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The inverted pendulum is a great example of an unstable system, and
there are multiple ways of applying control to such a system in order to
make it stable. By adding reaction wheels to an inverted pendulum it
should be possible to stabilize it, actuating the reaction wheel and thus
creating torque on the pendulum.

The objective is to perform modeling, control design, simulations, and
physical testing for balancing an inverted pendulum in two axes, by
using reaction wheels. The goal is to balance the inverted pendulum
about its upright equilibrium, while the angular velocity of the reaction
wheels goes to zero.

The student should:

1. Do a literary study (the theory behind, similar projects, etc.)

2. Develop a control algorithm for balancing the inverted pendulum.

3. Make a Simulink model and run simulations.

4. Build an experimental model, implement the control algorithm and
run tests.

5. Evaluate results and suggest further work.
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Abstract

This report presents the results from development and design of a two-
axis reaction wheel inverted pendulum. It shows the mathematical mod-
eling of the system using Euler-Lagrange’s equations of motion, as well
as MATLAB and Simulink implementation.

A strategy for balance control of the system is presented and compared
through simulation, ultimately showing that the system is theoretically
controllable with the given sensor measurements.

Further the report presents an experimental design of the system and
implements necessary functions for measurements and balance control.

The results for both the simulations and the experimental tests are pre-
sented in this report. Although in the end the experimental model pre-
sented in this report deemed unable to stabilize about the upright equi-
librium.
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Sammendrag

Denne rapporten presenterer resultatene fra utvikling og design av en to-
akse reaksjonshjul-basert invertert pendel. Den viser den matematiske
modelleringen av systemet ved bruk av Euler-Lagrange’s bevegeleses-
likninger, s̊a vel som implementering i MATLAB og Simulink.

En strategi for balansekontroll av systemet er presentert og sammen-
liknet gjennom simuleringer, som viser at systemet teoretisk er kon-
trollerbart med de gitte sensorm̊alingene.

Videre presenterer rapporten et eksperimentelt design av systemet og
implementasjon av nødvendige funksjoner for å lese sensorm̊alinger og
for balansekontroll.

Resultatene for b̊ade simuleringer og eksperimentelle tester presenteres
i denne rapporten. Selv om den eksperimentelle modellen presentert i
denne rapporten, til slutt viste seg å ikke klare å stabilisere seg om det
oppreiste likevektspunktet.
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Chapter 1

Introduction

1.1 Motivation

Inverted pendulums have been well researched throughout the years,
and different methods of stabilization have been implemented. For ex-
ample by actuating the pendulum body, or attaching the pendulum to
an actuated cart. In this thesis the pendulum will be tried stabilized
in two axis by using the torque from reaction wheels, such as used in
spacecrafts.

Stabilizing an inverted pendulum by use of reaction wheels, makes for
an interesting project that shows Newton’s third law of motion applied
to circular motion. Utilizing the reaction wheel to stabilize the inverted
pendulum is not a new concept, but nonetheless an interesting concept
that will be discussed in this report. This report will use two reaction
wheels to stabilize an inverted pendulum in two axis.

1.2 Background

A pendulum is a mass suspended from a fixed point, so that it can
swing freely. If the pendulum is displaced from its equilibrium point,
the gravitational force applied to the pendulum mass will accelerate it
back towards the equilibrium point.

There are many uses for the pendulum, extending from pendulum clocks,
to measuring gravitational acceleration, to demonstration of the earths

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Inside of a reaction wheel used in spacecrafts [17]

rotation, as is the case for the Foucault pendulum at the Gløshaugen
campus of the Norwegian University of Technology and Science.

1.2.1 Reaction Wheel

Reaction wheels are flywheels that are used in spacecrafts to provide
attitude control. By applying torque to the flywheel, the torque is trans-
ferred to the spacecraft, causing it to rotate. By using three or more reac-
tion wheels, one can provide full three-axis attitude control and stability
to a spacecraft [17]. Using reaction wheels instead of propulsion-system
thrusters lowers the weight of a spacecraft by eliminating the need for
fuel, as reaction wheels are electrically powered [6]. An example of a
reaction wheel used in spacecrafts can be seen in figure 1.1

1.2.2 Reaction Wheel Pendulum

The reaction wheel pendulum was first introduced in 1999 by Spong et al.
in the paper ”Nonlinear control of the Reaction Wheel Pendulum”[18].
The reaction wheel pendulum is an underactuated system and consist
of an unactuated pendulum with a rotating reaction wheel stuck to the
end. The pendulum is controlled by actuating the reaction wheel and
transforming the rotational acceleration of the wheel into torque working
on the pendulum. The goal of the reaction wheel pendulum is to stabilize
the pendulum at its upright equilibrium.

This thesis extends the reaction wheel pendulum introduced in [18] by

2



1.2. BACKGROUND

Figure 1.2: The Cubli [8]

adding another reaction wheel, and making the pendulum free standing,
allowing it to move in two axes instead of one.

1.2.3 Similar work

As mentioned previously the reaction wheel pendulum for one axis con-
trol have been introduced previously. The setup uses a pendulum at-
tached to the side of a table, a reaction wheel actuated by a permanent
magnet DC motor, and high-resolution encoders for both the pendulum
body and the reaction wheel. This experiment, performed at the Uni-
versity in Illinois aims to swing the pendulum up from its downright
equilibrium, to its upright equilibrium and balance it there.[18]

Another very interesting project is the Cubli, introduced at the Swiss
Federal Institute of Technology Zrich in 2012 [9]. The Cubli is a cube
that utilizes three reaction wheels to be able to balance on any edge or
corner, and is able to jump up from any side, perform controlled falls
and thus being able to walk. [8] The Cubli can be seen in figure 1.2

Another project, that gave inspiration to this thesis, is the Self Balanc-
ing Stick, which is a dual-axis reaction wheel inverted pendulum. This
project was done on a hobby basis and lacks any proper documentation
[14]. The Self Balancing Stick can be seen in figure 1.3

3



CHAPTER 1. INTRODUCTION

Figure 1.3: The Self Balancing Stick, (screed capture, YouTube) [15]

1.3 Contribution of the Thesis

This thesis includes these main contributions:

� MATLAB and Simulink model of a two axis reaction wheel pen-
dulum.

� Controller comparison for the two-axis reaction wheel inverted
pendulum.

� Experimental build and test of controllers.

1.4 Outline of the Thesis

This thesis starts with some theory about kinematics and dynamics used
to describe the system. A model is then designed and implemented in
MATLAB and Simulink, followed by controller design and controller
comparison. In the last section of this thesis the an experimental model
is designed and tested with the desired controller.

The thesis is organized in the following way:

Chapter 1: Introduces the problem and contributions in this thesis.
Chapter 2: Gives some theory on the kinematics and dynamics of the
system.
Chapter 3: Derives the equations of motion for the system and intro-
duces controller design.

4



1.4. OUTLINE OF THE THESIS

Chapter 4: Presents the model implementation and simulation results
of the system.
Chapter 5: Presents the experimental design and implementation
Chapter 6: Presents the results and discussion obtained by experimental
tests.
Chapter 7: Conclusion of the project and proposes further work

The following appendix is included:

Appendix A: Digital Appendix

5
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Chapter 2

Kinematics and Dynamics

In this chapter the dynamics of the reaction wheel pendulum will be
described using kinematics and dynamics. Section 2.1 will describe the
kinematics of a rigid body rotating around a fixed axis. Section 2.2 will
focus on the dynamics, or the relationship between kinematics and the
moments causing motion in the system, torque. This chapter is mainly
based on [10]

2.1 Kinematics

The pendulum and the reaction wheel are examples of rigid bodies ro-
tating around fixed axes, and this section will describe the kinematics
of such bodies.

2.1.1 Angular Displacement

To get the angular displacement of a rigid body around a fixed axis, we
first need to find the angular position.

Lets assume a particle moving in a circle of radius r around the rotational
axis. Moving an arc length s we get the angular position θ as:

θ =
s

r
(2.1)

The angular position is given in radians (rad), and one revolution around
the rotational axis equals 2π rad.

7



CHAPTER 2. KINEMATICS AND DYNAMICS

The angular displacement (∆θ) of a rigid body rotating around a fixed
axis is the change of angular position. This is given by:

∆θ = θ2 − θ1 (2.2)

where θ1 is the initial angular position and θ2 is the final angular posi-
tion.

2.1.2 Angular Velocity

The angular velocity is described as the angular displacement per unit
time and is usually denoted ω and given in rad/s. Taking the angular
displacement from equation 2.2 and the time difference between θ1 and
θ2, ∆t, we get:

ω =
∆θ

∆t
(2.3)

This gives the instantaneous angular velocity:

ω =
dθ

dt
= θ̇ (2.4)

The tangential velocity can be related as:

v =
ds

dt
= r

dθ

dt
= rω (2.5)

2.1.3 Angular Acceleration

Angular acceleration, α, is described as the change in angular velocity
per unit time. It is given in rad/s2, and the instantaneous angular
acceleration can be derived as:

α =
dω

dt
=
d2θ

dt2
(2.6)

2.2 Dynamics

This section will describe the dynamics of rigid bodies rotating about
fixed axes by using the kinematics of such systems, as described in the
previous section.

8



2.2. DYNAMICS

2.2.1 Moment of Inertia

The moment of inertia about a fixed axis can be described as the body’s
resistance to change to its rotation, and is given by:

I =
∑
i

mir
2
i (2.7)

where I denotes the moment of inertia of the object, and mi denotes the
particle mass at radius ri about the rotational axis.

From this we can see that an increase in the mass of the body, will
increase the moment of inertia. More importantly, we can see that by
displacing the body’s mass away from the rotational axis, we can increase
the moment of inertia without increasing the mass of the body.

Parallel Axis Theorem

The parallel axis theorem or Steiner’s theorem gives the relation between
a body’s moment of inertia about its center of mass, and its moment of
inertia about an arbitrary axis, parallel to the center of mass.

The parallel axis theorem:

I = I0 +mb2 (2.8)

where I is the moment of inertia about a parallel axis at distance b from
the center of mass, m is the total mass of the body, and I0 is the moment
of inertia about the center of mass.

2.2.2 Torque

When a force F is applied to a rotating object at position r from the
axis of rotation, we get the torque, τ . This can be described as:

τ = rFsin(θ) = (
∑
i

miri)
d2θ

dt2
(2.9)

which can be translated to:
τ = Iα (2.10)

where I is the moment of inertia given by equation 2.7 and α is given
by equation 2.6.

9



CHAPTER 2. KINEMATICS AND DYNAMICS

2.2.3 Kinetic Energy

The kinetic energy of a rigid body rotating about a fixed axis is the
kinetic energy from the movement relative to the center of mass and the
kinetic rotational energy about the center of mass. The total kinetic
energy is given by:

K =
1

2
mv2 +

1

2
Iω2 (2.11)

10



Chapter 3

Modeling

This chapter will show the theoretical modeling of the reaction wheel
pendulum. It will start off by a short summary of the methods used.
Then this theory will be implemented and the equations of motion of
the system will be derived.

3.1 Analytical Mechanics

This section summarizes the theory used to derive the equations of mo-
tion for the system, and is based on [7]

3.1.1 Approach

There are a few different approaches to deriving the equations of motion
for a mechanical system. We have Hamilton’s equations of motion, the
Newton-Euler equations and the Lagrangian equations of motion. The
Lagrangian approach is similar to that of Newton-Euler, and end up in
the same equations of motion, but they use different methods to derive
the equations of motion. While Newton-Euler uses vector operations,
Lagrange uses algebraic operations and is a less complicated approach.

3.1.2 Lagrange’s Equations of Motion

Lagrange’s equations of motion for a mechanical system can be derived
by selecting a set of generalized coordinates, qi, and using generalized
forces.

11



CHAPTER 3. MODELING

Lagrange’s equations of motion is formulated by using the Lagrangian:

L(q, q̇, t) = T (q, q̇, t)− U(q) (3.1)

where, T (q, q̇, t) is the kinetic energy of the system and U(q) is the
potential energy of the system. The equations of motion is then derived
as:

d

dt
(
δL

δq̇i
)− δL

δqi
= τi (3.2)

where τi is the generalized actuator torque.

3.2 Derivation of Mathematical Model

In this section we will use the theory discussed in chapter 2 to find the
Lagrangian of the system. Then the equations of motion for the system
will be derived and the state-space model of the linearized system will
be derived.

Some assumptions were made in order to ease the modeling of the sys-
tem.

� The control will happen in close proximity of the upright equilib-
rium and we will assume that the tipping angle in one axis does
not affect the other axis. Hence the model can be modeled in one
axis and the model reused for the other axis.

� The pendulum friction and the reaction wheel friction is neglected.

� The center of mass of the reaction wheel coincide with its axis of
rotation.

� The angle of the pendulum is measured from the vertical upright
equilibrium.

The reaction wheel pendulum was first introduced in 1990 and this sec-
tion is based on [18].

12



3.2. DERIVATION OF MATHEMATICAL MODEL

3.2.1 Kinetic and Potential Energy

In order to derive the equations of motion, we first need to find the
kinetic (T ) and potential (U) energies of the system.

Let θ = (θp, θw)T ∈ <2 denote the configuration vector of the system
and M be the constant inertia matrix with elements:

m11 = mpl
2
p +mwl

2
w + I1 + I2 (3.3)

m12 = m21 = m22 = I2 (3.4)

where the inertia matrix, M is derived using the parallel axis theorem
given in equation 2.8.

We can then calculate the kinetic (T) energy, using equation 2.11, and
potential energy (U) as:

T =
1

2
θ̇TMθ̇ (3.5)

U = (mplp +mwlw)g0 cos θp = m0 cos θp (3.6)

where m0 = (mplp +mwlw)g0, and g0 is the gravitational force, and the
kinetic energy is solely rotational.

The Lagrangian of the system can then be calculated by putting equa-
tions 3.5 and 3.6 into equation 3.1:

L(θ, θ̇) =
1

2
θ̇TMθ̇ −m0 cos θp (3.7)

3.2.2 Equations of Motion

To calculate the Euler-Lagrange equations of motion, we will use equa-
tion 3.2. Since we have two sets of generalized coordinates q1 = θp and
q2 = θw, and only one actuator torque working on the reaction wheel,
τ1 = 0 and τ2 = τ , we can calculate the Euler-Lagrange equations of
motion:

d

dt
(
δL

δθ̇p
)− δL

δθp
= 0 (3.8)

d

dt
(
δL

δθ̇w
)− δL

δθw
= τ (3.9)

13
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By using L as given by equation 3.7, the Euler-Lagrange equations of
motion can be calculated as:

m11θ̈p +m12θ̈w = φ(θp) (3.10)

m21θ̈p +m22θ̈w = τ (3.11)

where φ(θp) = m0 sin θp

By combining equations 3.10 and 3.11 and solving for θ̈p and θ̈w respec-
tively, we get the following two equations of motion:

θ̈p =
m22φ(θp)

m11m22 −m12m21
− m12τ

m11m22 −m12m21
(3.12)

θ̈w = − m21φ(θp)

m11m22 −m12m21
+

m11τ

m11m22 −m12m21
(3.13)

3.2.3 State-Space Model

The system can be represented in state-space form:

ẋ = Ax+Bu (3.14)

In order to represent the model in state space, the equations 3.12 and
3.13 has to be linearized about an equilibrium. Linearizing about the
upright equilibrium, θp = 0, choosing x = (θp, θ̇p, ˙θw)T and substituting
τ = Kmu, where Km is the motor torque constant and u is the control
signal, we get the controllable linear system given by equation 3.14 with
matrices:

A =

 0 1 0
m22m0
detM 0 0
−m21m0

detM 0 0

 (3.15)

B =

 0

−m12Km
detM

m11Km
detM

 (3.16)
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3.3. CONTROLLER DESIGN

3.3 Controller Design

In this section we will look at two different approaches to controller
design, the PID controller and the LQ controller respectively. Both con-
trollers will later be implemented in MATLAB and Simulink and com-
pared. They will also be implemented and tested on the experimental
build.

3.3.1 PID Controller

The Proportional-Integral-Derivative (PID) controller is a common con-
troller in industrial control system, and it is often used when there is no
deeper understanding of the system one is trying to control.

The PID controller takes the error, e(t), given by the difference between
a setpoint r(t) and the measured value given by the system y(t), and
attempts to minimize the error over time by adjusting the control vari-
able u(t). For the PID controller the control variable is calculated in
continuous time as:

u(t) = Kp(e(t) +
1

Ti

∫ ∞
0

e(τ)dτ + Td
de(t)

dt
) (3.17)

where Kp, Ti and Td are the proportional, integral and derivative gains
respectively. The proportional gain penalizes the current error, e(t),
while the integral and derivative gains penalize the past error and the
possible future error [5].

The controller gains can be either chosen by trial and error, or they can
be calculated using a tuning method such as Ziegler-Nichols [20].

Ziegler-Nichols method is describes as follows:

� Set Ti =∞ and Td = 0.

� Slowly increase Kp while adding small disturbances to the system,
until the system output y(t) has stable, consistent oscillations.

� This value of Kp is called the critical gain, Kpk, and the period of
the oscillation is called Tk.
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� The PID gains can then calculated as follows:

Kp = 0.6Kpk

Ti = 0.5Tk (3.18)

Td = 0.75Tk

3.3.2 Linear Quadratic Controller

The Linear-Quadratic (LQ/LQR) controller can be used when one has
derived a linearized system model represented in state-space

Using state-space representation of the system, as shown in the previous
section, and adding a state feedback control u = −Kx, where K is the
feedback gain vector, we can stabilize the system by choosing a vector
K that minimizes the quadratic cost function [1]:

J =

∫ ∞
0

(xTQx+ uTRu+ 2xTNu)dt (3.19)

where Q > 0 and R ≥ 0 are constant, positive-definite matrices. The Q
matrix penalizes the transient state deviation, and the R matrix penal-
izes control effect.

The control gain vector is given by:

K = R−1(BTP +NT ) (3.20)

where P is the positive definite matrix that satisfies the algebraic Riccati
equation (ARE):

ATP + PA− (PB +N)R−1(BTP +NT ) +Q = 0 (3.21)

The control goal is to keep x close to 0.
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Chapter 4

Model Implementation and
Simulation

This chapter shows the implementation of the system and controllers
in MATLAB and Simulink. Further this chapter will show simulations
performed in order to tune and compare controllers.

4.1 Model Implementation

The theoretical model of the reaction wheel inverted pendulum derived
in chapter 3 was implemented in MATLAB and Simulink in order to run
simulations of the system and test controller designs. In this section the
implementation process will be explained.

4.1.1 Model Parameters

The model was implemented with parameters as shown in table 4.1. The
parameters were either measured from the physical model or taken from
the data sheets of the components.

4.1.2 Simulink Model

Working off the assumptions made in section 3.2 the two-axis reaction
wheel inverted pendulum was implemented in Simulink as shown in fig-
ure 4.1. The model is implemented as two one-axis reaction wheel in-
verted pendulums operating independently of each other. This is due to

17
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Table 4.1: Model Parameters

Parameter Value

lw 0.330 [m]
lp 0.185 [m]
mw 0.588 [kg]
mp 0.033 [kg]
Iw 2.662e−4 [kg m2]
Ip 3.765e−4 [kg m2]
g0 9.81 [m/s2]

Km 5.5e−3 [Nm/
√

(W )]
Tmax 0.600 [kg cm]

Figure 4.1: Simulink setup for simulations

that the operating area is in such close proximity to the upright equi-
librium that the correlating effect of the two axes is neglected.

4.1.3 PID Controller

A PID controller was implemented in order to stabilize the reaction
wheel inverted pendulum model around the upright equilibrium. The
PID controller was implemented as shown in figure 4.1 taking the pen-
dulum angular position and a reference angle as input.

In order to decide the values of the PID controller gains, the Ziegler-
Nichols method was applied as discussed in section 3.3.1

18
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Table 4.2: PID Controller Gains

Controller Gain Value

Proportional, Kp 1200
Integral, Ti 0.5
Derivative, Td 0.75

The final PID gain values that were found from this method are shown
in table 4.2

4.1.4 PD+P controller

The PID controller will be shown to be insufficient in the simulations
in the coming section. Therefore a Proportional controller was imple-
mented on θ̇w to account for the error in the angular velocity of the
motor, when an impulse external force is applied to the pendulum body.

The controller gain values are the same as for the PID, but with Ti =∞
and Kp,w = 0.2.

4.1.5 LQ Controller

As one of the goals of this project was to try different controllers, a
linear quadratic controller was also implemented to stabilize the system.
The LQ controller was implemented as shown in figure 4.1. The LQ
controller takes all the model states as input and uses weight matrices
Q and R to minimize the cost function in equation 3.19.

The weight matrices were chosen as:

Q =

1 0 0
0 0.8 0
0 0 0.6

 (4.1)

R = 1 (4.2)

Using the MATLAB command:

lqr(A,B,Q,R)
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where A and B are the state-space matrices given in equation 3.15 and
3.16, with the model parameters as given in table 4.1.

The resulting control gain vector is then given as:

K = [−2095.8 − 383.7 − 0.8] (4.3)

where K gives the state feedback control u = −Kx

4.2 Simulations

Simulations were carried out in MATLAB and Simulink in order to
prepare for experimental tests, and to test different controllers. The
model was simulated as a two-axis reaction wheel inverted pendulum,
where the axes act independently of each other, as explained in the
previous section.

The IMU and reaction wheel speed measurements were added noise to
make the simulations more realistic.

This section is organized in the following way:

� Section 4.2.1: Case 1: No Control

� Section 4.2.2: Case 2: P Control on θp

� Section 4.2.3: Case 3: PID Control on θp

� Section 4.2.4: Case 4: LQ Control

� Section 4.2.5: Case 5: PID Control, Impulse Response

� Section 4.2.6: Case 6: LQ Control, Impulse Response

� Section 4.2.7: Case 7: PD Control on θp + P Control on θ̇w

� Section 4.2.8: Discussion

The setup for all parameters are as given in Section 4.1, and the initial
conditions for the system was set to:

θ0 =

θp0,x θp0,y
θ̇p0,x θ̇p0,y
θ̇w0,x θ̇p0,y

 =

− π
30

π
20

0 0
0 0

 (4.4)

unless otherwise specified.
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4.2. SIMULATIONS

Figure 4.2: State trajectories of θp with no added control

4.2.1 Case 1: No Control

In the first simulation there was no applied control. This was done
in order to show that, when starting with an offset from the unstable
upright equilibrium, the model would swing about the stable downright
equilibrium. This is of course not possible for the physical model, but
it shows that the model works as expected.

Due to the simplifications made in the modeling process, the friction is
set to zero, and thus the pendulum is expected to swing with constant
amplitude.

Results

Figure 4.2 illustrates that the pendulum swings about the stable down-
right equilibrium, when the initial condition for θp is not equal to zero.
This shows that the model behaves as expected and a controller can be
implemented.

It should be noted that if the friction working on the system was also
modeled, the pendulum would converge towards the stable equilibrium
over time.

4.2.2 Case 2: P Control on θp

In the second case study, a P controller was added to θp. This was done
in order to derive a PID controller in the next case study, using Ziegler-
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Figure 4.3: State trajectory in (θp,x, θp,y) plane

Nichols method, as shown in section 3.3

Measurement noise were added to the model, Ti and Td from equation
3.17 were set to infinity and zero respectively, and the initial condition
of the pendulum angular position θp were set to a non-zero value. The
proportional control gain Kp were then increased until the system output
had stable, consistent oscillations.

Results

Figure 4.4 shows the oscillations of the system output y(t) = θp(t) with
control value Kp = 2000.

The critical gain Kpk is then set as this value of Kp and the period of
the oscillations as Tk. These values will be used in the next case study
to implement a PID controller for the system.
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4.2. SIMULATIONS

Figure 4.4: State trajectories of θp with P control

4.2.3 Case 3: PID Control on θp

Using the values for Kpk and Tk from the previous case study, we use
the equations 3.18 to calculate the gain values for the PID controller.

We end up with the PID values shown in table 4.2.

In this case study the PID controller is tested with and without mea-
surement noise.

Results

From figure 4.5 we can see that the implemented PID controller stabi-
lizes the system about the upright equilibrium point.

From figure 4.7 we see that the reaction wheel speeds also converge to
zero as the pendulum stabilizes about the equilibrium. This is the exact
behavior we strive for.

We can also see from figure 4.5 that the added measurement noise has
little to no effect on the state trajectories of θp. Although if we look at
the trajectories of the applied torques τ in figure 4.6, we see that the
controller makes rapid, relatively big corrections due to the measure-
ment noise and this can cause problems on the experimental build. A
filter should therefore be added to compensate for measurement noise.
It should be noted however that such rapid changes in torque is not
realistic.
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(a) State trajectories of θp with PID control

(b) State trajectories of θp with PID control and measurement noise

Figure 4.5: State trajectories of θp with PID control without (a) and
with measurement noise (b)

Figure 4.8 shows the State trajectory in (θp,x, θp,y) plane and gives an
indicator on how the pendulum will move in 3D space, here represented
as a top down view.

4.2.4 Case 4: LQ Control

In order to implement a linear quadratic controller, the state-space
model as given by equations 3.14, 3.15 and 3.16 were used in the ini-
tialization process to calculate values for the gain vector K, given in
equation 4.3. This was done as discussed in the previous section.

In this case study the linear quadratic controller was implemented both
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4.2. SIMULATIONS

(a) State trajectories of τ with PID control

(b) State trajectories of τ with PID control and measurement noise

Figure 4.6: State trajectories of τ with PID control, without (a) and
with measurement noise (b)
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Figure 4.7: State trajectories of θ̇w with PID control and measurement
noise

Figure 4.8: State trajectory in (θp,x, θp,y) plane with PID control and
measurement noise
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with and without measurement noise on all measurements.

Results

From figure 4.9 we can see that the LQ controller is more aggressive than
the PID controller in the previous case study, and that it successfully
stabilizes the pendulum at the upright equilibrium point more rapidly
than the PID controller and with less fluctuation. It does however seem
like the LQ controller is more affected by the measurement noise, caus-
ing θp to deviate from the equilibrium point.

The effect of the measurement noise on the LQ controller can be seen in
the trajectories of τ shown in figure 4.10.

Figure 4.12 shows the State trajectory in the (θp,x, θp,y) plane and gives
an indicator on how the pendulum will move in 3D space, here repre-
sented as a top down view.

From figure 4.11 we can see that the reaction wheel speeds θ̇w converges
to zero as the pendulum stabilizes about the equilibrium.

4.2.5 Case 5: PID Control, Impulse Response

In this case study a small impulse force is applied to the pendulum body,
and it is to show how the PID controller handles such a disturbance. The
disturbance rapidly changes θp,x and θp,y.

Results

As seen from figure 4.13 the PID controller handles the disturbance well,
and converges back to the upright equilibrium.

Although the pendulum stabilizes after the disturbance, we can see from
figure 4.14 that the angular velocity of the reaction wheels does not
converge back towards zero, but instead converges to a non-zero value.
This still lets the pendulum stabilize, as no torque will be applied to
the system for a constant angular velocity, but this is not desirable as
it increases the power draw of the system, and will prevent the system
from stabilizing again if the same force is applied to the pendulum body,
and the motor speed keeps drifting towards its maximum speed.
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(a) State trajectories of θp with LQ control

(b) State trajectories of θp with LQ control and measurement noise

Figure 4.9: State trajectories of θp with LQ control without (a) and with
measurement noise (b)
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(a) State trajectories of τ with LQ control

(b) State trajectories of τ with LQ control and measurement noise

Figure 4.10: State trajectories of τ with LQ control, without (a) and
with measurement noise (b)
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Figure 4.11: State trajectories of θ̇w with LQ control and measurement
noise

Figure 4.12: State trajectory in (θp,x, θp,y) plane with LQ control and
measurement noise
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Figure 4.13: State trajectories of θp with PID control when pendulum
is pushed

Figure 4.15 again shows a representation of a top down view of the
pendulum.

4.2.6 Case 6: LQ Control, Impulse Response

In this case study the same small impulse force, as in the previous case
study, is applied to the pendulum body to show how the LQ controller
handles the same disturbance and to compare the two controllers.

Furthermore a larger impulse force is applied to both the PID and LQ
controllers to show which of the two controllers are most vulnerable to
disturbances and will not be able to stabilize.

Results

We can see from figure 4.16 that the LQ controller handles the distur-
bance well and shows the same rapid stabilization as with the initial
response.

Figure 4.17 shows that the LQ controller, unlike the PID controller, also
converges the angular momentum of the reaction wheels to zero, as is
the goal of the controller. The LQ controller thus seems to handle the
disturbance better than the PID controller.

However when we increase the force applied to the pendulum body, we
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Figure 4.14: State trajectories of θ̇w with PID control when pendulum
is pushed

Figure 4.15: State trajectory in (θp,x, θp,y) plane with PID control when
pendulum is pushed
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Figure 4.16: State trajectories of θp with LQ control when pendulum is
pushed

can see from figure 4.19 that while the PID controller manages to regain
stability, the LQ controller fails to do so and ends up falling.

4.2.7 Case 7: PD Control on θp + P Control on θ̇w

The PID controller was shown to be more robust against impulse forces
applied to the pendulum body, but failed to converge θ̇w to zero after
the applied force. In this section a P controller will be added to θ̇w to
account for this. But as will be shown in the results, this is not enough
and the Integral term is removed from the PID controller, thus leaving
us with a PD controller on θp and a P controller on θ̇w.

Results

When the P controller on θ̇w was implemented alongside the PID con-
troller on θp, the system still managed to stabilize around the upright
equilibrium, but with more oscillations as shown in figure 4.20. Along
this undesirable behavior the controller still failed to converge θ̇w to zero.
This can be seen in figure 4.21.

By removing the Integral term in the PID controller on θp we end up
with a controller that can handle disturbances and converges both θp
and θ̇w to zero, even with applied impulse force to the pendulum body.
This can be seen in figure 4.23 and 4.25 respectively.
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Figure 4.17: State trajectories of θ̇w with LQ control when pendulum is
pushed

Figure 4.18: State trajectory in (θp,x, θp,y) plane with LQ control when
pendulum is pushed
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(a) State trajectories of θp with LQ control when pendulum is pushed

(b) State trajectories of θp with PID control when pendulum is pushed

Figure 4.19: State trajectories of θp with LQ control (a) and PID control
(b) when pendulum is pushed

35



CHAPTER 4. MODEL IMPLEMENTATION AND SIMULATION

Figure 4.20: State trajectories of θp with PID control on θp and P control
on θ̇w

Figure 4.21: State trajectories of θ̇w with PID control on θp and P control
on θ̇w
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Figure 4.22: State trajectory in (θp,x, θp,y) plane with PID control on θp
and P control on θ̇w

Figure 4.23: State trajectories of θp with PD control on θp and P control
on θ̇w
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Figure 4.24: State trajectories of θ̇w with PD control on θp and P control
on θ̇w

Figure 4.25: State trajectory in (θp,x, θp,y) plane with PD control on θp
and P control on θ̇w
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4.2.8 Discussion

From the case studies performed in this section it has been shown that
a PID controller on θp is not enough to attain the goal of this project,
which is to stabilize the system about the upright equilibrium while also
converging the motor speeds, θ̇w, to zero.

It was then shown that a LQ controller is able to attain that goal, but
the LQ controller used here, with the chosen Q and R matrices, is not
as robust against outer disturbances as the PID controller. This can
most likely be fixed by doing multiple tests and changing the Q and R
matrices, using the trial and error approach.

By introducing a Proportional controller to θ̇w and removing the Integral
term in the PID controller to θp, it was shown that the system can be
stabilized and the motor speeds converged to zero, while at the same
time being more robust than the LQ controller. The resulting PD+P
controller thus satisfies the control goal better than the LQ controller,
although being slower.

39



CHAPTER 4. MODEL IMPLEMENTATION AND SIMULATION

40



Chapter 5

Experimental Design

This chapter describes the experimental design of the two-axis reaction
wheel pendulum.

The first section of this chapter will present the main hardware com-
ponent, along with some theory and reasoning behind the choice. In
the second section the hardware implementation and build will be pre-
sented. And finally the software implementation will be presented i the
third section.

5.1 Hardware

In this section the main components of the two-axis reaction wheel pen-
dulum will be presented. The reasoning behind the selection and some
theory on the components will also be presented. The total cost of the
project played a big role in the hardware chosen, due to a low personal
budget.

All the main hardware components are listed in table 5.1

5.1.1 Development Board

The development board used in this project is the Arduino UNO shown
in figure 5.1. It is an easy to use and widely available development board
based on the ATmega328P microchip, produced by Atmel Cooperation.
The Arduino UNO has 14 digital input/output pins, 6 of which can be
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Table 5.1: Main Hardware Components

Component Details Quantity

Development Board: Arduino Uno 1
Motor: Mabuchi RS-385PH-16140 2
Motor Driver: Arduino Motor Shield 1

L298 Dual Full-Bridge Drive
IMU: MPU-6050 1

(GY-521 Breakout Board)
Encoders: Single Channel incremental encoder 2

used as Power-Width Modulation (PWM) outputs. The digital input
pins will be used for DC motor control, and interrupts for the Inertial
Measurement Unit (IMU) and single-channel incremental encoders. The
board also has 6 analog inputs pins, two of which will be used for reading
IMU values. The board has 32KB flash memory for storing code, and
has a clock speed of 16MHz, which will be sufficient for this project. [3]

The board was initially meant to be attached to the pendulum, but due
to weight issues was decided to be left external, as discussed in the next
section.

5.1.2 Motors and Motor Drivers

The motors used in this project are the Mabuchi RS-385PH-16140 shown
in figure 5.2. It is a carbon-brush DC motor with a maximum speed of
8700 revolutions per minute (RPM). The operating voltage of the motor
12-30V and has a nominal voltage of 24V.[12]

The motors were chosen for their low weight of 82g, and the fact that
they came with single-channel incremental encoders attached.

The motor torque can be modeled as:

τ = KT IA (5.1)

where IA is the armature current and KT is the motor torque constant.

To drive the motors the Arduino Motor Shield shown in figure 5.3 was
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Figure 5.1: The Arduino UNO development board [3]

chosen. It is based on the L298P dual full-bridge driver and can run two
DC motors at up to 2A each.[19] The Arduino Motor Shield has two
channels and takes three inputs on each channel, PWM (Pulse-Width
Modulation) to control voltage supplied to the motors, DIR (direction)
to control the direction of the motor, and Brake, which will effectively
brake the motors. There is also one output per channel for current sens-
ing, which lets you measure the current going through the DC motor.[2]

The Arduino Motor Shield was chosen due to its ease of use, as it fits on
top of the Arduino UNO board, its low cost, and because it can drive
two DC motors, which is what this project uses.

A mistake were made when choosing the Arduino Motor Shield. The
choice was made based on the L298P dual full-bridge motor driver’s data
sheet. The driver is rated for up to 48 volts, and were thought to be a
good choice, but it was later discovered that the Arduino Motor Shield
is only rated for a maximum of 18 volts. Therefore the motors will not
perform optimally.
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Figure 5.2: The Mabuchi RS-385PH-16140 [13]

Figure 5.3: The Arduino Motor Shield [2]
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5.1.3 Sensors

In order to control the two-axis reaction wheel inverted pendulum, we
need to measure some state variables. The goal of the thesis is to stabilize
the pendulum in its upright equilibrium point while the speed of the
reaction wheel goes to zero, thus the angle of the pendulum in two
directions needs to be measured, as well as the speed of the reaction
wheels.

The DC motors came with single-channel incremental encoders attached,
making it possible to calculate the angular velocity of the motors.

As for the pendulum body an IMU with 6 degrees of freedom is chosen.

Encoders

The DC motors chosen for this project came with single-channel incre-
mental encoders attached. The encoders have a code track which have a
set number of track positions that are sensed by the encoder. For each
track position, the encoder sends a pulse to the Arduino. The Arduino
counts the pulses and calculates the motor speed from the time it takes
to reach a full revolution.

Some setbacks of the single-channel incremental encoder is the possibil-
ity of pulses not being registered due to interference or misreading, and
that it does not provide the direction of movement. The direction of the
reaction wheels must therefore be handled in code.

IMU

The velocity and acceleration of the system are measured by an Iner-
tial Measurement Unit, or IMU for short. In this project the GY-521
breakout board, shown in figure 5.4, which is based on the InvenSense
MPU-6050 sensor [11], was chosen. The MPU-6050 allows measurements
in 6 degrees of freedom (DOF). It is a widely available sensor and has a
very low price. The MPU-6050 contains a triple-axis MicroElectroMe-
chanical (MEMS) accelerometer and a triple-axis MEMS gyroscope. It
is very accurate , due to its 16-bits analog to digital conversion hard-
ware for each channel. The sensor uses Inter-Integrated Circuit (I2C)
protocol to communicate with the development board.[4]
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Figure 5.4: The GY-521 Breakout Board, MPU-6050 [4]

5.1.4 Reaction Wheels

The reaction wheels were designed in Fusion 360 and 3D printed to keep
the main body weight down, and designed with the option to evenly add
weight to the outermost edge of the wheels. The design of the reaction
wheel can be seen in figure 5.5

The moment of inertia of a rigid body about an axis is defined by:

I =
∑
i

mir
2
i (5.2)

where mi is the point mass at a distance li from the rotational axis.

By moving all the weight to the edge of the reaction wheel, and simpli-
fying, the moment of inertia can be approximated to:

I ≈ mr2 (5.3)

where m is the total mass of the reaction wheel and r is the radius. This
allows for minimizing the mass of the reaction wheel, while increasing
the moment of inertia.

5.2 Hardware Implementation

In this section the hardware implementation of the two-axis reaction
wheel inverted pendulum (RWIP) will be discussed. First we will look
at the original plan and goals of the system, then we will go through the
changes that were made and why.
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Figure 5.5: The Reaction Wheel designed in Fusion 360

5.2.1 Build Plan and Goals

The goal of the build was to create a standalone system, that was not
attached to anything and could easily be moved and taken around. The
motors and reaction wheels were to be mounted on top of a rod along
with the IMU unit, using 3D printed parts designed in Fusion 360.

The development board and motor shield would be mounted on a 3D
printed standoff, with a battery pack for driving the system. This would
be mounted in such a way as to move the center of mass to the optimal
position. The motor mounts would also be adjustable for this reason.

Due to the low personal budget of the project, the motors chosen would
not allow for the system to be built as planned, because of the total
weight.

5.2.2 Final Design

With the components chosen, the build plan had to be modified. The
overall weight of the system as originally planned, was too high. Due
to this, the development board, motor driver shield and power supply
was moved off the system, and wires run between the RWIP and the
development board. The final build can be seen in figure 5.6.
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Figure 5.6: The final design of the two axis reaction wheel inverted
pendulum

The wires hanging from the pendulum creates a disturbance on the
system and makes it more difficult to control, as it shifts the center of
mass and adds drag on the system that changes with the movement of
the pendulum.

The final design draws inspiration from the design of Rouleau [14].

5.3 Software Implementation

This section will discuss the software implementation of the system.

The two-axis RWIP was programmed using Arduinos own Integrated
Development Environment (IDE), which supports C/C++ programming
language.

5.3.1 Sensors

The encoders were implemented in the system by using interrupt func-
tions. Each time a change of signal on the interrupt pin is registered, a
function is called. This function counts pulses until it reaches one full
revolution, saves the time and time difference since last revolution, and
resets the counter. When the speed measurement is needed, a function
is called that calculates the motor speed, θ̇w based on the current time
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of one revolution.

In order to decide the direction of the motor, the direction set by the
controller is compared to the rate of change in angular velocity. If the
Angular velocity is decreasing, and has become sufficiently small yet,
the reaction wheel has not changed direction.

The IMU measurements are read using the MPU-6050 library written
by Jeff Rowberg [16] and uses code from an example file in that library
to read values. The IMU measurements are then filtered to get rid of
some of the noise, and give the current values of θp and θ̇p. These values
are then fed to the controllers, to calculate the desired motor output.

5.3.2 Controllers

The PD+P controller is first implemented with the gain values from the
simulations, and then tuned through several iterations.

The controllers are programmed using the reference value and the mea-
sured state variables, and the controller gain values. The output value
of the controller is constrained to map the limits of the PWM signal
boundaries, and this final value is then sent to the DC motor that is to
be controlled.

Moving Reference

In order to compensate for center of mass not being at θp = 0, a mov-
ing zero reference were implemented. For each iteration of the system
calculations, the zero reference is updated with 0.5% of the current θp
value.

5.4 Discussion

The experimental model was built as shown in the final design and
software was implemented as described. Fusion 360 had to be learned
in order to 3D model the parts needed for this project and took good
amount of time to master, and the parts were successfully designed and
3D printed after multiple iterations.

A few setbacks were encountered during the build. Because of the limited
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personal budget, most of the components were ordered from eBay and
had a long delivery time. During the project one of the motors failed
and a new one had to be ordered, this new motor did not arrive until a
week before the due date of this report, giving limited time to properly
test the system and to get it to stabilize.
Another setback was the choice of motor shield, which ultimately limited
the performance of the DC motors. Had this mistake been discovered
earlier, a different motor driver would have been chosen.
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Chapter 6

Experimental Results and
Discussion

In this chapter we will go through the experimental testing of the two-
axis reaction wheel inverted pendulum described in the previous chapter.

First we will look at the outline of the tests to be performed. Thereafter
we will look at the data from the experiments and show the results.
And lastly we will discuss the result and see how the system performed
according to expectations, pointing out what did not work and what
did, and why.

6.1 Experimental testing

This section is organized in the following way:

� Section 6.1.1: Case 1: Functionality Tests

� Section 6.1.2: Case 2: Balancing

6.1.1 Case 1: Functionality Tests Sensors

In this case study we will look at the sensors of the system and run tests
to ensure that they work properly and as expected. This is to make sure
we get proper feedback from the system, so that we can apply control.
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Figure 6.1: IMU measurements of the pendulum body’s angular posi-
tion, when still

The Inertial Measurement Unit (IMU) should provide accurate measure-
ments of the angular position of the pendulum body, and with a limited
amount of measurement noise. The θp values are filtered and calculated
from the raw data provided by the IMU.

To test the encoders, the motors were driven with different PWM val-
ues to show that the encoders would be able to calculate speed. Rapid
changes both in PWM and direction were added to show that the en-
coders were coded properly and would display the correct direction.

Results

The IMU were tested by holding the IMU still, shown in figure 6.1, and
by tilting the pendulum body about both axes as shown in figure 6.2.
We can here see that the IMU will accurately determine the angular
position of the pendulum with a measurement noise of ±0.015deg. The
measurement noise shown in figure 6.1 is small enough as to not affect
the control of the system too much.

We can see from figure 6.3 and 6.4, by comparing the plots for angular
velocity and PWM setpoints, that the encoders are able to successfully
determine speed and direction of the motors. The speed values and
change in speed values provided by the encoders performs sufficiently
well to be used as measurement feedback.
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Figure 6.2: IMU measurements of the pendulum body’s angular posi-
tion, when rotated

Figure 6.3: Speed measurement of DC motors, and the PWM values
sent to the motors
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Figure 6.4: Speed measurement of DC motors, and the PWM values
sent to the motors

6.1.2 Case 2: Balancing

In this case study we will implement controllers to the system and try to
balancing the two-axis reaction wheel inverted pendulum with no added
disturbance. First the values used in simulations will be used, and then
the values will be tuned from there through multiple iterations.

Unfortunately the system were never stabilized and no final, working
values for the PD+P controller were found.

Results

The initial controller gain values did not manage to balance the system
and provided no usable plots, as it fell straight over.

The controller values were attempted tuned as best as could be, but
as seen from figures 6.5 and 6.6, the pendulum oscillates out of control
after a short amount of time. In the end the system were not able to
stabilize. Figures 6.7 and 6.8 show the best settings that were found.
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Figure 6.5: State trajectories of θp with applied control, Kp = 670,Kd =
23,Kp,w = 0.8

Figure 6.6: State trajectories of θ̇p with applied control, Kp = 670,Kd =
23,Kp,w = 0.8
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Figure 6.7: State trajectories of θp with applied control, Kp = 600,Kd =
30,Kp,w = 2

Figure 6.8: State trajectories of θp with applied control, Kp = 600,Kd =
30,Kp,w = 2
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6.2 Discussion

In this chapter the system was tested, doing experiments with feedback
measurements and balancing control.

First we looked at the feedback measurements of the IMU which showed
that the MPU-6050 sensor provides sufficiently accurate values to use
in feedback control. The filtered IMU values, shows low measurement
noise, and will not affect the performance of the controller.

Secondly the feedback measurements of the encoders were tested. Here
we saw that the encoders were able to determine both speed and direc-
tion of the motors, and that they perform sufficiently well for the use in
feedback control.

Lastly the completed experimental system was tested with different con-
troller gain values in order to make it balance at its upright equilibrium.
Unfortunately, through countless tests and different gain values, the sys-
tem were never stabilized. This is partly due to running out of time, but
mostly due to the wrong choice in hardware components as discussed in
the previous chapter.

Due to the voltage limitation on the motor shield, the motors were
under-powered and is the main cause of the system not being able to
balance. In order to provide enough torque to move the pendulum body,
the voltage sent to the motors almost had to be maxed out. This gave
little room for control.
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Chapter 7

Conclusion and Further
Work

7.1 Conclusion

In this master thesis a model for the reaction wheel inverted pendulum
was derived using Euler-Lagrange’s equations of motion. The model
was implemented in MATLAB and Simulink to show the behavior of a
two-axis reaction wheel inverted pendulum. Different controllers were
implemented in order to stabilize the system about its upright equilib-
rium, and to compare their performances.

An experimental model was developed and built, including software and
hardware design. Sensors for measuring the system states were imple-
mented and tested, and proven to be sufficient. The experimental model
was tested with a Proportional-Derivative controller on the pendulum’s
angular position and a P controller on the reaction wheel’s angular ve-
locity. Unfortunately the experimental model failed to stabilize about
the upright equilibrium.

7.2 Further Work

It has been shown that the experimental model, as is, does not stabilize
at the upright equilibrium, and thus the most obvious remaining work
is to change out some of the components, to attain this goal, mainly the
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motor shield. The motor shield should be able to handle the nominal
voltage of the DC motors.

Further the DC motors chosen should work if the motor shield was to be
replaced, but it would be favorable to exchange the motors for ones with
a better torque to weight ratio. The encoders could also be switched out
for two-channel encoders that can also detect the direction of rotation.
The reaction wheels could also be improved by being redesigned and
milled from a metal to increase precision and moment of inertia.

A short term goal would then be to get the experimental model to bal-
ance about the upright equilibrium. Once this goal is attained, tests
can be performed adding external impulse forces on the system, and on
performance when changing the center of mass.
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Appendix A

Digital Appendix

The digital appendix contains the following files:

� Arduino Code for the Two-Axis Reaction Wheel Pendulum.

� Design Files for Parts Designed in Fusion360.

� MATLAB and Simulink Files, Including Model of the Two-Axis
RWIP.
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