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Summary 
Global warming is considered to be the most adverse consequence from the increasing 
anthropogenic emissions of CO2. However, in the marine environment additional 
problems related to the elevated levels atmospheric CO2 may arise; the increased 
amount of CO2 absorbed by the oceans may lead to a moderate, but consistent and 
global reduction in seawater pH due to the acidifying effect of CO2, a phenomenon 
referred to as ocean acidification. Another potential problem may occur as a result of 
sub-seabed storage of anthropogenic CO2, a disposal alternative introduced by the gas 
industry to mitigate CO2 emissions to the atmosphere. Leakage from such storage sites 
could potentially cause a relatively local, but extreme acidification of the seawater near 
the leakage site. Both scenarios may create unfavourable conditions for marine 
organisms, and previous studies have reported that environmental hypercapnia 
(elevated pCO2) may affect an array of physiological processes in marine organisms 
such as acid-base status and metabolic rate. Deep-living animals are considered to be 
particularly vulnerable to environmental hypercapnia due to their low metabolic rate 
and poor ability to counteract effects of environmental stressors.  

To predict the possible outcome of the two scenarios described above it is important to 
understand the physiological mechanisms that marine organisms apply to handle the 
CO2 stress. During conditions of elevated seawater pCO2, the charge neutral CO2 
molecules permeate biological membranes and react with water in the body fluids 
resulting in the net formation of HCO3- and H+. Thus, the primary effect of elevated 
pCO2 is induction of body fluid acidosis. Acid-base regulation during acidosis is 
generally mediated by buffering compounds as well as acid elimination through direct 
removal of hydrogen ions (H+) and/or accumulation of buffering bicarbonate ions 
(HCO3-).  

In the current thesis the deep-sea bivalve Acesta excavata, the green shore crab Carcinus 
maenas, and the deep-water prawn Pandalus borealis were exposed to elevated seawater 
levels of pCO2. The purpose was to study the responses of the different species to 
elevated pCO2 and to compare the capacity of shallow- and deep-living animals to 
counteract CO2-induced effects. To meet these objectives changes in acid-base relevant 
parameters (pH, pCO2, [HCO3-]) and metabolic rate was studied in all three species, 
while gene expression and activity of ion regulating proteins as well as changes in the 
metabolome were determined in C. maenas alone. 

Calcifying animals, such as bivalves, have been suggested to utilise HCO3- from the 
calcium carbonate shell to buffer acidosis. However, this buffering strategy may be 
restricted to closed systems such as during shell closure. Indeed, the findings in the 
present thesis indicate that shell dissolution does not occur in the deep-living bivalve 
A. excavata in response to CO2-induced acidosis. Consequently, A. excavata does not 
seem to be able to compensate extra- or intracellular acidosis in response to severe 
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environmental hypercapnia, and experiences a drop in metabolic rate most likely 
induced by low body fluid pH. However, this species displays a relatively high non-
bicarbonate buffering capacity, and may therefore be able to tolerate more moderate 
levels of CO2 exposure than that experienced in the present study. 

In decapod crustaceans extracellular pH-regulation occurs in the posterior gills by 
electroneutral ion exchange between the extracellular fluids and the surrounding 
seawater. The shore crab C. maenas was able to partially compensate extracellular 
acidosis by accumulating relatively high levels of HCO3- in response to elevated pCO2, 
and the degree of compensation was dependent on the level of CO2 exposure. The 
results from the present thesis suggest that this species can compensate acidosis 
without substantially increasing the acid-base regulatory capacity of the branchial ion 
transporting proteins. Surprisingly, the deep-water prawn Pandalus borealis exhibited 
similar abilities as the shore crab to counteract extracellular acidosis induced by 
elevated pCO2. This was achieved by increasing the extracellular concentration of 
HCO3- to a similar degree as C. maenas. The findings indicate that this species display 
similar acid-base regulatory capacities as shallow-living decapods, thus nuancing the 
picture of the compensating capacities of deep-living animals. Acid-base regulation in 
both decapod species was achieved without affecting the osmolality of the extracellular 
fluid. This is in contrast to what has been reported for subtidal decapod crabs. The 
metabolic rate was not significantly affected in any of the two species, possibly due to 
their ability to maintain extracellular pH close to normal values. 

While acid-base regulation in response to CO2-induced acidosis has received increased 
scientific attention, only a very few studies have investigated responses of the 
metabolome to elevated pCO2. 1H-NMR metabolomics revealed that in the green shore 
crab CO2 exposure induces a shift in the metabolic fingerprint in both hemolymph and 
extracts of gills and leg muscle. The shift is not the result of changes in metabolites 
involved in energy metabolism, as could be expected. Rather, it is due to a general 
decrease in the concentration of metabolites, particularly of important osmolytes such 
as the amino acids proline and glycine. The observed changes were most prominent 
after prolonged exposure, suggesting an exhaustive response rather than an active, 
compensatory mechanism. The results indicate that in response to elevated pCO2 
shore crabs experience symptoms resembling those of animals acclimated to condtions 
of reduced salinity. This may possibly suggests a disturbance of intracellular iso-
osmotic regulation. 

The present thesis indicates that A. excavata would be highly, and possibly 
permanently affected by severe CO2 exposure associated with CO2 leakage, while both 
the intertidal and deep-living decapods could tolerate relatively prolonged periods of 
quite severe hypercapnic conditions 
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1. Introduction 
There is a wide scientific consensus that the increase in the atmospheric level of CO2 
observed today is due to human activities, such as burning of fossil fuels, and that this 
increase is responsible for the observed global warming (Houghton 2005). The oceans 
are a natural buffer of atmospheric CO2 and have absorbed approximately one third of 
the anthropogenic CO2 emitted since the start of the industrial revolution (Sabine et al. 
2004). Consequently, this has resulted in an increased partial pressure of CO2 (pCO2) 
and reduced pH in the sea. To reduce atmospheric emissions disposal alternatives such 
as carbon capture and storage (CCS) of anthropogenic CO2 has been initiated. 
However, as leakage may occur, implementing sub-seabed CO2 storage may further act 
to relocate the CO2 problem from the atmosphere to the oceans.  

To understand how elevated levels of CO2 in the oceans may affect marine organisms 
and ecosystems it is important to both understand the properties of CO2 in seawater, 
and how marine animals respond to these conditions. 

1.1 Carbon dioxide (CO2) in seawater 

CO2 is relatively soluble in seawater due to the formation of dissolved inorganic 
carbon (DIC) species, and the solubility increases with hydrostatic pressure, but 
decreases with increased salinity and temperature. When CO2 reacts with water 
carbonic acid (H2CO3) is formed, followed by an almost immediate dissociation to 
bicarbonate (HCO3-), carbonate (CO32-), and hydrogen (H+) ions according to Eq 1: 
 

1 2K K- 2-
2 2 2 3 3 3CO H O H CO HCO H CO 2H                                    (1)     

 
where K1 and K2 are the first and second dissociation constants of H2CO3, respectively. 
Since carbonic acid amounts to less than 0.03 % of the concentration of aqueous CO2, 
and the two molecules are chemically inseparable, the sum of the two chemical species 
is often denoted CO2.  

 

Fig. 1: Distribution of species diagram for 
the CO2-HCO3-CO32- system in water. T = 
25 C, S = 35. Circles indicate the pK values 
of carbonic acid at the given conditions, pHsw 
denotes the typical pH of seawater Blue line 
indicates CO2, black curved line indicates 
HCO3- and red line indicates CO32-. (Modified 
from Zeebe and Wolf-Gladrow, 2001). 
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1.1.2 Carbon capture and storage 
Carbon capture and storage was originally developed by the oil industry to increase oil 
recovery in the producing wells, but is now a promising alternative to reduce future 
emissions of CO2 into the atmosphere (IPCC, 2005). Sub-seabed geological storage 
involves injecting liquid CO2 into porous rock formations, such as depleted oil or gas 
reservoirs, and in deep saline formations (Fig. 2, see 2). A sealed cap rock located over 
the storage site is required to prevent leakage into the ocean. CO2 is generally injected 
800 meters or more below the seafloor at ocean depths of approximately 300 meters. 
Here, the ambient temperature and hydrostatic pressure cause the CO2 to remain in a 
liquid state (IPCC, 2005). About 1·106 tons of CO2 has been captured and stored 
annually since the production started on Sleipner Vest in the North Sea in 1996 
(Benson et al. 2005), and the geological formations in the North Sea area have a 
theoretical capacity for storing more than 8·1011 tons of CO2 (Turley et al. 2004).  

Although geological storage of CO2 is assumed to be relatively safe, leaks could pose a 
serious threat to the marine environment in the vicinity of a leakage site (Friedmann 
2007). The probability of a leak occurring over a period of 1000 years has been 
estimated to be 34 %, and an average leak is estimated to comprise 0.2 % of the stored 
CO2 (Turley et al. 2004). Benson et al. (2005) have suggested that leaks of geologically 
stored CO2 may occur (1) through the pore system in caprocks if the capillary entry 
pressure is exceeded; (2) through openings in the caprock caused by the drilling of 
wells and (3) due to poorly completed pre-existing wells. Potential leaks from 
geological storages of CO2 could affect the local seawater chemistry in a number of 
ways, the most important being the reduction of pH. In addition, displacement of other 
gases, such as oxygen, by diffusion into CO2 bubble clouds could occur. The extent of 
the effects would depend on the amount of CO2 released, and the rate, duration, and 
dispersal of the leak, as well as the reactions of CO2 with the sediment (Turley et al. 
2004).  

1.1.3 Environmental hypercapnia  
Although the normal ocean pCO2 level in surface ocean waters is reported to be 
approximately 400 atm (Melzner et al. 2009), it may vary considerably between 
different habitats. Elevated ambient pCO2, also known as environmental hypercapnia, 
occurs naturally in many marine habitats For instance, the CO2 levels near underwater 
volcanic vents are particularly high (Hall-Spencer et al. 2008; Tunnicliffe et al. 2009), 
while an elevated CO2 level can be found in areas where upwelling brings CO2 rich 
water from the deeper parts of the oceans to the surface (Feely et al. 2008). Also, in 
shelf areas, such as in the Western Baltic Sea, stratification followed by seasonal 
upwelling results in seasonally increased CO2 levels in surface waters (Thomsen et al. 
2010). Hypercapnic conditions may also form in tidal pools when respiration exceeds 
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photosynthesis in the night time, thus creating a build-up of pCO2 in the ambient 
water (Truchot 1986). 

1.2. Acid-base homeostasis  

The physiological conditions in the body serve to create the optimum environment for 
biological processes. The maintenance of a more or less constant composition of the 
body fluids is termed homeostasis and is of vital importance and. Examples of 
homeostasis include the constancy of body temperature in mammals and birds, as well 
as the constancy of respiratory gases (O2 and CO2), pH, and osmotic pressure (Withers 
1992).  

Acid-base homeostasis concerns the balance between acids (H+) and bases (OH-). 
Hydrogen ions are formed when acids react with water. The activity of hydrogen ions 
(aH+) in a solution is usually expressed as the pH of the solution and, a low pH 
corresponds to a high [H+] according to Eq 2 

H
                                                            pH log a                                           (2) : 

The pH scale ranges from 1 to 14, and the pH is defined as neutral if the concentration 
of H+ equals that which results from the dissociation of water alone. At 25 °C pH 7 
corresponds to neutral pH. However, the pH of pure water decreases with increased 
temperature by -0.017 units per °C, and a similar dependency of temperature is found 
in blood pH (Withers 1992). In addition to the effect of temperature, acid-base 
homeostasis in the body fluids may be offset by changes in temperature, high anaerobic 
activity and the pH of the surrounding medium (Heisler 1984). A condition of reduced 
body fluid pH is known as acidosis, while alkalosis is a condition of elevated pH.  

The small size of the hydrated hydrogen ion (H3O+) causes it to bind stronger than 
larger ions (e.g. Na+, K+) to negatively charged molecules. They can be particularly 
damaging to proteins with even small changes in the concentration dramatically 
affecting the activity of enzymes. The explanation for this is that association by H+ 
leads to an altered charge distribution of the enzyme, which further affects the 
enzyme-ligand combination rate (Madshus 1988; Somero 1986; Woodbury 1965).  

The acids that are of highest physiological importance are carbonic acid and organic 
acids formed from aerobic and anaerobic metabolism. As described above, the 
concentration of H2CO3 is determined by the [CO2] and thus the pCO2. Elevated 
pCO2 in the body fluids, results in a condition referred to as respiratory acidosis. 
Accordingly, metabolic acidosis is caused by a build-up of acidic metabolites 
(Woodbury 1965).  



Introduction 
 

9 

Some ions affect the acid-base status under all conditions (H+, OH- and HCO3- ions), 
while others, such as buffer ions that change their dissociation when transferred 
between fluids of different pH values, are only acid-base relevant ions under certain 
conditions (Heisler 1984). The presence of buffers is one of the most important 
defences against body fluid acidosis. Buffers are compounds that minimize shifts in pH 
by reacting with exogenous H+ (Roos and Boron 1981). They are weak acids or bases 
and include bicarbonate and non-bicarbonate compounds such as phosphates and 
imidazole groups of histidine residues in proteins (Burton 1978; Castellini and Somero 
1981; Eberlee and Storey 1984).  

Marine ectothermic animals have a relatively low pCO2 of 0.3 to 0.6 kilopascals (kPa) 
compared to 5 to 8 kPa in the blood of terrestrial animals. However, marine organisms 
are able to maintain a pH close to that of air-breathing animals by having a 
correspondingly low concentration of HCO3-, an important buffer in the body fluids. 
To maintain a constant pH in the body fluids organisms must be able to eliminate 
surplus H+ or OH- produced in the body or originating from the environment (Heisler 
1984; 1986). 

1.3 Acid-base regulation 

During conditions of environmental hypercapnia the body fluids of aquatic animals 
equilibrate rapidly with the environment, and the hydration of CO2 leads to a net 
formation of HCO3- and H+. To avoid detrimental effects caused by the reactive H+, 
the animals must regulate the pH of the extra- and intracellular compartment. When 
mammals experience metabolic acidosis they respond by increasing their ventilation 
rate to increase CO2 removal, thereby reducing the acid load in the body fluids (Fig. 
3a). Compensation of respiratory acidosis, on the other hand, involves metabolic 
reabsorption of bicarbonate in the kidneys (Pitts and Lotspeich 1946). To compensate 
for the low concentration of O2 in seawater aquatic ectotherms have relatively high 
basal ventilation rates. The high ventilation rate cause a moderate pCO2 difference 
between the blood and seawater. Increasing the ventilation frequency to increase the 
elimination of CO2, thus, offers a poor means of acid-base regulation. Marine 
ectotherms must therefore apply metabolic compensation to counteract acidosis 
(Heisler 1984).  

The extracellular fluids have relatively low concentrations of pre-existing, buffers. 
Acidosis must therefore be counteracted by either excretion of H+ directly or by 
accumulating buffers, such as HCO3- to neutralize H+. The two means of acid 
elimination yield the same results with respect to pH compensation and in response to 
acidosis marine ectotherms are often able to fully or partially compensate extracellular 
pH by increasing the concentration of bicarbonate ions in their blood (Heisler 1986). 
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The relationship between pH and the concentrations of dissolved inorganic carbon 
(CO2 and HCO3-) is given by the Henderson-Hasselbalch equation: 

-
3

1
2 2

[HCO ]                               pH pK log                         (3)
CO pCO

 
 
 

where pK1 is the first apparent pK value of carbonic acid, pCO2 is the partial pressure 
and CO2 is the solubility of CO2.  

The compensation of extracellular pH during hypercapnic acidosis is best described by 
a pH-HCO3- plot (Davenport diagram) which depicts the simultaneous changes of pH 
and HCO3- with changes in pCO2 (Fig. 3). If the time-dependent trajectory displays a 
straight line, where the decrease in pH is followed by a small increase in [HCO3-] 
(solid arrow, bottom), there is no pH-compensation, and the increase in bicarbonate 
represents that formed from the dissociation of CO2 (Fig 3b). However, if a decrease in 
pH is followed by an abrupt increase in HCO3-, and the pH increases or remains in a 
steady-state at a constant level of pCO2, then the extracellular pH is restored through 
metabolic compensation (dotted upward arrow).  

 Fig. 3. A Davenport diagram A: Conditions of respiratory acidosis (RAC) and respiratory alkalosis 
(RAL), and metabolic acidosis (MAC) and metabolic alkalosis (MAL). B: Metabolic compensation 
through accumulation of HCO3- (dotted arrow) during respiratory acidosis. Isoplets indicate pCO2.  

 

1.3.1 Acid-base regulation in bivalves 
Intertidal bivalves frequently experience acidosis during air exposure at low tide 
(Booth et al. 1984; Jokumsen and Fyhn 1982; Lindinger et al. 1984; Michaelidis et al. 
2005; Walsh et al. 1984). Freshwater bivalves are hyper-osmotic to their medium and 
actively transport ions through epithelial transporters to maintain the extracellular 
osmolality well above that of the surrounding water. As a result these animals also 
have the ability to extrude H+ or accumulate HCO3- through Na+/H+ and Cl-/HCO3- 
exchangers, respectively, during acidosis (Byrne and Dietz 1997). In contrast, marine 
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bivalves are osmoconform, and there exist little evidence for the presence of such 
exchangers in marine species. Intertidal species often close their shell in response to 
environmental changes, thereby isolating themselves from the surrounding medium. 
Studies show that buffering by HCO3- originating from CaCO3 of the shell seems to be 
their primary defence against extracellular acidosis experienced during valve closure 
episodes (Collip 1921; Crenshaw and Neff 1969; Dugal 1939; Jokumsen and Fyhn 
1982; Lindinger et al. 1984). Shell formation and dissolution take place on and from 
the inner shell surface, respectively, and the process of precipitation and dissolution of 
CaCO3 occur in the extrapallial fluid, which is in direct contact with the inner shell. 
During hypercapnic and metabolic acidosis H+ reacts with CaCO3 in the shell, yielding 
free calcium and bicarbonate ions (Booth et al. 1984): 

 2 -
2 2 3 3                      CO H O CaCO Ca 2HCO                              (4)   

While HCO3- neutralise H+, the free calcium ions increase the strong ion difference in 
the hemolymph, thus reducing the acidosis. In addition, increased excretion of 
ammonia is suggested to increase the elimination of hydrogen ions in M. edulis (Booth 
et al. 1984; Lindinger et al. 1984; Walsh et al. 1984). 

 

1.3.2 Extracellular acid-base regulation in teleosts and decapod crustaceans 

The blood of fish and crustaceans contain haemoglobin and hemocyanins, respectively, 
and the oxygen carrying capacity of both respiratory pigments is sensitive to pH. It is 
therefore important for these animals to also regulate the extracellular pH in response 
to acidosis to avoid metabolic depression (Melzner et al. 2009). To counteract acidosis 
as a result of i. e. strenuous activity, these animals must have well-developed acid-base 
regulatory machinery. In both marine teleosts and decapod crustaceans the major site 
for acid-base regulation are the gills. The gills are also the site for gas exchange and 
osmoregulation. In decapods gas exchange mainly takes place in the anterior gills (gill 
1-4), while the posterior gills (gill 6-9) contain mitochondria rich are the major site for 
both acid-base and osmoregulation (Wheatly and Henry 1992). 

Branchial acid-base regulation occurs through electroneutral ion exchange where acid-
base relevant ions (mainly H+ and HCO3-) are exchanged for inorganic ions (Na+, Cl-) 
(Cameron 1986; Heisler 1984). This occurs through several ion transporting proteins, 
which are also important in the maintenance of osmolality in addition to their role in 
acid-base regulation (Fig 4). It has therefore been predicted that strong iono- and 
osmoregulating species will be most tolerant to ocean acidification as they are better 
equipped to counteract acid-base disturbances (Whiteley 2011). The Na+/H+ 

exchanger (NHE) extrudes hydrogen ions in exchange for sodium ions, while the Cl-

/HCO3- exchanger (CBE) is involved in the accumulation of bicarbonate ions in 
response to hypercapnic acidosis. Both proteins are located in the apical membranes of 
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the gill epithelial cells (Towle and Weihrauch 2001), and are thus in direct contact 
with the ambient seawater (see Fig. 4).  

The energy needed to drive ion regulation derives from the activity of the basolateral 
enzyme Na+/K+-ATPase. This enzyme extrudes three Na+ out of the cell in exchange 
for two K+ per ATP (Skou and Esmann 1992), and is thereby involved in establishing 
the transmembrane sodium gradient (Ganong 1999). Ion-regulation is thought to be 
rather costly as the activity of Na+/K+-ATPase has been found to constitute up to 40 
% of total energy expenditure (Leong and Manahan 1997). Another enzyme that may 
play a role in ion regulation is the vesicular-type (V-Type) H+-ATPase. This enzyme 
is important for ion regulation in freshwater animals, and has been found to play a 
large role in ammonia excretion in marine decapods (Towle and Weihrauch 2001; 
Weihrauch et al. 2004).  

Fig. 4. Ion regulation in the gills of decapod crustaceans 
modified from Towle et al. (2001). 

 

 

 

 

 

 

In mammals the enzyme carbonic anhydrase is found in the red blood cells where it 
catalyses the reversible dissociation of carbonic acid to HCO3- and H+ to facilitate CO2 
removal from the tissues and transport. In decapod crustaceans two isoforms, 
membrane-associated (CAg) and cytoplasmic carbonic anhydrase (CAc) are found in 
high concentrations in the gills. While CAg converts bicarbonate and hydrogen ions 
from the extracellular fluids to CO2 and facilitate CO2 excretion, CAc catalyses the 
dissociation of CO2 to bicarbonate ions which can further be used as counter ions for 
absorption of Cl- from the surrounding medium. Both enzymes are thus believed to 
play important roles in both osmoregulation and acid-base regulation in fish and 
decapods (Burnett et al. 1981; Gilmour and Perry 2009; Henry and Cameron 1983).  

1.3.3 Intracellular acid-base regulation 
Since the majority of metabolic processes occur inside the cells the maintenance of 
intracellular acid-base homeostasis is considered to be of even higher importance than 
maintaining a constant extracellular pH (Madshus 1988). Animals employ two ways of 
compensating intracellular acidosis. The first line of defence is the intracellular non-
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bicarbonate buffers (phosphates and imidazole groups of histidine residues) which bind 
and neutralize some of the surplus H+. (Castellini and Somero 1981). Non-bicarbonate 
buffering occurs rapidly and only masks H+ to reduce pH changes. To restore original 
pH the H+ must be eliminated and this is achieved through ion transport over the cell 
membrane. This involves extrusion of H+ and accumulation of HCO3 into and from the 
extracellular compartment (or organelles), respectively through electroneutral ion 
exchange, mediated by the activity of Na+/K+ ATPase (Roos and Boron 1981; Thomas 
1977). 

1.4 Physiological effects of elevated pCO2 

Environmental hypercapnia is reported to induce a whole array of physiological 
effects, such as disturbance of acid-base balance and calcification, reductions in growth 
rates, reproduction and energy turnover, dissolution of shells and exoskeletons in 
calcifying animals, metabolic depression, narcosis and ,if persistent, death in marine 
invertebrates (Gutowska et al. 2010a; Gutowska et al. 2010b; Lindinger et al. 1984; 
Michaelidis et al. 2005; Miles et al. 2007; Pörtner et al. 2004; Pörtner et al. 1998; 
Reipschlager and Pörtner 1996; Ries et al. 2009; Spicer et al. 2007; Wickins 1984; 
Wood et al. 2008). The tolerance to CO2 varies between species and also depends on 
the life-stage of the animal (Kikkawa et al. 2004; Kurihara 2008), and mortality 
increases with increased levels of CO2 and time of exposure (Langenbuch and Pörtner 
2004; Spicer et al. 2007). Studies have shown that CO2 can be more toxic to aquatic 
animals than strong acids yielding the same pH, most likely owing to the high 
permeability of CO2 and H2CO3  compared to the charged hydrogen ions (Jacobs 1920; 
Kikkawa et al. 2004). Thus, the physiological effects of elevated pCO2 cannot be 
studied by simply lowering the pH using strong acids. 

1.5 Deep-sea animals 

The deep sea is usually defined as beginning at the shelf break which coincides with 
the transition from shallow-water fauna of the shelf to the deep-sea fauna and is 
characterized as a physically stable environment (Thistle 2003). Deep-sea animals are 
believed to be more sensitive to increased ocean levels of CO2 than shallow-living 
animals and pelagic animals with high metabolic rates and capacities for high-burst 
swimming/movement. This assumption is based on the observations that deep-living 
animals often are found to have reduced metabolic rates and intracellular buffering 
capacities compared to shallow-living and active species (Castellini and Somero 1981; 
Seibel et al. 1997; Seibel and Walsh 2003). A poorer ability of deep-sea animals to 
regulate pH during hypercapnic conditions compared to in shallow-living has been 
confirmed for decapod crabs (Pane and Barry 2007). However, some deep-sea animals 
inhabit areas with naturally high CO2 levels and low pH. The vent mussel 



Introduction 
 

14 

Bathymodiolus brevior can be found both at locations having naturally high pCO2 due to 
volcanic activity, as well as locations with normal CO2 levels (Tunnicliffe et al. 2009).  
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Aim of study 
The main objective of this thesis was to increase the general mechanistic 
understanding of physiological processes involved in response to CO2–induced acidosis 
in different species, and to provide more information of how deep-living species, which 
are believed to be particularly vulnerable to increased seawater pCO2, are affected and 
how they handle these conditions.  
 
 
To meet these aims the following investigations were made: 
 
1. Study the changes in acid-base parameters (pCO2, pH, and [HCO3-] in the deep-sea 
bivalve A. excavata (Paper I) and in shallow- and deep-living decapod crustaceans 
(Paper II and III, respectively) in response to time-dependent (Paper I-III) and level-
dependent (Paper II) exposure to elevated seawater pCO2. 
 
2. Investigate the effects of elevated seawater pCO2 on the metabolic rate in shallow- 
(Paper II) and deep-living invertebrate species (Paper I and III) 
 
4. Investigate CO2-induced changes in gene expression of ion-regulating proteins in 
the posterior gills of C. maenas (Paper II), as well as changes in the activity of the ion-
regulating enzyme Na+/K+-ATPase in both C. maenas and P. borealis (Paper II-III). 
 
5. Study the time- and level-dependent CO2-induced changes in the composition of 
extracellular and intracellular metabolites in C. maenas using 1H-NMR metabolomics 
in combination with multivariate analysis (Paper IV).   
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2. Materials and methods 

2.1 Choice of model species 

The species chosen for this thesis represent animals adapted to a life in the intertidal 
zone and species that are found in deeper water. This comparative approach was 
adopted to compare the responses of the intertidal species to those of deep-living 
animals.  

The deep sea bivalve Acesta excavata 
The giant file shell A. excavata is a large, deep-living bivalve which has been found at 
ocean depths down to 3200 meters, but is most commonly found at depths between 
200 to 800 meters (Freiwald et al. 2005; Järnegren and Altin 2006). It is found in 
association with the cold-water coral Lophelia pertusa, but also occurs in areas close to, 
and inside pockmarks along the Norwegian Coast (Hovland 2005). Rather than to 
conduct experiments with shallow-living species the results obtained in Paper I were 
compared to the results from previous studies. Animals were collected in the 
Trondheimsfjord by use of an ROV (Fig. 5). 

The green shore crab Carcinus maenas 
The shore crab C. maenas inhabits the intertidal zone and experiences daily 
fluctuations in abiotic factors such as temperature, salinity, pO2 and pCO2. C. maenas is 
a relatively strong osmoregulating species that can maintain body fluid osmolality well 
above seawater values under conditions of reduced salinity (Henry et al. 2002). 
Previous studies have revealed that this species has a high tolerance to hypercapnic 
conditions (Truchot 1975). C. maenas was therefore chosen as a model species for this 
thesis to reveal the defensive mechanisms of decapod crustaceans to elevated levels of 
CO2. Animals were collected at local beaches in the Trondheimsfjord, Norway (Fig 6). 

The deep-water prawn Pandalus borealis 
The deep-water prawn Pandalus borealis is found at ocean depths from 50-500 meters, 
depending on the temperature of the surroundings (Shumway et al. 1985). P. borealis is 
a benthic, stenohaline species, and was chosen for this thesis to study how deep-living 
decapod species is affected by elevated pCO2 and their ability to regulate the acid-base 
status in response to CO2-induced acidosis. The animals were collected in the 
Åsenfjord by use of a shrimp trawl equipped with a barrel at the bottom end to 
minimize damage to the animals (Fig.7).  

2.2 Ethical considerations 
Decapod crustaceans are included in the Animal Welfare Act, and the experiments 
regarding C. maenas and P. borealis were approved by the Norwegian National Animal 
Research authority. 
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2.3.2 Seawater carbonate chemistry  
To determine the seawater carbonate chemistry it is necessary to measure at least two 
relevant parameters: In all experiments seawater pH was measured potentiometric 
using the NBS scale (pHNBS). In addition, pCO2 was determined using semi-log linear 
relationship between pH and pCO2 in Paper I (see below for hemolymph), while total 
CO2 (TCO2) and total alkalinity (TA) were measured Paper II and IV, and TA was 
measured in Paper III. The measured values were used to calculate pCO2 using the 
CO2SYS software (Pierrot et al. 2006). 

2.4 Analytical variables 

The analytical variables determined for the different species are described below in 
Table 2. 

Table 2. Overview of parameters studied in the different species 

Parameter A. excavata        
Paper I 

C. maenas            
Paper II and IV 

P. borealis            
Paper III 

 
(pCO2, pH, [HCO3-

])e 

X X X 

pHi X  X 

Non-bicarbonate 
buffering capacity X   

Extracellular 
osmolality  X X 

O2 consumption X X X 

Ammonia 
excretion X X X 

Gene expression  X  

NKA activity  X X 

GDH activity   X 
1H-NMR 
metabolomics  X  

e = extracellular, i = intracellular, faded: measured but not included in paper  
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2.4.1 Acid-base parameters 
pH 

The acid-base parameters pH, pCO2 and [HCO3-] were determined to investigate how 
the animals were affected by CO2-induced acidosis and whether they were able to 
counteract the acidosis. Extracellular pH was measured directly on hemolymph (Paper 
I-III), while intracellular pH was measured on extracts of muscle tissue containing 
metabolic inhibitors according to the method of Pörtner et al. (1990) in Paper I and 
III. 

TCO2 and pCO2, [HCO3
-] 

In Paper I the pCO2 in the hemolymph of A. excavata was determined based on the 
semi-log linear relationship between pCO2 and pH. Samples of hemolymph were 
equilibrated using two different CO2 tensions, and the resulting equation was used to 
calculate pCO2 in the hemolymph from the original pH (Fig.9).  

 

. 

Fig. 9. pH/log pCO2 line for hemolymph at 8 
ºC. A: control (normocapnic) animal and B: 
hypercapnic animal 

 

 

 
 
 

 
 
In Paper II and III total CO2 of hemolymph was measured using a commercial 
analyser (Corning 965). pCO2 and [HCO3-] were calculated by rearranging the 
Henderson-Hasselbalch equation (Eq 3) and using the pK values and solubility of CO2 

given by Truchot (1976).  
 

2.4.2 Quantitative PCR (qPCR) 
Quantitative real-time polymerase chain reaction (qPCR) is an established technique 
for determining the number of specific mRNA transcripts in biological samples. This 
allows us to study if the expression of specific genes is affected by endogenous or 
exogenous changes, and may therefore indicate if there is an increased or decreased 
need for the protein the gene encodes. The genes studied in the present study are 
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those encoding known ion transporting proteins found in the epithelial cells of 
posterior gills in C. maenas and that are thought to be involved in acid-base regulation  

2.4.3 Enzyme activity 
Increased gene expression, or even increased synthesis of an enzyme does not 
automatically mean that the enzyme activity increases. Many enzymes normally 
remain in an inactive state, and need to go through modulatory processes, such as 
phosphorylation, to become active. Thus, the only way to truly determine the activity 
of an enzyme is to measure it directly. The enzymes investigated in the present study 
were Total-ATPases and Na+/K+-ATPase, the driving force for ion regulation, in gills 
of C. maenas and P. borealis (Paper II and III) and glutamate dehydrogenase, a 
deaminating enzyme, in the abdominal muscle of P. borealis (Paper III). 

2.4.4 1H-NMR metabolomics  
Metabolomics is defined as the study of the repertoire of small metabolites in 
biological systems such as cells, tissues and body and plant fluids (Bundy et al. 2009; 
Viant 2007; Viant et al. 2003). The small metabolites are both endogenous molecules 
involved in or resulting from primary and intermediary metabolism, and exogenous 
compounds, such as drugs, other xenobiotics, and their intermediates (Kaddurah-
Daouk et al. 2008), and the combination of all the metabolites within a cell is called the 
metabolome (Bundy et al. 2009; Viant 2007; Viant et al. 2003). Metabolic 
fingerprinting is a global, high throughput, rapid analysis to provide sample 
classification. It can be used as a screening tool to discriminate between samples from 
different biological status or origin, e.g. with respect to case/control or diseased or 
healthy organisms. Metabolic profiling is the identification and quantification of 
metabolites (Ellis et al. 2007) By studying the changes in the metabolome in response 
to a given stressor it is possible to find biomarkers of stress, and to map out the 
metabolic pathways affected by the stressor. In the present thesis 1H-nuclear magnetic 
resonance (NMR) spectroscopy in combination with multivariate analysis, and 
quantification of single metabolites were applied to the water soluble fractions from 
extracts of hemolymph and tissues of walking leg and posterior gills of C. maenas. 
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3. Summary of papers 

Paper I: Physiological effects of hypercapnia in the deep-sea bivalve Acesta 
excavata (Fabricius 1779) (Bivalvia; Limidae) 

The aim of Paper I was to investigate how a deep-living bivalve, A. excavata, was 
affected by exposure to conditions that could arise from leakage from subsea storage of 
anthropogenic CO2. To study the effects of severe environmental hypercapnia (pHNBS 
6.3, pCO2 = 33000 atm) acid-base status and metabolic rate of the animals was 
determined. In addition, extracellular Ca2+ concentration, ammonia excretion, and 
intracellular non-bicarbonate buffering capacity was determined to identify possible 
compensatory mechanisms used in response to CO2-induced acidosis. The result was a 
significant drop in extracellular pH to a value just above the pH of the ambient 
seawater. The concentration of neither bicarbonate nor calcium ions increased, 
suggesting that dissolution of the CaCO3 shell to release buffering HCO3- did not take 
place. Intracellular pH dropped significantly to 0.3 pH units below control values, but 
was still kept well above the pH of the ambient extracellular fluid. This may be 
explained by the intracellular non-bicarbonate buffering capacity which was 
comparable, and even higher than what has been previously found in shallow-living 
bivalves. While the metabolic rate of A. excavata plummeted in response to hypercapnic 
exposure it increased again over time to values not significantly different from 
controls towards the end of the experiment. Animals displayed a small increase in 
ammonia excretion, and the combined results for oxygen consumption and ammonia 
excretion reflects a decreased O:N ratio, and may suggest an increased role of nitrogen 
metabolism in hypercapnic animals. Failure to regain extracellular pH after recovery 
suggests a high degree of impairment from exposure to elevated levels of CO2. 
However, the study revealed that although A. excavata was heavily affected by severe 
environmental hypercapnia, the increase in metabolic rate towards the end of exposure 
may indicate that it has higher tolerance to sever environmental hypercapnia than 
expected for a deep-sea species. 

Paper II: Physiological responses of the shore crab Carcinus maenas in response 
to elevated levels of pCO2 

The aim of Paper II was to investigate the compensating responses of the shore crab 
Carcinus maenas to elevated levels of pCO2 by studying the changes in acid-base status 
as well as gene expression of the branchial ion regulating machinery. To meet these 
objectives animals were subjected to time-dependent (1-672 hours, pHNBS = 6.94, pCO2 

= 7573 atm) and level-dependent (pHNBS 7.40, 6.94, 6.62 and 6.33, pCO2 = 2673, 
7573, 16020 and 30743 atm, for 2 weeks) exposure to environmental hypercapnia.  
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The study revealed that when challenged by elevated pCO2 C. maenas was able to 
partially compensate an initial drop in extracellular pH by increasing the 
concentration of buffering HCO3-. The degree of extracellular acidosis was dependent 
on the level of exposure, but only animals exposed to the highest level of CO2 
displayed significantly reduced extracellular pH compared to control animals. The 
metabolic rate of animals was only to some extent affected by time of exposure, but 
was generally reduced with level of exposure. C. maenas displayed a small and transient 
decrease in extracellular osmolality, but neither time of CO2 exposure nor level of 
pCO2 induced significant changes in osmolality. Both gene expression of ion-
regulating proteins, and Na+/K+-ATPase (NKA) activity was expected to increase to 
increase the acid-base regulatory capacity of the gills in response to elevated pCO2. 
The gene expression of some proteins relevant for ion regulation, such as membrane-
associated (CAg) and cytoplasmic (CAc) carbonic anhydrase and the Na+/K+/2Cl- 
cotransporter was significantly increased with time of exposure to pHNBS 6.94. The 
gene expression of NKA and the Na+/H+ exchanger was only slightly increased with 
both time and level of exposure, and the activity of NKA was unchanged, and even 
reduced compared to control animals with both time of exposure and level of pCO2. 
Level-dependent exposure only resulted in a significantly reduced gene expression of 
CAg in the pH 7.4 group, while the gene expression of the remaining proteins was 
generally, but not significantly increased with level of exposure. The findings of this 
paper indicate that C. maenas does not need to substantially increase the acid-base 
regulatory capacity of the gills to achieve partial compensation of extracellular acidosis 
during prolonged exposure to elevated pCO2. A partial rather than full compensation 
of extracellular pH may reduce the energetic costs associated with ion regulation, but 
may also serve to reduce the influence of acid-base regulation on extracellular 
osmolality, as suggested in previous studies. 

Paper III: The deep-water prawn Pandalus borealis displays a relatively high pH-
regulatory capacity in response to CO2-induced acidosis 

Deep-living animals are believed to have lower tolerance to, and poorer defence 
mechanisms against the effects of elevated pCO2 compared to shallow-living species. 
The aim of Paper III was therefore to gain a better understanding of the compensatory 
capacity of deep-water species by studying how P. borealis, a deep-living (50-500 m) 
and stenohaline species respond to environmental hypercapnia (pHNBS 6.86, pCO2 = 
9,000 atm). Time-dependent CO2 exposure (0.5-16 days) did not result in a large 
initial drop in extracellular pH. Rather, P. borealis settled at a new steady pH 
approximately 0.15 units below control pH. Partial compensation of acidosis, 
comparable to that found for shallow-living species, was achieved by increasing the 
concentration of HCO3- by up to three times the concentration of control animals. 
Intracellular pH was maintained at control values, and even increased to values 
significantly higher than control pH after eight days before returning towards control 
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values at the end of exposure. Extracellular osmolality and oxygen consumption was 
not significantly affected by the CO2 exposure. Ammonia excretion rate increased with 
time in the initial phase of CO2 exposure and was significantly higher than controls in 
the group exposed for one day before returning towards control rates again towards 
the end of the exposure period. The activity of the deaminating enzyme glutamate 
dehydrogenase (GDH, E.C. 1.4.1.3) in the abdominal muscle of P. borealis was 
generally, but not significantly higher in exposed animals, and did not correlate with 
ammonia excretion. Accordingly, GDH does not seem to play an important role in 
acid-base regulation in this species. The activity of both Na+/K+-ATPase and total 
ATPases was generally higher in exposed animals but not significantly increased 
compared to controls. This study suggests that during prolonged exposure to elevated 
levels of CO2 P. borealis is able to establish a new steady-state extracellular pH in a 
similar manner as observed for shallow-living species.  The compensation is achieved 
through a substantial accumulation of bicarbonate ions and suggests that P. borealis 
has a higher acid-base regulatory capacity than what is expected for a deep-living 
species.  

Paper IV: Elevated levels of CO2 changes the metabolic fingerprint in the shore 
crab Carcinus maenas 

The aim of Paper IV was to gain a better understanding of the defence mechanisms 
applied against CO2-induced acidosis by investigating the effects of elevated pCO2 on 
the metabolome of a marine invertebrate that frequently experiences environmental 
hypercapnia in its natural habitat. This was done by running 1H-NMR spectroscopy 
on water soluble extracts of hemolymph and tissues of leg muscle and gills from C. 
maenas exposed to time-dependent (1-672 hours, pHNBS = 6.93, pCO2 = 7,600 atm) 
and level-dependent exposure (pHNBS 7.4, 6.9, 6.6 and 6.3, pCO2 = 2,500, 7,600, 16,500 
and 30,000 atm, for 2 weeks) followed by partial least squares regression analysis of 
data. Time-dependent exposure revealed that in gills and hemolymph a significant 
change in the metabolic fingerprint could only be found after prolonged exposure (4 
weeks), while for muscle tissue changes were only apparent after short-term exposure 
(48 hours). Level-dependent exposure revealed that the metabolic fingerprint of 
animals subjected to elevated levels of ambient pCO2 could be discriminated from 
controls, and the rank order of separation was in accordance with the exposure level in 
all sample types investigated. Separation of the groups was caused by a general 
decrease in the level of metabolites, particularly among important osmolytes in 
exposed animals. More specifically this meant a decreased level of amino acids such as 
glycine and proline, while the effects on quaternary ammonium compounds varied 
somewhat between the different sample types. The results suggested that the observed 
changes reflected an exhaustive effect rather than active defence mechanisms. The 
changes also indicated that exposure to elevated pCO2 disturb intracellular 
osmoregulation, causing symptoms similar to that observed in response to exposure to 
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seawater of reduced salinity. The explanation for this may be that acid-base regulation 
and intracellular iso-osmotic osmoregulation occur, at least to some part, through 
similar ion transporting proteins and disturbance of acid-base homeostasis may thus 
affect the osmotic status of the cells. 
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4. General Discussion 
The main objective of the present thesis was to investigate how shallow- and deep-
living invertebrates are affected by elevated seawater pCO2, and how they may 
counteract CO2-induced stress. To study compensating mechanisms a strategy often 
adopted in physiology is to induce a strain on the system by inflicting a high degree of 
exposure. The chosen exposure levels have previously been reported to induce 
physiological responses in marine teleosts and invertebrates. The lowest exposure 
level applied in the present thesis has been predicted to occur by year 2300, assuming a 
‘business-as-usual’ CO2 emissions scenario (Caldeira and Wickett 2003) The most 
severe exposure levels applied (Paper I and II) are similar to what have been reported 
to occur in association with natural CO2 seeps (Vetter and Smith 2005).  

4.1 Extracellular acid-base status 

4.1.1 The deep sea bivalve A. excavata 
Bivalves often isolate themselves from the surroundings by closing the shell in 
response to fluctuations in environmental conditions (e.g. changes in salinity, air 
exposure, contaminants). Shell closure may lead to both hypercapnic and metabolic 
acidosis due to reduced gas exchange with the surroundings, and increased anaerobic 
metabolism, respectively (Booth et al. 1984). In response, shallow-living bivalves can 
mobilise bicarbonate from the inner part of the CaCO3 shell to counteract the acidosis 
(Burnett 1988; Crenshaw and Neff 1969; Jokumsen and Fyhn 1982). However, during 
conditions of elevated seawater pCO2 bivalves do not necessarily remain closed for 
prolonged periods of time, and the HCO3- formed from shell dissolution may 
consequently be lost and become unavailable for the animals.  

The relatively small changes observed in extracellular Ca2+ concentration indicated 
that severe hypercapnic exposure (pH 6.35, pCO2~33000 atm) did not induce 
pronounced shell dissolution in the deep-living bivalve A. excavata (Paper I). 
Accordingly, no associated increase in extracellular HCO3- concentration was found, 
and the extracellular pH dropped to a level just above the pH of the ambient seawater 
(closed circles, Fig 10a). Partial compensation of extracellular acidosis during 
hypercapnic exposure has previously been demonstrated in intertidal bivalves of the 
genus Mytilus in experiments using closed setups (Lindinger et al. 1984; Michaelidis et 
al. 2005). The blue mussel M. edulis is able to partially compensate extracellular 
acidosis even when subjected to pCO2 levels of 17000 and 34000 atm (closed 
triangles, Fig10a) (Lindinger et al. 1984). However, in closed exposure systems any 
HCO3- produced from the dissolution of the CaCO3 shell is retained in the exposure 
water and can thus be reabsorbed by the animals and used to buffer surplus H+. 



General Discussion 
 

28 

Thomsen et al. (2010) found that when using a flow-through system, with no 
recirculation, M. edulis were not able to increase the extracellular HCO3- concentration 
and could consequently not compensate extracellular acidosis at relatively moderate 
pCO2 levels (1400 and 4000 atm, open squares Fig 10a) as animals.  

The results of Paper I thus point in two directions: Either A. excavata has a lower 
capacity for acid-base regulation compared to intertidal bivalves, or A. excavata could 
not utilize the HCO3- dissolved from the shell because it was lost to the seawater due 
to water exchange.  

It should however be noted that in a another study using a flow-through system the 
sea urchin Psammechinus miliaris achieved a small, but transient compensation of the 
extracellular pH when exposed to elevated levels of CO2. In that particular study, shell 
dissolution was found to be higher during moderate than during severe hypercapnia 
(Miles et al. 2007), suggesting that shell dissolution in calcifying animals is dependent 
on the pH of the water, with dissolution being weaker during more severe 
hypercapnia. It is thus possible that shell dissolution may occur in A. excavata during 
more moderate hypercapnic conditions. 

Fig 10. Davenport diagram showing changes in extracellular pH, pCO2 and bicarbonate in (a) Acesta 
excavata (closed circles, Paper I) and Mytilus edulis adopted from Lindinger et al. (1984) (closed triangles, 
pCO2=34,000 atm) and Thomsen et al. (2010) (open squares, 1400 pCO2=400 -1400 atm ) to elevated 
pCO2 and 24 h recovery (grey symbols) , and (b) changes in. Carcinus maenas subjected to time- (closed 
circles) and level-dependent (grey) exposure (Paper II), and Pandalus borealis (blue) in response to time-
dependent hypercapnic exposure (Paper III). The start points of the trajectories represent controls.  

 

The relatively low concentration of hemolymph Ca2+ observed in control A. excavata  
(Fig 2d, Paper I) compared to that previously reported for shallow-living bivalve 
species (Lindinger et al. 1984; Michaelidis et al. 2005) could indicate that the 
composition of the shells in deep-sea bivalves differ from the shells of intertidal 
bivalves, which experience daily fluctuations in body fluid pH. However, Tunnicliffe et 
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al. (2009) showed that populations of the deep-sea mussel Bathymodiolus brevior are able 
to survive and produce CaCO3 shells at locations with naturally high levels of CO2 (pH 
5.4-7.3). The shells were, however, substantially thinner and growth was slower in 
these animals compared to what was observed in a population living in normocapnic 
habitats (pH>7.8). Post-deposition dissolution in B. brevior occurred at the inner parts 
of the shell, suggesting that similar to shallow living species, deep-sea bivalves may 
use bicarbonate originating from the shell as a buffer during acidosis. 

Although no animals died during the experiment A. excavata was not able to return 
extracellular pH back to normal values after 96 hours of recovery in normocapnic 
conditions (Fig 2b, Paper I), thus indicating that animals may not be able to regain 
normal physiological health status following a potential leakage from CO2 reservoirs 

4.1.2 Shallow- and deep-living decapods (C. maenas and P. borealis) 
Decapod crustaceans distinguish themselves from most invertebrates by often 
displaying partial or complete compensation of respiratory acidosis (Cameron 1978; 
Pane and Barry 2007; Spicer et al. 2007). Paper II showed that in response to 
environmental hypercapnia (pHNBS 6.94, pCO2=7573 atm) C. maenas experienced an 
initial drop in extracellular pH, approximately 0.3 pH units below that of control 
animals (Fig 10b, black closed circles). Although the pH rapidly increased again it was 
not fully compensated and remained approximately 0.15 pH units below control levels 
throughout the rest of the exposure period (4 weeks). In contrast to the results for C. 
maenas, no large initial drop in extracellular pH was observed in CO2 exposed P. 
borealis (pHNBS 6.86 and pCO2 = 9,000 atm Paper III). However, these differing 
results were most likely due to the different timing of the first sampling in the two 
studies. In Paper II the first sample was collected after one hour, whereas in Paper III 
the first sampling was conducted after 12 hours of exposure. Previous studies have 
shown that 12 hours is sufficient time for decapod crustaceans to reach a new steady-
state pH in response to hypercapnic exposure (Spicer et al. 2007; Truchot 1975). It is 
therefore likely that at the time of the first sampling the extracellular pH of P. borealis 
had already reached the new steady-state pH level which was approximately 0.15 pH 
units below control values (Fig. 10b, blue circles). Thus, this suggests that the deep-
water prawn displayed a similar degree of compensation as the intertidal C. maenas  

The compensatory increase in extracellular pH observed in both C. maenas and P. 
borealis was achieved through an increase in the extracellular bicarbonate 
concentration. Both species more than doubled the concentration of extracellular 
bicarbonate in the initial phase of exposure. P. borealis even displayed bicarbonate 
concentrations three times higher than controls after one day of exposure. The 
impressive increase in extracellular bicarbonate suggests that the deep-water prawn P. 
borealis exhibits an acid-base compensatory capacity that is similar to the intertidal 
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shore crab (Paper II and III). This observation is somewhat surprising as deep-living 
animals have generally been considered to have reduced capacities to regulate body 
fluid pH in response to stress (Seibel and Walsh 2001). In fact, no significant increase 
in extracellular bicarbonate concentration, and thus no compensation of extracellular 
pH was found in the deep-sea crab Chionecetes tanneri when exposed to similar 
conditions as those experienced by P. borealis in Paper III (Pane and Barry 2007). The 
different responses in the two species may be due to the fact that C. tanneri is found at 
much greater depths than P. borealis (1000 m versus 50-500 m, respectively) where the 
environment is even more stable.  

Although C. maenas and P. borealis displayed similar acid-base regulatory capacities 
this does not necessarily mean that the two species achieve this in exactly the same 
manner. C. maenas is a hyperregulating species with high iono regulatory capacity and 
is therefore expected to have high abilities to counteract changes in blood pH. P. 
borealis is considered to be a stenohaline species (Shumway et al. 1985) and it could 
therefore be expected that this species lacks the well-developed ion-regulatory 
mechanisms necessary for high level accumulation of bicarbonate ions. The shore crab 
is also regularly subjected to hypercapnic exposure during low tide, while the 
environment of P. borealis is generally more stable. However, one explanation for the 
high acid-base regulatory capacity may be related to its swimming activities. P. borealis 
displays a high speed flight response which may necessitate a high capacity for 
anaerobic work. P. borealis may thus need a well-developed acid-base regulatory 
machinery to handle the acidosis experienced in association with the flight responses 
on a regular basis. Thus, P. borealis may be pre-adapted to severe environmental 
hypercapnia. It is, however, also possible that the partial compensation displayed by P. 
borealis was a result of the high level of exposure applied in Paper III, and that 
complete compensation may achieved in this species during a lower level of exposure. 
The partial rather than full pH compensation observed in the shore crab may however 
reflect an energy conserving strategy.  

Level-dependent CO2 exposure (pHNBS 7.40 – 6.33, pCO2~2673 – 30743 atm) of C. 
maenas revealed that compensation of acidosis is dependent on the level of exposure 
(Paper II), and only the group exposed to the highest exposure level displayed 
significantly reduced extracellular pH (Fig 10b, grey symbols). Both pCO2 and 
bicarbonate concentrations increased exponentially with level of exposure, while the 
pH decreased in a corresponding manner. The concentrations of bicarbonate ions 
corresponded to both level of exposure and hemolymph pCO2, and thus, offer a good 
explanation for the degree of acid-base regulation observed in the different groups.  

Ion- and osmoregulating crabs such as C. maenas are generally thought to display 
higher abilities to counteract acid-base disturbances than osmoconforming species, due 
to their well-developed ion exchange mechanisms (Whiteley 2011). However, Spicer et 
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al. (2007) found that, contrary to C. maenas, the osmoconforming velvet swimming 
crab Necora puber could achieve full compensation of extracellular pH at hypercapnic 
conditions down to a seawater pH of 6.7. N. puber increased its hemolymph bicarbonate 
concentration by four times the concentration of control animals, which was much 
higher than that observed for C. maenas according to the CO2 exposure level, and 
suggests that N. puber has a higher ability for bicarbonate accumulation. The different 
responses may be related to the different lifestyles of the two decapods. Active species, 
such as N. puber, need high oxygen-carrying capacities and often experience metabolic 
acidosis. They therefore have high extra- and intracellular levels of non-bicarbonate 
buffers, giving them a greater capacity for passive compensation of acidosis than slow-
moving species, such as the green shore crab (Whiteley 2011). On the other hand, C. 
maenas often hide under rocks during low tide with reduced water available for gas 
exchange, and thus also often experience hypercapnic and metabolic acidosis. Since N. 
puber cannot take up bicarbonate from the surroundings , it is possible that the it 
originates from the catabolism of carboxylic amino acids as suggested by Langenbuch 
and Pörtner (2002). 

 

Fig. 11. Development in extracellular osmolality over time in Carcinus maenas (black circles), Pandalus 
borealis (black triangles) and Necora puber (grey symbols, adopted from Spicer et al. (2007)) in response 
to elevated pCO2. 

 

Previous studies have shown that changes in salinity can affect acid-base status 
(Truchot 1981; Whiteley et al. 2001) and that CO2 stress may affect the osmolality of 
the body fluids (Spicer et al. 2007). This indicates that there is a close connection 
between acid-base regulation and osmoregulation. To follow up these observations the 
osmolality of both C. maenas and P. borealis was determined in Paper II and III, 
respectively (Fig 11). While C. maenas experienced a small, transient, decrease in 
extracellular osmolality, P. borealis displayed a small but consistent reduction of 
osmolality with time of exposure. However, the reductions in osmolality observed in 
both species were not significant, and small compared to the transient drops displayed 
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by the subtidal crab N. puber in response to elevated pCO2 levels (Spicer et al. 2007) 
(see Fig 11.). The authors suggested that part of the reduction in osmolality observed 
in N. puber could be explained by the exit of chloride used as counter ions for 
bicarbonate accumulation, but that loss of Cl- was not sufficient to explain the entire 
decrease in osmolality.  

A possible explanation for the different development in osmolality observed for C. 
maenas and N. puber (Fig 11) may be due to the different osmoregulatory strategies 
used by the two species. While N. puber is an, C. maenas regulates the osmolality of its 
body fluids by actively absorbing ions during exposure to low salinities (Henry et al. 
2002; Siebers et al. 1972). Whereas, N. puber was able to fully re-establish extracellular 
pH back to control values, the extracellular pH of C. maenas was only partially 
compensated. This may indicate that for osmoregulating decapods, such as C. maenas, 
there exists a trade-off between osmoregulation and acid-base regulation. A trade-off 
between extracellular acid-base regulation and osmoregulation for decapod crabs has 
previously been suggested by Cameron and Iwama (1987). The results in Paper III 
indicate that P. borealis has adopted a similar strategy as C. maenas. Rather than 
allowing a large drop, P. borealis regulates the osmolality of the extracellular 
environment in response to hypercapnic exposure. The small decrease observed may 
be due to the severity of the exposure. 

4.2 Branchial ion transporting proteins 

When hyperregulating decapod crabs are subjected to conditions of reduced salinity, 
they often respond by immediately increasing the activity of Na+/K+-ATPase 
(Castilho et al. 2001; Holliday 1985; Neufeld et al. 1980) and carbonic anhydrase 
(Henry et al. 2002; Serrano and Henry 2008) in the posterior gills to increase the 
absorption of Na+ and Cl- from the environment (Burnett 1985). In addition, the gene 
expression of electroneutral ion transporters has been found to increase in response to 
hypo-osmotic conditions (Jayasundara et al. 2007; Luquet et al. 2005; Towle and 
Weihrauch 2001). Since decapod crustaceans are thought to use similar ion-regulating 
proteins for osmoregulation and acid-base regulation it was expected that both gene 
expression of ion regulating proteins and the activity of NKA would increase in 
response to hypercapnic exposure.  

Figure 12 depicts changes in the gene expression of ion-regulating proteins in the gills 
of C. maenas in response to time-and level-dependent exposure to elevated pCO2 (Paper 
II). A significantly up-regulated gene expression was found for some of the proteins 
(CA and NKCC) in the time-dependent exposure. However, exposure to different 
levels of pCO2 did not result in significantly altered expression of the genes 
investigated, with the exception of the significantly down-regulated mRNA levels of 
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membrane associated carbonic anhydrase (CAg) in the group exposed to the lowest 
level of pCO2 (pH 7.4 group). 

 

 

 

Gene expression of the Cl-/HCO3- exchanger (CBE) fluctuated around control levels 
with time of exposure. Exposure to pH 7.4 resulted in a small, but not significant 
down-regulation of CBE, while the mRNA levels of the remaining groups were similar 
to controls. The results were in accordance, with those of Fehsenfeld et al (2011), who 
found a significant down-regulation of CBE expression in C. maenas at pH 7.2 and 
pCO2 3000 atm. This suggests that there is not an increased need for this ion 
exchanger in response to hypercapnic conditions. 

Although level-dependent CO2 exposure only elicited a general, but non-significant 
increase in mRNA levels of the Na+/K+/2Cl- cotransporter (NKCC), gene expression 
increased consistently and significantly with time of exposure. The NKCC of C. maenas 
is located in the apical membrane of the gill epithelial cells (Towle and Weihrauch 
2001) and is important for the uptake of Na+ and Cl- from the surrounding seawater 
(Luquet et al. 2005; Riestenpatt et al. 1996). One possible explanation for the induction 
of increased NKCC gene expression in C. maenas may be an increased demand for Cl- 
absorption to replenish any loss of Cl- caused by electroneutral uptake of HCO3-. 
Although increased gene expression has been reported in rats experiencing metabolic 
acidosis (Ikebe et al. 2001) NKCC has not been previously proposed as potentially 
important for acid-base regulation in crabs. The results from the present study 
indicate that NKCC may be involved in decapod acid-base regulation. 

The mRNA levels of both cytoplasmic and membrane-associated carbonic anhydrase 
(CAc and CAg, respectively) were significantly increased compared to control levels 
with time of exposure. CA is known to play a crucial role in systemic acid–base 
regulation in fish by providing acid–base equivalents for exchange with the 

Fig. 12. Changes in gene expression 
and enzyme activities of ion regulating 
proteins in posterior gills of Carcinus 
maenas in response to time-dependent 
(blue) and level-dependent (green) 
exposure to elevated pCO2. Significant 
increase and decrease are denoted by + 
and -, respectively. Non-significant 
changes are denoted =. Question marks 
indicate possible inward and, outward 
flux of HCO3- and Cl-, respectively. 
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environment (Georgalis et al. 2006; Gilmour and Perry 2009). In rainbow trout 
exposed to elevated pCO2 inhibition of CA has been reported to impair acid excretion 
(Georgalis et al. 2006). Perry et al. (2010) found that both CA activity and protein 
concentration was significantly increased in the marine teleost plainfin midshipman 
(Porichthys notatus) when exposed to environmental hypercapnia. The role of CA in 
decapods is thought to be similar to that found in teleosts. For instance, when the red 
rock crab Cancer productus were injected with the CA inhibitor acetazolamide acidosis 
was intensified during air exposure due to an impairment of CO2 excretion (McMahon 
et al. 1984).  

Previous studies on marine decapods have suggested that under normal salinity 
conditions the concentration and activity of CAc is low, but that exposure to conditions 
of reduced salinity induces in an increased synthesis and activity of the enzyme to 
increase the uptake of Na+ and Cl- (Henry et al. 2002; Serrano and Henry 2008). The 
results from Paper II may, thus, suggest that environmental hypercapnia induces a 
similar response (i.e. increased CA activity) and that increased synthesis of both CAc 
and CAg is important to maintain pH at a tolerable level during hypercapnic acidosis.  

Na+/K+-ATPase (NKA) is considered to be the driving force for branchial ion-
regulation in decapod crustaceans (Melzner et al. 2009; Whiteley 2011). It was 
therefore expected that both gene expression and the activity of this enzyme would 
increase to enhance the acid-base regulatory capacity in response to environmental 
hypercapnia, as previously observed in fish (Deigweiher et al. 2008). However, in C. 
maenas the NKA mRNA levels did not vary significantly from controls. Furthermore, 
the observed changes in NKA mRNA levels were characterised by large variations 
within both the controls and the exposure groups. In accordance with the results from 
gene expression analysis, the activity of NKA was not significantly affected in 
hypercapnic C. maenas (Paper II). In comparison, a small, but non-significant increase 
in NKA activity was found in gills of the deep-water prawn P. borealis in response to 
hypercapnic exposure (Paper III). Thus, both species managed to partially compensate 
their extracellular pH without substantially increasing the activity of NKA. Pane et al 
(2008) observed that NKA activity in the gills of the crab Cancer magister was 
significantly decreased in response to short-term hypercapnic exposure. This may 
suggest that decapod crabs have naturally high NKA activities and do not need to 
increase NKA activity in response to CO2-induced acidosis. This suggestion is 
supported by the findings of Henry et al. (2002) who reported that the NKA activity of 
C. maenas was high during control conditions, and that reduced salinity did not induce 
an increase in activity. 

The relatively low gene expression of ion regulating proteins found in Paper II are in 
accordance with the results of Fehsenfeld et al. (2011). They did not report of large 
changes in the gene expression of branchial ion transporters in C. maenas in response 
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moderate hypercapnic exposure. In that particular study, however, microarray analysis 
revealed that the gene expression of other proteins involved in transmembrane 
transport was significantly up-regulated. The authors reported that the gene 
expression responses displayed by C. maenas were similar to that elicited by hypo-
osmotic acclimation (Towle et al. 2011), confirming the close relationship between 
acid-base regulation and osmoregulation.  

Overall this suggests that C. maenas have sufficient levels of branchial ion-regulating 
proteins and NKA activity during normal conditions, and therefore does not need to 
increase the ion-regulatory capacity of the gills to maintain a tolerable acid-base status 
during environmental hypercapnia. The findings do, however, suggest an increased 
need for the enzyme CA during hypercapnic exposure, and that NKCC may be 
involved in acid-base regulation in decapod crabs.  

4. 3 Intracellular pH  

While the homeostasis of extracellular pH is important to maintain the integrity of 
respiratory pigments, the maintenance of intracellular pH is considered to be of even 
higher importance due to the pH-sensitivity of metabolic processes (Somero 1986; 
Woodbury 1965). It is therefore more common to find a full compensation of 
intracellular pH than of extracellular pH in marine invertebrates (Michaelidis et al. 
2005; Pörtner et al. 1998). 

Although the intracellular pH of A. excavata decreased by 0.3 pH units during CO2 
exposure, it still remained at a level well above extracellular and seawater pH (Fig 3, 
Paper I). This could be explained by the relatively high intracellular non-bicarbonate 
buffering capacity observed in the adductor muscle of A. excavata, which was similar to 
what has been previously reported for intertidal bivalves (Eberlee and Storey 1984; 
Morris and Baldwin 1984). The intracellular non-bicarbonate buffering capacity 
represents buffers such as phosphates and imidazole groups of histidine residues in 
proteins which bind and neutralize some of the surplus H+ (Castellini and Somero 
1981; Eberlee and Storey 1984). However, non-bicarbonate buffering only masks 
protons during acidosis, and thus reduce pH changes compared to a non-buffered 
system. To restore pH during hypercapnic condtions animals must eliminate the 
protons by ion exchange. This involves extrusion of H+ into the extracellular 
compartment (or organelles) and/or accumulation of HCO3- from the extracellular 
compartment. This occurs through transmembrane ion transporters similar to those 
found in the gills of crustaceans and fish (Claiborne et al. 2002; Zange et al. 1990). 

The control animals of P. borealis (Fig 1d, Paper III) displayed a relatively low 
intracellular pH in the abdominal muscle compared to what has been reported in a 
previous study (Sartoris and Pörtner 1997). To confirm these results the intracellular 
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pH of a number of control animals were measured after the end of the experiment, 
resulting in the same mean pH value of 7.05. The intracellular pH fluctuated 
somewhat during exposure and was generally equal to, and even higher than the 
intracellular pH of control animals. This indicated that P. borealis is able to maintain, 
and even increase, intracellular pH during hypercapnic exposure. This suggests that P. 
borealis also displays a well-developed ion exchange mechanisms for intracellular pH 
regulation. 

 

4.4 Metabolic rate 
Environmental hypercapnia has been shown to affect metabolic rate in marine 
invertebrates, but the reported responses vary among different species (Gutowska et 
al. 2008; Michaelidis et al. 2005; Pörtner et al. 1998; Reipschlager and Pörtner 1996; 
Thomsen and Melzner 2010; Wood et al. 2008). Reduction in metabolic rate is 
associated with energy conservation, and a decrease in intracellular pH is one of the 
five general characteristics found to induce metabolic depression (Guppy and Withers 
1999). A decrease in oxygen consumption in response to hypercapnic conditions has 
been found in several invertebrate species (Michaelidis et al. 2005; Pörtner et al. 1998; 
Reipschlager and Pörtner 1996).  

The metabolic rate of A. excavata dropped significantly in animals exposed to severe 
hypercapnic conditions (Fig. 5, Paper I). This was in line with the large pH drop 
observed in this species, which most likely resulted in a reduced activity of metabolic 
enzymes and, thus, a reduced metabolic rate. As the hypercapnic conditions 
experienced by this deep-living species were very severe, the increased oxygen 
consumption observed during prolonged exposure may indicate a delayed response in 
which compensatory processes are activated.  

As found in teleost fish and cephalopods, decapods have respiratory pigments to obtain 
a high oxygen carrying capacity of the blood in order to support a high metabolic 
activity. Because of the pH-sensitive of these respiratory pigments, it is important for 
these animals to regulate extracellular pH in response to metabolic acidosis, i.e. during 
strenuous activity (Melzner et al. 2009). The metabolic activity is upheld and these 
animals usually do not experience metabolic depression during hypercapnic conditions, 
possibly due to their ability to regulate extracellular pH (Deigweiher et al. 2008; 
Gutowska et al. 2008). Accordingly, time-dependent exposure of C. maenas to 
hypercapnic seawater with pHNBS 6.94 did not cause any significant changes in the 
metabolic rate (Fig. 1d, Paper II).  

Likewise, no significant changes in metabolic rate were found in the time-dependent 
exposure of P. borealis to pHNBS 6.85 (Fig. 3a, Paper III). However, it should be noted 
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that in this particular study, the metabolic rates of exposed animals were generally 
lower than for control animals. The lowest metabolic rate for P. borealis was found in 
the later parts of exposure when the mean rate was only half of control rates. This may 
reflect an exhaustive effect from the exposure.  

The metabolic rate of C. maenas did however decrease according to the level of 
exposure from pHNBS 7.40 – 6.62, with metabolic rates being significantly reduced in 
the pH 6.6 group (Paper II). The metabolic rate of the pH 6.3 group on the other hand 
was increased compared to the other exposure groups. The increase observed in the 
pH 6.3 group may reflect an increased need for activation of energy demanding ion 
pumps at this severe exposure level, to assist in a compensatory increase in 
bicarbonate accumulation. The pH 6.3 group was indeed found to have the highest 
NKA activity of all of the exposure groups, at levels similar to controls. Also, the gene 
expression of several of the investigated ion transporting proteins was highest in this 
group. The decreased metabolic rates in the remaining exposure groups may have 
reflected the slightly reduced extracellular pH, or may be an indication of energy 
conservation during unfavourable conditions.  

Ammonia excretion increased only moderately in A. excavata (Fig. 5b, Paper I) and C. 
maenas (not shown) but significantly in P. borealis in response to hypercapnic exposure, 
indicating increased protein metabolism and decreased O:N ratio (Fig. 3b, Paper III). 
Ammonia (NH3) is a weak base and can neutralize excess protons by forming NH4+ at 
low pH (Roos and Boron 1981). In decapods, ammonium is believed to be excreted 
through the NHE (in place of H+) and possibly by the involvement of V-type H+-
ATPase (Mangum et al. 1976; Weihrauch et al. 2004) Lindinger et al. (1984) 
suggested that ammonia excreted as NH4+ could serve as an important mechanism of 
acid excretion in hypercapnic M. edulis. It is, thus, possible that ammonia excretion 
also plays a role in acid-base regulation in P. borealis. 

4.5 Effects on extra-and intracellular metabolites 

To gain a more in depth knowledge on extra- and intracellular responses 1H-NMR 
metabolomics was applied to study how the metabolite composition in hemolymph and 
tissues of C. maenas is affected by elevated pCO2 (Paper IV). As mentioned above, 
environmental hypercapnia has been found to have varying effects on the metabolic 
rate in different species. It was therefore hypothesised that this would be reflected by 
changes in the composition of metabolites relevant for energy metabolism (i.e. glucose, 
succinate, -ketoglutarate, etc.). It was also hypothesised that the metabolic response 
of the different tissues could reveal mechanisms relevant to cope with CO2-induced 
stress. 
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By applying partial least squares regression analysis on the data obtained from 1H-
NMR spectroscopy, it was revealed that the metabolic fingerprint of hypercapnic 
animals could be separated from that of control animals for all three sample types 
investigated (hemolymph, muscle and gill tissues). Furthermore, the rank order of 
separation was more or less in accordance with the level of CO2 exposure. That is, the 
metabolic fingerprint of the group exposed to the highest level of CO2 was more 
different from that of control animals than the fingerprint of the second highest 
exposure level, etc. Further, results from the time-dependent exposure revealed that 
changes were manifested after prolonged exposure (2-4 weeks) in hemolymph and 
gills, while for muscle tissue the observed changes occurred in the short term phase of 
the exposure (48 h).  

Only a few metabolites relevant for energy metabolism could be successfully identified, 
and these metabolites did not display significant changes in concentration with time or 
level of exposure to elevated CO2. However, a significant decrease in the concentration 
of lactate was found in both hemolymph and gills of animals subjected to level-
dependent exposure, possibly reflecting a decreased anaerobic metabolism in exposed 
animals. The observed changes in metabolic fingerprint were mainly due to altered 
levels of important osmolytes, such as the amino acids glycine and proline, and 
quaternary ammonium compounds such as glycine-betaine, homarine, dimethylamine 
and trigonelline. With a few exceptions the general trend was a decrease in the 
concentration of intracellular osmolytes in response to CO2 exposure. 

The majority of studies on intracellular metabolites in marine invertebrates have been 
in relation to changing salinities. Marine invertebrates are generally iso-osmotic, or 
slightly hyper-osmotic, to the ambient seawater. While the osmolality of the 
extracellular fluids is mostly made up of inorganic ions (i.e. Na+, Cl-, etc.), amino acids 
and quaternary ammonium compounds are additionally important in maintaining the 
osmotic pressure in the cells. Osmoregulating species, such as C. maenas, maintain the 
osmolality of the extracellular fluids at values substantially above that of the ambient 
water under hypo-osmotic conditions. Under these conditions the cells rapidly 
decrease the concentrations of intracellular osmolytes (amino acids, sugars, etch) to re-
establish iso-osmotic conditions with the extracellular fluids, and thereby minimize 
shrinkage (Henry et al. 2002; Siebers et al. 1972). 

The results from Paper IV may indicate that exposure to hypercapnic conditions may 
compromise the intracellular osmoregulation in C. maenas, resulting in symptoms 
resembling those observed in animals exposed to conditions of reduced salinity 
(Siebers et al. 1972). Long-term intracellular acid-base regulation occurs through ion 
transporting proteins similar to those found in the gills of crabs (Claiborne et al. 2002; 
Zange et al. 1990) Although extracellular osmolality of hypercapnic C. maenas was 
maintained possibly at the expense of a decreased pH (Paper II), it is possible that the 
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maintenance of intracellular pH surpasses the need to maintain intracellular osmolality 
at normal levels due to the detrimental effect of low pH on enzymes (Somero 1986), 
thus resulting in symptoms similar to hypo-osmotic stress.  

The fact that the changes in the metabolic profile were manifested after prolonged 
exposure suggests that the changes may have been due to an exhaustive effect of 
exposure rather than induction of intracellular defence mechanisms. This indicates 
that prolonged hypercapnic exposure may disturb intracellular iso-osmotic regulation 
in C. maenas. Although a similar study was not performed on the hemolymph and 
tissues of P. borealis a similar effect could be expected for this species, as it displayed 
the same general pattern in extracellular acid-base regulation as C. maenas. 

 
The results of the present thesis thus indicate that short-term exposure to severe 
hypercapnic conditions that may arise during a potential leakage from sub-seabed CO2 
reservoirs elicits detrimental effects, and possibly irreparable damage to the deep-sea 
bivalve A. excavata. The shallow- and deep-living decapods C. maenas and P. borealis, 
however, seem to have relatively high tolerance to, and are to a large extent able to 
counteract acidosis associated with high seawater pCO2. This is seemingly achieved 
without increasing the ion-regulatory capacity in C. maenas. However, the results may 
suggest that this species experiences disturbance of intracellular iso-osmotic 
regulation in response to prolonged hypercapnic exposure. 
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 Conclusions and future perspectives 
 
Conclusion 1. The lack of significant increase in extracellular Ca2+ concentrations 
indicated that no shell dissolution had taken place in A. excavata in response to severe 
environmental hypercapnia. Accordingly, this species was not able to accumulate 
bicarbonate to compensate extra- and intracellular acidosis.  
 
Conclusion 2. Elevated pCO2 initially induced metabolic depression in A. excavata but 
the metabolic rate returned towards normal values at the end of exposure. This may 
suggest an initiation of compensating mechanisms to counteract the effects of acidosis.  
 
Future perspectives. The exposure level applied in Paper I was very high, and may 
possibly have masked any compensatory mechanisms employed by this species. It 
would therefore be interesting to also study the responses of A. excavata at more 
moderate levels of CO2. The hydrostatic pressure at a hypothetical CO2 leakage site 
could affect the seawater chemistry but may also affect the physiology of animals 
living there. It would therefore be interesting to mimic the in situ conditions to reveal 
the combined effects elevated pCO2 and high pressure. 
 
Conclusion 3. The combined results of Paper II and III revealed that the deep-water 
prawn display a similar ability to counteract extracellular acidosis as the shore crab in 
response to relatively high levels of CO2. In both species this was accomplished by 
substantially increasing the concentration of the buffer HCO3-. Although P. borealis is 
not a typical deep sea species the findings of the present thesis challenge the general 
comprehension that deep-living animals have lower acid-base regulatory capacities 
compared to shallow-living species. 
 
Conclusion 4. Both C. maenas and P. borealis displayed partial rather than full 
compensation of extracellular acidosis, and Paper II revealed that for C. maenas the 
degree of acidosis depends on the level of pCO2. Acid-base regulation and 
osmoregulation are assumed to occur through similar ion transporting proteins and 
may therefore interfere with each other; however, the extracellular osmolality was not 
significantly affected by CO2 e exposure in neither of the two species. The finding in 
Paper II and III may indicate that there exists a trade-off between pH- and 
osmoregulation, as has been suggested in previous studies. 
 
Future perspectives. It would be interesting to conduct further studies on the acid-
base regulatory capacity of other deep-living species, by exposing the animals to 
different levels of CO2, ranging from those predicted for ocean acidification scenarios 
to those reported from natural CO2 seeps to get a broader perspective on the CO2 
tolerance and acid-base regulatory abilities of deep-living species. 
 
Conclusion 5. Decapod crustaceans often increase the ion-regulatory capacity of gill 
epithelial cells in response to changes in salinity, and it was therefore hypothesised 
that a similar response would be induced by environmental hypercapnia. Paper II 
suggested that C. maenas seemingly does not increase the acid-base regulatory capacity 



Conclusions and future perspectives 
 

42 

substantially, with the exception of increased gene expression the Na+/K+/2Cl- 
cotransporter and carbonic anhydrase. The latter may reflect increased synthesis and 
activity of the enzyme. This suggest that C maenas has sufficient capacity in the ion 
transporting protein suite to maintain acid-base homeostasis at a steady-state level. 
 
Conclusion 6. In accordance with the previous results for teleost fish and cephalopods, 
environmental hypercapnia did not induce significant changes in the oxygen 
consumption rate of neither C. maenas nor P. borealis at pH 6.9. However, metabolic 
rate was reduced according to level of exposure in C. maenas, possibly due to reduced 
extracellular pH. 
 
Future perspectives. It would be interesting to conduct a study similar to Paper II 
where the response of the branchial ion transporting protein suite of both deep-living 
and subtidal, osmoconforming decapods is investigated.  
  
Conclusion 6 Environmental hypercapnia was found to induce changes in the 
metabolic fingerprint of shore crabs. Prolonged exposure to several levels of CO2 gave 
a decrease in important intracellular osmolytes, such as the amino acids proline and 
glycine, quaternary ammonium compounds, in addition to a decrease in the level of 
lactate. This indicates that elevated levels of CO2 induces a disturbance of intracellular 
iso-osmotic regulation, an effect similar to what has been observed in animals 
subjected to hypo-osmotic conditions. We hypothesize that this may be due to a trade-
off between osmoregulation and acid-base regulation, and that unlike the findings for 
the extracellular fluids intracellular pH is maintained at the expense of intracellular 
osmolality.  
 
Future perspectives. It was hypothesised that exposure to environmental 
hypercapnia would elicit changes in metabolites involved in energy metabolism. It be 
interesting to run a similar study on extracts of the hepatopancreas, a tissue with high 
metabolic activity. It would also be of interesting to study CO2-induced responses in 
the metabolome of other, less tolerant species.  
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a b s t r a c t

The option of storing CO2 in subsea rock formations to mitigate future increases in atmospheric CO2 may
induce problems for animals in the deep sea. In the present study the deep-sea bivalve Acesta excavata
was subjected to environmental hypercapnia (pHSW 6.35, PCO2

¼ 33,000 matm) corresponding to
conditions reported from natural CO2 seeps. Effects on acidebase status and metabolic rate were related
to time of exposure and subsequent recovery. During exposure there was an uncompensated drop in
both hemolymph and intracellular pH. Intracellular pH returned to control values, while extracellular pH
remained significantly lower during recovery. Intracellular non-bicarbonate buffering capacity of the
posterior adductor muscle of hypercapnic animals was significantly lower than control values, but this
was not the case for the remaining tissues analyzed. Oxygen consumption initially dropped by 60%, but
then increased during the final stages of exposure, which may suggest a higher tolerance to hypercapnia
than expected for a deep-living species.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The reported global warming observed in the past century has
been attributed to the release of carbon dioxide (CO2) from the
burning of fossil fuels into the atmosphere. As a consequence,
governments and the industry are committed to reduce the emis-
sions of this greenhouse gas.

Subsea geological storage of CO2 is considered a potentially
attractive means of reducing anthropogenic emissions and involves
injecting liquefied CO2 into porous rock formations deep below the
seafloor for permanent disposal. Cap rocks above the storage sites are
expected to prevent the CO2 from migrating to the above water
column (Metz et al., 2005). This has been successfully performed for
more than 10 years in the Utsira formation, at the Sleipner oil field in
theNorthSea.Although this is assumed tobea reasonably safewayof
permanent CO2 disposal there is an estimated 34% chance of a leak
occurring fromthe storage sitewithin1000years (Turleyet al., 2004).

CO2 acts as a weak acid when dissolved in water. Measurements
from the Pacific Ocean showed that the average water pH in the
close vicinity of a natural CO2 seep was approximately 6.3 (Vetter

and Smith, 2005) compared to approximately 8.1 in seawater
equilibrated against the atmosphere.

CO2 is considered to be a greater threat to aquatic animals than
strong acids, which dissociate completely and act primarily through
their hydrogen ions (Jacobs, 1920; Kikkawa et al., 2004). In contrast
to hydrogen ions, the CO2 (and carbonic acid, H2CO3) molecule is
charge-neutral, which allows it to freely penetrate biological
surfaces (e.g. cell membranes, skin). Consequently, CO2 equilibrates
between the water and the extra- and intracellular compartments
of aquatic organisms. Once inside the body a fraction of the CO2
molecules reacts with the extracellular water and form hydrogen
ions, causing a reduction in pH. A lowering of body fluid pH due to
elevated levels of CO2 is referred to as hypercapnic acidosis. Such
hypercapnic acidosis is known to induce metabolic depression in
invertebrates, perturbations in growth, reproduction, development
and energy turnover, dissolution of shells and exoskeletons and
reduced calcification in calcifying animals as well as narcosis and
death (Lindinger et al., 1984; Wickins, 1984; Wheatly and Henry,
1992; Reipschlager and Pörtner, 1996; Pörtner et al., 1998; Barker
and Elderfield, 2002; Hayashi et al., 2004; Michaelidis et al.,
2005; Gazeau et al., 2010; Waldbusser et al., 2011).

Aquatic animals are known to counteract acidosis through
accumulation of bicarbonate ions, which neutralize excess
hydrogen ions, and direct extrusion of hydrogen ions. This is
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achieved through ion exchange between the intra- and extracel-
lular compartment, and between the extracellular fluids and the
environment (Claiborne et al., 2002). The latter processes occurs
mainly in the gills of fish and crustaceans (Wheatly and Henry,
1992; Claiborne et al., 2002) while bivalves accumulate bicar-
bonate ions through dissolution of their calcium carbonate (CaCO�3 )
shells (Lindinger et al., 1984). In addition, the presence of intra-
cellular non-bicarbonate buffers (e. g. proteins, phosphates) mini-
mizes changes in cellular pH by reacting with the exogenous
hydrogen ions (Roos and Boron, 1981).

Animals living in the intertidal zone are known to be highly
tolerant to changes in environmental conditions as they are daily
exposed to variations in abiotic factors such as salinity, temperature
and oxygen levels. They also frequently experience both metabolic
acidosis (accumulation of acidic end products from anaerobic
metabolism) and respiratory (hypercapnic) acidosis (retention of
CO2) during air exposure at low tide when gas exchange is limited
by the absence of water (Burnett, 1988). In contrast the environ-
mental conditions in the deeper parts of the oceans are believed to
be rather stable. Deep-sea animals do not normally encounter large
fluctuations in the CO2 content of the water, as its concentration in
the deep sea is solely determined by microbial activity (Heisler,
1986). They are therefore expected to have lower tolerability to
large changes in the surrounding medium, and they are reported to
have poorer buffering capacities and acidebase regulation mech-
anisms than shallow-living animals (Castellini and Somero, 1981;
Seibel et al., 1997; Seibel and Walsh, 2001; Pane and Barry, 2007).

Acesta excavata is a large, deep-living bivalve inhabiting the
North East Atlantic, from the southern parts of Iceland down to
Senegal and Morocco. It has been observed at depths ranging from
33 to 3200 m, but is most commonly found at depths between 200
and 800 m. In the Trondheimsfjord this species lives under rela-
tively stable conditions, with temperatures ranging between 6 and
8 �C, and salinity levels of 34e35 S (López Correa et al., 2005;
Järnegren and Altin, 2006). A. excavata is reported to have the
second lowest respiration rate, as well as the second highest
clearance rate of all bivalves studied so far. Järnegren and Altin
(2006) suggested that this is an adaptation to the low and irreg-
ular food supply in the deep sea.

Few studies have focused on the effects of hypercapnia on deep-
sea animals (Pane and Barry, 2007; Tunnicliffe et al., 2009). Herewe
report on physiological effects of severe environmental hyper-
capnia in A. excavata in order to assess the effects of possible leaks
from subsea geological storage of CO2 on this deep-living species.

2. Materials and methods

2.1. Collection and storage of animals

Specimens of A. excavata (5.06e17.27 g soft body drymass) were
collected from the cold-water reefs at Røberg and Trolla
(215e300m) in the Trondheimsfjord by use of an ROV in September
2006 and May 2007. Animals were held in 30 L plastic trays (<20
animals per tray) continuously supplied with fresh seawater from
70 m depth, and regulated to a constant temperature of 8 �C. They
were fed weening feed ad libitum once a week (Gemma Micro Dia-
mond, Skretting). Animals were starved for one week prior to the
experiments. All experiments were performed at a water and
ambient temperature of 8 �C in climate controlled rooms.

2.2. Experimental setup

The experiments were carried out using a semi-recirculation
system holding a total volume of approximately 120 L, where the
entire volume was exchanged every 12 h, as outlined in Fig. 1.

During the exposure experiments seawater saturated with CO2
gas (IND, AGA) was introduced into a mixing chamber at a rate of
8 mL min�1 (Fig. 1). At the same time a constant volume of fresh
seawater (170 mL min�1) was supplied to the mixing chamber,
resulting in a volume equivalent to that of the entire circulating
water volume of the system being exchanged within 12 h. The
mixed water was distributed via an overflow chamber to two
exposure chambers, and finally flowed back into the mixing
chamber through outlets at the top of the exposure chambers. The
experiments were started when seawater pH was stable, i.e. after
about 4 days of equilibration.

During the experiments normocapnic seawater had a pH of
8.12 � 0.05 and a PCO2

of 530 � 60 matm, while seawater equili-
brated with CO2 had a mean pH of 6.35 � 0.01 and PCO2

of
32,881 � 655 matm. The small fluctuations observed where due to
reduced flow from the CO2 cylinder, and pH was reestablished after
adjustments of the gas flow. The readings of PCO2

and pH were
stable indicating that the experimental setup in this study was an
effective method to equilibrate seawater with CO2.

In order to study the effects of CO2 on A. excavata animals were
placed in the exposure chambers described above and exposed to
hypercapnic conditions for different lengths of time (0.5, 1, 4, 12, 24,
48 or 96 h). The ability of animals to recuperate after 96 h of
exposure was studied by moving exposed animals to an aquarium
with normocapnic conditions for recovery for 1, 4, 12, 24 or 96 h.
Animals in recovery were kept in chambers that were identical to
the exposure chambers and provided with normocapnic water
which had approximately the same water flow as hypercapnic
animals.

Each group was made up of 5 or 6 animals with the exception of
the group exposed for 96 h, which was made up of 8 animals.
Control animals were kept in the same chambers as described for
recovery for approximately 24 h before samples were collected.

2.3. Oxygen consumption and ammonia-N excretion

Oxygen consumption and ammonia-nitrogen excretion was
determined in closed respirometers. The respiration chambers
consisted of w2.5 L vacuum desiccators with a Dissolved Oxygen

Fig. 1. Overview of the exposure setup used in the present study. Dark grey lines
indicate supply of fresh seawater to the system, black lines indicate recirculated water
going into the different chambers, and light grey lines indicate overflow of water from
the chambers and water leaving as waste. Flow rates of water to the different chambers
are indicated. Respiration chambers replaced one exposure chamber during
respirometry.
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Probe (DOP) (S120, Qubit systems) or an YSI Dissolved Oxygen
Meter (Model 58) with an YSI Self-Stirring BOD probe (5905) placed
in the outlet of the cover. Each chamber contained one animal at
a time resting on a perforated disk of stainless steel, and a stirring
magnet at the bottom. The chambers were placed inwater baths, at
8 �C, situated on top of magnetic stirrers.

In between measurements the chambers were connected to
the circulating system described above by the use of Dreschel
adjustable bottle heads (MF 27/3/13, Quickfit, Barloworld Scien-
tific, Ltd), which gave a flow rate of 310 mL min�1 in each
chamber.

Ammonia-nitrogen excretion was determined as the difference
in ammonia-nitrogen concentration in water samples collected at
time zero and samples collected after 1 h from the respiration
chambers. The concentration of ammonia-nitrogen (NH3eN) in
seawater was determined according to the indophenol blue
method (Norwegian Standard 4746, 1975). The samples were
filtered (GF/F, Whatman), and stored in PP centrifuge tubes
at �20 �C prior to analysis.

In all cases animals were allowed to acclimate in the respi-
rometers for at least 1 h prior to measurements and sampling.
Oxygen consumption and ammonia-nitrogen excretionwas related
to the dry mass of the animal.

2.4. Acidebase parameters

Samples of hemolymph and tissues were collected immediately
following removal of animals from the exposure chamber. Hemo-
lymph samples were obtained from a sinus located on the ventral
side of the posterior adductor muscle by the use of a 1 mL
disposable plastic syringe. Hemolymph for determination of Ca2þ

concentration was stored under liquid paraffin at �20 �C. Samples
of the posterior adductor and pedal retractor muscle, foot, gills and
mantle were collected and stored at �20 �C. Dry mass of the whole
soft body tissue was determined after drying at 105 �C for 48 h (AE
50, Mettler Toledo).

The partial pressure of CO2 (PCO2
) in seawater and hemolymph

was determined from the linear relationship between the loga-
rithm of PCO2

and pH (Astrup, 1956). The validity of this technique
was tested by equilibrating samples of seawater and hemolymph
with 3 known CO2 tensions (seawater: 5,10 and 100%; hemolymph:
2.5, 5 and 10%) giving Eq. (1) for seawater and 2 for hemolymph,

y ¼ �1:0114x þ 10:934; R2 ¼ 0:9999 (1)

y ¼ �1:0001x þ 6:7842; R2 ¼ 0:9967 (2)

where x is the PCO2
in units of matm and kPa, respectively. The

resulting regression lines demonstrated that this method was
applicable for determination of both seawater and hemolymph
PCO2

.
The pH of 50 mL samples of hemolymph were determined

immediately after sampling following removal of the animal from
the exposure chamber and again after equilibration with two
known CO2 tensions (2.5 and 5% or 5 and 10%, HiQ, Linde Gas, AGA).
The pH of the equilibrated samples was plotted against their
respective known PCO2

, and the original PCO2
of the samples could

then be determined from their original pH. All pH measurements
were carried out using a Radiometer Analytical MeterLab standard
pH meter (PHM210), with a combined micro pH electrode
(pHC3359-8, Radiometer Analytical MeterLab�) calibrated with
Radiometer Analytical buffers (NBS).

The concentration of extracellular bicarbonate was calculated
using a modification of the HendersoneHasselbalch equation
(Heisler, 1986):

h
HCO�3

i
¼ 10pH�pK � aCO2

PCO2
(3)

where aCO2 is the solubility of CO2 in the hemolymph. The values of
aCO2 and pK at 8 �C were calculated according to formulas
proposed byHeisler (1986) to be 0.054mmol L�1mmHg�1 and 6.18,
respectively. In these calculations the molarity of dissolved species
and ionic strength of seawater (M ¼ 1.033 mmol kg�1, I ¼ 0.6995)
were taken to represent these values in the hemolymph. The
hemolymph protein concentration was determined by using the
Bradford reagent (B 6916, Sigma) with bovine serum albumin
(P0834, Sigma) as standards.

Intracellular pH (pHi) of the posterior adductor muscle was
determined according to the homogenate method developed by
Pörtner et al. (1990). A thin (w2 mm) sample of the posterior
adductor muscle was rapidly packed in aluminium foil and flash-
frozen in liquid N2 and manually ground to a powder in liquid N2.
The powder was then dissolved in 1 mL ice-cold media containing
reagents which inhibit homogenate metabolism (160 mmol L�1 kF,
1 mmol L�1 NTA). Following brief mixing and centrifugation
(5000 g for 1 min) the resultant pH of the supernatant was taken to
represent the pHi of the tissue.

Intracellular non-bicarbonate buffering capacity was measured
in tissue samples of the posterior adductor and pedal retractor
muscle, foot, gills and mantle from control animals and animals
exposed to hypercapnia for 96 h as described by Castellini and
Somero (1981). Tissue samples of about 0.5 g were homogenized
(Heidolph DIAX 900) on ice in normal saline (0.9% NaCl) at a ratio of
1:20. After equilibration to ambient temperature the homogenate
was titrated manually with NaOH between pH 6 and 7. Buffering
capacity is defined as the mmoles of base needed to change the pH
of the homogenate by one pH unit per gram wet weight of tissue
(Castellini and Somero, 1981) and is denoted in units of slykes (b).

The concentration of calcium in hemolymph was determined
using an atomic absorption spectrometer (PerkinElmer AAnalyst�
2100). Native hemolymph (5 ml) was diluted in 40 mL 0.1 M HNO3
with 0.1% La2O3 in acid-washed polyethylene bottles prior to
analysis. Concentrations were measured at 422.7 nm and standard
curves weremade from Ca(NO3)2 (Analytical Standard, Spectrosol�,
BDH Limited) diluted with the abovementioned solvent.

2.5. Statistical analyses

One-way analyses of variance (ANOVA) were performed with
Dunnett’s post test. Tukey’s post tests were used on data con-
cerning intracellular non-bicarbonate buffering capacity. Correla-
tion of data was tested by using the Spearman correlation test. All
tests were two-tailed, and the level of significance was set at
p � 0.05. All values are presented as means with standard error of
means (�s.e.m). The statistical analyses were performed using
Graph Pad Prism 5.0 (GraphPad Software, San Diego California
USA).

3. Results

Fig. 2 illustrates the changes in extracellular acidebase status
(A-C) and Ca2þ concentration (D) with time of exposure to severe
environmental hypercapnia and subsequent normocapnic
recovery. Mean values of extracellular PCO2

and pH (pHe) in control
animals were 0.204 � 0.014 kPa and 7.60 � 0.03, respectively
(Fig. 2A and B). In the initial stages of exposure the animals expe-
rienced a rapid increase in hemolymph PCO2

and a corresponding
decrease in hemolymph pH to values close to those of the seawater,
both being statistically different from control values. After 96 h PCO2

was 3.442 � 0.204 kPa and pH was 6.35 � 0.01. Thus, no
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compensation of extracellular acidosis was observed. Extracellular
PCO2

and pH returned towards control values during recovery.
However, pHe continued to be significantly different from control
values after 96 h of recovery.

Mean extracellular [HCO�3 ] in control animals was
2.01 � 0.11 mmol L�1. During exposure the concentration of bicar-
bonate decreased rapidly and had dropped to 1.16 � 0.16 mmol L�1

after 1 h (Fig. 2C). The highest value was found after 4 h when
extracellular [HCO�3 ] was 2.45 � 0.23 mmol L�1. This value was
significantly higher than for animals exposed for 1 h, though not
from control animals. Bicarbonate concentrations decreased
slightly after animals were placed in recovery.

The mean hemolymph concentration of free calcium in control
animals was 8.02 � 0.35 mmol L�1 (Fig. 2D). A rapid increase in
[Ca2þ] within the first hour of exposure was followed by a decline,
again followed by a gradual increase from 12 to 96 h. Extracellular
[Ca2þ] was elevated compared to control values throughout the
exposure period and only gradually returned towards control
values within 96 h of recovery, but was at no time significantly
different from control values. Hemolymph [Ca2þ] was not signifi-
cantly correlated to [HCO�3 ] (p ¼ 0.305, r ¼ 0.155).

Intracellular pH (pHi) of the posterior adductor muscle as
a function of time of exposure and recovery is illustrated in Fig. 3.
Mean pHi of control animals was 7.30 � 0.03. During exposure
intracellular pH declined rapidly and was significantly lower than
in control animals after 4 h, with a mean value of 7.01 � 0.05. No
compensation of intracellular pH was observed during exposure.
During recovery intracellular pH rapidly returned towards control
values.

Fig. 4 illustrates the intracellular non-bicarbonate buffering
capacities in the different types of tissues of A. excavata in control
animals and in animals subjected to 96 h exposure. The buffering
capacities varied significantly between the different types of
tissues, with the highest value of 42.73 � 1.69 slykes found for the

posterior adductor muscle. The pedal retractor and foot showed
significantly lower buffering capacities with 24.78 � 3.33 and
19.75 � 0.96 slykes, respectively. The lowest buffering capacities
were found in the mantle and gills with 12.5 � 1.36 and 9.18 � 0.37
slykes, respectively. Following severe hypercapnia for 96 h the
posterior adductor muscles had a mean buffering capacity of
33.95 � 1.17 slykes, which was significantly lower than in control
animals. There did not, however, seem to be a trend of the
remaining tissues of hypercapnic animals having lower buffering
capacities than normocapnic animals.

The oxygen consumption ranged between 0.282 and
2.42 mL O2 h�1 in control animals, and between 0.114 and
1.13mLO2h�1 inhypercapnic animals. The time-dependent changes
inmass-specific oxygen consumption during control conditions and
severe hypercapnia are depicted in Fig. 5A. Control animals had

Fig. 2. Hemolymph acidebase parameters (PCO2
, pH, [HCO�3 ]) and [Ca

2þ] of Acesta excavata during control conditions (open circles), severe hypercapnia (t ¼ 0.5e96 h), and recovery
in normocapnic water (t > 96 h). Broken horizontal lines in A and B indicate respective seawater values during hypercapnia. pHsw denotes the pH of seawater. Values are
means � s.e.m. Numbers are n. Asterisks indicate values significantly different from control values (p � 0.05).

Fig. 3. Changes in intracellular pH of Acesta excavata during control conditions (open
circle), severe hypercapnia and recovery. Values are means � s.e.m, n ¼ 5 or 6.
Asterisks indicate values significantly different from control values (p � 0.05). pHsw

denotes the pH of seawater.
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a mean oxygen consumption of 0.063 � 0.004 mL O2 h�1 per gram
dry tissue mass. Oxygen consumption declined rapidly during
exposure. The lowest valuewas recorded after 4 h of exposurewhen
oxygen consumption was 0.025 � 0.003 mL O2 h�1 g�1.

The oxygen consumption started to increase slightly after 12 h of
exposure, and was no longer significantly different from control
values after 48 h. After 96 h mean oxygen consumption was only
29% lower than in control animals.

The mass-specific ammonia-N (NH3eN) excretion increased
rapidly, but not significantly, compared to control values during

severe environmental hypercapnia (Fig. 5B). After 4 h of
exposure the ammonia-nitrogen excretion had increased to
9.95 � 1.14 mg h�1 g�1, corresponding to a 63% increase relative to
the mean control value. The excretion rate then decreased slightly
and levelled off after 12 h. After 96 h of exposure the mean NH3eN
excretion was only 22% higher than control values.

4. Discussion

As reported for other marine invertebrates, environmental
hypercapnia resulted in acidosis in the hemolymph of A. excavata.
The severity of the exposure caused the extracellular pH to drop to
that of hypercapnic seawater and no compensation of hemolymph
pH or accumulation of bicarbonate ions was observed during
exposure. Previous studies on other species have mostly involved
exposure to moderate hypercapnia (PCO2

¼ 10,000 matm or less).
Under these conditions complete compensation of extracellular
acidosis is frequently observed in fish (Heisler, 1984, 1986), and
marine invertebrates are often able to partially counteract acidosis
through accumulation of bicarbonate ions (Lindinger et al., 1984;
Pörtner et al., 1998; Michaelidis et al., 2005; Miles et al., 2007;
Pane and Barry, 2007; Gutowska et al., 2010).

Considering the natural habitat of A. excavata this species was
expected to have a much lower tolerability compared to the
intertidal species mentioned above. In a comparative study Pane
and Barry (2007) found that in contrast to the shallow-living
Dungeness crab, the deep-sea crab Chionoecetes tanneri showed
only a slight compensation of hemolymph pH during moderate
hypercapnia, probably reflecting a general trend of poorer acid-
ebase regulatory abilities in deep-sea animals as compared tomore
shallow-living species.

Partial compensation of extracellular acidosis during exposure
to hypercapnic conditions has previously been demonstrated in
intertidal mussels of the genusMytilus in experiments using closed
recirculation setups. The Mediterranean bivalveM. galloprovincialis
was able to maintain extracellular pH slightly above that of
seawater when exposed to long-term moderate hypercapnia
(Michaelidis et al., 2005), and M. edulis was able to partially
compensate extracellular acidosis even when subjected to PCO2

levels of 13 and 26mmHg (17000 and 34000 matm) (Lindinger et al.,
1984). The authors of both studies concluded that acidosis was
counteracted by accumulation of bicarbonate from dissolution of
the calcium carbonate shell.

During shell closure intertidal bivalves first use up the oxygen
remaining in cells and hemolymph, resulting in a rise in PCO2

due to
limited gas exchange to the surroundings (Booth et al., 1984). The
bivalves then switch to anaerobicmetabolism, causing a build-up of
acidic end products, and a subsequent decrease in body fluid pH.
This acidosis is to some extent buffered by hydrolysis of CaCO3 from
the shell, as HCO�3 react with excess Hþ and calcium ions increase
the strong ion difference. The net reaction, however, is a formation
of CO2, which again leads to a decrease in pH.When the bivalves are
re-submerged they rid themselves of the excess CO2 and pH is
reestablished (Crenshaw and Neff, 1969; Jokumsen and Fyhn, 1982;
Burnett, 1988). When using a closed setup for CO2 exposure, any
bicarbonate or calcium ions that are dissolved from the shells
remain in the system, and can be used to buffer body fluid acidosis.

Thomsen et al. (2010) found that when using a flow-through
system M. edulis was not able to compensate extracellular pH
when exposed to moderate PCO2

levels (1400 and 4000) matm and
no significant increase in extracellular HCO�3 was measured.
Control animals of A. excavata had significantly lower concentra-
tions of extracellular free calcium compared to values reported in
M. edulis andM. galloprovincialis (Lindinger et al., 1984; Michaelidis
et al., 2005). In addition, no significant shell dissolution or

Fig. 4. The buffering capacities of different tissues in Acesta excavata exposed to
control conditions (white bars) and severe hypercapnia for 96 h (dark bars). Values are
means � s.e.m, n ¼ 10 in control animals and n ¼ 6 in hypercapnic animals. Different
letters indicate values significantly different from each other (p � 0.05).

Fig. 5. Oxygen consumption (A) and ammonia-nitrogen excretion (B) in Acesta exca-
vata measured during control conditions, and severe environmental hypercapnia.
Open circles represents the mean of all control values. Values are means � s.e.m,
n ¼ 3e6. Asterisks indicate values significantly different (p � 0.05) from control values.
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accumulation of bicarbonate ions was observed in hypercapnic
animals. The results of the present study may therefore be in
accordance with those of Thomsen et al. (2010) that no compen-
sation of pH occurs in bivalves exposed to hypercapnia when they
are placed in an open system.

In a different study using a flow-through system the sea urchin
Psammechinus miliaris achieved slight and transient compensation
of extracellular pH when exposed to elevated levels of CO2. Here,
shell dissolution was higher during moderate than severe hyper-
capnia (Miles et al., 2007). These results may suggest that shell
dissolution in calcifying animals is dependent on the pH of the
water, with dissolution being weaker during more severe hyper-
capnia. This could indicate that shell dissolution is an active rather
than a passive process. This is not unlikely as the enzyme carbonic
anhydrase is reported to have a role in the shell formation in some
bivalves (Freeman and Wilbur, 1948). In P. miliaris mortality was
more conspicuous when exposed to severe hypercapnic conditions
(Miles et al., 2007). Although A. excavata was strongly affected by
hypercapnia no animals died during the experiment.

The fluctuations seen in the hemolymph content of Ca2þmay be
a consequence of changes in the relative volumes of the intra- and
extracellular compartments due to lowered energy production
during exposure. It is well known that the partitioning of dominant
osmolytes, such as amino acids and sodium, is a consequence of
energy expenditure. As the aerobe metabolism of these animals
was severely affected by hypercapnia the distribution of major
osmolytes may have been affected and resulted in changes in the
hemolymph volume. Previous studies have shown that the trans-
membrane gradient of sodium, calcium and many amino acids of
M. edulis are sensitive to organic chemicals (Børseth et al., 1992,
1995; Zachariassen et al., 1996).

The lower level of hemolymph Ca2þ in this study may also
indicate that the shells of deep-sea bivalves differ somewhat from
the shells of intertidal bivalves which experience daily fluctuations
in body fluid pH as well as shell dissolution due to the changing
tide.

Although deep-sea animals are thought to have low tolerance to
fluctuations in the environment, numerous species are known to
thrive in reducing environments such as hydrothermal vents. These
are areas where volcanic activity gives enriched gas tensions and
create conditions of hypercapnia and low pH. In their study
Tunnicliffe et al. (2009) compared the shells of two populations of
the vent mussel Bathymodiolus brevior, one found at a location
having naturally low pH and high PCO2

, and the other from a loca-
tion where pH was above 7.88. Both shell thickness and daily
growth increments of the ‘low pH group’ were half of the ‘high pH
group’. As seen in intertidal bivalves, dissolution of shells seemed to
occur on the inner shell surface, suggesting a compensatory
response. The high age of the individuals (<40 years), may suggest
that the ‘low pH’ bivalves have adapted to a life in this challenging
environment. The authors suggested that although themussels had
a high tolerance to the acidic environment, higher vulnerability to
predators due to reduced shell thickness may be a secondary effect
to exposure to hypercapnic environments. Natural predators such
as crabs were absent from the ‘low pH’ location, possibly due to the
acidic environment. Since acidebase status of the animals was not
studied, it is not known whether they are able to compensate for
body fluid acidosis, or if they have adapted to a naturally acidic
internal environment.

The intracellular buffering capacity varied significantly between
the different tissues in A. excavata, with the highest value found for
the posterior adductormuscle. This tissue-specific differencewas in
agreement with the results from studies involving both marine
vertebrates and invertebrates, as muscles capable of burst glyco-
lytic function or prolonged anaerobic work generally display higher

buffering capacities than other tissues (Castellini and Somero,1981;
Eberlee and Storey, 1984; Morris and Baldwin, 1984). Deep-sea
animals generally have lower non-bicarbonate buffering capacities
than shallow-water or pelagic species due to lower metabolic rates
(Castellini and Somero, 1981; Seibel et al., 1997). The results from
this study, however, shows that A. excavata has similar, and in some
cases higher buffering capacity compared to intertidal bivalves
(Eberlee and Storey, 1984; Morris and Baldwin, 1984; Walsh et al.,
1984).

Hypercapnia induced significant reductions in the buffering
capacities of the posterior adductor muscle. No significant CO2-
induced changes were found in the other tissues tested. The reason
for the reduction in the buffering capacity of the posterior adductor
muscle during hypercapnia is not clear. It could, however, be
a result of increased catabolism of proteins, or reduced rate of
protein synthesis, as proteins are important intracellular buffers
(Roos and Boron, 1981). Catabolism of amino acids generates
bicarbonate in addition to ammonia (Atkinson and Bourke, 1984),
and the decreased non-bicarbonate buffering capacity in the
posterior adductor muscle may reflect an attempt to actively
generate HCO�3 through this mechanism.

Although not significant, there appeared to be an increase in
ammonia-nitrogen excretion when animals were subjected to
hypercapnic compared to control conditions. Increases in
ammonia-nitrogen excretion during hypercapnia have previously
been reported in the intertidal bivalve M. edulis and
M. galloprovincialis (Lindinger et al., 1984; Michaelidis et al., 2005)
and Lindinger et al. (1984) suggested that ammonia could play
a role in acid excretion in M. edulis. The observed increase may
indicate an increased utilization of amino acids or proteins as
metabolic substrates in A. excavata during hypercapnia, consistent
with the observed lowering of the non-bicarbonate buffering
capacity of the posterior adductor muscle following exposure.

The mass-specific oxygen consumption for control animals was
somewhat lower than what has previously been reported for
A. excavata (Järnegren and Altin, 2006). This is most likely attrib-
uted to the different treatments of the animals during the experi-
ment. In this study animals were starved one week prior to the
experiment, while Järnegren and Altin (2006) fed the animals to
keep them active and filtering when oxygen consumption was
recorded. Feeding is known to affect oxygen consumption in
animals (Thompson and Bayne, 1972).

A large decline in oxygen consumption was expected as hyper-
capnia is known to induce metabolic depression in marine inver-
tebrates such as the marine sipunculoid S. nudus (Reipschlager and
Pörtner, 1996) and the bivalve M. galloprovincialis (Michaelidis
et al., 2005). Langenbuch and Portner (2002) found that oxygen
consumption of hypercapnic isolated body wall tissue of S. nudus
was reduced by 45% at an extracellular pH of 6.70. Hypercapnia
initially caused a substantial reduction in the mass-specific oxygen
consumption rate compared to control values. Although main-
tained below that of control animals, the mean oxygen consump-
tion returned towards control values at the end of the experiment.
The increased oxygen consumption by A. excavata during pro-
longed exposure may indicate a higher tolerance to extreme
acidosis of the body fluids than what was expected. It could also be
a delayed response in which metabolic processes are activated.

Thomsen and Melzner (2010) found that growingM. edulis for 2
months at different levels of CO2 elicited an increase rather than
reduction in oxygen consumption compared to control values. They
suggested that the reduced shell growth observed in their study
was due to synergistic effects of increased cellular energy demand
and nitrogen loss rather than metabolic depression.

In another mollusk, the cephalopod Sepia offcinalis, no changes
inmetabolic ratewas observed, the authors concluding that species
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having naturally high metabolic rate and activity are pre adapted to
high CO2 as a protection at high energetic activities (Gutowska
et al., 2008).

An increase in both metabolic rate and calcification rate in
response to elevated CO2 was found when the brittlestar Amphiura
filiformiswas subjected to hypercapnic exposure. This was however
followed by a reduction in muscle biomass, reflecting an expensive
means of compensation (Wood et al., 2008).

Metabolic depression during body fluid acidosis has mainly
been attributed to reductions in intracellular pH (Busa and
Nuccitelli, 1984; Michaelidis et al., 2005), but studies show that in
the sipunculoid S. nudus oxygen consumption is affected by extra-
cellular pH rather than intracellular pH. Whether the metabolic
reduction observed in A. excavata is due to pHe rather than pHi is
not clear from the results in this study.

The coincidental decrease in oxygen consumption and the
increase in ammonia-nitrogen excretionmay suggest a reduction in
the O/N ratio of A. excavata, indicating a higher dependence on
amino acid catabolism as a source of energy (Pörtner et al., 1998;
Langenbuch and Portner, 2002). This is in accordance with
studies conducted on M. edulis (Thomsen and Melzner, 2010).

5. Conclusion

In this study exposure of the deep-sea bivalve A. excavata to
severe environmental hypercapnia induced extra- and intracellular
acidosis that remained uncompensated during exposure. Oxygen
consumptiondropped significantlyduring the initial phase, but then
approached control values at the end of exposure. The intracellular
non-bicarbonate buffering capacity were similar to and, in some
tissues, higher than those reported for intertidal bivalves, and the
buffering capacityof theposterior adductormusclewas significantly
lower in hypercapnic animals compared to control animals.
Although animals were highly affected by exposure to hypercapnia
the acidebase parameters returned towards control values and no
mortalitywas observed in exposed animals. This study suggests that
A. excavata displays higher tolerance to severe environmental
hypercapnia than what may be expected for deep-sea animals.
However, Tunnicliffe et al. (2009) found evidence that permanent
exposure to similar conditions causes reduced growth rates and
shell thickness in mussels adapted to a life at deep-sea vents, and
such long-term effects may also develop in A. excavata.
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Abstract 

Carbon dioxide (CO2) acts as a weak acid in water and the increasing level of CO2 in the 

atmosphere leads to ocean acidification. In addition, possible leakage from sub-seabed storage 

of anthropogenic CO2 may pose a threat to the marine environment. 1H-NMR spectroscopy 

was applied to extracts of hemolymph, gills and leg muscle from shore crabs (Carcinus 

maenas) to examine the metabolic response to elevated levels of CO2. Crabs were exposed to 

different levels of CO2 –acidified seawater with pHNBS 7.4, 6.6 and 6.3 (pCO2 ~ 2,600, 16,000 

and 30,000 μatm, respectively) for two weeks (level-dependent exposure). In addition, the 

metabolic response was followed for up to 4 weeks of exposure to seawater pHNBS 6.9 

(pCO2~7,600 μatm). Partial least squares regression analysis of data showed an increased 

differentiation between metabolic fingerprints of controls and exposed groups for all sample 

types with increasing CO2 levels. Difference between controls and animals subjected to time-

dependent exposure appeared after 4 weeks in hemolymph and gills, and after 48 hours of 

exposure in leg muscle. Changes in metabolic profiles were mainly due to a reduced level of 

important intracellular osmolytes such as amino acids (glycine, proline), while the level of 

other metabolites varied between the different sample types. The results are similar to what is 

observed in animals exposed to hypo-osmotic stress and may suggest disturbances in 

intracellular iso-osmotic regulation. The results may also reflect increased catabolism of 

amino acid to supply the body fluids with proton-buffering ammonia (NH3). Alternatively, the 

findings may reflect an exhaustive effect of CO2 exposure. 

 

Keywords: Carbon dioxide; Hypercapnia; Carcinus maenas; Metabolomics; CO2 storage 

 Ocean acidification 
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1. Introduction 

The ocean and the atmosphere exchange carbon in the form of CO2, and the increasing 

atmospheric level of CO2 observed today is therefore affecting the ocean. In seawater, CO2 is 

hydrated to form carbonic acid (H2CO3) which dissociates into bicarbonate (HCO3
-), 

carbonate (CO3
2-), and hydrogen ions (H+). Seawater has a high buffering capacity against the 

acidic effect of CO2 due to the presence of dissolved inorganic carbon species and its total 

alkalinity (Zeebe and Wolf-Gladrow 2001). However, as the CO2 level increases the pH of 

seawater is reduced, a phenomenon referred to as ocean acidification (Doney et al. 2009). 

Mitigating actions such as carbon capture and storage (CCS) have been put into practice to 

reduce anthropogenic CO2 emissions to the atmosphere. Although sub-seabed storage sites are 

believed to offer safe containment of the captured CO2, leaks may occur causing damage to 

the natural environment in the proximity of the leakage sites (Damen et al. 2006; Turley et al. 

2004). Studies from natural CO2 seeps indicate that burst leaks could lead to extreme CO2 

levels and changes in pH close to the leakage point (Vetter and Smith 2005), while currents 

may transport and disperse the acidic water to larger areas. However, the more plausible 

scenario of small and prolonged leaks would be a constant acidification at the leakage area 

(Turley et al. 2004). 

Due to the charge neutral nature of the CO2 molecule it easily penetrates biological surfaces 

such as cell membranes (Gutknecht et al. 1977). Thus, under conditions of elevated seawater 

levels of CO2 (environmental hypercapnia) hydration of CO2 in the body fluids of aquatic 

ectotherms results in an increased proton concentration and extra- and, intracellular acidosis. 

Previous works have mainly examined the effects of hypercapnia on acid-base homeostasis 

and metabolic rate (Gutowska et al. 2010a; Hammer et al. 2011; Michaelidis et al. 2005; Pane 

and Barry 2007; Pörtner et al. 1998; Reipschlager and Pörtner 1996; Thomsen and Melzner 

2010), development and growth (Dupont et al. 2008; Gazeau et al. 2010; Kurihara 2008; 

Michaelidis et al. 2005) and calcification (Gutowska et al. 2010b; Ries et al. 2009). 

Environmental hypercapnia has been shown to affect all of the above mentioned factors and 

the effects vary between species and life stages of the animals (Gazeau et al. 2010; Kikkawa 

et al. 2004; Pane and Barry 2007). 

The shore crab, Carcinus maenas, is an osmoregulating, euryhaline decapod which is native 

to the shores of Europe and North-Africa, but has in the last centuries been distributed to most 

continents of the world due to increased human activities such as international shipping. Its 
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success is most likely due to a high tolerance to fluctuations in environmental factors such as 

temperature, salinity, and oxygen level (McGaw et al. 2011). C. maenas frequently 

experiences both hypercapnic (CO2-induced) and metabolic acidosis due to restricted gas 

exchange and anaerobic metabolism, respectively, during low tide (Truchot 1986). Studies 

have shown that when subjected to hypercapnic conditions it is able to rapidly return 

extracellular pH towards normal values by accumulating bicarbonate ions (Truchot 1975).  

Metabolomics is a tool which allows simultaneous measurements of multiple metabolites of 

low molecular weight. By using methods such as nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS), followed by appropriate statistical analysis that 

typically employs multivariate or other repeated univariate tests, one may reveal changes in 

the metabolic profile, rather than in single metabolites in response to drugs, toxicants or 

disease (Bundy et al. 2009; Viant 2007). In recent years, an increasing number of studies have 

applied this tool to reveal the metabolic responses of organisms to environmental and 

anthropogenic stressors, a field known as environmental metabolomics (Schock et al. 2010; 

Tuffnail et al. 2009; Viant 2007; Zhang et al. 2011a; Zhang et al. 2011b). In addition, there 

has been an increased application of environmental metabolomics in studies concerning 

marine invertebrates (Schock et al. 2010; Tuffnail et al. 2009; Viant et al. 2003; Wu and 

Wang 2011; Zhang et al. 2011a; Zhang et al. 2011b). 

In this study, we have employed 1H-NMR metabolomics on the polar extracts of hemolymph, 

gill and muscle tissue of the shore crab C. maenas in order to investigate how the metabolome 

is affected by environmental hypercapnia. As this species is known to frequently experience, 

and have a high tolerance to hypercapnic conditions (Truchot 1986) it was chosen as a model 

species to possibly elucidate mechanisms involved in the handling of CO2-induced effects. 

The pCO2 levels chosen for the present study are relatively high in order to induce a 

physiological strain on the animals. The levels range from those expected from worst case 

ocean acidification scenarios (Caldeira and Wickett 2003) to levels reported from natural CO2 

seeps (Vetter and Smith 2005). The latter may represent conditions that could arise during 

possible leakage from sub-seabed CO2 storage sites.  

 1

 2
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2. Materials and methods

2. 1 Collection and maintenance of animals 
Carcinus maenas (67 males and 24 females, 7-70 g wet mass) were collected in the 

Trondheimsfjord, Norway, from June to September 2009. Animals were transported directly 

to the holding facility in polystyrene containers with cooler bricks. 

Prior to the experiments animals were kept in aquaria (30-50 L) with flow-through seawater 

holding a temperature of 11°C in a climate controlled room. The crabs were allowed to 

acclimate to laboratory conditions for a minimum of 14 days before being subjected to 

experimental conditions. The animals were fed frozen blue mussels twice a week during 

storage, but were starved for 48 hours prior to exposure to ensure that all animals were at a 

similar starting point with respect to stomach filling. Due to the length of the exposures 

animals were hand fed blue mussels, and allowed to eat for 15 minutes twice a week during 

the experiments. Prior to removal from the exposure chambers, all animals were starved for 

48 hours. 

The experiments were conducted according to the Animal Welfare Act and approved by the 

National Animal Research Authority (fdu.no, FOTS reference no. 1845). 

2.2 Seawater chemistry measurements 

All seawater pH measurements were carried out using a Radiometer Analytical MeterLab 

standard pH meter (PHM210), with a combined micro pH electrode (pHC3359-8, Radiometer 

Analytical MeterLab®) which was calibrated using Radiometer Analytical buffers (NBS). 

Seawater pH is denoted pHNBS according to the NBS scale. 

Total seawater CO2 (TCO2) was measured on 50 μL subsamples using a Corning 965 TCO2 

analyzer. The instrument was calibrated using dilutions (2.5-45 mM) of 2 g L-1 CO2 standard 

(Reagecon). Calibrations were performed frequently every day. However, for the samples in 

the level-dependent exposure total alkalinity (TA) was used to calculate pCO2. The apparent 

activity coefficient of H+ (fH+) was determined by four-point titration of 20 ml seawater by 5 

ml standard acid with normalities in the range of 0.01-0.016N HCl which was used to 

calculate total alkalinity  of seawater (Anderson et al. 1999). TA measurements gave the same 

results as TCO2 measurements. Concentrations of seawater carbonate species were calculated 

from the measured data using the CO2SYS software (Pierrot et al. 2006) with the dissociation 

constants for NBS scale of Merbach et al. (1973) which have been refit by Dickson and 

Millero (1987). 
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2.3 Experimental setup 

2.3.1 Exposure system 
The exposure system, depicted in Fig 1, was a semi-flow through system with a total volume 

of approximately 300 L. Seawater saturated with CO2 (pHNBS 4.88) was produced through 

aeration with pure CO2 gas (Yara, Mapcon). The CO2 saturated seawater was mixed with 

fresh seawater at a set ratio in a CO2 header tank to yield the desired exposure conditions. The 

mixed CO2-seawater was pumped to a distribution chamber, which further distributed the 

exposure water to the individual exposure chambers. Excess water in the exposure chambers 

exited through an outlet at the bottom of the exposure chambers and flowed back into the 

header tank. Surplus water was eliminated through an overflow outlet.  

The exposure chambers were 30 L glass aquariums with lids. In order to prevent physical 

interactions between the crabs, six separate cells were made from PVC for each aquarium 

with one crab placed in each cell. The cells were placed on top of a perforated PVC sheet 

elevated above the floor of the chambers to facilitate cleaning, and prevent animals from 

blocking the outlet. Water was supplied to each individual cell by connecting a manifold with 

six outlets to the inlet of the aquarium. Exposure chambers were cleaned every 14 days. 

2.3.2 Time-dependent exposure (pH 6.9) 
Several previous studies investigating the physiological responses to elevated pCO2 in marine 

teleosts and invertebrates have applied exposure levels close to pCO2 = 10,000 μatm , (~pH 

6.85) to induce strain on the animals (Deigweiher et al. 2008; Pane and Barry 2007; Pörtner et 

al. 1998). The exposure conditions chosen for the time-dependent exposure was therefore 

close to these CO2 levels (pHNBS 6.94 ± 0.02 and pCO2 = 7,573 ± 252 μatm). Crabs were 

subjected to these hypercapnic conditions for a period of 1 to 672 hours, to study responses 

related to time of exposure. 

2.3.3 Level-dependent exposure (pH 7.4, 6.6 and 6.3) 

Level-dependent responses to elevated pCO2 was studied by exposing animals to levels 

ranging from worst case scenarios of ocean acidification (Caldeira and Wickett 2003) to 

levels reported from natural CO2 seeps (Vetter and Smith 2005) which may represent 

conditions that may arise during a possible leakage from anthropogenic CO2 reservoirs. 

Exposure to the three other CO2 levels was done by creating a CO2-seawater solution in the 

header tank which represented the highest exposure level (pHNBS 6.33 ± 0.01, pCO2 = 30,743 

± 691). This “stock solution” was diluted with fresh seawater to create the two remaining 

exposure levels (pHNBS 6.62 ± 0.01, pCO2 = 16,020 ± 393 μatm, and pHNBS 7.40 ± 0.03, pCO2 
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= 2674 ± 162 μatm). Animals were subjected to level-dependent exposure for two weeks (336 

h). The different exposure groups are hereby referred to according to the pH of the exposure 

water. That is: the pH 7.4, pH 6.9, pH 6.6 and pH 6.3 group. The animals representing the pH 

6.9 group were held under the experimental conditions explained above for the time series 

experiment. 

Control animals were concurrently held in a near identical semi-flow through system supplied 

with normocapnic water (pHNBS 8.08 ± 0.02, pCO2 = 488 ± 14 μatm) instead of hypercapnic 

water. 

Each exposure group was made up of 6 to 12 animals, with a similar distribution with respect 

to the size of the crabs between the groups. 

2.4 Treatment of samples and data 

2.4.1 Hemolymph 

Hemolymph was collected from the infrabranchial sinus on unanaesthetised animals by 

puncturing the arthrodial membrane at the base of the fourth walking leg using a 0.5 mL ice-

chilled Hamilton gas tight syringe pre-rinsed with ice-cold Crab ringer solution. Samples were 

spun down (12,000 rpm, 4 min) to remove hemocytes and stored at -20°C. Thawed 

hemolymph was filtered using pre-washed (2 x 0.1 M NaOH and 8 x dH2O) centrifuge filters 

(Nanosep® 30 K red) at 10,000 g for 10 min at 4°C. The filtrate was frozen at -80°C, later 

lyophilized and stored at -80°C until analysis. 

2.4.2 Gill and muscle tissue 

Animals were killed by destroying the ventral ganglion and dissection was carried out on ice 

in a climate controlled room (10°C). Posterior gills (gill arch 9), and muscle tissue from one 

walking leg was collected immediately after the animal was killed. Tissues were flash frozen 

in liquid nitrogen and stored at -80°C. Samples were later lyophilized and treated according to 

a modified method of Wu et al. (2008), which is based on the extraction method of Bligh and 

Dyer (1959). 

Briefly, lyophilized gill tissue (2-40 mg dry mass) was homogenized in 800 μL 2:1 methanol-

water using a Precellys 24 bead-based homogenizer (Bertin Technologies). The entire 

homogenate was then transferred to 1.8 mL glass vials to which 400 μL chloroform and 175 

μL distilled water was added. The sample was vortexed for 2 x 30 sec, left on ice for 15 min, 
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and spun down (2,000 g for 5 min). Following centrifugation the polar phase was transferred 

to a fresh tube, dried in a vacuum centrifuge for 1 h at 30°C and lyophilized for at least 24 h. 

Lyophilized muscle tissue (11-59 mg dry mass) was homogenized in 1.5 mL 2:1 methanol-

dH2O. As it proved difficult to collect the entire muscle homogenate the sample was spun 

down (5,700 rpm, 0°C, 10 min) and the supernatant (~550 μL) was used instead. Apart from 

this the supernatant of muscle tissue was treated as described for gill tissue. 

2.4.3 NMR sample preparation and acquisition of data 

Gill extracts were dissolved in 550 μl of D2O added hydrazine (10 mM) as a pH indicator and 

2.2-Dimethyl-2-silapentane-5-sulfonate (DSS, 5 mM) as an internal standard. Sodium azide 

(NaN3, 0.2 % w/v) was added to inhibit growth of bacteria. An aliquot of 500 μl was 

transferred to 5 mm NMR tubes and used for NMR spectroscopy in a Bruker DRX 500 NMR 

spectrometer resonating at 500.07 MHz which was fitted with a BBO-probe. For each sample 

512 free induction decays with a spectral width of 6009 Hz were collected into 48076 data 

points. Water suppression was achieved using the Bruker noesygpgr1d pulse sequence.  

Hemolymph samples and muscle extracts were dissolved in 200 μl D2O (PBS buffered to pH 

7.4) with 3-(Trimethylsilyl) propionic-2,2,3,3-d4 acid (TSP, 1 mM) and transferred to Bruker 

3mm NMR tubes. NMR was performed with a Bruker DRU 600 US+ NMR spectrometer 

fitted with a BBO probe. For each sample 128 FIDs with a spectral width of 12019Hz were 

collected into 64K data points.  

2.4.4 Multivariate analysis and quantification of NMR data 

For multivariate analysis in Matlab (R2010b, MathWorks, Inc.), the ProMetab_v3_3 software 

was used to import data from TOPSPIN 1.3. The residual water resonance was omitted from 

import. The TMAO/betaine peak at 3.27 ppm was removed from the spectra before 

multivariate analyses. Information on betaine was still retained in the resonance at 3.90 ppm. 

The data were binned with a resolution of 0.005 ppm leaving 1900 data points for analysis. 

Principal components analysis (PCA) and partial least squares (PLS) regression analyses were 

performed in PLS-Toolbox 6.0 (Eigenvector Research, Inc.) within Matlab. The analyses 

were performed on both binned data (hemolymph and gills) and binned data subjected to a 

generalized log transformation (muscle) (Purohit et al. 2004). PLS models were cross 

validated by the venetian blinds cross validation in PLS-toolbox and a permutation test was 

performed on the models to test for over fitting.  
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For quantification in Chenomx (Chenomx, Inc) the Bruker FID file was processed in the 

Chenomx processor before quantification in the Chenomx profiler. For gill data, hydrazine 

was used for pH calibration, and for muscle and hemolymph the pH was set to 7.4 ± 0.05. 

Homarine is not included in the Chenomx library and was therefore quantified by integrating 

the homarine singlet (4.4 ppm) using TOPSPIN 1.3. The concentrations of metabolites were 

normalized for pre-extraction dry weight of tissues and hemolymph to reduce the variability 

due to differences in sample mass and thus, also the mass of the crab. 

2.5 Statistics
All data were tested for normality using the Kolmogorov-Smirnov test. Data with non-normal 

distribution were tested using Kruskal-Wallis with Dunn’s post hoc test. Changes in 

concentrations of individual metabolites between controls and time groups displaying 

significantly different LV was tested using Mann-Whitney. The level of significance was set 

at p  0.05. All values are presented as means with standard error of means (± SEM). 

 

3. Results 
Figure 2 (A-C) shows typical 1H-NMR spectra of polar metabolites obtained from 

hemolymph (A), muscle (B) and gill (C) extracts from C. maenas. According to these spectra 

the polar extracts of small organic metabolites mostly consists of amino acids (glycine, 

proline, glutamate, etc), quaternary ammonium derivatives (glycine-betaine, homarine and 

trigonelline) and glycolytic products (lactate). Peak assignments were based on chemical 

shifts and peak multiplicity, as well as the use of Chenomx NMR software suite. 

Identification of metabolites was further confirmed by 1H, 1H-COSY and 1H, 13C-HSQC  2D 

NMR in muscle and hemolymph extracts. 

The 1H-NMR spectral data sets of all extracts were initially subjected to PCA and some 

classification was found. However, PLS regression analysis gave a better description of the 

changes in the metabolome in response to hypercapnic exposure, and a clearer separation 

between exposure groups and controls was found.  

3.1 Level-dependent exposure 

Separation between controls and exposed animals was particularly conspicuous in the level-

dependent exposure. The rank order of separation seemed to be more or less in accordance 

with the degree of exposure for all sample types (Fig 3, 4 and 5A). 



10

3.1.1 Hemolymph 
Scores from PLS regression of hemolymph extracts of animals exposed to different levels of 

pCO2 are given in Fig. 3A. All exposure groups showed significantly different scores 

compared to the control group, and the rank order of separation occurred according to 

exposure level. As seen in Fig 3B the changes were most prominent along Latent variable 1 

(LV1), where a higher level of lactate, taurine, glycine and glycine-betaine were found in 

control animals compared to exposed animals. Glutamine and lysine were predominantly 

higher in exposed compared to control animals (Fig. 3C). Along LV2 most metabolites were 

higher at negative values, indicating a higher level in exposed animals (Fig. 3D). The results 

for LV1 were in accordance with the results found after quantification of metabolites using 

the Chenomx software suite (Table 1). However, the large variations within the groups made 

it difficult to identify statistically differences in metabolite concentration. Lactate was found 

at a significantly lower level in the pH 7.4 group compared to control animals, while glycine 

was lower in both the pH 7.4 and pH 6.6 group. Leucine and glutamine was significantly 

higher in the pH 6.6 group, while in the pH 6.3 group lysine, N6-acetyllysine, and leucine 

were found to be significantly higher than in control animals.  

3.1.2 Muscle 
Compared to hemolymph an even clearer separation of the different groups was observed in 

the level-dependent experiment (Fig. 4A). A significant difference between scores of control 

animals and all four exposure groups was found along LV1 (Fig. 4B). According to the 

loading plot the level of alanine, arginine, proline, glutamate, glutamine and glycine was 

higher in controls compared to exposed animals, while malonate, taurine, glycine-betaine and 

homarine levels were higher in exposed animals (Fig. 4B). Quantification of metabolites 

revealed that the concentration of glycine was significantly lower in the pH 7.4 and pH 6.6 

groups, proline was significantly lower in the pH 6.3 group, and threonine was significantly 

lower in the pH 6.6 group compared to controls (Table 2). A significantly higher 

concentration of trigonelline was found in the pH 6.6 and pH 6.3 group compared to controls. 

3.1.3 Gill 
The results for gill extracts are given in Fig. 5A-C. The score plot revealed that only the two 

highest exposure groups could be significantly separated from controls along LV1, while the 

pH 7.4 group was significantly different from controls along LV2 (Fig. 5B). From the loading 

plot it appeared that alanine, proline, glutamine, glutamate, dimethylamine, choline, glycine 

and homarine occurred at higher levels in control animals, while the levels of arginine, lysine, 

malonate, acetylcholine, taurine, and glycine-betaine were higher in exposed animals (Fig. 
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5C). Quantification revealed that the levels of glycine, sarcosine and dimethylamine were 

significantly lower in the pH 7.4 group compared to control animals. Lactate was significantly 

lower in the pH 6.6 group, while proline and trigonelline was lower in the pH 6.6 and pH 6.3 

group compared to control animals (Table 3). The level of creatine in gills was significantly 

higher compared to controls in the pH 7.4 and pH 6.6 group. 

3.2 Time-dependent exposure 
Fig 6 describes the time-dependent trajectory of change in scores of the different sample 

types. It was apparent that in the short term phase (1-48 h) of exposure the changes in the 

scores progressed differently than in the “long-term” phase (96-672 h). Only hemolymph 

samples of animals subjected to 672 hours of exposure could be significantly separated from 

controls. Quantification of data revealed that separation of the 672 hour group was due to a 

significant increase in leucine, lysine and glutamine, while lactate was significantly reduced 

compared to controls (Table 1). 

For muscle extracts the scores of animals subjected to 4 and 48 hours of exposure were 

somewhat separated from controls. No significant changes in metabolite concentrations was 

found in the 4 hour group, while proline was significantly lower compared to controls in the 

48 hour group (Table 2).  

PLS regression of gill extracts revealed that only the group subjected to 672 hours of exposure 

was significantly separated from controls (Fig 6C). Here, a number of metabolites were 

reduced compared to controls, while only taurine was significantly elevated (Table 3). 

 

4. Discussion 
The effects of elevated seawater CO2 on marine organisms have received increased scientific 

attention in the recent years. Here we present one of the first studies to apply 1H-NMR based 

metabolomics to investigate the effects of environmental hypercapnia. The objective was to 

study effects on the metabolic fingerprint and possibly elucidate biomarkers and/or protective 

mechanisms in C. maenas subjected to CO2 stress. 

The results of level-dependent exposure show that when using PLS regression on 1H-NMR 

data it is possible to distinguish tissue and hemolymph extracts of hypercapnic C. maenas 

from those of control animals. In addition, some degree of separation could be identified 
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between the different exposure groups, and the rank order of separation was more or less in 

accordance to the level of exposure. 

Only a few metabolites relevant for energy metabolism were identified. The observed changes 

in metabolic profiles were typically caused by important osmolytes such as amino acids and 

quaternary ammonium compounds. Marine invertebrates are generally slightly hyper-osmotic 

to their surroundings, and while the major osmolytes in the extracellular fluids are inorganic 

ions (Cl-, Na+) the osmotic pressure inside the cells is also regulated by organic osmolytes 

such as amino acids and quaternary ammonium compounds (Pierce 1982; Shoffeniels and 

Gilles 1970). This is most likely because high concentrations of inorganic ions can exert 

deleterious effects on enzymes. In fact, the organic osmolytes present in the highest levels 

(i.e. glycine, glycine-betaine and proline) are compatible solutes and can even enhance the 

performance of enzymes (Bowlus and Somero 1979). 

Although the hemolymph generally contains very low levels of metabolites, changes may 

occur if metabolites are excreted into the hemolymph as it flows through the soft body tissues.

The hemolymph level of glycine followed a similar pattern as observed in leg muscle and 

gills, with significantly lower levels in exposed animals compared to controls. The 

significantly higher level of hemolymph glutamine in exposed animals compared to controls 

may possibly reflect increased excretion from the cells as slight decreases in both muscle and 

gill glutamine was observed.  

The concentrations of the essential amino acids leucine and lysine increased with increasing 

CO2 level, possibly due to increased protein degradation with level of exposure. Gilles and 

Shoffeniels (1969) found that concentrations of essential amino acids of decapod nerves can 

be regulated by modifying the permeability of the cell membranes in response to changing 

salinities, suggesting a role in intracellular iso-osmotic regulation. Lysine has previously been 

found to play a role in iso-osmotic regulation in the hemolymph of the giant freshwater prawn 

Macrobrachium rosenbergii (Huong et al. 2001), and the changes observed in this study may 

thus reflect osmotic disturbance in hypercapnic C. maenas. 

In the hemolymph of the blue crab, Callinectes sapidus, subjected to oxidative stress, Shock 

et al. (2010) found an increase in glucose and lactate levels, which are reliable indicators of 

biological stress and anaerobic respiration, respectively. While no change was found in 

hemolymph glucose level in the present study, a significant decrease in lactate was found in 

exposed animals compared to controls. This was unexpected, and also in disagreement with 
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the results of Pane and Barry (2007) who found a significant increase in lactate levels in 

Dungeness crabs (Cancer magister) subjected to short term environmental hypercapnia. 

Perhaps these findings suggest that the increase in lactate during hypercapnic exposure is 

transient, and do not occur during prolonged exposure.  

A significant increase in trigonelline was found in muscle tissue. Trigonelline belongs to the 

quaternary ammonium compounds of which many are known to exert protective effects on 

enzymes when animals and plants are subjected to salt and temperature stress (Bowlus and 

Somero 1979). The concentration of proline was decreased in all exposure groups, and 

significantly lower compared to controls in the pH 6.3 group. The level of glycine fluctuated 

with level of exposure, but was significantly lower in the pH 7.4 and 6.6 group while the two 

remaining groups displayed levels similar to controls. A similar trend was found for succinate 

and while no groups were significantly different from controls, the succinate level of the pH 

7.4 group was significantly lower compared to the pH 6.3 group (not shown). This may 

suggest that the level of CO2 has an effect on the Krebs cycle. 

In gill extracts of hypercapnic C. maenas there was a decrease in the concentrations of a 

majority of the metabolites, the most prominent reductions being for proline, glycine, 

trigonelline, dimethylamine and sarcosine. While the former four are important osmolytes 

(Shoffeniels and Gilles 1970), sarcosine is both the precursor and byproduct of glycine 

synthesis and catabolism (Bloch and Schoenheimer 1940), and may simply reflect glycine 

metabolism. The concentration of creatine increased significantly with level of exposure. 

However, the biological role of creatine in crustaceans is unclear. As no large difference in 

creatine phosphate level was found it is difficult to link this to changes in energy reserves.  

The large contribution of glycine-betaine in the loading plot indicated a large increase with 

exposure to CO2 in the gills. Although glycine-betaine increased some, its impact was 

somewhat reduced after quantification. This was possibly due to differences in the size of the 

animals within the groups, as the level of glycine-betaine has been found to be higher in larger 

animals (Størseth et al. 2009). The increase in glycine-betaine may be explained by an 

increased synthesis from glycine to exert protective effect on enzymes during CO2 stress. 

Changes in metabolic fingerprints were only apparent after long term exposure in hemolymph 

and gills, however, for muscle extracts changes were found in one of the short-term exposure 

groups. While the time-dependent changes in hemolymph and muscle were in accordance 

with the results from the level-dependent exposure, the gills of the four week exposure group 
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displayed a different pattern. Here, a pronounced decrease in a number of metabolites, 

including important osmolytes (proline, glutamate, arginine, alanine, etc.) and metabolites 

involved in energy metabolism (ATP/ADP, acetate, malonate), was accompanied by a large 

increase in taurine. Taurine is an important compatible osmolyte in marine crustaceans and 

fish (Huxtable 1992), and the increase may reflect a compensation for the loss of other 

osmolytes. 

To our knowledge, the only other study to have employed 1H-NMR spectroscopy to 

investigate the effects of hypercapnia is that of Lannig et al. (2010). They studied the 

synergistic effects of increased temperature and ocean acidification (pH 7.7) on oysters, 

Crassostrea gigas, and observed a depletion of alanine and ATP levels in mantle, while 

succinate was significantly increased in gills and hepatopancreas. Their results suggested a 

shift in the metabolic pathways towards increased gluconeogenesis due to an impairment of 

glycolysis. The results of the present study give no indication of such a change in energy 

metabolism, perhaps with the exception of gills in C.maenas subjected to prolonged exposure. 

Although there was some variation between the metabolic responses of the different sample 

types, a common trait was a decrease in glycine and proline in exposed animals. Glycine and 

proline are, in addition to alanine, the two most important amino acids when it comes to 

intracellular iso-osmotic regulation in marine decapod crustaceans (Siebers et al. 1972). 

During hypo- and hyper-osmotic conditions the concentrations of these compounds are 

typically decreased and increased, respectively (Cobb et al. 1975; Shinagawa et al. 1995). 

While increased concentration is associated with increased de novo synthesis, a decrease is 

thought to reflect increased protein or amino acid catabolism. Cobb et al. (1975) found that 

only glycine and proline levels decreased in the shrimp Penaeus stylirostris at reduced 

salinity. The results of this study thus suggest that exposed animals experience effects similar 

to those seen during hypo-osmotic exposure, such as cell swelling. Decrease in proline has 

also been reported in starving tiger prawns (Smith and Dall 1991). Although the animals in 

this study were fed during the experiment, decrease in proline may indicate an impaired health 

status of exposed animals.  

Previous studies have shown that acid-base regulation is associated with osmoregulation in 

crustaceans, as transport of hydrogen ions and bicarbonate ions occur through transport 

proteins that simultaneously transport sodium and chloride ions, respectively, into the cells 

(Cameron 1978; Truchot 1981; Wheatly and Henry 1992; Whiteley 2011; Whiteley et al. 
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1995). Thus, if acid-base regulation compromises the osmoregulation of the extracellular 

fluids, the result may be osmotic stress on the cells. In a parallel study we did, however, not 

find a significant decrease in the extracellular osmolality of hypercapnic C. maenas (Hammer 

et al. submitted manuscript). A decreased extracellular osmolality could have explained the 

symptoms of hypo-osmotic exposure found in the present study. Intracellular iso-osmotic 

regulation and acid-base regulation in decapods does, however, occur through ion transporting 

proteins similar to those found in the gills. It is, therefore, possible that the maintenance of 

intracellular pH during acidosis impairs intracellular iso-osmotic regulation. 

The initial objective of this study was to reveal mechanisms involved in acid-base regulation 

and other CO2 relevant processes. In mammals, acid-base regulation of metabolically 

produced acids mainly occurs in the kidneys, where ammonia (NH3) produced from the 

deamination of glutamine and/or glutamate acts as a buffer for excess hydrogen ions. This 

process involves the enzymes phosphate-dependent glutaminase (PDG), which drives the 

formation of glutamate and ammonia from glutamine in the presence of phosphates, and 

glutamate dehydrogenase (GDH), which catalyzes the formation of -ketoglutarate and 

ammonium in the presence of nicotineamide adine dinucleotide, respectively (Atkinson and 

Bourke 1984; Goldstein 1967).  

No evidence of a similar mechanism for C. maenas could be found in response to CO2-

induced acidosis in the present study. If this mechansism was active, one would expect a 

reduction in glutamine, and possibly glutamate in tissue extracts of CO2 exposed animals, as 

well as an increase in -ketoglutarate. The former was found as both amino acids, particularly 

glutamine, was present at slightly lower levels in exposed animals. However, no significant 

difference compared to control animals was found after quantification. Also, we were not able 

to identify -ketoglutarate in the NMR spectra of any of the samples. Perhaps a different 

result could be found if a similar study was performed on a different tissue, such as the 

hepatopancreas, which may exhibit higher activities of carbohydrate metabolism pathways 

(Giles et al. 1976). 

Previous studies have, however, reported that both conditions of reduced salinities and 

environmental hypercapnia may result in increased ammonia excretion due to increased 

catabolism of deaminating amino acids. For instance, during hypo-osmotic condtions, it has 

been suggested that the NH3 produced from deamination of amino acids bind to H+ ions, and 

the resulting NH4
+ is used as a counter ion to absorb Na+ from the seawater (Mangum et al. 
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1976). During acidosis the same process is suggested to aid in acid excretion through 

neutralization and removal of H+ (Lindinger et al. 1984). An increased catabolism of amino 

acids, such as glycine and threonine, to buffer H+ in hypercapnic animals could thus possibly 

explain the reduced level of amino acid found in the present study.  

The changes in metabolic profile in hypercapnic C. maenas seem to indicate an exhaustive 

stress effect rather than to reflect defensive mechanisms. Although changes in individual 

metabolites occurred, it was not possible to link these changes to specific biochemical 

pathways. This was either because no changes in relevant precursors or end products were 

found, or because the precursors/products could not be identified in the 1H-NMR spectra. The 

argument of exhaustive effects is strengthened by the fact that no changes could be found in 

the early parts of the time-dependent exposure, with the exception of the muscle extracts of 

the 48 hour group.  

C. maenas is known to have a high tolerance to environmental fluctuations, and was therefore 

expected to display some regulatory mechanisms in response to hypercapnia. However, it was 

not possible to identify any mechanisms from the results of this study. The results suggest that 

C. maenas settles at a new steady-state in response to physiological stress, possibly as an 

energy saving strategy. In fact, a recent study has shown that C. maenas does not increase the 

expression of its branchial ion regulatory system substantially in response to hypercapnic 

acidosis at pCO2 = 4,000 μatm (Fehsenfeld et al. 2011). In the same study it was found that 

the gene expression pattern coincided with gene expression patterns from C. maenas 

subjected to hypo-osmotic conditions (Towle et al. 2011).  

 

 

 

 

 

 

 



17

Conclusion 

The results of this study did not reveal any new, or identify previously known mechanisms 

against CO2-induced acidosis. Rather, the results indicated that prolonged exposure to 

elevated levels of CO2 may impair intracellular iso-osmotic regulation, as a general decrease 

in the majority of intracellular osmolytes was found. This could possibly be a result of trade-

offs between osmoregulation and acid-base regulation, as suggested in previous studies. It is 

also possible that the observed decrease in certain amino acids reflected increased catabolism, 

serving to produce ammonia to buffer surplus protons. The results could alternatively reflect 

an exhaustive effect of prolonged exposure to CO2 stress. The study also revealed that 1H-

NMR spectroscopy based metabolomics can be used to separate animals exposed to 

environmental hypercapnia from control animals when PLS regression is applied to the data, 

thus working as a biomarker of exposure. While no obvious responses to hypercapnic 

exposure were found in the sample types used in the present study, other tissues, such as the 

hepatopancreas may reveal changes in important pathways involved, e.g. in carbohydrate 

metabolism. Also, investigating the metabolic responses of species less tolerant to 

hypercapnic conditions may reveal interesting results, as they would be expected to be more 

dependent on protective mechansism against the perturbing effects of CO2. 
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Fig. 2. Representative one-dimensional 1H-NMR spectra of polar extracts in hemolymph (A), 

walking leg muscle (B) and gill (C) from Carcinus maenas held at normocapnic (control) 

conditions. Key to metabolites: 1 branched-chain amino acids (valine, isoleucine and leucine), 

2 lactate, 3 alanine, 4 arginine, 5 proline, 6 methionine, 7 glutamate, 8 glutamine, 9 

dimethylamine/sarcosine, 10 lysine, 11 malonate, 12 betaine, 13 taurine , 14 glycine, 15 

homarine, 16 tyrosine, 17 trigonelline, 18 formate  
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Fig. 3. Partial Least-Squares (PLS) regression model of data from hemolymph of Carcinus 

maenas showing (A) separation between controls ( ) and exposed to hypercapnic water with 

pH 7.4 (+), pH 6.9 ( ), pH 6.6 (*) and pH 6.3 ( ) for two weeks; (B) dose-dependent 

changes according to LV1 (black circles) and LV2 (grey circles) where values are means ± 

SEM, n = 6-9,  and asterisks indicate values significantly different from controls (p  0.05); 

and loading plots for LV1 (C) and LV2 reflecting the changes in metabolites with exposure. 

Keys: (1) branched-chain amino acids (isoleucine, leucine and valine), (2) lactate, (3) alanine, 

(4) arginine, (5) proline (6) glutamine, (7) glutamate, (8) dimethylamine, (9) lysine, (10) 

glycerophosphocholine, (11) taurine, (12) glycine, (13) betaine, (14) homarine, (15) formate. 
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Table 1. Relative changes in metabolite concentrations in the hemolymph of Carcinus maenas
exposed to elevated levels of CO2

 = significantly increased, = significantly decreased and and  = non-significant changes in metabolite concentrations (p  0.05). 

  

Metabolites
pH Time (h)

pH 6.9
7.4 6.9 6.6 6.3 672 h

Osmoregulation
Alanine
Betaine
Glutamine
Glycine
Proline
Leucine
Lysine
N6 acetyllysine
Anaerobic metabolism
Lactate
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Fig. 4. Partial Least-Squares (PLS) regression model of gLog data from leg muscle extracts of 

Carcinus maenas showing (A) separation between controls ( ) and animals exposed to 

hypercapnic water with pH 7.4 (+), pH 6.9 ( ), pH 6.6 (*) and pH 6.3 ( ) for two week; (B) 

dose-dependent changes according to LV1 (black circles) and LV2 (grey circles) where 

values are means ± SEM, n = 6-9,  and asterisks indicate values significantly different from 

controls (p   0.05); and loading plots for LV1 (C) reflecting the changes in metabolites with 

exposure. Keys: (1) branched-chain amino acids (isoleucine, leucine and valine), (2) lactate, 

(3) alanine, (4) arginine, (5) proline (6) glutamine, (7) glutamate, (8) taurine, (9) glycine, (10) 

betaine, (11) homarine, (12) ATP/ADP, (13) trigonelline. 
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Table 2. Relative changes in metabolite concentrations in muscle tissue of Carcinus maenas exposed
to elevated levels of CO2

Metabolites
pH Time (h)

pH 6.9

pH 7.4 pH 6.9 pH 6.6 pH 6.3 48 h

Osmoregulation
Alanine
Betaine
Glutamine
Glycine
Proline
Glutamate
Homarine
Trigonelline
Threonine
Anaerobic
metabolism
Lactate
Energy metabolism
Glucose
Succinate

 = significantly increased, = significantly decreased and and  = non-significant changes in metabolite concentrations (p  0.05). 
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Fig. 5. Partial Least-Squares (PLS) regression model of data from gill extracts of Carcinus 

maenas showing (A) separation between controls ( ) and animals exposed to hypercapnic 

water with pH 7.4 (+), pH 6.9 ( ), pH 6.6 (*) and pH 6.3 ( ) for two weeks (B) dose-

dependent changes according to LV1 (black circles) and LV2 (grey circles) where values are 

means ± SEM, n = 6-9,  and asterisks indicate values significantly different from controls 

(p 0.05); and loading plots for LV1 (C) and LV2 (D) reflecting the changes in metabolites 

with exposure. Keys: (1) branched-chain amino acids (isoleucine, leucine and valine), (2) 

lactate, (3) alanine, (4) arginine, (5) proline, (6) glutamate, (7) glutamine (8) dimethylamine, 

(9) lysine (10) malonate, (11) taurine, (12) glycine, (13) betaine, (14) homarine, (15) 

unidentified compound (5.2 ppm). 
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Table 3. Relative changes in metabolite concentrations in gill tissue of Carcinus maenas exposed to
elevated levels of CO2

Metabolites
pH Time (h)

pH 6.9
pH 7.4 pH 6.6 pH 6.3 672

Osmolytes
Alanine
Arginine
Betaine
Glutamine
Glutamate
Glycine
Proline
Dimethylamine
Homarine
Methionine
Leucine
Sarcosine
Taurine
Trigonelline
Valine
Anaerob metabolism
Lactate
Energy metabolism
ATP
Creatine
Acetate
Glucose
Malonate

 = significantly increased, = significantly decreased and and  = non-significant changes in metabolite concentrations (p  0.05).
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Fig. 6. Time-based trajectory plot of scores from hemolymph (A), leg muscle (B) and gill (C) extracts 

of Carcinus maenas subjected to control conditions (open circle) and short-term (1-48 h, grey squares) 

and prolonged (96-672 h, closed circles) exposure to environmental hypercapnia (pHNBS 6.94, pCO2 = 

7,600 μatm). Numbers indicate exposure times, and arrows indicate directions of changes. Asterisks 

denote values significantly different from controls according to LV1. Values are means ± SEM, n = 3-

9. 
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approach 

 1986 Torleif Holthe Dr. philos 
Zoology 

Evolution, systematics, nomenclature, and zoogeography 
in the polychaete orders Oweniimorpha and 
Terebellomorpha, with special reference to the Arctic 
and Scandinavian fauna 

 1987 Helene Lampe Dr. scient 
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 1987 Rita Kumar Dr. scient 
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 1987 Bjørn Åge Tømmerås Dr. scient. 
Zoolog 

Olfaction in bark beetle communities: Interspecific 
interactions in regulation of colonization density, 
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 1988 Hans Christian 
Pedersen 

Dr. philos 
Zoology 

Reproductive behaviour in willow ptarmigan with 
special emphasis on territoriality and parental care 

 1988 Tor G. Heggberget Dr. philos 
Zoology 

Reproduction in Atlantic Salmon (Salmo salar): Aspects 
of spawning, incubation, early life history and population 
structure 

 1988 Marianne V. Nielsen Dr. scient 
Zoology 

The effects of selected environmental factors on carbon 
allocation/growth of larval and juvenile mussels (Mytilus 
edulis) 

 1988 Ole Kristian Berg Dr. scient 
Zoology 

The formation of landlocked Atlantic salmon (Salmo 
salar L.) 

 1989 John W. Jensen Dr. philos 
Zoology 

Crustacean plankton and fish during the first decade of 
the manmade Nesjø reservoir, with special emphasis on 
the effects of gill nets and salmonid growth 

 1989 Helga J. Vivås Dr. scient 
Zoology 

Theoretical models of activity pattern and optimal 
foraging: Predictions for the Moose Alces alces 

 1989 Reidar Andersen Dr. scient 
Zoology 

Interactions between a generalist herbivore, the moose 
Alces alces, and its winter food resources: a study of 
behavioural variation 

 1989 Kurt Ingar Draget Dr. scient 
Botany 

Alginate gel media for plant tissue culture 
 

 1990 Bengt Finstad Dr. scient 
Zoology 

Osmotic and ionic regulation in Atlantic salmon, 
rainbow trout and Arctic charr: Effect of temperature, 
salinity and season 

 1990 Hege Johannesen Dr. scient 
Zoology 

Respiration and temperature regulation in birds with 
special emphasis on the oxygen extraction by the lung 

 1990 Åse Krøkje Dr. scient 
Botany 

The mutagenic load from air pollution at two work-
places with PAH-exposure measured with Ames 
Salmonella/microsome test 

 1990 Arne Johan Jensen Dr. philos 
Zoology 

Effects of water temperature on early life history, 
juvenile growth and prespawning migrations of Atlantic 
salmion (Salmo salar) and brown trout (Salmo trutta): A 
summary of studies in Norwegian streams 

 1990 Tor Jørgen Almaas Dr. scient 
Zoology 

Pheromone reception in moths: Response characteristics 
of olfactory receptor neurons to intra- and interspecific 
chemical cues 

 1990 Magne Husby Dr. scient 
Zoology 

Breeding strategies in birds: Experiments with the 
Magpie Pica pica 

 1991 Tor Kvam Dr. scient 
Zoology 

Population biology of the European lynx (Lynx lynx) in 
Norway 

 1991 Jan Henning L'Abêe 
Lund 

Dr. philos 
Zoology 

Reproductive biology in freshwater fish, brown trout 
Salmo trutta and roach Rutilus rutilus in particular 

 1991 Asbjørn Moen Dr. philos 
Botany 

The plant cover of the boreal uplands of Central Norway. 
I. Vegetation ecology of Sølendet nature reserve; 
haymaking fens and birch woodlands 

 1991 Else Marie Løbersli Dr. scient 
Botany 

Soil acidification and metal uptake in plants 

 1991 Trond Nordtug Dr. scient 
Zoology 

Reflctometric studies of photomechanical adaptation in 
superposition eyes of arthropods 

 1991 Thyra Solem Dr. scient 
Botany 

Age, origin and development of blanket mires in Central 
Norway 



 1991 Odd Terje Sandlund Dr. philos 
Zoology 

The dynamics of habitat use in the salmonid genera 
Coregonus and Salvelinus: Ontogenic niche shifts and 
polymorphism 

 1991 Nina Jonsson Dr. philos Aspects of migration and spawning in salmonids 
 1991 Atle Bones Dr. scient 

Botany 
Compartmentation and molecular properties of 
thioglucoside glucohydrolase (myrosinase) 

 1992 Torgrim Breiehagen Dr. scient 
Zoology 

Mating behaviour and evolutionary aspects of the 
breeding system of two bird species: the Temminck's 
stint and the Pied flycatcher 

 1992 Anne Kjersti Bakken Dr. scient 
Botany 

The influence of photoperiod on nitrate assimilation and 
nitrogen status in timothy (Phleum pratense L.) 

 1992 
 
Tycho Anker-Nilssen Dr. scient 

Zoology 
Food supply as a determinant of reproduction and 
population development in Norwegian Puffins 
Fratercula arctica 

 1992 Bjørn Munro Jenssen Dr. philos 
Zoology 

Thermoregulation in aquatic birds in air and water: With 
special emphasis on the effects of crude oil, chemically 
treated oil and cleaning on the thermal balance of ducks 

 1992 Arne Vollan Aarset Dr. philos 
Zoology 

The ecophysiology of under-ice fauna: Osmotic 
regulation, low temperature tolerance and metabolism in 
polar crustaceans. 

 1993 Geir Slupphaug Dr. scient 
Botany 

Regulation and expression of uracil-DNA glycosylase 
and O6-methylguanine-DNA methyltransferase in 
mammalian cells 

 1993 Tor Fredrik Næsje Dr. scient 
Zoology 

Habitat shifts in coregonids. 

 1993 Yngvar Asbjørn Olsen Dr. scient 
Zoology 

Cortisol dynamics in Atlantic salmon, Salmo salar L.: 
Basal and stressor-induced variations in plasma levels 
ans some secondary effects. 

 1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

 1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

 1993 Thrine L. M. 
Heggberget 

Dr. scient 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra. 

 1993 Kjetil Bevanger Dr. scient. 
Zoology 

Avian interactions with utility structures, a biological 
approach. 

 1993 Kåre Haugan Dr. scient 
Bothany 

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2 

 1994 Peder Fiske Dr. scient. 
Zoology 

Sexual selection in the lekking great snipe (Gallinago 
media): Male mating success and female behaviour at the 
lek 

 1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of marine fish 
larvae 

 1994 Nils Røv Dr. scient 
Zoology 

Breeding distribution, population status and regulation of 
breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo 

 1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding of 
Red Raspberry (Rubus idaeus L.) 

 1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 

 1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine phytoplankton: 
Species-specific and photoadaptive responses 

 1994 Morten Bakken Dr. scient 
Zoology 
 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver fox 
vixens, Vulpes vulpes 



 1994 Arne Moksnes Dr. philos 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo 

 1994 Solveig Bakken Dr. scient 
Bothany 

Growth and nitrogen status in the moss Dicranum majus 
Sm. as influenced by nitrogen supply 

 1994 Torbjørn Forseth Dr. scient 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes. 

 1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus requirement, 
competitive ability and food web interactions 

 1995 Hanne Christensen Dr. scient 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated biphenyls 
(PCBs), human population density and competition with 
mink Mustela vision 

 1995 Svein Håkon Lorentsen Dr. scient 
Zoology 

Reproductive effort in the Antarctic Petrel Thalassoica 
antarctica; the effect of parental body size and condition

 1995 Chris Jørgen Jensen Dr. scient 
Zoology 

The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

 1995 Martha Kold Bakkevig Dr. scient 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport 

 1995 Vidar Moen Dr. scient 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints 
on Cladoceran and Char populations 

 1995 Hans Haavardsholm 
Blom 

Dr. philos 
Bothany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden 

 1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae 

 1996 Ola Ugedal Dr. scient 
Zoology 

Radiocesium turnover in freshwater fishes 

 1996 Ingibjørg Einarsdottir Dr. scient 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to rearing 
routines 

 1996 Christina M. S. Pereira Dr. scient 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation 

 1996 Jan Fredrik Børseth Dr. scient 
Zoology 

The sodium energy gradients in muscle cells of Mytilus 
edulis and the effects of organic xenobiotics 

 1996 Gunnar Henriksen Dr. scient 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour seal 
Phoca vitulina in the Barents sea region 

 1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality in 
early first feeding of turbot Scophtalmus maximus L. 
larvae 

 1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to site 
and stand parameters 

 1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming 

 1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture 

 1997 Per Gustav Thingstad  Dr. scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher 

 1997 Torgeir Nygård  Dr. scient 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors 



 1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range transported air pollution on birds 
with particular reference to the dipper Cinclus cinclus in 
southern Norway 

 1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed 
by gas chromatography linked to electrophysiology and 
to mass spectrometry 

 1997 Rolv Lundheim  Dr. scient 
Zoology 

Adaptive and incidental biological ice nucleators    

 1997 Arild Magne Landa Dr. scient 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation 
and conservation 

 1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural transformation 
in Acinetobacter calcoacetius 

 1997 Jarle Tufto  Dr. scient 
Zoology 

Gene flow and genetic drift in geographically structured 
populations: Ecological, population genetic, and 
statistical models 

 1997 Trygve Hesthagen  Dr. philos 
Zoology 

Population responces of Arctic charr (Salvelinus alpinus 
(L.)) and brown trout (Salmo trutta L.) to acidification in 
Norwegian inland waters 

 1997 Trygve Sigholt  Dr. philos 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar) 
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

 1997 Jan Østnes  Dr. scient 
Zoology 

Cold sensation in adult and neonate birds 

 1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins 

 1998 Thor Harald Ringsby Dr. scient 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

 1998 Erling Johan Solberg Dr. scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

 1998 Sigurd Mjøen Saastad Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex (Bryophyta): 
genetic variation and phenotypic plasticity 

 1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro 

 1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. – 
A conservtaion biological approach 

 1998 Bente Gunnveig Berg Dr. scient 
Zoology 

Encoding of pheromone information in two related moth 
species 

 1999 Kristian Overskaug Dr. scient 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

 1999 Hans Kristen Stenøien Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 

 1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning in 
the outlying haylands at Sølendet, Central Norway 

 1999 Ingvar Stenberg Dr. scient 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos 

 1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis 



 1999 Trina Falck Galloway Dr. scient 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

 1999 Marianne Giæver Dr. scient 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus morhua) 
in the North-East Atlantic 

 1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus 

 1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon (Salmo 
salar) revealed by molecular genetic techniques 

 1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

 1999 Stein-Are Sæther Dr. philos 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

 1999 Katrine Wangen Rustad Dr. scient 
Zoology 

Modulation of glutamatergic neurotransmission related 
to cognitive dysfunctions and Alzheimer’s disease 

 1999 Per Terje Smiseth Dr. scient 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica) 

 1999 Gunnbjørn Bremset Dr. scient 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the deep pool habitat, with 
special reference to their habitat use, habitat preferences 
and competitive interactions 

 1999 Frode Ødegaard Dr. scient 
Zoology 

Host spesificity as parameter in estimates of arhrophod 
species richness 

 1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, 
secretory phospholipase A2 

 2000 Ingrid Salvesen Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 

  2000 Ingar Jostein Øien Dr. scient 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race 

 2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial econtrol of live food used for 
the rearing of marine fish larvae 

  2000 Sigbjørn Stokke Dr. scient 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana) 

 2000 Odd A. Gulseth Dr. philos 
Zoology 

Seawater tolerance, migratory behaviour and growth of 
Charr, (Salvelinus alpinus), with emphasis on the high 
Arctic Dieset charr on Spitsbergen, Svalbard 

 2000 Pål A. Olsvik Dr. scient 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 

 2000 Sigurd Einum Dr. scient 
Zoology 

Maternal effects in fish: Implications for the evolution of 
breeding time and egg size 

 2001 Jan Ove Evjemo Dr. scient 
Zoology 

Production and nutritional adaptation of the brine shrimp 
Artemia sp. as live food organism for larvae of marine 
cold water fish species 

 2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 



 2001 Ingebrigt Uglem Dr. scient 
Zoology 

Male dimorphism and reproductive biology in corkwing 
wrasse (Symphodus melops L.) 

 2001 Bård Gunnar Stokke Dr. scient 
Zoology 

Coevolutionary adaptations in avian brood parasites and 
their hosts 

 2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer (Rangifer 
tarandus platyrhynchus) 

 2002 Mariann Sandsund Dr. scient 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

 2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

 2002 Frank Rosell Dr. scient 
Zoology 

The function of scent marking in beaver (Castor fiber) 

 2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

 2002 Terje Thun Dr.philos 
Biology 

Dendrochronological constructions of Norwegian conifer 
chronologies providing dating of historical material 

 2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth 

 2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of dominating 
tree species along major environmental gradients 

 2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in cellular 
organisms. Studies of RAC GTPases in Arabidopsis 
thaliana and the Ral GTPase from Drosophila 
melanogaster 

 2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

 2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

 2003 Åsa Maria O. Espmark 
Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L. 

 2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

 2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in Scandinavian brown bears 

 2003 Cyril Lebogang Taolo Dr. scient 
Biology 

Population ecology, seasonal movement and habitat use 
of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

 2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species (Helicoverpa 
armigera, Helicoverpa assulta and Heliothis virescens) 

 2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 

 2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to species 
interaction and microclimatic gradients in alpine and 
Artic environments 

 2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 

 2003 Eldar Åsgard Bendiksen Dr.scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo Salar L.) parr and smolt 

 2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae (Polychaeta, Nereididae) 

 2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 



 2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein complex 
in Arabidopsis thaliana 

 2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on central Norway; recent past, 
present state and future possibilities 

 2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory learning of plant odours 
in heliothine moths. An anatomical, physiological and 
behavioural study of three related species (Heliothis 
virescens, Helicoverpa armigera and Helicoverpa 
assulta) 

 2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the natural 
environment 

 2004 Emmanuel J. Gerreta Dr. philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

 2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

 2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in cultivated 
strawberry (Fragaria x ananassa): characterisation and 
induction of the gene following fruit infection by 
Botrytis cinerea 

 2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-
Term Food Shortage 

 2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR analysis 
of whole-cell samples 

 2005 Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic Polymorphisms 

 2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

 2005 Tonette Røstelien ph.d 
Biology 

Functional characterisation of olfactory receptor neurone 
types in heliothine moths 

 2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

 2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus 
grypus) pups and their impact on plasma thyrid hormone 
and vitamin A concentrations 

 2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper trapezius 

 2005 Lasse Mork Olsen ph.d 
Biology 

Interactions between marine osmo- and phagotrophs in 
different physicochemical environments 

 2005 Åslaug Viken ph.d 
Biology 

Implications of mate choice for the management of small 
populations 

 2005 Ariaya Hymete Sahle 
Dingle 

ph.d 
Biology 

Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

 2005 Anders Gravbrøt 
Finstad 

ph.d 
Biology 

Salmonid fishes in a changing climate: The winter 
challenge 

 2005 Shimane Washington 
Makabu 

ph.d 
Biology 

Interactions between woody plants, elephants and other 
browsers in the Chobe Riverfront, Botswana 

 2005 Kjartan Østbye Dr.scient 
Biology 

The European whitefish Coregonus lavaretus (L.) 
species complex: historical contingency and adaptive 
radiation 



 2006 Kari Mette Murvoll ph.d 
Biology 

Levels and effects of persistent organic pollutans (POPs) 
in seabirds 
Retinoids and -tocopherol –  potential biomakers of 
POPs in birds?  

 2006 Ivar Herfindal Dr.scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 

 2006 Nils Egil Tokle ph.d 
Biology 

Are the ubiquitous marine copepods limited by food or 
predation? Experimental and field-based studies with 
main focus on Calanus finmarchicus 

 2006 Jan Ove Gjershaug Dr.philos 
Biology 

Taxonomy and conservation status of some booted 
eagles in south-east Asia 

 2006 Jon Kristian Skei Dr.scient 
Biology 

Conservation biology and acidification problems in the 
breeding habitat of amphibians in Norway 

 2006 Johanna Järnegren ph.d 
Biology 

Acesta Oophaga and Acesta Excavata – a study of 
hidden biodiversity 

 2006 Bjørn Henrik Hansen ph.d 
Biology 

Metal-mediated oxidative stress responses in brown trout 
(Salmo trutta) from mining contaminated rivers in 
Central Norway 

 2006 Vidar Grøtan ph.d 
Biology 

Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

 2006 Jafari R Kideghesho ph.d 
Biology 

Wildlife conservation and local land use conflicts in 
western Serengeti, Corridor Tanzania 

 2006 Anna Maria Billing ph.d 
Biology 

Reproductive decisions in the sex role reversed pipefish 
Syngnathus typhle: when and how to invest in 
reproduction 

 2006 Henrik Pärn ph.d 
Biology 

Female ornaments and reproductive biology in the 
bluethroat 

 2006 Anders J. Fjellheim ph.d 
Biology 

Selection and administration of probiotic bacteria to 
marine fish larvae 

 2006 P. Andreas Svensson ph.d 
Biology 

Female coloration, egg carotenoids and reproductive 
success: gobies as a model system 

 2007 Sindre A. Pedersen ph.d 
Biology 

Metal binding proteins and antifreeze proteins in the 
beetle Tenebrio molitor 
- a study on possible competition for the semi-essential 
amino acid cysteine 

 2007 Kasper Hancke ph.d 
Biology 

Photosynthetic responses as a function of light and 
temperature: Field and laboratory studies on marine 
microalgae 

 2007 Tomas Holmern ph.d 
Biology 

Bushmeat hunting in the western Serengeti: Implications 
for community-based conservation 

 2007 Kari Jørgensen ph.d 
Biology 

Functional tracing of gustatory receptor neurons in the 
CNS and chemosensory learning in the moth Heliothis 
virescens 

 2007 Stig Ulland ph.d 
Biology 

Functional Characterisation of Olfactory Receptor 
Neurons in the Cabbage Moth, (Mamestra brassicae L.) 
(Lepidoptera, Noctuidae). Gas Chromatography Linked 
to Single Cell Recordings and Mass Spectrometry 

 2007 Snorre Henriksen ph.d 
Biology 

Spatial and temporal variation in herbivore resources at 
northern latitudes 

 2007 Roelof Frans May ph.d 
Biology 

Spatial Ecology of Wolverines in Scandinavia  
 

 2007 Vedasto Gabriel 
Ndibalema 

ph.d 
Biology 

Demographic variation, distribution and habitat use 
between wildebeest sub-populations in the Serengeti 
National Park, Tanzania 



 2007 Julius William 
Nyahongo 

ph.d 
Biology 

Depredation of Livestock by wild Carnivores and Illegal 
Utilization of Natural Resources by Humans in the 
Western Serengeti, Tanzania 

 2007 Shombe Ntaraluka 
Hassan 

ph.d 
Biology 

Effects of fire on large herbivores and their forage 
resources in Serengeti, Tanzania 

 2007 Per-Arvid Wold ph.d 
Biology 

Functional development and response to dietary 
treatment in larval Atlantic cod (Gadus morhua L.) 
Focus on formulated diets and early weaning 

 2007 Anne Skjetne 
Mortensen 

ph.d 
Biology 

Toxicogenomics of Aryl Hydrocarbon- and Estrogen 
Receptor Interactions in Fish: Mechanisms and Profiling 
of Gene Expression Patterns in Chemical Mixture 
Exposure Scenarios 

  2008 Brage Bremset Hansen ph.d 
Biology 

The Svalbard reindeer (Rangifer tarandus 
platyrhynchus) and its food base: plant-herbivore 
interactions in a high-arctic ecosystem 

  2008 Jiska van Dijk ph.d 
Biology 

Wolverine foraging strategies in a multiple-use 
landscape 

  2008 Flora John Magige ph.d 
Biology 

The ecology and behaviour of the Masai Ostrich 
(Struthio camelus massaicus) in the Serengeti 
Ecosystem, Tanzania 

  2008 Bernt Rønning ph.d 
Biology 

Sources of inter- and intra-individual variation 
in basal metabolic rate in the zebra finch, 
(Taeniopygia guttata) 

  2008 Sølvi Wehn ph.d  
Biology 

Biodiversity dynamics in semi-natural mountain 
landscapes.  
- A study of consequences of changed 
agricultural practices in Eastern Jotunheimen 

  2008 Trond Moxness Kortner ph.d 
Biology 

"The Role of Androgens on previtellogenic 
oocyte growth in Atlantic cod (Gadus morhua): 
Identification and patterns of differentially 
expressed genes in relation to Stereological 
Evaluations" 

  2008 Katarina Mariann 
Jørgensen 

Dr.Scient 
Biology 

The role of platelet activating factor in 
activation of growth arrested keratinocytes and 
re-epithelialisation 

  2008 Tommy Jørstad ph.d 
Biology 

Statistical Modelling of Gene Expression Data 

  2008 Anna Kusnierczyk ph.d 
Bilogy 

Arabidopsis thaliana Responses to Aphid 
Infestation 

  2008 Jussi Evertsen ph.d 
Biology 

Herbivore sacoglossans with photosynthetic chloroplasts 
 

  2008 John Eilif Hermansen ph.d 
Biology 

Mediating ecological interests between locals and 
globals by means of indicators. A study attributed to the 
asymmetry between stakeholders of tropical forest at Mt. 
Kilimanjaro, Tanzania 

  2008 Ragnhild Lyngved ph.d 
Biology 

Somatic embryogenesis in Cyclamen persicum. 
Biological investigations and educational aspects of 
cloning 

  2008 Line Elisabeth  
Sundt-Hansen 

ph.d 
Biology 

Cost of rapid growth in salmonid fishes 
 

  2008 Line Johansen ph.d 
Biology 

Exploring factors underlying fluctuations in white clover 
populations – clonal growth, population structure and 
spatial distribution 

  2009 Astrid Jullumstrø 
Feuerherm 

ph.d 
Biology 

Elucidation of molecular mechanisms for pro-
inflammatory phospholipase A2 in chronic disease 



  2009 Pål Kvello ph.d 
Biology 

Neurons forming the network involved in gustatory 
coding and learning in the moth Heliothis virescens: 
Physiological and morphological characterisation, and 
integration into a standard brain atlas 

  2009 Trygve Devold Kjellsen ph.d 
Biology 

Extreme Frost Tolerance in Boreal Conifers 

  2009 Johan Reinert Vikan ph.d 
Biology 

Coevolutionary interactions between common cuckoos 
Cuculus canorus and Fringilla finches 

  2009 Zsolt Volent ph.d 
Biology 

Remote sensing of marine environment: Applied 
surveillance with focus on optical properties of 
phytoplankton, coloured organic matter and suspended 
matter 

  2009 Lester Rocha ph.d 
Biology 

Functional responses of perennial grasses to simulated 
grazing and resource availability 

  2009 Dennis Ikanda ph.d 
Biology 

Dimensions of a Human-lion conflict: Ecology of human 
predation and persecution of African lions (Panthera 
leo) in Tanzania 

  2010 Huy Quang Nguyen ph.d 
Biology 

Egg characteristics and development of larval digestive 
function of cobia (Rachycentron canadum) in response 
to dietary treatments 
-Focus on formulated diets 

  2010 Eli Kvingedal ph.d 
Biology 

Intraspecific competition in stream salmonids: the impact 
of environment and phenotype 

  2010 Sverre Lundemo ph.d 
Biology 

Molecular studies of genetic structuring and demography 
in Arabidopsis from Northern Europe 

  2010 Iddi Mihijai Mfunda  ph.d 
Biology 

Wildlife Conservation and People’s livelihoods: Lessons 
Learnt and Considerations for Improvements. Tha Case 
of Serengeti Ecosystem, Tanzania 

  2010 Anton Tinchov 
Antonov 

ph.d 
Biology 

Why do cuckoos lay strong-shelled eggs? Tests of the 
puncture resistance hypothesis 

  2010 Anders Lyngstad ph.d 
Biology 

Population Ecology of Eriophorum latifolium, a Clonal 
Species in Rich Fen Vegetation 

  2010 Hilde Færevik ph.d 
Biology 

Impact of protective clothing on thermal and cognitive 
responses 

  2010 Ingerid Brænne Arbo ph.d 
Medical 
technology

Nutritional lifestyle changes – effects of dietary 
carbohydrate restriction in healthy obese and overweight 
humans 

  2010 Yngvild Vindenes ph.d 
Biology 

Stochastic modeling of finite populations with individual 
heterogeneity in vital parameters 

  2010 Hans-Richard Brattbakk ph.d 
Medical 
technology

The effect of macronutrient composition, insulin 
stimulation, and genetic variation on leukocyte gene 
expression and possible health benefits 

  2011 Geir Hysing Bolstad ph.d 
Biology 

Evolution of Signals: Genetic Architecture, Natural 
Selection and Adaptive Accuracy 

  2011 Karen de Jong ph.d 
Biology 

Operational sex ratio and reproductive behaviour in the 
two-spotted goby (Gobiusculus flavescens) 

  2011 Ann-Iren Kittang ph.d 
Biology 

Arabidopsis thaliana L. adaptation mechanisms to 
microgravity through the EMCS MULTIGEN-2 
experiment on the ISS:– The science of space experiment 
integration and adaptation to simulated microgravity 

  2011 
 
Aline Magdalena Lee ph.d 

Biology 
Stochastic modeling of mating systems and their effect 
on population dynamics and genetics 

  2011 
 
Christopher Gravningen 
Sørmo 

ph.d 
Biology 

Rho GTPases in Plants: Structural analysis of ROP 
GTPases; genetic and functional 
studies of MIRO GTPases in Arabidopsis thaliana 



  2011 Grethe Robertsen ph.d 
Biology 

Relative performance of  salmonid phenotypes across 
environments and competitive intensities 

  2011 
 
 

Line-Kristin Larsen ph.d 
Biology 

Life-history trait dynamics in experimental populations 
of guppy (Poecilia reticulata): the role of breeding 
regime and captive environment 

  2011 Maxim A. K. Teichert 
 

ph.d 
Biology 

Regulation in Atlantic salmon (Salmo salar): The 
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