISION SYSTEM

Figure 4.7: Finding corners of chessboard

is therefore imperative that they are as accurate as possible. The found cam-

era matrices, M , are presented below. The full set of intrinsic and extrinsic

matrices are found in Appendix C.

Mleft =


795.8546 0 319.9971

0 796.8261 239.3465

0 0 1



Mright =


795.8546 0 321.2961

0 796.8261 241.9785

0 0 1


The RMS reprojection value is currently around 6, which means that the

reprojection "misses" the original placement by 6 pixels. This is not nearly

good enough, as a successful calibration should yield sub-pixel errors. The

working theory is that this is caused by the poor image quality and slight lag

between the cameras.

33

4.6. DEPTH MAP AND COLLISION AVOIDANCE

Figure 4.8: Rectified images

4.6 Depth map and collision avoidance

4.6.1 Producing a depth map

Based on the example function stereo_match from within the openCV sam-

ples, a function for producing a visualized depth map is made. The program

is made as a ROS node called mar_stereo_vision. It takes the images from

the IP cameras in real time, process the gathered frames and publish the result

using the image_transport package. Using opencv_bridge, one can easily

convert between OpenCV images and ROS Image message, as illustrated in

Figure 4.9.

Figure 4.9: CvBridge, image from [40]

34

CHAPTER 4. STEREO VISION SYSTEM

The full procedure is as follows:

1. Initialize cameras as VideoCapture object

2. Check that both cameras are connected

3. Stream the camera frames to an image matrix

4. Rectify and undistort the captured frames

5. Produce the disparity/depth map

6. Calculate the depth information from the disparity map

7. Publish the depth map and the depth values

The rectification is done using the openCV function stereoRectify. This

function takes the intrinsic and extrinsic matrices found during the calibra-

tion, and gives the rectification transform and projection matrices for the re-

spective cameras. It also calculates the disparity-to-depth mapping matrix.

Undistortion is initialized by using the already available function

initUndistortRectifyMap. This takes the camera matrices and the distor-

tion coefficients for the respective cameras, and the rectification transforma-

tion computed in the previous step, and computes the undistortion and rec-

tification transformation as maps, used to remap the camera images so that

they share the same scan lines.

The disparity map is then produced using a block mathcing algorithm for

rectified image pairs. This is already implemented in openCV through the

StereoBM ::operator(). It is important to note that one must use the rectified

image pairs for the computation to be successful. This sequence of operation

correspond to the sequence declared earlier. The resulting image should then

be published as a ROS image, in order to access it through the OCS.

35

4.6. DEPTH MAP AND COLLISION AVOIDANCE

Figure 4.10: Camera view illustration

4.6.2 The pan-tilt unit

The usable view-field of the cameras, as illustrated in figure 4.10, is signif-

icantly narrower than the actual view-field. Or and Ol represent the camera

centers, f is the focal length. As the IP Cameras used in this project have

a narrow horizontal view, the ability to pan the cameras in the direction of

movement is crucial for realizing collision avoidance. An illustration of the

stationary horizontal view is shown in Figure 4.10. The pan-tilt unit is con-

trolled through a ROS package called flir_ptu_driver, as described on the

ROS Wiki [41]. The full command reference can be found there.

. The idea is that the PTU commands ghosts the movement commands issued

to the robot manipulator, so the cameras are always "ahead" of the manipu-

lator. The thought behind this is that this will improve the reaction time of

the collision avoidance system. In addition to this, it will also be possible

to control the PTU directly, by using the point of view (POV) hat on the

joystick.

4.6.3 Collision avoidance

With successful results from the depth map production, the physical distance

to the objects can be done through the OpenCV function reprojectTo3D.

36

CHAPTER 4. STEREO VISION SYSTEM

This function calculates the x, y and z position for each pixels. These values

would then be sent to the command publisher for the robot manipulator, to

override potential movement in case of impending collision.

37

Chapter 5

Operator Control Station

5.1 Introduction
The OCS is the key to having a remote controlled system. Designing the

graphical user interface (GUI) was driven by usability and functionality. It’s

purpose is to link the user to the MAR, giving the user control and surveil-

lance options. The idea is to split the OCS into two modes, one for driving

and mapping, which connects to the implementations done by Lindrup [23],

and one for controlling the robot manipulator. This is done by utilizing the

stackedWindows type, which gives the ability to switch between windows

when triggered. The reasoning behind this is that the layout would be messy

if all the information were to be displayed at the same time.

Also, as a safety measure, it would desirable to fully prevent accidental move-

ment of the robot manipulator while driving. This is because the robot is not

aware of the arm orientation while driving, and so would not account for the

arm in terms of collision avoidance.

The following sections will display the concept for the different windows,

and also describe the basic functionality.

5.2 Qt
Qt is a framework for creating cross-platform user interfaces [32]. Supported

platforms include Linux, OS X, Windows, Android, iOS and others [32]. Qt

also provides its own IDE, called Qt Creator. The framework is not a stan-

dalone programming language, but is written in C++. It uses a preprocessor

to extend the C++ language, and parse the source files to generate standard

39

5.2. QT

C++ sources. This means that the framework itself and applications can be

compiled by standard C++ compilers, e.g. MinGW and MSVC [32]. Qt con-

tains a number of modules, and below are some of the modules used in this

thesis, with descriptions from the Qt documentation [51]:

Qt Core: Base library that provides containers, thread and

event management, etc.

Qt GUI: Base classes for GUI components. Includes OpenGL.

Qt Widgets: Extends Qt GUI with C++ widgets.

Qt Network: Provides classes to deal with network communica-

tion.

40

CHAPTER 5. OPERATOR CONTROL STATION

5.3 Main menu

Figure 5.1: OCS Main menu

The idea is to have some sort of main menu, with initialization of TCP/UDP

connections, video streams etc., and also an added possibility to shut down

connections without exiting the program. Upon exit, all modules should be

shut down automatically. There is also a status bar, which displays feedback

text, i.e. operator status, errors, etc. This is shown if Figure 5.1

41

5.4. MANIPULATOR MODE

5.4 Manipulator mode

The joystick readings will be sent through the OCS, as a means of making

sure no "accidental movement" of the robot manipulator will occur. The

thought is that movement of the robot manipulator during the mobile phase

is unwanted and poses a security risk (the possibility of crashing the manip-

ulator will be higher when the robot is in movement). Therefore the joystick

activation should only be possible when the robot is stationary, or at low

speeds. The readings are gathered through a program based on the Raw In-

put API, and sent over a TCP/IP server set up to communicate with the ROS

system. On the right hand side the unprocessed camera feed is placed, and

the produced depth map would have been placed on the left hand side. This

was omitted due to the poor results of the stereo vision system.

Figure 5.2: OCS Manipulator mode

42

CHAPTER 5. OPERATOR CONTROL STATION

5.4.1 Joystick

Having the ability to use a joystick to control the robot manipulator is the key

to the concept of remote control. It is therefore crucial for the OCS to both

read and transmit joystick data. The joystick state has to be read in a suit-

able format for transmitting to the ROS system. There were several possible

solutions explored, among which was the Direct Input API from Microsoft,

and libusb, a C library that provides generic access to USB devices. As the

OCS solution is currently made for Windows, the decision fell on the raw

input API from Microsoft which accepts raw input from any human interface

devices (HID) [27].

Raw input is centered around the WM_INPUT message, which is sent to

the window that is getting the raw input, and contains the input code and a

handle to the input structure that contains the raw input from the device. To

use these messages in Qt, a class based on the Qt classQAbstractNativeEventF ilter,

which provides an interface for receiving native events, was created. The

event filter is then initialized for the OCS window, and sends data only when

that window is active.

5.5 Drive Mode

The Drive Mode window is intended to include the implementation by Lin-

drup [23], and the functionality created during his project. As this is a con-

ceptual implementation, full functionality and inclusion of his methods are

not present, as this was deemed too labor intensive and out of the scope of

this thesis. The unprocessed camera feed is shown on the right hand side, and

the produced map would be placed on the left hand side.

43

5.5. DRIVE MODE

Figure 5.3: OCS Drive mode

44

Chapter 6

MAR User Manual

Producing a comprehensive user manual for the total robotic system called

the Mobile autonomous robot was considered to be a good contribution to

the future development and operation of the student built robot. The index

of the manual is found in Appendix A, and is meant to act as a standalone

document. The level of detail within the manual was chosen in a way that

the document itself would hopefully be enough to understand and use the

system, and the readers should also be able to do a full re-installation of the

various parts if necessary. The work on preparing the manual was influenced

by an article on user manuals by Dr. Philip Hodgson [34], which presents

key tips for designing a user manual. Some of the tips that have been focused

on include [34]:

• Make sure the instructions actually map onto the system.

• Present instructions as step-by-steo procedures.

• Tell the reader what the functions are, and what they’re for (used here

for the hardware).

• Avoid text-book look.

• Have hierarchically structured information.

• Include troubleshooting sections.

All the insights and information presented in the user manual is from the

authors own work with the system, and also gathered from earlier work con-

cerning specific modules. The thesis of Aspunvik [5] has been consulted

for some of the hardware setups and router configuration, and the thesis of

45

Lindrup [23] has been consulted for the procedures concerning his imple-

mentation. The user manual is structured as follows:

• Introduction: Short declaration of the purpose of the manual, and an

abstract view of the system

• Hardware: A comprehensive list of the hardware used on the mobile

robot, as well as short descriptions of each component.

• Cables and connections: A list of the necessary cables and adapters, as

well as connection schematics for power, usb, etc.

• Software: Lists of necessary software, libraries and so on needed to run

the system, both for the on-board computer, and the OCS.

• Installation and configuration: Instructions for installing and config-

uring the various parts of the system.

• Running the system: A guide to running the system, as it is at the time

of writing.

• Troubleshooting: Declaration of known issues, and their potential so-

lutions.

46

Chapter 7

Results

7.1 MATLAB interface

The MATLAB interface performed as expected, successfully completing the

commands sent on the ROS topics. The implemented self collision check also

did what it was supposed to do, preventing collision with the rear housing by

a safe amount.

7.2 Stereo vision system

The stereo vision system was tested in different modes, with still images

taken with the cameras, with live stream of stationary objects, and with ob-

jects in motion. The result from the still images is shown in Figures 7.1

and 7.2, and shows promising results. The output is a colorized disparity

map, where red indicates close objects and blue indicates objects sufficiently

far away. The program is able to pick up most of the objects features, and

correctly displays the relative distances.

Figure 7.1: Stationary depth map Figure 7.2: Original image

47

7.2. STEREO VISION SYSTEM

Figure 7.3: Real-time stationary object Figure 7.4: Real-time original image

Figures 7.3 and 7.4 shows the same program on a real-time video feed with

a stationary object. As can be seen the result is not as robust as with the

still images, but it still manages to display most of the features of the nearest

object, with a lot of unwanted noise and missing features of the surroundings,

that were mostly properly displayed in the still-image test. The real-time

stream introduces uncertainty in the image processing as the images from the

left and right cameras do not always correspond to each other, due to a lack

of proper synchronization.

The final and most telling test is shown in Figures 7.5 and 7.6. These images

show the result of trying to capture an object in motion. It is evident that the

program is not able to keep up with changing positions, and is only able to

correctly place fragments of the object. In addition to this, some false posi-

tives are seen in the lower left corner of Figure 7.5. In a collision avoidance

implementation, false positives like these could be extremely destructive to

the overall functionality of the system.

All of the tests shown here are run with pretty harsh filtering of noise on the

produced images, which might explain why there are a lack of features in

the last two examples. This was however deemed necessary, as the produced

depth maps with looser filtering was almost completely noise. There was

also experienced some currently inexplicable lag between the cameras, which

48

CHAPTER 7. RESULTS

Figure 7.5: Real-time object in motion Figure 7.6: Real-time original image

probably contributed to the poorer real-time results. This will be discussed

further in Chapter 8.

7.3 OCS

Figure 7.7: Manipulator Mode activated

The OCS performed the functions outlined earlier. Because of the use of the

Raw Input API, there was not found a solution for locking the joystick input

to the Manipulator Mode window, as the system messages are triggered on

a window ID. For now it seems like assigning a valid ID to a sub-window is

49

7.4. USER MANUAL

not possible. Instead, this was achieved by passing a Boolean triggered by

the checked status of the Joystick Control button.

7.4 User manual
There was some internal debate on how to test the success of the user man-

ual. Ideally, there would be performed a full system reset, with a test per-

son spending some time getting the system up and running again, armed

with only the implementation files and the user manual. This, however, was

deemed to be too time-consuming, considering the risk that the system might

not regain the full functionality immediately, something which would be un-

acceptable as there were other tests of the system carried out at the same time.

The evaluation of a user manual should include a user-test, as also stated in

the article by Dr. Hodgson [34]. In order to get an objective review of the

usability, the manual was distributed to a select group of people, which were

asked to review the layout and readability, depth of information, and general

functionality. The general feedback was positive, with some minor changes

proposed to the structuring and chapter ordering. However, as stated earlier,

the absolute usability is impossible to test without a full test with the ac-

tual system. Under the circumstances, the method employed for testing was

deemed sufficient.

50

Chapter 8

Discussion

This chapter will discuss some of the work and implementations presented in

Chapters 3-6, based on some of the results presented in Chapter 7.

8.1 General assessment of the system
The system as it was developed, provides the basic functionality outlined in

the problem statement. The planned modules were implemented, though not

all modules are as robust as would be desirable. The most important focus

of this work, the control of the robot manipulator, and the implementation of

stereo vision, was successful. The implementations do however leave room

for further improvement and implementations. There were some elements

that did not perform satisfactory, specifically the stereo vision system, which

will be discussed further.

8.1.1 Development tools

ROS has proved to be a flexible and robust framework for development of

robotic solutions, and the performance has been as satisfactory as adver-

tised. The messaging system facilitates large system development, and the

vast amount of packages and drivers satisfies most needs when developing

a robot system. The basic functionality is also relatively easy to use, which

removes the need for extensive research before use.

OpenCV includes a vast amount of algorithms and functions for developing

computer vision applications, and has proven to be relatively robust and easy

to use. Some basic understanding of computer vision is needed, but not to

51

8.2. USB CONTROLLER INTERFACE

the extent of limiting usability.

Qt is an easy to use framework, and users with a knowledge of C++ should

not have too much difficulty grasping the Qt concepts. It also supports many

different compilers, which is a plus. The need for additional compilers could

however be seen as a minor drawback, as it often leads to having to install

additional software. However, the only supported joystick-type input device

is a gamepad, which is surely the most popular device in use today, but it

seems a bit odd that regular joysticks are not supported in a GUI framework.

8.2 USB Controller interface

8.2.1 Assessment

Although the method employed in the current solution involves a lot of un-

necessary steps, it does the job as it is intended. MATLAB provides easy

message passing with the ROS system through the Robotics Control Tool-

box, and the ScorBotToolbox works well. The scor_ros_node is fully capa-

ble of receiving the commands needed to control the robot manipulator, and

also sends various confirmations on the triggered tasks. It would be easily

expanded to include the full array of functions available through the Scor-

BotToolbox, if that would be required.

8.2.2 Weaknesses

As discussed in the preceeding thesis[8], having to interface the USB Con-

troller through a Windows platform is highly inconvenient with respects to

the current build centered around ROS. Not only does it create unnecessary

levels of implementation and communication configurations, it also weakens

the system’s integrity by adding another possibility for failure or communi-

cation drop. Being directly connected to the ROS Master would prevent such

52

CHAPTER 8. DISCUSSION

issues, and should be a consideration for further development.

8.3 Stereo vision system
Producing a real-time depth map and having a reliable source of distances to

surrounding objects is a key part to implementing collision avoidance. That

does however depend on a reliable source of stereo images to process. The

current system, as it is, but does not provide satisfactory results, as shown in

the previous chapter. There are several reasons why the results

Firstly, the cameras are not synchronized, which produces unwanted distur-

bances in the images which could be interpreted as false movement when

constructing the depth map. If one camera took an image a bit later than the

second camera, moving the recognizable object in either direction, it would

produce a depth map displaying values that does not correspond to the ac-

tual location of the object. There were several attempts to synchronize the

cameras, e.g. to the computer clock, but this proved to be unsuccessful. The

effect of this was shown in Chapter 7, where the object was barely visible at

all, with a lot of noise and false positives.

Secondly, in order to get a continuous stream of images from the cameras,

the resolutions had to be dropped quite a bit. The highest resolution that gave

semi-stable image flow was 640x480. This again lowers the accuracy of the

stereo vision implementation in all steps, as it produces higher inaccuracies

and more disturbance in the processed images. The current implementation

is not sophisticated enough to take into account such factors.

As mentioned in the exploration of a suitable stereo vision system, there is

a lot of hardware that would be better suited for this task, and which is also

supported by ROS. For instance, Microsoft Kinect is affordable and highly

versatile, as proven in previous theses. Specific recommendations will be

given in the next chapter.

53

8.4. OCS

8.4 OCS
It should also be noted that the Drive Mode implementation is unfinished, as

this was deemed to be out of the scope of this project. The focus has thus

been on the Manipulator Mode. As a concept it shows some aspects of what

can be done with regards to remote presence. All intended functionality of

the Manipulator Mode was implemented successfully, apart from the absence

of the produced depth maps, which is due to the problems with the stereo

vision system discussed earlier. In retrospect, implementing the OCS on a

Windows machine was probably a mistake, as the robustness and flow would

have benefited greatly from being able to communicate directly with the ROS

Master. Moving the OCS to a computer running as a ROS node should be a

priority for future work, and will be recommended in the upcoming chapter.

8.4.1 Joystick

The Raw Input API used to collect the joystick data proved difficult to work

with, and produced some odd readings. It was also difficult to find good

documentation on how to properly use the functions, so the implementation

became more or less trial and error, which was a lot more time-consuming

that necessary. Having an easily accessible way to collect joystick input, and

transmitting them in a suitable format, would be extremely beneficial. The

fact that the Raw Input API locks the OCS implementation to a Windows

platform is also a weakness, and in the event the OCS is moved to another op-

erating system, the joystick data collector would have to be re-implemented.

Another issue with the joystick is that it seems to be extremely sensitive to

movement, as it fluctuates in read values just from bumping into the table it

is standing on. It also does not center itself, which means that if an increased

dead zone is not implemented in the software, it will register movement even

if left alone.

54

CHAPTER 8. DISCUSSION

8.5 User manual
The user manual produced should work as intended, a standalone document

providing an introduction to the system and overview of the system func-

tionality. The overall usefulness of the user manual depends on updating the

manual with new implementations, when and if they should occur. Should

the user manual become outdated, it would become obsolete.

55

Chapter 9

Recommendations and further work

9.1 Stereo vision system
As discussed earlier, the stereo camera rig on the robot manipulator should

be replaced with a system that is more suitable. It could also be beneficial to

reconsider the placement of the cameras, as the current placement means that

the view will be obstructed for certain configurations of the arm.

To re-iterate the main points from the discussion, there needs to be found

a more suitable stereo rig setup for computing real-time depth maps. The

current market is full of good solutions, and a short list of possible setups

will be presented here.

Time-of-flight cameras
Time-of-flight cameras work by illuminating the scene with a modulated

light source, and observing the reflected light. The measured phase shift

between the illumination and the reflection is then translated to distance.

They also offer a low software complexity and fast response time com-

pared to more traditional methods [22]. An example of such a camera is

the Kinect for Xbox One [26].

Structured light scanners
Structured light scanners are based on detection the deformation of a

pattern of light projected onto the surface of an object. A camera placed

at a slight offset from the scanner records the shape of the line at an

angle, and the distance to every point is calculated through a process

similar to triangulation [2]. An example of cameras which utilize this

is the Kinect for Xbox 360, which is currently in use on the mobile

57

9.2. MOVING THE OCS TO UBUNTU

platform.

Traditional stereo cameras
These are cameras with a minimum of two lenses, which are synchro-

nized at hardware level. They use passive 3D sensing, which means that

there are no lasers or projectors required. The process used is very sim-

ilar to the implementation shown if Chapter 4. They can however be

quite expensive. Examples of such camera rigs are the Zed 2k Stereo

Camera produced by Stereo Labs [49] and the Bumblebee produced by

FLIR [14].

If these changes are made, the stereo vision system should be re-implemented

to give more successful results. ROS already include stacks and nodes for

using this type of hardware to produce point clouds and depth maps, so an

implementation shouldn’t be too comprehensive. There is also a possibility

to revert back to the system based on stereo infrared distance sensors, as

used by Bekken [6]. These are currently taken off the robot and missing, the

reasoning behind this is unknown.

9.2 Moving the OCS to Ubuntu

As discussed earlier, moving the OCS to Ubuntu would have several benefits.

For one, it would provide access to the ROS message system through the

ROS Master, which could eliminate the need for extra tcp servers. Having

direct access to the published topics could also greatly increase the potential

for feedback to the operator, as most states and messages would be easily

accessible.

58

CHAPTER 9. RECOMMENDATIONS AND FURTHER WORK

9.3 Joystick
If the recommendation to move the OCS to the Ubuntu operating system

is followed, a new method for accessing the joystick would beed to be im-

plemented. ROS provides joystick drivers and a joy_node that interfaces a

generic joystick to ROS and publishes the joystick states1. This would also

give a better and more stable method of collecting joystick input. Continuing

the point from the previous section about joystick sensitivity, it might be ad-

vantageous to try to fix the looseness of the joystick somehow, or look for a

replacement.

9.4 Eliminating the USB Controller
As discussed in the previous chapter, the situation with controlling the robot

through the USB Controller does not suit the overall design of the system

in ROS. Although the MATLAB interface works sufficiently well, having to

run a virtual machine adds unnecessary complexity to the system as a whole.

Thus, finding a solution for accessing the SCORBOT-ER 4u directly should

be a priority, or at least exploring solutions for making the USB Controller

compatible with Ubuntu.

1http://wiki.ros.org/joy

59

http://wiki.ros.org/joy

Chapter 10

Bibliography

[1] Aksel A. Transeth, Øystein Skotheim, Henrik Schumann-Olsen, Gorm

Johansen, Jens Thielemann, Erik Kyrkjebø. A Robotic Concept for Re-

mote Maintenance Operations: A Robust 3D Object Detection and Pose

Estimation Method and a Novel Robot Tool. In The 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems, October

2010.

[2] Andreas Georgopoulos, Charalambos Ioannidis and Artemis

Valanis. Structured Light Scanners. https://www.

gim-international.com/content/article/

structured-light-scanners. Accessed: 10.06.2017.

[3] David A. Anisi and Charlotte Skourup. A step-wise approach to oil and

gas robotics. In 2012 IFAC Workshop on Automatic Control in Offshore

Oil and Gas Production, Trondheim, Norway, 2012.

[4] Nnamdi Anyadike. Could unmanned platforms pro-

vide the boost the north sea needs? http://

www.offshore-technology.com/features/

featurecould-unmanned-platforms-provide-the-boost-the-north-sea-needs-5674874/,

November 2016. Accessed: 06.02.2017.

[5] Petter Aspunvik. Robotisert vedlikehold. Master’s thesis, Norwegian

University of Science and Technology, 2013.

[6] Kristian Saxrud Bekken. Bevegelsesstyring av robotarm og kamera med

kollisjonsunngåelse. Master’s thesis, Norwegian University of Science

and Technology, 2010.

61

https://www.gim-international.com/content/article/structured-light-scanners
https://www.gim-international.com/content/article/structured-light-scanners
https://www.gim-international.com/content/article/structured-light-scanners
http://www.offshore-technology.com/features/featurecould-unmanned-platforms-provide-the-boost-the-north-sea-needs-5674874/
http://www.offshore-technology.com/features/featurecould-unmanned-platforms-provide-the-boost-the-north-sea-needs-5674874/
http://www.offshore-technology.com/features/featurecould-unmanned-platforms-provide-the-boost-the-north-sea-needs-5674874/

[7] Mikael Berg. Navigation with Simultaneous Localization and Mapping

For Indoor Mobile Robot. Master’s thesis, Norwegian University of

Science and Technology, 2013.

[8] Tommy Berntzen. Mobile autonomous robot: Remote operation.

Project thesis, Norwegian University of Science and Technology, 2016.

9th semester specialization project report.

[9] Gary Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly Media,

2008.

[10] Heping Chen, Samuel Stavinoha, Michael Walker, Biao Zhang, and

Thomas Fuhlbrigge. Opportunities and challenges of robotics and au-

tomation in offshore oil & gas industry. Intelligent Control and Automa-

tion, 5(3):136 – 145, 08 2014.

[11] Clearpath Robotics. ROS 101: Intro to the Robot Operating Sys-

tem. http://www.ros.org/core-components/. Accessed:

17.02.2017.

[12] Oracle Corporation. Oracle VM VirtualBox R© User Manual. https:

//www.virtualbox.org/manual/. Accessed: 18.02.2017.

[13] Joel M. Esposito, Carl Wick, and Ken Knowles. Matlab toolbox for the

intelitek scorbot: An open source robotics education library. In Amer-

ican Society of Engineering Education Annual Conference, Vancouver,

BC, 2011.

[14] FLIR. Stereo Vision. https://www.ptgrey.com/

stereo-vision-cameras-systems. Accessed: 10.06.2017.

[15] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Ap-

proach. Prentice Hall, 2003.

62

http://www.ros.org/core-components/
https://www.virtualbox.org/manual/
https://www.virtualbox.org/manual/
https://www.ptgrey.com/stereo-vision-cameras-systems
https://www.ptgrey.com/stereo-vision-cameras-systems

CHAPTER 10. BIBLIOGRAPHY

[16] M.A. Gunter, Matthew M., M.P.H. Hill, Ryan, MS O’Connor, Mary B.,

M.P.H. Retzer, Kyla D., and PhD. Lincoln, Jennifer M. Fatal Injuries in

Offshore Oil and Gas Operations - United States, 2003-2010. Technical

report, U.S. Center for Disease Control, Apr 26 2013.

[17] Richard Hartley and Andrew Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2nd edition, 2004.

[18] Intelitek Inc. Controller-USB User Manual, 2002. Found on

http://www.intelitekdownloads.com/Manuals/

Robots/ER-4u/, Accessed: 12.01.2017.

[19] IntRoLab. Stereo mapping. https://github.com/introlab/

rtabmap/wiki/Stereo-mapping. Accessed: 02.04.2017.

[20] John England. Oil and Gas Industry Outlook 2017. https://www2.

deloitte.com/us/en/pages/energy-and-resources/

articles/oil-and-gas-industry-outlook.html. Ac-

cessed: 04.04.2017.

[21] Kristian Eckhoff. Hmd-styrt robot. Master’s thesis, Norwegian Univer-

sity of Science and Technology, 2005.

[22] Larry Li. Time-of-Flight Camera – An Introduc-

tion. http://eu.mouser.com/applications/

time-of-flight-robotics/. Accessed: 10.06.2017.

[23] Vegard Stjerna Lindrup. Robotic Maintenance and ROS. Master’s the-

sis, Norwegian University of Science and Technology, 2016.

[24] MathWorks. Robotics System Toolbox. https://se.mathworks.

com/products/robotics.htmlx. Accessed: TBA.

[25] Michael D. M. Kutzer. MATLAB Toolbox for Intelitek Scorbot-

ER 4U. https://www.usna.edu/Users/weapsys/kutzer/

63

http://www.intelitekdownloads.com/Manuals/Robots/ER-4u/
http://www.intelitekdownloads.com/Manuals/Robots/ER-4u/
https://github.com/introlab/rtabmap/wiki/Stereo-mapping
https://github.com/introlab/rtabmap/wiki/Stereo-mapping
https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/oil-and-gas-industry-outlook.html
https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/oil-and-gas-industry-outlook.html
https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/oil-and-gas-industry-outlook.html
http://eu.mouser.com/applications/time-of-flight-robotics/
http://eu.mouser.com/applications/time-of-flight-robotics/
https://se.mathworks.com/products/robotics.htmlx
https://se.mathworks.com/products/robotics.htmlx
https://www.usna.edu/Users/weapsys/kutzer/_Code-Development/ScorBot_Toolbox.php
https://www.usna.edu/Users/weapsys/kutzer/_Code-Development/ScorBot_Toolbox.php
https://www.usna.edu/Users/weapsys/kutzer/_Code-Development/ScorBot_Toolbox.php

_Code-Development/ScorBot_Toolbox.php. Accessed:

12.01.2017.

[26] Microsoft. Kinect hardware. https://developer.microsoft.

com/en-us/windows/kinect/hardware. Accessed:

10.06.2017.

[27] Microsoft. Raw Input Reference. https://msdn.microsoft.

com/en-us/library/windows/desktop/ff468895(v=

vs.85).aspx. Accessed 24.03.2017.

[28] MoveIt! SCORBOT-ER 4u. http://moveit.ros.org/

robots/scorbot-er4u/. Accessed: 12.01.2017.

[29] Oljedirektoratet. Nytt utbygginskonsept pa Oseberg.

http://www.npd.no/no/Nyheter/Nyheter/2016/

Nytt-utbyggingskonsept-pa-Oseberg/. Accessed:

06.02.2017.

[30] OpenCV. About opencv. http://opencv.org/about.html.

Accessed: 13.04.2017.

[31] opencv dev team. Opencv 2.4.13 documentation. http://docs.

opencv.org/2.4.13/modules/core/doc/intro.html.

Accessed: 13.04.2017.

[32] Qt Wiki. About Qt. http://wiki.qt.io/About_Qt. Accessed:

22.11.2016.

[33] Ramboll Oil & Gas. Unmanned wellhead platforms – UWHP sum-

mary report. http://www.npd.no/no/Publikasjoner/

Rapporter/UNMANNED-WELLHEAD-PLATFORMS-/, March

2016. Accessed: 24.11.2016.

64

https://www.usna.edu/Users/weapsys/kutzer/_Code-Development/ScorBot_Toolbox.php
https://www.usna.edu/Users/weapsys/kutzer/_Code-Development/ScorBot_Toolbox.php
https://www.usna.edu/Users/weapsys/kutzer/_Code-Development/ScorBot_Toolbox.php
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://msdn.microsoft.com/en-us/library/windows/desktop/ff468895(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff468895(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff468895(v=vs.85).aspx
http://moveit.ros.org/robots/scorbot-er4u/
http://moveit.ros.org/robots/scorbot-er4u/
http://www.npd.no/no/Nyheter/Nyheter/2016/Nytt-utbyggingskonsept-pa-Oseberg/
http://www.npd.no/no/Nyheter/Nyheter/2016/Nytt-utbyggingskonsept-pa-Oseberg/
http://opencv.org/about.html
http://docs.opencv.org/2.4.13/modules/core/doc/intro.html
http://docs.opencv.org/2.4.13/modules/core/doc/intro.html
http://wiki.qt.io/About_Qt
http://www.npd.no/no/Publikasjoner/Rapporter/UNMANNED-WELLHEAD-PLATFORMS-/
http://www.npd.no/no/Publikasjoner/Rapporter/UNMANNED-WELLHEAD-PLATFORMS-/

CHAPTER 10. BIBLIOGRAPHY

[34] Dr. Philip Hodgson. Tips for writing user manuals. http:

//www.userfocus.co.uk/articles/usermanuals.html,

June 2007. Accessed 30.01.2017.

[35] ROS. About ROS. http://www.ros.org/about-ros/. Ac-

cessed: 02.02.2017.

[36] ROS. camera_calibration. http://wiki.ros.org/camera_

calibration. Accessed: 23.03.2017.

[37] ROS. camera_driver. http://wiki.ros.org/camera_

drivers. Accessed: 23.03.2017.

[38] ROS. Concepts. http://wiki.ros.org/ROS/Concepts. Ac-

cessed 25.02.2017.

[39] ROS. Core Components. http://www.ros.org/

core-components/. Accessed: 02.02.2017.

[40] ROS. cv_bridge. http://wiki.ros.org/cv_bridge. Ac-

cessed: 23.02.2017.

[41] ROS. flir_ptu_driver. http://wiki.ros.org/flir_ptu_

driver. Accessed 10.02.2017.

[42] ROS. image_pipeline. http://wiki.ros.org/image_

pipeline?distro=indigo. Accessed: 23.03.2017.

[43] ROS. Introduction. http://wiki.ros.org/ROS/

Introduction. Accessed: 17.02.2017.

[44] ROS. ROS Wiki. http://wiki.ros.org/ROS/. Accessed

25.02.2017.

[45] ROS. stereo_image_proc. http://wiki.ros.org/stereo_

image_proc. Accessed: 23.03.2017.

65

http://www.userfocus.co.uk/articles/usermanuals.html
http://www.userfocus.co.uk/articles/usermanuals.html
http://www.ros.org/about-ros/
http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_drivers
http://wiki.ros.org/camera_drivers
http://wiki.ros.org/ROS/Concepts
http://www.ros.org/core-components/
http://www.ros.org/core-components/
http://wiki.ros.org/cv_bridge
http://wiki.ros.org/flir_ptu_driver
http://wiki.ros.org/flir_ptu_driver
http://wiki.ros.org/image_pipeline?distro=indigo
http://wiki.ros.org/image_pipeline?distro=indigo
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/
http://wiki.ros.org/stereo_image_proc
http://wiki.ros.org/stereo_image_proc

[46] Linda Shapiro and George Stockman. Computer Vision. Prentice Hall,

2001.

[47] Ole Magnus Siqveland. Remote Operations using Oculus Rift, Leap

Motion and Microsoft Kinect. Master’s thesis, Norwegian University of

Science and Technology, Department of Engineering Cybernetics, 2016.

[48] Mark W. Spong, Seth Hutschinson, and M. Vidyasagar. Robot modeling

and control. Wiley, Hoboken, N.J, 2006.

[49] Stereo Labs. Meet ZED. https://www.stereolabs.com/zed/

specs/. Accessed: 10.06.2017.

[50] The MathWorks, Inc. Computer Vision System Toolbox. https://

se.mathworks.com/help/vision/index.html. Accessed:

23.03.2017.

[51] The Qt Company. Qt Documentation All Modules. https://doc.

qt.io/qt-5/qtmodules.html. Accessed 30.03.2017.

66

https://www.stereolabs.com/zed/specs/
https://www.stereolabs.com/zed/specs/
https://se.mathworks.com/help/vision/index.html
https://se.mathworks.com/help/vision/index.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html

Appendix A

MAR user manual index

Mobile autonomous robot User manual

Contents

List of Figures 3

1 Introduction 4
1.1 Full overview . 4

2 Hardware 5
2.1 Server (on-board computer) 5
2.2 Robot manipulator . 6
2.3 Omni wheels . 6
2.4 Joystick . 7
2.5 Routers . 7
2.6 IP-Cameras . 7
2.7 Kinect sensor . 8
2.8 LIDAR . 8
2.9 Motorcontroller and encoder 8
2.10 Batteries . 9
2.11 Pan-tilt unit . 9
2.12 Power inverters . 10
2.13 Operator control station 10

3 Cables and connections 11
3.1 Schematics . 11

4 Software 15
4.1 Server (on-board computer) 15
4.2 Client (OCS) . 15

5 Configuration and installation 16
5.1 Installing ROS and setting up workspace 16
5.2 Installing the virtual machine 16
5.3 Setting up the routers and IP cameras 16
5.4 ROS packages . 19
5.5 Mobile platform . 19
5.6 Robot manipulator . 19
5.7 Operating Control Station 19

6 Running the system 20

7 Troubleshooting 21
7.1 Connecting to the Intelitek USB Controller from virtual

machine . 21
7.2 Pan-tilt unit . 21
7.3 Joystick . 21

8 References 22

2

67

Appendix B

DVD Contents

This is an outline of the folder structure on the enclosed DVD.

– 3rd-party tools

– Implementation files

• Scor ROS Node (MATLAB)

• MAR (ROS)

• OCS (Qt)

– MAR User Manual

– External user manuals

– Previous theses

– Thesis

69

Appendix C

Camera matrices

C.1 Intrinsic matrices
M is the camera matrix and D is the distortion coefficients for the respective

cameras. Values are rounded for convenience.

Mleft =


795.8546 0 319.9971

0 796.8261 239.3465

0 0 1


Dleft =

[
−0.0414 −0.6801 0 0 0 0 0 −1.0385

]

Mright =


795.8546 0 321.2961

0 796.8261 241.9785

0 0 1


Dright =

[
379.2752 0 194.3849 0 373.1992 81.0741 0 0

]

C.2 Extrinsic matrices
R is the rotation matrix between the first and second camera coordinate sys-

tems and T is the translation matrix between the coordinate systems. R1 and

R2 are the rectification transforms for the respective cameras, P1 and P2 are

are the projection matrices in the respective rectified coordinate systems and

Q is the reprojection matrix.

R =


0.9986 −0.0048 −0.0160
0.0049 0.999 0.0074

0.0160 −0.0075 0.999


71

C.2. EXTRINSIC MATRICES

T =
[
−63.7659 −2.6956 2.9457

]

Q =


1.0000 0.0000 0.0000 −336.3675
0.0000 1.0000 0.0000 −230.2329
0.0000 0.0000 0.0000 322.4315

0.0000 0.0000 0.01565 0.0000



72

Appendix D

Installation and configuration

D.1 Hardware setup

The hardware setup is extensively detailed in the MAR User Manual, and will

thus not be presented here. The password for both the on-board computer and

the virtual machine is 1q2w3e.

D.2 Installation

For the server side, it is assumed that ROS Indigo is installed on a suitable

system, like Ubuntu 14.04 used. Guides for installing ROS or Ubuntu can

be found on the respective official sites. In addition to a full install of ROS

Indigo, the following packages must be installed:

web_video_server
sudo apt-get install ros-indigo-web-video-server

flir_ptu_driver Installed from source:

https://github.com/ros-drivers/flir_ptu

cv_bridge
sudo apt-get install ros-indigo-cv-bridge

Next a VM running Windows 7 32-bit needs to be installed and set up on the

on-board computer running Ubuntu. If using Virtualbox, a guide for this can

be found at https://www.virtualbox.org/manual/ch02.html.

On the VM, install a 32-bit version of MATLAB with Robotics System Tool-

box, for example R2015b. Download and install the ScorBotToolbox, a guide

73

https://github.com/ros-drivers/flir_ptu
https://www.virtualbox.org/manual/ch02.html

D.3. CONFIGURING THE PROJECT

is found on the Mathworks fileexchange https://se.mathworks.com/

matlabcentral/fileexchange/52830-kutzer-scorbottoolbox.

On the OCS side, ensure that Qt 5.5 or later is installed, downloads and guides

can be found at https://www.qt.io/, as well as a suitable C++compiler

providing MSVC2015, for example Microsoft Visual Studio 2015.

D.3 Configuring the project

D.3.1 ROS workspace

The first step is to create a catkin workspace, a guide for doing this is found on

the ROS website. Move the packages located in the DVD folder Implementationfiles/MAR(ROS)

into the catkin_ws/src folder.

D.3.2 Virtual machine

Configure the VM and network settings according to the aforementioned

guide. Make sure that the network connection is set up such that communica-

tion is possible both to and from the VM. Also make sure that the ERUSB.sys,

the driver for the SCORBOT-ER 4u, is located in the appropriate folder.

Move the MATLAB node located in the DVD folder Implementationfiles/ScorROSNode(MATLAB)

to the active folder in MATLAB.

D.3.3 Network configuration

The MAR network should be configured, if it is not a comprehensive guide

is found in the MAR User Manual.

D.4 System launch
This assumes that the ROS source code in located in the src folder of the

catkin workspace, and that the virtual machine and ScorBotToolbox are suc-

74

https://se.mathworks.com/matlabcentral/fileexchange/52830-kutzer-scorbottoolbox
https://se.mathworks.com/matlabcentral/fileexchange/52830-kutzer-scorbottoolbox
https://www.qt.io/

APPENDIX D. INSTALLATION AND CONFIGURATION

cessfully installed and configured. Firstly, check the following hardware

setup on the on-board computer:

1. Verify that the USB Controller is connected to a USB port the on-board

computer, and accessible from the VM.

2. Check that the PTU is connected through USB, and that the control box

is powered on.

3. Ensure that the router is connected to the computer, and that the IP Cam-

eras are connected to the router.

4. Verify that all hardware is connected to power and operational

On the client computer:

1. Ensure that the joystick is powered and connected to a USB port.

2. Ensure that the router is powered and connected to the computer.

Then on the on-board computer:

1. Open a terminal and cd to the created catkin workspace.

2. Launch roscore.

3. Launch the VM, start MATLAB and run the ScorROSInit file. Verify

that the SCORBOT-ER 4u is initalizing and homing.

4. In a second window, cd to the catkin workspace, and run $ source ./de-

vel/setup.bash.

5. Bring up the necessary nodes with $ roslaunch mar_scor mar_scor.launch.

On the OCS computer, copy the OCS project located in the DVD folder

Implementationfiles/OCS(Qt) to a suitable location, and run the project

through the Qt IDE.

Special note: In order for the MATLAB node to be able to read the messages

75

D.4. SYSTEM LAUNCH

sent on the ROS topics, the ROS_MASTER_URI and ROS_IP needs to be

exported. This can be done by opening up the bash file located at ~/.bashrc

and adding these two lines at the end:

1. export ROS_MASTER_URI=http://ip_addr:11311

2. export ROS_IP=ip_addr

where ip_addr is the IP address of the computer running roscore. Remember

to source /.bashrc after the file has been edited.

76

Appendix E

Troubleshooting

E.1 Connecting to the Intelitek USB Controller
from virtual machine

The virtual machine seems to have problems locating the driver for the USB

Controller, even after the driver is installed. The following checklist should

solve the problem

1. Verify that the file ERUSB.sys is located at

C:\Windows\system32\drivers

• If the file is not found, copy from DRIVERS\Scorbot on the CD

2. Locate the device in Device Manager

3. Right-click on the device and select Check for hardware updates

4. The device should now be recognized as ERUSBCLASS\ER USB robot

controller, and the problem should be solved

After installing the Scorbot Toolbox for MATLAB, it is important to run

ScorUpdate, or else the Toolbox will not be able to gain access to the Scorbot!

E.2 Pan-tilt unit
Currently the pan-tilt unit is controlled by a ROS package 1. There has been

some problems with this setup, mainly that it cannot connect to the PTU or

that it cannot send/receive to/from the PTU.

• Check that the user has read/write permissions for the device
1http://wiki.ros.org/flir_ptu_driver

77

http://wiki.ros.org/flir_ptu_driver

E.2. PAN-TILT UNIT

– E.g. run the command ls -l /dev/tty*, where tty* is the device loca-

tion

– If read/write permissions are off, set them using the command chmod

666 /dev/tty and/or add the user to the dialout group

As stated, there has been experienced some trouble with getting the drivers

to communicate with the PTU. Through some testing, it was found that the

standard baud rate of 9600 would cause the symbols sent to be scrambled,

and so the first thing to do should be to set the baud rate to 38400. If this

still doesn’t work, downloading the package from source and building it like

a ROS package in your workspace seems to do the trick.

78

	Summary and conclusion
	Sammendrag og konklusjon
	Preface
	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Prerequisites and starting point
	Preceeding work

	Equipment and software
	Hardware
	Software

	Thesis structure
	Appendices

	System concept
	Introduction
	Robot Operating System
	Implementation outline

	Robot manipulator
	Introduction
	Background theory
	Forward kinematics
	Inverse kinematics

	Using a virtual machine
	VM networking

	Control through ROS
	Communicating with the USB Controller
	Sending commands from ROS

	Stereo vision system
	Introduction
	Exploration of possible solutions
	OpenCV
	Background theory
	Epipolar geometry
	The essential and fundamental matrices
	Undistortion
	Calibration
	Rectification
	Disparity map and triangulation

	Camera setup and calibration
	Camera setup
	Calibrating the cameras

	Depth map and collision avoidance
	Producing a depth map
	The pan-tilt unit
	Collision avoidance

	Operator Control Station
	Introduction
	Qt
	Main menu
	Manipulator mode
	Joystick

	Drive Mode

	MAR User Manual
	Results
	MATLAB interface
	Stereo vision system
	OCS
	User manual

	Discussion
	General assessment of the system
	Development tools

	USB Controller interface
	Assessment
	Weaknesses

	Stereo vision system
	OCS
	Joystick

	User manual

	Recommendations and further work
	Stereo vision system
	Moving the OCS to Ubuntu
	Joystick
	Eliminating the USB Controller

	Bibliography
	MAR user manual index
	DVD Contents
	Camera matrices
	Intrinsic matrices
	Extrinsic matrices

	Installation and configuration
	Hardware setup
	Installation
	Configuring the project
	ROS workspace
	Virtual machine
	Network configuration

	System launch

	Troubleshooting
	Connecting to the Intelitek USB Controller from virtual machine
	Pan-tilt unit

